WorldWideScience

Sample records for sintered plate type

  1. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  2. Comparison of conventional reconstruction plate versus direct metal laser sintering plate: an in vitro mechanical characteristics study.

    Science.gov (United States)

    Xie, Pusheng; Ouyang, Hanbin; Deng, Yuping; Yang, Yang; Xu, Jing; Huang, Wenhua

    2017-09-02

    Additive manufacturing (AM) technology has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. But the application of direct metal laser sintering (DMLS) bone plate is quite limited due to the indeterminate mechanical property. The purposes of this study were to characterize the biomechanical properties of the polished DMLS reconstruction plate and to compare these with the properties of commonly applied implants and to find whether the mechanical performance of DMLS plate meets the requirements for clinical application. In this study, we fabricated two groups of plates by DMLS and computer numerical control (CNC) techniques. After that, we polished all samples and investigated their roughness, components, hardness, static bending, and torsional performance. Moreover, cyclic bending tests and fractographic analysis were conducted. Statistical comparisons of the group by means of monotonic test data were made, and a qualitative comparison was performed to assess failures in fatigue. We found no differences in surface roughness or components after polishing, but the DMLS plate hardness is 7.42% (p direct application of these AM instruments in the operating room requires further validation including animal and clinical experiment.

  3. Multiple recycling of NdFeB-type sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakotnik, M. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: miha.zakotnik@gmail.com; Harris, I.R.; Williams, A.J. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-05

    Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density and in the magnetic properties. The chemical analysis indicated that this was due to the progressive oxidation of the Nd-rich material and to some Nd loss by evaporation. The procedure was then repeated but with the addition (blending) of a fine powder of neodymium hydride after the first cycle. It was found that the addition of 1 at.% of neodymium at each stage was sufficient to maintain the density and the magnetic properties of the recycled magnets up to and including the 4th cycle. Inductively coupled plasma (ICP) and metallographic analysis indicated that the neodymium hydride additions compensated for the neodymium loss due to evaporation and to oxidation so that the proportion of Nd-rich material remained approximately constant. The additional amount of Nd{sub 2}O{sub 3} in the blended recycled magnets appeared to inhibit grain growth on the 3rd and 4th cycles when compared to that of the unblended magnets. The next challenge is to see if the process can be scaled-up to an industrial scale.

  4. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    Science.gov (United States)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  5. The study of Ashby-type sintering diagrams for uranium dioxide

    International Nuclear Information System (INIS)

    Georgeoni, P.

    1980-01-01

    Computer modelling of binary and ternary Ashby-type sintering diagrams for stoechiometric and hyperstoechiometric uranium dioxide (in the range O/U = 2, 0-2, 10). Material data and mass transfer equations, selected from the literature, were used. Sintering isochronous curves were calculated and traced as well. Improvement of a modern dilatometric method by reading and processing experimental curves on a computer and by determining for them a criterion of proximity to the theoretical model equation. It was possible: to develop a reliable method of determination for the dominant mechanism, diffusion coefficient and real process activation energy; to draw up the real sintering diagram; to understand the quantitative and qualitative changes occuring during the actual sintering process of UO 2 , concerning massing and modification of pore shape; to recommend the technological parameters of the thermal regime concerning the elimination of lubricant and binder additives in order to obtain high quality sintered tablets. (author)

  6. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    Full Text Available There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures. The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The

  7. Effect of sintering conditions on the magnetic disaccommodation in barium M-type hexaferrites

    International Nuclear Information System (INIS)

    Hernandez-Gomez, Pablo; Torres, Carlos; Francisco, Carlos de; Munoz, Jose Maria; Alejos, Oscar; Iniguez, Jose Ignacio; Raposo, Victor; Montero, Oscar

    2006-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline hexaferrites with nominal composition BaO.6Fe 2 O 3 (i.e. M-type). The samples have been sintered at different temperatures in CO 2 atmosphere and with different manufacturing conditions. In temperature range between 80 and 500 K, the magnetic disaccommodation shows presence of different relaxation processes, depending on both the sintering temperature and sintering time. The analogies and differences between the results obtained are discussed in terms of similar phase formation and different crystallite size

  8. Effect of wrapped Zn plate on the densification of Al-MWCNTs composites produced by cold pressing and liquid phase sintering

    Energy Technology Data Exchange (ETDEWEB)

    Joo, M.R. [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Choi, H.J. [School of Advanced Materials Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Shin, S.E. [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.H., E-mail: donghyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-09-30

    To produce highly dense and cost-effective Al-multi-walled carbon nanotube (Al-MWCNT) composites, the composite powders are wrapped by a Zn plate and then cold-pressed. The green compacts are then sintered at 550 °C, which shows ~99%density after sintering for 24 h. During sintering, Zn atoms fill the voids at the powder boundaries by capillary action and are then dissolved into the Al matrix because of the high solubility of Zn in Al, thus assisting densification of the composite powder. The Al/Zn-based composites containing 4 vol% MWCNTs show compressive yield strength (~380 MPa) and high work hardening capacity.

  9. Nickel Electroless Plating: Adhesion Analysis for Mono-Type Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Shin, Eun Gu; Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2015-10-01

    The adhesion of the front electrodes to silicon substrate is the most important parameters to be optimized. Nickel silicide which is formed by sintering process using a silicon substrate improves the mechanical and electrical properties as well as act as diffusion barrier for copper. In this experiment p-type mono-crystalline czochralski (CZ) silicon wafers having resistivity of 1.5 Ω·cm were used to study one step and two step nickel electroless plating process. POCl3 diffusion process was performed to form the emitter with the sheet resistance of 70 ohm/sq. The Six, layer was set down as an antireflection coating (ARC) layer at emitter surface by plasma enhanced chemical vapor deposition (PECVD) process. Laser ablation process was used to open SiNx passivation layer locally for the formation of the front electrodes. Nickel was deposited by electroless plating process by one step and two step nickel electroless deposition process. The two step nickel plating was performed by applying a second nickel deposition step subsequent to the first sintering process. Furthermore, the adhesion analysis for both one step and two steps process was conducted using peel force tester (universal testing machine, H5KT) after depositing Cu contact by light induced plating (LIP).

  10. Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering

    International Nuclear Information System (INIS)

    Jiang Jun; Chen Lidong; Bai Shengqiang; Yao Qin; Wang Qun

    2005-01-01

    The n-type Bi 2 (Te,Se) 3 thermoelectric materials with preferred grain orientation have been fabricated through the spark plasma sintering (SPS) technique. The c-axis of the grains in the sintered samples were preferentially oriented parallel to the pressing direction, the orientation factor of the (0 0 l) planes changed from 0.4 to 0.85 with the sintering conditions. The anisotropy was investigated by measuring the electrical conductivities in the two directions perpendicular and parallel to the pressing direction. The optimal figure of merit ZT (ZT = α 2 σT/κ) of the sintered materials in the direction perpendicular to the pressing direction was comparative to that of the zone-melted materials in the same crystallographic direction, while the bending strength reached about 80 MPa, which is 7-8 times of that of the zone-melted materials

  11. Evaluation of plate type fuel options for small power reactors

    International Nuclear Information System (INIS)

    Andrzejewski, Claudio de Sa

    2005-01-01

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO 2 in stainless steel, of UO 2 in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  12. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  13. Technological parameter effect on properties of sintered hard-magnetic type Nd-Fe-B materials

    International Nuclear Information System (INIS)

    Rastegaev, V.S.; Stepanova, G.I.; Gudim, Z.Yu.

    1989-01-01

    The effect of each technological operation on manufacturing hard magnets from Nd-Fe-B alloys on properties of sintered permanent magnets is studied. It is noted that violation of the metting regime can result in burn-up of boron and rare earths, and violation of the grinding mode-formation of nonmagnetic powder fractions, etc. Special attention is paid to material protection against oxidation by introducing passivating additions and creating of particular conditions for alloy sintering and heat treatment

  14. A preliminary electron backscattered diffraction study of sintered NdFeB-type magnets.

    Science.gov (United States)

    Lillywhite, S J; Williams, A J; Davies, B E; Harris, I R

    2002-03-01

    This paper reports, for the first time, the use of electron backscattered diffraction (EBSD) to study orientation in sintered NdFeB type magnets. The magnetic properties of NdFeB magnets are greatly improved if a strong crystallographic texture is firstly achieved, namely, the direction of the c-axis is along the direction of magnetization. A systematic survey of sample preparation techniques showed that samples that were mechanically polished and then etched gave the most reliable EBSD data. Analyses were made using both fully automated EBSD scans and by EBSD measurements taken after manual movement of the beam. The EBSD results are presented as secondary electron SEM micrographs, orientation images and 001 pole figures. For the selection of grains investigated, the deviation of the c-axis was shown to be between 10 degrees and 30 degrees from the ideal [001]//magnetization direction. It is demonstrated that EBSD is a valuable tool for characterizing the microstructure and texture relationships and for assessing the performance of the processing routes of NdFeB magnets.

  15. Effect of Alloying Type and Lean Sintering Atmosphere on the Performance of PM Components

    Science.gov (United States)

    Sundaram, M. Vattur; Shvab, R.; Millot, S.; Hryha, E.; Nyborg, L.

    2017-12-01

    In order to be cost effective and to meet increasing performance demands, powder metallurgy steel components require continuous improvement in terms of materials and process development. This study demonstrates the feasibility of manufacturing structural components using two different alloys systems, i.e. lean Cr-prealloyed and diffusion bonded water atomised powders with different processing conditions. The components were sintered at two different temperatures, i.e. 1120 and 1250 °C for 30 minutes in three different atmospheres: vacuum, N2- 10%H2 atmosphere as well as lean N2-5%H2-0.5%CO-(0.1-0.4)%CH4 sintering atmosphere. Components after sintering were further processed by either low pressure carburizing, sinterhardening or case hardening. All trials were performed in the industrial furnaces to simulate the actual production of the components. Microstructure, fractography, apparent and micro hardness analyses were performed close to the surface and in the middle of the sample to characterize the degree of sintering (temperature and atmosphere) and the effect of heat treatment. In all cases, components possess mostly martensitic microstructure with a few bainitic regions. The fracture surface shows well developed sinter necks. Inter- and trans-granular ductile and cleavage fracture modes are dominant and their fraction is determined by the alloy and processing route.

  16. Specific features of laser selective sintering of loose powder layers of metal-polymer type

    International Nuclear Information System (INIS)

    Tolochko, N.K.; Sobolenko, N.V.; Mozzharov, S.E.; Yadrojtsev, I.A.

    1996-01-01

    Experimental study was carried out into laser sintering of metal and polymer powder mixtures containing 75 vol.% of nickel base alloy (spherical particles 60-70 μm in diameter) and 25 vol.% of PEP-219 polymer (angular isometric particles 50-100 μm in size). The powder mixture was deposited on a stainless steel substrate and heated by continuous laser beam directed normally to powder layer. Geometrical and structural parameters of single and multilayer sintered products are shown to depend on both laser processing conditions and heat transfer. Some recommendations are given aimed at manufacturing articles of required shape, surface properties and material strength. 6 refs.; 4 figs

  17. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    Science.gov (United States)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.

    2017-09-01

    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.

  18. Effect of sintering temperatures and screen printing types on TiO2 layers in DSSC applications

    Science.gov (United States)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Hidayat, Jojo; Suryana, Risa

    2016-03-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO2 layer as a working electrode in DSSC. TiO2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  19. Effect of sintering temperatures and screen printing types on TiO{sub 2} layers in DSSC applications

    Energy Technology Data Exchange (ETDEWEB)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru, E-mail: nurosyid@yahoo.com; Suryana, Risa [Department of Physics, Faculty of Mathematics and Natural Sciences, Sebel as Maret University Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Hidayat, Jojo [Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI Gd. 20 Jl. Sangkuriang Bandung (Indonesia)

    2016-03-29

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO{sub 2} layer as a working electrode in DSSC. TiO{sub 2} layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO{sub 2} layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO{sub 2} as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO{sub 2} layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO{sub 2} layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  20. Effect of sintering temperatures and screen printing types on TiO_2 layers in DSSC applications

    International Nuclear Information System (INIS)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Suryana, Risa; Hidayat, Jojo

    2016-01-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO_2 layer as a working electrode in DSSC. TiO_2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO_2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO_2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO_2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO_2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  1. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  2. Spark plasma versus conventional sintering in the electrical properties of Nasicon-type materials

    Czech Academy of Sciences Publication Activity Database

    Pérez-Estébanez, Marta; Isasi-Marín, J.; Rivera-Calzada, A.; León, C.; Nygren, M.

    2015-01-01

    Roč. 651, December (2015), s. 636-642 ISSN 0925-8388 R&D Projects: GA MŠk(CZ) LO1219 Keywords : electrode materials * ionic conduction * sintering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0925838815308227

  3. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  4. The development of microstructure during hydrogenation–disproportionation–desorption–recombination treatment of sintered neodymium-iron-boron-type magnets

    International Nuclear Information System (INIS)

    Sheridan, R.S.; Harris, I.R.; Walton, A.

    2016-01-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets. - Highlights: • Disproportionation reaction initiates at grain boundaries and triple points. • Disproportionation then propagates towards the centre of the matrix grains. • Disproportionation was affected by the high oxygen content of sintered NdFeB. • Oxidised triple points remain unreacted in original form in final HDDR structure. • Significant reduction in the proportion of cavitation in the final microstructure.

  5. The development of microstructure during hydrogenation–disproportionation–desorption–recombination treatment of sintered neodymium-iron-boron-type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Harris, I.R.; Walton, A., E-mail: a.walton@bham.ac.uk

    2016-03-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets. - Highlights: • Disproportionation reaction initiates at grain boundaries and triple points. • Disproportionation then propagates towards the centre of the matrix grains. • Disproportionation was affected by the high oxygen content of sintered NdFeB. • Oxidised triple points remain unreacted in original form in final HDDR structure. • Significant reduction in the proportion of cavitation in the final microstructure.

  6. Bifurcation of cubic nonlinear parallel plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2005-01-01

    The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)

  7. Development and implementation of computational geometric model for simulation of plate type fuel fabrication process with microspheres dispersed in metallic matrix

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Reis, Sergio C.; Braga, Daniel M.; Santos, Armindo; Ferraz, Wilmar B.

    2005-01-01

    In this report it is presented the development of a geometric model to simulate the plate type fuel fabrication process with fuels microspheres dispersed in metallic matrix, as well as its software implementation. The developed geometric model encloses the steps of pellets pressing and sintering, as well as the plate rolling passes. The model permits the simulation of structures, where the values of the various variables of the fabrication processes can be studied and modified. The following variables were analyzed: microspheres diameters, density of the powder/microspheres mixing, microspheres density, fuel volume fraction, sintering densification, and rolling passes number. In the model implementation, which was codified in DELPHI programming language, systems of structured analysis techniques were utilized. The structures simulated were visualized utilizing the AutoCAD applicative, what permitted to obtain planes sections in diverse directions. The objective of this model is to enable the analysis of the simulated structures and supply information that can help in the improvement of the dispersion microspheres fuel plates fabrication process, now in development at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) in cooperation with the CTMSP (Centro Tecnologico da Marinha em Sao Paulo). (author)

  8. Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis.

    Science.gov (United States)

    Kandemir, Utku; Augat, Peter; Konowalczyk, Stefanie; Wipf, Felix; von Oldenburg, Geert; Schmidt, Ulf

    2017-08-01

    To investigate whether (1) the type of fixation at the shaft (hybrid vs. locking), (2) the position of the plate (offset vs. contact) and (3) the implant material has a significant effect on (a) construct stiffness and (b) fatigue life in a distal femur extraarticular comminuted fracture model using the same design of distal femur periarticular locking plate. An extraarticular severely comminuted distal femoral fracture pattern (OTA/AO 33-A3) was simulated using artificial bone substitutes. Ten-hole distal lateral femur locking plates were used for fixation per the recommended surgical technique. At the distal metaphyseal fragment, all possible locking screws were placed. For the proximal diaphyseal fragment, different types of screws were used to create 4 different fixation constructs: (1) stainless steel hybrid (SSH), (2) stainless steel locked (SSL), (3) titanium locked (TiL), and (4) stainless steel locked with 5-mm offset at the diaphysis (SSLO). Six specimens of each construct configuration were tested. First, each specimen was nondestructively loaded axially to determine the stiffness. Then, each specimen was cyclically loaded with increasing load levels until failure. Construct Stiffness: The fixation construct with a stainless steel plate and hybrid fixation (SSH) had the highest stiffness followed by the construct with a stainless steel plate and locking screws (SSL) and were not statistically different from each other. Offset placement (SSLO) and using a titanium implant (TiL) significantly reduced construct stiffness. Fatigue Failure: The stainless steel with hybrid fixation group (SSH) withstood the most number of cycles to failure and higher loads, followed by the stainless steel plate and locking screw group (SSL), stainless steel plate with locking screws and offset group (SSLO), and the titanium plate and locking screws group (TiL) consecutively. Offset placement (SSLO) as well as using a titanium implant (TiL) reduced cycles to failure. Using the

  9. Thermal Stability of P-Type BiSbTe Alloys Prepared by Melt Spinning and Rapid Sintering

    Directory of Open Access Journals (Sweden)

    Yun Zheng

    2017-06-01

    Full Text Available P-type BiSbTe alloys have been widely implemented in waste heat recovery from low-grade heat sources below 600 K, which may involve assorted environments and conditions, such as long-term service, high-temperature exposure (generally 473–573 K and mechanical forces. It is important to evaluate the service performance of these materials in order to prevent possible failures in advance and extend the life cycle. In this study, p-type Bi0.5Sb1.5Te3 commercial zone-melting (ZM ingots were processed by melt spinning and subsequent plasma-activated sintering (MS-PAS, and were then subjected to vacuum-annealing at 473 and 573 K, respectively, for one week. The results show that MS-PAS samples exhibit excellent thermal stability when annealed at 473 K. However, thermal annealing at 573 K for MS-PAS specimens leads to the distinct sublimation of the element Te, which degrades the hole concentration remarkably and results in inferior thermoelectric performance. Furthermore, MS-PAS samples annealed at 473 K demonstrate a slight enhancement in flexural and compressive strengths, probably due to the reduction of residual stress induced during the sintering process. The current work guides the reliable application of p-type Bi0.5Sb1.5Te3 compounds prepared by the MS-PAS technique.

  10. Solid state synthesis and sintering of monazite-type ceramics: application to minor actinides conditioning

    International Nuclear Information System (INIS)

    Bregiroux, D.

    2005-11-01

    In the framework of the French law of 1991 concerning the nuclear waste management, several studies are undertaken to develop specific crystalline conditioning matrices. Monazite, a rare earth (TR 3+ ) orthophosphate with a general formula TR 3+ PO 4 , is a natural mineral containing significant amount of thorium and uranium. Monazite has been proposed as a host matrix for the minor actinides (Np, Am and Cm) specific conditioning, thanks to its high resistance to self irradiation and its low solubility. Its is now of prime importance to check the conservation of these properties on synthesized materials, which implies to master all the stages of the elaboration process, from the powder synthesis to the sintering of controlled microstructure pellets. This work can be divided into two main parts: The first part deals with the synthesis by high temperature solid state route of TR 3+ PO 4 powders (with TR 3+ = La 3+ to Gd 3+ , Pu 3+ and Am 3+ ). The chemical reactions occurring during the firing of starting reagents are described in the case of monazite with only one or several cations. From these results, a protocol of synthesis is described. The incorporation of tetravalent cations (Ce 4+ , U 4+ , Pu 4+ ) in the monazite structure was also studied. The second part of the present work deals with the elaboration of controlled density and microstructure monazite pellets and their related mechanical and thermal properties. The study of crushing and sintering is presented. For the first time, experimental results are confronted with theoretical models in order to deduce the densification and grain growth mechanisms. By the comprehension of the various physicochemical phenomena occurring during the various stages of the monazite pellets elaboration process (powder synthesis, crushing, sintering...), this work allowed the development of a protocol of elaboration of controlled microstructure monazite TR 3+ PO 4 pellets. The determination of some mechanical and thermal

  11. A PROBLEM OF CUTTING OFF THE LAMINATED SEMIS TYPE PLATE

    Directory of Open Access Journals (Sweden)

    Florin Ciofu

    2012-11-01

    Full Text Available A problem often coped on many domains such as wood manufacturing, glass, plastics and metallic platework industry, is the shaping or cutting off a big plate in many pieces. With this purpose there are algorithms of optimizing for positioning the parts following to be cut off from a row plate. From mathematical point of view, in positioning the parts on a raw plate the number of solutions increase four times evrey time a new part is added, and in case of finding the best solution for about few hundreds of pieces or parts would require years of processing on the most performant computers nowadays – for an analogy remember the famous story with the rice beads which the King had to pay to the master teaching him the chess: twice more for each square of the chessboard; for the total quantity assessment, King ascertained that the crops in his whole life wouldn’t have been enough.

  12. A new type of resistive plate chamber: The multigap RPC

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Lamas Valverde, J.; Neupane, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    This Letter describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap). (orig.)

  13. A new type of resistive plate chamber the multigap RPC

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    This paper describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap).

  14. Evaluation of plate type fuel elements by eddy current test method

    International Nuclear Information System (INIS)

    Frade, Rangel Teixeira

    2015-01-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  15. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bathula, Sivaiah [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Department of Applied Physics, Delhi Technological University, Delhi (India); Gahtori, Bhasker; Tripathy, S. K.; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jayasimhadri, M. [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2014-08-11

    Owing to their high thermoelectric (TE) figure-of-merit, nanostructured Si{sub 80}Ge{sub 20} alloys are evolving as a potential replacement for their bulk counterparts in designing efficient radio-isotope TE generators. However, as the mechanical properties of these alloys are equally important in order to avoid in-service catastrophic failure of their TE modules, we report the strength, hardness, fracture toughness, and thermal shock resistance of nanostructured n-type Si{sub 80}Ge{sub 20} alloys synthesized employing spark plasma sintering of mechanically alloyed nanopowders of its constituent elements. These mechanical properties show a significant enhancement, which has been correlated with the microstructural features at nano-scale, delineated by transmission electron microscopy.

  16. Enhancing Low-Temperature and Pressureless Sintering of Micron Silver Paste Based on an Ether-Type Solvent

    Science.gov (United States)

    Zhang, Hao; Li, Wanli; Gao, Yue; Zhang, Hao; Jiu, Jinting; Suganuma, Katsuaki

    2017-08-01

    Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.

  17. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    International Nuclear Information System (INIS)

    Saragi, Elfrida; Setiadji, Moch

    2013-01-01

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 °C at one end and about 40 °C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier

  18. Structural assessments of plate type support system for APR1400 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tung; Namgung, Ihn, E-mail: inamgung@kings.ac.kr

    2017-04-01

    Highlights: • This paper investigates plate-type support structure for the reactor vessel of the APR 1400. • The tall column supports of APR1400 reactor challenges in seismic and severe accident events. • A plate-type support of reactor vessel was proposed and evaluated based on ASME code. • The plate-type support was assessed to show its higher rigidity than column-type. - Abstract: This paper investigates an alternative form of support structure for the reactor vessel of the APR 1400. The current reactor vessel adopts a four-column support arrangement locating on the cold legs of the vessel. Although having been successfully designed, the tall column structure challenges in seismic events. In addition, for the mitigation of severe accident consequences, the columns inhibit ex-vessel coolant flow, hence the elimination of the support columns proposes extra safety advantages. A plate-type support was proposed and evaluated for the adequacy of meeting the structural stiffness by Finite Element Analysis (FEA) approach. ASME Boiler and Pressure Vessel Code was used to verify the design. The results, which cover thermal and static structural analysis, show stresses are within allowable limits in accordance with the design code. Even the heat conduction area is increased for the plate-type of support system, the results showed that the thermal stresses are within allowable limits. A comparison of natural frequencies and mode shapes for column support and plate-type support were presented as well which showed higher fundamental frequencies for the plate-type support system resulting in greater rigidity of the support system. From the outcome of this research, the plate-type support is proven to be an alternative to current APR column type support design.

  19. Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures

    International Nuclear Information System (INIS)

    Tsoi, Vadim; Chang, Shyy Woei; Chiang Kuei Feng; Huang, Chuan Chin

    2011-01-01

    This experimental study examines the thermal performance of a newly devised plate-type two-phase loop thermosyphon with cooling applications to electronic boards of telecommunication systems. The evaporation section is configured as the inter-connected multi channels to emulate the bridging boiling mechanism in pulsating thermosyphon. Two thermosyphon plates using water as the coolant with filling ratios (FR) of 0.22 and 0.32 are tested at sub-atmospheric pressures. The vapor-liquid flow images as well as the thermal resistances and effective spreading thermal conductivities are individually measured for each thermosyphon test plate at various heating powers. The high-speed digital images of the vapor-liquid flow structures reveal the characteristic boiling phenomena and the vapor-liquid circulation in the vertical thermosyphon plate, which assist to explore the thermal physics for this type of loop thermosyphon. The bubble agglomeration and pumping action in the inter-connected boiling channels take place at metastable non-equilibrium conditions, leading to the intermittent slug flows with a pulsation character. Such hybrid loop-pulsating thermosyphon permits the vapor-liquid circulation in the horizontal plate. Thermal resistances and spreading thermal conductivities detected from the present thermosyphon plates; the vapor chamber flat plate heat pipe and the copper plate at free and forced convective cooling conditions with both vertical and horizontal orientations are cross-examined. In most telecommunication systems and units, the electrical boards are vertical so that the thermal performance data on the vertical thermosyphon are most relevant to this particular application. - Highlights: → We examine thermal performances of plate-type loop thermosyphon. → Thermal resistances and spreading conductivities are examined. → Bubble agglomeration in inter-connected boiling channels generates intermittent slug flows with pulsations. → Boiling instability

  20. The Electrode Characteristics of the Sintered AB{sub 5}-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sang Min; Park, Won; Choi, Seung Jun; Park, Choong Nyeon [Department of Metallurgical Engineering, Chonnam National University, Kawngju, (Korea, Republic of); Noh, Hak [Autombile Reseach Center, Chonnom National University, Kwangju (Korea, Republic of); Choi, Jeon [Department. of Iron and Metallurgical Engineering., Hanlyo Sanup University, Kwangyang (Korea, Republic of)

    1996-12-15

    The AB{sub 5} type metal hydride electrodes using (LM)Ni{sub 4.49}C0{sub 0.1}Mn{sub 0.205}Al{sub 0.205}(LM : Lanthanium rich Mischmetal) alloy powders({<=}200mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrode were sintered at 40 for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning election microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrode with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increasing sintering time. However, there is little difference of discharge capacity for both electrodes. (author). 9 refs., 2 tabs., 4 figs., 2 ills.

  1. A New Type of Inscribed Copper Plate from Indus Valley (Harappan Civilisation

    Directory of Open Access Journals (Sweden)

    Vasant Shinde

    2014-10-01

    Full Text Available A group of nine Indus Valley copper plates (c. 2600–2000 BC, discovered from private collections in Pakistan, appear to be of an important type not previously described. The plates are significantly larger and more robust than those comprising the corpus of known copper plates or tablets, and most significantly differ in being inscribed with mirrored characters. One of the plates bears 34 characters, which is the longest known single Indus script inscription. Examination of the plates with x-ray fluorescence (XRF spectrophotometry indicates metal compositions, including arsenical copper, consistent with Indus Valley technology. Microscopy of the metal surface and internal structure reveals detail such as pitting, microcrystalline structure, and corrosion, consistent with ancient cast copper artifacts. Given the relative fineness of the engraving, it is hypothesised that the copper plates were not used as seals, but have characteristics consistent with use in copper plate printing. As such, it is possible that these copper plates are by far the earliest known printing devices, being at least 4000 years old.

  2. FDTD simulation of microwave sintering of ceramics in multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, M.F.; Smith, R.L.; Andrade, A.O.M.; Walsh, L.M. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Electrical Engineering); Kimrey, H. Jr. (Oak Ridge National Lab., TN (United States))

    1994-05-01

    At present, various aspects of the sintering process such as preparation of sample sizes and shapes, types of insulations, and the desirability of including a process stimulus such as SiC rods are considered forms of art and highly dependent on human expertise. The simulation of realistic sintering experiments in a multimode cavity may provide an improved understanding of critical parameters involved and allow for the development of guidelines towards the optimization of the sintering process. In this paper, the authors utilize the FDTD technique to model various geometrical arrangements and material compatibility aspects in multimode microwave cavities and to simulate realistic sintering experiments. The FDTD procedure starts with the simulation of a field distribution in multimode microwave cavities that resembles a set of measured data using liquid crystal sheets. Also included in the simulation is the waveguide feed as well as a ceramic loading plate placed at the base of the cavity. The FDTD simulation thus provides realistic representation of a typical sintering experiment. Aspects that have been successfully simulated include the effects of various types of insulation, the role of SiC rods on the uniformity of the resulting microwave fields, and the possible shielding effects that may result from excessive use of SiC. These results as well as others showing the electromagnetic fields and power-deposition patterns in multiple ceramic samples are presented.

  3. ON HAMILTONIAN FORMULATIONS AND CONSERVATION LAWS FOR PLATE THEORIES OF VEKUA-AMOSOV TYPE

    Directory of Open Access Journals (Sweden)

    Sergey I. Zhavoronok

    2017-12-01

    Full Text Available Some variants of the generalized Hamiltonian formulation of the plate theory of I. N. Vekua – A. A. Amosov type are presented. The infinite dimensional formulation with one evolution variable, or an “instantaneous” formalism, as well as the de Donder – Weyl one are considered, and their application to the numerical simulation of shell and plate dynamics is briefly discussed. The main conservation laws are formulated for the general plate theory of Nth order, and the possible motion integrals are introduced

  4. Improved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Williams, A.J.; Harris, I.R.; Walton, A., E-mail: a.walton@bham.ac.uk

    2014-01-15

    The hydrogenation disproportionation desorption recombination (HDDR) process has been investigated as a possible means of producing bonded magnets from used NdFeB-type sintered magnets with compositions, Nd{sub 13.4}Dy{sub 0.8}Al{sub 0.7}Nb{sub 0.3}Fe{sub 78.5}B{sub 6.3} and Nd{sub 12.5}Dy{sub 1.8}Al{sub 0.9}Nb{sub 0.6}Co{sub 5.0}Fe{sub 72.8}B{sub 6.4} (atomic%). It has been shown that by increasing the processing temperature, an increase in the equilibrium pressure for disproportionation and in the overall reaction time was observed. The magnetic properties of the lower Dy content magnet were affected significantly by the change in processing temperature with a peak in properties observed at 880 °C producing magnetic powder with a remanence of 1.08 (±0.02) T, a coercivity of 840 (±17) kA m{sup −1}, and a maximum energy product of 175 (±2.5) kJ m{sup −3}. Further work on magnets with a significantly higher Dy content has shown that simultaneous processing of sintered magnets with varying compositions can be achieved by increasing the hydrogen pressure, however a range of magnetic properties are produced depending on the initial compositions of the samples in the input feed. - Highlights: • Reduced oxidation during the HDDR processing in this work compared to the previous paper resulted in a powder with a higher coercivity. • Increasing the hydrogen pressure for disproportionation allowed for Dy, Co rich NdFeB compositions to be processed. • Mixed compositions (which will be typical from “real scrap”) can be processed simultaneously in the same equipment. • Mixed feeds produced lower magnetic properties due to overprocessing of the low Dy content compositions.

  5. RECOGNITION DESIGN OF LICENSE PLATE AND CAR TYPE USING TESSERACT OCR AND EmguCV

    Directory of Open Access Journals (Sweden)

    Antonius Herusutopo

    2012-10-01

    Full Text Available The goal of the research is to design and implement software that can recognize license plates and car types from images. The method used for the research is soft computing using library of EmguCV. There are four phases in creating the software, i.e., input image process, pre-processing, training processing and recognition. Firstly, user enters the car image. Then, the program reads and does pre-processing the image from bitmap form into vector. The next process is training process, which is learning phase in order the system to be able recognize an object (in this case license plate and car type, and in the end is the recognition process itself. The result is data about the car types and the license plates that have been entered. Using simulation, this software successfully recognized license plate by 80.223% accurate and car type 75% accurate.Keywords: Image; Pre-Processing; License plate and Car Type Recognition, Training

  6. Re-qualification of MTR-type fuel plates fabrication process

    International Nuclear Information System (INIS)

    Elseaidy, I.M.; Ghoneim, M.M.

    2010-01-01

    The fabricability issues with increased uranium loading due to use low enrichment of uranium (LEU), i.e. less than 20 % of U 235 , increase the problems which occur during compact manufacturing, roll bonding of the fuel plates, potential difficulty in forming during rolling process, mechanical integrity of the core during fabrication, potential difficulty in meat homogeneity, and the ability to fabricate plates with thicker core as a means of increasing total uranium loading. To produce MTR- type fuel plates with high uranium loading (HUL) and keep the required quality of these plates, many of qualification process must be done in the commissioning step of fuel fabrication plant. After that any changing of the fabrication parameters, for example changing of any of the raw materials, devises, operators, and etc., a re- qualification process should be done in order to keep the quality of produced plates. Objective of the present work is the general description of the activities to be accomplished for re-qualification of manufacturing MTR- type nuclear fuel plates. For each process to be re-qualified, a detailed of re-qualification process were established. (author)

  7. Electromagnetic Acoustic Test of the Artificial Defects for a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Kim, Dong Min; Lee, Yoon Sang; Cheong, Yong Moo

    2011-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel meat in aluminum alloy. Last year, KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of the plate-type fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done under immersion condition, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined is a non-ferromagnetic material such as aluminum with a good acousto-elastic property, which requires an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an Electromagnetic Acoustic Transducer (EMAT) technology for an automated inspection of a nuclear fuel without water

  8. Conceptual design of control rod regulating system for plate type fuels of Triga-2000 reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Saminto

    2016-01-01

    Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor has been made. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor was made with refer to study result of instrument and control system which is used in BATAN'S reactor. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor consist of 4 segments that is control panel, translator, driver and display. Control panel is used for regulating, safety and display control rod, translator is used for signal processing from control panel, driver is used for driving control rod and display is used for display control rod level position. The translator was designed in 2 modes operation i.e operation by using PLC modules and IC TTL modules. These conceptual design can be used as one of reference of control rod regulating system detail design. (author)

  9. Feasibility study on development of plate-type heat exchanger for BWR plants

    International Nuclear Information System (INIS)

    Ohyama, Nobuhiro; Suda, Kenichi; Ogata, Hiroshi; Matsuda, Shinichi; Nagasaka, Kazuhiro; Fujii, Toshi; Nozawa, Toshiya; Ishihama, Kiyoshi; Higuchi, Tomokazu

    2004-01-01

    In order to apply plate-type heat exchanger to RCW, TCW and FPC system in BWR plants, heat test and seismic test of RCW system heat exchanger sample were carried out. The results of these tests showed new design plate-type heat exchanger satisfied the fixed pressure resistance and seismic resistance and keep the function. The evaluation method of seismic design was constructed and confirmed by the results of tests. As anti-adhesion measure of marine organism, an ozone-water circulation method, chemical-feed method and combination of circulation of hot water and air bubbling are useful in place of the chlorine feeding method. Application of the plate-type heat exchanger to BWR plant is confirmed by these investigations. The basic principles, structure, characteristics, application limit and reliability are stated. (S.Y.)

  10. Equivalent linearization method for limit cycle flutter analysis of plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2009-01-01

    The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)

  11. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Wang, Yundong [Department of Chemical Engineering, Tsinghua University, State Key Lab of Chemical Engineering, Beijing 100084 (China); Fan, Xing, E-mail: foxcqdx@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Tao, Changyuan [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)

    2016-02-15

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm{sup 2} was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm{sup 2} could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  12. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-01-01

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm"2 was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm"2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  13. Reinforcement of a plate weakened by multiple holes with several patches for different types of plate-patch attachment

    KAUST Repository

    Zemlyanova, A.

    2014-01-24

    The most general situation of the reinforcement of a plate with multiple holes by several patches is considered. There is no restriction on the number and the location of the patches. Two types of patch attachment are considered: only along the boundary of the patch or both along the boundary of the patch and the boundaries of the holes which this patch covers. The unattached boundaries of the holes may be loaded with given in-plane stresses. The mechanical problem is reduced to a system of singular integral equations which can be further reduced to a system of Fredholm equations. A new numerical procedure for the solution of the system of singular integral equations is proposed in this paper. It is demonstrated on numerical examples that this procedure has advantages in the case of multiple patches and holes and allows achievement of better numerical convergence with less computational effort.

  14. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  15. Postirradiation Examination Of U3O8-AL Plate Type Dispersion Fuel Element

    International Nuclear Information System (INIS)

    Nasution-Hasbullah; Sugondo; Amin, D.L.; Siti-Amini

    1996-01-01

    Postirradiation examination of plate type spent fuel element RIE-01 has been carried out in order to observer its physical changes and performance under irradiation in the reactor. The irradiation has been time more than two years with a declared burnup of 51.04 %. The examination included visual and dimensional measurement, measurement of burn-up distribution, wipe test and metallographic analysis. The results showed that all fuel plates retained their integrity. The colour changes were occurred on most of the plates significant suggesting that it was generated from the oxide layer formation. From gamma-scanning examination it could be deducted that the highest burn-up distribution of the plate was at position of 30 cm from the bottom. A more homogeneous distribution was found in the middle plate of the bundle. The increased plate thickness, as revealed by dimensional measurements as in agreement with the burn-up distribution pattern. Despite the changes observed in could be concluded that all changes occurred were still within the allowable limits and therefore it can recommended that an increase of the burn-up level above 51,04 % is still quite possible

  16. Plate-type metamaterials for extremely broadband low-frequency sound insulation

    Science.gov (United States)

    Wang, Xiaopeng; Guo, Xinwei; Chen, Tianning; Yao, Ge

    2018-01-01

    A novel plate-type acoustic metamaterial with a high sound transmission loss (STL) in the low-frequency range ( ≤1000 Hz) is designed, theoretically proven and then experimentally verified. The thin plates with large modulus used in this paper mean that we do not need to apply tension to the plates, which is more applicable to practical engineering, the achievement of noise reduction is better and the installation of plates is more user-friendly than that of the membranes. The effects of different structural parameters of the plates on the sound-proofed performance at low-frequencies were also investigated by experiment and finite element method (FEM). The results showed that the STL can be modulated effectively and predictably using vibration theory by changing the structural parameters, such as the radius and thickness of the plate. Furthermore, using unit cells of different geometric sizes which are responsible for different frequency regions, the stacked panels with thickness ≤16 mm and weight ≤5 kg/m2 showed high STL below 2000 Hz. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  17. Development of core technology for research reactors using plate type fuels

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Lee, Doo Jeong; Park, Cheol

    2009-12-01

    Around 250 research reactors are under operation over the world. However, about 2/3 have been operated more than 30 years and demands for replacements are expected in the near future. The number of expected units is around 110, and around 55 units from 40 countries will be expected to be bid in the world market. In 2007, Netherlands started international bidding process to construct a new 80MW RR (named PALLAS) with the target of commercial operation in 2016, which will replace the existing HFR(45MW). KAERI consortium has been participated in that bid. Most of RRs use plate type fuels as a fuel assembly, Be and Graphite as a reflector. On the other hand, in Korea, the KAERI is operating the HANARO, which uses a rod type fuel assembly and heavy water as a reflector. Hence, core technologies for RRs using plate type fuels are in short. Therefore, core technologies should be secured for exporting a RR. In chapter 2, the conceptual design of PALLAS which use plate type fuels are described including core, cooling system and connected systems, layout of general components. Experimental verification tests for the plate type fuel and second shutdown system and the code verification for nuclear design are explained in Chapter 3 and 4, respectively

  18. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  19. Effect of Partial Substitution of Neodymium with Praseodymium on the Magnetic and Process Properties of Sintered Magnets of Type NdFeB

    Science.gov (United States)

    Dormidontov, N. A.; Dormidontov, A. G.; Lileev, A. S.; Kamynin, A. V.; Lukin, A. A.

    2017-01-01

    The effect of substitution of neodymium with praseodymium in sintered magnets of type NdFeB on their magnetic and process properties in the concentration range of [Pr] = 0 - 13 wt.% is studied. The special features of milling of the alloys, sintering processes and heat treatments in the production of magnets containing praseodymium are discussed. Hysteresis characteristics of B r ≥ 1.2 T, H cJ ≥ 1200 kA/m, H cb ≥ 880 kA/m, H k ≥ 960 kA/m, and BH max ≥ 280 kJ/m3 are obtained for magnets with composition (in wt.%) 33 Nd, 10 Pr, 1.5 (Ti + Al + Cu), 1.3 B, the remainder Fe.

  20. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  1. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  2. Influence of the silicon content on the core corrosion properties of dispersion type fuel plates

    International Nuclear Information System (INIS)

    Calvo, C.; Saenz de Tejada, L. M.; Diaz Diaz, J.

    1969-01-01

    A new process to produce aluminium base dispersion type fuel plates has been developed at the Spanish JEN (Junta de Energia Nuclear). The dispersed fuel material is obtained by an aluminothermic process to render a stoichiometric cermet of UAI 3 and AI 2 O 3 according to the reaction. (Author)

  3. Heat conduction in a plate-type fuel element with time-dependent boundary conditions

    International Nuclear Information System (INIS)

    Faya, A.J.G.; Maiorino, J.R.

    1981-01-01

    A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt

  4. Beam Pattern Analysis of the Plate-type Waveguide Sensor for Under-Sodium Viewing

    International Nuclear Information System (INIS)

    Kim, Hoewoong; Joo, Youngsang; Park, Changgyu; Kim, Jongbum

    2013-01-01

    Sensor for under-sodium viewing (USV) in a sodium-cooled fast reactor (SFR) has been developed. In the developed WG sensor approach, the A0 mode Lamb wave is used and a thin beryllium layer is coated on the waveguide surface to improve the ultrasonic radiation ability in a sodium environment. In this work, the beam pattern radiated from the developed plate-type WG sensor is investigated analytically to understand and predict the ultrasonic beam radiation property of the WG sensor in a liquid. Analytic calculations to obtain beam patterns for two kinds of WG sensors with and without beryllium coating layers were carried out and the results were compared with those obtained by experiments. In this work, the beam pattern of the plate-type WG sensor for USV was investigated analytically. Employing the far-field approximation, the acoustic response at a given measurement position was calculated for the plate-type WG sensors with and without beryllium coating layers. The beam patterns of WG sensors were predicted by the analytic calculation and the corresponding experiments were carried out. The results showed that the far-field beam pattern radiated from the plate-type WG sensor could be well predicted by an analytic calculation. The radiation beam angles obtained by the analytical calculation were in good agreement with those obtained by experiments

  5. Use of information technologies when designing multilayered plates and covers with filler of various types

    Science.gov (United States)

    Golova, T. A.; Magerramova, I. A.; Ivanov, S. A.

    2018-05-01

    Calculation of multilayered plates and covers does not consider anisotropic properties of a construction. Calculation comes down to uniform isotropic covers and definition of one of intense and deformation conditions of constructions. The existing techniques consider work of multilayered designs by means of various coefficients. The article describes the optimized algorithm of operations when designing multilayered plates and covers with filler of various types on the basis of the conducted researches. It is dealt with a development engineering algorithm of calculation of multi-layer constructions of walls. Software is created which allows one to carry out assessment of intense and deformation conditions of constructions of walls.

  6. Feasibility of Electromagnetic Acoustic Evaluation for Quality Test of a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Lee, Yoon Sang; Cheong, Yong Moo

    2010-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel core in aluminum alloy. Recently KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done with water, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined within this paper is a non-ferromagnetic material such as aluminum which has a good acousto-elastic property, for an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an EMAT technology for an automated inspection of a nuclear fuel without water

  7. First general solutions for unidirectional motions of rate type fluids over an infinite plate

    Directory of Open Access Journals (Sweden)

    Constantin Fetecau

    2015-09-01

    Full Text Available Based on a simple but important remark regarding the governing equation for the non-trivial shear stress corresponding to the motion of a fluid over an infinite plate, exact solutions are established for the motion of Oldroyd-B fluids due to the plate that applies an arbitrary time-dependent shear stress to the fluid. These solutions, that allow us to provide the first exact solutions for motions of rate type fluids produced by an infinite plate that applies constant, constantly accelerating or oscillating shears stresses to the fluid, can easily be reduced to the similar solutions for Maxwell, second grade or Newtonian fluids performing the same motion. Furthermore, the obtained solutions are used to develop general solutions for the motion induced by a moving plate and to correct or recover as special cases different known results from the existing literature. Consequently, the motion problem of such fluids over an infinite plate that is moving in its plane or applies a shear stress to the fluid is completely solved.

  8. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  9. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  10. Longitudinal study of vertebral type-1 end-plate changes on MR of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, D. [Department of Neuroradiology, Newcastle General Hospital, Westgate Road, NE4 6BE, Newcastle upon Tyne (United Kingdom); Cassar-Pullicino, V.N.; Mccall, I.W. [Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry (United Kingdom)

    2004-09-01

    The purpose of this study was to investigate the temporal evolution of type-1 end-plate changes on MRI in patients with degenerative disease of the lumbar spine and to evaluate whether any correlation exists between such evolution and the change in patients' symptoms. Forty-four patients with 48 Modic type-1 end-plate changes (low TI signal and high T2 signal) were studied. All patients had an initial and a follow-up non-contrast lumbar MRI with variable intervals between the studies (12-72 months). Severity of the end-plate changes was assessed by eyeball estimation. Correlation with patients' symptoms was studied with the help of the Visual Analogue Score (VAS), Oswestry Questionnaire Score (OQS) and patients' subjective assessment. Of the 48 disc levels with type-1 changes, 18 (37.5%) converted fully to type 2 (high T1 signal and intermediate to high T2 signal), 7 (14.6%) partially converted to type 2, 19 (39.6%) became worse (i.e. type 1 changes became more extensive) and 4 (8.3%) showed no change. Higher average VAS (5.7) and OQS (42.3) scores were noted in patients where there was worsening type-1 change and lower scores (3.8 and 27, respectively) were seen in those where there was conversion to type-2 change. These trends, however, did not reach statistical significance (P values 0.16 and 0.09 for VAS and OQS, respectively). The statistical relationship was stronger after exclusion of patients with confounding factors (i.e. changes in lumbar MRI other than end-plate changes that could independently explain the evolution of patients' symptoms) with P-values of 0.08 and 0.07 for VAS and OQS, respectively. Type-1 end-plate change represents a dynamic process and in a large majority of cases either converts to type-2 change or becomes more extensive. The evolution of type-1 change relates to change in patient's symptoms, but not to a statistically significant level. (orig.)

  11. Longitudinal study of vertebral type-1 end-plate changes on MR of the lumbar spine

    International Nuclear Information System (INIS)

    Mitra, D.; Cassar-Pullicino, V.N.; Mccall, I.W.

    2004-01-01

    The purpose of this study was to investigate the temporal evolution of type-1 end-plate changes on MRI in patients with degenerative disease of the lumbar spine and to evaluate whether any correlation exists between such evolution and the change in patients' symptoms. Forty-four patients with 48 Modic type-1 end-plate changes (low TI signal and high T2 signal) were studied. All patients had an initial and a follow-up non-contrast lumbar MRI with variable intervals between the studies (12-72 months). Severity of the end-plate changes was assessed by eyeball estimation. Correlation with patients' symptoms was studied with the help of the Visual Analogue Score (VAS), Oswestry Questionnaire Score (OQS) and patients' subjective assessment. Of the 48 disc levels with type-1 changes, 18 (37.5%) converted fully to type 2 (high T1 signal and intermediate to high T2 signal), 7 (14.6%) partially converted to type 2, 19 (39.6%) became worse (i.e. type 1 changes became more extensive) and 4 (8.3%) showed no change. Higher average VAS (5.7) and OQS (42.3) scores were noted in patients where there was worsening type-1 change and lower scores (3.8 and 27, respectively) were seen in those where there was conversion to type-2 change. These trends, however, did not reach statistical significance (P values 0.16 and 0.09 for VAS and OQS, respectively). The statistical relationship was stronger after exclusion of patients with confounding factors (i.e. changes in lumbar MRI other than end-plate changes that could independently explain the evolution of patients' symptoms) with P-values of 0.08 and 0.07 for VAS and OQS, respectively. Type-1 end-plate change represents a dynamic process and in a large majority of cases either converts to type-2 change or becomes more extensive. The evolution of type-1 change relates to change in patient's symptoms, but not to a statistically significant level. (orig.)

  12. Core conversion from rod to plate type fuel elements in research reactors

    International Nuclear Information System (INIS)

    Khattab, M.S.; Mina, A.R.

    1997-01-01

    Core thermalhydraulic analysis have been performed for rod and plate types fuel elements without altering the core bundles square grid spacer (68 mm, side) and coolant mass flow rate. The U O 2 -Mg, 10% enrichment rod type fuel elements are replaced by the MTR plate type, U-Al alloy of 20% enrichment. Coolant mass flux increased from 2000 kg/m 2 S to 5000 kg/m 2 S. Reactor power could be upgraded from 2 to 10 MW without significantly altering the steady state, thermal-hydraulic safety margins. Fuel, clad and coolant transient temperatures are determined inside the core hot channel during flow coast down using paret code. Residual heat removal system of 20% coolant capacity is necessary for upgrading reactor power to encounter the case of pumps off at 10 MW nominal operation. 6 figs., 2 tabs

  13. Evaluation of Electron Beam Welding Performance of AA6061-T6 Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Seo, Kyoung-Seok; Lee, Don-Bae; Park, Jong-Man; Lee, Yoon-Sang; Lee, Chong-Tak

    2014-01-01

    As one of the most commonly used heat-treatable aluminum alloys, AA6061-T6 aluminum alloy is available in a wide range of structural materials. Typically, it is used in structural members, auto-body sheet and many other applications. Generally, this alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW(Electron Beam Welding). However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the plate-type nuclear fuel fabrication and assembly, a fundamental electron beam welding experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the suitable welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the plate-type fuel assembly has been also studied by the weld penetrations of side plate to end fitting and fixing bar and weld inspections using computed tomography

  14. Tensile Test of Welding Joint Parts for a Plate-type Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Kim, J. Y.; Kim, H. J.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The tensile tests were performed using an INSTRON 4505 (universal tensile) testing machine. These welding joints are composed of two parts for the soundness of the fuel assembly; one is the side plate with a fixing bar and the other is a side plate with an end fitting. These two joint parts are fabricated by TIG welding method. The tensile tests of the welding joints of a plate-type FA are executed by a tensile test. The fixture configurations for the specimen are very important to obtain the strict test results. The maximum strength has an approximately linear correlation with the unit bonding length of the welding joints. In spite of these results, the maximum strengths of the welding joints are satisfied according to the minimum requirement. These tensile tests of the joint parts for a plate-type fuel assembly (FA) have to be executed to evaluate the structural strength. For the tensile test, the joint parts of a FA used in the test are made of aluminum alloy (Al6061-T6)

  15. Tensile Test of Welding Joint Parts for a Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Yoon, K. H.; Kim, J. Y.; Kim, H. J.; Yim, J. S.

    2013-01-01

    The tensile tests were performed using an INSTRON 4505 (universal tensile) testing machine. These welding joints are composed of two parts for the soundness of the fuel assembly; one is the side plate with a fixing bar and the other is a side plate with an end fitting. These two joint parts are fabricated by TIG welding method. The tensile tests of the welding joints of a plate-type FA are executed by a tensile test. The fixture configurations for the specimen are very important to obtain the strict test results. The maximum strength has an approximately linear correlation with the unit bonding length of the welding joints. In spite of these results, the maximum strengths of the welding joints are satisfied according to the minimum requirement. These tensile tests of the joint parts for a plate-type fuel assembly (FA) have to be executed to evaluate the structural strength. For the tensile test, the joint parts of a FA used in the test are made of aluminum alloy (Al6061-T6)

  16. Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering

    Science.gov (United States)

    Muthiah, Saravanan; Singh, R. C.; Pathak, B. D.; Dhar, Ajay

    2017-07-01

    Thermoelectric devices employing magnesium silicide (Mg2Si) offer an inexpensive and non-toxic solution for green energy generation compared to other existing conventional thermoelectric materials in the mid-temperature range. However, apart from the thermoelectric performance, their mechanical properties are equally important in order to avoid the catastrophic failure of their modules during actual operation. In the present study, we report the synthesis of Mg2Si co-doped with Bi and Sb employing in situ spark plasma reaction sintering and investigate its broad range of mechanical properties. The mechanical properties of the sintered co-doped Mg2Si suggest a significantly enhanced value of hardness ~5.4  ±  0.2 GPa and an elastic modulus ~142.5  ±  6 GPa with a fracture toughness of ~1.71  ±  0.1 MPa  √m. The thermal shock resistance, which is one of the most vital parameter for designing thermoelectric devices, was found to be ~300 W m-1, which is higher than most of the other existing state-of-the-art mid-temperature thermoelectric materials. The friction and wear characteristics of sintered co-doped Mg2Si have been reported for the first time, in order to realize the sustainability of their thermoelectric modules under actual hostile environmental conditions.

  17. Plate fixation in periprosthetic femur fractures Vancouver type B1-Trochanteric hook plate or subtrochanterical bicortical locking?

    Science.gov (United States)

    Lenz, Mark; Stoffel, Karl; Kielstein, Heike; Mayo, Keith; Hofmann, Gunther O; Gueorguiev, Boyko

    2016-12-01

    Proximal plate fixation in periprosthetic femur fractures can be improved by plate anchorage in the greater trochanter (lateral tension band principle) or bicortical locking screw placement beside the prosthesis stem in an embracement configuration. Both concepts were compared in a biomechanical test using a femoral hook plate (hook) or a locking attachment plate (LAP). After bone mineral density (BMD) measurement in the greater trochanter, six pairs of fresh frozen human femora were assigned to two groups and instrumented with cemented hip endoprostheses. A transverse osteotomy was set distal to the tip of the prosthesis, simulating a Vancouver B1 fracture. Each pair was instrumented using a plate tensioner with either hook or LAP construct. Cyclic testing (2Hz) with physiologic profile and monotonically increasing load was performed until catastrophic failure. Plate stiffness was compared in a four-point-bending-test. Paired student's-t-test was used for statistical evaluation (pTrochanteric fixation is highly BMD dependent and may be restricted to major greater trochanteric involvement requiring stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Functional outcome of Schatzker type V and VI tibial plateau fractures treated with dual plates

    Directory of Open Access Journals (Sweden)

    G Thiruvengita Prasad

    2013-01-01

    Full Text Available Background: Dual plate fixation in comminuted bicondylar tibial plateau fractures remains controversial. Open reduction and internal fixation, specifically through compromised soft tissues, has historically been associated with major wound complications. Alternate methods of treatment have been described, each with its own merits and demerits. We performed a retrospective study to evaluate the functional outcome of lateral and medial plate fixation of Schatzker type V and VI fractures through an anterolateral approach, and a medial minimally invasive approach or a posteromedial approach. Materials and Methods: We treated 46 tibial plateau fractures Schatzker type V and VI with lateral and medial plates through an anterolateral approach and a medial minimal invasive approach over an 8 years period. Six patients were lost to followup. Radiographs in two planes were taken in all cases. Immediate postoperative radiographs were assessed for quality of reduction and fixation. The functional outcome was evaluated according to the Oxford Knee Score criteria on followup. Results: Forty patients (33 men and 7 women who completed the followup were included in the study. There were 20 Schatzker type V fractures and 20 Schatzker type VI fractures. The mean duration of followup was 4 years (range 1-8 years. All patients had a satisfactory articular reduction defined as ≤2 mm step-off or gap as assessed on followup. All patients had a good coronal and sagittal plane alignment, and articular width as assessed on supine X-rays of the knee in the anteroposterior (AP and lateral views. The functional outcome, as assessed by the Oxford Knee Score, was excellent in 30 patients and good in 10 patients. All patients returned to their pre-injury level of activity and employment. There were no instances of deep infection. Conclusions: Dual plate fixation of severe bicondylar tibial plateau fractures is an excellent treatment option as it provides rigid fixation and

  19. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  20. Bi-layer plate-type acoustic metamaterials with Willis coupling

    Science.gov (United States)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-01-01

    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  1. Development of maintenance procedure for plate type heat exchanger taking into account preventing radioactive contamination

    International Nuclear Information System (INIS)

    Terai, Kensuke; Someki, Hiroyuki; Ueda, Yuya

    2017-01-01

    In Japanese pressurized water reactors (PWR), heat loads of spent fuel pools (SFP) is increasing due to rising spent fuels and use of mixed oxide (MOX) fuels. Therefore, SFP cooling capacities are necessary to be enhanced, and replacement of SFP coolers or installation of additional coolers is needed. On the other hand, installation spaces of SFP coolers are limited in existing buildings. Therefore, plate type heat exchangers which can be designed to be compact because of the high heat efficiency have often been adopted for SFP coolers instead of shell and tube type heat exchangers in general use. Plate type heat exchangers have to be overhauled periodically for inspection and gasket replacement. However, in plate type SFP coolers, radioactive SFP water and non-radioactive component cooling water (CCW) alternately run through between each plate. Thus there is a concern that the CCW system may be contaminated by radioactive materials from the SFP water during overhaul of the SFP cooler. In order to solve this problem, we have developed the maintenance procedure of the plate type SFP coolers to prevent CCW side contamination by coating the contaminated surfaces with strippable paint prior to disassembly. Before applying this developed maintenance procedure to actual equipment, we have performed the following verification tests. (1) Confirmation of fundamental characteristics for strippable paint. Firstly, we selected both water-based and solvent-based strippable paints. Secondly, we tested and confirmed the detachability and the drying time of the selected strippable paints respectively. Moreover we also confirmed that the selected strippable paints are appropriate materials from the viewpoint of chemical composition restriction of consumable materials used in nuclear power plant. (2) Confirmation of workability for paint filling, drying and peeling off. The strippable paints need to be peeled off after filling into plate type heat exchanger and draining

  2. Clavicle hook plate fixation for displaced lateral-third clavicle fractures (Neer type II): a functional outcome study.

    LENUS (Irish Health Repository)

    Good, Daniel W

    2012-08-01

    Controversy exists with the use of the acromioclavicular hook plate for the treatment of lateral-third clavicle fractures (Neer type II). This is thought to stem from problems associated with the hook plate causing impingement symptoms, which can cause long-term limitation of movement and pain. Our aim was to evaluate the functional outcomes of patients with lateral-third clavicle fractures treated with the hook plate.

  3. A numerical study of the supercritical CO2 plate heat exchanger subject to U-type, Z-type, and multi-pass arrangements

    Science.gov (United States)

    Zhu, Chen-Xi; Wang, Chi-Chuan

    2018-01-01

    This study proposes a numerical model for plate heat exchanger that is capable of handling supercritical CO2 fluid. The plate heat exchangers under investigation include Z-type (1-pass), U-type (1-pass), and 1-2 pass configurations. The plate spacing is 2.9 mm with a plate thickness of 0.8 mm, and the size of the plate is 600 mm wide and 218 mm in height with 60 degrees chevron angle. The proposed model takes into account the influence of gigantic change of CO2 properties. The simulation is first compared with some existing data for water-to-water plate heat exchangers with good agreements. The flow distribution, pressure drop, and heat transfer performance subject to the supercritical CO2 in plate heat exchangers are then investigated. It is found that the flow velocity increases consecutively from the entrance plate toward the last plate for the Z-type arrangement, and this is applicable for either water side or CO2 side. However, the flow distribution of the U-type arrangement in the water side shows opposite trend. Conversely, the flow distribution for U-type arrangement of CO2 depends on the specific flow ratio (C*). A lower C* like 0.1 may reverse the distribution, i.e. the flow velocity increases moderately alongside the plate channel like Z-type while a large C* of 1 would resemble the typical distribution in water channel. The flow distribution of CO2 side at the first and last plate shows a pronounced drop/surge phenomenon while the channels in water side does not reveal this kind of behavior. The performance of 2-pass plate heat exchanger, in terms of heat transfer rate, is better than that of 1-pass design only when C* is comparatively small (C* < 0.5). Multi-pass design is more effective when the dominant thermal resistance falls in the CO2 side.

  4. Prediction for the flow distribution and the pressure drop of a plate type fuel assembly

    International Nuclear Information System (INIS)

    Park, Jong Hark; Jo, Dea Sung; Chae, Hee Taek; Lee, Byung Chul

    2011-01-01

    A plate type fuel assembly widely used in many research reactors does not allow the coolant to mix with neighboring fuel channels due to the completely separated flow channels. If there is a serious inequality of coolant distribution among channels, it can reduce thermal-hydraulic safety margin, as well as it can cause a deformation of fuel plates by the pressure difference between neighboring channels, thus the flow uniformity in the fuel assembly should be confirmed. When designing a primary cooling system (PCS), the pressure drop through a reactor core is a dominant value to determine the PCS pump size. The major portion of reactor core pressure drop is caused by the fuel assemblies. However it is not easy to get a reasonable estimation of pressure drop due to the geometric complexity of the fuel assembly and the thin gaps between fuel assemblies. The flow rate through the gap is important part to determine the total flow rate of PCS, so it should be estimated as reasonable as possible. It requires complex and difficult jobs to get useful data. In this study CFD analysis to predict the flow distribution and the pressure drop were conducted on the plate type fuel assembly, which results would be used to be preliminary data to determine the PCS flow rate and to improve the design of a fuel assembly

  5. A review of microstructural analysis on U3Si2-Al plate-type fuel

    International Nuclear Information System (INIS)

    Ti Zhongxin; Guo Yibai

    1995-12-01

    The microstructure of U 3 Si 2 -Al plate-type fuel, that is the microstructure of fuel particles, compatibility of the fuel particles and Al matrix, fuel particles distribution, dogbone area morphology, clad and meat thickness, bone quality of clad/frame and clad/fuel core, and the effect of these factors on products quality were comprehensively investigated and analyzed by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), image processing technique, etc.. The main results are as following: U-7.7%Si alloy contains two phases: primary U 3 Si 2 and small amount of USi (about 12%), free-uranium was not detected in fuel particles; the dogbone area is the key factor affecting fuel plate quality (1 ref., 16 figs., 4 tabs.)

  6. On the use of plate-type normal pressure cells in silos

    DEFF Research Database (Denmark)

    Ramirez, Alvaro; Nielsen, Jørgen; Ayuga, F.

    2010-01-01

    the interpretation of results. Once the cells have been delivered from the manufacturer to the researcher, they should be calibrated and validated with reference to the measurement of pressure from a granular material against a silo wall. Two related papers deal with a specific plate-type normal pressure cell...... for use in an installation of three full-scale steel silos with different hopper eccentricities (concentric, half-eccentric and full-eccentric) as part of a silo research project. It was found to be necessary to validate the performance of the cells when measuring pressures in the silos in order to arrive...... at a solid basis for the interpretation of the pressure measurements in the silo installation aforementioned. This paper presents calibration results from three investigated methods as well as results from a finite element analysis of the plate deflection of the pressure cell which were performed to evaluate...

  7. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  8. Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C

    International Nuclear Information System (INIS)

    Cai, Kai; Huang, Chengcheng; Guo, Dong

    2017-01-01

    We report an Aurivillius-type piezoelectric ceramic (Ca 1−2x (LiCe) x Bi 4 Ti 3.99 Zn 0.01 O 15 ) that has an ultrahigh Curie temperature (T c ) around 800 °C and a significantly enhanced piezoelectric coefficient (d 33 ), comparable to that of textured ceramics fabricated using the complicated templating method. Surprisingly, the highest d 33 of 26 pC/N was achieved at an unexpectedly low sintering temperature (T s ) of only 920 °C (∼200 °C lower than usual) despite the non-ideal density. Study of different synthesized samples indicates that a relatively low T s is crucial for suppressing Bi evaporation and abnormal grain growth, which are indispensable for high resistivity and effective poling due to decreased carrier density and restricted anisotropic conduction. Because the layered structure is sensitive to lattice defects, controlled Bi loss is considered to be crucial for maintaining structural order and spontaneous polarization. This low-T s system is very promising for practical applications due to its high piezoelectricity, low cost and high reproducibility. Contrary to our usual understanding, the results reveal that a delicate balance of density, Bi loss and grain morphology achieved by adjusting the sintering temperature is crucial for the enhancing performance in Aurivillius-type high- T c ceramics. (paper)

  9. A numerical analysis on the heat transfer and pressure drop characteristics of welding type plate heat exchangers

    International Nuclear Information System (INIS)

    Jeong, Jong Yun; Kang, Yong Tae; Nam, Sang Chul

    2008-01-01

    Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is H 2 O/LiBr solution with the LiBr concentration of 50∼60% in mass. The numerical simulation show reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems

  10. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    Science.gov (United States)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-02-01

    Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  11. Axial holdup in pulsed perforated-plate column of pulser feeder type, (2)

    International Nuclear Information System (INIS)

    Ikeda, Hidematsu; Suzuki, Atsuyuki; Kiyose, Ryohei.

    1987-01-01

    In mathematical models for a pulsed perforated-plate column, the dispersed phase holdup has been considered to be uniform throughout the length of the column, but fairly recently it is treated as being nonuniform. In the previous paper, the axial holdup data were obtained in the dispersed aqueous and the dispersed organic modes. Experimental results showed that the axial holdup data become nonuniform throughout the column. It was also found that both of the plate type and the operation mode affected the axial holdup distribution. The present work is an attempt to formulate the axial holdup by means of a heuristic selforganization method that provides a nonlinear prediction model of complex system, since the holdup data did not directly show so significant trend as to formulate the axial holdup. The Group Method of Data Handling (GMDH) is used for this purpose. The GMDH can be used for selection and synthesis of input variables concerned with the axial holdup for the pulsed perforated-plate column. The axial holdup data have been successfully correlated and the identification models could be useful in discussing mathematical models. (author)

  12. Functional Results of Unstable (Type 2 Distal Clavicle Fractures Treated with Superior Anterior Locking Plate

    Directory of Open Access Journals (Sweden)

    Rajesh Govindasamy

    2017-11-01

    Full Text Available Background: The treatment of distal clavicle fracture is always a challenge, as it is mostly unstable and has higherrate of delayed union, malunion, non-union and associated acromioclavicular arthritis. So the management of thesefractures remains controversial. The purpose of this study is to evaluate the functional results of Type 2 distal endclavicle fractures treated with superior anterior locking plate.Methods: From June 2011 to August 2015 a retrospective study of12 male patients (mean age of 41.3 years 11 withunilateral and 1 with bilateral distal clavicle fractures treated with superior anterior locking plate was done. They wereevaluated at regular intervals with mean follow up of 14 months(12-18 months.Those with minimum one year followup were included in our study. All were evaluated for the functioning of the shoulder joint by both Oxford shoulder scoreand Quick DASH scores, rate of bone union, complications and earliest time for return to work.Results: All fractures union seen within 6-8 weeks (mean time: 7.1 weeks.All had good shoulder range of motion. Theaverage oxford shoulder and Quick DASH score were 46.2 and 6.5.There were no major complications in our studyviz. non-union, plate failure, secondary fracture. But one patient had superficial wound infection. All patients returned towork within 3 months of postoperative period.Conclusion: Displaced distal clavicle fractures treated with superior anterior locking plates achieved excellent resultsin terms of bony union with rarely any complications and demonstrate promising results with this novel technique.

  13. [Treatment of type C intercondylar fractures of distal humerus using dual plating].

    Science.gov (United States)

    Liu, Ya-Ke; Xu, Hua; Liu, Fan; Wang, You-Hua; Tao, Ran; Cao, Yi; Wang, Hong; Zhou, Zhen-Yu; Zhu, Yong

    2009-06-15

    To evaluate the clinical outcome of dual plating in the treatment of humeral intercondylar type-C fractures in adults. From June 2004 to October 2007, 38 cases of type-C distal humeral fractures were stabilised with dual plating. There were 21 males and 17 females. The average age was 43 years with a range from 21 to 71 years. According to the AO classification, 9 cases were of type C1, 17 of C2 and 12 of C3. The posterior midline approach was selected. Twenty-one cases were exposed through the trans-olecranon osteotomy, 11 through the Campbell (Van Gorder) approach, 6 through triceps sparing approach. Autogenous bone graft was performed in 5 cases because of severe comminution. Thirty-five patients were followed-up for 14-30 months (mean 24.2 months). At the latest follow-up, the elbow flexion averaged 119 degrees (range 90 degrees - 135 degrees ), and the loss of extension averaged 16.2 degrees (range 5 degrees - 25 degrees ). All the patients got bony healing, the average healing period was 14 weeks. The patients were evaluated using the criteria of Aitken and Rorabeek and the scores were 13 excellent, 16 good, 6 fair. Twenty-nine patients (82.9%) had a good or excellent results. Complications included 4 cases of traumatic osteoarthritis, 2 heterotopic ossification, 1 ulnar neuropathy. Infection as well as loosening or breakage of the implant was not found. The dual plating is able to provide rigid fixation for the humeral intercondylar fractures. In addition, it can allow early functional exercise after operation, decrease the related complications significantly, and improve the functional results.

  14. Stable and unstable crack growth in Type 304 stainless steel plate

    International Nuclear Information System (INIS)

    Yagawa, G.

    1984-01-01

    Experimental and theoretical results on stable as well as unstable fractures for Type 304 stainless steel plates with a central crack subjected to tension force are given. In the experiment using a testing machine with a special spring for high compliance, the transition points from the stable to the unstable crack growth are observed and comparisons are made between the test results and the finite element solutions. A round robin calculation for the elastic-plastic stable crack growth using one of the specimens mentioned above is also given. (orig.)

  15. Pseudo-cubic thin-plate type Spline method for analyzing experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F de

    1994-12-31

    A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs.

  16. Pseudo-cubic thin-plate type Spline method for analyzing experimental data

    International Nuclear Information System (INIS)

    Crecy, F. de.

    1993-01-01

    A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs

  17. Investigation of plate-type barrier ozonizers with AC and pulse power supplies

    International Nuclear Information System (INIS)

    Krasnij, V.V.; Gubarev, S.P.; Pogoghev, D.P.; Sokolova, O.T.

    2002-01-01

    In this paper the experimental results on the investigation of plate-type reactors operated on the base of barrier discharge have been presented. Different reactors with planar, strip, and trench electrodes were investigated. Such reactors operated under atmospheric pressure with ac and pulse power sources with voltage of up to 10 kV, frequency up to 12 kHz. Using atomized spectroscopy system the measurements of the main specifications of the reactors such as ozone yielding rate, the temperature in the reactor and the air flow rate were carried out

  18. Experimental study on the heat transfer characteristics in corrugated and flat plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hun; Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June [Busan National Univ., Busan (Korea, Republic of); Lim, Hyeok [DHT, Busan (Korea, Republic of)

    2003-07-01

    An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, the temperature and the pressure drop were measured. Furthermore, heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  19. Post-pulse detail metallographic examinations of low-enriched uranium silicide plate-type miniature fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1991-10-01

    Pulse irradiation at Nuclear Safety Research Reactor (NSRR) was performed using low-enriched (19.89 w% 235 U) unirradiated silicide plate-type miniature fuel which had a density of 4.8 gU/cm 3 . Experimental aims are to understand the dimensional stability and to clarify the failure threshold of the silicide plate-type miniature fuel under power transient conditions through post-pulse detail metallographic examinations. A silicide plate-type miniature fuel was loaded into an irradiation capsule and irradiated by a single pulse. Deposited energies given in the experiments were 62, 77, 116 and 154 cal/g·fuel, which lead to corresponding peak fuel plate temperatures, 201 ± 28degC, 187 ± 10degC, 418 ± 74degC and 871 ± 74degC, respectively. Below 400degC, reliability and dimensional stability of the silicide plate fuel was sustained, and the silicide plate fuel was intact. Up to 540degC, wall-through intergranular crackings occurred in the Al-3%Mg alloy cladding. With the increase of the temperature, the melting of the aluminum cladding followed by recrystallization, the denudation of fuel core and the plate-through intergranular cracking were observed. With the increase of the temperature beyond 400degC, the bowing of fuel plate became significant. Above the temperature of 640degC molten aluminum partially reacted with the fuel core, partially flowed downward under the influence of surface tension and gravity, and partially formed agglomerations. Judging from these experimental observations, the fuel-plate above 400degC tends to reduce its dimensional stability. Despite of the apparent silicide fuel-plate failure, neither generation of pressure pulse nor that of mechanical energy occurred at all. (J.P.N.)

  20. Neutronics comparative analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON and DONJON are applied and verified in calculations of research reactors. • Continuous-energy Monte Carlo calculations by RMC are chosen as the references. • “ECCO” option of DRAGON is suitable for the calculations of research reactors. • Manual modifications of cross-sections are not necessary with DRAGON and DONJON. • DRAGON and DONJON agree well with RMC if appropriate treatments are applied. - Abstract: Simulation of the behavior of the plate-type research reactors such as JRR-3M and CARR poses a challenge for traditional neutronics calculation tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity and large leakage of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON and DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic approach. The goal of this research is to examine the capability of the deterministic code system DRAGON and DONJON to reliably simulate the research reactors. The results indicate that the DRAGON and DONJON code system agrees well with the continuous-energy Monte Carlo simulation on both k eff and flux distributions if the appropriate treatments (such as the ECCO option) are applied

  1. Analysis of gamma heating at TRIGA mark reactor core Bandung using plate type fuel

    International Nuclear Information System (INIS)

    Setiyanto; Tukiran Surbakti

    2016-01-01

    In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities) and central irradiation position (CIP), especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0.87 W/g), but very low value for Lazy Susan position (lest then 0.11 W/g). Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. (author)

  2. [Treatment type C fracture of the distal radius with locking compression plate and external fixators].

    Science.gov (United States)

    Yang, Xiang; Zhao, You-ming; Chen, Lin; Ye, Cong-cong; Guo, Wei-jun; Wang, Bo

    2013-12-01

    To compare efficacy of unilateral external fixators and locking compression plates in treating type C fractures of the distal radius. From January 2009 to June 2010, 76 patients with distal radius fracture were treated with LCP and external fixators, 54 patients were followed up. Among them, 29 cases were male and 25 cases were female with an average age of 45.31 (ranged, 24 to 68) years old. There were 29 patients in LCP group. According to AO classification, 8 cases were type C1, 7 cases were type C2 and 14 cases were type C3. There were 25 cases in external fixators group. According to AO classification, 6 cases were type C1, 8 cases were type C2 and 11 cases were type C3. Radial height, volar tilt and radial inclination were compared, advanced Gartland-Werley scoring were used to assessed wrist joint function after 6 and 12 months' following up. Two cases were suffered from nail infection in external fixators group. Fifty-four patients were followed up from 12 to 24 months with an average of 21.3 months. Radial height was (9.60 +/- 0.72) mm, volar tilt was (9.55 +/- 0.80) degrees and radial inclination was (21.40 +/- 0.78) degrees in LCP group,while those were (9.40 +/- 0.70) mm, (9.47 +/- 0.71) degrees and (21.20 +/- 0.73) degrees in external fixtors group, and with no statistical significance (P>0.05). Advanced Gartland-Werley score after 6 months' following up was 3.31 +/- 1.17 in LCP group, 5.56 +/- 1.58 in external fixtors group, and with significant difference (t=-5.99,Pmeaning (t=-1.55, P>0.05). LCP and external fixtors can receive good curative effects in treating type C distal radius fracture, and LCP can obtain obviously short-term efficacy, while there is no significant difference between two groups in long-term results. For serious distal radius comminuted fracture which unable to plate internal fixation, external fixators is a better choice.

  3. Evaluation of variables which affect the hardness of nickel plate deposited from watts-type baths

    International Nuclear Information System (INIS)

    Petit, G.S.; Wright, R.R.; Neff, W.A.

    1976-01-01

    In the course of the Cascade Improvement Program, many component equipment parts will be electroplated with nickel for corrosion protection. The maximum hardness which will be acceptable in the electroplated deposit is specified in Union Carbide's Job Specification JS-1396, Revision 3, entitled Electroplated Nickel Coatings on Steel Parts. The hardness specification is intended primarily as a control over both organic and inorganic impurities in the deposit. This report covers a study evaluating several of the numerous controllable variables which influence the hardness of the nickel plate deposited from a Watts-type bath. The variables tested were: 1) bath composition, 2) pH, 3) current density, 4) anode-cathode area ratio, and 5) bath temperature. Within the tested ranges of the variables studied, the pH and current density had the most influence on the plate hardness. The softest deposit was obtained with a bath pH of 1.5, a current density of 30 to 40 amperes/square foot, and with the anode-cathode area ratio in the range of 3:1 to 1:1

  4. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  5. Vertical steam generator with slab-type tube-plate with even tube bundle washing

    International Nuclear Information System (INIS)

    Manek, O.; Masek, V.; Motejl, V.; Quitta, R.

    1980-01-01

    A shielding plate supporting the tubes attached to the tube plate of a vertical steam generator is mounted above the tube plate. Tube sleeves are designed with a dimensional tolerance relative to the heat transfer tubes and the sleeve end and the tube plate end. A separate space is thus formed above the tube plate in which circulation or feed water is introduced to flow between the branch and the heat transfer tube. This provides intensive washing of heat transfer tubes at a critical point and prevents deposit formation, thus excluding heat transfer tube failures. (J.B.)

  6. The technique for determination of surface contamination by uranium on U3Si2-Al plate-type fuel elements

    International Nuclear Information System (INIS)

    Li Shulan; He Fengqi; Wang Qingheng; Han Jingquan

    1993-04-01

    The NDT method for determining the surface contamination by uranium on U 3 Si 2 -Al plate-type fuel elements, the process of standard specimen preparation and the graduation curve are described. The measurement results of U 3 Si 2 -Al plate-type fuel elements show that the alpha counting method to measure the surface contamination by uranium on fuel plate is more reliable. The UB-1 type surface contamination meter, which was recently developed, has many advantages such as high sensitivity to determine the uranium pollution, short time in measuring, convenience for operation, and the minimum detectable amount of uranium is 5 x 10 -10 g/cm 2 . The measuring device is controlled by a microcomputer. Besides data acquisition and processing, it has functions of statistics, output data on terminal or to printer and alarm. The procedures of measurement are fully automatic. All of these will meet the measuring needs in batch process

  7. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  8. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  9. Utilization of radiographic and ultrasonic testing for an evaluation of plate type fuel elements during manufacturing stages

    International Nuclear Information System (INIS)

    Brito, Mucio Jose Drummond de; Silva Junior, Silverio Ferreira da; Messias, Jose Marcos; Braga, Daniel Martins; Paula, Joao Bosco de

    2005-01-01

    Structural discontinuities can be introduced in the plate type fuel elements during the manufacturing stages due to mechanical processing conditions. The use of nondestructive testing methods to monitoring the fuel elements during the manufacturing stages presents a significant importance, contributing for manufacturing process improvement and cost reducing. This paper describes a procedure to be used detection and evaluation of structural discontinuities in plate type fuel elements during the manufacturing stages using the ultrasonic testing method and the radiographic testing method. The main results obtained are presented and discussed. (author)

  10. Failure criterion of concrete type material and punching failure analysis of thick mortar plate

    International Nuclear Information System (INIS)

    Ohno, T.; Kuroiwa, M.; Irobe, M.

    1979-01-01

    In this paper falure surface of concrete type material is proposed and its validity to structural analysis is examined. The study is an introductory part of evaluation for ultimate strength of reinforced and prestressed concrete structures in reactor technology. The failure surface is expressed in a linear form in terms of octahedral normal and shear stresses. Coefficient of the latter stress is given by a trigonometric series in threefold angle of similarity. Hence, its meridians are multilinear and traces of its deviatoric sections are smooth curves having periodicity of 2π/3 around space diagonal in principal stress space. The mathematical expression of the surface has an arbitraty number of parameters so that material test results are well reflected. To confirm the effectiveness of proposed failure criterion, experiment and numerical analysis by the finite element method on punching failure of thick mortar plate in axial symmetry are compared. In the numerical procedure yield surface of the material is assumed to exist mainly in compression region, since a brittle cleavage or elastic fracture occurs in the concrete type material under stress state with tension, while a ductile or plastic fracture occurs under compressive stress state. (orig.)

  11. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  12. Benefits and harms of locking plate osteosynthesis in intraarticular (OTA Type C) fractures of the proximal humerus: A systematic review

    DEFF Research Database (Denmark)

    Brorson, Stig; Rasmussen, Jeppe Vejlgaard; Frich, Lars Henrik

    2012-01-01

    stable plates in AO/OTA Type C fractures of the proximal humerus. METHODS: We conducted an iterative search in PubMed, Embase, Cochrane Library, Web of Science, Cinahl, and PEDro in all languages from 1999 to November 2010. Eligible studies should study the outcome for Type C fractures after primary...... according to study type and synthesised qualitatively. No randomised clinical trials were identified. Two comparative, observational studies reported a mean CS of 71 (relative to contralateral shoulder) and 75 (non-adjusted Constant Score) for Type C fractures. For all studies mean non-adjusted CS ranged......INTRODUCTION: Locking plate osteosynthesis of proximal humeral fractures are widely recommended and used, even in complex intraarticular fracture patterns such as AO/OTA Type C fractures. We systematically reviewed clinical studies assessing the benefits and harms of osteosynthesis with angle...

  13. Effect of Al2O3 on the sintering of garnet-type Li6.5La3Zr1.5Ta0.5O12

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing; Yan, Pengfei; Xiao, Jie; Lu, Xiaochuan; Zhang, Ji-Guang; Sprenkle, Vincent L.

    2016-10-01

    It is widely recognized that Al plays a dual role in the fabrication of garnet-type solid electrolytes, i.e., as a dopant that stabilizes the cubic structure and a sintering aid that facilitates the densification. However, the sintering effect of Al2O3 has not been well understood so far because Al is typically “unintentionally” introduced into the sample from the crucible during the fabrication process. In this study, we have investigated the sintering effect of Al on the phase composition, microstructure, and ionic conductivity of Li6.5La3Zr1.5Ta0.5O12 by using an Al-free crucible and intentionally adding various amounts of γ-Al2O3. It was found that the densification of Li6.5La3Zr1.5Ta0.5O12 occurred via liquid-phase sintering, with evidence of morphology change among different compositions. Among all of the compositions, samples with 0.05 mol of Al per unit formula of garnet oxide (i.e., 0.3 wt% Al2O3) exhibited the optimal microstructure and the highest total ionic conductivity of 5 10-4 S cm-1 at room temperature.

  14. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  15. Thermal Hydraulic Fortran Program for Steady State Calculations of Plate Type Fuel Research Reactors

    International Nuclear Information System (INIS)

    Khedr, H.

    2008-01-01

    The safety assessment of Research and Power Reactors is a continuous process over their life and that requires verified and validated codes. Power Reactor codes all over the world are well established and qualified against a real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume much more running time. On the other hand, most of the Research Reactor codes still requiring more data for validation and qualification. Therefore it is benefit for a regulatory body and the companies working in the area of Research Reactor assessment and design to have their own program that give them a quick judgment. The present paper introduces a simple one dimensional Fortran program called THDSN for steady state best estimate Thermal Hydraulic (TH) calculations of plate type fuel RRs. Beside calculating the fuel and coolant temperature distribution and pressure gradient in an average and hot channel the program calculates the safety limits and margins against the critical phenomena encountered in RR such as the burnout heat flux and the onset of flow instability. Well known TH correlations for calculating the safety parameters are used. THDSN program is verified by comparing its results for 2 and 10 MW benchmark reactors with that published in IAEA publications and good agreement is found. Also the program results are compared with those published for other programs such as PARET and TERMIC. An extension for this program is underway to cover the transient TH calculations

  16. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro, E-mail: duvan.castellanos@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: pedro.rossi@ufabc.edu.br, E-mail: pedro.carajilescov10@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharias, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  17. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    International Nuclear Information System (INIS)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro

    2017-01-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  18. ANALYSIS OF GAMMA HEATING AT TRIGA MARK REACTOR CORE BANDUNG USING PLATE TYPE FUEL

    Directory of Open Access Journals (Sweden)

    Setiyanto Setiyanto

    2016-10-01

    Full Text Available ABSTRACT In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities and central irradiation position (CIP, especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0,87 W/g, but very low value for Lazy Susan position (lest then 0,11 W/g. Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. Keywords: gamma heating, nuclear reactor, research reactor, reactor safety.   ABSTRAK Dengan dihentikannya produksi elemen bakar reaktor jenis Triga oleh produsen, maka semua reaktor TRIGA di dunia terganggu operasinya, termasuk juga reaktor TRIGA 2000 di Bandung. Untuk mendukung pengoperasian reaktor TRIGA Bandung

  19. [Triple no loop Endobutton plate combined with Orthcord line for the treatment of acromioclavicular dislocation of Tossy type III].

    Science.gov (United States)

    Xia, Ming-Hua; Xie, Shui-Hua; Wu, Jun; Zhang, Wen-Qing; Chen, Wei-Dong; He, Jian-Hua; Ding, Hao; Hu, Qian-Qin; Wang, Xiao-Peng

    2016-07-25

    To explore the clinical effects of the triple no loop Endobutton plate combined with Orthcord line in treating acromioclavicular dislocation of Tossy type III. Between February 2011 and September 2013, 36 patients with acromioclavicular dislocation of Tossy type III were treated with triple no loop Endobutton plate and Orthcord line. There were 21 males and 15 females, aged from 9 to 48 years old with an average of (26.41±14.05) years. Couse of disease was from 2 to 7 days in the patients. The patients had the clinical manifestations such as shoulder pain, extension limited, acromioclavicular tenderness, positive organ point sign. Clinical effects were assessed by acromioclavicular scoring system. Thirty six patients were followed up from 8 to 15 months with an average of (12.2±4.3) months. All incisions got primary healing. At the final follow up, all shoulder pain vanished, acromioclavicular joints without tenderness, negative organ point sign. No redislocation and steel plate loosening were found. According to the acromioclavicular scoring system, 31 cases obtained excellent results, 5 good. The method of triple no loop Endobutton plate combined with Orthcord line for acromioclavicular dislocation of Tossy type III has advantage of less risk and complication, good functional rehabilitation and is an ideal method.

  20. Technical report: technical development on the silicide plate-type fuel experiment at nuclear safety research reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Soyama, Kazuhiko; Ichikawa, Hiroki

    1991-08-01

    According to a reduction of fuel enrichment from 45 w/o 235 U to 20 w/o, an aluminide plate-type fuel used currently in the domestic research and material testing reactors will be replaced by a silicide plate-type one. One of the major concern arisen from this alternation is to understand the fuel behavior under simulated reactivity initiated accident (RIA) conditions, this is strongly necessary from the safety and licensing point of view. The in-core RIA experiments are, therefore, carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute (JAERI). The silicide plate-type fuel consisted of the ternary alloy of U-Al-Si as a meat with uranium density up to 4.8 g/cm 3 having thickness by 0.51 mm and the binary alloy of Al-3%Mg as a cladding by thickness of 0.38 mm. Comparison of the physical properties of this metallic plate fuel with the UO 2 -zircaloy fuel rod used conventionally in commercial light water reactors shows that the heat conductivity of the former is of the order of about 13 times greater than the latter, however the melting temperature is only one-half (1570degC). Prior to in-core RIA experiments, there were some difficulties lay in our technical path. This report summarized the technical achievements obtained through our four years work. (J.P.N.)

  1. Simplified CFD model of coolant channels typical of a plate-type fuel element: an exhaustive verification of the simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mantecón, Javier González; Mattar Neto, Miguel, E-mail: javier.mantecon@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The use of parallel plate-type fuel assemblies is common in nuclear research reactors. One of the main problems of this fuel element configuration is the hydraulic instability of the plates caused by the high flow velocities. The current work is focused on the hydrodynamic characterization of coolant channels typical of a flat-plate fuel element, using a numerical model developed with the commercial code ANSYS CFX. Numerical results are compared to accurate analytical solutions, considering two turbulence models and three different fluid meshes. For this study, the results demonstrated that the most suitable turbulence model is the k-ε model. The discretization error is estimated using the Grid Convergence Index method. Despite its simplicity, this model generates precise flow predictions. (author)

  2. Simplified CFD model of coolant channels typical of a plate-type fuel element: an exhaustive verification of the simulations

    International Nuclear Information System (INIS)

    Mantecón, Javier González; Mattar Neto, Miguel

    2017-01-01

    The use of parallel plate-type fuel assemblies is common in nuclear research reactors. One of the main problems of this fuel element configuration is the hydraulic instability of the plates caused by the high flow velocities. The current work is focused on the hydrodynamic characterization of coolant channels typical of a flat-plate fuel element, using a numerical model developed with the commercial code ANSYS CFX. Numerical results are compared to accurate analytical solutions, considering two turbulence models and three different fluid meshes. For this study, the results demonstrated that the most suitable turbulence model is the k-ε model. The discretization error is estimated using the Grid Convergence Index method. Despite its simplicity, this model generates precise flow predictions. (author)

  3. Investigations of a type 316L steam dryer plate material suffering from IGSCC after few years in BWRs

    International Nuclear Information System (INIS)

    Autio, J.M.; Ehrnsten, U.; Pakarinen, J.; Mouginot, R.; Cocco, M.

    2015-01-01

    A steam dryer plate material suffered from intergranular stress corrosion cracking after only one and two years of operation in two BWR plants. Numerous indications were observed on the inner roof plates of the steam dryers adjacent to the support beam welds. The material was Type 316L austenitic stainless steel with carbon content below 0.02%. The material was subjected to detailed investigations using optical microscopy, EBSD/SEM, TEM, hardness and nano-indentation. The material showed macro-segregation through the plate thickness. These bands coincided with the location of delta-ferrite islands indicating non-optimal solution heat treatment. α'-martensite was observed deep in the plate indicating cold deformation after solution annealing. A nonhomogeneous distribution of grain orientation was also observed through the plate thickness. Further, surface deformation, although not extending very deep, was observed using EBSD and surface hardness values above 300 HV when measured using small loads. Although the material fulfills the set requirements, the material characteristics have obviously increased the susceptibility of the material to IGSCC. The paper will discuss the possible role of changes in manufacturing over the years and the challenges in quality definitions in material specifications. (authors)

  4. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    OpenAIRE

    Itamar Iliuk; José Manoel Balthazar; Ângelo Marcelo Tusset; José Roberto Castilho Piqueira

    2016-01-01

    Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was prop...

  5. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  6. Improvement of critical heat flux correlation for research reactors using plate-type fuel

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Yamamoto, Kazuyoshi; Sudo, Yukio

    1998-01-01

    In research reactors, plate-type fuel elements are generally adopted so as to produce high power densities and are cooled by a downward flow. A core flow reversal from a steady-state forced downward flow to an upward flow due to natural convection should occur during operational transients such as Loss of the primary coolant flow'. Therefore, in the thermal hydraulic design of research reactors, critical heat flux (CHF) under a counter-current flow limitation (CCFL) or a flooding condition are important to determine safety margins of fuel against CHF during a core flow reversal. The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition. When the CHF correlation scheme was proposed, a subcooling effect for CHF correlation under CCFL condition had not been considered because of a conservative evaluation and a lack of enough CHF data to determine the subcooling effect on CHF. A too conservative evaluation is not appropriate for the design of research reactors because of construction costs etc. Also, conservativeness of the design must be determined precisely. In this study, therefore, the subcooling effect on CHF under the CCFL conditions in vertical rectangular channels heated from both sides were investigated quantitatively based on CHF experimental results obtained under uniform and non-uniform heat flux conditions. As a result, it was made clear that CHF in this region increase linearly with an increase of the channel inlet subcooling and a new CHF correlation including the effect of channel inlet subcooling was proposed. The new correlation could be adopted under the conditions of the atmospheric pressure, the inlet subcooling less than 78K, the channel gap size between 2.25 to 5.0mm, the axial peaking factor between 1.0 to 1.6 and L/De between 71 to 174 which were the ranges investigated in this study. (author)

  7. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  8. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures

    Science.gov (United States)

    Shi, Binkai; Qiao, Pizhong

    2018-03-01

    Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.

  9. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  10. Quantitative determination of uranium distribution homogeneity in MTR fuel type plates

    International Nuclear Information System (INIS)

    Ferrufino, Felipe Bonito Jaldin

    2011-01-01

    IPEN/CNEN-SP produces the fuel to supply its nuclear research reactor IEA-R1. The fuel is assembled with fuel plates containing an U 3 Si 2 -Al composite meat. A good homogeneity in the uranium distribution inside the fuel plate meat is important from the standpoint of irradiation performance. Considering the lower power of reactor IEA-R1, the uranium distribution in the fuel plate has been evaluated only by visual inspection of radiographs. However, with the possibility of IPEN to manufacture the fuel for the new Brazilian Multipurpose Reactor (RMB), with higher power, it urges to develop a methodology to determine quantitatively the uranium distribution into the fuel. This paper presents a methodology based on X-ray attenuation, in order to quantify the uranium concentration distribution in the meat of the fuel plate by using optical densities in radiographs and comparison with standards. The results demonstrated the inapplicability of the method, considering the current specification for the fuel plates due to the high intrinsic error to the method. However, the study of the errors involved in the methodology, seeking to increase their accuracy and precision, can enable the application of the method to qualify the final product. (author)

  11. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  12. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  13. A functional-type a posteriori error estimate of approximate solutions for Reissner-Mindlin plates and its implementation

    Science.gov (United States)

    Frolov, Maxim; Chistiakova, Olga

    2017-06-01

    Paper is devoted to a numerical justification of the recent a posteriori error estimate for Reissner-Mindlin plates. This majorant provides a reliable control of accuracy of any conforming approximate solution of the problem including solutions obtained with commercial software for mechanical engineering. The estimate is developed on the basis of the functional approach and is applicable to several types of boundary conditions. To verify the approach, numerical examples with mesh refinements are provided.

  14. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  15. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  16. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  17. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  18. Transmission type Sc/Cr multilayers as a quarter-wave plate for 398.6 eV

    International Nuclear Information System (INIS)

    Kimura, H.; Hirono, T.; Tamenori, Y.; Saitoh, Y.; Salashchenko, N.N.; Ishikawa, T.

    2004-01-01

    Full text: Full polarization measurement using a phase shifter and a polarizer is needed to determine the degree of circular polarization. A quarter-wave plate, which is a phase shifter having retardation of 90 deg., is especially desired for accurate determination of the full polarization measurement for highly circularly polarized light. In the soft x-ray region, a self-standing multilayer with high reflectance can be used as a phase shifter having large retardation angle under transmission geometry. In this region, Mo/Si multilayer has been reported as a quarter-wave plate for photon energy of 97 eV. To perform the full polarization measurement in higher photon energy, we newly developed a quarter-wave plate by transmission type Sc/Cr multilayer. Polarization characteristics of the multilayer were measured by mean of rotating analyzer ellipsometry method using a linearly polarized SR of 398.6 eV. Figure 1 shows the retardation of the multilayer (Sc/Cr, d = 3.15 nm, 300 pairs). As is shown the phase shifter can be used as a quarter-wave plate at the incident angle of 59.7 deg. At this angle its transmittance for p-component and the ratio of those for p- and s-component were 0.4 % and 1.47, respectively

  19. Periprosthetic Vancouver type B1 and C fractures treated by locking-plate osteosynthesis

    DEFF Research Database (Denmark)

    Froberg, Lonnie; Troelsen, Anders; Brix, Michael

    2012-01-01

    Historically, the treatment of periprosthetic femoral fractures (PFFs) has been associated with a high frequency of complications and reoperations. The preferred treatment is internal fixation, a revision of the femoral stem, or a combination of both. An improved understanding of plate use during...

  20. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    Directory of Open Access Journals (Sweden)

    Itamar Iliuk

    2016-01-01

    Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.

  1. Rectangular Gusset Plate Behaviour in Cold-Formed I-Type Steel Connections

    Directory of Open Access Journals (Sweden)

    Bučmys Ž.

    2017-06-01

    Full Text Available Cold-formed structure connections utilizing gusset plates are usually semi-rigid. This paper investigates the behaviours of rectangular gusset plates in cold-formed connections of elements whose columns and beams are made with lipped back-to-back C-sections. Methods of calculating strength and stiffness are necessary for such semi-rigid joints. The main task of this paper is to determine a method capable of calculating these characteristics. The proposed analytical method could then be easily adapted to the component method that is described in part 1993-1-8 of the Eurocode. This method allows us to calculate both the strength and stiffness of rectangular gusset plates, assuming that the joint deforms only in plane. This method of design moment resistance calculation was presented taking into account that an entire cross-section shall reach its yield stress. A technique of stiffness calculation was presented investigating the sum of deformations acquired at the bending moment and from shear forces which are transmitted from each beam bolt group. Calculation results according to the suggested method show good agreement of laboratory experimental results of specimens with numerical simulations. Two specimens of beam-to-column connections were tested in the laboratory. Lateral supports were used on the specimens to prevent lateral displacements in order to better investigate the behaviour of the rectangular gusset plate in plane. Experiments were simulated by modelling rectangular gusset plates using standard finite element software ANSYS Workbench 14.0. Three-dimensional solid elements were used for modelling and both geometric and material nonlinear analysis was performed.

  2. Improvement of visualization efficiency for the nondestructive inspection image of internal defects in plate type nuclear fuel

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Lee, Yoon Sang; Cheong, Yong Moo; Kang, Young June

    2012-01-01

    Plate type nuclear fuel has been adopted in most research reactors. The production quality of the fuel is a key part for an efficient and stable generation of thermal energy in research reactors. Thus, a nondestructive quality inspection for the internal defects of plate type nuclear fuel is a key process during the production of nuclear fuel for safety insurance. Nondestructive quality inspections based on X rays and ultrasounds have been widely used for the defect detection of plate type nuclear fuel. X ray testing is a simple and fast inspection method, and provides an image in real time as the inspection results. Thus, the testing can be carried out by a non expert field worker. However, it is hard to detect closed type defects that should be detected during the production of plate type nuclear fuel. Ultrasonic testing is a powerful tool to detect internal defects including open type and closed type defects in plate type nuclear fuel. However, the inspection process is complicated because an immersion test should be carried out in a water tank. It is also a time consuming inspection method because area testing to acquire image is based on the scanning of the point by point inspections. Among nondestructive inspection techniques, the techniques based on laser interferometry and infrared thermography have been widely used in the detection of internal defects of plate type composite materials, such as aircraft, automotive etc. While infrared thermography technique (IRT) analyses the thermal behavior of the specimen surface, laser interferometry technique (LIT) analyses the deformation field. Both techniques are useful tools for detection and evaluation of internal defects in composite materials. Especially, the laser interferometry technique can provide the depth information of internal defects. Laser interferometry technique (LIT) is a non contact inspection method faster than thermography. Also, this technique requires less energy than thermography and the

  3. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  4. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  5. Kinetics of UO2 sintering

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    Detailed conclusions related to the UO 2 sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO 2 sintering process

  6. Development of the uranium recovery process from rejected fuel plates in the fabrication of MTR type nuclear fuel

    International Nuclear Information System (INIS)

    Fleming Rubio, Peter Alex

    2010-01-01

    The current work was made in Conversion laboratory belonging to Chilean Nuclear Energy Commission, CCHEN. This is constituted by the development of three hydrometallurgical processes, belonging to the recovery of uranium from fuel plates based on uranium silicide (U_3Si_2) process, for nuclear research reactors MTR (Material Testing Reactor) type, those that come from the Fuel Elements Manufacture Plant, PEC. In the manufacturing process some of these plates are subjected to destructive tests by quality requirement or others are rejected for non-compliance with technical specifications, such as: lack of homogenization of the dispersion of uraniferous compound in the meat, as well as the appearance of the defects, such as blisters, so-called "dog bone", "fish tail", "remote islands", among others. Because the uranium used is enriched in 19.75% U_2_3_5 isotope, which explains the high value in the market, it must be recovered for reuse, returning to the production line of fuel elements. The uranium silicide, contained in the plates, is dispersed in an aluminum matrix and covered with plates and frames of ASTM 6061 Aluminum, as a sandwich coating, commonly referred to as 'meat' (sandwich meat). As aluminum is the main impurity, the process begins with this metal dissolution, present in meat and plates, by NaOH reaction, followed by a vacuum filtration, washing and drying, obtaining a powder of uranium silicide, with a small impurities percentage. Then, the crude uranium silicide reacts with a solution of hydrofluoric acid, dissolving the silicon and simultaneously precipitating UF_4 by reaction with HNO_3, obtaining an impure UO_2(NO_3)_2 solution. The experimental work was developed and implemented at laboratory scale for the three stages pertaining to the uranium recovery process, determining for each one the optimum operation conditions: temperature, molarity or concentration, reagent excess, among others (author)

  7. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  8. Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2013-01-01

    We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure...... the reference wave distortion from long-range fields affecting electron holography....

  9. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  10. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  11. Sintering Theory and Practice

    Science.gov (United States)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal

  12. Corrosion of MTR type fuel plates containing U3O8-Al cermet cores

    International Nuclear Information System (INIS)

    Durazzo, M.

    1985-01-01

    The fuel plate samples containing U 3 O 8 -Al cermet cores with concentrations from 10 to 90% of U 3 O 8 weight were fabricated. Samples with 58% of U 3 O 8 eight were fabricated using compacts with densities from 75 to 95% of theoretical density. The influences of U 3 O 8 concentration and porosity of compacted core on porosity and uniformity of core thickness are discussed. The U 3 O 8 -Al cores were submitted to corrosion tests and exposed to deionized water at temperatures of 30, 50, 70 and 90 0 C by cladding deffect produced artificially. The results shown that core corrosion is accompanied by hydrogen release. The total volum of released hydrogen and the time interval to observe the initiation of hydrogen releasing (incubation time) are depending on core pososity and absolute temperature. A mechanism for U 3 O 8 -Al core corrosion process is proposed and discussed. The cladding of fuel plate samples was submitted to corrosion tests under similar conditons of the IAE-R1 reactor operating at 2, 5 and 10 MW. (Author) [pt

  13. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  14. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  15. Quality verification for plate-type uranium-aluminum fuel elements for use in research reactors (Revision 1) - July 1976

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Paragraph (a) (7) of 50.34, Contents of Applications: Technical Information, of 10 CFR Part 50, Licensing of Production and Utilization Facilities, requires that each applicant for a construction permit to build a production or utilization facility include in its Preliminary Safety Analysis Report (PSAR) a description of the quality assurance program to be applied to the design, fabrication, construction, and testing of the structures, systems, and components of the facility. The Regulatory Guide presented describes a method acceptable to the NRC staff for establishing and executing a quality assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research reactors

  16. Locking plate versus external fixation for type C distal radius fractures: A meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2018-04-01

    Full Text Available Purpose: Distal radial fracture is one of the most common fractures. Up to now, locking plates (LP and external fixation (EF are two conventional surgical approaches to type C radius fracture. Which method is superior has not yet reached a consensus. We try to assess the clinical effectiveness of the two interventions by this meta-analysis. Methods: We used network to search the PubMed, Embase, and Cochrane Medical Library of randomized controlled clinical trials about the type C distal radius fractures performed according to the search strategy mentioned in Cochrane Handbook 5.1.0 from Jan. 2005 to Jan. 2016. Patients in the experimental group were used LP, in the control group were included EF and other surgical approaches. Publication language was restricted to English. Studies that patient population and surgical indication did not define had been excluded. Studies must report at least one of the outcomes as follow: radial inclination, palmar tilt, ulnar variance, range of wrist flexion and extension, and range of wrist supination and pronation. The trials in which participants included children were excluded. We used Jadad study scores to appraise the study. Results: Seven studies included 162 patients (LP group and 190 patients (EF group. We compared the radial inclination, palmar tilt, ulnar variance, range of wrist flexion and extension, and range of wrist supination and pronation. The radial inclination were revealed a difference favoring LP over EF [WMD = 1.84, 95% CI (0.17, 3.50, p = 0.03] and the palmar tilt and ulnar variance was no significant difference between the two groups [(WMD = 3.61, 95% CI (0.00, 7.23, p = 0.05; WMD = 0.05, 95% CI (−0.99, 1.09, p = 0.93]. The functional activities of range of flexion and extension and range of supination and pronation between the two groups was no difference [WMD = 10.04, 95% CI (−6.88, 26.96, p = 0.24; WMD = 12.53, 95% CI (−9.99, 35.06, p = 0.28]. Conclusion

  17. On a class of problems on interaction of stress concentrators of different types with an elastic semi-infinite plate

    Science.gov (United States)

    Mkhitaryan, S. M.

    2018-04-01

    A class of mixed boundary-value problems of mathematical theory of elasticity dealing with interaction between stress concentrators of different types (such as cracks, absolutely rigid thin inclusions, punches, and stringers) and an elastic semi-infinite plate is considered. The method of Mellin integral transformation is used to reduce solving these problems to solving singular integral equations (SIE). After the governing SIE are solved, the following characteristics of the problem are determined: tangential contact stresses under stringers, dislocation density on the crack edges, breaking stresses outside the cracks on their line of location, the stress intensity factor (SIF), crack openings, jumps of contact stresses on the edges of inclusions.

  18. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  19. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  20. Sintering of composite

    International Nuclear Information System (INIS)

    Bordia, R.K.; Scherer, G.W.

    1988-01-01

    Several constitutive laws have been used in the literature to predict the response of sintering bodies under external and internal stress fields. These analyses are based on the assumptions of linear and isotropic behavior. The authors provide a critical examination of these equations and show that some of the available constitutive laws predict a negative Poisson's ratio. These laws have been used to analyze sintering of ceramic matrix composites with rigid inclusions and predict large values of the internal stresses and significant retardation of the densification of composites. Since a negative value of Poisson's ratio has never been observed in sinter - forging experiments, the authors conclude that either the stresses are small (as predicted by the constitutive laws with positive Poisson's ratio) or the basic assumption of linearity and isotropy used in all the analyses is incorrect. Finally, the authors discuss some phenomena that could be important in understanding the densification of ceramic matrix composites

  1. Evaluation of Corrosion of the Dummy ''EE'' Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    International Nuclear Information System (INIS)

    Brower, Jeffrey Owen; Glazoff, Michael Vasily; Eiden, Thomas John; Rezvoi, Aleksey Victor

    2016-01-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, several thousand of the flow-assisted corrosion pits and ''horseshoeing'' defects were readily observable on the surface of the several YA-type fuel elements (these are ''dummy'' plates that contain no fuel). In order understand these corrosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth ''S'' curve, was represented by a series temperature rise ''humps,'' which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed sscalloping and possibly pitting degradation on the YA-M fuel elements. In the case

  2. PREPARATION OF ZEOLITE X COATINGS ON SODA-LIME TYPE GLASS PLATES

    Directory of Open Access Journals (Sweden)

    M. Tatlier

    Full Text Available Abstract The dissolution of glass in highly alkaline reaction mixtures and the impact of this phenomenon on zeolite coating formation were investigated. Coating samples were prepared and characterized by X-ray diffraction (XRD, field emission gun scanning electron microscopy (FEGSEM and thermogravimetry (TG. It was demonstrated that zeolite X coatings might be prepared on soda-lime glass. Glass dissolved to some degree, up to 2% of its original mass, in the reaction mixtures for the conditions investigated. This dissolution affected the zeolite synthesis taking place on the glass surface, resulting in phases different from those obtained on inert metal surfaces in some cases, especially for the use of reaction mixtures with relatively high Si/Al ratios. The percentage of dissolution of glass plates increased with their decreasing thickness, indicating a surface phenomenon for the dissolution. The stabilities of the coatings, which varied with the synthesis conditions, benefited from the addition of extra thin layers of polyacrylic acid.

  3. Shape modification for decreasing the spring stiffness of double-plate nozzle type spacer grid spring

    International Nuclear Information System (INIS)

    Lee, K. H.; Kang, H. S.; Song, K. N.; Yun, K. H.; Kim, H. K.

    2001-01-01

    Nozzle of the double-plated grid plays the role of the spirng to support a fuel rod as well as the coolant path in grid. The nozzle was known to be necessary to reduce the spring stiffness for supporting performance. In this study, the contact analysis between the fuel rod and the newly designed nozzle was performed by ABAQUS computer code to propose the preferable shape in term of spring performance. Two small cut at the upper and lower part of the nozzle appeared to have a minor effect in decreasing the nozzle stiffness. A long slot at the center of the nozzle was turned out not only to decrease the spring constant as desired but also to increase the elastic displacement

  4. Hydrodynamics of a continuous vertical settling tank of the plate type with separation of extractive emulsions

    International Nuclear Information System (INIS)

    Muratov, V.M.; Lyubimov, V.K.; Rakovets, S.M.; Kucharina, G.G.

    1987-01-01

    The authors present the results of an investigation of the continuous process of separation of extractive emulsion in a long vertical plate-like settling tank used in mixing-settling extractors. The object of study consisted of a section of the mixer-settler with pulsational mixing and a platelike settler 60 mm wide, 1000 mm long, and 300 mm high, made of acrylic plastic. The setup was used to demonstrate the circulation of each of the reagents (phases) in its own contour; they were injected into the mixing chamber by submersible centrifugal pumps, one placed in the volume with the light phase and the other in the volume with the heavy phase. After separation in the settling tank the liquid phases were each continuously poured into their own volume

  5. Method to produce sintered carriers for electrodes of galvanic elements

    Energy Technology Data Exchange (ETDEWEB)

    Jost, E M

    1978-03-24

    Carrier plates of precisely uniform thickness can be produced according to the invention by firstly thickening a solution of polyethylene oxide and (preferably) methanol by adding water and then, by adding nickel powder, obtaining an essentially homogeneous suspension of considerable viscosity. This slurry is coated on both sides of a nickel grid, dried and sintered.

  6. Create Your Plate

    Medline Plus

    Full Text Available ... of the differences in types of vegetables. When creating your plate at home, remember that half of ... effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ... Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and ...

  8. New Universal Tribometer as Pin or Ball-on-Disc and Reciprocating Pin-on-Plate Types

    Directory of Open Access Journals (Sweden)

    H. Kaleli

    2016-06-01

    Full Text Available The present paper contains a description of a new Universal Tribometer design which enables simulation of different contact and test types such as pin-on-disc, ball-on-disc and linear reciprocating tests. There are many models of wear Tribometer in the world market. These devices are manufactured by various companies abroad and are imported to our country. Cost of this devices start from 50.000 euros and goes to hundreds of thousands of euros. One of the most commonly used of this device is Reciprocating Pin-on-Plate Tribo Test Machine. This wear tester is produced at a low limited cost within the KAP (Scientifical Research Project Coordinator of Yıldız Technical University. The test machine can work including three types of Tribotest rigs (Reciprocating Pin-on-Plate, Pin-on-Disc and Ball-on-Disc. It is designed to operate also at high temperatures up to 500 ˚C. The new piece of equipment allows instrumented tribological testing of piston ring and cylinder liner samples at low and high temperatures and boundary lubrication conditions of any typical gasoline or Diesel engines. Some friction results were shown in boundary lubricating conditions between piston ring and cylinder liner sliding pairs describing Tribotest machine is driven by AC servo motor which is more accurate than DC motor.

  9. 2-D FEM Simulation of Propagation and Radiation of Leaky Lamb Wave in a Plate-Type Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Jin; Kim, Hoe-Woong; Joo, Young-Sang; Kim, Sung-Kyun; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted for the radiation beam profile analysis. The FEM simulations are performed with three different excitation frequencies and the radiation beam profiles obtained from FEM simulations are compared with those obtained from corresponding experiments. This paper deals with the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted to analyze the radiation beam profiles. The radiation beam profile results obtained from the FEM simulation show good agreement with the ones obtained from the experiment. This result will be utilized to improve the performance of the developed waveguide sensor. The quality of the visualized image is mainly affected by beam profile characteristics of the leaky wave radiated from the waveguide sensor. However, the relationships between the radiation beam profile and many parameters of the waveguide sensor are not fully revealed yet. Therefore, further parametric studies are necessary to improve the performance of the sensor and the finite element method (FEM) is one of the most effective tools for the parametric study.

  10. Implementation of a quality assurance system for the design and manufacturing of fuel assembly MTR-plate type

    International Nuclear Information System (INIS)

    Koll, J.H.

    1987-01-01

    Since more than 30 years ago, fuel assemblies (FA) of the MTR-Plate type, for research reactors, have been developed and produced using well known technologies, with different methods for the design, manufacturing, quality control and subsequent verification of FA behaviour, as well as of the design data. The FA and its reliability has been improved through the recycling of the obtained information. No nuclear accidents or major incidents have taken place that can be blamed to FA due to design, manufacturing or its use. Since the 70's, the use of Quality Assurance methodology has been increased, especially for Nuclear Power Plants, in order to ensure safety for these reactors. The use of QA for reactors for research, testing or other uses, has also been steadily increased, not only due to safety reasons, but also because of its convenience for a good operation, being presently a common requirement of the operator of the installation. Herewith is described the way the QA system that has been developed for the design, manufacturing, quality control and supply of MTR-plate type FA, at the Development Section of the Argentine Atomic Energy Commission (CNEA). (Author)

  11. Comparison of the Tight Rope Technique and Clavicular Hook Plate for the Treatment of Rockwood Type III Acromioclavicular Joint Dislocation.

    Science.gov (United States)

    Cai, Leyi; Wang, Te; Lu, Di; Hu, Wei; Hong, Jianjun; Chen, Hua

    2018-06-01

    Acromioclavicular joint dislocation is one of the most common shoulder problems and may lead to instability or degenerative changes. The aim of this study was to compare the clinical outcomes of the Tight Rope system and clavicular hook plate for Rockwood type III acromioclavicular joint dislocation in adults. This was a prospective, randomized study in a hospital setting. From January 2012 to December 2014, 69 patients with type III injury were reviewed. Patients were randomly divided into two groups: Group A was treated using the TightRope system and Group B with the clavicular hook plate. All participants were followed up for 12 months. Clinical outcomes, radiological results and postoperative complications were recorded. The length of incision was significantly shorter in Goup A than that in Group B. The blood loss of surgery was significantly less in the Group A. Significant difference could be found between the two groups regarding the Visual Analogue Scale scores one day after surgery, at the 3 and 12 months follow-up. There were no differences according to the improvement of the Constant-Murley score and the coracoclavicular distance between the groups. The two groups have similar clinical and radiological outcomes. Both treatments could relieve the pain of dislocation, improve the function of Acromioclavicular joint and rectify the coracoclavicular distance measured in plain films. However, the TightRope system exhibited some advantages in terms of length of incision, blood loss of surgery, the pain postoperatively and no need for a second surgery.

  12. Evaluation of Erosion of the Dummy ''EE'' Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    International Nuclear Information System (INIS)

    Brower, Jeffrey O.; Glazoff, Michael V.; Eiden, Thomas J.; Rezvoi, Aleksey V.

    2016-01-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR, and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady-state conditions. However, after the cycle was over, when the fuel elements were removed from the core and inspected, several thousand flow-assisted erosion pits and ''horseshoeing'' defects were readily observed on the surface of the several YA-type fuel elements (these are aluminum ''dummy'' plates that contain no fuel). In order to understand these erosion phenomena, a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth ''S'' curve, was represented by a series temperature rise ''humps,'' which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed scalloping and

  13. [Development and clinical application of a new type of anatomical locking plate for sternoclavicular joint fracture and dislocation].

    Science.gov (United States)

    Sun, Yuanlin; Yang, Yunkang; Ge, Jianhua; Yang, Kun; Xiang, Feifan; Zhou, Ju; Liang, Jie

    2018-03-01

    To report a new type of anatomical locking plate for sternocalvicular joint, and investigate its effectiveness in treatment of sternoclavicular joint fracture and dislocation. A new type of anatomical locking plate for sternoclavicular joint was developed, which accorded with the anatomical features and biomechanical characteristics of Chinese sternoclavicular joint. By adopting the method of clinical randomized controlled study, 32 patients with the sternoclavicular joint fracture and dislocation who met the selection criteria between June 2008 and May 2015 were randomly divided into groups A and B ( n =16), and the patients were treated with new anatomic locking plate and distal radial T locking plate internal fixation, respectively. There was no significant difference between 2 groups in gender, age, injured side, body mass index, cause of injury, type of injury, the time from injury to operation, and preoperative Rockwood grading score ( P >0.05). The operation time, intraoperative blood loss, incision length, hospitalization time, and postoperative complications in 2 groups were recorded, and the effectiveness was evaluated by Rockwood grading score. The operations of 2 groups completed successfully. The operation time, intraoperative blood loss, and hospitalization time in group A were significantly less than those in group B ( P case of sternoclavicular joint pain and 2 cases of wound infection; in group B, there were 1 case of sternoclavicular joint pain, 1 case of internal fixation loosening, and 1 case of sternoclavicular joint re-dislocation; there was no significant difference in complication incidence between 2 groups ( P =1.000). The Rockwood grading scores at each time point after operation in 2 groups were significantly higher than those before operation. At 1 month after operation, the Rockwood grading score in group A was significantly higher than that in group B ( t= 2.270, P =0.031); but there was no significant difference in the Rockwood

  14. Effect of sintering temperature on the densification of B4C pellets

    International Nuclear Information System (INIS)

    Gomide, R.G.; Durazzo, M.; Riella, H.G.

    1990-01-01

    Boron is largely used in several types of nuclear reactors control and safety systems. In the majority of these applications sintered boron carbide pellets are used. Near stoichiometric B 4 C hardly densifies during pressureless sintering. As a starting point of an overall program to produce > 70% TD B 4 C pellets pressing parameters have been studied for further study of the influence of sintering temperature in the densification of this ceramic material. Dilatometric analyses show that sintering starts at 1760 0 C for the F 1200 ESK - type boron carbide powders. Moreover, the sintering experiments show that up to 92% TD pellets can be obtained. (author) [pt

  15. PLACA/DPLACA: a code to simulate the behavior of a monolithic/dispersed plate type fuel

    International Nuclear Information System (INIS)

    Denis, Alicia; Soba, Alejandro

    2005-01-01

    The PLACA code was originally built to simulate monolithic plate fuels contained in a metallic cladding, with a gap in between. The international program of high density fuels was recently oriented to the development of a plate-type fuel of a uranium rich alloy with a molybdenum content between 6 to 10 w %, without gap and with a Zircaloy cladding. To give account of these fuels, the DPLACA code was elaborated as a modification of the original code. The extension of the calculation tool to disperse fuels involves a detailed study of the properties and models (still in progress). Of special interest is the material formed by U Mo particles dispersed in an Al matrix. This material has appeared as a candidate fuel for high flux research reactors. However, the interaction layer that grows around the particles has a deleterious effect on the material performance in operation conditions and may represent a limit for its applicability. A number of recent experiments carried out on this material provide abundant information that allows testing of the numerical models. (author)

  16. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Skrifvars, B J; Backman, R; Lauren, T; Uusikartano, T; Malm, H; Stenstroem, P; Vesterkvist, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). During 1996 the work has focused on identifying bed agglomeration mechanisms and analysing bed agglomerates in both full scale and lab scale FB reactors, as well as comparing how well the compression strength based sintering test can predict bed agglomeration in an FB furnace. (orig.)

  17. Pool Structures: A New Type of Interaction Zones of Lithospheric Plate Flows

    Science.gov (United States)

    Garetskyi, R. G.; Leonov, M. G.

    2018-02-01

    Study of tectono-geodynamic clusters of the continental lithosphere (the Sloboda cluster of the East European Platform and the Pamir cluster of Central Asia) permitted identification of pool structures, which are a specific type of zone of intraplate interaction of rock masses.

  18. [Double-plate fixation via combined approaches for the treatment of old tibial plateau fractures of Schatzker type IV].

    Science.gov (United States)

    Tan, Hong-Lue; Dai, Peng-Yi; Liu, Wei-Feng; Yuan, Yan-Hao

    2017-10-25

    To explore the clinical efficacy of double-plate fixation for the treatment of old tibial plateau fractures with Schatzker type IV through anterior midline and posteromedial approaches. From July 2013 to July 2015, 15 patients with old tibial plateau fractures were treated with internal fixation using locking reconstructive plate for the posteromedial fragment and anatomical locking plate for anteromedial fragment through antero midline and posteromedial approaches. There were 9 males and 6 females, with an average age of 49.2 years old (ranged, 21 to 61 years old). Eight patients had injured in the left side and 7 in the right side. According to Schatzker classification, all patients were type IV. The mean interval from injury to operation was 26.5 days (ranged, 21 to 65 days). The main clinical symptoms before operation were knee joint swelling, pain, deformity and limitation of motion. The X-ray and CT confirmed the fracture type. The indexes such as tibial plateau tibial shaft angle (TPA), femoral tibial angle (FTA) and posterior slope angle (PSA) were compared between immediate postoperation and final follow-up using postoperative X-ray film. The knee functions were evaluated using the HSS (Hospital for Special Surgery) knee score system. Two patients had incision complications which healed by correct treatment, 1 patient had traumatic arthritis. All patients were followed up for mean 16.6 months (ranged, 13 to 24 months). No infections, deep venous thrombosis, implant loosening and breakage, fragment displacement, plateau surface collapse and bone nonunion found. The bone union time ranged from 3 to 8 months (mean 6.07 months) after operation. The average immediate postoperative value of TPA, FTA and PSA were(86.81±1.67)°, (168.00±3.29)° and(10.20±1.47)° respectively; and(86.47±1.67)°, (168.53±3.03)° and (10.54±1.21)° respectively at the final follow-up evaluation, showing no statistical differences( P >0.05). According to the HSS score system, 26

  19. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  20. A study on the welding characteristics of Mn-Ni-Mo type A302-C steel plate for pressure vessel

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Chang, Woong Seong; Kweon, Young Gak

    2003-01-01

    In order to develop ASTM A302 grade C type steel plate with excellent weldability, several steels with different chemistry have been manufactured and evaluated their mechanical properties and weldability. Trial A302-C steels have revealed tensile strength in the range of 61-67kg/mm 2 and elongation in the range of 27∼32%, depending on chemical compositions within the ASTM specification range. In case of impact toughness, trial steels showed in the range of 58-70J at 0 .deg. C. From the weldability test, the minimum preheat temperature was found to be about 150 .deg. C, and automatic welding condition satisfied the requirements of both ASTM specification and users

  1. Detection of delamination defects in plate type fuel elements applying an automated C-Scan ultrasonic system

    International Nuclear Information System (INIS)

    Katchadjian, P.; Desimone, C.; Ziobrowski, C.; Garcia, A.

    2002-01-01

    For the inspection of plate type fuel elements to be used in Research Nuclear Reactors it was applied an immersion pulse-echo ultrasonic technique. For that reason an automated movement system was implemented according to the axes X, Y and Z that allows to automate the test and to show the results obtained in format of C-Scan, facilitating the immediate identification of possible defects and making repetitive the inspection. In this work problems found during the laboratory tests and factors that difficult the inspection are commented. Also the results of C-Scans over UMo fuel elements with pattern defects are shown. Finally, the main characteristics of the transducer with the one the better results were obtained are detailed. (author)

  2. Quasi-kinoform type multilayer zone plate with high diffraction efficiency for high-energy X-rays

    International Nuclear Information System (INIS)

    Tamura, S; Yasumoto, M; Kamijo, N; Uesugi, K; Takeuchi, A; Terada, Y; Suzuki, Y

    2009-01-01

    Fresnel zone plate (FZP) with high diffraction efficiency leads to high performance X-ray microscopy with the reduction of the radiation damage to biological specimens. In order to attain high diffraction efficiency in high energy X-ray region, we have developed multilevel-type (6-step) multilayer FZPs with the diameter of 70 micron. The efficiencies of two FZPs were evaluated at the BL20XU beamline of SPring-8. For one FZP, the peak efficiency for the 1st-order diffraction of 51% has been obtained at 70 keV. The efficiencies higher than 40% have been achieved in the wide energy range of 70-90 keV. That for the 2nd-order diffraction of 46% has been obtained at 37.5 keV.

  3. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    International Nuclear Information System (INIS)

    Barba, A.; Clausell, C.; Jarque, J. C.; Monzo, M.

    2014-01-01

    Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering. (Author)

  4. A code for calculating force and temperature of a bitter plate type toroidal field coil system

    International Nuclear Information System (INIS)

    Christensen, U.

    1989-01-01

    To assist the design effort of the TF coils for CIT, a set of programs was developed to calculate the transient spatial distribution of the current density, the temperature and the forces in the TF coil conductor region. The TF coils are of the Bitter (disk) type design and therefore have negligible variation of current density in the toroidal direction. During the TF pulse, voltages are induced which cause the field and current to diffuse in the minor radial direction. This penetration, combined with the increase of resistance due to the temperature rise determines the distribution of the current. After the current distribution has been determined, the in-plane (TF-TF) and the out-of-plane (TF-PF) forces in the conductor are computed. The predicted currents and temperatures have been independently corroborated using the SPARK code which has been modified for this type of problem. 6 figs

  5. Influence of sintering atmospheres on the aluminium sintering characteristics

    International Nuclear Information System (INIS)

    Mintzer, S.; Bermudez Belkys, S.

    1993-01-01

    This paper describes the aluminium powder (Al) cool compacted (at 95% from theoretical density) which was sintered at 903 K during 4 hours at different atmospheres; oxidizing (air), inert Argon (Ar), Nitrogen (N) and high vacuum. The results obtained show: a) porosity measurements; greater porosity when sintering in Ar and air. b) Metallographic and Scanning observations: many fine pores (< 1 μm) and pore lines distributed at random, at air sintering and greater pores distributed preferentially near the surface, in Ar and N atmospheres. c) Dimensional changes: tendency to contraction of the samples at N and vacuum sintering and expansion in Ar or air. d) Mechanical properties: greater strength and fluence stresses at air and N sintering. The analysis of the results is performed considering sintering modes in presence of an oxide layer and dropped inert gases. (Author)

  6. Phene Plate (PhP) biochemical fingerprinting. A screening method for epidemiological typing of enterococcal isolates.

    Science.gov (United States)

    Saeedi, B; Tärnberg, M; Gill, H; Hällgren, A; Jonasson, J; Nilsson, L E; Isaksson, B; Kühn, I; Hanberger, H

    2005-09-01

    Pulsed-field gel electrophoresis (PFGE) is currently considered the gold standard for genotyping of enterococci. However, PFGE is both expensive and time-consuming. The purpose of this study was to investigate whether the PhP system can be used as a reliable clinical screening method for detection of genetically related isolates of enterococci. If so, it should be possible to minimize the number of isolates subjected to PFGE typing, which would save time and money. Ninety-nine clinical enterococcal isolates were analysed by PhP (similarity levels 0.90-0.975) and PFGE (similarity levels PhP also belong to the same cluster according to PFGE, i.e. p(A(PFGE)=B(PFGE) * A(PhP)=B(PhP)), and the probability that a pair of isolates of different types according to PhP also belong to different clusters according to PFGE, i.e. p(A(PFGE) not equalB(PFGE) * A(PhP) not equalB(PhP)), was relatively high for E. faecalis (0.86 and 0.96, respectively), but was lower for E. faecium (0.51 and 0.77, respectively). The concordance which shows the probability that PhP and PFGE agree on match or mismatch was 86%-93% for E. faecalis and 54%-66% for E. faecium, which indicates that the PhP method may be useful for epidemiological typing of E. faecalis in the current settings but not for E. faecium.

  7. Flow and linear coefficient of thermal expansion of four types of Base Plate waxes compared with ADA standard

    Directory of Open Access Journals (Sweden)

    Monzavi A

    2002-07-01

    Full Text Available Waxes have a lot of applications in dentistry. Such materials are of thermoplastic type that undergoes deformation in different temperatures. Two important properties of base plate waxes are flow and their coefficient of linear thermal expansion. Recently, different institutions, inside the country, produce dentistry waxes, while they have not been standardized. Consequently, consumers' dissatisfaction are observed. In this research, the two above- mentioned factors were compared between three kinds of Iranian waxes with Cavex that is foreign production, based on test number 24 of ADA. To measure the flow rate in the temperatures of 23, 37 and 45°c, Wilcoxon statistical analysis was used. The results showed that in 23°c, the flow rate of Cavex and Azardent waxes met ADA standards; however, it was not true for two others types. In 37°c, the flow of none of the waxes was standardized and in 45°c their flow was acceptable, moreover, thermal expansion coefficient, for Cavex and Azardent types, was based on ADA standard.

  8. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    Science.gov (United States)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  9. Computational simulation of the microstructure of irradiation damaged regions for the plate type fuel of UO2 microspheres dispersed in stainless steel matrix

    International Nuclear Information System (INIS)

    Reis, S.C. dos; Lage, A.F.; Braga, D.; Ferraz, W.B.

    2006-01-01

    Plate type fuel elements have high efficiency of thermal transference what benefits the heat flux with high rates of power output. In reactor cores, fuel elements, in general, are subject to a high neutrons flux, high working temperatures, severe corrosion conditions, direct interference of fission products that result from nuclear reactions and radiation interaction-matter. For plate type fuels composed of ceramic particles dispersed in metallic matrix, one can observe the damage regions that arise due to the interaction fission products in the metallic matrix. Aiming at evaluating the extension of the damage regions in function of the particles and its diameters, in this paper, computational geometric simulations structure of plate type fuel cores, composed of UO 2 microspheres dispersed in stainless steel in several fractions of volume and diameters were carried out. The results of the simulations were exported to AutoCAD R where it was possible its visualization and analysis. (author)

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday ... Carbohydrates Types of Carbohydrates Carbohydrate Counting Make Your Carbs ...

  12. Structural safety test and analysis of type IP-2 transport packages with bolted lid type and thick steel plate for radioactive waste drums in a NPP

    International Nuclear Information System (INIS)

    Kim, Dong Hak; Seo, Ki Seog; Lee, Sang Jin; Lee, Kyung Ho; Kim, Jeong Mook

    2007-01-01

    If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or disposal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions

  13. Assessment of fuel damage of pool type research reactor in the case of fuel plates blockage

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, Jafari; Samad, Khakshournia [AEOI, Karegar Ave. School of R and D of Nuclear Reactors and Accelerators, Teheran (Iran, Islamic Republic of); D' Auria, F. [Pisa Univ., DIMNP (Italy)

    2007-07-01

    Tehran Research Reactor (TRR) is a pool type 5 MW research reactor. It is assumed that external objects or debris that may fall down to reactor core cause obstruction of coolant flow through one of the fuel assemblies. Thermal hydraulic analysis of this event, using the RELAP5 system code has been studied. The reported transient is related to the partial and total obstruction of a single Fuel Element (FE) cooling channel of 27 FE equilibrium core of TRR. Such event constitutes a severe accident for this type of reactor since it may lead to local dryout and eventually to loss of the FE integrity. Two scenarios are analysed to emphasize the severity of the accident. The first one is a partial blockage of an average FE considering four different obstruction levels: 25%, 50%, 75% and 97% of nominal flow area. The second one is an extreme scenario consisting of total blockage of the same FE. This study constitutes the first step of a larger work which consists of performing a 3-dimensional simulation using the Best Estimate coupled code technique. However, as a first approach the instantaneous reactor power is derived through the point kinetic calculation included in the RELAP5 code. Main results obtained from the RELAP5 calculations are as following. First, in the case of flow blockage under 97% of the nominal flow area of an average FE, only an increase of the coolant and clad temperatures is observed without any consequences for the integrity of the FE. The mass flow rate remains sufficient to cool the clad safely. Secondly, in the case of total obstruction of the nominal flow area, it is seen that transient turns out to be a severe accident due to the dryout conditions are reached shortly and melting of the cladding occurs. Thirdly, the use of the point kinetic approach leads to conservative results. A best estimate simulation of such kind of transients requires the use of 3-dimensional kinetic calculations, which could be done using the current Coupled Codes

  14. Effect of static mixer on the performance of compact plate heat exchanger with zwitterionic type of drag-reducing additives

    Energy Technology Data Exchange (ETDEWEB)

    Blais, C.; Wollerstrand, J.

    1997-06-01

    The main task of the project was to investigate the influence of drag-reducing additives (DRA) dissolved in circulating hot water on heat transfer in compact plate heat exchangers (PHE). Furthermore the result of flow disturbance (static mixing) immediately before the PHE on pressure drop and heat transfer was clarified. The project used a new type of DRA (surfactants of zwitterionic type) for two different temperature ranges. A dedicated test rig, `Ansgar`, was built for the purpose. Good thermal and mechanical stability also outside the operating range was observed except some sensitivity for water hardness at high temperatures for DRA2. Similarly to known investigations, the heat transfer coefficient was significantly reduced by DRA in heat exchangers. In PHE used however, the heat transfer reduction was considerably lower in the high flow region. A static mixer placed in front of the PHE was found to significantly improve heat transfer, especially at high flow rates. On the other hand, an additional pressure drop was introduced. Therefore the optimal choice of static mixer needs further investigation. Specially designed PHE combining mixing and heat transfer functions could be beneficial to reducing the effects of additives in thermal systems. The relaxation time (RT) of drag-reducing additives in water solutions flowing through test pipes with known geometries was estimated by monitoring specific pressure drop variation along the pipe. These preliminary experiments in respect to relaxation time showed that RT depends on the flow rate and on the temperature 12 refs, 11 figs, 1 tab

  15. Theoretical and experimental study on unstable fracture for type 304 stainless steel plates with a soft tensile testing machine

    International Nuclear Information System (INIS)

    Yagawa, G.; Takahashi, Y.; Ando, Y.

    1981-01-01

    The object of this paper is to show experimental results on stable as well as unstable fractures for Type 304 stainless steel plates with a central crack using a soft tensile testing machine. The test machine was installed specially for the safety study of nuclear piping systems and its maximum loading capacity and maximum displacement are 600 ton and 500 mm, respectively. The compliance of the machine is 1.0 x 10 -4 (mm/N). The transition points from the stable to the unstable crack growth observed in the test were theoretically determined by using three methods. In the first method, the 'applied' value of T was calculated with the simple expression based on the dimensional analysis. In the second method, the fully-plastic solutions were used to calculate the nonlinear value of J, which was added to the linear value of J, thus the 'applied' values of T was determined by differentiating the total value of J, which was obtained for the material with the Ramberg-Osgood type stress-strain relation. In the final method, the finite element method was fully utilized to determine the 'applied' value of T. The value of J in the finite element method was obtained with the use of the path-integral. (orig./GL)

  16. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  17. [Application of lateral malleolus hook-plate in treatment of stage II supination-adduction type medial malleolus fracture].

    Science.gov (United States)

    Chen, Yu; Zhang, Hui; Huang, Fuguo; Xiang, Zhuo; Fang, Yue; Liu, Lei; Cen, Shiqiang

    2014-09-01

    To investigate the application of lateral malleolus hook-plate for the treatment of stage II supination-adduction type medial malleolus fractures. Between January 2011 and June 2013, 21 patients with stage II supination-adduction type ankle fractures were treated with lateral malleolus hook-plate, including 12 males and 9 females with an average age of 55.5 years (range, 27-65 years). The injury causes were sprain in 17 cases and traffic accident in 4 cases. The mean time between injury and admission was 12.4 hours (range, 2-72 hours). The tibial distal medial articular surface collapse was found in 7 cases by CT examination and in 3 cases by X-ray film. Of 21 cases, there were 12 cases of low transverse fractures of lateral malleolus, 7 cases of short oblique fractures of lateral malleolus, and 2 cases of ankle joint lateral collateral ligament injury without fractures of lateral malleolus. After operation, the clinical outcome was evaluated according to the talus-leg angle, the recovery of Coin-sign continuity, inside-outside and top ankle gap, talus slope, American Orthopedic Foot and Ankle Society (AOFAS) score, Olerud-Molander score, Kofoed evaluation standards, and patient satisfaction. Seventeen cases were followed up 18.7 months on average (range, 12-25 months). Primary healing was obtained in 16 cases except 1 case of delayed healing. Fracture healed at an average of 14.6 weeks (range, 12-16 weeks). All cases achieved anatomical reduction, the continuity of Coin-sign, and consistency of inside and outside joint gap; no talus tilt occurred. There was no complication of reduction loss, loosening or breakage of internal fixation, or osteoarthritis during follow-up. The talus-leg angle of the affected side was significantly improved to (83.4 ± 1.8)° at 1 week after operation from preoperative (74.8 ± 7.1)° (t = 5.370, P = 0.000), but no significant difference was found when compared with normal side (83.8 ± 2.3)° (t = 0.676, P = 0.509). The AOFAS score

  18. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  19. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  20. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  1. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  2. Disruption of an Alumina Layer During Sintering of Aluminium in Nitrogen

    Directory of Open Access Journals (Sweden)

    Pieczonka T.

    2017-06-01

    Full Text Available Aluminium oxide layer on aluminium particles cannot be avoided. However, to make the metal-metal contacts possible, this sintering barrier has to be overcome in some way, necessarily to form sintering necks and their development. It is postulated that the disruption of alumina layer under sintering conditions may originate physically and chemically. Additionally, to sinter successfully non alloyed aluminium powder in nitrogen, the operation of both types mechanism is required. It is to be noted that metallic aluminium surface has to be available to initiate reactions between aluminium and the sintering atmosphere, i.e. mechanical disruption of alumina film precedes the chemical reactions, and only then chemically induced mechanisms may develop. Dilatometry, gravimetric and differential thermal analyses, and microstructure investigations were used to study the sintering response of aluminium at 620°C in nitrogen, which is the only sintering atmosphere producing shrinkage.

  3. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    Science.gov (United States)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  4. Investigation of porosity and fractal properties of the sintered metal and semiconductor layers in the MDS capacitor structure

    Directory of Open Access Journals (Sweden)

    Skatkov Leonid

    2012-01-01

    Full Text Available MDS capacitor (metal - dielectric - semiconductor is a structure in which metal plate is represented by compact bulk-porous pellets of niobium sintered powder, and semiconductor plate - by pyrolytic layer of MnO2. In the present paper we report the results of investigation of microporosity of sintered Nb and pyrolytic MnO2 and also the fractal properties of semiconductor layer.

  5. Evaluation of plate type fuel options for small power reactors; Avaliacao de alternativas de combustivel tipo placa para reatores de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Andrzejewski, Claudio de Sa

    2005-07-01

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO{sub 2} in stainless steel, of UO{sub 2} in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  6. Studies on the sintering behaviour of uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Das, P.; Chowdhury, R.

    1988-01-01

    Uranium dioxide fuel pellets are normally made from their precursor ammonium diuranate, followed by calcination, subsequent reduction to sinterable grade powders and a post operation treatment of pressing and sintering. The low temperature calcined powders, usually exhibiting non-crystalline behaviour (under X-ray diffraction studies) progressively transforms into a crystalline variety on subsequent heat treatment at higher temperature. It is observed however that powders calcined between 800 to 900 0 C exhibit enhanced densification behaviour when sintered at higher temperatures. The isothermal shrinkage versus time plot of the sintered compacts are well described by a hyperbolic relationship which takes care of the observed shrinkage (λ) as caused due to a cumulative effect from the initial sintering of the powder compacts at zero time (α) and that caused due to the structural transformation from a non-crystalline modification with increased thermal treatment (β). The derived equation is a modification of the sintering mechanism of the viscous flow type proposed by Frenkel, involving sintering of an amorphous phase, the viscosity of the latter is presumed to increase with increasing thermal treatment to assume the final modified form as λ=t/(α+βt), where t = time, λ = shrinkage and α and β are the unknown parameters. (orig.)

  7. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    Science.gov (United States)

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  8. [Effectiveness comparison of suspension fixation plus hinged external fixator and double plate internal fixation in treatment of type C humeral intercondylar fractures].

    Science.gov (United States)

    Zhang, Jian; Lin, Xu; Zhong, Zeli; Wu, Chao; Tan, Lun

    2017-07-01

    To compare the effectiveness of suspension fixation plus hinged external fixator with double plate internal fixation in the treatment of type C humeral intercondylar fractures. Between January 2014 and April 2016, 30 patients with type C (Association for the Study of Internal Fixation, AO/ASIF) humeral intercondylar fractures were treated. Kirschner wire suspension fixation plus hinged external fixator was used in 14 cases (group A), and double plate internal fixation in 16 cases (group B). There was no significant difference in gender, age, injury cause, disease duration, injury side, and type of fracture between 2 groups ( P >0.05). There was no significant difference in operation time and hospitalization stay between 2 groups ( P >0.05). But the intraoperative blood loss in group A was significantly less than that in group B ( P internal fixation removal, the intraoperative blood loss, and VAS score at 1 day and 3 days after operation in group A were significant better than those in group B ( P external fixator and double plate internal fixation for the treatment of type C humeral intercondylar fractures have ideal outcome in elbow function. But the suspension fixation plus hinged external fixator is better than double plate internal fixation in intraoperative blood loss, postoperative VAS score, and time of internal fixation removal.

  9. Mechanisms of sintering

    International Nuclear Information System (INIS)

    Mohan, Ashok; Soni, N.C.; Moorthy, V.K.

    1980-01-01

    The basic mechanisms by which the material moves during sintering have not only held a strange fascination but are also very important in determining the properties of the end product. Kuczynski's exponent method has been subsequently refined by several schools to make it increasingly reliable. There is now a fairly good understanding of mechanisms in some of the materials. However in others the issue is complicated by their basic nature. The problems of ambiguity in criterion and that of more than one mechanism being simultaneously operative have been tackled with dexterity by Ashby for drawing sintering mechanism diagrams. The method has been modified to give Relative Contribution Diagrams (RCD). These yield additional information and have been used for analysis. The main criticism against this is that it uses a very large number of rate equations and material properties, which can communicate their inaccuracies to the diagram. A case study of UO 2 was undertaken and it has been shown quantitatively that inaccuracies in a smaller number of properties only affect the diagrams to any significant extent. (auth.)

  10. Thermal-hydraulic Fortran program for steady-state calculations of plate-type fuel research reactors

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2008-01-01

    Full Text Available The safety assessment of research and power reactors is a continuous process covering their lifespan and requiring verified and validated codes. Power reactor codes all over the world are well established and qualified against real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume a lot of running time. On the other hand, most research reactor codes still require much more data for validation and qualification. It is, therefore, of benefit to any regulatory body to develop its own codes for the review and assessment of research reactors. The present paper introduces a simple, one-dimensional Fortran program called THDSN for steady-state thermal-hydraulic calculations of plate-type fuel research reactors. Besides calculating the fuel and coolant temperature distributions and pressure gradients in an average and hot channel, the program calculates the safety limits and margins against the critical phenomena encountered in research reactors, such as the onset of nucleate boiling, critical heat flux and flow instability. Well known thermal-hydraulic correlations for calculating the safety parameters and several formulas for the heat transfer coefficient have been used. The THDSN program was verified by comparing its results for 2 and 10 MW benchmark reactors with those published in IAEA publications and a good agreement was found. Also, the results of the program are compared with those published for other programs, such as the PARET and TERMIC.

  11. Fine 3D neutronic characterization of a gas-cooled fast reactor based on plate-type sub-assemblies

    International Nuclear Information System (INIS)

    Bosq, J. C.; Peneliau, Y.; Rimpault, G.; Vanier, M.

    2006-01-01

    CEA neutronic studies have allowed the definition of a first 2400 MWth reference gas-cooled fast reactor core using plate-type sub-assemblies, for which the main neutronic characteristics were calculated by the so-called ERANOS 'design calculation scheme' relying on several method approximations. The last stage has consisted in a new refine characterization, using the reference calculation scheme, in order to confirm the impact of the approximations of the design route. A first core lay-out taking into account control rods was proposed and the reactivity penalty due to the control rod introduction in this hexagonal core lay-out was quantified. A new adjusted core was defined with an increase of the plutonium content. This leads to a significant decrease of the breeding gain which needs to be recovered in future design evolutions in order to achieve the self breeding goal. Finally, the safety criteria associated to the control rods were calculated with a first estimation of the uncertainties. All these criteria are respected, even if the safety analysis of GFR concepts and the determination of these uncertainties should be further studied and improved. (authors)

  12. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  13. Strength evaluation test of pressureless-sintered silicon nitride at room temperature

    Science.gov (United States)

    Matsusue, K.; Takahara, K.; Hashimoto, R.

    1984-01-01

    In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.

  14. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  15. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor

    OpenAIRE

    H. P. Rahardjo; V. I. Sri Wardhani

    2017-01-01

    The conversion program of the 2 MW TRIGA reactor in Bandung consisted of the replacement of cylindrical fuel (produced by General Atomic) with plate fuel (produced by BATAN). The replacement led into the change of core cooling process from upward natural convection type to downward forced convection type, and resulted in different thermohydraulic safety criteria, such as critical heat flux (CHF) limit, boiling limit, and cooling fluid flow stability. In this paper, a thermohydraulic safety an...

  16. Treatment of type 2 and 4 olecranon fractures with locking compression plate (LCP) osteosynthesis in horses: a prospective study (2002-2008)

    OpenAIRE

    Jackson, M; Kummer, M; Auer, J; Hagen, R; Fürst, A

    2011-01-01

    This prospective study describes a series of 18 olecranon fractures in 16 horses that were treated with locking compression plates (LCP). Twelve of the 18 fractures were simple (type 2), whereas six were comminuted (type 4). Six fractures were open and 12 were closed. Each horse underwent LCP osteosynthesis consisting of open reduction and application of one or two LCP. Complete fracture healing was achieved in 13 horses. Three horses had to be euthanatized: two because of severe infection an...

  17. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-01-01

    Highlights: • ReB 2 -type hexagonal OsB 2 powder has been densified by spark plasma sintering. • The sintered OsB 2 contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB 2 sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB 2 -type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics

  18. Ore-controlling mechanism of carbonaceous-siliceous-pelitic rock type uranium deposits with down-faulted red basins in the southeast continental margin of Yangtze plate

    International Nuclear Information System (INIS)

    Zhang Zilong; Qi Fucheng; He Zhongbo; Li Zhixing; Wang Wenquan; Yu Jinshui

    2012-01-01

    One of the important ore-concentrated areas of carbonaceous-siliceous-pelitic rock type uranium deposits is the Southeast continental margin of Yangtze plate. Sedimentary-exogenously transformed type and sedimentary- hydrothermal superimposed transformed type uranium deposits are always distributed at or near the edge of down-faulted red ba sins. In this paper, the distributions of the deposits are analyzed with the relation to down-faulted red basins. The connective effect and ore-controlling mechanism are proposed of carbonaceous-siliceous-pelitic rock type uranium deposits with marginal fractures of red basins. (authors)

  19. Development of an alternative process for recovery of uranium from rejected plates in the manufacture of MTR type fuel elements

    International Nuclear Information System (INIS)

    Flores Gonzalez, Jocelyn Natalia

    2011-01-01

    This work discusses the recovery of enriched uranium in U 235 , from fuel plates rejected during the fuel elements manufacturing process for the La Reina Nuclear Studies Center, RECH-1, CCHEN. The plates have an aluminum based alloy coating, AISI-SAE 6061, with U 3 Si 2 powder distributed evenly inside and dispersed in an aluminum matrix. The high cost of enriched uranium means that it must be recovered from plates rejected in the production process because of non-compliance with the plate specifications, and also because some of them undergo destructive testing, to measure the aluminum coating's thickness on each side of the plate. The thickness of the uranium nucleus is measured as well and the size of the defects on the ends of the plate such as 'dog bone' and 'fish tail', that is, for the purposes of quality control. The first step in the process is carried out by dissolving the aluminum in a hot solution of NaOH in order to release the uranium silicide powder that is insoluble in the soda. A second step involves dissolving the uranium silicide in a hot HNO 3 solution, followed by washing and filtering, and then extracting the SX and analyzing its behavior during this stage. During the process 98.9% of the uranium is recovered together with a solution that is enough for the SX process given the experiences that were carried out in the extraction stage

  20. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    Science.gov (United States)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  1. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  2. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  3. Multi-type Tectonic Responses to Plate Motion Changes of Mega-Offset Transform Faults at the Pacific-Antarctic Ridge

    Science.gov (United States)

    Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.

    2017-12-01

    Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.

  4. TH-C-19A-09: Quantification of Transmission and Backscatter Factors as a function of Distance to Inhomogeneity Interface for Three Types of Surgical Implant Plates

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D; Mills, M; Wang, B [University of Louisville, Louisville, KY (United States)

    2014-06-15

    Purpose: Carbon fiber materials have been increasingly used clinically, mainly in orthopedics, as an alternative to metallic implants because of their minimal artifacts on CT and MRI images. This study characterizes the transmission and backscatter property of carbon fiber plates (CarboFix Orthopedics, Herzeliya, Israel) with measurements for radiation therapy applications, and compares them to traditional Stainless Steel (SS) and Titanium (Ti) metal materials. Methods: For the transmission measurements, 1-mm-thick test plate was placed upstream from a plane parallel Markus chamber, separated by various thicknesses of polystyrene plates in 0.5 cm increments between 0 and 5 cm. With this setup, we quantified the radiation transmission as a function of distance to the inhomogeneity interface. The LINAC source to detector distance was maintained at 100 cm and 200 MU was delivered for each measurement. Two 3-cm solid water phantoms were placed at the top and bottom to provide build up. All the measurements were performed for 6 MV and 18 MV photons. The backscatter measurements had the identical setup, except that the test plate was downstream of the chamber from radiation. Results: The carbon fiber plates did not introduce any measureable inhomogeneity effect on the transmission and backscatter factor because of its low atomic number. In contrast, traditional metal implant materials caused up to 15% dose difference at upstream and 25% backscatter at downstream from radiation. Such differences decrease as the distance to the inhomogeneity interface increases and become unmeasurable at distance of 3 cm and 1 cm for upstream and downstream, respectively. Conclusion: A new type of carbon fiber implant plate was evaluated and found to have minimal inhomogeneity effect in MV radiation beams. Patients would benefit from a carbon based implant over metal for radiation therapy due to their minimal backscatter and imaging artifacts.

  5. Systematic variations in sinter mineralogy, microtexture and diagenesis in modern siliceous hot springs: Clues for interpreting depositional conditions in ancient deposits

    Science.gov (United States)

    Mills, V. W.; Farmer, J. D.; Ruff, S. W.; Nunez, J.; Jahnke, L. L.

    2011-12-01

    The deposits of siliceous hydrothermal springs are known to capture and preserve a wide range of microbial fossil information. The recent discovery of hydrothermal silica at Home Plate, Columbia Hills, Mars has once again raised interest in the potential importance of ancient spring sinters as targets for future astrobiological mission to Mars. To create additional context information to support future in situ missions to Mars, we have documented systematic changes in the mineralogy and microtexture of modern siliceous hot spring deposits, observed along gradients in temperature, pH and flow velocity. Specific objectives are to: 1) identify chemical and physical factors that promote early diagenetic transformations of amorphous silica (opal-A), to progressively more ordered and crystalline phases (cristobalite, tridymite and quartz); 2) determine the composition and abundance of minor mineral phases, especially clays, in relationship to pH, temperature and paragenesis; and 3) to assess the usefulness of sinter mineralogy and microtexture in reconstructing the paleoenvironmental records preserved in ancient deposits. Study sites for acidic (pH 2-5) sinters included Nymph Creek, located in the Norris Geyser Basin of Yellowstone National Park (YNP). Active alkaline (pH 7-10) springs included Rabbit Creek, Steep Cone and Mound Spring located in the Lower Geyser Basin, YNP. Field measurements in active springs included pH, temperature and flow velocity, along with general microfacies assignments. To better constrain types and rates of silica diagenesis, the study also sampled older (Holocene-Pleistocene-aged) deposits. Laboratory analyses included X-ray powder diffraction (XRPD), thermal infrared spectroscopy (TIR) and thin section petrography for characterizing sinter microtextures and for placing mineral phases (identified by XRPD and TIR) into a time-ordered diagenetic framework. In analyzing the phyllosilicates present in sinters, we applied clay separation and

  6. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  7. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  8. Sintered stabilized zirconia microstructure and conductivity

    International Nuclear Information System (INIS)

    Bernard, Herve.

    1981-04-01

    The elaboration of a stabilized zirconia powder which sinters at 1300 0 C and the influence of the sintered polycristal microstructure on its ionic conductivity have been studied. Among three investigated powder preparation processes, coprecipitation in an ammoniacal solution was chosen. After sintering at 1300 0 C, the pellet density was higher than 93% of the theoretical density. It even approached up to 98% TD with addition of less than 0,5 mole % Al 2 O 3 to the initial powder. The overall electrolyte conductivity and the inter and intragranular contributions have been determined by complex impedance spectroscopy. ZrO 2 -Y 2 O 3 solid solution conductivity was scarcely improved by Y 2 O 3 exchange with Yb 2 O 3 or Gd 2 O 3 . This conductivity greatly increases with grain size, its improvement with decreasing porosity, which has been quantified, is less sensible. Moreover, two original properties were noticed: small amounts of Al 2 O 3 and quenching greatly enhanced the overall conductivity. At temperatures below 500 0 C, grain boundaries only insured a partial migration of conductive ions. A parallel type electrical equivalent circuit suited well with this blocking effect [fr

  9. Study on the Effect of the Impact Location and the Type of Hammer Tip on the Frequency Response Function (FRF) in Experimental Modal Analysis of Rectangular Plates

    Science.gov (United States)

    Mali, K. D.; Singru, P. M.

    2018-03-01

    In this work effect of the impact location and the type of hammer tip on the frequency response function (FRF) is studied. Experimental modal analysis of rectangular plates is carried out for this purpose by using impact hammer, accelerometer and fast Fourier transform (FFT) analyzer. It is observed that the impulse hammer hit location has, no effect on the eigenfrequency, yet a difference in amplitude of the eigenfrequencies is obtained. The effect of the hammer tip on the pulse and the force spectrum is studied for three types of tips metal, plastic and rubber. A solid rectangular plate was excited by using these tips one by one in three different tests. It is observed that for present experimental set up plastic tip excites the useful frequency range.

  10. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    Science.gov (United States)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  11. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  12. Preliminary results for the Co-Rolling process fabrication of plate-type nuclear fuel based in U-10Mo monolithic meat and zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Pedrosa, Tercio A.; Brina, Jose Giovanni M.; Paula, Joao Bosco de; Lameiras, Fernando S.; Ferraz, Wilmar B.

    2013-01-01

    The fabrication process of plate-type nuclear fuel with monolithic meat is under development at CDTN. The U-10Mo alloy was chosen as the meat material due to its high density, corrosion resistance and the higher dimensional stability proportioned by the metastable gamma phase, which presents a lesser extension of the breakaway swelling phenomena occurrence during irradiation tests. The monolithic meat was cut from an U-10Mo ingot, that was induction melted at CDTN. The co-rolling process was adopted due to the higher mechanical properties and melting point of the Zircalloy-4 cladding material, which presents a lesser discrepancy in relation to the meat material properties, when compared to the aluminum 6061 alloy. Preliminary plates were obtained by means of the co-rolling process, performed at 650, 800, 950 deg C with total thickness reduction of 80%, followed by a pickling step and cold co-rolling passes. The plates were characterized through bending tests, optical microscopy and radiography. The co-rolling temperature of 800 deg C presented the best results, with a homogeneous distribution of the total thickness reduction between the cover plates and the meat, and the absence of delamination in the bending test samples. It was observed the occurrence of meat thickening in its ends, according to its longitudinal axle, parallel to the rolling direction, that is known as the d og bone , for the three co-rolling temperatures. (author)

  13. Experimental Research on Seismic Performance of a New-Type of R/C Beam-Column Joints with End Plates

    Directory of Open Access Journals (Sweden)

    Shufeng Li

    2017-01-01

    Full Text Available This paper presents a new-type of fabricated beam-column connections with end plates. The joint details are as follows: the concrete beams are connected to column by end plates and six high strength long bolts passing through the core area. In addition, in order to increase the stiffness and shear strength, stirrups are replaced by the steel plate hoop in the core zone. To examine the fail behavior of the fabricated beam-column connection specimens, a quasi-static test is conducted for nine full-scale models to obtain the hysteresis curves, skeleton curves, ductility, energy dissipation capacity, and other seismic indicators. The experimental results show that all specimens failed in bending in a malleable way with a beam plastic hinge and the hysteresis curves are excellently plump for the end plate connections. From the seismic indexes, the fabricated connection specimens exhibit better seismic performance, which can provide reference for the application of prefabricated frame structure in the earthquake area.

  14. Recent status and future aspect of plate type fuel element technology with high uranium density at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.-W.

    1983-01-01

    According to the present state of development full size test fuel elements with UAl x , U 3 O 8 , and U 3 Si 2 fuel were fabricated at Nukem in production scale. The maximum uranium densities amount to 1.8 g/cc for UAI x , 2.9 g/cc for U 3 O 8 , and 4.76 g/cc for U 3 Si 2 . The irradiation performance of these fuel elements is good: Up to the end of September 1982 the following burnups were achieved: 73% with UA1 x , 60% with U 3 O 8 , 39% with U 3 Si 2 ; no defects could be detected. For an economical fuel element production with reduced 235-U enrichment chemical uranium recycling methods were developed allowing immediate scrap recovery at minimum waste generation. In addition test plates with UAl x and U 3 O 8 fuel were successfully irradiated in the ORR up to a burnup of 75 %. The relatively high uranium meat densities of these test plates amount to 2.2 g/cc for UAI x , and 3.14 g/cc for U 3 O 8 fuel. Apart from plates with standard geometry also plates with increased meat thickness were inserted. (author)

  15. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  16. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  17. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  20. The use of U3Si2 dispersed in aluminum in plate-type fuel elements for research and test reactors

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U 3 Si 2 dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U 3 Si 2 fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U 3 Si 2 particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U 3 Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U 3 Si 2 -aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m 3 is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs

  1. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    Science.gov (United States)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  2. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  3. Design and fabrication of a self-aligned parallel-plate-type silicon micromirror minimizing the effect of misalignment

    International Nuclear Information System (INIS)

    Yoo, Byung-Wook; Jin, Joo-Young; Jang, Yun-Ho; Kim, Yong-Kweon; Park, Jae-Hyoung

    2009-01-01

    This paper describes a self-alignment method whereby a mirror actuation voltage, corresponding to a specific tilting angle, is unvarying in terms of misalignment during fabrication. A deep silicon etching process is proposed to penetrate the top silicon layer (the micromirror layer) and an amorphous silicon layer (the addressing electrode layer) together, through an aluminum mask pattern, in order to minimize the misalignment effect on the micromirror actuation. The size of a fabricated mirror plate is 250 × 250 × 4 µm 3 . A pair of amorphous silicon electrodes under the mirror plate is about half the size of the mirror plate individually. Numerical analysis associated with calculating the pull-in voltage and the bonding misalignment is performed to verify the self-alignment concepts focused upon in this paper. Curves of the applied voltage versus the tilt angle of the self-aligned micromirror are observed using a position sensing detector in order to compare the measurement results with MATLAB analysis of the expected static deflections. Although a 3.7 µm misalignment is found between the mirror plate and the electrodes, in the direction perpendicular to the shallow trench of the electrodes, before the self-alignment process, the measured pull-in voltage has been found to be 103.4 V on average; this differs from the pull-in voltage of a perfectly aligned micromirror by only 0.67%. Regardless of the unpredictable misalignments in repetitive photolithography and bonding, the tilting angles corresponding to the driving voltages are proved to be uniform along the single axis as well as conform to the results of analytical analysis

  4. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  5. Improved performance of brazed plate heat exchangers made of stainless steel type EN 1.4401 (UNS S31600) when using a iron-based braze filler

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, P. [Alfa Laval Materials, Lund (Sweden)

    2004-07-01

    The mechanical properties of brazed plate heat exchangers, made of stainless steel plates type EN 1.4401, brazed with a new iron-based braze filler ''AlfaNova'', have been evaluated. The results were compared with heat exchangers brazed with a copper (pure copper) and a nickel-based (MBF 51) braze filler. Their resistance against pressure- and temperature fatigue, which are important for the lifetime of a heat exchanger, and the burst pressure, which is important for pressure vessel approvals, were tested and evaluated. It was found that the pressure fatigue resistance was extraordinary good for the heat exchangers brazed the iron-based filler and its temperature fatigue resistance was better than those brazed with nickel-based braze filler and slightly lower than those brazed with copper. The highest burst pressures were achieved for the copper brazed units followed by the iron-brazed units and rearmost the nickel-brazed units. (orig.)

  6. An application of time-frequency signal analysis technique to estimate the location of an impact source on a plate type structure

    International Nuclear Information System (INIS)

    Park, Jin Ho; Lee, Jeong Han; Choi, Young Chul; Kim, Chan Joong; Seong, Poong Hyun

    2005-01-01

    It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses for the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment

  7. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  8. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  9. Kinetics of sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Soni, N.C.; Moorthy, V.K.

    1978-01-01

    The kinetics of sintering of UO 2 powders derived from ADU route and calcined at different temperatures was studied. The activation energy for sintering was found to depend on the calcination temperature, the density chosen and the sintering temperature range. The motive force for sintering is the excess free energy in the particle system. This exists in the powder compact in the form of surface energy and the excess lattice energy due to defects. The defects which can be eliminated at the operating temperature are responsible for the mobility and hence sintering. This concept of the motive force for sintering has been used to explain the difference in the activation energies observed in the present study. This would also explain phenomena such as attainment of limiting density, presence of optimum sintering temperature and the influence of calcination treatments on the sintering behaviour of powders. (author)

  10. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  11. Magnetic and microstructural investigation of high-coercivity net-shape Nd–Fe–B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Žagar, Kristina, E-mail: kristina.zagar@ijs.si; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd–Fe–B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd{sub 2}Fe{sub 14}B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (H{sub ci}), are insufficient at automotive-relevant temperatures of 100–150 °C since the material H{sub ci} has a large temperature coefficient. In this study, we instead add a thin layer of DyF{sub 3} to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd{sub 2}Fe{sub 14}B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques. - Highlights: • We produced high coercivity magnets with drastically reduced amounts of HRE. • Microstructural analysis was conducted of the “free” and “wheel” side of Dy-treated Nd{sub 2}Fe{sub 14}B ribbons. • Dy-diffusion mechanism into ribbons depending on processing parameters is shown.

  12. [Case-control study on minimally invasive percutaneous locking compression plate internal fixation for the treatment of type II and III pilon fractures].

    Science.gov (United States)

    Zhang, Zhi-Da; Ye, Xiu-Yi; Shang, Li-Yong; Xu, Rong-Ming; Zhu, Yan-Zhao

    2011-12-01

    To explore the clinical efficacy of delayed open reduction and internal fixation with minimally invasive percutaneous locking compression plate for the treatment of type II and III Pilon fractures. From January 2007 to September 2009, 32 patients with type II and III Pilon fractures were treated with open reduction and anatomic plate fixation (AP group) and minimally invasive percutaneous locking compression plate osteosynthesis (LCP group). There were 11 males and 6 females in AP group, with an average age of (37.4 +/- 13.3) years (ranged, 19 to 55 years). And there were 10 males and 5 females in LCP group, with an average age of (34.6 +/- 11.3) years(ranged, 21 to 56 years). The operating time, fracture healing time, aligned angulation and ankle function were compared between the two groups. All the patients were followed up, and the during ranged from 12 to 25 months, with a mean of (15.0 +/- 1.7) months. The average operation time was (76.5 +/- 8.3) min for AP group and (58.3 +/- 3.4) min for LCP group; the average time of fracture healing was (20.5 +/- 0.4) weeks for AP group and (15.7 +/- 0.2) weeks for LCP group; the total angulation between anterior posterior film and lateral film was averaged (6.6 +/- 0.5) degrees for AP group and (3.6 +/- 0.2) degrees for LCP group. As to above index, the results of LCP group were better than those of AP group (P ankle joint, the results of LCP group were better than those of AP group in ankle joint pain, wakling and ankle joint function (P fracture with less invasion, faster bone union, more stabilized fixation, quicker recovery of ankle function and fewer complications, which is more advantaged for type II and III Pilon fractures.

  13. Using an equation based on flow stress to estimate structural integrity of annealed Type 304 stainless steel plate and pipes containing surface defects

    International Nuclear Information System (INIS)

    Reuter, W.G.; Place, T.A.

    1981-01-01

    An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)

  14. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  15. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Medvedev, Pavel G.

    2009-01-01

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20 C temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  16. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  17. SINTERING OF NASCENT CALCIUM OXIDE

    Science.gov (United States)

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  18. Investigation of the ductile fracture properties of Type 304 stainless steel plate, welds, and 4-inch pipe

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Hays, R.A.; Gudas, J.P.

    1985-01-01

    J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. The tests were performed at 550 0 F, 300 0 F and room temperature. The results of the J-integral tests indicate that the Jsub(Ic) of the base plate ranged from 4400 to 6100 in lbs/in 2 at 550 0 F. The Jsub(Ic) values for the tests performed at 300 0 F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that Jsub(Ic) was greater than 8000 in lb/in 2 . The J-integral tests performed on the weld metal specimens indicate that the Jsub(Ic) values ranged from 930 to 2150 in lbs/in 2 at 550 0 F. The Jsub(Ic) values of the weld metal specimens tested at 300 0 F and room temperature were 2300 and 3000 in lbs/in 2 respectively. One HAZ specimen was tested at 550 0 F and found to have a Jsub(Ic) value of 2980 in lbs/in 2 which indicates that the HAZ is an average of the base metal and weld metal toughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding. The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550 0 F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these tests indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack. (orig.)

  19. Evaluation of Corrosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey Owen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Glazoff, Michael Vasily [Idaho National Lab. (INL), Idaho Falls, ID (United States); Eiden, Thomas John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rezvoi, Aleksey Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, several thousand of the flow-assisted corrosion pits and “horseshoeing” defects were readily observable on the surface of the several YA-type fuel elements (these are “dummy” plates that contain no fuel). In order understand these corrosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed sscalloping and possibly pitting degradation on the YA-M fuel elements. In

  20. Recent status of development and irradiation performance for plate type fuel elements with reduced 235U enrichment at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.W.

    1984-01-01

    According to the present state of development full size test fuel elements with the maximum uranium densities of 2,2 g U/cm 3 meat for UAlsub(x), 3,2 g U/cm 3 meat for U 3 O 8 and 4,8 g U/cm 3 meat for U 3 Si 2 can be fabricated at NUKEM in production scale. Special chemical procedures for the uranium recovery were developed ensuring an economic fuel fabrication process. The post irradiation examinations (PIE) of 12 UAlsub(x) (U density 2,2 g U/cm 3 meat) and U 3 O 8 (up to 3,1 g U/cm 3 meat) test plates irradiated in the ORR, Oak Ridge research reactor, were terminated. All 12 test plates show unobjectionable irradiation behavior. Extensive irradiation tests on full size fuel elements were performed. All inserted elements show perfect irradiation behavior. The PIE of the first HFR Petten U 3 O 8 fuel elements are in progress. The full size ORR U 3 Si 2 fuel elements with so far highest uranium density of 4,76 g U/cm 3 meat achieved a burnup of 50 % loss of 235 U up to May 1983. One element was withdrawn from the reactor for PIE, the second will be irradiated to a burnup of 75 % loss of 235 U. The further development is concentrated on Usub(x)Sisub(y) fuel with highest uranium density. U 3 Si miniplates with up to 6,1 g U/cm 3 meat are supplied meeting the required specification, U 3 Si miniplates with 6,7 g U/cm 3 are in fabrication. (author)

  1. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  2. Locking plate fixation provides superior fixation of humerus split type greater tuberosity fractures than tension bands and double row suture bridges.

    Science.gov (United States)

    Gaudelli, Cinzia; Ménard, Jérémie; Mutch, Jennifer; Laflamme, G-Yves; Petit, Yvan; Rouleau, Dominique M

    2014-11-01

    This paper aims to determine the strongest fixation method for split type greater tuberosity fractures of the proximal humerus by testing and comparing three fixation methods: a tension band with No. 2 wire suture, a double-row suture bridge with suture anchors, and a manually contoured calcaneal locking plate. Each method was tested on eight porcine humeri. A osteotomy of the greater tuberosity was performed 50° to the humeral shaft and then fixed according to one of three methods. The humeri were then placed in a testing apparatus and tension was applied along the supraspinatus tendon using a thermoelectric cooling clamp. The load required to produce 3mm and 5mm of displacement, as well as complete failure, was recorded using an axial load cell. The average load required to produce 3mm and 5mm of displacement was 658N and 1112N for the locking plate, 199N and 247N for the double row, and 75N and 105N for the tension band. The difference between the three groups was significant (Prow (456N) and tension band (279N) (Prow (71N/mm) and tension band (33N/mm) (Pbiomechanical fixation for split type greater tuberosity fractures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Development of neutronics and thermal hydraulics coupled code – SAC-RIT for plate type fuel and its application to reactivity initiated transient analysis

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Mazumdar, Tanay; Raina, V.K.

    2013-01-01

    Highlights: • A point reactor kinetics code coupled with thermal hydraulics of plate type fuel is developed. • This code is applicable for two phase flow of coolant. • Safety analysis of IAEA benchmark reactor core is carried out. • Results agree well with the results available in literature. - Abstract: A point reactor kinetics code SAC-RIT, acronym of Safety Analysis Code for Reactivity Initiated Transient, coupled with thermal hydraulics of two phase coolant flow for plate type fuel, is developed to calculate reactivity initiated transient analysis of nuclear research and test reactors. Point kinetics equations are solved by fourth order Runge Kutta method. Reactivity feedback effect is included into the code. Solution of kinetics equations gives neutronic power and it is then fed into a thermal hydraulic code where mass, momentum and thermal energy conservation equations are solved by explicit finite difference method to find out fuel, clad and coolant temperatures during transients. In this code, all possible flow regimes including laminar flow, transient flow and turbulent flow have been covered. Various heat transfer coefficients suitable for single liquid, sub-cooled boiling, saturation boiling, film boiling and single vapor phases are incorporated in the thermal hydraulic code

  4. The effect of a flat-plate-type obstacle on the thin liquid film accompanied by a high speed gas flow

    International Nuclear Information System (INIS)

    Fukano, Tohru; Kadoguchi, Katsuhiko; Kanamori, Mikio; Tominaga, Akira.

    1989-01-01

    A flatplate-type obstacle, which simulates a grid-type spacer in a nuclear reactor, is set in an air-water cocurrent stratified flow to investigate liquid film breakdown occurring near the obstacle. We made detailed visual observations and measurements of the velocity profile of the air flow and the axial distributions of liquid film thickness and static pressure near the obstacle. Experimental parameters were the inclination of the rectangular duct, the configuration of the obstacle, i.e., with and without a projection and a hole, which is bored in order to delay the onset of dry patch formation near the obstacle and the gap between the plate and the lower-wall surface. The results show that the plate itself does not promote dry patch formation but the projection, even if it is in contact with the wall surface at only one point, has a strong effect on the liquid film breakdown. In general the film breakdown occurs in front of the projection in a wide range of flow conditions due to the leading edge down-wash of the stream and due also to the rejection of water by gravitational force in the case of the upward flow in the inclined duct. By setting a hole in or in front of the projection the occurrence of the dry patch formation is delayed. (author)

  5. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  6. Treatment of type 2 and 4 olecranon fractures with locking compression plate osteosynthesis in horses: a prospective study (2002-2008).

    Science.gov (United States)

    Jackson, M; Kummer, M; Auer, J; Hagen, R; Fuerst, A

    2011-01-01

    This prospective study describes a series of 18 olecranon fractures in 16 horses that were treated with locking compression plates (LCP). Twelve of the 18 fractures were simple (type 2), whereas six were comminuted (type 4). Six fractures were open and 12 were closed. Each horse underwent LCP osteosynthesis consisting of open reduction and application of one or two LCP. Complete fracture healing was achieved in 13 horses. Three horses had to be euthanatized: two because of severe infection and one because of a comminuted radial fracture 11 days after fixation of the olecranon fracture. Complications encountered after discharge of the horses from the Equine Hospital at the Vetsuisse Faculty (University of Zurich) included implant infection (n=2) and lameness (n=3), which were successfully treated with implant removal. Despite being easier to use, LCP osteosynthesis resulted in a clinical outcome similar to DCP osteosynthesis.

  7. Cell cycle indicators of buccal epithelial cells in the treatment of different types of removable plate partial dentures

    Directory of Open Access Journals (Sweden)

    E. V. Beliaiev

    2018-02-01

    Full Text Available The purpose of the work. To investigate nuclear DNA and buccal epithelial cells proliferative activity in patients with dental defects, who use removable partial dentures plates made of acrylic or thermoplastic. Materials and Methods. The study of buccal epithelial cell cycle parameters was carried out in 70 people. Among them 23 patients were treated with acrylic dentures prostheses, 23 patients – with thermoplastic-based prostheses. The comparison group consisted of 24 clinically healthy persons without defects in the dentition. DNA content in human buccal epithelial cells nuclei was determined by flow cytometry. Results. The obtained indicators of buccal epithelial cell cycle of the control group indicate a high intensity of cell self-renewal in the normal range. It is suggested by a significant percentage of events occurring within the Sub-G1 range that characterizes apoptosis, as well as the fact that more than half of the cells were in the range of S + G2/M. It has been revealed by flow cytometry that the percentage of apoptosis in cells was higher in patients using acrylic dentures base plastic, showed initial signs of keratinization that was confirmed by increase in cells in the range of Sub-G1 and by their decrease in the range of S-G2/M. It has been established in the study of buccal epithelium cell cycle indicators in the dentures bases thermoplastic application that these prostheses did not affect the proliferative activity of buccal epithelial cells compared to the group using acrylic dentures bases with prolonged use. This is evident in almost the same number of cellular events ranging Sub-G1, so apoptosis in the thermoplastic dentures bases application corresponded to the control group indicators both in the early period and over a year of use. Conclusions. The direct negative effect of prostheses with acrylic bases on the complex mechanism of the oral cavity mucous membrane functioning has been revealed. Absence of dentures

  8. Evaluation of Erosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Glazoff, Michael V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Eiden, Thomas J. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Rezvoi, Aleksey V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR, and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady-state conditions. However, after the cycle was over, when the fuel elements were removed from the core and inspected, several thousand flow-assisted erosion pits and “horseshoeing” defects were readily observed on the surface of the several YA-type fuel elements (these are aluminum “dummy” plates that contain no fuel). In order to understand these erosion phenomena, a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed

  9. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  10. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  11. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  12. [Comparative study of less invasive stabilization system (LISS) and the condylar support plates for the treatment of AO type C distal femoral fractures in adults].

    Science.gov (United States)

    Chen, Yu-tao; Yang, Jiang-wei; Hou, Hai-bin; Wang, Chun-sheng; Wang, Kun-zheng

    2015-02-01

    To summarize the complications and the early clinical effect of less invasive stabilization system and the femoral condylar support plates in the treatment of AO type C distal femoral fractures. From September 2007 to February 2012, 46 patients with AO type C distal femoral fractures were retrospectively studied. Of all patients 25 were treated with less invasive stabilization system including 14 males and 11 females with a mean age of (56.3±4.2) years old; according to AO classification, there were 14 cases of C1, 8 cases of C2 and 3 cases of C3 with a mean hospital stay of (15.6±1.7) days. While 21 cases were treated with femoral condylar support plates fixation including 12 males and 9 females with a mean age of (53.8±5.1) years old;there were 13 cases of C1, 6 cases of C2 and 2 cases of C3 with a mean hospital stay of (17.8±2.2) days. Comparative analysis was performed from the operation related index,postoperative complications and Evanich score of the knee joint function between the two groups at follow-up. All 46 patients were followed up from 13 to 38 months with a mean time of 19.6 months after surgery. Complications included 1 case with infection,3 cases with internal fixation failure, 1 case with nonunion and 1 case with activity limitation of the affected knee. The differences in the incision length, blood loss, fracture healing time were significant between two groups (P0.05). The statistical significance was also found in the Evanich score at last follow-up between two groups (Pfracture healing time and better functional recovery. Less invasive stabilization system had became one of the ideal internal fixations in the treatment of AO type C distal femoral fractures.

  13. The Recovery of Uranium From The Rejected Fuel Plate Dispersion Type of U3O8-Al and U3Si2Al by NaOH

    International Nuclear Information System (INIS)

    Widodo, G; Aji, D

    1998-01-01

    The recovery of uranium from the rejected fuel plate dispersion type of U 3 O 8 -AI And U 3 Si 2 -AI with a dissolution has been performed.Each of 5 fragment of fuel plate dispersion of U 3 O 8 -AI or U 3 Si 2 Al of 1x4 cm size was put in the distilled glass content of 250 ml NaOH solution whit The concentration variation 10,15,20,25,and 30%,and than was heated at temperature of 102 o C and was stirred constantly by magnetic stirred.Uranium in the form of U 3 O 8 or U 3 Si 2 was separated by filtration and Either residu and filtrate was analyzed by potentiometry using modified Devies Gray method. From the experiment data it was found in the residu that presentation of uranium was 83.99-84.05% and 84.67-86.556% while in filtrate it was found 53.90 ppm and 69.3 ppm

  14. High complication rate in reconstruction of Paprosky type IIIa acetabular defects using an oblong implant with modular side plates and a hook.

    Science.gov (United States)

    Babis, G C; Sakellariou, V I; Chatziantoniou, A N; Soucacos, P N; Megas, P

    2011-12-01

    We report the results of 62 hips in 62 patients (17 males, 45 females) with mean age of 62.4 years (37 to 81), who underwent revision of the acetabular component of a total hip replacement due to aseptic loosening between May 2003 and November 2007. All hips had a Paprosky type IIIa acetabular defect. Acetabular revision was undertaken using a Procotyl E cementless oblong implant with modular side plates and a hook combined with impaction allografting. At a mean follow-up of 60.5 months (36 to 94) with no patients lost to follow-up and one died due to unrelated illness, the complication rate was 38.7%. Complications included aseptic loosening (19 hips), deep infection (3 hips), broken hook and side plate (one hip) and a femoral nerve palsy (one hip). Further revision of the acetabular component was required in 18 hips (29.0%) and a further four hips (6.4%) are currently loose and awaiting revision. We observed unacceptably high rates of complication and failure in our group of patients and cannot recommend this implant or technique.

  15. Effective strength of incoming sediments and its implications for plate boundary propagation: Nankai and Costa Rica as type examples of accreting vs. erosive convergent margins

    Science.gov (United States)

    Kopf, Achim

    2013-11-01

    The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (μres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to μres = 0.43; μpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (μres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity

  16. Middle-term follow-up results of Pipkin type IV femoral head fracture patients treated by reconstruction plate and bioabsorbable screws

    Directory of Open Access Journals (Sweden)

    Shan-Xi Wang

    2018-06-01

    Full Text Available Purpose: To investigate the mid-term curative effects of the treatment of Pipkin type IV femoral head fractures using a reconstruction plate and bioabsorbable screws and provide the evidence for clinical practice. Methods: From February 2010 to September 2014, 21 patients with Pipkin type IV femoral head fractures were treated surgically. There were 13 males and 8 females with an average age of 41.1 years (range, 20–65 years. The causes of the fractures included traffic accidents (13 cases, falls from a height (four cases, heavy lifting injuries (three cases, and sport injury (one case. All patients were followed up with radiography and three-dimensional reconstruction computed tomography and other checks and any complications were actively managed. Closed reduction of fracture-dislocation of the hip was attempted under general anesthesia using the Kocher-Langenbeck approach. Femoral head fractures were treated with internal fixation or excision based on the size of the fracture fragments, whereas acetabular fractures were fixed with a reconstruction plate and screws following anatomic reduction. Results: The incisions healed by primary intention in all patients after surgery, without any infection, deep venous thrombosis, or other complications. All 21 patients were followed up for 36–76 months, with an average follow-up duration of 49 months. Postoperative imaging data showed that all dislocations and fractures were anatomically reduced, and bony union of the fractures was achieved. Heterotopic ossification was found in four patients, post-traumatic osteoarthritis in three, and avascular necrosis of the femoral head in two. At the final follow-up, the assessment of hip joint function according to the Thompson-Epstein scoring scale was excellent in 10 cases, good in six cases, fair in three cases, and poor in two cases. The rate of excellent and good functional outcomes was 76.1%. Conclusion: The mid-term curative effects of a

  17. Contribution to the study of the sintering of ex-carbonyl iron in the α and γ phases using the micro-fractographic technique

    International Nuclear Information System (INIS)

    Oxley Gaborit de Montjou, M.Th.

    1966-01-01

    The micro-fractographic study of the sintering of ex-carbonyl iron has shown or confirmed a number of phenomena of which the principal are as followed: Sintering in the a phase: -) existence of two stages of sintering differentiated by the type of rupture (inter or trans-crystalline); -) marked influence of the content of oxygen in the atmosphere and in the initial compressed sample on the speed of sintering; -) formation of striations on the grain-boundary surfaces and on the inner surface of pores caused by the presence of oxygen. Sintering in the γ phase: -) a pronounced decrease in the speed of sintering: the grains in the initial powder remain in the granular state within the final α crystal in the iron sintered in the lower γ range even after several hours of sintering; -) this granular structure can be eliminated by intermediate compression thus enabling the sintering process to proceed. A considerable decrease in the speed of sintering if the A 3 point is passed one or more times in the α range sintering. A high speed sintering if the treatment in the γ range is carried out at or above 1300 C. The results of this study agree with micrographic investigation as well as with dilatometric measurements and known auto-diffusion coefficients. (author) [fr

  18. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamos National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO2. The critical field studies are complete for UO2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to

  19. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  20. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  1. Thin-plate-type embedded ultrasonic transducer based on magnetostriction for the thickness monitoring of the secondary piping system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Seung Hyun [Center for Safety Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

  2. Tensile properties of irradiated and fatigue exposed stainless steel DIN X 6 CrNi 1811 (similar to AISI type 304) plate and welded joints

    International Nuclear Information System (INIS)

    Vries, M.I. de; Schaaf, B. van der; Elen, J.D.

    1979-10-01

    Test specimens of plate metal and welded joints of stainless steel DIN 1.4948, which is similar to AISI type 304, have been irradiated at 723 K and 823 K up to fluences of 1.10 23 n.m -2 and 5.10 24 n.m -2 (E > 0.1 MeV). These are representative conditions for the SNR-300 reactor vessel and inner components after 16 years of operation. High-rate (depsilon/dt = 1 s -1 ) tensile tests were performed after fatigue exposure up to various fractions of fatigue life (D) ranging from 5% to 95% at the same temperatures as the nominal temperatures of the irradiation series

  3. COOLOD-N: a computer code, for the analyses of steady-state thermal-hydraulics in plate-type research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1990-02-01

    The COOLOD-N code provides a capability for the analysis of the steady-state thermal-hydraulics of research reactors in which plate-type fuel is employed. This code is revised version of the COOLOD code, and is applicable not only to a forced convection cooling mode, but also to a natural convection cooling mode. In the code, a function to calculate flow rate under a natural convection, and a heat transfer package which was a subroutine program to calculate heat transfer coefficient, ONB temperature and DNB heat flux, and was especially developed for the upgraded JRR-3, have been newly added to the COOLOD code. The COOLOD-N code also has a capability of calculating the heat flux at onset of flow instability as well as DNB heat flux. (author)

  4. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  5. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  6. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  7. Sintering of a class F fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Biernacki; Anil K. Vazrala; H. Wayne Leimer [Tennessee Technological University, Cookeville, TN (United States). Department of Chemical Engineering

    2008-05-15

    The sinterability of a class F fly ash was investigated as a function of processing conditions including sintering temperature (1050-1200{sup o}C) and sintering time (0-90 min). Density, shrinkage, splitting tensile strength, water absorption and residual loss on ignition (RLOI) were evaluated as measures of sintering efficiency. Scanning electron microscopy (SEM), X-ray microanalysis and X-ray diffraction was used to examine microstructure and phase development due to processing. The results show that premature densification can inhibit complete carbon removal and that carbon combustion is influenced by both internal and external mass transfer conditions. 18 refs., 10 figs., 1 tab.

  8. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  9. Age hardening of a sintered Al-Cu-Mg-Si-(Sn) alloy

    International Nuclear Information System (INIS)

    Kent, D.; Schaffer, G.B.; Drennan, J.

    2005-01-01

    The age hardening response of a sintered Al-3.8 wt% Cu-1.0 wt% Mg-0.70 wt% Si alloy with and without 0.1 wt% Sn was investigated. The sequence of precipitation was characterised using transmission electron microscopy. The ageing response of the sintered Al-Cu-Mg-Si-(Sn) alloy is similar to that of cognate wrought 2xxx series alloys. Peak hardness was associated with a fine, uniform dispersion of lath shaped precipitates, believed to be either the β'or Q' phase, oriented along α directions and θ' plates lying on {0 0 1} α planes. Natural ageing also resulted in comparable behaviour to that observed in wrought alloys. Porosity in the powder metallurgy alloys did not significantly affect the kinetics of precipitation during artificial ageing. Trace levels of tin, used to aid sintering, slightly reduced the hardening response of the alloy. However, this was compensated for by significant improvements in density and hardness

  10. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  11. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  12. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  13. Developing and testing a vertical sintering furnace for remote nuclear applications

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Ryer, C.M.

    1980-01-01

    Horizontal-type furnaces used to sinter fuel pellets on a production basis are large and thus impractical for remote applications. However, research has shown that vertical-type furnaces are adaptable for use and are cheaper to operate and maintain. In 1979, Pacific Northwest Laboratory, working under the auspices of the Department of Energy's Fuel Refabrication and Development (FRAD) Program, began developing an advanced concept for a remotely operated furnace designed specifically to sinter nuclear fuel pellets. The FRAD Program at PNL ended before the sintering of nuclear fuels could be completely verified. However during 1979, PNL performed a sufficient number and variety of tests to establish that nuclear fuel pellets can be sintered in a vertical furnace

  14. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    bonding) between the salt beads at all the temperatures in which sintering was performed. .... and the sintering of some covalent solids and low- stability ceramics. The entire sintering process is gen- erally considered to occur in ...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... tool is not to scale because of the differences in types of vegetