WorldWideScience

Sample records for sintered powder samples

  1. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  2. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  3. Sintered aluminium powders

    International Nuclear Information System (INIS)

    Stepanova, M.G.; Matveev, B.I.

    1974-01-01

    The mechanical and physical properties of aluminium powder alloys and the various methods employed to produce them are considered. Data are given on the hardening of the alloys SAP and SPAK-4, as well as the powder-alloy system Al-Cr-Zr. (L.M.)

  4. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  5. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  6. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  7. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

    Directory of Open Access Journals (Sweden)

    Amir Mostafaei

    2017-02-01

    Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

  8. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  9. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  10. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  11. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  12. Sintering nanodisperse zirconium powders with various stabilizing additives

    Directory of Open Access Journals (Sweden)

    Antsiferov V.N.

    2011-01-01

    Full Text Available Effect of various stabilizing additives on sintering kinetics of nanodisperse powders was studied by thermomechanical analysis. Temperature ranges of the most intense shrinking, characteristic points of shrinking rate changes were established. Peaks characterizing the most intense shrinking of nanodisperse zirconium powder samples were shown to allow to arrange the stabilizing additives as follows: Y2O3→CeO2→TiO2.

  13. The quantitative characterization of sintering of urania powders

    International Nuclear Information System (INIS)

    Das, P.; Kulkarni, U.D.

    1981-01-01

    This paper presents a unified approach towards characterization of the sintering behaviour of UO 2 powders in terms of their extrinsic properties. Empirical equations connecting the sintering index with various powder parameters have been set up. The influence of various powder parameters, either individually or as dimensionless/dimensional groups, on the sintering behaviour has been studied. The relative importance of these factors has also been analysed. A good polynomial fit has been obtained for variation of sintering index with some of the powder parameters and dimensionless/dimensional groups. The equations are expected to provide a good basis for assessing the sinterability of UO 2 powders. (Auth.)

  14. Peculiarities of formation and sintering of fine dispersed molybdenum powders

    International Nuclear Information System (INIS)

    Kalamazov, R.U.; Pak, V.I.; Tsvetkov, Yu.V.; Lem, I.N.

    1989-01-01

    Pressing of fine dispersed Mo powders sintering of compacts in H 2 and vacuum is studied. It is shown that powder preannealing at 600 deg C in H 2 for 2 hours is necessary for formation of dense sintered compacts. Qualitatively choice of pressing conditions is possible when using electron-positron annihilation method. Peculiarities of compacting and sintering of fine- and coarse-dispersed powder mixtures are considered. The obtained results are discussed from the view point of sintering recrystallization mechanism

  15. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  16. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  17. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  18. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  19. In-Situ Observation of Sintering Shrinkage of UO2 Compacts Derived from Different Powder Routes

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun

    2015-01-01

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO 2 might be attributed to the larger primary particle size of IDRUO 2 than those of ADU- and AUC- UO 2 powders. It would be important to understand the different sintering characteristics of UO 2 powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO 2 from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO 2 powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio

  20. Sintering behaviour of CeO2-Gd2O3 powders prepared by the oxalate coprecipitation method

    International Nuclear Information System (INIS)

    Duran, P.; Jurado, J.R.; Moure, C.

    1993-01-01

    The powder and compact characteristics as well as the sintering behaviour of two CeO 2 -Gd 2 O 3 compositions prepared by the oxalate coprecipitation method are studied as a function of the powder particle size and the pore-size distribution in the powder compacts. Shrinkage was measured at a constant heating rate and the results are compared with those obtained by isothermal sintering experiments. Grain growth and microstructural development on sintered samples were studied. (orig.)

  1. Consolidation of copper and aluminium powders by spark plasma sintering

    Science.gov (United States)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  2. Microstructure and properties of gravity sintered 316l stainless steel powder with nickel boride addition

    Directory of Open Access Journals (Sweden)

    Božić Dušan

    2016-01-01

    Full Text Available The present work demonstrates a procedure for synthesis of stainless steel powder by gravity sintering method. As an additive to the basic powder, NiB powder was added in the amount of 0.2 - 1.0 wt.%. Gravity sintering was done in vacuum, at the temperatures of 1100°C-1250°C, in the course of 3 - 60 min, using ceramic mould. Structural characterization was conducted by XRD, and microstructural analysis by optical and scanning electron microscope (SEM. Mechanical properties were investigated by tensile tests with steel rings. Density and permeability were determined by standard techniques for porous samples. Gravity sintered stainless steel with NiB addition had more superior mechanical and physico-chemical properties compared to stainless steel obtained by standard powder metallurgy procedures - pressing and sintering. [Projekat Ministarstva nauke Republike Srbije, br. 172005

  3. Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties

    International Nuclear Information System (INIS)

    Gülsoy, H. Özkan; Özgün, Özgür; Bilketay, Sezer

    2016-01-01

    The purpose of this study was to produce Co-based Stellite 6 superalloy components by using the method of Powder Injection Molding (PIM) and to characterize the microstructural and mechanical properties of the produced components. The experimental studies were started through the formation of feedstock by mixing Stellite 6 powder with a multicomponent binder system. Prepared feedstock was formed by utilizing powder injection molding technique. Then the molded samples were subjected to the solvent and thermal debinding processes. Different sintering cycles were applied to the raw components for the purpose of determining the optimum sintering conditions. The densities of the sintered components were determined in accordance with the Archimedes' principle. The microstructural characterization was performed through scanning electron microscope (SEM) analysis, energy dispersive spectrometry (EDS) analyses, and X-ray diffraction (XRD) analysis. Hardness measurement and tensile test were conducted in order to determine the mechanical properties. The results illustrated that the injection molded Stellite 6 components were composed of fine and equiaxed grains, plenty of carbide precipitates exhibiting homogenous distribution throughout the microstructure formed at the grain boundaries and thus the mechanical properties were considerably high.

  4. Studies on the sintering behaviour of uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Das, P.; Chowdhury, R.

    1988-01-01

    Uranium dioxide fuel pellets are normally made from their precursor ammonium diuranate, followed by calcination, subsequent reduction to sinterable grade powders and a post operation treatment of pressing and sintering. The low temperature calcined powders, usually exhibiting non-crystalline behaviour (under X-ray diffraction studies) progressively transforms into a crystalline variety on subsequent heat treatment at higher temperature. It is observed however that powders calcined between 800 to 900 0 C exhibit enhanced densification behaviour when sintered at higher temperatures. The isothermal shrinkage versus time plot of the sintered compacts are well described by a hyperbolic relationship which takes care of the observed shrinkage (λ) as caused due to a cumulative effect from the initial sintering of the powder compacts at zero time (α) and that caused due to the structural transformation from a non-crystalline modification with increased thermal treatment (β). The derived equation is a modification of the sintering mechanism of the viscous flow type proposed by Frenkel, involving sintering of an amorphous phase, the viscosity of the latter is presumed to increase with increasing thermal treatment to assume the final modified form as λ=t/(α+βt), where t = time, λ = shrinkage and α and β are the unknown parameters. (orig.)

  5. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  6. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  7. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    Science.gov (United States)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  8. Characterization and Sintering of Armstrong Process Titanium Powder

    Science.gov (United States)

    Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien

    2017-04-01

    Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.

  9. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  10. Temperature Field Simulation of Powder Sintering Process with ANSYS

    Science.gov (United States)

    He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying

    2018-03-01

    Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.

  11. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  12. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  13. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  14. In-Situ Observation of Sintering Shrinkage of UO{sub 2} Compacts Derived from Different Powder Routes

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO{sub 2} might be attributed to the larger primary particle size of IDRUO{sub 2} than those of ADU- and AUC- UO{sub 2} powders. It would be important to understand the different sintering characteristics of UO{sub 2} powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO{sub 2} from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO{sub 2} powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio.

  15. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  16. Method for preparing a sinterable uranium dioxide powder

    International Nuclear Information System (INIS)

    Thornton, T.A.; Holaday, V.D. Jr.

    1985-01-01

    This invention provides an improved method for preparing a sinterable uranium dioxide powder for the preparation of nuclear fuel, using microwave radiation in a microwave induction furnace. The starting compound may be uranyl nitrate hexahydrate, ammonium diuranate or ammonium uranyl carbonate. The starting compound is heated in a microwave induction furnace for a period of time sufficient for compound decomposition. The decomposed compound is heated in a microwave induction furnace in a reducing atmosphere for a period of time sufficient to reduce the decomposed compound to uranium dioxide powder

  17. Influence of various manufacturing parameters on some characteristics of UO2 powders and their sintering behaviour

    International Nuclear Information System (INIS)

    Mintz, M.H.; Vaknin, Sh.; Kremener, A.; Hadari, Z.

    1977-02-01

    Various parameters in the process of manufacturing uranium dioxide are examined and their influence on the characteristics and sintering behaviour of the powders obtained established. In addition some correlations between the powder aggregates microstructure and their adhesion properties and sintering behaviour are indicated. Shrinkage during the sintering process is also discussed

  18. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  19. Properties and sinterability of wet and dry attrition-milled OREOXed powder

    International Nuclear Information System (INIS)

    Lee, J. W.; Kim, J. H.; Kim, W. K.; Park, K. I.; Lee, J. W.

    2001-01-01

    The powder properties and sinterability were investigated with the powder prepared by wet and dry attrition milling of OREOX-treated powder. The OREOX-treated powder was prepared from the simulated spent fuel. Powder having less than 1 μm of average particle size could be obtained by dry milling, but not be obtained by wet milling. Thus, specific surface area of dry milled powder was higher than that of wet milled powder. With increasing of milling time, dry milled powder formed dense agglomerate while wet milled powder showed loose agglomerate. The pellets with higher than 95% T.D. of sintered density and larger than 7 μm of grain size were made with the milled powder regardless of milling method. The milling time in wet milling has greatly improved the sinterability. The pellets produced with dry milled powder have higher sintered density and larger grain size

  20. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-04-01

    Full Text Available This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2 by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase with the presence of other minor phases. It is found that dehydrogenation of TiH2 significantly affects the sintering behavior and resultant microstructure. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH2 compact leads to less densification, yet higher chemical homogenization, after high temperature sintering but not in the case of low temperature sintering. Moreover, there is a direct evidence of the eutectoid decomposition of NiTi at ca. 847 and 823 K for Ni/Ti and Ni/TiH2, respectively, during furnace cooling. The static and cyclic stress-strain behaviors of the porous NiTi alloys made from the Ni/Ti and Ni/TiH2 compacts were also investigated. As compared with the Ni/Ti sintered samples, the samplessintered from the Ni/TiH2 compact exhibited a much higher porosity, a higher close-to-total porosity, a larger pore size and lower tensile and compressive fracture strength.

  1. Preparation of Nd–Fe–B sintered magnets from HDDR-processed powder

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Green Innovative Magnetic Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Akada, Misaho [Magnetic Materials R& D Center, Research Associations of Magnetic Materials for High-Efficiency Motors (MagHEM), Nagoya 463-8560 (Japan); Soda, Rikio; Ozaki, Kimihiro [Green Innovative Magnetic Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2015-11-01

    The electric-current sintering technique was used to fully densify hydrogenation–disproportionation–desorption–recombination (HDDR)-processed Nd–Fe–B powder at temperatures below the grain growth temperature in order to produce high-coercive bulk magnets. However, the sintered magnets exhibited anomalous coercivity reduction that depended on sintered density. Reheating examination of the sintered magnets revealed that the reduced coercivity was increased in proportion to the heating temperature, resulting in complete recovery of coercivity. As a result, the combination of electric-current sintering and post-annealing produced sintered magnets with a coercivity of 15 kOe. Scanning and transmission electron microscopy revealed no evidence that associated the anomalous coercivity reduction and recovery with grain boundary morphology. On the other hand, various HDDR powders with different particle sizes were sintered, and finer powders yielded lower coercivity after sintering, implying that the anomalous coercivity reduction was associated with particle surface oxides of the raw powder. - Highlights: • We conduct a sintering of HDDR-processed Nd–Fe–B powder without coercivity reduction. • Rapid current sintering allows densification of this powder without grain growth. • However, the sintered magnets show an anomalous coercivity reduction phenomenon. • It is found that post-annealing completely recovers the reduced coercivity. • The anomalous coercivity reduction would be due to surface oxide of the raw powder.

  2. In situ observation and neutron diffraction of NiTi powder sintering

    International Nuclear Information System (INIS)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2014-01-01

    This study investigated NiTi powder sintering behaviour from elemental powder mixtures of Ni/Ti and Ni/TiH 2 using in situ neutron diffraction and in situ scanning electron microscopy. The sintered porous alloys have open porosities ranging from 2.7% to 36.0%. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH 2 compact leads to less densification yet higher chemical homogenization only after high-temperature sintering. For the first time, direct evidence of the eutectoid phase transformation of NiTi at 620 °C is reported by in situ neutron diffraction. A comparative study of cyclic stress–strain behaviours of the porous NiTi alloys made from Ni/Ti and Ni/TiH 2 compacts indicate that the samples sintered from the Ni/TiH 2 compact exhibited a much higher porosity, larger pore size, lower fracture strength, lower close-to-overall porosity ratio and lower Young’s modulus. Instead of enhanced densification by the use of TiH 2 as reported in the literature, this study shows an adverse effect of TiH 2 on powder densification in NiTi

  3. Structural comparison of sintering products made of "TiC + Ti" composite powders and "Ti + C" powder mixtures

    Science.gov (United States)

    Krinitcyn, Maksim G.; Pribytkov, Gennadii A.; Korosteleva, Elena N.; Firsina, Irina A.; Baranovskii, Anton V.

    2017-12-01

    In this study, powder composite materials comprised of TiC and Ti with different ratios are processed by sintering of Ti and C powder mixtures and self-propagating high-temperature synthesis (SHS) in "Ti+C" system followed by sintering. The microstructure and porosity of obtained composites are investigated and discussed. The dependence of porosity on sintering time is explained theoretically. Optimal regimes that enable to obtain the most homogeneous structure with the least porosity are described.

  4. Sintering of B{sub 4}C powder obtained by a modified carbo-thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, R.M.; Kazumi, M.H.; Goncalves, D.P.; Melo, F.C.L. [Centro Tecnico Aeroespacial (CTA) - Instituto de Aeronautica e Espaco, Praca Marechal Eduardo Gomes, 50 Campus do CTA - Vila das Acacias, 12228-904 Sao Jose dos Campos-SP (Brazil)

    2005-07-01

    Boron carbide is one of the hardest materials and a highly refractory material that is of great interest for structural, electronic and nuclear applications. B{sub 4}C is commercially manufactured by the carbo-thermal reduction of a mixture of boron oxide (B{sub 2}O{sub 3}) in an batch electric arc furnace process. However the carbo-thermal reaction on the stoichiometric starting composition results an excess carbon residue because of the boron loss in the form of B{sub 2}O{sub 2}. Thus, a modified carbo-thermal reaction is applied with an excess B{sub 2}O{sub 3} to compensate the loss and to obtain stoichiometric powders. The aim of this work is to study the sinterability of this powder with the lower carbon residue acting as sintering additive. Pressureless sintering in the temperatures of 1900 deg. C/30 min and 2100 deg. C/30 min in argon atmosphere were applied. The synthesized powders were analysed by XRD and SEM. Density of 94% of theoretical density was achieved for sample prepared with the powder obtained with 50% B{sub 2}O{sub 3} excess synthesized at 1700 deg. C/15 min. (authors)

  5. Sintering of B4C powder obtained by a modified carbo-thermal reaction

    International Nuclear Information System (INIS)

    Rocha, R.M.; Kazumi, M.H.; Goncalves, D.P.; Melo, F.C.L.

    2005-01-01

    Boron carbide is one of the hardest materials and a highly refractory material that is of great interest for structural, electronic and nuclear applications. B 4 C is commercially manufactured by the carbo-thermal reduction of a mixture of boron oxide (B 2 O 3 ) in an batch electric arc furnace process. However the carbo-thermal reaction on the stoichiometric starting composition results an excess carbon residue because of the boron loss in the form of B 2 O 2 . Thus, a modified carbo-thermal reaction is applied with an excess B 2 O 3 to compensate the loss and to obtain stoichiometric powders. The aim of this work is to study the sinterability of this powder with the lower carbon residue acting as sintering additive. Pressureless sintering in the temperatures of 1900 deg. C/30 min and 2100 deg. C/30 min in argon atmosphere were applied. The synthesized powders were analysed by XRD and SEM. Density of 94% of theoretical density was achieved for sample prepared with the powder obtained with 50% B 2 O 3 excess synthesized at 1700 deg. C/15 min. (authors)

  6. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  7. Nano or micro grained alumina powder? A choose before sintering

    Directory of Open Access Journals (Sweden)

    Román, R.

    2008-12-01

    Full Text Available Two different wet routes have been used to synthesize alumina powders in order to compare the characteristics of the final product and its behaviour during sintering. The Homogeneous Precipitation (HP gives rise to nanoparticulated powders of about 2 nm. However, such particles quickly aggregate and grow with calcination temperature. The Polymerized Organic-Inorganic Synthesis (POI produces homogeneous particle size powders (about 1 micron after resin charring. The characterization of the powder surface is the basis of an efficient process control. Particle characterization parameters (morphology, crystallinity and degree of aggregation are characterized by different techniques, such as DTA/TG, IR, XRD, SEM and TEM, and compared between these synthesis methods. The results show the evolution from the amorphous to the corundum alumina phase for both processes and their ability for sintering, as well discuses the beneficial of nanoparticles obtained by HP during sintering.

    Se han utilizado dos diferentes síntesis por vía húmeda para la preparación de polvos de alúmina con el fin de comparar las características de los productos finales y su comportamiento durante la sinterización. La Precipitación Homogénea (HP da lugar a polvos nanoparticulados de unos 2nm. Se observa sin embargo, como estas partículas se agregan rápidamente y crecen con la temperatura de calcinación. La Síntesis por Polimerización Orgánica-Inorgánica (POI produce polvos de tamaño de partícula homogéneo (en torno a 1 micra después de la descomposión de la resina. La caracterización de la superficie de los polvos es la base de un control eficiente del proceso. Los parámetros de caracterización de las partículas obtenidas (morfología, cristalinidad y grado de agregación se obtienen por diferentes técnicas como DTA/TG, IR, XRD, SEM y TEM, y se comparan entre estos métodos de síntesis. Los resultados muestran la evolución desde el amorfo a la fase

  8. Synthesis characterization and sintering of cobalt-doped lanthanum chromite powders for use in SOFCs

    International Nuclear Information System (INIS)

    Yamagata, Chieko; Mello-Castanho, Sonia R.H.

    2009-01-01

    Doped lanthanum chromite is a promising as interconnect material because of its good conductivity at high temperatures and its stability in oxidizing and reducing atmospheres. Perovskite oxide powders of Co-doped lanthanum chromite were synthesized by dispersing precursor metal salt solutions in a polymer matrix followed by a thermal treatment. XRD patterns showed that a highly crystalline cobalt-doped lanthanum chromite was obtained. Fine perovskite powder with a surface area of 6.15 m 2 g -1 calcined at 700 deg C for 1 h, were obtained. After the sample sintered at 1450 deg C for 3h, the powder reached high densities exceeding 97% of the theoretical density. The proposed here has proved to be a very promising technique for the synthesis of lanthanum chromite powders. (author)

  9. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  10. Developing Characterization Procedures for Qualifying both Novel Selective Laser Sintering Polymer Powders and Recycled Powders

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-12

    Selective laser sintering (SLS) is an additive technique which is showing great promise over conventional manufacturing techniques. SLS requires certain key material properties for a polymer powder to be successfully processed into an end-use part, and therefore limited selection of materials are available. Furthermore, there has been evidence of a powder’s quality deteriorating following each SLS processing cycle. The current investigation serves to build a path forward in identifying new SLS powder materials by developing characterization procedures for identifying key material properties as well as for detecting changes in a powder’s quality. Thermogravimetric analyses, differential scanning calorimetry, and bulk density measurements were investigated.

  11. Microstructural analysis of sinterized aluminum powder obtained by the high energy milling of beverage cans

    International Nuclear Information System (INIS)

    Souza, Jose Raelson Pereira de; Peres, Mauricio Mhirdaui

    2016-01-01

    The objective is the study of the effect of high energy milling on the sintering of aluminum from beverage cans. The selected aluminum cans were cut and subjected to high energy milling under a common atmosphere (in the air). In milling, three grams of aluminum was used to maintain the ratio of 10/1 between the mass of the beads and the material. The milling time was varied in 1h, 1.5h and 2h, keeping the other variables constant. The particle size distribution was measured by laser granulometry, for further compaction and sintering at a temperature of 600 ° C for 2 h. The samples were characterized by scanning electron microscopy (SEM). The granulometric analysis of the powders found that higher milling times produced finer particles. Powders with granulometry of less than 45 μm were obtained at 1 h, 1.5 h and 2 h times. The times of 1.5h and 2h promoted finer particles with better distribution of size. The SEM analyzes showed little variation in the shape of the particles as a function of the variation of the grinding times, presenting irregularities in the platelet geometry. The sintering time and temperature were effective in the densification of the powder particles, which were influenced by the average particle size

  12. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  13. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  14. Grain growth in ultrafine titanium powders during sintering

    International Nuclear Information System (INIS)

    Panigrahi, B.B.; Godkhindi, M.M.

    2006-01-01

    Grain growth behaviour of fine (∼3 μm) and attrition milled nanocrystalline (∼32 nm) titanium powers during sintering have been studied. The activation energies of grain growth (Q g ) in fine titanium were found to be 192.9 and 142.4 kJ/mol at lower and higher temperature ranges, respectively. The nanocrystalline titanium showed very low values of Q g (54.6 kJ/mol) at lower temperatures and it increased to 273.2 kJ/mol at higher temperatures. The constant (n) in nano Ti system was found to have unusually very high values of 6.5-8.2. The grain boundary rotation along with the diffusional processes could be the grain growth mechanism in nanocrystalline and in fine titanium powders

  15. Method of making highly sinterable lanthanum chromite powder

    Science.gov (United States)

    Richards, Von L.; Singhal, Subhash C.

    1992-01-01

    A highly sinterable powder consisting essentially of LaCrO.sub.3, containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590.degree. C. to 950 C. in inert gas containing up to 50,000 ppm O.sub.2 to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m.sup.2 /g.

  16. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Directory of Open Access Journals (Sweden)

    Jeon Byoungjun

    2015-06-01

    Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.

  17. Material Evaluation and Process Optimization of CNT-Coated Polymer Powders for Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Shangqin Yuan

    2016-10-01

    Full Text Available Multi-walled carbon nanotubes (CNTs as nano-reinforcements were introduced to facilitate the laser sintering process and enhance the thermal and mechanical properties of polymeric composites. A dual experimental-theoretical method was proposed to evaluate the processability and predict the process parameters of newly developed CNT-coated polyamide 12 (CNTs/PA12 powders. The thermal conductivity, melt viscosity, phase transition and temperature-dependent density and heat capacity of PA12 and CNTs/PA12 powders were characterized for material evaluation. The composite powders exhibited improved heat conduction and heat absorption compared with virgin polymer powders, and the stable sintering range of composite powders was extended and found to be favourable for the sintering process. The microstructures of sintered composites revealed that the CNTs remained at the powder boundaries and formed network architectures, which instantaneously induced the significant enhancements in tensile strength, elongation at break and toughness without sacrificing tensile modulus.

  18. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  19. Characteristics Of The Porous Body Sintered By Nano-Sized Fe-Cr-Al Alloy Powder

    Directory of Open Access Journals (Sweden)

    Lee Su-In

    2015-06-01

    Full Text Available Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE in ethanol. Its process consisted of the several steps; 1 coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2 heat treatment of debinding to remove the polyurethane sponge and 3 sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.

  20. Production of NdFeB powders by HDDR from sintered magnets

    International Nuclear Information System (INIS)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G.; Campos, M.F. de

    2010-01-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd 2 Fe 14 B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  1. Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Marinca, T.F.; Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS/University Joseph Fourier, BP 166, 38042 Grenoble Cédex 9 (France); Popa, F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Păşcuţă, P. [Physics and Chemistry Department Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania)

    2014-07-05

    Highlights: • Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying. • Spark plasma sintering was used for compaction of amorphous Fe{sub 75}Si{sub 20}B{sub 5} powder. • Increasing SPS time/temperature leads to improvement of AC/DC compacts properties. - Abstract: Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying route using benzene as surfactant. The amorphous phase is obtained after 60 h of milling. Structural, morphological, and thermal characteristics were investigated. The as-milled powder consists in micrometric particles with a mean diameter of 10.4 μm which are formed by the agglomeration of smaller particles. The amorphous powder is thermally stable up to the temperature of 490 °C. Spark plasma sintered compacts were prepared from the amorphous powders at sintering temperatures of 800, 850 and 900 °C. The phases formation and their evolution was investigated by X-ray diffraction technique showing that Fe{sub 3}Si and Fe{sub 2}B are the main phases formed during the spark plasma sintering process. Fe{sub 75}Si{sub 20}B{sub 5} (at.%) samples in the form of a ring were investigated in DC and AC magnetization regime. It was found that the boride phase formation (during sintering) and the low density of the compacts affect the magnetic properties of the compacts. In addition, a superficial contamination of the compacts with carbon (a layer of 2–3 μm) was evidenced, contributing thus to their soft magnetic deterioration. Increasing of the saturation induction, maximum relative permeability and initial relative permeability was observed by increasing both sintering temperature and time. It was generally observed that the compacts with high density have higher total core losses at high frequency.

  2. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  3. Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, G.A. [Dalhousie University, Department of Process Engineering and Applied Science, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1 (Canada); Brochu, M. [McGill University, Mining and Materials Engineering Department, 3610 University Street, Montreal, Quebec, Canada H3A 0C5 (Canada); Hexemer, R.L.; Donaldson, I.W. [GKN Sinter Metals LLC, 3300 University Drive, Auburn Hills 48326 (United States); Bishop, D.P., E-mail: Paul.Bishop@dal.ca [Dalhousie University, Department of Process Engineering and Applied Science, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1 (Canada)

    2014-07-01

    Two air atomized aluminum powders, one of commercial purity and the other magnesium-doped (0.4 wt%), were processed by SPS and conventional PM means. An investigation of SPS processing parameters and their effect on sinter quality were investigated. A comparison with conventionally processed PM counterparts was also conducted. Applied pressure and ultimate processing temperature bore the greatest influence on processing, while heating rate and hold time showed a minor effect. Full density specimens were achieved for both powders under select processing conditions. To compliment this, large (80 mm) and small (20 mm) diameter samples were made to observe possible up-scaling effects, as well as tensile properties. Large samples were successfully processed, albeit with somewhat inferior densities to the smaller counterparts presumably due to the temperature inhomogeneity during processing. An investigation of tensile properties for SPS samples exhibited extensive ductility (∼30%) at high sintering temperatures, while lower temperature SPS samples as well as all PM processed samples exhibited a brittle nature. The measurement of residual oxygen and hydrogen contents showed a significant elimination of both species in SPS samples under certain processing parameters when compared to conventional PM equivalents.

  4. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh A.

    2014-01-01

    Full Text Available An investigation has been made to use response surface methodology and central composite rotatable design for modeling and optimizing the effect of sintering variables on densification of prealloyed Cu28Zn brass powder during supersolidus liquid phase sintering. The mathematical equations were derived to predict sintered density, densification parameter, porosity percentage and volumetric change of samples using second order regression analysis. As well as the adequacy of models was evaluated by analysis of variance technique at 95% confidence level. Finally, the influence and interaction of sintering variables, on achieving any desired properties was demonstrated graphically in contour and three dimensional plots. In order to better analyze the samples, microstructure evaluation was carried out. It was concluded that response surface methodology based on central composite rotatable design, is an economical way to obtain arbitrary information with performing the fewest number of experiments in a short period of time.

  5. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  6. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features

    International Nuclear Information System (INIS)

    Simchi, A.

    2006-01-01

    In the present work, the densification and microstructural evolution during direct laser sintering of metal powders were studied. Various ferrous powders including Fe, Fe-C, Fe-Cu, Fe-C-Cu-P, 316L stainless steel, and M2 high-speed steel were used. The empirical sintering rate data was related to the energy input of the laser beam according to the first order kinetics equation to establish a simple sintering model. The equation calculates the densification of metal powders during direct laser sintering process as a function of operating parameters including laser power, scan rate, layer thickness and scan line spacing. It was found that when melting/solidification approach is the mechanism of sintering, the densification of metals powders (D) can be expressed as an exponential function of laser specific energy input (ψ) as ln(1 - D) = -Kψ. The coefficient K is designated as 'densification coefficient'; a material dependent parameter that varies with chemical composition, powder particle size, and oxygen content of the powder material. The mechanism of particle bonding and microstructural features of the laser sintered powders are addressed

  7. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization

    Directory of Open Access Journals (Sweden)

    Philipp Drescher

    2016-12-01

    Full Text Available Selective electron beam melting (SEBM is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  8. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    Science.gov (United States)

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  9. Study on the characteristics and sinterability of DUPIC powder by using simulated fuel

    International Nuclear Information System (INIS)

    Lee, Jae-Won; Lee, Jung-Won; Kim, Jong-Ho; Yim, Sung-Paal; Lee, Young-Woo; Yang, Myung-Seung

    2002-01-01

    The sinterability of the OREOX (oxidation and reduction of oxide fuels) powder was investigated in terms of the number of the OREOX cycles and milling time using simulated spent fuel of an equivalent burnup of 35,000 MWD/MTU. Wet milled powder was prepared and sintered to compare the morphology and sinterability with the dry milled powder. Powders having a medium particle size of less than 1μm were obtained by dry milling of OREOX powders regardless of the number of cycles. The specific surface area of the simulated DUPIC powder was governed by the number of OREOX cycles rather than by milling time. The sound pellets with a sintered density of higher than 95% TD and average grain size of larger than 8μm were obtained with the dry milled powder after 1 cycle of OREOX treatment. The powders prepared by dry milling for a short time and wet milling for a long time after 3 cycles of OREOX treatment also produced pellets with a sintered density of higher than 95% TD and average grain size of larger than 8μm. (author)

  10. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  11. A method for preparing a sintered glass powder for manufacturing microspheres

    International Nuclear Information System (INIS)

    Budrick, R.G.; King, F.T.; Nolen, R.L. Jr.; Solomon, D.E.

    1975-01-01

    The invention relates to the manufacture of sintered glass-powder. It relates to a method comprising the step of forming a vitreous gel so that it contains an occluded substance adapted to expand when heated, said gel being subsequently dried, then crushed and sorted prior to being washed and dried again. Application to the manufacture of sintered glass-powder for forming microspheres adapted to contain a thermonuclear fuel [fr

  12. Sintering and Microstructures of SUS 316L Powder Produced by 3D Printing Process

    Directory of Open Access Journals (Sweden)

    Kim W.J.

    2017-06-01

    Full Text Available Selective laser sintering (SLS is a type of laminating sintering technique, using CO2 laser with (metal, polymer, and ceramic powders. In this result, the flake SUS 316L was used to achieve a high porous product, and compare to spherical type. After SLS, the porosity of flake-type sample with 34% was quite higher than that of the spherical-type one that had only 11%. The surface roughness of the flake SLS sample were also investigated in both inner and surface parts. The results show that the deviation of the roughness of the surface part is about 64.40μm, while that of the internal one was about 117.65μm, which presents the containing of high porosity in the uneven surfaces. With the process using spherical powder, the sample was quite dense, however, some initial particles still remained as a result of less energy received at the beneath of the processing layer.

  13. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  14. Field dependence and anisotropy of the Meissner effect in sintered and dilute powders of YBa2Cu3O7

    International Nuclear Information System (INIS)

    Regnier, P.; Bontemps, N.; Monod, P.

    1990-01-01

    We report low temperature field-cooled susceptibility measurements on sintered and dilute YBa 2 Cu 3 O 7 powders in a 3-40 Oe field range. We find that the so-called Meissner fraction is field dependent, increasing as the field increases in ceramics and decreasing in powders. We also find a strong anisotropy, in both sets of samples: the Meissner fraction is larger when the field is applied parallel to the c axis. All these features are shown to emerge naturally if one assumes that the low temperature Meissner fraction: i) reflects the field dependence and the anisotropic properties of the equilibrium Meissner fraction which has been trapped at higher temperature. ii) is further reduced and its anisotropy is enhanced in sintered compounds with respect to powders, due to flux pinning at the grain boundaries

  15. Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2013-01-01

    Full Text Available In this study the SPS method was applied for low RE content (8,5% at. and high RE content (13,5 % at. MQ powders. The powders were sintered in a wide range of temperature, for 5 min., under pressure of 35 MPa. The low RE content grade, densified reluctantly and gained the density close to the theoretical value only for 850 °C. The coercivity decreased gradually with increasing sintering temperature. On the other hand, the densification of the higher RE content grade powder occurred much easier and the coercivity, close to the theoretical value, was achieved already at 650 °C. The coercivity of this material also decreased with increasing sintering temperature. Microstructural studies revealed that the SPS sintering process leads to partial decomposition of the Nd2Fe14B phase. The proportion of the RE-rich and iron phases increases parallel to the increasing sintering temperature. On the basis of the current results one can conclude that fabrication of high density MQ powders based magnets by the SPS method is possible, however the powders having higher RE content should be used for this purpose and the sintering temperature as low as possible, related to density, should be kept.

  16. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  17. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  18. Specific features of laser selective sintering of loose powder layers of metal-polymer type

    International Nuclear Information System (INIS)

    Tolochko, N.K.; Sobolenko, N.V.; Mozzharov, S.E.; Yadrojtsev, I.A.

    1996-01-01

    Experimental study was carried out into laser sintering of metal and polymer powder mixtures containing 75 vol.% of nickel base alloy (spherical particles 60-70 μm in diameter) and 25 vol.% of PEP-219 polymer (angular isometric particles 50-100 μm in size). The powder mixture was deposited on a stainless steel substrate and heated by continuous laser beam directed normally to powder layer. Geometrical and structural parameters of single and multilayer sintered products are shown to depend on both laser processing conditions and heat transfer. Some recommendations are given aimed at manufacturing articles of required shape, surface properties and material strength. 6 refs.; 4 figs

  19. The influence of dislocation defects on the sintering kinetics of ferrite powders

    International Nuclear Information System (INIS)

    Fadeeva, I.V.; Portnoi, K.V.; Oleinikov, N.N.; Tretyakov, D.Yu.

    1976-01-01

    In the presented paper are given the results of the X-ray investigations of non-equilibrium defects in powders of nickel-zinc ferrites. The block size, the crystal lattice microdistortions and stacking faults of two types were determined by the method of Fourier's analysis of diffraction line profiles. The influence of similar defects on sintering of ferrite powders was shown. The kinetics data on densification processes occurring during sintering of active powders can adequately be described in terms of the equations which describe reactions in the solid phase, where the interaction limit is on the border of the phases with different geomtery of the border. The correlation between the behaviour of compacts and dislocation defects in powders during sintering is established

  20. Forging loads, deformation modes and fracture in axi-symmetrric closed die cold forging of sintered aluminium powder compacts

    International Nuclear Information System (INIS)

    Butt, M.A.; Ali, L.

    2003-01-01

    An experimental investigation into closed-die cold forging of sintered aluminium powder rod- shaped compacts was carried out. Axi-symmetric components were forged from sintered powder preforms with different initial diameter to height ratios. Different compaction pressures, sintering and lubrication conditions were used as variables during the investigations. Detailed observations were made on green/sintered density, compaction defects, forging loads, deformation modes and on the onset of fracture during progressive forging of sintered powder compacts. Experimental results obtained during the investigations have been presented and discussed in detail. (author)

  1. Nd-Fe-B sintered magnets fabrication by using atomized powders

    International Nuclear Information System (INIS)

    Goto, R; Sugimoto, S; Matsuura, M; Tezuka, N; Une, Y; Sagawa, M

    2011-01-01

    Nd-Fe-B sintered magnets are required to achieve high coercivity for improvement of their thermal stability. Dy is added to increase coercivity, however, this element decrease magnetization and energy products. Therefore, Dy-lean Nd-Fe-B sintered magnets with high coercivity are strongly demanded. To increase coercivity, it is necessary that microstructure of sintered magnets is consisted of both fine main phase particles and homogeneously distributed Nd-rich phases around the main phase. To meet those requirements, Nd-Fe-B atomized powders were applied to the fabrication process of sintered magnets. Comparing with the case of using strip casting (SC) alloys, jet-milled powders from atomized powders show homogeneous distribution of Nd-rich phase. After optimized thermal treatment, coercivities of sintered magnets from atomized powders and SC alloys reach 1050 kA·m-1 and 1220 kA·m-1, respectively. This difference in coercivity was due to initial oxygen concentration of starting materials. Consequently, Nd-rich phases became oxides with high melting points, and did not melt and spread during sintering and annealing.

  2. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  3. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    International Nuclear Information System (INIS)

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-01

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out

  4. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  6. Effects of forming temperature and sintering rate to the final properties of FeCuAl powder compacts formed through uniaxial die compaction process

    Science.gov (United States)

    Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

  7. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids

    Science.gov (United States)

    Dai, Jiawei; Pan, Yubai; Xie, Tengfei; Kou, Huamin; Li, Jiang

    2018-04-01

    Highly transparent terbium aluminum garnet (Tb3Al5O12, TAG) magneto-optical ceramics were fabricated from co-precipitated nanopowders with tetraethoxysilane (TEOS) as sintering aid by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment. The ball milled TAG powder shows better dispersity than the as-synthesized powder, and its average particle size is about 80 nm. For the ceramic sample pre-sintered at 1720 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the in-line transmittance exceeds 76% in the region of 400-1580nm (except the absorption band), reaching a maximum value of 81.8% at the wavelength of 1390 nm. The microstructure of the TAG ceramic is homogeneous and its average grain size is approximately 19.7 μm. The Verdet constant of the sample is calculated to be -182.7 rad·T-1·m-1 at room temperature.

  8. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    International Nuclear Information System (INIS)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L.; Wendhausen, Paulo A.P.; Evangelista, Leandro L.

    2015-01-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of 99 Mo production 99m Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  9. The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, P. S.; Cavdar, U.

    2015-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra-High Frequency Induction Sintering (UHFIS) was reviewed for different environments. The three different environments: atmosphere, argon and vacuum were applied to the PM compacts. Iron based PM compacts were sintered at 1120 degree centigrade for a total of 550 seconds by using induction sintering machines with 2.8 kW power and 900 kHz frequency. Micro structural properties, densities, roughness and micro hardness values were obtained for all environments. The results were compared with each other. (Author)

  10. Effect of intense vibration treatment on the powder fine structure and reaction ability during sintering

    International Nuclear Information System (INIS)

    Pribytkov, G.A.; Chzhan Khajfen; Yuj Baokhaj; Khu Zoangchi

    2003-01-01

    Effects of a vibration grinding treatment of TiC-Ni and TiC-Ni-Cr titanium carbide-metal powder composition on the size of X-ray coherent scattering zones as well as the melt and crystallization temperatures under liquid-phase sintering have been investigated. Hardness and strength of composites sintered from the blends grinded for 4 h and more are found to be decreased that is explained by high porosity due to oxygen contamination of powder blends during a dry grinding treatment [ru

  11. Spark-plasma sintering and mechanical property of mechanically alloyed NiAl powder compact and ball-milled (Ni+Al) mixed powder compact

    International Nuclear Information System (INIS)

    Kim, J.S.; Jang, Y.I.; Kwon, Y.S.; Kim, Y.D.; Ahn, I.S.

    2001-01-01

    Mechanically-alloyed NiAl powder and (Ni+Al) powder mixture prepared by ball-milling were sintered by spark-plasma sintering (SPS) process. Densification behavior and mechanical property were determined from the experimental results and analysis such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Vicker's hardness and transverse rupture strength tests. Densification mechanisms for MA-NiAl powder compact and (Ni+Al) powder mixture were different from each other. While the former showed a rapid increase in densification rate only at higher temperature region of 800-900 o C, the latter revealed firstly a rapid increase in densification rate even at low temperature of 300 o C and a subsequent increase up to 500 o C. Densities of both powder compact (MA and mixture) sintered at 1150 o C for 5 min were 98 and above 99 %, respectively. Sintered bodies were composed mainly of NiAl phase with Ni 3 Al as secondary phase for both powders. Sintered body of MA-NiAl powder showed a very fine grain structure. Crystallite size determined by XRD result and the Sherrer's equation was approximately 80 nm. Vicker's hardness for the sintered bodies of (Ni+Al) powder mixture and MA-NiAl powder were 410±12 H v and 555±10 H v , respectively, whereas TRS values 1097±48 MPa and 1393±75 MPa. (author)

  12. Effect of agglomerate strength on sintered density for yttria powders containing agglomerates of monosize spheres

    International Nuclear Information System (INIS)

    Ciftcioglu, M.; Akine, M.; Burkhart, L.

    1987-01-01

    The effect of agglomerate strength on sintered density was determined for several yttria powders made by intentionally agglomerating 0.1-μm, monodisperse yttriuim hydrocarbonate precursor spheres and calcining separate portions of the precursor at different temperatures to vary the strength of the intraaglomeate bonds. In this way, the effects of differences in particle morphology and other characteristics among the powders were minimized and the effect of agglomerate strength could be seen more clearly

  13. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  14. X-ray powder diffraction analysis of liquid-phase-sintered silicon carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L.; Sanchez-Bajo, F. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Cumbrera, F.L. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica

    2002-07-01

    In an attempt to gain a comprehensive understanding of the microstructural evolution in liquid-phase-sintered silicon carbide ceramics, the effect of the starting {beta}-SiC powder has been studied. Pellets of two different {beta}-SiC starting powders were sintered with simultaneous additions of Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} at 1950 C for 1 hour in flowing argon atmosphere. Here we have used X-ray diffraction to obtain the relative abundance of the resulting SiC polytypes after sintering. The significant influence of the defects concentration on the {beta} to {alpha} transformation rate has been determined using the Rietveld method. (orig.)

  15. The Promotion of Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steels by Adding Nickel

    Directory of Open Access Journals (Sweden)

    Wu Ming-Wei

    2015-01-01

    Full Text Available Boron is a feasible alloying element for liquid phase sintering (LPS of powder metallurgy (PM steels. This study investigated the effect of nickel (Ni, which is widely used in PM steels, on the liquid phase sintering of boron-containing PM steels. The results showed that the addition of 1.8wt% Ni does not apparently modify the LPS mechanism of boron-containing PM steels. However, adding 1.8wt% Ni slightly improves the LPS densification from 0.60 g/cm3 to 0.65 g/cm3, though the green density is reduced. Thermodynamic simulation demonstrated that the presence of Ni lowers the temperature region of liquid formation, resulting in enhanced LPS densification. Moreover, original graphite powders remains in the steels sintered at 1200 ºC. These graphite powders mostly dissolve into the base iron powder when the sintering temperature is increased from 1200 ºC to 1250 ºC.

  16. Structure and characteristics of functional powder composite materials obtained by spark plasma sintering

    Science.gov (United States)

    Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.

    2017-07-01

    The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.

  17. Some aspects of barreling in sintered plain carbon steel powder metallurgy preforms during cold upsetting

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2012-04-01

    Full Text Available The present research establishes a relationship of bulged diameter with densification and hydrostatic stress in forming of sintered iron (Fe powder metallurgy preforms cold upset under two different frictional conditions, namely, nil/no and graphite lubricant condition. Sintered plain carbon steel cylindrical preforms with carbon (C contents of 0, 0.35, 0.75 and 1.1% with constant initial theoretical density of 84% and aspect ratio of 0.4 and 0.6 were prepared using a suitable die-set assembly on a 1 MN capacity hydraulic press and sintered for 90 minutes at 1200 °C. Each sintered preform was cold upset under two different frictional constraints. It is seen that the degree of bulging reduces with reducing frictional constraints at the die contact surface. Further, it is found that the bulging ratio changed as a function of relative density and hydrostatic stress, respectively, according to the power law equations.

  18. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    Science.gov (United States)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  19. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  20. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    Science.gov (United States)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-04-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  1. Influence of sintering temperature on the properties of pulsed electric current sintered hybrid coreshell powders

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Larismaa, J.; Heczko, Oleg; Cura, M.E.; Hannula, S.-P.

    2013-01-01

    Roč. 33, č. 12 (2013), s. 2233-2239 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : sintering * silver * iron oxide * SiO 2 * phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.307, year: 2013 http://dx.doi.org/10.1016/j.jeurceramsoc.2012.12.023

  2. High pressure sintering (HP-HT) of diamond powders with titanium and titanium carbide

    International Nuclear Information System (INIS)

    Jaworska, L.

    1999-01-01

    Polycrystalline diamond compacts for cutting tools are mostly manufactured using high pressure sintering (HP-HT). The standard diamond compacts are prepared by diamond powders sintering with metallic binding phase. The first group of metallic binder are metals able to solve carbon - Co, Ni. The second group of metal binders are carbide forming elements - Ti, Cr, W and others. The paper describes high pressure sintering of diamond powder with titanium and nonstoichiometry titanium carbide for cutting tool application. A type of binding phase has the significant influence on microstructure and mechanical properties of diamond compacts. Very homogeneous structure was achieved in case of compacts obtained from metalized diamond where diamond-TiC-diamond connection were predominant. In the case of compacts prepared by mechanical mixing of diamond with titanium powders the obtained structure was nonhomogeneous with titanium carbide clusters. They had more diamond to diamond connections. These compacts compared to the compact made of metallized diamond have greater wear resistance. In the case of the diamond and TiC 0.92 sintering the strong bonding of TiC diamond grains was obtained. The microstructure observations for diamond with 5% wt. Ti and diamond with 5% wt. TiC 0.92 (the initial composition) compacts were performed in transmission microscope. For two type of compacts the strong bonding phase TiC without defects is creating. (author)

  3. Compacted and Sintered Microstructure Depending on Uranium Powder Size in Zr-U Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chang Gun; Jun, Hyun-Joon; Ju, Jung Hwan; Lee, Ho Jin; Lee, Chong-Tak; Kim, Hyung Lae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    In case of the uranium (U) and zirconium (Zr) powders which have been utilized for the production of a metallic fuel in the various nuclear applications, the homogenous distribution of U powders in the Zr-U pellet has influenced significantly on the nuclear fuel performance. The inhomogeneity in a powder process was changed by various intricate factors, e.g. powder size, shape, distribution and so on. Particularly, the U inhomogeneity in the Zr-U pellets occurs by segregation derived from the great gaps of densities between Zr and U during compaction of the mixed powders. In this study, the relationship between powder size and homogeneity was investigated by using the different-sized U powders. The microstructure in Zr-U pellets reveals more homogeneity when the weight ration of Zr and U powders are close to 1. In addition, homogeneous pellets which were produced by fine U powders have higher density because the homogeneity affects the alloying reaction during sintering and the densification behavior of pore induced by powder size.

  4. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  5. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  6. Spark plasma sintering of TiNi nano-powders for biological application

    International Nuclear Information System (INIS)

    Fu, Y Q; Gu, Y W; Shearwood, C; Luo, J K; Flewitt, A J; Milne, W I

    2006-01-01

    Nano-sized TiNi powder with an average size of 50 nm was consolidated using spark plasma sintering (SPS) at 800 deg. C for 5 min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H 2 O 2 ) solution at 60 deg. C followed by heat treatment at 400 deg. C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi

  7. Sintering by infiltration of loose mixture of powders, a method for metal matrix composite elaboration

    International Nuclear Information System (INIS)

    Constantinescu, V.; Orban, R.; Colan, H.

    1993-01-01

    Starting from the observation that Sintering by Infiltration of Loose Mixture of Powders confers large possibilities for both complex shaped and of large dimensions Particulate Reinforced Metal Matrix Composite components elaboration, its mechanism comparative with those of the classical melt infiltration was investigated. Appropriate measures in order to prevent an excessive hydrostatic flow of the melt and, consequently, reinforcement particle dispersion, as well as to promote wetting in both infiltration and liquid phase sintering stages of the process were established as necessary. Some experimental results in the method application to the fusion tungsten carbide and diamond reinforced metal matrix composite elaboration are, also, presented. (orig.)

  8. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    OpenAIRE

    Gerda Vaitkūnaitė; Vladislav Markovič; Olegas Černašėjus

    2015-01-01

    The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS) method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treat...

  9. Plasticizing of YBa2Cu3Ox powders with some organic additions and their effect on superconducting properties of sintered ceramics

    International Nuclear Information System (INIS)

    Pitov, V.A.; Mozhaev, A.P.; Ludra, M.M.

    1992-01-01

    Characteristics of compactibility of YBa 2 Cu 3 O x powders of various granulometric compositions with and without plasticizer additions are studied. As plasticizers paraffin and polyvinyl alcohol are used. Pressed pellet density dependence on compacting pressure logarithm is described by the first-order equation. Effect of granulometric composition and plasticizers on equation coefficients is analysed, attain high-quality plasticizing of all powders, but decreases their sintering ability. Use of plasticizers doesn't decrease the initial temperature of transition into superconducting state of sintered samples, but in a number of cases leads to increase of its width, as well as decrease of oxygen index value. These drawbacks may be completely avoided by careful distillation of plasticizers from pressed samples with subsequent sintering

  10. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  11. Formation of peripheral porosity regions around urania in zirconia-urania mixed oxide powder compact sintering

    International Nuclear Information System (INIS)

    Das, P.; Choudhury, R.

    1992-01-01

    Sintering studies of zirconia-urania mixed oxide powder compacts (in stages of 5% urania up to a maximum of 20% addition) were carried out at temperatures between 1000-1400deg C for various soaking periods. The formation of a peripheral porosity region around comparatively coarser urania particle was a characteristic feature in this mixed oxide sintered compact. At even a higher sintering temperature (1800deg C), where extensive solid solution formation takes place, this porosity region demarcates the solutionized particles from the host zirconia apparently acting as a discontinuity in the system. Relative shrinkage difference between the dissimilar particles probably contributes to the porosity regions around the minor second phase at a lower temperature while at higher temperature generation of 'Kirkendall porosity' may be responsible for such an effect. (orig.)

  12. Microstructural Analysis of Sintered Gradient Materials Based on Distaloy SE Powder

    Directory of Open Access Journals (Sweden)

    Zarębski K.

    2016-06-01

    Full Text Available The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products

  13. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  14. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  15. Spark plasma sintering of hydrothermally derived ultrafine Ca doped lanthanum chromite powders

    Directory of Open Access Journals (Sweden)

    Rendón-Angeles, J. C.

    2006-08-01

    Full Text Available Lanthanum chromite nano-particles, with a composition of La0.9Ca0.1CrO3 and La0.8Ca0.2CrO3, were produced by 1 h of hydrothermal reaction at 400 and 425°C respectively. The sintering of the powders was conducted using a spark plasma apparatus over the temperature range 1300-1550ºC for 1 min with a constant loading pressure of 45 MPa. Additional sintering experiments using conventional firing were carried out for comparison. Fully densified (98 % r.d. lanthanum chromite pellets with fine equiaxial grains 2.3 μm in size were obtained using the SPS (spark plasma sintering method. In contrast, a maximum relative density of 97 % was produced using La0.8Ca0.2CrO3 sintered conventionally at 1400ºC for 300 min, and the average grain size of the resulting sintered sample was 6 μm.

    Partículas ultrafinas de cromita de lantano, con una composición de La0.9Ca0.1CrO3 y La0.8Ca0.2CrO3, se obtuvieron después de 1 hora de síntesis hidrotermal a las temperaturas de 400 y 425°C respectivamente. Los compuestos obtenidos, con un tamaño de partícula de ~ 200 nm, se caracterizaron utilizando las técnicas de DRX, MEB y MET. La sinterización de estos polvos se efectuó en un equipo de chispa de plasma en el rango de temperatura de 1300-1500°C durante 1 min, y a una presión de compactación de 45 MPa. Ambos polvos también se sinterizaron siguiendo un tratamiento térmico convencional, en aire, con el propósito de comparar ambos métodos de sinterización. Las muestras de cromita de lantano sinterizadas por plasma presentaban una densidad relativa del 98 % (/t; y una microestructura monofásica con granos equaxiales con un tamaño medio de grano menor de 2.3 μm. En contraste, la composición La0.8Ca0.2CrO3, sinterizada a 1400°C/300 min, por métodos convencionales alcanzó una densidad relativa máxima del 97 % y su microestructura estaba formada por una sola fase con un tamaño medio de grano de 6 μm.

  16. Nanostructured cobalt powders synthesised by polyol process and consolidated by Spark Plasma Sintering: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fellah, F.; Schoenstein, F.; Dakhlaoui-Omrani, A.; Cherif, S.M.; Dirras, G.; Jouini, N., E-mail: jouini@univ-paris13.fr

    2012-07-15

    Bulk nanostructured cobalt was processed using a bottom-up strategy. Nanostructured particle agglomerates of about 50 and 240 nm in diameter were synthesised using a polyol route and subsequently consolidated by Spark Plasma Sintering (SPS). The microstructure of the starting powders and of the processed bulk samples was studied and characterised by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the as-prepared powders showed predominantly a face centred cubic (fcc) crystalline phase, whereas both fcc and hexagonal close packed (hcp) phases were found within the consolidated samples. A sample with the highest relative mass density (94.5%) was obtained from the small powder particles. TEM observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain in the sample with the highest density. Brillouin light scattering (BLS) and quasistatic compression tests were used to investigate the mechanical properties of the consolidated samples. The two techniques yielded Young modulus values of 168 GPa and 130 GPa, respectively, in the sample with the highest density. This sample also exhibited a yield stress higher than 1 GPa after the compression test, which is mainly attributed to the lamellar-like structure occurring in almost every grain of the polycrystalline aggregate. - Highlights: Black-Right-Pointing-Pointer Cobalt nanoparticles produced by the polyol process present mainly the fcc metastable phase. Black-Right-Pointing-Pointer Bulk nanostructured cobalt is obtained from the nano-particles by Spark Plasma Sintering consolidation. Black-Right-Pointing-Pointer Nanotwins and stacking faults are present in every grain of the more dense sample. Black-Right-Pointing-Pointer Yield strength and plastic domain may be varied depending on the nanoparticle size and the porosity of the consolidated material.

  17. Synthesis of Ti3AlC2 by spark plasma sintering of mechanically milled 3Ti/xAl/2C powder mixtures

    International Nuclear Information System (INIS)

    Yang Chen; Jin Songzhe; Liang Baoyan; Liu Guojun; Duan Lianfeng; Jia Shusheng

    2009-01-01

    Elemental powders of Ti, Al and C were mechanically milled as starting materials for the fabrication of ternary carbide Ti 3 AlC 2 by spark plasma sintering (SPS) technique. The effect of Al content in the starting materials on the Ti 3 AlC 2 synthesis was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to determine the phase identification and observe the microstructure of the synthesized samples. With increasing proper Al content, it was found that the purity of Ti 3 AlC 2 increased and the sintering temperature reduced. The dense and high-purity Ti 3 AlC 2 could be successfully fabricated from 3Ti/1.2Al/2C powders at a lower sintering temperature of 1050 deg. C, holding for 10 min. In addition, the reaction path for the formation of Ti 3 AlC 2 in the present study was proposed

  18. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    Energy Technology Data Exchange (ETDEWEB)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L., E-mail: rosatac@gmail.com, E-mail: raquel.lucchesi@icloud.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Wendhausen, Paulo A.P.; Evangelista, Leandro L., E-mail: paulo.wendhausen@ufsc.br, E-mail: leandro.materiais@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Laboratorio de Materiais

    2015-07-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of {sup 99}Mo production {sup 99m}Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  19. Low-field vortex pinning model for undoped sintered MgB2 powders

    International Nuclear Information System (INIS)

    Agassi, Y D

    2011-01-01

    Sintered MgB 2 powders constitute a porous ensemble of irregularly shaped agglomerates of tightly packed grains. The low-field critical current density in such powders was experimentally observed to scale with the inverse of the average agglomerate size. Motivated by this observation we consider a flux pinning model which accounts for the MgB 2 powder porosity by focusing on a single finite-size agglomerate size. According to the model the observed critical current density dependence on the agglomerate size reflects the outward pull exerted on a vortex that is pinned in proximity to the agglomerate edges. The calculated critical current density replicates the observed scaling within agglomerate-size bounds. Implications of the model are discussed.

  20. Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering

    International Nuclear Information System (INIS)

    Mazzoli, Alida; Moriconi, Giacomo; Pauri, Marco Giuseppe

    2007-01-01

    Solid free-form fabrication (SFF) techniques use layer-based manufacturing to create physical objects directly from computer-generated models. Using an additive approach to manufacture shapes, SFF systems join liquid, powder or sheet materials. Selective laser sintering (SLS) is a SFF technique by which parts are built layer-by-layer offering the key advantage of the direct manufacturing of functional parts. In SLS, a laser beam is traced over the surface of a tightly compacted powder made of thermoplastic material. In this paper is characterized a new aluminum-filled polyamide powder developed for applications in SLS. This material is promising for many applications that require a metallic look of the part, good finishing properties, high stiffness and higher part quality

  1. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Potanina, Ekaterina, E-mail: ekaterina.potanina@list.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Golovkina, Ludmila, E-mail: golovkina_lyudmila@mail.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Orlova, Albina, E-mail: albina.orlova@inbox.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Nokhrin, Aleksey, E-mail: nokhrin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Boldin, Maksim, E-mail: boldin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Sakharov, Nikita, E-mail: nvsaharov@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation)

    2016-05-15

    Complex oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} with garnet structure and phosphates NdPO{sub 4} and GdPO{sub 4} with monazite structure were obtained by using precipitation methods. Ceramics Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} and NdPO{sub 4} were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330–1390 °C. Leaching rates of elements from ceramics were 10{sup −6}–10{sup −7} g/(cm{sup 2} d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step–to the process of grain boundary diffusion and grain growth. - Highlights: • Powders were obtained by precipitation (sol–gel) method. • Ceramics were sintering by Spark Plasma Sintering method (ρ{sub rel} > 98%); shrinkage time does not exceed 8 min. • The process of ceramics sintering has two-stage character.

  2. Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer

    Science.gov (United States)

    Holt, Nicholas; Zhou, Wenchao

    2018-03-01

    Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. For MAPS to work effectively, a microscale air gap needs to be maintained between the heater array and the conductive ink. In this article, we present an experimental MAPS printer with air gap control for printing conductive circuits. First, we discuss design aspects necessary to implement MAPS. An analysis is performed to validate that the design can maintain the desired air gap between the microheaters and the sintering layer, which consists of a silver nanoparticle ink. The printer is tested by printing conductive lines on a flexible plastic substrate with silver nanoparticle ink. Results show MAPS performs on par with or better than the existing fabrication methods for printed electronics in terms of both the print quality (conductivity of the printed line) and print speed, which shows MAPS' great promise as a competitive new method for digital production of printed electronics.

  3. Sintered FeCuRe Alloys Produced from Commercially Available Powders

    Directory of Open Access Journals (Sweden)

    Borowiecka-Jamrozek J.

    2017-09-01

    Full Text Available This paper discusses the mechanical properties of materials fabricated from commercially available powders designed for use as a metal matrix of diamond-impregnated composites. The powders with the catalogue numbers CSA and CSA800 produced in China were tested under laboratory conditions. The specimens were fabricated in a graphite mould using hot pressing. The materials were analysed for density, porosity, hardness and static tensile strength. A scanning electron microscope (SEM was employed to observe the microstructure and fracture surfaces of the specimens. The experimental data was used to determine how the chemical composition of the powders and the process parameters affected the microstructure and properties of the materials. The properties of the sintered materials produced from the Chinese powders were compared with the properties reported for specimens fabricated from cobalt powder (Co SMS. Even though the hot pressed CSA and CSA800 powders had inferior mechanical properties to their cobalt analogue, they seem well-suited for general-purpose diamond-impregnated tools with less demanding applications.

  4. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    Directory of Open Access Journals (Sweden)

    Gerda Vaitkūnaitė

    2015-03-01

    Full Text Available The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treated and untreated areas of the material has been made.

  5. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  6. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  7. Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment

    Science.gov (United States)

    Almansoori, Alaa; Majewski, Candice; Rodenburg, Cornelia

    2017-11-01

    Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.

  8. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Directory of Open Access Journals (Sweden)

    Yan Zilin

    2017-01-01

    Full Text Available The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM. Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  9. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, F., E-mail: f.bittner@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Schultz, L. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Schwöbel, C. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Fraunhofer ISC, Projektgruppe für Werkstoffkreisläufe und Ressourcenstrategie IWKS, Rodenbacher Chaussee 4, 63457 Hanau (Germany); Zickler, G.A.; Fidler, J. [Technische Universität Wien, Institute of Solid State Physics, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Üstüner, K.; Katter, M. [Vacuumschmelze GmbH & Co. KG, 63412 Hanau (Germany)

    2017-03-15

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  10. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    International Nuclear Information System (INIS)

    Bittner, F.; Woodcock, T.G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G.A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-01-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  11. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Hola, Marketa; Otruba, Vitezslav; Kanicky, Viktor

    2006-01-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3 ) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  12. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Otruba, Vitezslav [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Kanicky, Viktor [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2006-05-15

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm{sup 3}) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between {+-} 3% and {+-} 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed

  13. Properties of Ni-Mo steel prepared from premixed and prealloyed powder in sintered, forged and annealed state

    International Nuclear Information System (INIS)

    Salak, A.; Hrubjak, M.

    Investigated were 2Ni-0.5Mo steel specimens made of premixed powder on the base of Hametag iron and of ATST-A prealloyed powder with graphite additives of 0.3% and 0.8%. In the sintered and forged state, specimens prepared from premixed powder exhibit better strength properties compared with those made of prealloyed ATST-A powder. After annealing, the carbon content has a different bearing on both systems. With premixed powder steel of 0.6% carbon content the tensile strength amounts to 1,800 MPa whilst that of prealloyed steel specimens with 0.2% carbon content is about 1,240 MPa. (author)

  14. XRD analysis and microstructure of milled and sintered V, W, C, and Co powders

    CSIR Research Space (South Africa)

    Bolokang, AS

    2011-01-01

    Full Text Available on the starting compositions of pure elements, their lattice coherency according to Hume-Rothery rules on crystal structure and atomic size, and enough milling time that provides adequate kinetics. Keywords ? X-ray analysis; ? (V,W)C; ? Co15W8C6...-1 International Journal of Refractory Metals and Hard Materials Volume 29, Issue 1, January 2011, Pages 108?111 XRD analysis and microstructure of milled and sintered V, W, C, and Co powders ? A.S. Bolokang ? M.J. Phasha ? C. Oliphant ? D. Motaung ? a...

  15. Nuclear energy - Uranium dioxide powder and sintered pellets - Determination of oxygen/uranium atomic ratio by the amperometric method. 2. ed.

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies an analytical method for the determination of the oxygen/uranium atomic ratio in uranium dioxide powder and sintered pellets. The method is applicable to reactor grade samples of hyper-stoichiometric uranium dioxide powder and pellets. The presence of reducing agents or residual organic additives invalidates the procedure. The test sample is dissolved in orthophosphoric acid, which does not oxidize the uranium(IV) from UO 2 molecules. Thus, the uranium(VI) that is present in the dissolved solution is from UO 3 and/or U 3 O 8 molecules only, and is proportional to the excess oxygen in these molecules. The uranium(VI) content of the solution is determined by titration with a previously standardized solution of ammonium iron(II) sulfate hexahydrate in orthophosphoric acid. The end-point of the titration is determined amperometrically using a pair of polarized platinum electrodes. The oxygen/uranium ratio is calculated from the uranium(VI) content. A portion, weighing about 1 g, of the test sample is dissolved in orthophosphoric acid. The dissolution is performed in an atmosphere of nitrogen or carbon dioxide when sintered material is being analysed. When highly sintered material is being analysed, the dissolution is performed at a higher temperature in purified phosphoric acid from which the water has been partly removed. The cooled solution is titrated with an orthophosphoric acid solution of ammonium iron(II) sulfate, which has previously been standardized against potassium dichromate. The end-point of the titration is detected by the sudden increase of current between a pair of polarized platinum electrodes on the addition of an excess of ammonium iron(II) sulfate solution. The paper provides information about scope, principle, reactions, reagents, apparatus, preparation of test sample, procedure (uranium dioxide powder, sintered pellets of uranium dioxide, highly sintered pellets of uranium dioxide and determination

  16. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kaili; Chang Jiang; Shen Ruxiang, E-mail: jchang@mail.sic.ac.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-12-15

    The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/Calcium silicate (beta-Ca{sub 3}(PO{sub 4}){sub 2}/CaSiO{sub 3}, beta-TCP/CS) composite bioceramics was investigated. beta-TCP/CS composite powders with a weight ratio of 50:50 were prepared by three different methods: mechanical milling method (TW-A), two-step chemical precipitation method (TW-B) and in situ chemical co-precipitation method (TW-C), and then the three composite powders were uniaxially compacted at 30 MPa, followed by cold isostatic pressing into rectangular-prism-shaped specimens under a pressure of 200 MPa for 15 min, and then sintered at 1150 deg. C for 5 h. The TW-B powders with less agglomerative morphologies and uniform nano-size particles attained 96.14% relative density (RD). A uniform microstructure with about 120 nm grains was observed. Whereas, the samples obtained from TW-A and TW-C powders only reached a RD of 63.08% and 78.86%, respectively. The bending strength of the samples fabricated from TW-B reached 125 MPa, which was more than 3.7 and 1.5 times higher as compared with that of samples obtained from TW-A and TW-C powders, respectively. Furthermore, the degradability of the samples fabricated from TW-B powders was obviously lower than that of the samples fabricated from TW-A and TW-C powders.

  17. Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-04-01

    Full Text Available Polysulfone (PSU has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC, Gel Permeation Chromatography (GPC and X-ray Diffraction measurements (XRD. DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation.

  18. Compacting and sintering of agglomerated ultradispersed powders ZrO2

    International Nuclear Information System (INIS)

    Galakhov, A.V.; Vyazov, I.V.; Shevchenko, V.Ya.

    1989-01-01

    Results of investigation into the change of porous structure of shapings of submicron powders under compacting and its effect on the sintering kinetics are presented. ZrO 2 + 3%Y 2 O 3 (molar share) composition powders, produced by coprecipitation from Zr and Y mineral salts are used. Reduction of specific volume of interagglomerated pores is linked with the destruction of large soft agglomerates at the initial compacting shift. At this stage the filling of a part of interagglomerated pores with large agglomerate crushing products takes place. As a result of such a process a part of pores transfers from the class of interagglomerated to the class of intraagglomerated ones increasing their specific content in a compact

  19. Effects of CaO on the compaction and sintering by plasma of Powder-metallurgical iron

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2017-12-01

    This work the effect of the addition of Calcium Oxide (CaO) in the compaction and sintering of powder metallurgical iron Ancoor Steel 1000® is studied. Iron samples were made with proportions of: 0.5%, 1%, 1.5% and 2% by weight of CaO. The samples were sintered in a luminescent discharge furnace, in an atmosphere of H2+Ar at a temperature of 1150°C. XRD analysis was used to determine the formation of compounds, this analysis evidenced the formation of: hematite and magnetite, which were found both on the surface and in the volume. A characterization of the ability to protect against corrosive effects was carried out using the EIS electrochemical impedance spectroscopy method on the samples, in a solution of 1000ppm of chloride, with this procedure it was found that at a concentration of 0.5% and 1% CaO, the electrochemical impedance value is increased with values of 11.7MΩ, 2.2MΩ respectively.

  20. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  1. Direct dissolution and supercritical fluid extraction of uranium from UO2 powder, granule, green pellet and sintered pellet

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep; Ramakumar, K.L.

    2009-01-01

    In the present work, direct dissolution and extraction of UO 2 from the solid rejects various stages of fuel fabrication viz. powder granules green pellet and, sintered pellet has been studied. Powder and granules could be easily dissolved in TBP-HNO 3 complex at 50 deg C., whereas in case of green and sintered pellets at elevated temperature at raised to 80 deg C in TBP-HNO 3 complex. With supercritical (SC) CO 2 alone the efficiency was ∼70%. But with SC CO 2 +2.5% TBP, the efficiency was ∼95% for powder and granules, and ∼60% for green and sintered pellets. Nearly complete extraction (∼99%) was achievable for SC CO 2 + 2.5 % TTA in all cases. The method has distinct advantage of elimination of acid usage and minimization of liquid waste generation. (author)

  2. Consolidation of mechanically alloyed nanocrystalline Cu-Nb-ZrO{sub 2} powder by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Eymann, K., E-mail: Konrad.Eymann@tu-dresden.de [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany); Riedl, T.; Bram, A.; Ruhnow, M.; Boucher, R.; Kirchner, A.; Kieback, B. [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Solid solution of Cu-Nb was achieved by mechanically alloying Cu, Nb and ZrO{sub 2}. Black-Right-Pointing-Pointer In as-milled state the Cu-Nb-ZrO{sub 2} powders show an average Cu grain size of 16 nm. Black-Right-Pointing-Pointer Mechanical and electrical properties are studied in dependence of thermal exposure. Black-Right-Pointing-Pointer Compaction at 1000 Degree-Sign C/1 min using SPS increases Cu grain size to 43 nm. Black-Right-Pointing-Pointer Bulk samples reach a maximum IACS of 16% and 98% relative density. - Abstract: This work presents the synthesis of ultra fine grained high-strength Cu-Nb-ZrO{sub 2} bulk samples via mechanical alloying and spark plasma sintering. Technologically relevant properties such as density, micro-hardness, and electrical conductivity were studied in terms of the compaction parameters, in particular the sintering temperature and holding time. An optimum process parameter combination has been found T = 950 Degree-Sign C, t = 1 min, and 65 MPa, which yield a micro-hardness of 325 HV, 97.5% relative density, and electrical conductivity of 10% IACS. The dependence of these properties on the compaction parameters is explained by analyzing the microstructure, i.e. grain size, presence and distribution of phases, and porosity, with X-ray diffraction, optical and electron microscopy as well as with an Archimedes densitometer.

  3. Homogeneity characterisation of (U,Gd)O2 sintered pellets by X-ray diffraction powder analysis applying Rietveld method

    International Nuclear Information System (INIS)

    Leyva, Ana G.; Vega, Daniel R.; Trimarco, Veronica G.; Marchi, Daniel E.

    1999-01-01

    The (U,Gd)O 2 sintered pellets are fabricated by different methods. The homogeneity characterisation of Gd content seems to be necessary as a production control to qualify the process and the final product. The micrographic technique is the most common method used to analyse the homogeneity of these samples, this method requires time and expertise to obtain good results. In this paper, we propose an analysis of the X-ray diffraction powder patterns through the Rietveld method, in which the differences between the experimental data and the calculated from a crystalline structure model proposed are evaluated. This result allows to determine the cell parameters, that can be correlated with the Gd concentration, and the existence of other phases with different Gd ratio. (author)

  4. The relationship between the addition method of the Ni-activator and the sinterability for the Ni-doped W-powder compact

    International Nuclear Information System (INIS)

    Moon, I.H.; Kim, J.S.

    1984-01-01

    The relationship between the nickel size added to tungsten powder and the sinterability was investigated for the Ni-doped W-powder compact. The Ni-added W-powder compact with various particle size ratios of W to Ni were prepared by mechanical mixing as well as by salt solution and reduction method. In the latter method the size of reduced Ni-particle could be controlled by drying rate of salt solution. The smaller the size of nickel particles added to W was, the activatedly sintered W-powder compact has shown higher sinterability in the initial stage of sintering. The dependence of sinterability on the size of Ni-activator could be partly explained by some physical characteristics of Ni-activator at sintering temperature. (Auth.)

  5. Microstructural Evolution during Pressureless Sintering of Blended Elemental Ti-Al-V-Fe Titanium Alloys from Fine Hydrogenated-Dehydrogenated Titanium Powder

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-07-01

    Full Text Available A comprehensive study was conducted on microstructural evolution of sintered Ti-Al-V-Fe titanium alloys utilizing very fine hydrogenation-dehydrogenation (HDH titanium powder with a median particle size of 8.84 μm. Both micropores (5–15 μm and macropores (50–200 μm were identified in sintered titanium alloys. Spherical micropores were observed in Ti-6Al-4V sintered with fine Ti at the lowest temperature of 1150 °C. The addition of iron can help reduce microporosity and improve microstructural and compositional homogenization. A theoretical calculation of evaporation based on the Miedema model and Langmuir equation indicates that the evaporation of aluminum could be responsible for the formation of the macropores. Although reasonable densification was achieved at low sintering temperatures (93–96% relative density the samples had poor mechanical properties due mainly to the presence of the macroporosity and the high inherent oxygen content in the as-received fine powders.

  6. Effect of milling variables on powder character and sintering behaviour of 434L ferritic stainless steel-Al2O3 composites

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Upadhyaya, G.S.

    1985-01-01

    Ball milling of ferritic stainless steel-4 vol% Al 2 O 3 powder was carried out for the duration up to 222 ks. Attritor milling of ferritic stainless steel-6 vol% Al 2 O 3 were also carried out for the duration up to 32.4 ks. The characterization of the milled powders were performed. The sintering of ball milled powders was carried out at 1623 K for 10.8 ks in hydrogen. The premix of as received stainless steel powder and the attritor milled powder was also sintered at 1623 K for 3.6 ks in hydrogen. The results showed that an optimum ball milling period in between 58 and 173 ks was required to achieve better sintered properties. The attritor milling was more effective in grinding the powders as compared to ball milling, and the sinterability was also higher for such powders. (author)

  7. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  8. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.

    Science.gov (United States)

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  9. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Williams, A.J., E-mail: a.j.williams@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2012-01-15

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10({+-}0.02) T and an intrinsic coercivity of 800 ({+-}16) kA m{sup -1} and giving a (BH){sub max} of 129({+-}2.5) kJ m{sup -3}. - Highlights: > Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. > Reaction pressure increases with increasing processing temperature. > Best magnetic properties achieved by processing at 880 deg. C.

  10. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    International Nuclear Information System (INIS)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R.; Williams, A.J.

    2012-01-01

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m -1 and giving a (BH) max of 129(±2.5) kJ m -3 . - Highlights: → Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. → Reaction pressure increases with increasing processing temperature. → Best magnetic properties achieved by processing at 880 deg. C.

  11. Ceramic powders of CaZrO3. Preparation and sintering

    International Nuclear Information System (INIS)

    Tamborenea, S.; Coronel, A.; Mazzoni, A.D.; Aglietti, E.F.

    2003-01-01

    Calcium zirconate (CaZrO 3 ) is a compound belonging to the perovskite family of the A 2+ B 4+ O 3 6- type with orthorhombic crystalline structure (distorted perovskite).CaZrO 3 is used in the manufacture of sensors of oxygen, humidity, hydrogen and hydrocarbides.Additionally, it is also being studied for the manufacture of thermistors.The calcium zirconate preparation by solid state reaction from stoichiometric mixtures of CaCO 3 and ZrO 2 is studied.The formation reaction was followed by thermal analysis techniques (DTA-TG-DTG) and X-ray diffraction (XRD).The different behaviour of the mixtures was studied according to the milling type employed.It could be observed a shift of some peaks, mainly of TG (gravimetry) with a tendency to a temperature decrease.These changes are mainly influenced by the amorphization effects on the carbonate and by the mixing caused by the milling type used.The powder (CaZrO 3 ) was isostatically pressed obtaining then green densities of 50% of the theoretical one.Sintering was made in air between 1300 and 1600degC at times between 0 and 240.Densities reached were between 90 and 95% increasing with the temperature and the sintering time

  12. Effects of Post-Sinter Processing on an Al–Zn–Mg–Cu Powder Metallurgy Alloy

    Directory of Open Access Journals (Sweden)

    Matthew David Harding

    2017-09-01

    Full Text Available The objective of this work was to study the effects of several post-sinter processing operations (heat-treatment, sizing, shot peening on a press-and-sinter 7xxx series aluminum powder metallurgy (PM alloy. The characterization of the products was completed through a combination of non-contact surface profiling, hardness measurements, differential scanning calorimetry (DSC, transmission electron microscopy (TEM, X-ray diffraction (XRD, tensile, and three-point bend fatigue testing. It was determined that sizing in the as-quenched state imparted appreciable reductions in surface hardness (78 HRB and fatigue strength (168 MPa relative to counterpart specimens that were sized prior to solutionizing (85 HRB and 228 MPa. These declines in performance were ascribed to the annihilation of quenched in vacancies that subsequently altered the nature of precipitates within the finished product. The system responded well to shot peening, as this process increased fatigue strength to 294 MPa. However, thermal exposure at 353 K (80 °C and 433 K (160 °C then reduced fatigue performance to 260 MPa and 173 MPa, respectively, as a result of residual stress relaxation and in-situ over-aging.

  13. Production of NdFeB powders by HDDR from sintered magnets; Obtencao de pos de NdFeB por HDDR a partir de imas sinterizados

    Energy Technology Data Exchange (ETDEWEB)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil). Lab. de Metalurgia e Materiais Ceramicos; Silva, B.F.A. da; Takiishi, H [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Campos, M.F. de [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2010-07-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd{sub 2}Fe{sub 14}B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  14. Development of AUC-based process at BARC for production of free-flowing and sinterable UO2 powder

    International Nuclear Information System (INIS)

    Keni, V.S.; Ghosh, S.K.; Ganguly, C.; Majumdar, S.

    1994-01-01

    Ammonium uranium carbonate (AUC) process has been developed and industrially used in Germany for preparation of free-flowing and sinterable UO 2 powder for fabrication of UO 2 fuel pellets for light water reactors (LWR). Efforts are underway at Bhabha Atomic Research Centre (BARC) for developing AUC-based process which would yield free-flowing UO 2 powder suitable for direct pelletisation and sintering to very high density (> 96% T.D.) UO 2 fuel pellets for pressurised heavy water reactors (PHWRs) in India. The first phase of this work has been completed jointly by Chemical Engineering Division (ChED) and Radiometallurgy Division (RMD) in batches of 1.5 kg. It was possible to fabricate UO 2 pellets of density 93-95% T.D. on a reproducible basis. At ChED, process parameters have been optimised for fabrication of AUC with suitable physical properties in batches of 1.5 kg (U), starting with nuclear pure uranyl nitrate solution. At RMD calcination parameters of AUC was optimised in batches of 500 g for obtaining free-flowing UO 2 powder, suitable for direct pelletisation and sintering. The pelletisation and sintering have been carried out at Radiometallurgy Division in batches of 1-1.5 kg. The maximum achievable density of UO 2 pellets has been in the range of 95.5-96% T.D. (author). 11 refs

  15. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  16. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2010-01-01

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 o C by the chlorides route, whereas alkoxide precursors needed firing over 900 o C and nitrates even over 1100 o C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 o C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  17. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  18. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  19. Magnetic and structural properties of spark plasma sintered nanocrystalline NdFeB-powders

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, H., E-mail: holger.wuest@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Bommer, L., E-mail: lars.bommer@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Weissgaerber, T., E-mail: thomas.weissgaerber@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Kieback, B., E-mail: bernd.kieback@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute for Materials Science, Helmholtzstraße 7, 01069 Dresden (Germany)

    2015-10-15

    Near-stoichiometric NdFeB melt-spun ribbons have been subjected to spark plasma sintering varying the process temperature T{sub SPS} and pressure p{sub SPS} between 600 and 800 °C and 50–300 MPa, respectively. Produced bulk magnets were analyzed regarding microstructure and magnetic properties. For all samples the intrinsic coercivity H{sub c,J} gradually decreases with increasing sintering temperature and pressure, while residual induction B{sub r} increases simultaneously with sample density. Densities close to the theoretical limit were achieved for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. With increasing T{sub SPS} precipitations of Nd-rich and Fe-rich phases have been observed as a result of a decomposition of the hard magnetic Nd{sub 2}Fe{sub 14}B phase. Under optimum sintering conditions of p{sub SPS}=300 MPa and T{sub SPS}=650 °C high-density bulk magnets with H{sub c,J}=652 kA/m, B{sub r}=0.86 T and (BH){sub max}=106 kJ/m{sup 3} have been produced. - Highlights: • Consolidation close to the theoretical density for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. • Highest (BH){sub max} of 106 kJ/m{sup 3} for p{sub SPS}=300 MPa and T{sub SPS}=650 °C with 98% theo. • H{sub c,J} gradually decreases with increasing T{sub SPS}, while B{sub r} increases simultaneously with. • With increasing T{sub SPS}, Nd- and Fe-rich precipitations are observed. • Reduction in t{sub SPS} is economic but does not increase (BH){sub max} significantly.

  20. Sintering, microstructure and properties of WC-AISI304 powder composites

    International Nuclear Information System (INIS)

    Marques, B.J.; Fernandes, C.M.; Senos, A.M.R.

    2013-01-01

    Highlights: ► Total replacement of Co binder by stainless steel AISI 304 in WC based composites. ► Processing conditions for WC–stainless steel composites. ► Mechanical behavior and oxidation resistance of WC–stainless steel composites. -- Abstract: Tungsten carbide–stainless steel (AISI 304) based composites were successfully prepared by powder metallurgy routes using vacuum sintering at a maximum temperature of 1500 °C. The effects of the binder amount (between 6 and 15 wt.%) on the phase composition, microstructure and mechanical properties, namely hardness and fracture toughness, were investigated. Appreciable amount of (M,W) 6 C up to 12 wt.% was detected, especially for the higher SS contents. However, a good compromise between toughness and hardness was observed. Besides that, improved oxidation resistance was noticed in WC–SS based composites compared with WC–Co composites. The results are discussed having in mind the correlation between chemical composition, phase composition, microstructure and mechanical behavior

  1. Microstructural characterisation of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments

    International Nuclear Information System (INIS)

    Trabadelo, V.; Gimenez, S.; Iturriza, I.

    2009-01-01

    High-speed steel powders (T42 grade) have been uniaxially cold-pressed and vacuum sintered to full density. Subsequently, the material was heat treated following an austenitising + quenching + multitempering route or alternatively austenitising + isothermal annealing. The isothermal annealing route was designed in order to attain a hardness value of ∼50 Rockwell C (HRC) (adequate for structural applications) while the multitempering parameters were selected to obtain this value and also the maximum hardening of the material (∼66 HRC). Microstructural characterisation has been carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microstructure consists of a ferrous (martensitic or ferritic) matrix with a distribution of second phase particles corresponding to nanometric and submicrometric secondary carbides precipitated during heat treatment together with primary carbides. The identification of those secondary precipitates (mainly M 3 C, M 6 C and M 23 C 6 carbides) has allowed understanding the microstructural evolution of T42 high-speed steel under different processing conditions

  2. Improved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Williams, A.J.; Harris, I.R.; Walton, A., E-mail: a.walton@bham.ac.uk

    2014-01-15

    The hydrogenation disproportionation desorption recombination (HDDR) process has been investigated as a possible means of producing bonded magnets from used NdFeB-type sintered magnets with compositions, Nd{sub 13.4}Dy{sub 0.8}Al{sub 0.7}Nb{sub 0.3}Fe{sub 78.5}B{sub 6.3} and Nd{sub 12.5}Dy{sub 1.8}Al{sub 0.9}Nb{sub 0.6}Co{sub 5.0}Fe{sub 72.8}B{sub 6.4} (atomic%). It has been shown that by increasing the processing temperature, an increase in the equilibrium pressure for disproportionation and in the overall reaction time was observed. The magnetic properties of the lower Dy content magnet were affected significantly by the change in processing temperature with a peak in properties observed at 880 °C producing magnetic powder with a remanence of 1.08 (±0.02) T, a coercivity of 840 (±17) kA m{sup −1}, and a maximum energy product of 175 (±2.5) kJ m{sup −3}. Further work on magnets with a significantly higher Dy content has shown that simultaneous processing of sintered magnets with varying compositions can be achieved by increasing the hydrogen pressure, however a range of magnetic properties are produced depending on the initial compositions of the samples in the input feed. - Highlights: • Reduced oxidation during the HDDR processing in this work compared to the previous paper resulted in a powder with a higher coercivity. • Increasing the hydrogen pressure for disproportionation allowed for Dy, Co rich NdFeB compositions to be processed. • Mixed compositions (which will be typical from “real scrap”) can be processed simultaneously in the same equipment. • Mixed feeds produced lower magnetic properties due to overprocessing of the low Dy content compositions.

  3. Synthesis, microstructure and mechanical properties of Ti3SiC2-TiC composites pulse discharge sintered from Ti/Si/TiC powder mixture

    International Nuclear Information System (INIS)

    Tian Wubian; Sun Zhengming; Hashimoto, Hitoshi; Du Yulei

    2009-01-01

    Ti 3 SiC 2 -TiC composites with the volume fractions of TiC from 0 to 90% were fabricated by pulse discharge sintering (PDS) technique using Ti-Si-TiC as starting powders in the sintering temperature range of 1250-1400 deg. C. Phase content and microstructure of the synthesized samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The samples sintered at 1400 deg. C are almost fully dense for all compositions with relative density higher than 98%. The phase distribution in the synthesized samples is non-uniform. The Vickers hardness increases almost linearly with the volume fraction of TiC up to a value of 20.1 ± 1.4 GPa at 90 vol.% TiC. The flexural strength increases with the volume fraction of TiC to a maximum value of 655 ± 10 MPa at 50 vol.% TiC. The relationship between microstructure and mechanical properties is discussed.

  4. Final Report on Initial Samples Supplied by LLNL for Task 3.3 Binder Burnout and Sintering Schedule Optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Walls, P

    1999-01-04

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Run 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A

  5. Selective Laser Sintering And Melting Of Pristine Titanium And Titanium Ti6Al4V Alloy Powders And Selection Of Chemical Environment For Etching Of Such Materials

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.

    2015-09-01

    Full Text Available The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations

  6. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    Science.gov (United States)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  7. Fabrication of Al2O3–20 vol.% Al nanocomposite powders using high energy milling and their sinterability

    International Nuclear Information System (INIS)

    Zawrah, M.F.; Abdel-kader, H.; Elbaly, N.E.

    2012-01-01

    Highlights: ► Al 2 O 3 /Al nanocomposite powders were prepared via high energy ball milling. After 20 h milling, the size of Al 2 O 3 –20 vol.% Al nanocomposite particles was in the range of 23–29 nm. A uniform distribution of nanosized Al reinforcement throughout the Al 2 O 3 matrix, coating the particles was successfully obtained. ► There was no any sign of phase changes during the milling. A competition between the cold welding mechanism and the fracturing mechanism were found during milling and finally the above two mechanisms reached an equilibrium. ► The highest value of relative density was obtained for the sintered bodies at 1500 °C. ► The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina. -- Abstract: In this study, alumina-based matrix nanocomposite powders reinforced with Al particles were fabricated and investigated. The sinterability of the prepared nanocomposite powder at different firing temperature was also conducted. Their mechanical properties in terms of hardness and toughness were tested. Alumina and aluminum powder mixtures were milled in a planetary ball mill for various times up to 30 h in order to produce Al 2 O 3 –20% Al nanocomposite. The phase composition, morphological and microstructural changes during mechanical milling of the nanocomposite particles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) techniques, respectively. The crystallite size and internal strain were evaluated by XRD patterns using Scherrer methods. A uniform distribution of the Al reinforcement in the Al 2 O 3 matrix was successfully obtained after milling the powders. The results revealed that there was no any sign of phase changes during the milling. The crystal size decreased with the prolongation of milling times, while the internal strain increased. A simple model is presented to illustrate the mechanical

  8. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    Science.gov (United States)

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  9. Nano-composite powders Ag-SnO2 prepared by reactive milling sintering and microstructural evolution

    International Nuclear Information System (INIS)

    Lorrain, Nathalie

    2000-01-01

    This work aims at controlling the synthesis and the sintering of nano-composite powders Ag-SnO 2 in order to obtain a dense and nano-structured material for electrical contact as a substitute of the toxic compound Ag - CdO. The powder is prepared by reactive milling from silver oxide (Ag 2 O) and silver bronze (Ag 3 Sn) powders. This process leads to a fine dispersion of silver and tin oxide nanometer sized particles. We first studied the mechanisms of reaction promoted by milling in vacuum and in air. A two-stage oxidation of tin in Ag 3 Sn occurs: during forced contact with Ag 2 O, tin oxidises in SnO, then in SnO 2 . In air, gaseous oxygen also participates to the oxidation of tin in SnO 2 but the reaction is slower because of the formation of silver carbonates from a reaction of Ag 2 O with CO 2 .Then the sintering behaviour of the nano-composite powder as a function of the compacting pressure and of the heating rate has been studied. We show: (i) a diffusion of pure silver towards porosity and free surfaces (exo-diffusion) which destroys the nano-structure and (ii) a severe de-densification. We show that the origin of these phenomena is due to carbonates on to the Ag 2 O starting powder, which are incorporated, in the milled Ag-SnO 2 powder in course of milling; during sintering, decomposition gases generate internal stresses. Low stresses lead to a diffusional creep with exo-diffusion whereas high stresses induce an intensive de-densification by local plastic deformation but no exo-diffusion. A modelling shows that exo-diffusion is limited by heating very quickly a strongly compacted powder that contains a high quantity of carbonates. The experimental results confirm the predictions of the model. Finally, we propose solutions allowing a full densification and a process for decreasing the tin oxide concentration. (author) [fr

  10. Final report on initial samples supplied by LLNL for task 3.3 binder burnout and sintering schedule optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Walls, P

    1999-01-04

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Run 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089 mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A

  11. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  12. Coercivity enhancement in (Ce,Nd)-Fe-B sintered magnets prepared by adding NdH{sub x} powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le-le [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Li, Zhu-bai, E-mail: lzbgj@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Ma, Qiang; Li, Yong-feng; Zhao, Qian [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Xue-feng, E-mail: xuefeng056@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2017-08-01

    (Ce,Nd)-Fe-B sintered magnets were prepared by the addition of NdH{sub x} powders in Ce{sub 9}Nd{sub 4.5}Fe{sub 80}B{sub 6.5} powders. The coercivity is rather low in Ce{sub 9}Nd{sub 4.5}Fe{sub 80}B{sub 6.5} magnets, and Ce element prefers to distribute at the outer-layer of main phase (Ce,Nd){sub 2}Fe{sub 14}B. The investigation of scanning electron microscope shows that the addition of NdH{sub x} powders leads to the increase of Nd content at grain outer-layer of main phase owing to the element diffusion. Magnetization reversal undergoes the nucleation of reversed domain wall at grain outer-later, and the addition of NdH{sub x} powders leads to the increase in the nucleation field of reversed domain, giving rise to the significant improvement of coercivity. The larger amount addition of NdH{sub x} powders leads to the increase in the amount of intergranular phase, resulting in the decreases of the remanence, the squareness of demagnetization curve and the maximum energy product.

  13. A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

    Science.gov (United States)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao

    2018-04-01

    The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

  14. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    International Nuclear Information System (INIS)

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  15. Influence of sintering atmospheres on the aluminium sintering characteristics

    International Nuclear Information System (INIS)

    Mintzer, S.; Bermudez Belkys, S.

    1993-01-01

    This paper describes the aluminium powder (Al) cool compacted (at 95% from theoretical density) which was sintered at 903 K during 4 hours at different atmospheres; oxidizing (air), inert Argon (Ar), Nitrogen (N) and high vacuum. The results obtained show: a) porosity measurements; greater porosity when sintering in Ar and air. b) Metallographic and Scanning observations: many fine pores (< 1 μm) and pore lines distributed at random, at air sintering and greater pores distributed preferentially near the surface, in Ar and N atmospheres. c) Dimensional changes: tendency to contraction of the samples at N and vacuum sintering and expansion in Ar or air. d) Mechanical properties: greater strength and fluence stresses at air and N sintering. The analysis of the results is performed considering sintering modes in presence of an oxide layer and dropped inert gases. (Author)

  16. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    International Nuclear Information System (INIS)

    Tolev, J; Mandelis, A

    2010-01-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (∼5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  17. Multi-layered electroless Ni-P coatings on powder-sintered Nd-Fe-B permanent magnet

    International Nuclear Information System (INIS)

    Chen Zhong; Ng, Alice; Yi Jianzhang; Chen Xingfu

    2006-01-01

    This paper has shown a successful protective coating scheme for powder-sintered Nd-Fe-B permanent magnet using multi-layered electroless nickel (EN) deposition. A low-phosphorus nickel layer is plated with an alkaline EN solution first, followed by a high-phosphorus nickel layer plated with an acidic solution. An additional topcoat by medium-phosphorus nickel on the high-phosphorus coating is also explored. It is shown that the high-phosphorus nickel layer coated in acidic solution provides the best corrosion protection because of its dense amorphous structure. The medium phosphorus topcoat is also dense and is able to provide reasonable corrosion resistance. The low-phosphorus layer itself does not have enough corrosion resistance; its main role is to provide an intermediate coating on the powder-sintered magnet. X-ray diffraction measurement shows that the low-phosphorus coating consists of nano-crystallines, and the high- and the medium-phosphorus coatings are dominated by amorphous structure. Microscopic observation and scratch test on these composite coatings demonstrate good adhesion between the magnet and the coatings. Remanence and coercivity of the plated magnet decrease with the applied coatings, but measured values are still very attractive for practical applications among known hard magnets

  18. Influence of high sintering pressure on the microhardness and wear resistance of diamond powder and silicon carbide-based composites

    Directory of Open Access Journals (Sweden)

    Osipov Oleksandr Sergueevitch

    2004-01-01

    Full Text Available The work reported on here involved the development of several samples of "diamond-SiC" composite produced under sintering pressures of up to 9.0 GPa at temperatures of up to 1973 7K. The average size of the diamond micropowder crystals used was 40/28 µm. The sintering process was carried out in a 2500-ton hydraulic press equipped with an anvil-type high-pressure device having a toroidal work surface and a central concavity diameter of 20 mm. The microhardness and wear resistance of the samples were found to be dependent on the sintering pressure. The experimental results indicated that the maximum microhardness and minimum wear resistance coefficients of each compact were attained when the pressure applied during sintering exceeded 6.5 GPa. Based on the established values of pressure, this study served to identify the types of devices applicable for the manufacture of composite material inserts for a variety of rock drilling applications.

  19. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  20. Influence of spark plasma sintering and baghdadite powder on mechanical properties of hydroxyapatite

    NARCIS (Netherlands)

    Khandan, A.; Karamian, E.; Mehdikhani-Nahrkhalaji, M.; Mirmohammadi, H.; Farzadi, A.; Ozada, N.; Heidarshenas, B.; Zamani, K.

    2015-01-01

    Since hydroxyapatite-based materials have similar composition and crystallinity as natural calcified tissues, can be used for bone/tissue engineering. In the present study a novel nanocomposite based on bioceramics such as Natural Hydroxyapatite (NHA) and Baghdadite (BAG), was sintered by spark

  1. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Kubatík, Tomáš František; Vystrčil, J.; Hendrych, R.; Kříž, J.; Mlynár, J.; Vojtěch, D.

    2014-01-01

    Roč. 52, September (2014), s. 131-137 ISSN 0966-9795 Institutional support: RVO:61389021 Keywords : Nanostructure intermetallics * Ternary alloys systems * Mechanical alloying and milling * Sintering * Diffraction Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0966979514001198#

  2. In situ synthesis of Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin (China); Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology, IL (United States); Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-25

    Highlights: •Using zwitterionic surfactant to enhance the dispersion of the CNTs on the powder surface. •CNTs as carbon source decreased the formation temperature of Ti{sub 2}AlC. •Al{sub 2}O{sub 3} was generated in situ from the oxygen atoms introduced in the drying procedure. •Nanosized Ti{sub 3}Al was precipitated at 1250 °C and distribute in the TiAl matrix homogeneously. •Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite was synthesized in situ by sintering pre-alloy Ti–Al coated with CNTs. -- Abstract: Bulk Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were in situ synthesized by vacuum sintering mechanically alloyed Ti–50 at.% Al powders coated with carbon nanotubes (CNTs). The pre-alloyed Ti–50 at.% Al powder was obtained by ball milling Ti and Al powders. The multi-walled carbon nanotubes as the carbon resource were covered on the surface of the pre-alloyed powders by immersing them into a water solution containing the CNTs. A zwitterionic surfactant was used to enhance the dispersion of the CNTs on the powder surface. The samples were cold pressed and sintered in vacuum at temperatures from 950 to 1250 °C, respectively. The results show that the reaction of forming Ti{sub 2}AlC can be achieved below 950 °C, which is 150 °C lower than in the Ti–Al–TiC system and 250 °C lower than for the Ti–Al–C system due to the addition of CNTs. Additionally, the reinforcement of Al{sub 2}O{sub 3} particles was introduced in situ in Ti{sub 2}AlC/TiAl by the drying process and subsequent sintering of the composite powders. Dense Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were obtained by sintering at 1250 °C and exhibited a homogeneous distribution of Ti{sub 2}AlC, Al{sub 2}O{sub 3} and precipitated Ti{sub 3}Al particles and a resulting high hardness.

  3. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  4. Analysis of natural milk and milk powder samples by NAA

    International Nuclear Information System (INIS)

    Al-Jobori, S. M.; Itawi, R. K.; Saad, A; Shihab, K. M.; Jalil, M.; Farhan, S. S.

    1993-01-01

    As a part of the Iraqi food analysis program (IFAP) the concentration of Na, Mg, P, Cl, K, Ca, Zn, Se, Br, Rb, and I in natural milk collected from different regions of Iraq, and in milk powder samples have been determined by using the NAA techniques. It was found that except for the elements I, Rb, and Br the concentrations of the elements was approximately identical in both the natural milk and milk powder. (author)

  5. Analysis of natural milk and milk powder samples by NAA

    International Nuclear Information System (INIS)

    Al-Jobori, S.M.; Itawi, R.K.; Saad, A.; Shihab, K.M.; Jalil, M.; Farhan, S.S.

    1990-01-01

    As a part of the Iraqi Food Analysis Programme the concentration of Na, Mg, P, Cl, K, Ca, Zn, Se, Br, Rb and I in natural milk collected from different regions of Iraq, and in milk powder samples was determined by NAA technique. It was found that except for the elements I, Rb and Br the concentration of the elements was approximately identical in both natural milk and milk powders. (author) 4 refs.; 3 figs.; 5 tabs

  6. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Toman, Jakub; Stevens, Erica L.; Hughes, Eamonn T.; Krimer, Yuval L.; Chmielus, Markus

    2017-01-01

    In this study, we investigate the effect of powders resulting from different atomization methods on properties of binder jet printed and heat-treated samples. Air-melted gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet print samples for a detailed comparative study on microstructural evolution and mechanical properties. GA printed samples achieved higher sintering density (99.2%) than WA samples (95.0%) due to differences in powder morphology and chemistry. Grain sizes of GA and WA samples at their highest density were 89 ± 21 μm and 88 ± 26 μm, respectively. Mechanical tests were conducted on optimally sintered samples and sintered plus aged samples; aging further improved microstructure and mechanical properties. This study shows that microstructural evolution (densification, and carbide, oxide and intermetallic phase formation) is very different for GA and WA binder jet printed and heat-treated samples. This difference in microstructural evolution results in different mechanical properties with the superior sintered and aged GA specimen reaching a hardness of 327 ± 7 HV_0_._1, yield strength of 394 ± 15 MPa, and ultimate tensile strength of 718 ± 14 MPa which are higher than cast alloy 625 values.

  7. Study on the Characteristics of Walnut Shell/Co-PES/Co-PA Powder Produced by Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Yueqiang Yu

    2018-05-01

    Full Text Available Agricultural and forestry wastes are used as materials for selective laser sintering (SLS to alleviate resource shortage, reduce the pollution of the environment, lower the cost of materials, and improve the accuracy of parts produced by SLS. However, the mechanical properties of wood–plastic parts are poor, and thus they cannot be applied widely. In order to improve the mechanical properties of wood–plastic parts, a new type of walnut shell polymer composite (WSPC was prepared by a polymer mixing method and was used to produce parts via SLS. Additionally, the dimensional accuracy, morphologies, density, and mechanical properties of the WSPC parts were studied. The results showed that the addition of a small amount of copolyamide (Co-PA powder could effectively improve the mechanical properties and decrease the density of the WSPC parts. By increasing the amount of Co-PA powder and decreasing that of copolyester (Co-PES powder, the mechanical properties first increased, then decreased, and finally increased again; in addition, the density first decreased then increased. By increasing the preheating temperature, the mechanical properties and density of the WSPC parts were enhanced.

  8. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Walther, Till; Hesse, Dietrich; Ebbinghaus, Stefan G.

    2014-01-01

    The synthesis of nano-crystalline CuFe 2 O 4 powders by a combustion-like process is described herein. Phase formation and evolution of the crystallite size during the decomposition process of a (CuFe 2 )—precursor gel were monitored up to 1000 °C. Phase-pure nano-sized CuFe 2 O 4 powders were obtained after reaction at 750 °C for 2 h resulting in a crystallite size of 36 nm, which increases to 96 nm after calcining at 1000 °C. The activation energy of the crystallite growth process was calculated as 389 kJ mol −1 . The tetragonal⇄cubic phase transition occurs between 402 and 419 °C and the enthalpy change (ΔH) was found to range between 1020 and 1229 J mol −1 depending on the calcination temperature. The optical band gap depends on the calcination temperature and was found between 2.03 and 1.89 eV. The shrinkage and sintering behaviour of compacted powders were examined. Dense ceramic bodies can be obtained either after conventional sintering at 950 °C or after a two-step sintering process at 800 °C. Magnetic measurements of both powders and corresponding ceramic bodies show that the saturation magnetization rises with increasing calcination-/sintering temperature up to 49.1 emu g −1 (2.1 µ B fu −1 ), whereas the coercivity and remanence values decrease. - Graphical abstract: A cheap one-pot synthesis was developed to obtain CuFe 2 O 4 nano-powders with different crystallite sizes (36–96 nm). The optical band gaps, phase transition temperatures and enthalpies were determined depending on the particle size. The sintering behaviour of nano CuFe 2 O 4 was studied in different sintering procedures. The magnetic behaviour of the nano-powders as well as the corresponding ceramic bodies were investigated. - Highlights: • Eco-friendly and simple synthesis for nano CuFe 2 O 4 powder using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the synthesis. • Determination of the optical band gap

  9. Microstructural analysis of sinterized aluminum powder obtained by the high energy milling of beverage cans; Analise microestrutural de po de aluminio sinterizado obtido pela moagem de alta energia de latas de bebidas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Raelson Pereira de; Peres, Mauricio Mhirdaui, E-mail: mauricioperes@ct.ufrn.br [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2016-07-01

    The objective is the study of the effect of high energy milling on the sintering of aluminum from beverage cans. The selected aluminum cans were cut and subjected to high energy milling under a common atmosphere (in the air). In milling, three grams of aluminum was used to maintain the ratio of 10/1 between the mass of the beads and the material. The milling time was varied in 1h, 1.5h and 2h, keeping the other variables constant. The particle size distribution was measured by laser granulometry, for further compaction and sintering at a temperature of 600 ° C for 2 h. The samples were characterized by scanning electron microscopy (SEM). The granulometric analysis of the powders found that higher milling times produced finer particles. Powders with granulometry of less than 45 μm were obtained at 1 h, 1.5 h and 2 h times. The times of 1.5h and 2h promoted finer particles with better distribution of size. The SEM analyzes showed little variation in the shape of the particles as a function of the variation of the grinding times, presenting irregularities in the platelet geometry. The sintering time and temperature were effective in the densification of the powder particles, which were influenced by the average particle size.

  10. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    Science.gov (United States)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2017-03-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  11. Transport Powder and Liquid Samples by Surface Acoustic Waves

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  12. Comparison between powder and slices diffraction methods in teeth samples

    Energy Technology Data Exchange (ETDEWEB)

    Colaco, Marcos V.; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (IF/UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada; Porto, Isabel M. [Universidade Estadual de Campinas (FOP/UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Morfologia; Gerlach, Raquel F. [Universidade de Sao Paulo (FORP/USP), Rieirao Preto, SP (Brazil). Fac. de Odontologia. Dept. de Morfologia, Estomatologia e Fisiologia; Costa, Fanny N. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LIN/COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear

    2011-07-01

    Propose different methods to obtain crystallographic information about biological materials are important since powder method is a nondestructive method. Slices are an approximation of what would be an in vivo analysis. Effects of samples preparation cause differences in scattering profiles compared with powder method. The main inorganic component of bones and teeth is a calcium phosphate mineral whose structure closely resembles hydroxyapatite (HAp). The hexagonal symmetry, however, seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. Were analyzed ten third molar teeth. Five teeth were separated in enamel, detin and circumpulpal detin powder and five in slices. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. The LNLS synchrotron light source is composed of a 1.37 GeV electron storage ring, delivering approximately 4x10{sup -1}0 photons/s at 8 keV. A double-crystal Si(111) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth at 11 keV . Scattering signatures were obtained at intervals of 0.04 deg for angles from 24 deg to 52 deg. The human enamel experimental crystallite size obtained in this work were 30(3)nm (112 reflection) and 30(3)nm (300 reflection). These values were obtained from measurements of powdered enamel. When comparing the slice obtained 58(8)nm (112 reflection) and 37(7)nm (300 reflection) enamel diffraction patterns with those generated by the powder specimens, a few differences emerge. This work shows differences between powder and slices methods, separating characteristics of sample of the method's influence. (author)

  13. Comparison between powder and slices diffraction methods in teeth samples

    International Nuclear Information System (INIS)

    Colaco, Marcos V.; Barroso, Regina C.; Porto, Isabel M.; Gerlach, Raquel F.; Costa, Fanny N.

    2011-01-01

    Propose different methods to obtain crystallographic information about biological materials are important since powder method is a nondestructive method. Slices are an approximation of what would be an in vivo analysis. Effects of samples preparation cause differences in scattering profiles compared with powder method. The main inorganic component of bones and teeth is a calcium phosphate mineral whose structure closely resembles hydroxyapatite (HAp). The hexagonal symmetry, however, seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. Were analyzed ten third molar teeth. Five teeth were separated in enamel, detin and circumpulpal detin powder and five in slices. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. The LNLS synchrotron light source is composed of a 1.37 GeV electron storage ring, delivering approximately 4x10 -1 0 photons/s at 8 keV. A double-crystal Si(111) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth at 11 keV . Scattering signatures were obtained at intervals of 0.04 deg for angles from 24 deg to 52 deg. The human enamel experimental crystallite size obtained in this work were 30(3)nm (112 reflection) and 30(3)nm (300 reflection). These values were obtained from measurements of powdered enamel. When comparing the slice obtained 58(8)nm (112 reflection) and 37(7)nm (300 reflection) enamel diffraction patterns with those generated by the powder specimens, a few differences emerge. This work shows differences between powder and slices methods, separating characteristics of sample of the method's influence. (author)

  14. A study on improvement of UO2 powder production process for high sintered density

    International Nuclear Information System (INIS)

    Park, Jin Hoh; Hwang, Sung Tae; Jun, Kwan Sik; Choi, Yoon Dong; Choi, Jong Hyun; Lee, Kyoo Il; Kim, Tae Joon; Jung, Kyung Chae; Kim, Kwang Lak; Kwon, Sang Woon; Kim, Byung Hoh; Hong, Soon Bok

    1995-01-01

    Various conversion processes were reviewed from the viewpoint of manufacturing cost, product quality and liquid waste. The MDD process was selected a suitable target process for the good quality of UO 2 powder and the recycling availability of nitric acid. The MDD process consists of two steps, double salt preparation [(NH 4 ) 2 UO 2 (NO 3 ) 4 ] from uranyl nitrate solution and thermal decomposition/reduction to UO 2 powder. The reaction mechanism and properties for the intermediates were analyzed to define the proposed operational conditions of the process. The conceptual process was proposed and experimental facility was designed and installed. 12 figs, 7 tabs, 7 refs. (Author)

  15. (YSZ) powders

    Indian Academy of Sciences (India)

    Unknown

    109–114. © Indian Academy of Sciences. 109 ... Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India .... pensions of 900°C calcined YSZ powders. .... The sintered density data of the compacts (sintered at.

  16. Ag screen contacts to sintered YBa/sub 2/Cu/sub 3/O/sub x/ powder for rapid superconductor characterization

    International Nuclear Information System (INIS)

    Moreland, J.; Goodrich, L.F.

    1989-01-01

    The authors have developed a new method for making current contacts and voltage taps to YBa/sub 2/Cu/sub 3/O/sub x/ sintered pellets for rapid superconductor characterization. Ag wire screens are interleaved between calcined powder sections and then fired at 930 0 C to form a composite pellet for resistivity and critical current measurements. The Ag diffuses into the powder during the sintering process forming a proximity contact that is permeable to O/sub 2/. Contact surface resistivities (area-resistance product) range from 1 to 10μΩ-cm/sup 2/ at 77 K for the Ag-powder interface. In this configuration, current can be uniformly injected into the ends of the pellet through the bonded Ag screen electrodes. Also, Ag screen voltage contacts, which span a cross section of the pellet, may provide an ideal geometry for detecting voltage drops along the pellet, minimizing current transfer effects

  17. Thermoluminescence study of Mn doped lithium tetraborate powder and pellet samples synthesized by solution combustion synthesis

    International Nuclear Information System (INIS)

    Ozdemir, A.; Yegingil, Z.; Nur, N.; Kurt, K.; Tuken, T.; Depci, T.; Tansug, G.; Altunal, V.; Guckan, V.; Sigircik, G.; Yu, Y.; Karatasli, M.; Dolek, Y.

    2016-01-01

    In this paper, the thermoluminescence (TL) dosimetric characteristics under beta-ray, x-ray and gamma-ray excitations of powder and pellet Mn-doped lithium tetraborates (LTB) which were produced by solution combustion synthesis technique were investigated, and the results were compared with that of TLD-100 chips. The chemical composition and morphologies of the obtained LTB and Mn-doped LTB (LTB:Mn) were confirmed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM) with EDX. LTB:Mn was studied using luminescence spectroscopy. In addition, the effects of sintering and annealing temperatures and times on the thermoluminescence (TL) properties of LTB:Mn were investigated. The glow curves of powder samples as well as pellet samples exposed to different beta doses exhibited a low temperature peak at about 100 °C followed by an intense principal high temperature peak at about 260 °C. The kinetic parameters (E, b, s) associated with the prominent glow peaks were estimated using T m –T stop , initial rise (IR) and computerized glow curve deconvolution (CGCD) methods. The TL response of integral TL output increased linearly with increasing the dose in the range of 0.1–10 Gy and was followed by a superlinearity up to 100 Gy both for powder and pellet samples using beta-rays. Powder and pellet LTB:Mn were irradiated to a known dose by a linear accelerator with 6 and 18 MV photon beams, 6–15 MeV electron beams and a traceable 137 Cs beam to investigate energy response. Further, TL sensitivity, fading properties and recycling effects related with beta exposure of LTB:Mn phosphor were evaluated and its relative energy response was also compared with that of TLD-100 chips. The comparison of the results showed that the obtained phosphors have good TL dose response with adequate sensitivity and linearity for the measurement of medical doses.

  18. Synthesis, Sintering, and Electrical Properties of BaCe0.9−xZrxY0.1O3−δ

    DEFF Research Database (Denmark)

    Ricote, S.; Caboche, G.; Estournes, C.

    2008-01-01

    BaCe0.9-xZrxY0.1O3-delta powders were synthesized by a solid-state reaction. Different contents of cerium and zirconium were studied. Pellets were sintered using either conventional sintering in air at 1700 degrees C or the Spark Plasma Sintering (SPS) technique. The density of the samples sintered...

  19. New experimental procedure for measuring volume magnetostriction on powder samples

    International Nuclear Information System (INIS)

    Rivero, G.; Multigner, M.; Valdes, J.; Crespo, P.; Martinez, A.; Hernando, A.

    2005-01-01

    Conventional techniques used for volume magnetostriction measurements, as strain gauge or cantilever method, are very useful for ribbons or thin films but cannot be applied when the samples are in powder form. To overcome this problem a new experimental procedure has been developed. In this work, the experimental set-up is described, together with the results obtained in amorphous FeCuZr powders, which exhibit a strong dependence of the magnetization on the strength of the applied magnetic field. The magnetostriction measurements presented in this work point out that this dependence is related to a magnetovolume effect

  20. Influence of the radial spacing between cathodes on the surface composition of iron samples sintered by hollow cathode electric discharge

    Directory of Open Access Journals (Sweden)

    Brunatto S.F.

    2001-01-01

    Full Text Available The present work reports an investigation of the influence of the radial spacing between cathodes on the iron sintering process by hollow cathode electrical discharge, with surface enrichment of the alloying elements Cr and Ni. Pressed cylindrical samples of 9.5 mm diameter and density of 7.0 ± 0.1 g/cm³ were prepared by compaction of Ancorsteel 1000C iron powder. These samples, constituting the central cathode, were positioned concentrically in the interior of an external cathode machined from a tube of stainless steel AISI 310 (containing: 25% Cr, 16% Ni, 1.5% Mn, 1.5% Si, 0.03% C and the remainder Fe. Sintering was done at 1150 °C, for 120 min, utilizing radial spacings between the central and hollow cathodes of 3, 6 and 9 mm and a gas mixture of 80% Ar and 20% H2, with a flow rate of 5 cm³/s at a pressure of 3 Torr. The electric discharge was generated using a pulsed voltage power source, with a period of 200 mus. The radial spacing had only a slight influence on the quantity of atoms of alloying elements deposited and diffused on the surface of the sample. Analysis with a microprobe showed the presence of chrome (up to 4.0% and nickel (up to 3.0%, in at. % at the surface of the samples. This surface enrichment can be attributed to the mechanism of sputtering of the metallic atoms present in the external cathode, with the deposition of these elements on the sample surface and consequent diffusion within the sample.

  1. A sample holder for in-house X-ray powder diffraction studies of protein powders

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Harris, Pernille; Ståhl, Kenny

    2011-01-01

    A sample holder for handling samples of protein for in-house X-ray powder diffraction (XRPD) analysis has been made and tested on lysozyme. The use of an integrated pinhole reduced the background, and good signal-to-noise ratios were obtained from only 7 l of sample, corresponding to approximatel...... 2-3 mg of dry protein. The sample holder is further adaptable to X-ray absorption spectroscopy (XAS) measurements. Both XRPD and XAS at the Zn K-edge were tested with hexameric Zn insulin....

  2. A study on improvement of UO{sub 2} powder production process for high sintered density

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hoh; Hwang, Sung Tae; Jun, Kwan Sik; Choi, Yoon Dong; Choi, Jong Hyun; Lee, Kyoo Il; Kim, Tae Joon; Jung, Kyung Chae; Kim, Kwang Lak; Kwon, Sang Woon; Kim, Byung Hoh; Hong, Soon Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Various conversion processes were reviewed from the viewpoint of manufacturing cost, product quality and liquid waste. The MDD process was selected a suitable target process for the good quality of UO{sub 2} powder and the recycling availability of nitric acid. The MDD process consists of two steps, double salt preparation [(NH{sub 4}){sub 2}UO{sub 2}(NO{sub 3}){sub 4}] from uranyl nitrate solution and thermal decomposition/reduction to UO{sub 2} powder. The reaction mechanism and properties for the intermediates were analyzed to define the proposed operational conditions of the process. The conceptual process was proposed and experimental facility was designed and installed. 12 figs, 7 tabs, 7 refs. (Author).

  3. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Guy-Daniel Dutel

    2017-04-01

    Full Text Available Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  4. Hot deformed anisotropic nanocrystalline NdFeB based magnets prepared from spark plasma sintered melt spun powders

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.H.; Huang, Y.L. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-09-01

    Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence J{sub r} > 1.32 T and maximum of energy product (BH){sub max} > 303 kJ/m{sup 3} have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet.

  5. Surface coatings of mixed hard alloy powder metals sintered-on in vacuo

    International Nuclear Information System (INIS)

    Knotek, O.; Reimann, H.

    1980-01-01

    No technological difficulties are to be encountered in the processing of pseudo hard alloys in the form of powder compounds of conventional nickel base hard alloys with carbides. There is a great alloy influence on the resulting structures of the surface layers. Under some processing conditions the tungsten carbide is completely dissolved from molten matrix alloy. Hard phases on chromium carbide basis resulted upon cooling. Induced chromium carbide Cr 3 C 2 retains its structure while absorbing large amounts of iron into its grid. It can be concluded that not only alloying properties, but also eminently structural criterions are decisive for the stability of the applied supplementary hard phases. (orig.) [de

  6. Densification kinetics and structure formation during the high-pressure sintering of Al2O3-TiN powder systems

    Energy Technology Data Exchange (ETDEWEB)

    Neshpor, V.S.; Barashkov, G.A.; Nikitiuk, A.F.

    1986-04-01

    Specimens of alumina of varying specific surface and a composite material containing 80 pct alpha-Al2O3 and 20 pct TiN were sintered at 5 GPa for 30-480 s in the temperature range 1650-1750 K. It is found that the densification process is particularly intensive during the first 30-60 s. Under the conditions investigated, alpha-Al2O3 powder exhibits higher densification rates and final density (100 percent) than the ultradisperse TiN powder, whose final density is 96 percent. The results of the study suggest that densification is achieved through particle fragmentation and slip. Noticeable grain growth is observed for alumina only when the sintering time exceeds 2 min. 7 references.

  7. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    Science.gov (United States)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  8. Preparation and Sintering Behaviour of Alumina Powder by Ammonia Precipitation Method

    Directory of Open Access Journals (Sweden)

    Wang Liuyan

    2017-01-01

    Full Text Available In this paper, alumina precursor was prepared by the ammonia precipitation method which used Al (NO3 3 9H2O as aluminum source and NH4OH as a precipitator, adding a small amount of PEG4000 as the surface active agent. Finally γ-Al2O3 was obtained at 900° for 2h. The stable alumina crystal form of α-Al2O3 was got at 1100° for 2h. The influence of precipitation agent on the precursor was studied by means of TG / DTA and Tem, XRD etc. The effects of the synthesis temperature and time on the phase composition and morphology of the alumina powder were also analysed.

  9. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    Science.gov (United States)

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  10. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Eleonora Atzeni

    2013-03-01

    Full Text Available In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  11. HIP (hot isostatic pressing) sintering of Tantalum (Ta) and tantalum carbide (TaC) powder mixture: relations between microstructure and properties

    International Nuclear Information System (INIS)

    Valin, F.; Schnedecker, M.

    1994-01-01

    HIP sintering at 1630 C and 195 MPa, during 2 hours, can be used for complete densification of mixtures of commercial tantalum carbide and tantalum powders. HIPed material properties are depending upon initial compositions. For C/Ta ratios inferior to 80%, the monocarbide structure is preserved. A partial ordering of the carbon vacancies will result, for TaC(0.80), in microhardness maximization. The microstructurally homogenous TaC(0.45) shows an excellent toughness. 2 figs., 2 refs

  12. Studying hardness, workability and minimum bending radius in selectively laser-sintered Ti–6Al–4V alloy samples

    Science.gov (United States)

    Galkina, N. V.; Nosova, Y. A.; Balyakin, A. V.

    2018-03-01

    This research is relevant as it tries to improve the mechanical and service performance of the Ti–6Al–4V titanium alloy obtained by selective laser sintering. For that purpose, sintered samples were annealed at 750 and 850°C for an hour. Sintered and annealed samples were tested for hardness, workability and microstructure. It was found that incomplete annealing of selectively laser-sintered Ti–6Al–4V samples results in an insignificant reduction in hardness and ductility. Sintered and incompletely annealed samples had a hardness of 32..33 HRC, which is lower than the value of annealed parts specified in standards. Complete annealing at temperature 850°C reduces the hardness to 25 HRC and ductility by 15...20%. Incomplete annealing lowers the ductility factor from 0.08 to 0.06. Complete annealing lowers that value to 0.025. Complete annealing probably results in the embrittlement of sintered samples, perhaps due to their oxidation and hydrogenation in the air. Optical metallography showed lateral fractures in both sintered and annealed samples, which might be the reason why they had lower hardness and ductility.

  13. Production of ruthenium aluminide by reaction sintering of Ru and Al powder mix

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Skachkov, O.A.; Levin, V.P.

    2002-01-01

    The physicochemical processes, taking place by the RuAl alloy formation from the ruthenium and aluminium powder mixture within the temperature range of 250-1400 deg C in the vacuum from 10 -2 up to 10 -5 mm mercury column are studied on the alloys of the Ru 50 Al 50 stoichiometric and Ru 52 Al 48 hyperstoichiometric composition. The Ru + Al → RuAl interaction with the exothermal effect begins in the solid phase at the temperatures below the aluminium t melt . The Ru 2 Al 3 , RuAl 2 and RuAl traces rich in aluminium are formed already at 600 deg C; at 1000-1400 deg C the RuAl becomes the basic phase; the precipitates of the ruthenium-based solid solution are additionally present in the hyperstoichiometric Ru 52 Al 48 alloy. The Ru 52 Al 48 crystalline lattice period increases with the growth of the caking temperature from 0.29906 (660 deg C) up to 0.22955 nm (1400 deg C). The Al 2 O 3 inclusions up to 1 μm in diameter are identified in the caked alloys in vacuum after the reaction caking [ru

  14. Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder

    Science.gov (United States)

    Liu, Jun; Liu, Peng; Wang, Jun; Xu, Xiaodong; Li, Dongzhen; Zhang, Jian; Nie, Xinming

    2018-01-01

    In this paper, we report the fabrication of high-quality 5 at. % Er3+ ions doped SrF2 transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF2 ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF2 was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF2 transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF2 single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er3+ ions doped SrF2 transparent ceramics. PMID:29565322

  15. Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2018-03-01

    Full Text Available In this paper, we report the fabrication of high-quality 5 at. % Er3+ ions doped SrF2 transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF2 ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF2 was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF2 transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF2 single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er3+ ions doped SrF2 transparent ceramics.

  16. Determination of carbon content of UO2, (U, Gd)O2 and (U, Pu)O2 powders and sintered pellets - Combustion in a high-frequency induction furnace -Infrared absorption spectrometry

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the carbon content in UO 2 , (U,Gd)O 2 and (U,Pu)O 2 powder and sintered pellets by combustion in an induction furnace and infrared absorption spectroscopy measurement. It is applicable for determining 10 μg/g to 500 μg/g of carbon in UO 2 , (U,Gd)O 2 and (U,Pu)O 2 powder and pellets. The sample is heated to a temperature above 1500 deg. C in an induction furnace, under pure oxygen atmosphere, to convert any carbon compounds to carbon dioxide gas. The resulting carbon dioxide gas is filtered and dried before measurement using infrared spectroscopy to measure the carbon dioxide signal at 2350 cm -1 . The result is converted into the carbon content of the material analysed

  17. Coercivity enhancement of Nd–Fe–B sintered magnets with intergranular adding (Pr, Dy, Cu)−H{sub x} powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yujing; Ma, Tianyu, E-mail: maty@zju.edu.cn; Liu, Xiaolian; Liu, Pan; Jin, Jiaying; Zou, Junding; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-02-01

    Forming Nd{sub 2}Fe{sub 14}B/(Nd, Dy){sub 2}Fe{sub 14}B core–shell structure by intergranular adding Dy-containing sources into Nd–Fe–B sintered magnets is effective to improve coercivity and to minimize remanence loss simultaneously. However, the excessive Dy located in the intergranular regions has nearly no hard magnetic contribution, causing its low utilization efficiency. In this work, diluted Dy powders (Pr{sub 37}Dy{sub 30}Cu{sub 33})–H{sub x} were prepared and incorporated into Nd–Fe–B sintered magnets via a dual-alloy approach. The coercivity increases rapidly from 15.0 to 18.2 kOe by 21.3% with 2.0 wt% (Pr, Dy, Cu)–H{sub x} addition (the equivalent Dy is only 0.32 at%). The deduced coercivity incremental ratio is 10.0 kOe per unit Dy at%. Dehydrogenation reaction of (Pr, Dy, Cu)–H{sub x} occurs during sintering, which favors Dy diffusion towards the 2:14:1 phase grains as well as smoothing the grain boundaries (GBs). The enhanced local anisotropic field and the well decoupled 2:14:1 phase grains contribute to such rapid coercivity enhancement. This work suggests that adding diluted Dy hydrides is promising for fabricating high coercivity Nd–Fe–B sintered magnets with less heavy rare-earth consumption. - Highlights: • (Pr, Dy, Cu)–H{sub x} hydride powders were introduced into Nd–Fe–B sintered magnets. • Rapid coercivity enhancement from 15.0 kOe to 18.2 kOe with only 0.32 at% Dy was realized. • High utilization efficiency of Dy was achieved due to its promoted diffusion process. • Wettability and mobility of grain boundary phase was improved.

  18. Influence of spark plasma sintering parameters on the mechanical properties of Cu{sub 50}Zr{sub 45}Al{sub 5} bulk metallic glass obtained using metallic glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal, S. [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Pelletier, J.M., E-mail: jean-marc.pelletier@insa-lyon.fr [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Qiao, J.C. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Bonnefont, G. [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Xie, G. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2016-11-20

    Gas atomized Cu{sub 50}Zr{sub 45}Al{sub 5} amorphous powder was densified by spark plasma sintering, in order to obtain bulk metallic glasses with larger size than that obtained by the conventional casting strategy. The influence of different parameters was investigated: sintering temperature, isothermal holding time as well as size of the specimens. After optimization of the processing parameters, dense and amorphous specimens were elaborated with a diameter up to 30 mm. Thermal stability and mechanical properties of consolidated samples are similar to those of Cu{sub 50}Zr{sub 45} Al{sub 5} cast alloy. A hardness of 535 HV and a compressive strength of 1600 MPa have been obtained. Fractographic investigation indicated an intergranular rupture mode which leads to lower toughness compared to as the cast material, but for these samples the size is limited to 3 mm. However an increase in applied pressure (from 90 MPa to 1 GPa) induces a significant improvement in bonding between powder particles.

  19. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    International Nuclear Information System (INIS)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-01-01

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws

  20. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  1. Effect of sintering pressure on structure and magnetic properties of Zn0.99Ni0.01O bulk samples synthesized under different pressures

    International Nuclear Information System (INIS)

    Wang, Yongqiang; Yuan, Chaosheng; Su, Lei; Wang, Zheng; Hao, Junhong; Ren, Yufen

    2015-01-01

    A series of Zn 0.99 Ni 0.01 O bulk samples were prepared by a coprecipitation method, and then sintered at 600 °C under various pressures from normal pressure(NP) to 3 GPa. The effects of sintering pressure (P S ) on the structure, morphology and magnetic properties of the doping samples were investigated in detail. The XRD and HRTEM results reveal that all samples are of single-phase hexagonal structure. Compared with the sample sintered at normal pressure, the lattice parameters a and c of the samples sintered at high pressures (HP) show a sharply decrease. With the increase of sintering pressure, the particle size gradually increases as well as the particles get closer to each other. At 300 K, the sample sintered at normal pressure shows a superparamagnetic-like behavior, while the samples sintered at high pressures display typical ferromagnetic behaviors. The saturation magnetization of the samples sintered at high pressures is three orders of magnitude larger than that of the one sintered at normal pressure. Our results reveal that an appropriate sintering pressure can tune the magnetic properties of Ni-doped ZnO system by changing the lattice parameters, particle size and inter-particle spacing, which may be helpful to the practical applications. - Highlights: • A series of Zn 0.99 Ni 0.01 O bulk samples were sintered in different pressures. • The lattice constants of the samples sintered at high pressure clearly decrease. • The particle size increases gradually with the increase of sintering pressure. • The samples sintered at different pressures show different magnetic behaviors. • Appropriate sintering pressure can tune the magnetic properties of Zn–Ni–O system

  2. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  3. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part II, Fabrication of sintered pressed samples UO{sub 2} (Final report); Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, II Deo - Dobijanje sinterovanih ispresaka UO{sub 2} (zavrsni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Ristic, M M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Procedure for fabrication of sintered ceramic UO{sub 2} pellets was developed in the Department of reactor materials. The tasks described in this report deal with design and construction of laboratory equipment for treatment of ceramic materials, and fabrication of UO{sub 2} pellets. The procedure was based on cold pressing of appropriately prepared powder and sintering of the of thus obtained pressed samples.

  4. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  5. Preparation of tazheranite powders by solid phase reaction and conductivity of sintered bodies. Kosoho ni yoru tazheranite no funmatsu gosei to dodensei

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, H; Kobayashi, H; Mitamura, T [Saitama University, Saitama (Japan). Faculty of Enginering; Mori, T; Yamamura, H [Tosoh Co., Tokyo (Japan)

    1992-09-01

    Single phase powder of Ca0.2Zr(0.8-x)TixOy was synthesized by replacing a part of ZrO2 in tazheranite which belongs to cubic crystal mineral of 3 constituents of CaO/ZrO2/ TiO2 with TiO2 to study the conductivity. Predetermined powder amounts of CaCO3, ZrO2 and TiO2 were respectively weighed and mixed with wet condition, the carbonate was decomposed at 1,000 centigrade, and after mixed again with wet condition, the mixture was dried and calcined again at 1,200 to 1,300 centigrade for 2 to 20 hours to get the powder. This powder was crushed and classified to make molded items by uniaxial pressing and the items were fired at 1,400 to 1,600 centigrade for 1 to 10 hours. The conductivity of sintered bodies was measured by the complex impedance method. The following results could be obtained: The targeted powder could be synthesized at the composition range of x=0.04 to 0.10 and the apparent x of single phase area was widened to 0.15 at the firing temperature of 1,500 centigrade. The activation energies of the conductivity of sintered items were 120 to 130kJ/mol, indicating that the electric conductivity was dominated by the ion conduction and was not affected by TiO2 amount, and the formed phase. The grain resistance increased and the grain boundary resistance decreased with the increase of TiO2 amount. 17 refs., 9 figs.

  6. The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powders

    DEFF Research Database (Denmark)

    Glasscock, Julie; Esposito, Vincenzo; Foghmoes, Søren Preben Vagn

    2013-01-01

    good sinterability when there is a favourable particle packing. The effect of the applied stresses during forming (which produce different particle packing arrangements) was investigated by forging green bodies by different shaping techniques, including casting, and cold isostatic pressing. Samples...... formed with techniques that apply low levels of stress had a particle arrangement which significantly enhanced sintering at low temperature, compared to those prepared by high stress techniques. The sample geometry, heat treatment for organic removal and the initial density of the green body had...

  7. Reactive synthesis of Ti-W-Cr-B mixing powder by spark plasma sintering; Hoden plasma shoketsu ni yoru Ti-W-Cr-B kongo funmatsu no hanno gosei

    Energy Technology Data Exchange (ETDEWEB)

    Kaga, H. [Hokkaido Industrial Technology Center, Sapporo (Japan); Carrillo-Heian, E.M.; Munir, Z.A. [University of California, CA, (United States)

    2000-08-15

    The reactive sintered compacts of Ti-W-Cr-B mixed powders were manufactured by a pulse electric current technique. Identification and characterization of the resulting boride phase were done using EPMA, XRD and other methods. The density of the sintered compacts rose rapidly with sintering temperature up to 1,773 K, at which temperature the relative density was 94%. Above this temperature, the density rose only slightly with increasing sintering temperature. The borides of Ti and W were synthesized from mixed metal powders by this method. The type of boride formed and its composition depended on sintering temperature. Compacts sintered at lower temperatures consisted of WB{sub 2} and TiB{sub 2} phases, but at the highest sintering temperature, 2,173K, the main phase was (Ti, W, Cr)B{sub 2} solid solution, in which W and Cr were dissolved in TiB{sub 2}. There was also a very small amount of {beta}-(W, Ti, Cr)B phase. By annealing compact sintered at high temperature, the (Ti, W, Cr)B{sub 2} solid solution phase decomposed and the amount decreased. (author)

  8. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

    Science.gov (United States)

    Zhang, Ce; Lu, Boxin; Wang, Haiying; Guo, Zhimeng; Paley, Vladislav; Volinsky, Alex A.

    2018-01-01

    Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures ( D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

  9. Preparation of high-purity ZrSiO4 powder using sol-gel processing and mechanical properties of the sintered body

    International Nuclear Information System (INIS)

    Mori, T.; Yamamura, H.; Kobayashi, H.; Mitamura, T.

    1992-01-01

    This paper reports that effects of the concentration of ZrOCl 2 , calcination temperature, heating rate, and the size of secondary particles after hydrolysis on the preparation of high-purity ZrSiO 4 fine powders from ZrOCl 2 :8H 2 O (0.2M to 1.7M) and equimolar colloidal SiO 2 using Sol--gel processing have been studied. Mechanical properties of the sintered ZrSiO 4 from the high-purity ZrSiO 4 powders have been also investigated. Single-phase ZrSiO 4 fine powders were synthesized at 1300 degrees C by forming ZrSiO 4 precursors having a Zr---O---Si bond, which was found in all the hydrolysis solutions, and by controlling a secondary particle size after hydrolysis. The conversion rate of ZrSiO 4 precursor gels to ZrSiO 4 powders from concentrations other than 0.4M ZrOCl 2 ·8H 2 O increased when the heating rate was high, whereupon the crystallization of unreacted ZrO 2 and SiO 2 was depressed and the propagation and increase of ZrSiO 4 nuclei in the gels were accelerated. The density of the ZrSiO 4 sintered bodies, manufactured by firing the ZrSiO 4 compacts at 1600 degrees to 1700 degrees C, was more than 95% of the theoretical density, and the grain size ranged around 2 to 4 μm. The mechanical strength was 320 MPa (room temperature to 1400 degrees C), and the thermal shock resistance was superior to that of mullite and alumina, with fairly high stability at higher temperatures

  10. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  11. Novel iron oxide-silica coreshell powders compacted by using pulsed electric current sintering: optical and magnetic properties

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Heczko, Oleg; Maki, R.; Söderberg, O.; Haimi, E.; Hannula, S.-P.

    2012-01-01

    Roč. 32, č. 11 (2012), s. 2981-2988 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z10100520 Keywords : sintering * SiO 2 * ferrites * grain growth * transparent Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.360, year: 2012 http://www.sciencedirect.com/science/article/pii/S0955221912001240

  12. Development of ceramics based fuel, Phase I, Kinetics of UO{sub 2} sintering by vibration compacting of UO{sub 2} powder (Introductory report); Razvoj goriva na bazi keramike, I faza, Kinetika sinterovanja UO{sub 2} vibraciono kompaktiranje praha UO{sub 2} (Uvodni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO{sub 2} sintering; Vibrational compacting and sintering of UO{sub 2}; Characterisation of of UO{sub 2} powder by DDK and TGA methods; Separation of UO{sub 2} powder.

  13. Self-Consolidation Mechanism Of Porous Ti-6Al-4V Implant Prototypes Produced By Electro-Discharge-Sintering Of Spherical Ti-6Al-4V Powders

    Directory of Open Access Journals (Sweden)

    Lee W.H.

    2015-06-01

    Full Text Available Electro-Discharge-Sintering (EDS was employed to fabricate Ti-6Al-4V porous implant prototypes from atomized powders (100 – 150 μm, that were subjected to discharges of 0.75 to 2.0 kJ/0.7g-powder from 150, 300, and 450 μF capacitors. Both fully porous and porous-surfaced Ti-6Al-4V compacts with various solid core sizes were self-consolidated in less than 86 – 155 μsec. It is known that EDS can simultaneously produce the pinch pressure to squeeze and deform powder particles and the heat to weld them together. The formation of a solid core in these prototypes depends on the amounts of both the pinch pressure and heat generated during a discharge. The size of the solid core and the thickness of the porous layer can be successfully controlled by manipulating the discharge conditions such as input energy and capacitance.

  14. Effect of Sintering Time on Superconducting Wire Bi-Pb-Sr-Ca-Cu-O With Dopant MgO Sheated Ag Using Powder in Tube Method

    Directory of Open Access Journals (Sweden)

    Hariyati Lubis

    2018-01-01

    , A., (2008, Production of YBCO Superconductor Sample by Powder-In-Tube Method (PITM; and Effect of Cd and Ga Doping on the System, University, Department of Physics, Malatya-Turkey Sharma, D., Kumar, R., Awana, V.P.S. 2013. DC and AC Susceptibility Study of Sol-Gel Synthesized Bi2Sr2CaCu2O8+x Superconductor. Ceramic International. 39:1143-1152

  15. Characterization of ASTM round-robin tungsten-powder samples

    International Nuclear Information System (INIS)

    Slettevold, C.A.; Biermann, A.H.

    1975-01-01

    The Lawrence Livermore Laboratory Particle Characterization Laboratory Group has participated in an industry-wide round-robin investigation on characterization of tungsten powder. sponsored by the ASTM Subcommittee on Refractory-Metal Powders (B-09.3). The analyses performed at the suggestion of the ASTM subcommittee included measurements of tap density, apparent density, true density, average particle size, and surface area. Determinations of particle-weight and size distributions were also performed and particle inspection conducted by microscopy. This report describes the equipment and procedures used and summarizes the results of these analyses. (9 tables, 17 fig) (U.S.)

  16. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  17. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    Science.gov (United States)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  18. Application of the microcalorimetry to the study of annealing and recrystallization phenomena during the sintering of metallic powders

    International Nuclear Information System (INIS)

    Cytermann, R.; Mazadier, M.; Auguin, B.; Defresne, A.; Gilles, P.

    1975-01-01

    Nickel powders compressed isostatically at pressures between 1 and 13 kbars were studied. The tests were all carried out under a current of hydrogen after vacuum degassing and at the same temperature increase rate. Cold-hardening of the powders was shown by the broadening of the X-ray diffraction lines. Microcalorimetry confirmed the separation of the compacting process into two stages: rearrangement with local deformation and bulk plastic deformation [fr

  19. Effects of drawing and high-pressure sintering on the superconducting properties of (Ba,K)Fe2As2 powder-in-tube wires

    International Nuclear Information System (INIS)

    Pyon, Sunseng; Yamasaki, Yuji; Tamegai, Tsuyoshi; Kajitani, Hideki; Koizumi, Norikiyo; Tsuchiya, Yuji; Awaji, Satoshi; Watanabe, Kazuo

    2015-01-01

    The evolution of the superconducting properties of round wires of (Ba,K)Fe 2 As 2 fabricated by the powder-in-tube (PIT) method is systematically studied. After establishing the method to obtain the largest transport critical current density (J c ) in round wires using the hot isostatic press technique, we investigated how the transition temperature (T c ), J c , and microstructures change at each step of the wire fabrication. Unexpectedly, we find that superconducting properties of the wire core are significantly damaged by the drawing process. Systematic measurements of J c and T c of the core superconductor after each drawing and sintering process clarified the evolution of degradation by the drawing process and recovery by heat treatment. (paper)

  20. Investigation of Thermoelectric Parameters of Bi2Te3: TEGs Assembled using Pressure-Assisted Silver Powder Sintering-Based Joining Technology

    Science.gov (United States)

    Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2015-06-01

    Operation of thermoelectric generator (TEG) modules based on bismuth telluride alloys at temperatures higher than 250°C is mostly limited by the melting point of the assembly solder. Although the thermoelectric parameters of bismuth telluride materials degrade for temperatures >130°C, the power output of the module can be enhanced with an increase in the temperature difference. For this, a temperature-stable joining technique, especially for the hot side of the modules, is required. Fabrication and process parameters of TEG modules consisting of bismuth telluride legs, alumina ceramics and copper interconnects using a joining technique based on pressure-assisted silver powder sintering are described. Measurements of the thermal force, electrical resistance, and output power are presented that were performed for hot side module temperatures up to 350°C and temperature differences higher than 300°C. Temperature cycling and results measured during extended high-temperature operation are addressed.

  1. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  2. Validation of a realistic powder sample using data from DMC at PSI

    International Nuclear Information System (INIS)

    Willendrup, Peter; Filges, Uwe; Keller, Lukas; Farhi, Emmanuel; Lefmann, Kim

    2006-01-01

    We present results of a virtual experiment, carried out by means of a McStas simulation of the powder diffractometer DMC at PSI, using the new powder sample component PowderN. This powder component takes tabulated crystallographic input to define realistic powder lines. The simulated output data from the virtual experiment on the compound Na 2 Ca 3 Al 2 F 14 are compared to real measurement data from the DMC instrument. The agreement is very good with respect to peak positions, widths, background intensity and relative peak intensities. This work represents an important step towards reliable virtual experiments and also act as a validation of the PowderN sample component in McStas

  3. Validation of a realistic powder sample using data from DMC at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Willendrup, Peter [Riso National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: peter.willendrup@risoe.dk; Filges, Uwe [Laboratory for Development and Methods ETHZ and PSI CH-5232 Villigen PSI (Switzerland); Keller, Lukas [Laboratory for Neutron Scattering ETHZ and PSI CH-5232 Villigen PSI (Switzerland); Farhi, Emmanuel [Institut Laue-Langevin (ILL) Grenoble, 6 rue J. Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Lefmann, Kim [Riso National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2006-11-15

    We present results of a virtual experiment, carried out by means of a McStas simulation of the powder diffractometer DMC at PSI, using the new powder sample component PowderN. This powder component takes tabulated crystallographic input to define realistic powder lines. The simulated output data from the virtual experiment on the compound Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} are compared to real measurement data from the DMC instrument. The agreement is very good with respect to peak positions, widths, background intensity and relative peak intensities. This work represents an important step towards reliable virtual experiments and also act as a validation of the PowderN sample component in McStas.

  4. Validation of a realistic powder sample using data from DMC at PSI

    DEFF Research Database (Denmark)

    Willendrup, Peter Kjær; Filges, U.; Keller, L.

    2006-01-01

    We present results of a virtual experiment, carried out by means of a McStas simulation of the powder diffractometer DMC at PSI, using the new powder sample component PowderN. This powder component takes tabulated crystallographic input to define realistic powder lines. The simulated output data...... from the virtual experiment on the compound Na2Ca3Al2F14 are compared to real measurement data from the DMC instrument. The agreement is very good with respect to peak positions, widths, background intensity and relative peak intensities. This work represents an important step towards reliable virtual...... experiments and also act as a validation of the PowderN sample component in McStas....

  5. Sintering unalloyed titanium in DC electrical abnormal glow discharge

    Directory of Open Access Journals (Sweden)

    Allan Seeber

    2010-03-01

    Full Text Available Powder metallurgy is widely used in the manufacture of components that have complex geometry. The good dimensional control, reduction in manufacturing steps and operating costs which has favored the use of this technique for manufacturing of titanium alloys components. However, the high affinity of this material with oxygen hinders strongly the sintering process. For this, the sintering associated with plasma technology can be considered an alternative technique for the processing of this material. The strict control of sintering atmosphere performed at low pressures and the reactive species present in the plasma environment can help to improve the sintering of this material. The results presented in this paper show a good correlation between the parameters used for the compaction of the samples and the microstructure develop during the plasma sintering of samples. The microstructure of the plasma assisted samples is also affected by the particular configuration used in the plasma reactor.

  6. Lubricant influence on the ejection and roughness of in-die electro sinter forged Ti-discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    2018-01-01

    Electro Sinter Forging (ESF) is a new sintering process based on Joule heating by high electrical current flowing through compacted metal powder under mechanical pressure. The whole process takes about three seconds and is based on a closed-die setup, where the sample is sintered inside a die....... A near-net shape component is therefore manufactured. One of the challenges associated with this process is the ejection of the sample after sintering. Due to powder compaction and axial loading during sintering, a radial pressure is generated at the die/sample interface. Consequently, the ejection can...... of commercially pure titanium powder. The force was measured while ejecting the samples by using a speed-controlled press. The surface roughness parameter Sa was measured by using a laser confocal microscope....

  7. Determination of copper in powdered chocolate samples by slurry-sampling flame atomic-absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter N.L. dos; Silva, Erik G.P. da; Fernandes, Marcelo S.; Araujo, Rennan G.O.; Costa, Anto' ' enio C.S.; Ferreira, Sergio L.C. [Nucleo de Excelencia em Quimica Analitica da Bahia, Universidade Federal da Bahia, Instituto de Quimica, Salvador, Bahia (Brazil); Vale, M.G.R. [Instituto de Quimica, Universidade Federal da Bahia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul (Brazil)

    2005-06-01

    Chocolate is a complex sample with a high content of organic compounds and its analysis generally involves digestion procedures that might include the risk of losses and/or contamination. The determination of copper in chocolate is important because copper compounds are extensively used as fungicides in the farming of cocoa. In this paper, a slurry-sampling flame atomic-absorption spectrometric method is proposed for determination of copper in powdered chocolate samples. Optimization was carried out using univariate methodology involving the variables nature and concentration of the acid solution for slurry preparation, sonication time, and sample mass. The recommended conditions include a sample mass of 0.2 g, 2.0 mol L{sup -1} hydrochloric acid solution, and a sonication time of 15 min. The calibration curve was prepared using aqueous copper standards in 2.0 mol L{sup -1} hydrochloric acid. This method allowed determination of copper in chocolate with a detection limit of 0.4 {mu}g g{sup -1} and precision, expressed as relative standard deviation (RSD), of 2.5% (n=10) for a copper content of approximately 30 {mu}g g{sup -1}, using a chocolate mass of 0.2 g. The accuracy was confirmed by analyzing the certified reference materials NIST SRM 1568a rice flour and NIES CRM 10-b rice flour. The proposed method was used for determination of copper in three powdered chocolate samples, the copper content of which varied between 26.6 and 31.5 {mu}g g{sup -1}. The results showed no significant differences with those obtained after complete digestion, using a t-test for comparison. (orig.)

  8. Study of the impact of treatment modes on hardness, deformability and microstructure of VT6 (Ti-6Al-4V and VV751P (Ni-15Co-10Cr alloy samples after selective laser sintering

    Directory of Open Access Journals (Sweden)

    Galkina Natalia V.

    2017-01-01

    Full Text Available Selective laser sintering is an advanced method for obtaining sophisticated products and assembly permanent joints. This is particularly relevant for heat resistant alloys employed in aviation equipment. Heat treatment modes traditionally applied to the products are chosen in accordance with conditions of further product operation. In this paper there are given the results of experimental study of hardness, deformability and microstructure of samples after selective laser sintering of Ni-15Co-10Cr and Ti–6Al–4V alloy powders. It has been determined that Ni-15Co-10Cr alloy ageing increases the hardness and deformability of samples; these characteristics decrease if the ageing lasts for 9-19 hours. Annealing of Ti–6Al–4V alloy samples results in preserving original hardness. After complete annealing, the hardness of samples decreases from 32 … 33HRC to 24 … 26HRC. Microstructural studies showed that there are cracks between layers in the surface of Ti–6Al–4V alloy samples after sintering and not complete annealing. After full annealing, cracks' width and length decreased. Cracks in Ni-15Co-10Cr alloy samples' microstructure were not detected.

  9. The influence of the milling environment on the sintered structure of a W-Cu composite

    International Nuclear Information System (INIS)

    Costa, F.A.; Gomes, U.U.; Acchar, W.; Ambrozio Filho, F.; Silva, A.G.P.; Lima, S.J.G.

    2009-01-01

    This work reports an investigation about the influence of the environment of milling on the characteristics of the powders and on the structure and density of sintered samples made of these powders. Mixtures of composition W-30wt%Cu were milled for 51 hours in a high energy planetary mill in dry and wet (cyclohexane) conditions. The milled powders have composite particles. The powders were pressed and sintered at 1050 deg, 1150 deg and 1200 deg C under flowing hydrogen. The isothermal times were 0 minutes for the first two temperatures and 60 minutes for the latter. The samples reached around 95% of relative density. The powders were characterized by means of XRD and SEM. The sintered samples were characterized by means of SEM, optical microscopy and density measurement. (author)

  10. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is an innovative sintering process based on the principle of electrical Joule heating. The electrical current is flowing through the powder compact, which is under mechanical pressure. As compared to conventional sintering [1] and spark plasma sintering [2], the main...... advantages are the decreased sintering time and high relative density [3]. Near net-shape components can be manufactured and post-removal processing is limited to surface polishing. The present work is focused on analysing the influence of the main process parameters, namely compacting pressure, sintering...... time and electrical current density, on the final density of a disc sample made from commercially pure titanium powder. The maximum achieved relative density was 94% of the bulk density of pure titanium. The density estimation was carried out by using both Archimedes’ and 3D scanning....

  11. Zone refining of sintered, microwave-derived YBCO superconductors

    International Nuclear Information System (INIS)

    Warrier, K.G.K.; Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Balachandran, U.

    1993-07-01

    Post-sintering treatments such as zone melting under thermal gradient has been conducted on sintered YBCO tape cast films. YBCO precursor powder was derived through decomposition of a mixture of nitrates of cations in a microwave oven for ∼4 min. The resulting powder was characterized and made into thin sheets by tape casting and then sintered at 945 C for 5 h. The sintered tapes were subjected to repeated zone refining operations at relatively high speeds of ∼30 mm/h. A microstructure having uniformly oriented grains in the a-b plane throughout the bulk of the sample was obtained by three repeated zone refining operations. Details of precursor preparation, microwave processing and its advantages, zone refining conditions, and microstructural features are presented in this paper

  12. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  13. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling

    International Nuclear Information System (INIS)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P.; Universidade Federal do Rio Grande do Norte

    2010-01-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  14. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  15. Studies of ZrO2-Y2O3 ceramics properties sintered in conventional and microwave oven

    International Nuclear Information System (INIS)

    Gelfuso, M.V.; Capistrano, D.; Thomazini, D.; Grzebielucka, E.C.; Chinelatto, A.L.; Chinelatto, A.S.A.

    2009-01-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  16. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  17. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    Science.gov (United States)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  18. Photoacoustic spectroscopy investigation of sintered zinc-tin-oxide ceramics

    Directory of Open Access Journals (Sweden)

    Ivetić Tamara B.

    2007-01-01

    Full Text Available In this paper the changes that occurred in differently activated ZnO-SnO2 and sintered samples were investigated using photoacoustic spectroscopy. ZnO and SnO2 powders, mixed in the molar ratio 2:1, were mechanically activated in a planetary ball mill for 10-160 min. The mixtures were pres­sed and isothermally sintered at 1300°C for two hours. X-ray diffraction analysis of the obtained sintered samples was performed in order to investigate changes of the phase composition and confirmed only the presence of a pure zinc stannate (Zn2SnO4 phase in all the sintered samples as a result of the solid state reaction and reaction sintering between the starting ZnO and SnO2 powders. The microstructure of the sintered sam­ples was examined by scanning electron microscopy and showed that mechanical activation leads to the formation of a structure with reduced particle size which accelerates spinel formation. Grain growth of the spinel phase slows down the densification process and together with the agglomerates formed during mechanical activation causes the appearance of a porous microstructure. The photoacoustic (PA phase and amplitude spectra of the sintered samples were recorded as a function of the chopped frequency of the laser beam used (red laser with a power of 25 mW, λ=632 nm in a thermal-transmission detection configuration. PA experimental data were analyzed using the Rosenzweig-Gersho thermal-piston model, which enabled determination of the thermal diffusivity, ZT (m2s-1, diffusion coefficient of the minority free carriers D (m2s-1 and the optical absorption coefficient (m-1. The detected differences of the measured thermal-electrical properties of the obtained Zn2SnO4 ceramics indicate changes in the material induced by the different preparation procedure of the starting powders before the sintering process.

  19. Preparing Magnetocaloric LaFeSi Uniform Microstructures by Spark Plasma Sintering

    DEFF Research Database (Denmark)

    Vicente, N.; Ocanã, J.; Neves Bez, Henrique

    2014-01-01

    Spark Plasma Sintering (SPS) of LaFeSi alloy powders was conducted to prepare magnetocaloric La-Fe-Si-based uniform microstructures. Two electrically insulating discs made of alumina were interposed between the punches and powder sample inhibiting the flow of electric current across the powder...... from hydrogenated and decrypted casting ingot. The characterizations of sintered samples were performed by Scanning Electron Microscopy (SEM), Archimedes principle, Vicker’s hardness and microhardness. The uniformity of the microstructure was evaluated by checking the evidence of position on the Vicker...

  20. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is a sintering process based on the resistance heating principle, which makes it faster than conventional sintering. The process is investigated as a function of the main process parameters, namely compacting pressure, electrical current density and sintering time....... The present work is focused on analysing the influence of these process parameters on the final density of a disc sample made from commercially pure titanium powder. Applying the design of experiments (DoE) approach, the electrical current was seen to be of largest influence. The maximum obtained density...

  1. Application of laser in powder metallurgy

    International Nuclear Information System (INIS)

    Tolochko, N.K.

    1995-01-01

    Modern status of works in the field of laser application in powder metallurgy (powders preparation, sintering, coatings formation, powder materials processing) is considered. The attention is paid to the new promising direction in powder products shape-formation technology - laser layer-by-layer selective powders sintering and bulk sintering of packaged layered profiles produced by laser cutting of powder-based sheet blanks. 67 refs

  2. Influence of sintering parameters in the ferroelectric properties os strontium bismuth tantalate samples obtained by oxide mixture

    International Nuclear Information System (INIS)

    Souza, R.R. de; Pereira, A.S.; Sousa, V.C.; Egea, J.R.J.

    2012-01-01

    The family of compounds layered-type perovskite, know as Aurivilius presents great alternative not only by the absence of lead in the composition, but because the polarization retention, replacing PZT in FeRAM devices. The strontium bismuth tantalate (SrBi 2 Ta 2 O 9 ) or SBT is ferroelectric material that has attracted considerable interest, since it has high fatigue resistance, supporting high hysteresis loops, with the change in polarization.Checking polarization and depolarization currents stimulated by temperature it is possible to obtain, for example, information about the nature of charges and about the activation energy for the process of dielectric relaxation. For analysis of ferroelectric properties of this compound, it is essential to obtain specimens with a relative density around 95%. Thus, it is important the optimization of the sintering process in order to obtain a ceramic body with a high densification. The influence of sintering parameters to obtain SrBi 2 Ta 2 O 9 in the polarization properties and in the microstructure of sintered samples was investigated by thermostimulated currents and electronic microscopy, respectively. Results show that variation of these parameters may cause changes in the ferroelectric properties of the material. (author)

  3. Kinetics of sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Soni, N.C.; Moorthy, V.K.

    1978-01-01

    The kinetics of sintering of UO 2 powders derived from ADU route and calcined at different temperatures was studied. The activation energy for sintering was found to depend on the calcination temperature, the density chosen and the sintering temperature range. The motive force for sintering is the excess free energy in the particle system. This exists in the powder compact in the form of surface energy and the excess lattice energy due to defects. The defects which can be eliminated at the operating temperature are responsible for the mobility and hence sintering. This concept of the motive force for sintering has been used to explain the difference in the activation energies observed in the present study. This would also explain phenomena such as attainment of limiting density, presence of optimum sintering temperature and the influence of calcination treatments on the sintering behaviour of powders. (author)

  4. Foundations of powder metallurgy

    International Nuclear Information System (INIS)

    Libenson, G.A.

    1987-01-01

    Consideration is being given to physicochemical foundations and technology of metal powders, moulding and sintering of bars, made of them or their mixtures with nonmetal powders. Data on he design of basic equipment used in the processes of powder metallurgy and its servicing are presented. General requirements of safety engineering when fabricating metal powders and products of them are mentioned

  5. The investigation of the microstructure and mechanical properties of ordered alominide-iron (boron) nanostructures produced by mechanical alloying and sintering

    Science.gov (United States)

    Izadi, S.; Akbari, Gh.; Janghorban, K.; Ghaffari, M.

    In this study, mechanical alloying (MA) of Fe-50Al, Fe-49.5Al-1B, and Fe-47.5Al-5B (at.%) alloy powders and mechanical properties of sintered products of the as-milled powders were investigated. X-ray diffraction (XRD) results showed the addition of B caused more crystallite refinement compared to the B-free powders. To consider the sintering and ordering behaviors of the parts produced from cold compaction of the powders milled for 80 h, sintering was conducted at various temperatures. It was found that the sintering temperature has no meaningful effect on the long-range order parameter. The transformation of the disordered solid solution developed by MA to ordered Fe-Al- (B) intermetallics was a consequence of sintering. Also, the nano-scale structure of the samples was retained even after sintering. The microhardness of pore-free zones of the nanostructured specimens decreased by increasing the sintering temperature. Moreover, the sintering temperature has no effect on the compressive yield stress. However, the fracture strain increased by increasing the sintering temperature. The samples containing 1 at.% B showed more strain to fracture compared with the B-free and 5 at.% B samples.

  6. Laboratory techniques for safe encapsulation of α-emitting powder samples

    International Nuclear Information System (INIS)

    Chamberlain, H.E.; Pottinger, J.S.

    1984-01-01

    Plutonium oxide powder samples can be encapsulated in thin plastic film to prevent spread of contamination in counting and X-ray diffraction equipment. The film has to be thin enough to transmit X-rays and α-particles. Techniques are described for the wrapping process and the precautions necessary to keep the sample processing line free of significant contamination. (author)

  7. Contribution to the study of the sintering mechanisms of uranium powders in the {alpha}, {beta}, and {gamma} phases; Contribution a l'etude des mecanismes de frittage de poudre d'uranium en phases {alpha}, {beta}, et {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Pinteau, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    This study of the sintering mechanisms of uranium powders prepared by calci-thermy has been effected using continuous dilatometric measurements of the shrinkage of samples previously compressed at room temperature in purified argon gas. The tests carried out in the {alpha}, {beta} and {gamma} phases have led to the observation that the first step of the sintering appears to be governed by a volume self-diffusion mechanism; the activation heat values found for the sintering mechanisms are close to those deduced during studies of volume self-diffusion using the direct radio-tracer method. Furthermore it has been possible to show that in the {gamma} domain a second sintering mechanism occurs involving much longer sintering times; the heats of activation are much lower and this appears to indicate that there occurs a mechanism involving pore elimination by grain boundary diffusion of the vacancies. Furthermore, the dilatometric tests have shown the simultaneous influence of two important parameters in this work: grain boundaries and the diffusion coefficients. In the second part of the report are given results concerning the examination of sintered samples by various methods with a view to elucidating their structure and some of their physical properties. In this way it has been possible, by carrying out metallographic examinations after etching by ionic bombardment, to determine the changes in the porosity of the three phases {alpha}, {beta} and {gamma}, as well as the structure and the nature of the inclusions in each sample. Density and porosity measurements have also been carried out. The variations in these two sets of results make it possible to confirm the preceding dilatometric end micro-graphic examinations. Finally a detailed dilatometric study of the samples sintered in the {gamma} phase has shown the effect of oxide layers, associated with the existence of porosity, on the amplitudes and temperatures of the allotropic transformations, these latter being

  8. Obtainment of the alloy Cu13Al4Ni using processed by powder metallurgy

    International Nuclear Information System (INIS)

    Grossi, L.J.; Damasceno, N.; Muterlle, P.V.

    2016-01-01

    The powder metallurgy is a technique environmentally advantageous that allows the production of many pieces, with a good superficial finishing and dimensional tolerance. For the production of pieces using technique, basics steps are carried out, as the characterization of powders, the mixing and homogenization, compacting and sintering. In this context, this work has as objective the obtainment of the Cu13Al4Ni alloy via powder metallurgy. For this, was made a high energy milling for 2, 4 and 8 hours. Then, the milled powder was compacted and posteriorly, sintered in an oven with controlled atmosphere. It was observed that the milling time affects directly in sintering of the pieces. The best results obtained were for the samples that were milled for 4 hours. This samples have showed 21, 52% of porosity and 6,382 g/cm³ of the density of sintered. (author)

  9. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    International Nuclear Information System (INIS)

    Savic, S.M.; Aleksic, O.S.; Nikolic, M.V.; Lukovic, D.T.; Pejovic, V.Z.; Nikolic, P.M.

    2006-01-01

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe 2 O 3 were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed

  10. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Aleksic, O.S. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Lukovic, D.T. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Pejovic, V.Z. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, P.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu

    2006-07-15

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe{sub 2}O{sub 3} were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed.

  11. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  12. Powdered alcohol: Awareness and likelihood of use among a sample of college students.

    Science.gov (United States)

    Vail-Smith, Karen; Chaney, Beth H; Martin, Ryan J; Don Chaney, J

    2016-01-01

    In March 2015, the Alcohol and Tobacco Tax and Trade Bureau approved the sale of Palcohol, the first powdered alcohol product to be marketed and sold in the U.S. Powdered alcohol is freeze-dried, and one individual-serving size packet added to 6 ounces of liquid is equivalent to a standard drink. This study assessed awareness of powered alcohol and likelihood to use and/or misuse powdered alcohol among college students. Surveys were administered to a convenience sample of 1,841 undergraduate students. Only 16.4% of respondents had heard of powdered alcohol. After being provided a brief description of powdered alcohol, 23% indicated that they would use the product if available, and of those, 62.1% also indicated likelihood of misusing the product (eg, snorting it, mixing it with alcohol). Caucasian students (OR = 1.5) and hazardous drinkers (based on AUDIT-C scores; OR = 4.7) were significantly more likely to indicate likelihood of use. Hazardous drinkers were also six times more likely to indicate likelihood to misuse the product. These findings can inform upstream prevention efforts in states debating bans on powdered alcohol. In states where powdered alcohol will soon be available, alcohol education initiatives should be updated to include information on the potential risks of use and be targeted to those populations most likely to misuse. This is the first peer-reviewed study to assess the awareness of and likelihood to use and/or misuse powdered alcohol, a potentially emerging form of alcohol. © American Academy of Addiction Psychiatry.

  13. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    Science.gov (United States)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  14. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  15. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  16. A Transient Liquid Phase Sintering Bonding Process Using Nickel-Tin Mixed Powder for the New Generation of High-Temperature Power Devices

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Yang, Jian; Zhou, Shaokun; Zhang, Rong; Chen, Shuhai

    2017-07-01

    A transient liquid phase sintering (TLPS) bonding process, Ni-Sn TLPS bonding was developed for the new generation of power semiconductor packaging. A model Ni/Ni-Sn/Ni sandwiched structure was assembled by using 30Ni-70Sn mixed powder as the reactive system. The results show that the bonding layer is composed of Ni3Sn4 and residual fine Ni particles with a small amount of Ni3Sn2 at 340°C for 240 min, which has a heat-resistant temperature higher than 790°C. The microstructural evolution and thermal characteristic of the bonding layer for various times at 300°C and 340°C were also studied, respectively. This reveals that, after isothermally holding for 240 min at 300°C and for 180 min at 340°C, Sn has been completely transformed into Ni-Sn intermetallic compounds (IMCs) and the bonding layer is mainly composed of Ni3Sn4 and residual Ni particles. The analysis result for the mechanical properties of the joint shows that the hardness of the bonding layer at 340°C for 240 min is uniform and that the average value reaches 3.66 GPa, which is close to that of the Ni3Sn4 block material. The shear test shows that, as the holding time increases from 60 min to 180 min at 340°C, because of the existence of Sn, the disparity of shear strength between room temperature and 350°C is large. But when the holding time is 180 min or longer, Sn has been completely transformed into Ni-Sn IMCs. Their performances are very similar whether at room temperature or 350°C.

  17. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    International Nuclear Information System (INIS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-01-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%

  18. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junliang, E-mail: liujunliang@yzu.edu.cn [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zeng, Yanwei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Zhang, Xingkai [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Ming [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Testing Center of Yangzhou University, Yangzhou 225002 (China)

    2015-05-15

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%.

  19. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  20. Qualitative analysis of a powdered diamond sample by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Mabida, C.; Annegarn, H.J.; Renan, M.J.; Sellschop, J.P.F.

    The main purpose of this analysis was to determine whether nickel is present in diamond powder as a trace element. Particle induced X-ray emission (PIXE) showed unambiguously that nickel was present. Due to the convenience of PIXE in multielemental analysis, the investigations also include a number of other trace elements in the sample

  1. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  2. SINTERING EFFECTS ON THE DENSIFICATION OF NANOCRYSTALLINE HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    M. Amiriyan

    2011-06-01

    Full Text Available The effects of sintering profiles on the densification behaviour of synthesized nanocrystalline hydroxyapatite (HA powder were investigated in terms of phase stability and mechanical properties. A wet chemical precipitation method was successfully employed to synthesize a high purity and single phase HA powder. Green HA compacts were prepared and subjected to sintering in air atmosphere over a temperature range of 700° C to 1300° C. In this study two different holding times were compared, i.e. 1 minute versus the standard 120 minutes. The results revealed that the 1 minute holding time sintering profile was indeed effective in producing a HA body with high density of 98% theoretical when sintered at 1200° C. High mechanical properties such as fracture toughness of 1.41 MPa.m1/2 and hardness of 9.5 GPa were also measured for HA samples sintered under this profile. Additionally, XRD analysis indicated that decomposition of the HA phase during sintering at high temperatures was suppressed.

  3. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  4. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  5. Fundamentals of powder metallurgy

    International Nuclear Information System (INIS)

    Khan, I.H.; Qureshi, K.A.; Minhas, J.I.

    1988-01-01

    This book is being presented to introduce the fundamentals of technology of powder metallurgy. An attempt has been made to present an overall view of powder metallurgy technology in the first chapter, whereas chapter 2 to 8 deal with the production of metal powders. The basic commercial methods of powder production are briefly described with illustrations. Chapter 9 to 12 describes briefly metal powder characteristics and principles of testing, mixing, blending, conditioning, compaction and sintering. (orig./A.B.)

  6. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic; Elaboration de ceramiques nanostructurees en carbure de silicium (SiC): de la synthese de poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA), 91 - Gif-sur-Yvette (France)

    2008-07-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC{sub f}/SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC{sub f}/SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  7. Development of high performance liquid chromatography method for miconazole analysis in powder sample

    Science.gov (United States)

    Hermawan, D.; Suwandri; Sulaeman, U.; Istiqomah, A.; Aboul-Enein, H. Y.

    2017-02-01

    A simple high performance liquid chromatography (HPLC) method has been developed in this study for the analysis of miconazole, an antifungal drug, in powder sample. The optimized HPLC system using C8 column was achieved using mobile phase composition containing methanol:water (85:15, v/v), a flow rate of 0.8 mL/min, and UV detection at 220 nm. The calibration graph was linear in the range from 10 to 50 mg/L with r 2 of 0.9983. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 2.24 mg/L and 7.47 mg/L, respectively. The present HPLC method is applicable for the determination of miconazole in the powder sample with a recovery of 101.28 % (RSD = 0.96%, n = 3). The developed HPLC method provides short analysis time, high reproducibility and high sensitivity.

  8. Experimental investigations on the synthesis of W–Cu nanocomposite through spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Ayman, E-mail: aymanhamada@cmrdi.sci.eg [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Li, Wei [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States); El Kady, Omayma A. [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Daoush, Walid M. [Helwan University, Faculty of Industrial Education, Department of Production Technology, Cairo (Egypt); Olevsky, Eugene A.; German, Randall M. [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States)

    2015-08-05

    Highlights: • Tungsten–copper composites have been synthesized using SPS of nano powders. • Various preparation methods, namely mixing, milling and coating have been used. • Conventional compaction and sintering has also been used for comparison. • The composites by SPS have shown finer microstructure and better hardness. • Mixing has proven best preparation method with best physical/mechanical properties. - Abstract: Elemental powders of nanosized tungsten and chemically deposited nanosized copper were used for preparing tungsten/copper composites, which are used as electric contact components. A composite of 70 wt.%W/30 wt.%Cu (52 vol%W/48 vol%Cu) composition was prepared by three powder metallurgy techniques. Elemental mixing, mechanical milling and electroless Cu coating on tungsten particles were used for the synthesis. The obtained powder blends underwent consolidation by rapid hot pressing using the spark plasma sintering (SPS) route at 950 °C under vacuum and by conventional vacuum pressureless sintering for comparison. The elemental powders and the sintered composites were investigated by optical microscopy and SEM. Electrical conductivity, hardness, transverse rupture strength, and wear properties were measured. Results show that the synthesis of the composite by the investigated route yields good performance. Samples prepared by SPS have shown better mechanical properties than those prepared by compaction and sintering due to their fine microstructure.

  9. Effects of inclusions on the sintering behavior of YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Stearns, L.C.; Harmer, M.P.; Chan, H.M.

    1990-01-01

    The sintering behavior of two types of heterogeneous compacts of YBa 2 Cu 3 O 6+x was studied: Soft agglomerates present in the starting powder were used to study the effect of rapidly densifying inclusions on the overall sample densification. In this case, the induced stresses caused severe cracklike damage in the sintered microstructure. On the other hand, when nondensifying inclusions (same composition) were incorporated into the starting powder, no sintering damage was observed. Further, there was no retardation of densification or coarsening due to the presence of these dense inclusions, over a wide range of inclusion size. Several possibilities for this behavior are discussed, based on the distribution of stresses induced by differential sintering rates

  10. Physico-chemical characterisation of some samples of fresh milk and milk powder

    Directory of Open Access Journals (Sweden)

    Soceanu Alina

    2015-12-01

    Full Text Available Milk consumption is important in the diet of all age groups because it provides important nutrients that are essential for humans. Children are the largest consumers of milk, thus, it’s very important that milk is free of toxic compounds that can be harmful for humans. Aim of the study was to determine the physico-chemical characteristics of some samples of milk powder for different stage of baby growing and for some samples of fresh milk: raw cow’s milk, milk trade and UHT type. The following physico-chemical properties: density, pH, acidity, the presence of acetone, enzymes, antiseptics, dry substance, the ash, total fat, saponification and peroxide index, total nitrogen and protein content were determined. Comparing the values of acidity for analyzed samples it can be concluded that the powder milk acidity value is much lower than the fresh milk. The presence of antiseptics and acetone was not identified, and amylase and peroxidase were found only in raw cow's milk. The highest protein content was found for milk powder (27.22%.

  11. Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Le, G.M.; Godfrey, A.; Hansen, Niels

    2013-01-01

    A spark plasma sintering (SPS) technique has been applied to prepare fully dense Al samples from Al powder. By applying a sintering temperature of 600°C and a loading pressure of 50MPa, fully recrystallized samples of nearly 100% density with average grain sizes of 5.2μm, 1.3μm and 0.8μm have bee...... strengthening. © 2013 Elsevier Ltd....

  12. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  13. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y2O3 particles

    International Nuclear Information System (INIS)

    Genc, Aziz; Luetfi Ovecoglu, M.

    2010-01-01

    Research highlights: → Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. → Reinforcement of the selected Ni-W powders with WC and Y 2 O 3 particles and further MA together for 12 h. → There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. → Sintering of the developed composites and the characterization investigations of the sintered samples. → Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y 2 O 3 particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 o C for 1 h under Ar and H 2 gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  14. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  15. Multielemental analysis of Brazilian milk powder and bread samples by neutron activation

    International Nuclear Information System (INIS)

    Maihara, V.A.; Vasconcellos, M.B.A.

    1988-01-01

    The concentrations of Na, Cl, Mn, Br, Fe, Zn, Rb, Sb, Sc, Cr, Al and Mg were determined in some types of bread and in some brands of milk powder consumed in the city of Sao Paulo (SP - Brasil), by instrumental neutron activation analysis. Radiochemical separations were carried out by means of retention of 24 Na on hydrated antimony pentoxide (HAP) from a 8N HCl solution, after digestion of the organic matter. Thus the radioisotopes 64 Cu, 69m Zn and 140 La could be determined in the effluent solution. The detection limits of the trace elements analyzed in bread and milk powder samples were determined using the Currie and Girardi criterions. (author) 22 refs.; 2 figs.; 7 tabs

  16. Profile of yttrium segregation in BaCe0,9Y0,1O3-δ as function of sintering temperature

    International Nuclear Information System (INIS)

    Hosken, C.M.; Souza, D.P.F. de

    2010-01-01

    Researches on solid oxide fuel cells indicate barium cerate perovskite as a very attractive material for using as electrolyte due to its high protonic conductivity. The objective of this work is investigate the yttrium segregation during sintering of BaCe 0,9 Y 0,1 O 3-δ doped with Zn O as a sintering aid. The powders were prepared by citrate process. Powders were isostatic pressed into pellets and sintered in air at 1200, 1275, 1325 and 1400 deg C. The samples were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy. Secondary phase containing Yttrium and Cerium was detected as sintering temperature increased. Increase of the lattice parameter and activation energy for electrical conductivity were also detected on samples sintered at 1400 deg C. (author)

  17. Contribution to the study of the sintering of ex-carbonyl iron in the α and γ phases using the micro-fractographic technique

    International Nuclear Information System (INIS)

    Oxley Gaborit de Montjou, M.Th.

    1966-01-01

    The micro-fractographic study of the sintering of ex-carbonyl iron has shown or confirmed a number of phenomena of which the principal are as followed: Sintering in the a phase: -) existence of two stages of sintering differentiated by the type of rupture (inter or trans-crystalline); -) marked influence of the content of oxygen in the atmosphere and in the initial compressed sample on the speed of sintering; -) formation of striations on the grain-boundary surfaces and on the inner surface of pores caused by the presence of oxygen. Sintering in the γ phase: -) a pronounced decrease in the speed of sintering: the grains in the initial powder remain in the granular state within the final α crystal in the iron sintered in the lower γ range even after several hours of sintering; -) this granular structure can be eliminated by intermediate compression thus enabling the sintering process to proceed. A considerable decrease in the speed of sintering if the A 3 point is passed one or more times in the α range sintering. A high speed sintering if the treatment in the γ range is carried out at or above 1300 C. The results of this study agree with micrographic investigation as well as with dilatometric measurements and known auto-diffusion coefficients. (author) [fr

  18. EFFECT OF THE Si POWDER ADDITIONS ON THE PROPERTIES OF SiC COMPOSITES

    Directory of Open Access Journals (Sweden)

    GUOGANG XU

    2012-09-01

    Full Text Available By means of transient plastic phase process, the SiC silicon carbide kiln furniture materials were produced through adding Si powder to SiC materials. At the condition of the same additions of SiO2 powder, the effect of the Si powder additions on properties of silicon carbide materials after sintered at 1450°C for 3 h in air atmosphere was studied by means of SEM and other analysis methods. The results showed that silicon powder contributes to both sintering by liquid state and plastic phase combination to improve the strength of samples. When the Si powder additions is lower than 3.5 %, the density and strength of samples increase and porosity decrease with increasing Si powder additions. However when the Si powder additions is higher than 3.5 %, the density and strength of samples decrease and porosity increase with increasing Si powder additions. With increasing of Si additions, the residual strength of sample after thermal shocked increased and linear change rate decreased, and get to boundary value when Si additions is 4.5 %. The results also indicated that at the same sintering temperature, the sample with 3.5 % silicon powder has maximum strength.

  19. Conventional and two step sintering of PZT-PCN ceramics

    Science.gov (United States)

    Keshavarzi, Mostafa; Rahmani, Hooman; Nemati, Ali; Hashemi, Mahdieh

    2018-02-01

    In this study, PZT-PCN ceramic was made via sol-gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed successfully with TSS procedure and dielectric and piezoelectric properties were improved compared to the CS procedure. The best electrical properties obtained for the sample sintered by TSS in the initial temperature of T 1 = 1200 °C and secondary temperature of T 2 = 1000 °C for 12 h.

  20. An application of powder metallurgy to dentistry.

    Science.gov (United States)

    Oda, Y; Ueno, S; Kudoh, Y

    1995-11-01

    Generally, the dental casting method is used to fabricate dental prostheses made with metal. The method of fabricating dental prostheses from sintered titanium alloy has certain advantages: the elimination of casting defects, a sintering temperature that is lower than the melting point, and a shorter processing time. By examining (1) the properties of green, sintered compacts of titanium powder, (2) the effects of adding aluminum powder on the properties of green, sintered compacts of Ti-Al compound, and (3) the effects of adding copper powder on the properties of green, sintered compacts of Ti-Al-Cu compound, the authors developed a sintered titanium alloy on a trial basis. Because the properties satisfied the requirements of dental restorations, a powder metallurgical method of making dental restorations from this sintered titanium alloy was devised. Applications of such sintered titanium alloys for the metal coping of metal-ceramic crowns and denture base plates were discussed.

  1. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  2. Study of radioactivity levels in detergent powders samples by gamma spectroscopy

    Directory of Open Access Journals (Sweden)

    Ali A. Abojassim

    2014-10-01

    Full Text Available This study focuses on the evaluation of the natural radioactivity levels in ten samples of the detergent powders that available in Iraqi markets. We have determined the specific activities of uranium, thorium and potassium using gamma spectroscopy and calculation of radiation hazard indices. The results of the activities of radionuclides (238U, 232Th, 40K for detergent powders samples, are found that the 238U specific activities were varied from (11.489 ± 2.089 Bq/kg to (36.062 ± 2.478 Bq/kg, while the 232th specific activities were varied from (1.411 ± 0.609 Bq/kg to (9.272 ± 1.642 Bq/kg and 40K were varied from (8.189 ± 2.339 Bq/kg to (91.888 ± 4.164 Bq/kg. These values are always lower than those of raw materials, what is explained by the conservation of radioactive material throughout the manufacturing process. The radium equivalent activity Raeq, the external hazard index Hex and the internal hazard index Hin dose due to natural radioactivity estimated below the regulatory standard recommended which are (370 Bq/kg, 1 and 1 according to OECD 1979 and ICRP 2000, allows us to show that Detergent powders samples products are not contaminated by radioactivity, are healthy and do not have harmful radiological impact on the consumer.

  3. Powder metallurgical processing of magnetostrictive materials based on rare earth-iron intermetallic compounds

    International Nuclear Information System (INIS)

    Malekzadeh, M.

    1978-01-01

    Procedures are described for fabrication of high density rare earth-iron magnetostrictive compounds by powder metallurgical techniques. The fabrication involves a sequence of steps which includes preparing the pre-alloyed compounds, pulverizing them into a fine powder, compacting in suitable sizes and shapes, and sintering. Samples prepared by these procedures are carefully characterized by scanning electron microscopy, x-ray diffraction, dilatometry, and magnetic measurements. Process steps are found to exert important influences upon densities, microstructure and magnetic properties attained after densification. Investigations on a number of these process steps, including milling time and medium, sintering, and magnetic powder alignment are described

  4. The effect of structural changes during sintering on the electric and magnetic traits of the Ni96.7Mo3.3 alloy nanostructured powder

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović L.

    2009-01-01

    Full Text Available Ni96.7Mo3.3 powder was electrochemically obtained. An X-ray diffraction analysis determined that the powder consisted of a 20% amorphous and 80% crystalline phase. The crystalline phase consisted of a nanocrystalline solid nickel and molybdenum solution with a face-centred cubic (FCC lattice with a high density of chaotically distributed dislocations and high microstrain value. The scanning electronic microscopy (SEM showed that two particle structures were formed: larger cauliflower-like particles and smaller dendriteshaped ones. The thermal stability of the alloy was examined by differential scanning calorimetry (DSC and by measuring the temperature dependence of the electrical resistivity and magnetic permeability. Structural powder relaxation was carried out in the temperature range of 450 K to 560 K causing considerable changes in the electrical resistivity and magnetic permeability. Upon structural relaxation, the magnetic permeability of the cooled alloy was about 80% higher than the magnetic permeability of the fresh powder. The crystallisation of the amorphous portion of the powder and crystalline grain increase occurred in the 630 K to 900 K temperature interval. Upon crystallisation of the amorphous phase and crystalline grain increase, the powder had about 50% lower magnetic permeability than the fresh powder and 3.6 times lower permeability than the powder where only structural relaxation took place.

  5. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  6. Obtainment of the alloy Cu13Al4Ni using processed by powder metallurgy; Obtencao da liga Cu13Al4Ni via metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, L.J.; Damasceno, N.; Muterlle, P.V., E-mail: larajgrossi@yahoo.com.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Departamento de Engenharia Mecanica

    2016-07-01

    The powder metallurgy is a technique environmentally advantageous that allows the production of many pieces, with a good superficial finishing and dimensional tolerance. For the production of pieces using technique, basics steps are carried out, as the characterization of powders, the mixing and homogenization, compacting and sintering. In this context, this work has as objective the obtainment of the Cu13Al4Ni alloy via powder metallurgy. For this, was made a high energy milling for 2, 4 and 8 hours. Then, the milled powder was compacted and posteriorly, sintered in an oven with controlled atmosphere. It was observed that the milling time affects directly in sintering of the pieces. The best results obtained were for the samples that were milled for 4 hours. This samples have showed 21, 52% of porosity and 6,382 g/cm³ of the density of sintered. (author)

  7. Borax as a lubricant in powder metallurgy

    Directory of Open Access Journals (Sweden)

    Héctor Geovanny Ariza-Suarez

    2014-12-01

    were compacted at 700 MPa in a uniaxial press of 15 tons. DSC-TGA analysis of the mixture with borax was realized. The specimens were sintered in a plasma reactor at 1000 for 30 minutes, with a combined atmosphere of hydrogen and argon. Microhardness and density of the sintered samples was haracterized. XRD analysis was realized to detect possible compounds formation by interaction of borax. This paper shows that borax can be used as a lubricant in powder metallurgy.

  8. Studies on powder processing and sintering behaviour of ZrO2-9.0 mol% Y2O3 ceramics

    International Nuclear Information System (INIS)

    Ghosh, A.; Gonal, M.R.; Upadhyaya, D.D.; Ram Prasad

    1998-01-01

    In the present investigation the synthesis and densification behaviour of ZrO 2 -9.0 mol% Y 2 O 3 ceramics has been described. Powder preparation was based on the co-precipitation method. It was found that variation in the precipitation conditions and washing steps of the precipitated gels resulted in powder of different agglomerate sizes. The effect of different precipitations and washing conditions on the crystallite size of the 600 deg C calcined powders were examined by x-ray diffraction. The powders produced were essentially of the cubic fluorite phase. The ball-milled powders were analyzed for particle size distribution. Densification behaviour of the bodies made by slip casting has also been studied. (author)

  9. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-01-01

    Highlights: • ReB 2 -type hexagonal OsB 2 powder has been densified by spark plasma sintering. • The sintered OsB 2 contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB 2 sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB 2 -type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics

  10. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    density of the pellets based on the green density and the theoretical density of each of the compositions. The Master Sintering Curve (MSC) model is then utilized to generate data that can be utilized to predict the final density of the respective powder over a range of heating rates. The Elton Master Sintering Curve Extension (EMSCE) is developed to extend the functionality of the MSC tool. The parameters generated from the original MSC are used in tandem with the solution to the closed integral, theta ≡ 1cTo T1Texp -QRT dT, over a set range of temperatures. The EMSCE is used to generate a set of sintering curves having both constant heating rate and isothermal hold portions. The EMSCE extends the usefulness of the MSC by allowing this generation of a complete sintering schedule rather than just being able to predict the final relative density of a given material. The EMSCE is verified by generating a set of curves having both constant heating rate and an isothermal hold for the heat-treatment. The modeled curves are verified experimentally and a comparison of the model and experimental results are given for a selected composition. Porosity within the final product can hinder the product from sintering to full density. It is shown that some of the compositions studied did not sinter to full density because of the presence of large porosity that could not be eliminated in a reasonable amount of time. A statistical analysis of the volume fraction of porosity is completed to show the significance of the presence in the final product. The reason this is relevant to the MSC is that the model does not take into account the presence of porosity and assumes that the samples sinter to full density. When this does not happen, the model actually under-predicts the final density of the material.

  11. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  12. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  13. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  14. Microstructure and microanalysis studies of copper-nickel-tin alloys obtained by conventional powder metallurgy processing

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Masson, T.J.; Vitor, E.; Abreu, C.D.; Marques, I.M.

    2009-01-01

    The aim of this paper was to analyze the microstructural development in samples of Cu-Ni-Sn alloys (weight %) obtained by powder metallurgy (P/M). The powders were mixed for 1/2 hour. After this, they were pressed, in a cold uniaxial pressing (1000 kPa). In the next step the specimens were sintered at temperatures varying from 650 up to 780 deg C under vacuum. Secondly, the samples were homogenized at 500 deg C for several special times. The alloys were characterized by optical microscopy, electrical conductivity and Vickers hardness. X-rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. (author)

  15. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  16. Sintering of nanopowders of ZrO_2 (Y_2O_3): Effect of compaction pressure on densification

    International Nuclear Information System (INIS)

    Palmeira, Alexandre Alvarenga; Magnago, Roberto de Oliveira; Pereira, Glayce Cassaro; Bondioli, Marcelo Jose; Strecker, Kurt; Santos, Claudinei dos

    2014-01-01

    In this work studied the powders (nano) sintered of ZrO_2 (Y_2O_3) by dilatometry. Was identified the effect of compaction pressure variation in the final results of densification of materials. Powders were compacted at different compaction pressures. The compacts were subjected to temperatures of 1250°C to 1400°C with sintering levels ranging from 0 to 8 hours. Samples were characterized by X-ray diffraction and relative density using Archimedes method. The results were compared with powders (micro) of similar composition in order to compare the effect of particle size on densification parameters. The samples were further subjected to microstructural characterization in order to identify the average grain size of the sintering under each condition used in both materials. (author)

  17. Measurement of radioactive lines in powdered milk samples in Londrina (Parana State, Brazil) region

    International Nuclear Information System (INIS)

    Melquiades, Fabio Luiz

    2000-01-01

    This work deals with the measurement of radioactive lines in powdered milk, with high resolution gamma spectrometry, using a HPGe detector with relative efficiency of 10%, coupled to the electronic nuclear chain and a multichannel card of 8192 channels. Some tests were realized before beginning the measurements. The first of them was to define the shield to be used, making several measured with different shields according to the available materials, opting finally for a shield composed of bricks of lead (10 cm thickness), plates of iron (4nm thickness) and of aluminum (2 mm thickness). Four different geometries for the samples recipients were tested, and the Marinelli beaker of 2,1 liters totally filled was the one which supplied the best peak/background ratio. A statistical inference was also realized to determine the sampling that represents each one of the lots of milk to be measured, resulting in a number of 6 samples, for a confidence level of 95%. Two different kinds of powdered milk produced at Londrina were analyzed, Integral Powdered Milk Cativa and Integral Powdered Milk Polly. The samples were properly put in the Marinelli beaker of 2,1 L, sealed and kept for 40 days to reach the secular equilibrium. The counting time for each measurement was two days. It was possible to identify the radionuclides 40 K, 137 Cs and 232 Th (from 208 Tl), whose activities were calculated according to the International Atomic Energy Agency norms (IAEA, 1989). The detector efficiency was measured using calibrated samples, prepared with the certified reference materials IAEA-326 and IAEA-375. Corrections for self-absorption were accomplished, based on measures of samples with different densities. The results obtained for the powdered milk Cativa were: 464± 12 Bq/kg for 40 K, 3,46 ± 1,05 and 0,46 ± 1,05 and 0,46 ± 0,16 Bq/kg for the minimum detectable activities of 137 Cs and 232 Th, respectively. For the milk Polly, the results were: 452±10 Bq/kg for 40 K, 3,19 ± 0

  18. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite

    International Nuclear Information System (INIS)

    Kusrini, Eny; Sontang, Muhammad

    2012-01-01

    The physical and chemical properties of a hydroxyapatite produced by the sintering of bovine bone were investigated by powder x-ray diffraction (PXRD), electron spin resonance (ESR), energy dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential thermal analysis (DTA). A bovine bone powder was sintered at different temperatures ranging from 500 to 1400 °C. The influences of post-irradiation storage on the radiation ESR response of the bovine bone powder before and after sintering were also studied. The results indicate that the sintered bovine bone powder contained hydroxyapatite. Diffraction patterns were sharp and clear based on the (211), (300), and (202) reflections corresponding to bovine hydroxyapatite (BHA), which confirmed the phase purity and high crystalline grade of the BHA produced. The PXRD profile of BHA was dependent on sintering temperatures and times. The molecular formula of BHA was determined by Rietveld analysis showed a similar structure and composition to calcium hydroxyapatite in hexagonal P6 3 /m space group a=b=9.435 Å and c=6.895 Å. ESR data showed that the sintering process can decrease the number of free radicals in BHA; it also revealed that the number of free radicals is constant during long storage periods (75 days). The sintering technique described in this study may be used to extract hydroxyapatite from biowaste bovine bone, leading to its application as a bone filler. - Highlights: ► Natural hydroxyapatite was produced from the bio-wasting bovine bones by sintering method. ► PXRD profile of BHA is dependent on the different temperatures and times in sintering process. ► ESR data is useful to study the typical of free radicals formed in the samples after irradiation. ► Stability and physicochemical properties of BHA is dependent on the different storage times. ► Technique is able to be used to find the natural hydroxyapatite applicable for bone filler.

  19. Direct laser sintered WC-10Co/Cu nanocomposites

    Science.gov (United States)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  20. Direct laser sintered WC-10Co/Cu nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gu Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)], E-mail: dongdonggu@nuaa.edu.cn; Shen Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)

    2008-04-30

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  1. Direct laser sintered WC-10Co/Cu nanocomposites

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa

  2. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  3. Deformation mechanisms of pure Mg materials fabricated by using pre-rolled powders

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J., E-mail: shen-j@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University (Japan); Imai, H. [Joining and Welding Research Institute, Osaka University (Japan); Chen, B. [Graduate School of Engineering, Osaka University (Japan); Ye, X.; Umeda, J.; Kondoh, K. [Joining and Welding Research Institute, Osaka University (Japan)

    2016-03-21

    In the present work, a powder rolling process was utilized in the fabrication of fine grained pure Mg via powder metallurgy. Mg flakes were obtained after each rolling process, and broken into pieces for further rolling or sintering. Mg samples of experiencing 0, 5 and 10 rolling passes were obtained following spark plasma sintering (SPS) and hot extrusion. Microstructural results from electron backscatter diffraction (EBSD) revealed that, without experiencing powder rolling, the specimen contained a great number of residual tensile twins; in contrast, after powder rolling the specimen showed uniform and equiaxed grain structures. In addition, the average grain size was measured to be around 9.2, 2.9 and 2.1 µm for the samples subjected to 0, 5 and 10 rolling passes. The powder rolled specimens were found superior in mechanical properties. Post-loading microstructure examinations were also performed for the samples and a discussion regarding the relationship between their mechanical behavior and microstructures was provided.

  4. Deformation mechanisms of pure Mg materials fabricated by using pre-rolled powders

    International Nuclear Information System (INIS)

    Shen, J.; Imai, H.; Chen, B.; Ye, X.; Umeda, J.; Kondoh, K.

    2016-01-01

    In the present work, a powder rolling process was utilized in the fabrication of fine grained pure Mg via powder metallurgy. Mg flakes were obtained after each rolling process, and broken into pieces for further rolling or sintering. Mg samples of experiencing 0, 5 and 10 rolling passes were obtained following spark plasma sintering (SPS) and hot extrusion. Microstructural results from electron backscatter diffraction (EBSD) revealed that, without experiencing powder rolling, the specimen contained a great number of residual tensile twins; in contrast, after powder rolling the specimen showed uniform and equiaxed grain structures. In addition, the average grain size was measured to be around 9.2, 2.9 and 2.1 µm for the samples subjected to 0, 5 and 10 rolling passes. The powder rolled specimens were found superior in mechanical properties. Post-loading microstructure examinations were also performed for the samples and a discussion regarding the relationship between their mechanical behavior and microstructures was provided.

  5. Neutron powder investigations of Zr0.85Ca0.15O1.85 sinter material at temperatures up to 1100 K and with a simultaneously applied electric field

    International Nuclear Information System (INIS)

    Kahlert, H.; Boysen, H.; Frey, F.

    1998-01-01

    In situ neutron powder investigations of cubic stabilized zirconia [Zr 0.85 Ca 0.15 O 1.85 (CSZ15)] sinter material were performed at room temperature without an applied direct-current electric field and at 1100 K with and without an applied field, i.e. lasting ionic current. Experimental conditions (temperature, oxidizing atmosphere etc.) were chosen as close as possible to 'working conditions' of zirconia oxygen sensoric devices. To learn about field-induced structural changes and most probable ionic pathways, atomic displacement parameters were derived in the frame of a non-Gaussian Debye-Waller factor formalism for the oxygens. Probability-density-function maps and pseudo-potential (V eff ) maps indicate curved diffusion pathways of the oxygens close to the left angle 100 right angle directions. The action of the applied field is to lower the effective potential barriers. (orig.)

  6. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  7. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  8. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling; Sinterizacao a plasma de aco ferritico reforcado com carbeto de niobio preparado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Materiais Ceramicos e Metais Especiais; Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Processamento de Materiais por Plasma

    2010-07-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  9. Residual stress in TI6AL4V objects produced by direct metal laser sintering

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-12-01

    Full Text Available Direct Metal Laser Sintering produces 3D objects using a layer-by- layer method in which powder is deposited in thin layers. Laser beam scans over the powder fusing powder particles as well as the previous layer. High-concentration of laser energy input leads to high thermal gradients which induce residual stress within the as- built parts. Ti6Al4V (ELI samples have been manufactured by EOSINT M280 system at prescribed by EOS process-parameters. Residual stresses were measured by XRD method. Microstructure, values and directions of principal stresses inTi6Al4V DMLS samples were analysed.

  10. Defectoscopy of direct laser sintered metals by low transmission ultrasonic frequencies

    Directory of Open Access Journals (Sweden)

    Ebersold Zoran

    2012-01-01

    Full Text Available This paper focuses on the improvement of ultrasonic defectoscopy used for machine elements produced by direct laser metal sintering. The direct laser metal sintering process introduces the mixed metal powder and performs its subsequent laser consolidation in a single production step. Mechanical elements manufactured by laser sintering often contain many hollow cells due to weight reduction. The popular pulse echo defectoscopy method employing very high frequencies of several GHz is not successful on these samples. The aim of this paper is to present quadraphonic transmission ultrasound defectoscopy which uses low range frequencies of few tens of kHz. Therefore, the advantage of this method is that it enables defectoscopy for honeycombed materials manufactured by direct laser sintering. This paper presents the results of testing performed on AlSi12 sample. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057

  11. Sintering Theory and Practice

    Science.gov (United States)

    German, Randall M.

    1996-01-01

    process all around us--in manufactured objects from metals, ceramics, polymers, and many compounds. From a vast professional literature, Sintering Theory and Practice emerges as the only comprehensive, systematic, and self-contained volume on the subject. Covering all aspects of sintering as a processing topic, including materials, processes, theories, and the overall state of the art, the book Offers numerous examples, illustrations, and tables that detail actual processing cycles, and that stress existing knowledge in the field Uses the specifics of various consolidation cycles to illustrate the basics Leads the reader from the fundamentals to advanced topics, without getting bogged down in various mathematical disputes over treatments and measurements Supports the discussion with critically selected references from thousands of sources Examines the sintering behavior of a wide variety of engineered materials--metals, alloys, oxide ceramics, composites, carbides, intermetallics, glasses, and polymers Guides the reader through the sintering processes for several important industrial materials and demonstrates how to control these processes effectively and improve present techniques Provides a helpful reference for specific information on materials, processing problems, and concepts For practitioners and researchers in ceramics, powder metallurgy, and other areas, and for students and faculty in materials science and engineering, this book provides the know-how and understanding crucial to many industrial operations, offers many ideas for further research, and suggests future applications of this important technology. This book offers an unprecedented opportunity to explore sintering in both practical and theoretical terms, whether at the lab or in real-world applications, and to acquire a broad, yet thorough, understanding of this important technology.

  12. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.

  13. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    International Nuclear Information System (INIS)

    Tanaka, Masahiko; Katsuya, Yoshio; Sakata, Osami

    2016-01-01

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe_2O_4 (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe_2O_4 crystal structure.

  14. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  15. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  16. Microstructural evaluation of the NbC-20Ni cemented carbides during sintering

    International Nuclear Information System (INIS)

    Rodrigues, D.; Cannizza, E.

    2016-01-01

    Full text: Fine carbides in a metallic matrix (binder) form the microstructure of the cemented carbides. Grain size and binder content are the main variables to adjust hardness and toughness. These products are produced by Powder Metallurgy, and traditional route involves mixing carbides with binder by high energy milling, pressing and sintering. During sintering, a liquid phase promotes densification, and a final relative density higher than 99% is expected. Sintering is carried out at high temperatures, and dissolution of the carbides changes the chemical composition of the binder. To control grain growth of the main carbide, which reduces hardness, small quantities of secondary carbides are used. These additives limit dissolution and precipitation of the main carbides reducing the final grain size. This paper focused the structural and chemical evolution during sintering using NbC-20Ni cermets. Mixtures of very fine NbC carbides and carbonyl Ni powders were produce by intense milling. These mixtures were pressed using uniaxial pressures from 50 to 200MPa. Shrinkage was evaluated using dilatometric measurements under an atmosphere of dynamic argon. Samples were also sintered under vacuum in high temperature industrial furnace. The sintered samples were characterized in terms of density hardness, toughness and microstructure. DRX was the main tool used to evaluate the structural evolution of the binder. In situ chemical analysis helped to understand the dissolution mechanisms. (author)

  17. Determination of metal impurities in MOX powder by direct current arc atomic emission spectroscopy. Application of standard addition method for direct analysis of powder sample

    International Nuclear Information System (INIS)

    Furuse, Takahiro; Taguchi, Shigeo; Kuno, Takehiko; Surugaya, Naoki

    2016-12-01

    Metal impurities in MOX powder obtained from uranium and plutonium recovered from reprocessing process of spent nuclear fuel have to be determined for its characterization. Direct current arc atomic emission spectroscopy (DCA-AES) is one of the useful methods for direct analysis of powder sample without dissolving the analyte into aqueous solution. However, the selection of standard material, which can overcome concerns such as matrix matching, is quite important to create adequate calibration curves for DCA-AES. In this study, we apply standard addition method using the certified U_3O_8 containing known amounts of metal impurities to avoid the matrix problems. The proposed method provides good results for determination of Fe, Cr and Ni contained in MOX samples at a significant quantity level. (author)

  18. Studies of ZrO{sub 2}-Y{sub 2}O{sub 3} ceramics properties sintered in conventional and microwave oven; Estudos das propriedades de ceramicas de ZrO{sub 2}-Y{sub 2}O{sub 3} sinterizadas em forno convencional de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Gelfuso, M V; Capistrano, D; Thomazini, D [Universidade de Fortaleza (UNIFOR), CE (Brazil); Grzebielucka, E C; Chinelatto, A L; Chinelatto, A S.A. [Universidade Estadual de Ponta Grossa (DEMa/UFPG), PR (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  19. Development of a Sinter/HIP process for the superalloy Udimet 700 with investigations of the influence of the sinteratmosphere

    International Nuclear Information System (INIS)

    Wenning, L.

    1991-03-01

    The oxidation free treatment of reactive metalpowders like the nickel base alloy Udimet 700 demands sufficient oxygen free sinteratmospheres in nowadays sinter-HIP plants are not reachable. The reported work deals with the development of a sinter-HIP process which enables a sufficient low partial pressure of oxygen by scavenging the Udimet 700 powder packings with argon during vacuum sintering. By this the sinter hindering oxidation is avoided. Intensive investigations of the sinteratmosphere with a mass spectrometer and a zirconium oxide probe verify the reduction of the oxygen content of the residual gas atmosphere reached with different processes. In a second part the applicability of the scavenging gas process during the capsule free sinter-HIP treatment of metall injection moulded (MIM) samples is shown. (orig.) [de

  20. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  1. A comparison of the modulated microwave absorption spectra of ceramic and powdered YBa2Cu3O7-δ samples

    International Nuclear Information System (INIS)

    Rubins, R.S.; Hutton, S.L.; Drumheller, J.E.; Jeong, D.Y.; Black, T.D.

    1990-01-01

    Flux trapping in the 9.3 GHz modulated microwave absorption spectra observed near 4 K from ceramic and powdered ceramic specimens of two separately prepared YBa 2 Cu 3 O 7-δ samples has been used to separate the intergranular and intragranular contributions to the spectra. In the denser, glassy sample, a broad absorption with a peak near 400 Oe for forward sweeps was observed with appreciable intensity after the maximum flux was trapped. This spectrum is attributed to intergranular junctions, since its relative intensity was reduced on powdering and suspending in wax. In the less dense, more uniform sample, the latter spectrum was appreciably weaker in both ceramic and powder. Both types of junction appear to contribute to the narrow low-field absorption which was observed after zero field cooling in all the samples

  2. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Reza; Safavi, Seyed Mohsen; Karimzadeh, Fathallah [Isfahan University, Isfahan (Iran, Islamic Republic of)

    2016-05-15

    Bulk Al/4wt-%Al{sub 2}O{sub 3} nanocomposites were prepared by consolidating nanocomposite powders using pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing techniques. Microstructural observations revealed that the microwave-assisted hot press sintering at different sintering temperatures of 400.deg.C and 500.deg.C resulted in more densification and smaller grain size for Al/Al{sub 2}O{sub 3} nanocomposite as compared with the conventional hot pressing. Moreover, the application of pressure in microwave sintering process led to more densification and grain growth. Mechanical properties resulting from microhardness and nanoindentation tests were also compared between three-method processed samples. It was found that the microwave-assisted hot-pressed sample exhibited higher hardness and elastic modulus in comparison with microwave-sintered and conventional hot-pressed samples. The improvement in the mechanical properties can be ascribed to lower porosity of microwave-assisted hot-pressed sample.

  3. SAF line powder operations

    International Nuclear Information System (INIS)

    Frederickson, J.R.; Horgos, R.M.

    1983-10-01

    An automated nuclear fuel fabrication line is being designed for installation in the Fuels and Materials Examination Facility (FMEF) near Richland, Washington. The fabrication line will consist of seven major process systems: Receiving and Powder Preparation; Powder Conditioning; Pressing and Boat Loading; Debinding, Sintering, and Property Adjustment; Boat Transport; Pellet Inspection and Finishing; and Pin Operations. Fuel powder processing through pellet pressing will be discussed in this paper

  4. Two layer powder pressing

    International Nuclear Information System (INIS)

    Schreiner, H.

    1979-01-01

    First, significance and advantages of sintered materials consisting of two layers are pointed out. By means of the two layer powder pressing technique metal powders are formed resulting in compacts with high accuracy of shape and mass. Attributes of basic powders, different filling methods and pressing techniques are discussed. The described technique is supposed to find further applications in the field of two layer compacts in the near future

  5. Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications

    International Nuclear Information System (INIS)

    Guo, Shibo; Chu, Aimin; Wu, Haijiang; Cai, Chunbo; Qu, Xuanhui

    2014-01-01

    Highlights: • Ti–24Nb–4Zr–7.9Sn alloy is prepared by powder metallurgy method. • The alloy prepared at 1250 °C for 2 h has more β-matrix and tiny α-precipitation. • The alloy prepared at 1250 °C for 2 h possesses good mechanical properties. • The alloy prepared at 1250 °C for 2 h exhibits better corrosion resistance. - Abstract: Ti–24Nb–4Zr–7.9Sn alloy was prepared by Powder Metallurgy (PM) method using titanium hydride powder, niobium powder, zirconium powder, and tin powder as raw materials. The effect of sintering processing on microstructure, mechanical properties, and corrosion resistance was investigated in details. The alloy possessed dominant β-matrix and a little α-precipitation. The mechanical properties of the alloy sintered at 1250 °C for 2 h were better than those of the alloys with other sintering processing, which would avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, the electrochemical behaviors in a simulated body fluid (Hank’s solution and simulated saliva solution) were also evaluated. Potentiodynamic polarization curves exhibited that the sample sintered at 1250 °C for 2 h had better corrosion properties than those of other sintering processing. The good corrosion resistance combined with better mechanical biocompatibility made the Ti–24Nb–4Zr–7.9Sn alloy suitable for use as orthopedic implants

  6. Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe-based powders

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.; Roth, S.

    2007-01-01

    Ball milling of CoFeZrB ribbons and subsequent compaction of the resulting powders were used to prepare bulk amorphous samples. Further, two sets of powder samples were prepared by cryomilling of FeCuNbMoSiB alloy in amorphous and nanocrystalline state. Amorphous and nanocrystalline FeCuNbMoSiB powders were blended with CoFeZrB powder at different concentrations. Such powder mixtures were consolidated and several bulk nanocomposites have been synthesized. An addition of nanocrystalline or amorphous FeCuNbMoSiB powder to amorphous CoFeZrB powder caused a decrease of the magnetostriction of the resultant bulk samples, while the coercivity shows an opposite behavior. Our results show that the powder consolidation by hot pressing is an alternative method for the preparation of bulk metallic glasses, which are difficult to prepare by casting methods

  7. Sintering of uranium dioxide obtained by continuous precipitation of AUC

    International Nuclear Information System (INIS)

    Amaya, C.D.; Sterba, M.E.; Russo, D.O.

    1993-01-01

    The Nuclear Materials Division in Bariloche Atomic Center evaluates the ceramic behaviour of UO 2 powders obtained from continuously precipitated and reduced AUC (Ammonium Uranyl Tri Carbonate). An analysis is made of powder characteristics (particle morphology and size distribution and specific area) on behaviour of UO 2 during sintering (compaction, sintering, pore and grain microstructure, etc.). 1 ref

  8. Evaluation of thermal properties of sintered beryllium oxide produced from Indian beryl ore

    International Nuclear Information System (INIS)

    Nair, Sathi R.; Ghanwat, S.J.; Patro, P.K.; Syambabu, M.; Mawal, N.E.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Beryllium oxide (BeO) ceramics possess many interesting properties such as good thermal conductivity, high electrical resistivity, high chemical and thermal stability, low dielectric constant, low dielectric loss and low neutron absorption coefficient. These properties lead to its wide use in vacuum electronics technology, nuclear technology, microelectronics and photoelectron technology. The above properties depend on the purity of the material as well as density and microstructure of the sintered body. For high temperature application thermal conductivity and thermal expansion are two important parameters. In the present study, high purity fine BeO powder has been prepared by beryllate route starting with crude beryllium hydroxide. The powder has been sintered at 1550℃ and sintered samples have been evaluated for its thermal properties

  9. Ti3SiC2 Synthesis by Powder Metallurgical Methods

    OpenAIRE

    Kero, Ida; Antti, Marta-Lena; Odén, Magnus

    2007-01-01

    Titanium silicon carbide MAX phase was synthesised by a powder metallurgical method from ball milled TiC/Si powders of two different compositions, with TiC/Si ratios of 3:2 and 3:2.2 respectively. The cold pressed samples were analysed by dilatometry under flowing argon or sintered under vacuum for different times. The sintered samples were evaluated using x-ray diffraction (XRD). This study showed that titanium carbide was always present as a secondary phase and silicon carbide accompanied t...

  10. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S.

    2009-01-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  11. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  12. Effects of sintering and paste-baking conditions on PTCR characteristic of (Ba,Sr)TiO{sub 3} vacuum-sintered compact added with TiO{sub 2}(Ti) powder; TiO{sub 2}(ti) fun tenka (Ba,Sr)TiO{sub 3} shinku shoketsutai no PTCR tokusei ni oyobosu shoketsu oyobi paste yakitsuke joken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Hayashi, K. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1999-04-15

    The effects of sintering temperature (T{sub s}; 1,573 {approx} 1,748K) and time (t{sub s}; 0.6 {approx} 14.4ks) and paste-baking-temperature or heating temperature (T{sub b} or T{sub h}; 673 {approx} 1,273K; t{sub b} is 0.3ks) on PTCR characteristic were investigated for (Ba, Sr)TiO{sub 3} vacuum-sintered compact added with 3.9mass% TiO{sub 2}(Ti) powder of 12.5mass% TiO{sub 2}. The results obtained were as follows; (1) PTCR characteristic developed at all T{sub s} (t{sub s}=3.6ks, T{sub b}=853K). The electrical resistivity at room temperature ({rho}{sub rt}) showed a minimum value of 1.8 times 10{sup 2}ohmcenter dotcm and the {rho}{sub max}/{rho}{sub rt} showed a maximum value of about 10{sup 6} at 1,723K. (2)For all t{sub s} (T{sub s}=1,623K, T{sub b}=853K), PTCR characteristic developed. The {rho}{sub rt} showed a minimum value of 2.6 times 10{sup 3}ohmcenter dotcm at 7.2ks. (3) At T{sub b} above 823K (T{sub s}=1,623K, t{sub s}=3.6ks), PTCR characteristic developed. The {rho}{sub rt} showed a minimum value of 1.0 times 10{sup 3}ohmcenter dotcm. (4)The {rho}-T curve of (Ba, Sr)TiO{sub 3}+TiO{sub 2}(Ti) vacuum-sintered compact was affected more largely by T{sub s}, t{sub s} and T{sub b} than that of (Ba, Sr)TiO{sub 3} air-sintered compact. This was considered to be mainly due to the porous and fine gained microstructure in the former compact. (author)

  13. Production of a low young modulus titanium alloy by powder metallurgy

    Directory of Open Access Journals (Sweden)

    Dalcy Roberto dos Santos

    2005-12-01

    Full Text Available Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

  14. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  15. Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets

    Science.gov (United States)

    Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul

    2017-11-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.

  16. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 {mu}m and 40 {mu}m, for values of the angle {theta} between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M{sub irr}, allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Senoussi, S.

    2006-01-01

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 μm and 40 μm, for values of the angle θ between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M irr , allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. The influence of powder composition and sintering temperature on transformation kinetics, structure and mechanical properties of hot-pressed silicon nitride

    International Nuclear Information System (INIS)

    Knoch, H.; Ziegler, G.

    1977-01-01

    The strength at room temperature of hot-pressed silicon nitride is strongly dependent on the structure which in turn depends on powder composition and process parameters. Connections between production conditions (MgO content, pressing temperature, pressing time), structure (α/β content and morphology), and the properties at room temperature are discussed. The growth of oblong β grains - as a direct result of phase transition from α- to β-Si 3 N 4 - results in microstructural meshing and thus in a higher strength. Optimum mechanical properties are achieved after full phase transformation and with a microstructure as fine as possible. The direct connection between strength and transformed β fraction indicates a possible way for a relatively fast determination of optimum properties for a given initial powder. (orig.) [de

  19. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization

    International Nuclear Information System (INIS)

    Yar, M.A.; Wahlberg, Sverker; Bergqvist, Hans; Salem, H.G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    Nano-crystalline W-1%Y 2 O 3 (wt.%) powder was produced by a modified solution chemical reaction of ammonium paratungstate (APT) and yttrium nitrate. The precursor powder was found to consist of particles of bimodal morphology i.e. large APT-like particles up to 20 μm and rectangular yttrium containing ultrafine plates. After thermal processing tungsten crystals were evolved from W-O-Y plate like particles. spark plasma sintering (SPS) was used to consolidate the powder at 1100 and 1200 deg. C for different holding times in order to optimize the sintering conditions to yield high density but with reduced grain growth. Dispersion of yttrium oxide enhanced the sinterability of W powder with respect to lanthanum oxide. W-1%Y 2 O 3 composites with sub-micron grain size showed improved density and mechanical properties as compared to W-La 2 O 3 composites. Sample sintered in two steps showed improved density, due to longer holding time at lower temperature (900 deg. C) and less grain growth due to shorter holding time at higher temperature i.e. 1 min at 1100 deg. C.

  20. Study of the low temperature oxidation of uranium powders and its application to the sintering of uranium oxide powders; Etude de l'oxydation des poudres dtranium a basse temperature et son application au frittage de poudres d'uranium oxyde

    Energy Technology Data Exchange (ETDEWEB)

    Conte-Albert, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    The uranium oxygen reaction has been studied with a view to obtaining U-UO{sub 2} samples containing about 20 per cent by weight of UO{sub 2} starting from spherical grain uranium powder (36 {mu} < {phi} < 50 {mu}). The techniques used are micrography, thermogravimetry, sintering under pressure, radio-crystallography. At 170 deg. C in air or argon + oxygen mixtures, the uranium oxide formed is always UO{sub 2} and it is uniformly distributed around the initial uranium spheres. These mixed powders can easily be sintered under pressure in the {gamma}-phase. The density of the samples obtained is 85 to 90 per cent of the theoretical density. The influence of UO{sub 2} on the properties of uranium has been shown by the use of dilatometry and thermal cycling in the {alpha} phase. The temperatures at which the phase changes {alpha} {r_reversible} {beta} and {beta} {r_reversible} {gamma} occur are lowered, the remnant expansion is decreased. High density samples resist well to thermal cycling; the characteristic defects of uranium: high distortion, wrinkled surface, have almost disappeared. Heat treatments in a secondary vacuum at 1050 deg. C cause crystallization of UO{sub 2} in a geometrical form and the appearance of a phase of the F.C.C. crystalline type having the composition U{sub W}C{sub X}O{sub Y}N{sub Z}. This phase causes a new decrease in the {alpha} {r_reversible} {beta}, {beta} {r_reversible} {gamma} transformation temperatures for the uranium. After ten dilatometric cycles the remanent expansion of the sample is about 0.5 per cent. The resistance to thermal cycling of a low density sample which has been heat-treated is similar to that of a high density sample which has not undergone a heat treatment. (author) [French] La reaction uranium-oxygene a ete etudiee pour permettre l'obtention d'echantillons U-UO{sub 2} a 20 pour cent en poids environ d'UO{sub 2}, a partir de billes d'uranium pulverulent (36 {mu} < {phi} < 50 {mu}). Les

  1. Powder metallurgy of refractory metals

    International Nuclear Information System (INIS)

    Eck, R.

    1979-01-01

    This paper reports on the powder metallurgical methods for the production of high-melting materials, such as pure metals and their alloys, compound materials with a tungsten base and hard metals from liquid phase sintered carbides. (author)

  2. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    International Nuclear Information System (INIS)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-01-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively

  3. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  4. Boundary structure modification and magnetic properties of Nd-Fe-B sintered magnets by co-doping with Dy{sub 2}O{sub 3}/S powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fang [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Leichen [School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907 (United States); Li, Ping [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Xuzhe [School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907 (United States); Sui, Yanli [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Zhimeng, E-mail: guozhimengustb@163.com [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Gao, Xuexu [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-01

    In this paper, the effect of Dy{sub 2}O{sub 3}/S co-doping on the magnetic properties and microstructure was studied in Nd-Fe-B sintered magnets. With S co-doping, the coercivity increased due to grain boundary modification and Dy selective introduction. Continuous grain boundary phases were formed in the co-doped magnets with smaller grain size. The average grain size after a doping of 0.2 wt% S is 7.25 µm, which is approximately 2.37 µm smaller than that of the S-free sintered magnets(9.62 µm). The coercivity of the Dy{sub 2}O{sub 3}/0.2 wt% S co-doped magnets could be increased from 20.9 to 22.8 kOe with changing the remanence and the maximum magnetic energy product slightly. S precipitates in the Nd-rich phases were hexagonal Nd{sub 2}O{sub 2}S phase. Dy avoided the Nd{sub 2}O{sub 2}S phase in the triple junction region, resulting in more available Dy atoms diffusing into the Nd{sub 2}Fe{sub 14}B phase grains to enhance the anisotropy field. Dy-saving was achieved by forming Nd{sub 2}O{sub 2}S phase in the Dy{sub 2}O{sub 3}/S co-doped magnets. - Highlights: • The average grain size of Dy{sub 2}O{sub 3}/S co-doped magnets is 2.37 μm smaller than that of Dy{sub 2}O{sub 3} doped magnets. • The Dy atoms avoid the Nd{sub 2}O{sub 2}S phases and more of them become available to diffuse into the Nd{sub 2}Fe{sub 14}B phases. • The coercivity reaches maximum when S content is 0.2 wt%, 9% higher than the 20.9 kOe coercivity of the S-free magnets.

  5. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  6. Application of Box-Behnken Design and Response Surface Methodology for Surface Roughness Prediction Model of CP-Ti Powder Metallurgy Components Through WEDM

    Science.gov (United States)

    Das, Arunangsu; Sarkar, Susenjit; Karanjai, Malobika; Sutradhar, Goutam

    2018-04-01

    The present work was undertaken to investigate and characterize the machining parameters (such as surface roughness, etc.) of uni-axially pressed commercially pure titanium sintered powder metallurgy components. Powder was uni-axially pressed at designated pressure of 840 MPa to form cylindrical samples and the green compacts were sintered at 0.001 mbar for about 4 h with sintering temperature varying from 1350 to 1450 °C. The influence of the sintering temperature, pulse-on and pulse-off time at wire-EDM on the surface roughness of the preforms has been investigated thoroughly. Experiments were conducted under different machining parameters in a CNC operated wire-cut EDM. The surface roughness of the machined surface was measured and critically analysed. The optimum surface roughness was achieved under the conditions of 6 μs pulse-on time, 9 μs pulse-off time and at sintering temperature of 1450 °C.

  7. Application of Box-Behnken Design and Response Surface Methodology for Surface Roughness Prediction Model of CP-Ti Powder Metallurgy Components Through WEDM

    Science.gov (United States)

    Das, Arunangsu; Sarkar, Susenjit; Karanjai, Malobika; Sutradhar, Goutam

    2017-06-01

    The present work was undertaken to investigate and characterize the machining parameters (such as surface roughness, etc.) of uni-axially pressed commercially pure titanium sintered powder metallurgy components. Powder was uni-axially pressed at designated pressure of 840 MPa to form cylindrical samples and the green compacts were sintered at 0.001 mbar for about 4 h with sintering temperature varying from 1350 to 1450 °C. The influence of the sintering temperature, pulse-on and pulse-off time at wire-EDM on the surface roughness of the preforms has been investigated thoroughly. Experiments were conducted under different machining parameters in a CNC operated wire-cut EDM. The surface roughness of the machined surface was measured and critically analysed. The optimum surface roughness was achieved under the conditions of 6 μs pulse-on time, 9 μs pulse-off time and at sintering temperature of 1450 °C.

  8. Porous copper template from partially spark plasma-sintered Cu–Zn ...

    Indian Academy of Sciences (India)

    Administrator

    analysis. Keywords. Metal; corrosion; porous structure; sintering; powder metallurgy. 1. Introduction ... well as in the case, when the overall electrode potential of the final ... at 100 °C/min to reach sintering temperature and load was applied ...

  9. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle...

  10. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  11. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  12. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  13. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial

    International Nuclear Information System (INIS)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Nie, Hemin; Willumeit, Regine; Pyczak, Florian

    2015-01-01

    Highlights: • The sintering of the MIM Ti–Nb alloy consists of three steps. • The Nb particles act as diffusion barriers during sintering. • The TiC x only precipitate in the cooling step during sintering. • The TiC x hardly influence the sintering process of MIM Ti–Nb alloy. • The MIM Ti–Nb alloy exhibits high strength, low Young’s modulus but poor ductility. - Abstract: Sintering behavior, microstructure and mechanical properties of a Ti–16Nb alloy processed by metal injection molding (MIM) technology using elemental powders were investigated in this work by optical microscopy, X-ray diffraction (XRD), dilatometer, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). It was found that from 700 °C to 1500 °C the homogenization and densification process of MIM Ti–16Nb alloy consisted of three steps, i.e., Ti-diffusion-controlled step, Ti–Nb-diffusion step and matrix-diffusion step. Titanium carbide formation was observed in the samples sintered at 1300 °C and 1500 °C, but not in the ones sintered at 900 °C and 1100 °C. The MIM Ti–16Nb specimens sintered at 1500 °C exhibited a good combination of high tensile strength and low Young’s modulus. However, the titanium carbide particles led to poor ductility

  14. Liquid Phase Sintering of (Ti,Zr)C with WC-Co.

    Science.gov (United States)

    Ma, Taoran; Borrajo-Pelaez, Rafael; Hedström, Peter; Blomqvist, Andreas; Borgh, Ida; Norgren, Susanne; Odqvist, Joakim

    2017-01-11

    (Ti,Zr)C powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,Zr)C, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,Zr)C phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ₁) or Zr (γ₂). The γ₂ phase grains have a core-shell structure with a (Ti,Zr)C core following the full sintering cycle. The major differences observed in (Ti,Zr)C with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ₁, and γ₂) is about 10% smaller in WC-(Ti,Zr)C-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  15. Liquid Phase Sintering of (Ti,ZrC with WC-Co

    Directory of Open Access Journals (Sweden)

    Taoran Ma

    2017-01-01

    Full Text Available (Ti,ZrC powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,ZrC, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,ZrC phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ1 or Zr (γ2. The γ2 phase grains have a core-shell structure with a (Ti,ZrC core following the full sintering cycle. The major differences observed in (Ti,ZrC with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ1, and γ2 is about 10% smaller in WC-(Ti,ZrC-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  16. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  17. Microstructure and Magnetic Properties of NdFeB Sintered Magnets Diffusion-Treated with Cu/Al Mixed Dyco Alloy-Powder

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2017-06-01

    Full Text Available We investigated the microstructural and magnetic property changes of DyCo, Cu + DyCo, and Al + DyCo diffusion-treated NdFeB sintered magnets. The coercivity of all diffusion treated magnet was increased at 880ºC of 1st post annealing(PA, by 6.1 kOe in Cu and 7.0 kOe in Al mixed DyCo coated magnets, whereas this increment was found to be relatively low (3.9 kOe in the magnet coated with DyCo only. The diffusivity and diffusion depth of Dy were increased in those magnets which were treated with Cu or Al mixed DyCo, mainly due to comparatively easy diffusion path provided by Cu and Al because of their solubility with Ndrich grain boundary phase. The formation of Cu/Al-rich grain boundary phase might have enhanced the diffusivity of Dy-atoms. Moreover, relatively a large number of Dy atoms reached into the magnet and mostly segregated at the interface of Nd2Fe14B and grain boundary phases covering Nd2Fe14B grains so that the core-shell type structures were developed. The formation of highly anisotropic (Nd, Dy2Fe14B phase layer, which acted as the shell in the core-shell type structure so as to prevent the reverse domain movement, was the cause of enhancing the coercivity of diffusion treated NdFeB magnets. Segregation of cobalt in Nd-rich TJP followed by the formation of Co-rich phase was beneficial for the coercivity enhancement, resulting in the stabilization of the metastable c-Nd2O3 phase.

  18. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  19. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    International Nuclear Information System (INIS)

    Bianco, Alessandra; Cacciotti, Ilaria; Lombardi, Mariangela; Montanaro, Laura

    2009-01-01

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO 3 ) 2 .4H 2 O and (b) titration of Ca(OH) 2 . The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N 2 adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m 2 /g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO 3 ) 2 .4H 2 O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH) 2 were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH) 2

  20. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  1. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  2. High-level radioactive waste fixation in sintered vitreous matrix

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    The safe storage of high-level wastes from fuel elements reprocessing includes, as a first step, the fixation of the same in materials having a good resistance to the leaching in aqueous medium, such as borosilicate glass. As an alternative to the usual method of the molten glasses, a procedure for the sintering of a powdered glass and waste mixture at lower temperatures (600-700 deg C) has been developed, which minimizes the volatilization of active compounds during the process. Two glasses matrices of different composition and characteristics were used, to which the simulated wastes were added in the ratio of a 10% in weight of oxides. Two sintering techniques were employed 1: cold pressing and further sintering; 2: hot pressing and sintering under pressure. The densities were measured, the microstructure of the samples was analyzed and leaching essays were made in distilled water. The pellet's microstructure was observed by means of optical microscopy, by reflection in polished samples and by transparency in thin slices. The presence of crystalline compounds was analyzed by means of x rays and electron microprobe. The results have shown the convenience to continue with hot pressing essays, because a denser product with a higher resistance to the leaching is thus obtained. (M.E.L.) [es

  3. Preparation of superconducting powders by freeze-drying

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.; Rowcliffe, D.J.; Geballe, T.H.; Sun, J.Z.

    1987-01-01

    A method of preparing superconducting powders by freeze-drying is described. Powders produced by this method are homogeneous, have high purities, and are very reactive. Materials sintered from these powders have densities up to 89% of the theoretical density, and exhibit very sharp resistivity drops and large Meissner effects. The microstructure of the materials is very sensitive to the sintering temperature

  4. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  5. Profile of yttrium segregation in BaCe{sub 0,9}Y{sub 0,1}O{sub 3-{delta}} as function of sintering temperature; Perfil da segregacao do itrio em BaCe{sub 0,9}Y{sub 0,1}O{sub 3-{delta}} em funcao da temperatura de sinterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Hosken, C.M.; Souza, D.P.F. de, E-mail: camila.hosken@gmail.co [Universidade Federal de Sao Carlos (LAPCEC/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais. Lab. de Preparacao e Caracterizacao Eletrica em Ceramicas

    2010-07-01

    Researches on solid oxide fuel cells indicate barium cerate perovskite as a very attractive material for using as electrolyte due to its high protonic conductivity. The objective of this work is investigate the yttrium segregation during sintering of BaCe{sub 0,9}Y{sub 0,1}O{sub 3-{delta}} doped with Zn O as a sintering aid. The powders were prepared by citrate process. Powders were isostatic pressed into pellets and sintered in air at 1200, 1275, 1325 and 1400 deg C. The samples were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy. Secondary phase containing Yttrium and Cerium was detected as sintering temperature increased. Increase of the lattice parameter and activation energy for electrical conductivity were also detected on samples sintered at 1400 deg C. (author)

  6. Effect of Alloying Type and Lean Sintering Atmosphere on the Performance of PM Components

    Science.gov (United States)

    Sundaram, M. Vattur; Shvab, R.; Millot, S.; Hryha, E.; Nyborg, L.

    2017-12-01

    In order to be cost effective and to meet increasing performance demands, powder metallurgy steel components require continuous improvement in terms of materials and process development. This study demonstrates the feasibility of manufacturing structural components using two different alloys systems, i.e. lean Cr-prealloyed and diffusion bonded water atomised powders with different processing conditions. The components were sintered at two different temperatures, i.e. 1120 and 1250 °C for 30 minutes in three different atmospheres: vacuum, N2- 10%H2 atmosphere as well as lean N2-5%H2-0.5%CO-(0.1-0.4)%CH4 sintering atmosphere. Components after sintering were further processed by either low pressure carburizing, sinterhardening or case hardening. All trials were performed in the industrial furnaces to simulate the actual production of the components. Microstructure, fractography, apparent and micro hardness analyses were performed close to the surface and in the middle of the sample to characterize the degree of sintering (temperature and atmosphere) and the effect of heat treatment. In all cases, components possess mostly martensitic microstructure with a few bainitic regions. The fracture surface shows well developed sinter necks. Inter- and trans-granular ductile and cleavage fracture modes are dominant and their fraction is determined by the alloy and processing route.

  7. Routine instrumental procedures to characterise the mineralogy of modern and ancient silica sinters

    Energy Technology Data Exchange (ETDEWEB)

    Herdianita, N. Rina [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Institute of Technology, Dept. of Geology, Bandung (Indonesia); Rodgers, Kerry A. [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Australian Museum, Sydney, NSW (Australia); Browne, Patrick R.L. [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Auckland Univ., Geothermal Inst., Auckland (New Zealand)

    2000-02-01

    Tightly constrained determinative methods can be used to characterise the silica minerals (opal-A, opal-CT, opal-C, quartz, moganite) and physical properties of silica sinters. Optimal X-ray powder diffraction operating parameters indicate silica lattice order/disorder using untreated, dry, <106 {mu}m powders scanned at 0.6deg 2{theta}/min with a step size of 0.01deg from 10-40deg 2{theta} and an internal Si standard. Simultaneous differential thermal and thermogravimetric analysis of 15.0 {+-}0.1 mg sinter samples of <106 {mu}m grain size, at a heating rate of 20degC/min in dry air, identify thermal events associated with dehydration, organic combustion, and changes of state. Where abundant organic matter is present, nitrogen is the preferred atmosphere for thermal analysis. Thermogravimetric-determined water contents of sinters differ from Penfield determinations reflecting the differing nature of the two techniques. Laser Raman microprobe techniques can be used to explore the mineralogy of particular sinter morphologies and habits down to 10 {mu}m diameter. The nature of the silica species present can assist in characterising individual sinter deposits and, combined with textural, density and/or porosity determinations, can lead to a better understanding of the hydrology and palaeohydrology of a geothermal prospect. (Author)

  8. A novel specimen-preparing method using epoxy resin as binding material for LIBS analysis of powder samples.

    Science.gov (United States)

    Shi, Linli; Lin, Qingyu; Duan, Yixiang

    2015-11-01

    In view of the inevitable preprocessing of powder samples for LIBS detection, epoxy resin glue was investigated for the first time as a binder of powder samples due to its superior property of improved performance in laser induced breakdown spectroscopy (LIBS) technique as a quantitative analytical tool. For comparative studies of the epoxy resin and traditional polyethylene (PE) pellets in soil, sample detection, the signal intensities of Fe (I) at 404.58 nm, Ca (I) at 443.57 nm, and Cr (I) at 453.52 nm, were studied and subsequently, the calibration curves for these elements were constructed using the standard samples with variable concentrations. The signal intensities of epoxy resin samples were, on average, about 2 times greater than those obtained with the traditional PE pellet samples. Meanwhile, the resin samples showed better R square values of 0.981, 0.985 and 0.979 for curves of Fe (I) 404.58 nm, Ca (I) 443.57 nm, and Cr (I) 453.52 nm, compared to the 0.974, 0.950 and 0.934, of the PE pellet samples. Furthermore, the former represented lower limits of detection (LOD) for Fe, Ca and Cr. These experimental results indicated that this proposed novel method based on epoxy resin can attach samples of properties of high homogeneity, cohesiveness, smoothness and hardness, which are conducive to system stability, testing accuracy and signal enhancement. This method can make LIBS more practical in powder sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders.

    Science.gov (United States)

    Burke, Paul J; Bayindir, Zeynel; Kipouros, Georges J

    2012-05-01

    Magnesium (Mg) and its alloys are attractive for use in automotive and aerospace applications because of their low density and good mechanical properties. However, difficulty in forming magnesium and the limited number of available commercial alloys limit their use. Powder metallurgy may be a suitable solution for forming near-net-shape parts. However, sintering pure magnesium presents difficulties due to surface film that forms on the magnesium powder particles. The present work investigates the composition of the surface film that forms on the surface of pure magnesium powders exposed to atmospheric conditions and on pure magnesium powders after compaction under uniaxial pressing at a pressure of 500 MPa and sintering under argon at 600 °C for 40 minutes. Initially, focused ion beam microscopy was utilized to determine the thickness of the surface layer of the magnesium powder and found it to be ~10 nm. The X-ray photoelectron analysis of the green magnesium sample prior to sintering confirmed the presence of MgO, MgCO(3)·3H(2)O, and Mg(OH)(2) in the surface layer of the powder with a core of pure magnesium. The outer portion of the surface layer was found to contain MgCO(3)·3H(2)O and Mg(OH)(2), while the inner portion of the layer is primarily MgO. After sintering, the MgCO(3)·3H(2)O was found to be almost completely absent, and the amount of Mg(OH)(2) was also decreased significantly. This is postulated to occur by decomposition of the compounds to MgO and gases during the high temperature of sintering. An increase in the MgO content after sintering supports this theory.

  10. Production of Al2O3–SiC nano-composites by spark plasma sintering

    International Nuclear Information System (INIS)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-01-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [es

  11. Determination of mercury and copper in water samples by activation analysis using preconcentration on emission spectroscopic carbon powder

    International Nuclear Information System (INIS)

    Nagatsuka, Sumiko; Tanizaki, Yoshiyuki

    1978-01-01

    A simple preconcentration procedure for mercury and copper was examined in the activation analysis of water samples. The preconcentration using pure activated carbon has been reported in several papers. The authors found that the carbon powder for emission spectroscopic analysis showed the high purity equivalent to pure activated carbon. The influence of various parameters in adsorption conditions was studied by radioactive tracers 197 Hg and 64 Cu. It was confirmed that 100% of these elements were adsorbed on carbon powders as pyrrolidine dithiocarbonate complexes at an acidity of pH 6 - 8, the temperature of 50 0 C and the stirring time of 30 minutes. This method was applied to the activation analysis of the river water samples taken from the upper stream area of the Arakawa river and the ground water samples taken from the wells of the environs of Tokyo Megalopolis. The carbon powders which adsorbed these elements were filtered, dried and analyzed by instrumental neutron activation analysis. The Hg concentrations of 0.01 - 0.1 ppb in river water and 0.03 - 1.4 ppb in ground water were obtained as well as the Cu concentrations of 0.3 - 3.0 ppb in ground water. The limits of determination of this method are 0.01 ppb Hg and 0.2 ppb Cu in the case of 1.1 sample of fresh water. (auth.)

  12. Effect of processing variables on mechanical properties of sintered manganese steels Fe-3%Mn-0.8%C

    International Nuclear Information System (INIS)

    Sulowski, M.; Cias, A.

    1998-01-01

    The powder metallurgy route may allow sintered manganese steels to be made based on pure iron powder and ferromanganese powder with control over alloy microstructure. The factors that contribute to the mechanical properties of sintered Fe-3%Mn-0.8%C manganese steel, such as the sintering atmosphere, dew point, sintering temperature, cooling rate are summarised. The paper shows the influence of these parameters on the tensile strength, yield strength, transverse rupture strength, impact strength and hardness. It is showed that tensile high strength level higher than those of many present sintered steels can be obtained already in the as-sintered condition. (author)

  13. The observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence

    Science.gov (United States)

    Silalahi, Marzuki; Purwanto, Setyo; Mujamilah; Dimyati, Arbi

    2018-03-01

    About the observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence. This paper reported about the observation of the resistivity change in the ultrasonic pre-treated Fe-Cr ODS sinter alloy under the influence of magnetic field at the Center for Science and Technology of Advanced Material, Nuclear Energy Agency of Indonesia. Fe-Cr ODS alloy were sinthesized by vacuum sintering of Fe- and Cr-powder dispersed Y2O3. However, before sintering the powder mixture was subjected to the irradiation process by ultrasonic for 50 hours at 20 kHz and then isostatic pressed up to 50.91 MPa to form a coin of 10 mm in diameter. LCR meassurement revealed the decreasing of resistivity about 3 times by increasing of applied magnetic field from 0 to 70 mT. In addition, VSM meassurement was performed on both as powder material and as sintered sample. The results showed increasing the magnetization with increasing magnetic field and the curve exhibits almost exact symmetry S-form with small hysterese indicating fast changing magnetization and demagnetization capability without energy loss. This opens strong speculations about the existence of magnetoresistant property of the material which is important for many application in field of sensors or electro magnetic valves.

  14. Investigation of the sinterability of ZrO_2 (Y_2O3_)-bioglass dental ceramics by dilatometry

    International Nuclear Information System (INIS)

    Bicalho, Luiz de Araujo; Barboza, Miguel Ribeiro Justino; Santos, Claudinei dos; Habibe, Alexandre Fernandes; Magnago, Roberto de Oliveira

    2013-01-01

    The objective of this work is to study by dilatometry, the liquid phase sintering of ZrO_2 ceramics using bioglass as sintering additive. Y_2 O_3 - stabilized ZrO_2 powders were mixed with 3, 5 and 10 wt% of bioglass with the composition based on 3CaOP_2 O_5 -MgO-SiO_2 system. Specimens were prepared by cold uniaxial pressing under 80MPa and the green relative density was determined. The sintering behavior was studied by measuring the linear shrinkage of samples in a dilatometer in relation to the temperature. The heating and cooling rates used in this study were 10 deg C/min and the maximum sintering temperatures was 1300 deg C with a 120 min isothermal holding time. The results of the shrinkage and shrinkage rates in regard of the sintering temperature and time were related to the amount of bioglass added. The sintered samples were characterized by X-ray diffraction analysis and their relative density. SEM micrographs indicates similar microstructure, and an increase of bioglass content leads to increasing of monoclinic ZrO_2 phase content. The dilatometry results indicate a reduction of the temperature where a maximum shrinkage rate occurs, as function of bioglass increasing. Furthermore, the use of liquid phase reduces the maximum sintering temperature of 1447 deg C to 1250-1280 deg C. (author)

  15. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.

    Science.gov (United States)

    Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser

    2014-09-19

    Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.

  16. Characterization of sintered samples of La/Sr/Cu/O by X-ray diffraction, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Gonzalez, C.O. de; Polla, Griselda; Manghi, Estela

    1987-01-01

    Samples of La/Sr/Cu/O were sinterized by solid state reaction starting from a nominal composition of La 1 .8, Sr 0 .2, CuO 4 . They presented superconductive properties with T c = 40.9 K (onset) and δ T c = 17 K. Two phases were observed by X-ray diffraction and the more abundant was the tetragonal phase. The mean grain size was 1-5 μm. The X-ray photoelectron spectroscopy measurements were carried out using Mg kα (1486.6 eV) as incident radiation. Sample temperature was varied between -180 deg C and 420 deg C, approximately. The temperature variation produces a change in the atomic concentration of the surface components. Deconvolutions of the O 1s peaks show three components with binding energies (B.E.). The decomposition of Cu 2p 3 /2 peaks presents two components corresponding to Cu + and Cu 2+ . (Author) [es

  17. Effect of rigid inclusions on sintering

    International Nuclear Information System (INIS)

    Rahaman, M.N.; De Jonghe, L.C.

    1988-01-01

    The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed

  18. Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mondiu Olayinka DUROWOJU

    2017-06-01

    Full Text Available The densification behaviour, microstructural changes and hardness characteristics during spark plasma sintering of CP-Ti reinforced with TiC, TiN, TiCN and TiB2 were investigated. Commercially pure Ti powders were dry mixed with varied amounts (2.5 and 5 wt. % of the ceramic additives using a T2F Turbula mixer for 5 h and at a speed of 49 rpm. The blended composite powders were then sintered using spark plasma sintering system (model HHPD-25 from FCT Germany at a heating rate of 100oC min-1, dwell time of 5 min and sintering temperature of 950ºC. The sintering of CP-Ti was used as a base study to select the proper spark plasma sintering temperature for full density. Densification was monitored through analysis of the recorded punch displacement and the measured density of the sintered samples using Archimedes method. High densities ranging from 97.8% for 5% TiB2 addition to 99.6% for 5% TiCN addition were achieved at a relatively low temperature of 950°C. Microstructural analyses show a uniform distribution of the additives and finer structure showing their inhibitive effect on grain growth. An improved hardness was observed in all the cases with highest values obtained with TiCN as a result of the combined effect of TiC and TiN. A change in the fracture mode from trans granular to intergranular was also observed.

  19. Low pressure powder injection moulding of stainless steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, J.V.; Soares, J.P.; Mathias, F.; Rossi, J.L. [Powder Processing Center CCP, Inst. de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Filho, F.A. [IPEN, Inst. de Pesquisas Energeticas e Nucleares, Cidade Univ., Sao Paulo, SP (Brazil)

    2001-07-01

    Low-pressure powder injection moulding was used to obtain AISI 316L stainless steel parts. A rheological study was undertaken using gas-atomised powders and binders. The binders used were based on carnauba wax, paraffin, low density polyethylene and microcrystalline wax. The metal powders were characterised in terms of morphology, particle size distribution and specific surface area. These results were correlated to the rheological behaviour. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection process in the green state, and after sintering. The parameters such as injection pressure, viscosity and temperature were analysed for process optimisation. The binders were thermally removed in low vacuum with the assistance of alumina powders. Debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time. (orig.)

  20. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  1. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  2. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y{sub 2}O{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Genc, Aziz, E-mail: agenc@itu.edu.t [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey); Luetfi Ovecoglu, M. [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey)

    2010-10-15

    Research highlights: {yields} Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. {yields} Reinforcement of the selected Ni-W powders with WC and Y{sub 2}O{sub 3} particles and further MA together for 12 h. {yields} There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. {yields} Sintering of the developed composites and the characterization investigations of the sintered samples. {yields} Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y{sub 2}O{sub 3} particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 {sup o}C for 1 h under Ar and H{sub 2} gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  3. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  4. Sample cell for powder x-ray diffraction at up to 500 bars and 200 deg. C

    International Nuclear Information System (INIS)

    Jupe, Andrew C.; Wilkinson, Angus P.

    2006-01-01

    A low cost sample cell for powder diffraction at high pressure and temperature that employs either sapphire or steel pressure tubes is described. The cell can be assembled rapidly, facilitating the study of chemically reacting systems, and it provides good control of both pressure and temperature in a regimen where diamond anvil cells and multianvil apparatus cannot be used. The design provides a relatively large sample volume making it suitable for the study of quite large grain size materials, such as hydrating cement slurries. However, relatively high energy x rays are needed to penetrate the pressure tube

  5. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  6. Investigation of the oxidative processes in intermetallic Sm Co5 powder during heat treatment

    International Nuclear Information System (INIS)

    Talijan, Nadezda M.; Milutinovic-Nikolic, Aleksandra; Stajic-Trosic, Jasna T.; Jovanovic, Zarko D.

    1996-01-01

    Understanding of the thermal stability of intermetallic Sm Co 5 powder is essential for designing the working atmosphere in all phases of the technological procedure in the production of sintered Sm Co 5 magnets to obtain maximal magnetic properties. The thermal stability of the Sm Co 5 powder with defined chemical composition and particle size was investigated in the interval from 20 to 900 deg C. Commercial Sm Co 5 powder was used in this experiment. The powder was milled in anhydrous toluene in an agate mortar to fine powder of quality used in the production of sintered magnets. All the experiments were carried out with powder of an average particle size of 7.23μm, established by SEM. THe thermal stability of the Sm Co 5 powder in static air atmosphere was investigated by thermogravimetric analysis (TGA) using a DuPont Thermal Analyzer. Investigation of the behaviour of Sm Co 5 powder during heating was carried out using new samples of Sm Co 5 powder for each of the investigated temperature cycles. It was found by TGA that up to 200 deg C, the oxidation of Sm Co 5 was negligible. X-ray diffraction of the thermogravimetric experimental residue of the Sm Co 5 powder, heated at 240 deg C, yielded only the presence of the Sm Co 5 phase. By X-ray diffraction different crystal forms were identified depending on the maximal heating temperature. The following phases were identified: Sm 2 O 3 , Co, Co O, Co 3 O 4 and Sm Co O 3 . According to TG and X-ray results, for each of the investigated temperatures, the corresponding chemical reactions were established. The experimental data from both the thermal and X-ray investigations confirm that the phases of pressing and aligning the Sm Co 5 powder, in the process of producing sintered Sm Co 5 magnets, may be performed without a protective atmosphere. (author)

  7. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Amberger, Martin A.; Hoeltig, Michael; Broekaert, Jose A.C.

    2010-01-01

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL -1 . As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL -1 of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 μg g -1 for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al 2 O 3 , powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective samples over a

  8. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, Martin A.; Hoeltig, Michael [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C., E-mail: jose.broekaert@chemie.uni-hamburg.d [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2010-02-15

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL{sup -1}. As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL{sup -1} of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 mug g{sup -1} for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al{sub 2}O{sub 3}, powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective

  9. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  10. Synthesis and characterization of superconducting YBCO powder

    International Nuclear Information System (INIS)

    Praveen, B.; Karki, T.; Krishnamoorthi, J.

    2008-01-01

    Full text: Superconducting yttrium barium copper oxide power has been synthesized through solid state sintering method - milling and sintering - using Y 2 O 3 , BaCo 3 and CuO powders. XRD result of the milled and sintered powder reveals that the powder that has formed contains YBa 2 Cu 3 O 6.5 superconducting phase. Results obtained by SEM/EDAX show the distribution of the different elements. Experiments carried out by intermediate firing and final annealing in oxygen controlled atmosphere show the diffusion of oxygen in preformed YBa 2 Cu 3 O 6.5 and their results are discussed

  11. Structural and magnetic studies on spark plasma sintered SmCo{sub 5}/Fe bulk nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rama Rao, N.V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Gopalan, R. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India)]. E-mail: rg_gopy@yahoo.com; Manivel Raja, M. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chakravarty, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Sundaresan, R. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Ranganathan, R. [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Hono, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305 0047 (Japan)

    2007-05-15

    SmCo{sub 5}+xwt% Fe (x=0, 5 and 10) nanocomposite powders were synthesized by mechanical milling and were consolidated into bulk shape by spark plasma sintering (SPS) technique. The evolution of structure and magnetic properties were systematically investigated in milled powders as well as in SPS samples. A maximum coercivity of 8.9kOe was achieved in spark plasma sintered SmCo{sub 5}+5wt% Fe sample. The exchange spring interaction between the hard and soft magnetic phases was evaluated using {delta}M-H measurements and the analysis revealed that the SPS sample containing 5wt% Fe had a stronger exchange coupling between the magnetic phases than that of the sample with10wt% Fe.

  12. Demonstration Exercise of a Validated Sample Collection Method for Powders Suspected of Being Biological Agents in Georgia 2006

    International Nuclear Information System (INIS)

    Marsh, B.

    2007-01-01

    August 7, 2006 the state of Georgia conducted a collaborative sampling exercise between the Georgia National Guard 4th Civil Support Team Weapons of Mass Destruction (CST-WMD) and the Georgia Department of Human Resources Division of Public Health demonstrating a recently validated bulk powder sampling method. The exercise was hosted at the Federal Law Enforcement Training Center (FLETC) at Glynn County, Georgia and involved the participation of the Georgia Emergency Management Agency (GEMA), Georgia National Guard, Georgia Public Health Laboratories, the Federal Bureau of Investigation Atlanta Office, Georgia Coastal Health District, and the Glynn County Fire Department. The purpose of the exercise was to demonstrate a recently validated national sampling standard developed by the American Standards and Test Measures (ASTM) International; ASTM E2458 S tandard Practice for Bulk Sample Collection and Swab Sample Collection of Visible Powders Suspected of Being Biological Agents from Nonporous Surfaces . The intent of the exercise was not to endorse the sampling method, but to develop a model for exercising new sampling methods in the context of existing standard operating procedures (SOPs) while strengthening operational relationships between response teams and analytical laboratories. The exercise required a sampling team to respond real-time to an incident cross state involving a clandestine bio-terrorism production lab found within a recreational vehicle (RV). Sample targets consisted of non-viable gamma irradiated B. anthracis Sterne spores prepared by Dugway Proving Ground. Various spore concentration levels were collected by the ASTM method, followed by on- and off-scene analysis utilizing the Center for Disease Control (CDC) Laboratory Response Network (LRN) and National Guard Bureau (NGB) CST mobile Analytical Laboratory Suite (ALS) protocols. Analytical results were compared and detailed surveys of participant evaluation comments were examined. I will

  13. Glass formulation development and offgas analysis of microwave melter powder samples

    International Nuclear Information System (INIS)

    Semones, G.B.; Hoffman, C.R.; Phillips, J.A.

    1994-04-01

    Production of nuclear materials for defense applications has resulted in the accumulation of vast amounts of nuclear waste. This contaminated waste is in a variety of forms that require subsequent reprocessing to isolate and encapsulate the nuclear (e.g., uranium, plutonium, strontium, cesium, and americium) and toxic (e.g., lead, chromium, and cadmium) constituents. The encapsulating material must possess good chemical and mechanical durability to resist leaching of the nuclear and toxic constituents into the environment during permanent storage at a waste repository. Glass is an ideal encapsulating material because its open structure allows the introduction of different waste forms and the final vitreous product possesses a high degree of chemical stability. Microwave heating and melting is a relatively new advancement in glass processing which uses microwave radiation to heat the glass formers to adequate temperatures for sintering or melting. An advantage to this technique is that it enables more rapid heating than traditional heating mechanisms. This decrease in cycle time may help to limit exposure to workers encapsulating radioactive and/or toxic waste

  14. Preliminary study of sintering of metallic niobium processed for mechanical milling

    International Nuclear Information System (INIS)

    Tamura, H.M.; Vurobi Junior, S.; Cintho, O.M.; Sandim, H.R.Z.; Leite, G.S.

    2010-01-01

    In present study was preliminary study of mechanical milling influence on preparing of metallic niobium powder for sintering. Sample of metallic niobium in powder passing in sieve no. 635 mesh was processed by mechanical milling in SPEX mill for 8 hours using power grinding of 7:1 and a nitrogen atmosphere. The powder was annealed at different temperatures, 900 deg C, 1000 deg C, 1100 deg C and 1200 deg C for 1 hour in an atmosphere of hydrogen and argon to study their crystallization, which then were formed into blank for analysis of the curves compressibility. These samples were also subjected to x-ray diffraction in that their data were compared between the annealing temperatures. We also evaluate the compressibility curves of niobium samples with and without grinding these samples were subjected to x-ray diffraction and fluorescence. (author)

  15. Testing smooth and notched samples for identification of brittle material fracture mechanism

    International Nuclear Information System (INIS)

    Barinov, S.M.; Ivanov, V.S.

    1987-01-01

    Mechanical tests of cermet made of LaCrO 3 and Cr powder mixture in 3:2 mass ratio were conducted in LaCrO 3 -Cr system. Powder mixtures were exposed to static pressing and sintering (sintered cermets) or to high-speed pressing with following thermal treatment (high-speed pressing cermets). It is shown, that nonlinear deformation strength at deformation of brittle material smooth and notched samples allows to evaluate properly correlation of microplasticity and microcracking at brittle powder materials fracture

  16. Microstructural and electrical changes in nickel manganite powder induced by mechanical activation

    International Nuclear Information System (INIS)

    Savic, S.M.; Mancic, L.; Vojisavljevic, K.; Stojanovic, G.; Brankovic, Z.; Aleksic, O.S.; Brankovic, G.

    2011-01-01

    Highlights: → The influence of mechanical activation on microstructure evolution in the nickel manganite powder was investigated as well as electrical properties of the sintered samples. → Structural refinement obtained by Topas-Academic software based on Rietveld analysis showed that the milling process remarkably changed the powder morphology and microstructure. → SEM studies of sintered samples also revealed the strong influence of milling time on ceramics density (increases with milling time). → The electrical properties of ceramic samples are clearly conditioned by terms of synthesis, in our case the time of mechanical activation. → The highest density and higher values of dielectric constant were achieved at the sample activated for 45 min. -- Abstract: Nickel manganite powder synthesized by calcination of a stoichiometric mixture of manganese and nickel oxide was additionally mechanically activated in a high energy planetary ball mill for 5-60 min in order to obtain a pure NiMn 2 O 4 phase. The as-prepared powders were uniaxially pressed into disc shape pellets and then sintered for 60 min at 1200 o C. Changes in the particle morphology induced by mechanical activation were monitored using scanning electron microscopy, while changes in powder structural characteristics were followed using X-ray powder diffraction. The ac impedance spectroscopy was performed on sintered nickel manganite samples at 25 o C, 50 o C and 80 o C. It was shown that mechanical activation intensifies transport processes causing a decrease in the average crystallites size, while longer activation times can lead to the formation of aggregates, defects and increase of lattice microstrains. The observed changes in microstructures were correlated with measured electrical properties in order to define optimal processing conditions.

  17. Microstructural and electrical changes in nickel manganite powder induced by mechanical activation

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.M., E-mail: slavicas@cms.bg.ac.rs [Institute for Multidisciplinary Research-University of Belgrade, Kneza Viseslava 1a, 11030 Belgrade (Serbia); Mancic, L. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Vojisavljevic, K. [Institute for Multidisciplinary Research-University of Belgrade, Kneza Viseslava 1a, 11030 Belgrade (Serbia); Stojanovic, G. [Faculty of Technical Sciences University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad (Serbia); Brankovic, Z.; Aleksic, O.S.; Brankovic, G. [Institute for Multidisciplinary Research-University of Belgrade, Kneza Viseslava 1a, 11030 Belgrade (Serbia)

    2011-07-15

    Highlights: {yields} The influence of mechanical activation on microstructure evolution in the nickel manganite powder was investigated as well as electrical properties of the sintered samples. {yields} Structural refinement obtained by Topas-Academic software based on Rietveld analysis showed that the milling process remarkably changed the powder morphology and microstructure. {yields} SEM studies of sintered samples also revealed the strong influence of milling time on ceramics density (increases with milling time). {yields} The electrical properties of ceramic samples are clearly conditioned by terms of synthesis, in our case the time of mechanical activation. {yields} The highest density and higher values of dielectric constant were achieved at the sample activated for 45 min. -- Abstract: Nickel manganite powder synthesized by calcination of a stoichiometric mixture of manganese and nickel oxide was additionally mechanically activated in a high energy planetary ball mill for 5-60 min in order to obtain a pure NiMn{sub 2}O{sub 4} phase. The as-prepared powders were uniaxially pressed into disc shape pellets and then sintered for 60 min at 1200 {sup o}C. Changes in the particle morphology induced by mechanical activation were monitored using scanning electron microscopy, while changes in powder structural characteristics were followed using X-ray powder diffraction. The ac impedance spectroscopy was performed on sintered nickel manganite samples at 25 {sup o}C, 50 {sup o}C and 80 {sup o}C. It was shown that mechanical activation intensifies transport processes causing a decrease in the average crystallites size, while longer activation times can lead to the formation of aggregates, defects and increase of lattice microstrains. The observed changes in microstructures were correlated with measured electrical properties in order to define optimal processing conditions.

  18. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  19. Influence of the sintering temperature on the structural and electronic properties of LaCrO3 doped with barium

    International Nuclear Information System (INIS)

    Silva, A.L.A. da; Souza, M.V.M.M.; Rocco, A.M.

    2010-01-01

    Ba-doped lanthanum chromites were synthesized by combustion method, utilizing urea and glycine as fuel agents. The powders were calcined (800 deg C/6 h), pelletized, sintered in various temperatures and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), density/porosity and electrical conductivity. The diffractograms of the sintered samples presented a well-defined structure, with presence of secondary phases which increase with the sintering temperature. The samples presented low densities and a high porosities (40 - 50%), which was also observed in SEM analysis. The urea-synthesized sample presented a higher conductivity (10.4 S/cm at 1000 deg C), which is related to the influence of the fuel agent in the material properties. (author)

  20. A study of Al-Mo powder processing as a possible way to corrosion resistent aluminum-alloys

    Directory of Open Access Journals (Sweden)

    Wilson Corrêa Rodrigues

    2009-06-01

    Full Text Available Elementary Al and Mo powder mixtures have been processed by high energy ball milling up to milling times of 100 hours. The shift of the pitting potential and the X ray analysis of green milled samples showed that part of the Mo has formed a supersaturated solid solution of Mo in Al. Elementary Mo powder, however, was still present after 100 hours of milling. Sintering led to the formation of the intermetallic Al12Mo phase.

  1. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    Science.gov (United States)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  2. Preparation, Characterization and application of Alumina Powder Produced by advanced Preparation Techniques

    International Nuclear Information System (INIS)

    Khalil, T.; Abou El Nour, F.; Bossert, J.; Ashor, A.H.

    2000-01-01

    Aluminum oxide powders were prepared by advanced chemical techniques. The morphology of the produced powders were examined using scanning electron microscopy (SEM). Surface characteristics of the powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K, through the use of nitrogen gas adsorption at liquid nitrogen temperature and application of the Brunauer-Emett-Teller (BET) equation. The total surface area, total pore volume and pore radius of the powders were calculated through the construction of the plots relating the amount of nitrogen gas adsorbed V 1 and the thickness of the adsorbed layer t(V 1 -t plots). The thermal behaviour of the powders were studied with the help of differential thermal analysis (DTA) and thermogravimetry (TG). Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact powders after isostatic pressing was evaluated using dilatometry. The sintering temperature of the studied samples were also determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the compacts was investigated

  3. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  4. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  5. Synthesis and characterization of Li{sub 4}SiO{sub 4} nano-powders by a water-based sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin, E-mail: zywen@mail.sic.ac.c [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Xu Xiaogang; Wang Xiuyan; Lin Jiu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-08-01

    The water-based sol-gel process for the synthesis of Li{sub 4}SiO{sub 4} nano-powders was reported for the first time. LiOH.H{sub 2}O and aerosil SiO{sub 2} were used as the starting materials with citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) as the chelating agent. Li{sub 4}SiO{sub 4} powders with particle size as small as 100 nm were successfully synthesized at the temperature as low as 675 deg. C. Phase analysis, morphology, sintering behavior of the powders and ionic conductivity of the sintered bodies were investigated systematically. The experimental results showed that the powders obtained by the water-based sol-gel process (SG) possessed excellent sinterability, exhibiting a linear shrinkage of 5.2% while sintered to 900 deg. C, more than 3 times that of the powders obtained by solid state reaction (SSR). The bulk conductivity of the SG sintered bodies was much higher than that of the SSR samples at the same testing temperature.

  6. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  7. The effect of Ho to the flux pinning and microstructure of powder melting process Y(Ho)BCO samples

    International Nuclear Information System (INIS)

    Liu Peng; Chao Xixu; Shi Zhiqiang; Zhao Zhongxiang

    1994-01-01

    Magnetic relaxation and magnetization are measured for powder melting Y 1-x Ho x Ba 2 Cu 3 O 7 (x = 0.2, 0.4, and 0.6) samples within a wide temperature range. The pinning potential U and magnetization critical current densities J c are obtained according to the theory of Anderson and Kim and Bean's model. It is found that both U and J c are a affected by the addition of the rare-earth element Ho. In the sample with x = 0.4 the pinning potential U and the critical current J c have maximum values when the magnetic field is parallel to the c-axis. An unusual behaviour of U as a function of temperature T, which may be related to the pinning potential distribution in the sample is observed. (orig.)

  8. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    Science.gov (United States)

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to determine the carbon dioxide in the carbonate

  9. Influence of Sintering Temperature on Hardness and Wear Properties of TiN Nano Reinforced SAF 2205

    Science.gov (United States)

    Oke, S. R.; Ige, O. O.; E Falodun, O.; Obadele, B. A.; Mphalele, M. R.; Olubambi, P. A.

    2017-12-01

    Conventional duplex stainless steel degrade in wear and mechanical properties at high temperature. Attempts have been made by researchers to solve this problems leading to the dispersion of second phase particles into duplex matrix. Powder metallurgy methods have been used to fabricate dispersion strengthened steels with a challenge of obtaining fully dense composite and grain growth. This could be resolved by appropriate selection of sintering parameters especially temperature. In this research, spark plasma sintering was utilized to fabricate nanostructured duplex stainless steel grade SAF 2205 with 5 wt.% nano TiN addition at different temperatures ranging from 1000 °C to 1200 °C. The effect of sintering temperature on the microstructure, density, hardness and wear of the samples was investigated. The results showed that the densities and grain sizes of the sintered nanocomposites increased with increasing the sintering temperature. The microstructures reveal ferrite and austenite grains with fine precipitates within the ferrite grains. The study of the hardness and wear behaviors, of the samples indicated that the optimum properties were obtained for the sintering temperature of 1150 °C.

  10. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    by measuring the electrical resistance during the sintering process [5], since low electrical resistance corresponds to high density. It is, however, necessary to be aware that increased temperature, on the other hand, increases the resistance. SEM micrographs and Computed Tomography (CT) are carried out......Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current......, up to 10 kA, and the low voltage, 1-2 V, resulting in heat generation in the powder. Figure 1 shows the experimental setup. The punches were made of a conductive material; namely a copper alloy. The die, which has to be electrically insulating, was made of alumina. The ESF process takes 3-4s...

  11. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  12. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  13. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  14. Improvement of mechanical properties of zirconia-toughened alumina by sinter forging

    NARCIS (Netherlands)

    He, Y.; Winnubst, Aloysius J.A.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1994-01-01

    ZTA powder with a composition of 85 wt% alumina/15 wt% zirconia was prepared by a gel precipitation method. Sinter forging was performed with this powder to enhance the mechanical properties of ZTA materials. The influence of processing flaws on mechanical properties of sinter forged materials and

  15. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  16. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    International Nuclear Information System (INIS)

    Tanaka, M; Katsuya, Y; Matsushita, Y

    2013-01-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe 2 O 4 and Fe 3 O 4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe 2+ /Fe 3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  17. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    Science.gov (United States)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  18. Ceramic Sintering

    Science.gov (United States)

    1974-10-01

    8217.ypes cf * Surface area analyzer, Quantachreme Corporation, 337 Glen Cove Road, Grcenvale, N.Y. 27 1 1 ^M—^—— 1 1 *m ■ o a* en 00...courtesy of Dr. Joseph Gebhardt. 2. Powder supplied through the courtesy of Mr. William Flock. 3. A. F. McLean, E. A. Fisher and R. J. Bratton, " Brittle ...Materials Design, High Temperature Turbine." AMMRC CTR74-26, Interim Report, April, 1974. 4. A. F. McLean, E. A. Fisher and R. J. Bratton," Brittle

  19. Effect Of Ti Powder Addition On The Fabrication Of TiO2 Nanopowders

    Directory of Open Access Journals (Sweden)

    Raihanuzzaman R.M.

    2015-06-01

    Full Text Available Sintered samples of Ti added TiO2 nanopowders were fabricated by combined application of magnetic pulsed compaction (MPC and sintering. The effect of Ti nano powder on density, shrinkage and hardness of the samples were investigated as part of the study. The optimum processing conditions were found to be around 0.5 GPa MPC pressure and 1450°C sintering temperature, illustrating maximum density, hardness and minimum shrinkage. High pressure compaction using MPC was found to enhance density with increasing MPC pressure up to 0.9 GPa, and significantly reduce the total shrinkage (about 16% in this case in the sintered bulks compared to other general processes (about 18%. While sintered samples blended with micro Ti showed presence of microstructural cracks, the samples with 1-2% nano Ti had less or no cracks on them. Overall, the inclusion of nano Ti indicated improvement in mechanical properties of TiO2 nanopowders sintered preforms as opposed to micro Ti-added TiO2.

  20. Device for preparing combinatorial libraries in powder metallurgy.

    Science.gov (United States)

    Yang, Shoufeng; Evans, Julian R G

    2004-01-01

    This paper describes a powder-metering, -mixing, and -dispensing mechanism that can be used as a method for producing large numbers of samples for metallurgical evaluation or electrical or mechanical testing from multicomponent metal and cermet powder systems. It is designed to make use of the same commercial powders that are used in powder metallurgy and, therefore, to produce samples that are faithful to the microstructure of finished products. The particle assemblies produced by the device could be consolidated by die pressing, isostatic pressing, laser sintering, or direct melting. The powder metering valve provides both on/off and flow rate control of dry powders in open capillaries using acoustic vibration. The valve is simple and involves no relative movement, avoiding seizure with fine powders. An orchestra of such valves can be arranged on a building platform to prepare multicomponent combinatorial libraries. As with many combinatorial devices, identification and evaluation of sources of mixing error as a function of sample size is mandatory. Such an analysis is presented.

  1. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered

  2. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  3. Determination of the structure factors of a LiF powder sample by the energy dispersive x-ray diffraction

    International Nuclear Information System (INIS)

    Uno, R.; Ahtee, A.; Paakkari, T.

    1977-01-01

    The structure factors of a LiF powder sample were determined by energy dispersive x-ray diffraction in the range 9 to 25 keV, with the use of a Si(Li) solid state detector, following the method applied on GaP. Since the absorption coefficient of LiF is small at high energy, a fraction of the incident x-rays penetrates through the sample and does not contribute to the diffraction. This effect was taken into account in the determination of the structure factors. Then the structure factors generally agree, within the limit of 5 % error, with those obtained by the usual angle dispersive method, if the penetrated part of the incident beam is less than 40 %. (author)

  4. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  5. Effect of particle size distribution on sintering of tungsten

    International Nuclear Information System (INIS)

    Patterson, B.R.; Griffin, J.A.

    1984-01-01

    To date, very little is known about the effect of the nature of the particle size distribution on sintering. It is reasonable that there should be an effect of size distribution, and theory and prior experimental work examining the effects of variations in bimodal and continuous distributions have shown marked effects on sintering. Most importantly, even with constant mean particle size, variations in distribution width, or standard deviation, have been shown to produce marked variations in microstructure and sintering rate. In the latter work, in which spherical copper powders were blended to produce lognormal distributions of constant geometric mean particle size by weight frequency, blends with larger values of geometric standard deviation, 1nσ, sintered more rapidly. The goals of the present study were to examine in more detail the effects of variations in the width of lognormal particle size distributions of tungsten powder and determine the effects of 1nσ on the microstructural evolution during sintering

  6. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  7. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  8. Effect of post-sintering treatment on properties of Bi-based high Tc superconductors

    International Nuclear Information System (INIS)

    Nagai, Masayuki; Kozuka, Akira; Morishita, Ken; Nishino, Tadashi; Hattori, Takeo; Takata, Masasuke

    1989-01-01

    A new method to obtain the pure 110K phase in the system Bi-Sr-Ca-Cu-O was examined employing post-sintering treatment. The mixture of Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO with the basic composition of Bi/Sr/Ca/Cu=2/2/1/2 was calcined. The resulting powder was soaked in ethanol containing copper acetate and calcium acetate, the amounts of which were determined to give the composition of Bi/Sr/Ca/Cu=2/2/2/3 after sintering. The resistivity was measured by the d.c. four probe method in a cryostat. The current level was maintained at 50 mA and the voltage drop was determined by averaging the values in the forward and reverse directions. The zero T c ranged from 65 to 69K for the samples after sintering, while that ranged from 69 to 71K for those with post-sintering treatment. The effect of the treatment was not drastic but significant. Modified post-sintering treatment is being examined and the results are reported in the symposium

  9. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  10. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  11. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  12. Powder technology

    International Nuclear Information System (INIS)

    Agueda, Horacio

    1989-01-01

    Powder technology is experiencing nowadays a great development and has broad application in different fields: nuclear energy, medicine, new energy sources, industrial and home artifacts, etc. Ceramic materials are of daily use as tableware and also in the building industry (bricks, tiles, etc.). However, in machine construction its utilization is not so common. The same happens with metals: powder metallurgy is employed less than traditional metal forming techniques. Both cases deal with powder technology and the forming techniques as far as the final consolidation through sintering processes are very similar. There are many different methods and techniques in the forming stage: cold-pressing, slip casting, injection molding, extrusion molding, isostatic pressing, hot-pressing (which involves also the final consolidation step), etc. This variety allows to obtain almost any desired form no matter how complex it could be. Some applications are very specific as in the case of UO 2 pellets (used as nuclear fuels) but with the same technique and other materials, it is possible to manufacture a great number of different products. This work shows the characteristics and behaviour of two magnetic ceramic materials (ferrites) fabricated in the laboratory of the Applied Research Division of the Bariloche Atomic Center for different purposes. Other materials and products made with the same method are also mentioned. Likewise, densities and shrinkage obtained by different methods of forming (cold-pressing, injection molding, slip casting and extrusion molding) using high-purity alumina (99.5% Al 2 O 3 ). Finally, different applications of such methods are given. (Author) [es

  13. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  14. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  15. Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites

    Science.gov (United States)

    Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.

    2018-03-01

    Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow

  16. Preparation Of Porous And Dense Bodies From Hydroxyapatite Powders Prepared Via Sol-Gel Technique

    International Nuclear Information System (INIS)

    Sopyan, Lis

    2001-01-01

    Hydroxyapatite (HA) ceramics is clinically proven and, thus, a reliable material for medical applications, that is, for use in dental and orthopedical surgery to fill cavities in bones. In this paper, we report a preliminary study on development of HA porous and dense materials manufactured using fine HA powders prepared via a sol-gel technique. In the preparation of HA porous bodies, slurries of the as-prepared powder were prepared with an adjusted loading ofHA, using Duramax of 0-3021 type as dispersant. After soaking cellulosic sponges into the slurry, the sponges were dried and then subjected to heat-treatment at 600 o C, followed by sintering at 1250 o C for I h. The apparent density of the porous bodies is 1.290 g/cm 3 , with a porosity of 59%. The sintering shrinkage is about 20% (in respect of dimension) and 44 % (in respect of volume). Morphological evaluation of the porous bodies showed that the samples contained macropores of 1-2 mm diameter and micropores of 1-2 μm diameter. The measurement of mechanical strength provided 1.31 ± 0.30 MPa. Subsequently, dense samples were prepared from the as-prepared powder. In this case, the powder was mixed with poly(vinyl alcohol) and distilled water to make a slurry. The mixture was mixed using Zirconia balls as the crusher for 2h. The suspension was then spray-dried, and well-dispersed powder was obtained. The powder was compressed uniaxially using cold pressing technique at 800 kglcm2 and the pellets obtained were sintered in air at : 250 o C for I h. The sintered dense bodies have apparent density of 2.855 g/cm 3 , with a 10% porosity. The flexural strength of the dense bodies measured on the specimens of riimension 2 mm x 2.5 mm gave rise to the considerable value of 57.7 MPa

  17. Method for analysing radium in powder samples and its application to uranium prospecting

    International Nuclear Information System (INIS)

    Gong Xinxi; Hu Minzhi.

    1987-01-01

    The decayed daughter of Rn released from the power sample (soil) in a sealed bottle were collected on a piece of copper and the radium in the sample can be measured by counting α-particles with an Alphameter for uranium prospection, thus it is called the radium method. This method has many advantages, such as high sensitivity (the lowest limit of detection for radium sample per gram is 2.7 x 10 -15 g), high efficiency, low cost and easy to use. On the basis of measuring more than 700 samples taken along 20 sections in 8 deposits, the results show that the radium method is better than γ-measurement and equal to 210 Po method for the capability to descover anomalies. The author also summarizes the anomaly intensities of radium method, 210 Po method and γ-measurement respectively at the surface with deep blind ores, with or without surficial mineralization, and the figures of their profiles and the variation of Ra/ 210 Po ratios. According to the above-mentioned distinguishing features, the uranium mineralization located in deep and/or shallow parts can be distinguishd. The combined application of radium, 210 Po and γ-measurement methods may be regarded as one of the important methods used for anomaly assessment. Based on the experiments of the radium measurements with 771 stream sediments samples in an area of 100 km 2 , it is demonstrated that the radium mehtod can be used in the stages of uranium reconnaissance and prospecting

  18. Effect of sintering temperature on structural and electrical properties of gadolinium doped ceria (Ce0.9Gd0.1O1.95)

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Pawar, S. H.; Chourashiya, M. G.

    2007-01-01

    Gadolinium doped ceria oxide is one of the promising materials as an electrolyte for IT-SOFCs. Ce0.9Gd0.1O1.95 (GDC10) powder was prepared by solid state reaction and sintered at 1473 K, 1573 K, 1673 K and 1773 K All samples were studied using X-ray diffraction, scanning electron micrograph and d...

  19. Pressureless sintering behavior and mechanical properties of ZrB2–SiC composites: effect of SiC content and particle size

    Directory of Open Access Journals (Sweden)

    Mehri Mashhadi

    2015-10-01

    Full Text Available In the present paper, ZrB2–SiC composites were prepared by pressureless sintering at temperatures of 2000–2200 °C for 1 h under argon atmosphere. In order to prepare composite samples, ZrB2 powder was milled for 2 h, then the reinforcing particles including of micron and nano-sized SiC powder were added. The mixtures were formed and, after the pyrolysis, they were sintered. Densification, microstructural and mechanical properties of ZrB2–SiC composites were investigated. The shrinkage of samples was measured both before and after the sintering, and the microstructure of samples was examined using scanning electron microscopy (SEM, equipped with EDS spectroscopy. Both mass fraction and size of SiC powder have a great effect on relative density, porosity, shrinkage, hardness and microstructure of these composites. The highest relative density and hardness were 98.12% and 15.02 GPa, respectively, in ZrB2–10 wt% SiCnano composite sintered at 2200 °C.

  20. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Energy Technology Data Exchange (ETDEWEB)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F., E-mail: Zaiou_21@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: semouni84@gmail.com, E-mail: guechia@yahoo.fr, E-mail: kanour17@yahoo.fr, E-mail: mtb25dz@gmail.com, E-mail: zouaisouheila@yahoo.fr, E-mail: guerfatiha@gmail.com [Ceramics Lab., Faculty of Exact Science, Physics Department, Mentouri University of Constantine (Algeria)

    2016-10-15

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO{sub 3} is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm{sup 3} ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  1. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Directory of Open Access Journals (Sweden)

    S. Zaiou

    Full Text Available Abstract In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type and 20 wt% calcium oxide extracted from CaCO3 is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm3. Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  2. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    International Nuclear Information System (INIS)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F.

    2016-01-01

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO 3 is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm 3 ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  3. Sintering of nanopowders of ZrO{sub 2} (Y{sub 2}O{sub 3}): Effect of compaction pressure on densification; Sinterizacao de pos nanoparticulados de ZrO{sub 2} (Y{sub 2}O{sub 3}): efeito da pressao de compactacao na densificacao

    Energy Technology Data Exchange (ETDEWEB)

    Palmeira, Alexandre Alvarenga; Magnago, Roberto de Oliveira; Pereira, Glayce Cassaro [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Bondioli, Marcelo Jose; Strecker, Kurt [Universidade Federal Sao Joao Del-Rey (UFSJ), MG (Brazil); Santos, Claudinei dos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2014-06-15

    In this work studied the powders (nano) sintered of ZrO{sub 2} (Y{sub 2}O{sub 3}) by dilatometry. Was identified the effect of compaction pressure variation in the final results of densification of materials. Powders were compacted at different compaction pressures. The compacts were subjected to temperatures of 1250°C to 1400°C with sintering levels ranging from 0 to 8 hours. Samples were characterized by X-ray diffraction and relative density using Archimedes method. The results were compared with powders (micro) of similar composition in order to compare the effect of particle size on densification parameters. The samples were further subjected to microstructural characterization in order to identify the average grain size of the sintering under each condition used in both materials. (author)

  4. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  5. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  6. Interlaboratory comparison of environmental relevant nuclides with spinach powder as sample medium; Vergleichspruefung mit Spinatpulver als Probenart fuer umweltrelevante Nuklide

    Energy Technology Data Exchange (ETDEWEB)

    Roos, N.; Tait, D. [Max Rubner-Institut, Kiel (Germany). Leitstelle fuer Boden, Bewuchs, Futtermittel und Nahrungsmittel pflanzlicher und tierischer Herkunft

    2014-01-20

    Spinach is cited as a representative medium for leafy vegetables in the Integrated Measurement and Information System for the surveillance of environmental radioactivity (IMIS) in Germany. Fresh spinach, however, is not suitable in interlaboratory comparisons on the determination of spiked radionuclides because of the difficulties in homogeneously distributing the radionuclides and attaining a known specific activity in the samples. In contrast, spinach powder is finely milled, so that homogeneous distribution and known specific activities of the nuclides are more readily achievable. For this interlaboratory comparison spinach powder was mixed with the pure beta emitter Sr-90 and the gamma-emitting nuclides I-131, Cs-134 and Cs-137. After homogenization samples were dispatched to 77 laboratories from Germany and other European countries (59 in Germany, 5 in Switzerland, 4 each in the UK and Austria, and one each in France, Italy, the Netherlands, Ireland and Luxembourg). In addition to the added nuclides participants had to determine the natural radionuclide K-40. The participants were instructed to use a fast method for the determination of dry matter (DM). To check the homogeneity of the nuclide distribution 14 samples of the labeled spinach powder were randomly selected and analyzed in the Coordinating Laboratory for the Surveillance of Radioactivity in the Environment of the Max Rubner-Institute (MRI). According to DIN 13528:2005 the samples showed sufficient homogeneity of the added nuclides. For the evaluation of the interlaboratory comparison the Physikalisch-Technische Bundesanstalt (PTB) determined reference values for the the specific activities (Bq per kg DM) of the gamma emitters. The values with the expanded uncertainties (k = 2) were as follows: I-131: 181 ± 6 Bq/kg; Cs-134: 34.4 ± 1.1 Bq/kg; Cs-137: 11.1 ± 0.4 Bq/kg; K-40: 1240 ± 40 Bq/kg. Since a reference value of the PTB for the specific activity of Sr-90 was not available the general average

  7. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  8. Effect of powder sample granularity on fluorescent intensity and on thermal parameters in x-ray diffraction Rietveld analysis

    International Nuclear Information System (INIS)

    Sparks, C.J.; Specht, E.D.; Ice, G.E.; Kumar, R.; Zschack, P.; Shiraishi, T.; Hisatsune, K.

    1991-01-01

    The effect of sample granularity on diffracted x-ray intensity was evaluated by measuring the 2θ dependence of x-ray fluorescence from various samples. Measurements were made in the symmetric geometry on samples ranging from single crystals to highly absorbing coarse powders. A characteristic shape for the absorption correction was observed. A demonstration of the sensitivity of Rietveld refined site occupation parameters is made on CuAu and Cu 50 Au 44 Ni 6 alloys refined with and without granularity corrections. These alloys provide a good example of the effect of granularity due to their large linear x-ray absorption coefficients. Sample granularity and refined thermal parameters obtained from the Rietveld analysis were found to be correlated. Without a granularity correction, the refined thermal parameters are too low and can actually become negative in an attempt to compensate for granularity. A general shape for granularity correction can be included in refinement procedures. If no granularity correction is included, data should be restricted to above 30 degrees 2θ, and thermal parameters should be ignored unless extreme precautions are taken to produce >5 μm particles and high packing densities

  9. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies.

    Science.gov (United States)

    Jongenburger, I; Reij, M W; Boer, E P J; Gorris, L G M; Zwietering, M H

    2011-11-15

    The actual spatial distribution of microorganisms within a batch of food influences the results of sampling for microbiological testing when this distribution is non-homogeneous. In the case of pathogens being non-homogeneously distributed, it markedly influences public health risk. This study investigated the spatial distribution of Cronobacter spp. in powdered infant formula (PIF) on industrial batch-scale for both a recalled batch as well a reference batch. Additionally, local spatial occurrence of clusters of Cronobacter cells was assessed, as well as the performance of typical sampling strategies to determine the presence of the microorganisms. The concentration of Cronobacter spp. was assessed in the course of the filling time of each batch, by taking samples of 333 g using the most probable number (MPN) enrichment technique. The occurrence of clusters of Cronobacter spp. cells was investigated by plate counting. From the recalled batch, 415 MPN samples were drawn. The expected heterogeneous distribution of Cronobacter spp. could be quantified from these samples, which showed no detectable level (detection limit of -2.52 log CFU/g) in 58% of samples, whilst in the remainder concentrations were found to be between -2.52 and 2.75 log CFU/g. The estimated average concentration in the recalled batch was -2.78 log CFU/g and a standard deviation of 1.10 log CFU/g. The estimated average concentration in the reference batch was -4.41 log CFU/g, with 99% of the 93 samples being below the detection limit. In the recalled batch, clusters of cells occurred sporadically in 8 out of 2290 samples of 1g taken. The two largest clusters contained 123 (2.09 log CFU/g) and 560 (2.75 log CFU/g) cells. Various sampling strategies were evaluated for the recalled batch. Taking more and smaller samples and keeping the total sampling weight constant, considerably improved the performance of the sampling plans to detect such a type of contaminated batch. Compared to random sampling

  10. Xenon thermal behavior in sintered titanium nitride, foreseen inert matrix for GFR

    International Nuclear Information System (INIS)

    Bes, R.

    2010-11-01

    This work concerns the generation IV future nuclear reactors such as gas-cooled fast reactor (GFR) for which refractory materials as titanium nitride (TiN) are needed to surround fuel and act as a fission product diffusion barrier. This study is about Xe thermal behavior in sintered titanium nitride. Microstructure effects on Xe behavior have been studied. In this purpose, several syntheses have been performed using different sintering temperatures and initial powder compositions. Xenon species have been introduced into samples by ionic implantation. Then, samples were annealed in temperature range from 1300 C to 1600 C, these temperatures being the accidental awaited temperature. A transport of xenon towards sample surface has been observed. Transport rate seems to be slow down when increasing sintering temperature. The composition of initial powder and the crystallographic orientation of each considered grain also influence xenon thermal behavior. Xenon release has been correlated with material oxidation during annealing. Xenon bubbles were observed. Their size is proportional with xenon concentration and increases with annealing temperature. Several mechanisms which could explain Xe intragranular mobility in TiN are proposed. In addition with experiments, very low Xe solubility in TiN has been confirmed by ab initio calculations. So, bi-vacancies were found to be the most favoured Xe incorporation sites in this material. (author)

  11. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  12. Effect of sintering time on the physical characteristics of CaCu_3Ti_4O_1_2

    International Nuclear Information System (INIS)

    Carvalho, E. de; Muccillo, E.N.S.

    2011-01-01

    Polycrystalline CaCu_3Ti_4O_1_2 (CCTO) with the perovskite type structure has a high dielectric constant that can do up to 10"5, at room temperature, which make it an interesting material to be applied at several microelectronic devices. In this work, CCTO was prepared by the conventional solid state method, in order to identify the influence of process parameters in its properties. Powders were homogenized in a mechanical mixer, calcined at 900 °C for 18 hours, pressed into 10 mm diameter pellets and sintered at 1050 °C for 12 and 18 hours. Density achieved was 94 and 87%, pellets sintered for 12 and 18 hours, respectively. X-ray diffraction confirms the presence of the cubic phase of perovskite type. The observation of micrographs shows an increase of the grain size with the sintering time. Dielectric properties present a dependence on the sample process. (author)

  13. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    Science.gov (United States)

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  14. Comparison of Two Suspension Arrays for Simultaneous Detection of Five Biothreat Bacterial in Powder Samples

    Directory of Open Access Journals (Sweden)

    Yu Yang

    2012-01-01

    Full Text Available We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic “write powder” samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.

  15. Magnetic and microstructural properties of Ni-Zn ferrites synthesized and sintered by microwave energy; Propriedades magneticas e microestruturais de ferritas Ni-Zn sintetizadas e sinterizadas oir energia de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.A.; Diniz, V.C.S.; Sousa, J-P.LM.L.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Engenharia de Materiais; Cornejo, D.R. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2009-07-01

    The soft ferrites (or soft) and the Ni-Zn type are composed of spinel with cubic structure, which exhibit a permanent magnetization, called ferrimagnetism. Thus, this work will be assessed the structure and magnetic properties of ferrites Ni{sub 0},{sub 5}Zn{sub 0},{sub 5}Fe{sub 2}O{sub 4} prepared by combustion reaction using microwave energy as a source of heat and urea as fuel and after sintering by microwave energy. The synthesized powders were compacted by uniaxial pressing. The synthesized powders and the samples after sintering were characterized by XRD, SEM and magnetic measures. The diffractogram X-ray powder and the sintered samples showed the presence of the desired phase Ni{sub 0},{sub 5}Zn{sub 0},{sub 5}Fe{sub 2}O{sub 4} in both cases. The powders and sintered samples resulted in the Ms value of 8.09 emu/g and 67.73 emu/g, respectively. (author)

  16. Microstructural and mechanical characterization of injection molded 718 superalloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Özgün, Özgür [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Gülsoy, H. Özkan, E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Yılmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); Fındık, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey) and International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-11-05

    Highlights: •Microstructural and mechanical properties of injection molded Nickel 718 superalloy were studied. •The maximum sintered density achieved this study was 97.3% at 1290 °C for 3 hours. •Tensile strength of 1022 MPa and elongation of 5.3% were achieved for sintered-heat treated samples. -- Abstract: This study concerns with the determination of optimum production parameters for injection molding 718 superalloy parts. And at the same time, microstructural and mechanical characterization of these produced parts was also carried out. At the initial stage, 718 superalloy powders were mixed with a multi-component binder system for preparing feedstock. Then the prepared feedstock was granulated and shaped by injection molding. Following this operation, the shaped samples were subjected to the debinding process. These samples were sintered at different temperatures for various times. Samples sintered under the condition that gave way to the highest relative density (3 h at 1290 °C) were solution treated and aged respectively. Sintered, solution treated and aged samples were separately subjected to microstructural and mechanical characterization. Microstructural characterization operations such as X-ray diffraction, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis showed that using polymeric binder system led to plentiful carbide precipitates to be occurred in the injection molded samples. It is also observed that the volume fractions of the intermetallic phases (γ′ and γ″) obtained by aging treatment were decreased due to the plentiful carbide precipitation in the samples. Mechanical characterization was performed by hardness measurements and tensile tests.

  17. Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI alloy

    Directory of Open Access Journals (Sweden)

    Moletsane, M. G.

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is an additive manufacturing technology used to melt metal powder by high laser power to produce customised parts, light-weight structures, or other complex objects. During DMLS, powder is melted and solidified track-by-track and layer-by-layer; thus, building direction can influence the mechanical properties of DMLS parts. The mechanical properties and microstructure of material produced by DMLS can depend on the powder properties, process parameters, scanning strategy, and building geometry. In this study, the microstructure, tensile properties, and porosity of DMLS Ti6Al4V (ELI horizontal samples were analysed. Defect analysis by CT scans in pre-strained samples was used to detect the crack formation mechanism during tensile testing of as-built and heat-treated samples. The mechanical properties of the samples before and after stress relieving are discussed.

  18. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  19. Titanium and zirconium metal powder spheroidization by thermal plasma processes

    OpenAIRE

    Bissett, H.; van der Walt, I.J.; Havenga, J.L.; Nel, J.T.

    2015-01-01

    New technologies used to manufacture high-quality components, such as direct laser sintering, require spherical powders of a narrow particle size distribution as this affects the packing density and sintering mechanism. The powder also has to be chemically pure as impurities such as H, O, C, N, and S causes brittleness, influence metal properties such as tensile strength, hardness, and ductility, and also increase surface tension during processing. Two new metal powder processes have been dev...

  20. Measurement of agglomerate strength distributions in agglomerated powders

    International Nuclear Information System (INIS)

    Ciftcioglu, M.; Aking, M.; Burkhart, L.

    1986-01-01

    Strength distributions of particle agglomerates in six different yttria powders were measured using a calibrated ultrasonic sound field. The density of sintered pellets was directly related to the agglomerate strength of each powder. No systematic relation to the sintered density was observed for bulk densities or pressure-density compaction data for the loose powders, or for pore size distributions or green densities for the pressed compacts

  1. Low-temperature sintering and microwave dielectric properties of Al2TeO6–TeO2 ceramics

    International Nuclear Information System (INIS)

    Kagomiya, Isao; Kodama, Yuichiro; Shimizu, Yukihiro; Kakimoto, Ken-ichi; Ohsato, Hitoshi; Miyauchi, Yasuharu

    2015-01-01

    Highlights: • This is the first study of dielectric properties of Al 2 TeO 6 –TeO 2 sintered at 900 °C. • The sintering at 900 °C contributed to densification, but it causes TeO 2 evaporation. • The annealing at 750 °C was effective for the further densification. • The both ε r and Q · f in the Al 2 TeO 6 –TeO 2 were improved with the annealing. - Abstract: We propose Al 2 TeO 6 –TeO 2 ceramics as a candidate for use as low-temperature co-fired ceramics (LTCC). We investigated microwave dielectric properties and low-temperature sintering conditions for Al 2 TeO 6 –TeO 2 ceramics. The calcined Al 2 TeO 6 powders were sintered at 900 °C for 2–10 h with 30–50 wt% additive TeO 2 . X-ray powder diffraction patterns showed that the sintered samples were Al 2 TeO 6 –TeO 2 composite with no other phase. The apparent density was improved with the additive TeO 2 content of up to 45 wt%. The dielectric constant (ε r ) increased by adding TeO 2 content from 35 to 45 wt%, although the quality factor (Q · f) decreased. During sintering at 900 °C, the ε r of the Al 2 TeO 6 –TeO 2 decreased slightly, whereas the Q · f increased gradually. The observed microstructures showed that the longer sintering time makes fewer pores in Al 2 TeO 6 –TeO 2 ceramics. Sintering at 900 °C for a long time contributes to densification, but it simultaneously causes TeO 2 evaporation. To prevent TeO 2 evaporation, we investigated the effects of annealing at 750 °C after sintering at 900 °C. Apparent densities or ε r for the annealed samples were higher than those of the non-annealed samples. The Q · f improved with increasing annealing duration time, suggesting that sintering proceeded well during annealing with slower TeO 2 evaporation at 750 °C. The results show that annealing at 750 °C is effective to facilitate sintering and to control TeO 2 evaporation

  2. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  3. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B., E-mail: givmartins@yahoo.com.br, E-mail: vladimir@las.inpe.br, E-mail: joaopaulo@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF (Brazil); Nunes, C.A., E-mail: cnunes@demar.eel.usp.br [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Polo Urbo Industrial; Borges Junior, L.A., E-mail: borges.jr@itelefonica.com.br [Centro Universitario de Volta Redond (UNIFOA), Volta Redonda, RJ (Brazil)

    2009-07-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  4. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    International Nuclear Information System (INIS)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B.; Silva, C.R.M.; Nunes, C.A.

    2009-01-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  5. Effect of milling parameters on sinterability, mechanical and electrical properties of Cu-4 wt.% ZrO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohammed A., E-mail: mtahanrc@gmail.com [Solid-State Physics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt); Nassar, Amira H. [Solid-State Physics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt); Zawrah, M.F. [Ceramics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt)

    2016-09-15

    Mechanical alloying was used to produce Cu matrix nanocomposite reinforced by 4 wt.% ZrO{sub 2} nanoparticles with different milling time up to 16 h and ball-to-powder ratios (BPRs) up to 40:1. The milled nanocomposite powders were investigated by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). To study the sinterability, the milled powders were cold pressed and sintered at 800 °C for 1 h in argon atmosphere. In order to investigate the relative density and microstructures of the sintered nanocomposites, scanning electron microscopy (SEM) as well as energy dispersive spectrometer (EDS) were employed. The electrical and mechanical properties of the sintered nanocomposites were also examined. The results revealed that a uniform distribution of ZrO{sub 2} reinforcement in Cu matrix was successfully obtained and the agglomeration, crystal and particle sizes were decreased after either milling times and/or BPRs. The results also pointed out that the relative density, microhardness, compressive strength and electrical conductivity of the sintered nanocomposite samples were increased with the increasing of milling time and/or BPRs while apparent porosity was decreased. The maximum values of microhardness, compressive strength and electrical conductivity were 872 MPa, 304 MPa and 45.9% IACS, respectively for the milled sample for 16 h and BRP 40:1. - Highlights: • Cu-4 wt.% ZrO{sub 2} nanoparticles with different parameter by mechanical alloying. • The increased milling times and/or BPRs led to a decrease in the particle size. • Microhardness is increased with increasing ball-to-powder weight ratios. • Compressive strength is increased with increasing milling time. • Electrical conductivity of the samples was increasing with increase milling time.

  6. Sysnthesis of powders by freeze-drying

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.; Hildenbrand, D.L.

    1988-01-01

    The freeze-drying method of synthesizing powders of the superconducting oxide YBa 2 Cu 3 O 7 - δ is described. This process produces homogeneous, submicron powders of high purity. The effects of salt selection, solution concentration and pH on the process are described. Some evaluation of the sintering behavior and the effects on critical current density are included

  7. Process for fabricating mixed-oxide powders

    International Nuclear Information System (INIS)

    Elmaleh, D.; Giraudel, A.

    1975-01-01

    A physical-chemical process for fabricating homogeneous powders suitable for sintering is described. It can be applied to the synthesis of all mixed oxides having mutually compatible and water soluble salts. As a specific example, the fabrication of lead titanate-zirconate powders used to make hot pressed ceramics is described. These ceramics show improved piezoelectric properties [fr

  8. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.

    Science.gov (United States)

    Nouri, A; Hodgson, P D; Wen, C E

    2010-04-01

    The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  9. Tantalum powder consolidation, modeling and properties

    International Nuclear Information System (INIS)

    Bingert, S.R.; Vargas, V.D.; Sheinberg, H.C.

    1996-01-01

    A systematic approach was taken to investigate the consolidation of tantalum powders. The effects of sinter time, temperature and ramp rate; hot isostatic pressing (HIP) temperature and time; and powder oxygen content on consolidation density, kinetics, microstructure, crystallographic texture, and mechanical properties have been evaluated. In general, higher temperatures and longer hold times resulted in higher density compacts with larger grain sizes for both sintering and HIP'ing. HIP'ed compacts were consistently higher in density than sintered products. The higher oxygen content powders resulted in finer grained, higher density HIP'ed products than the low oxygen powders. Texture analysis showed that the isostatically processed powder products demonstrated a near random texture. This resulted in isotropic properties in the final product. Mechanical testing results showed that the HIP'ed powder products had consistently higher flow stresses than conventionally produced plates, and the sintered compacts were comparable to the plate material. A micromechanics model (Ashby HIP model) has been employed to predict the mechanisms active in the consolidation processes of cold isostatic pressing (CIP), HIP and sintering. This model also predicts the density of the end product and whether grain growth should be expected under the applied processing conditions

  10. Influence of Various Process Parameters on the Density of Sintered Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Mateusz Laska

    2012-01-01

    Full Text Available This paper presents the results of density measurements carried out on Alumix sintered parts. ECKA Alumix aluminium powders were used because of their wide application in the powder metallurgy industry. The compacts were produced using a wide range of compaction pressures for three different chemical compositions. The compacts were then sintered under a pure dry nitrogen atmosphere at three different temperatures. The heating and cooling rates were the same throughout the entire test. The results showed that the green density increases with compaction pressure, but that sintered density is independent of green density (compaction pressure for each sintering temperature.

  11. Zirconia-mullite obtained from co-precipitated zirconia-mullite composite powders by SPS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Z.; Li, Z.J.; Luo, X.D. [Univ. of Science and Technology Liaoning, Anshan (China). School of High Temperature Materials and Magnesium Resource Engineering; Gui, J.Y.; Xie, Z.P. [Tsinghua Univ., Beijing (China). School of Materials Science and Engineering

    2016-07-01

    The co-precipitation method is used to fabricate precursor powder. This powder is densified by means of the spark plasma sintering (SPS) technique at 1500 C with a holding time of 7 min to prepare zirconia-mullite samples. Their density measures up to 97 % of the theoretical density, and the sintered mullite compacts exhibit better strength properties (289 ± 12 MPa) and H{sub v} (9.99 GPa). The mode of fracture is changed with the addition of ZrO{sub 2} and extensive fine cleavages are observed on the grain surface. These cleavages join together to form steps, which can absorb more energy. The flexural strength of the samples is almost double that of pure mullite, which is related to the formation of cleavages.

  12. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    Science.gov (United States)

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  13. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  14. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed g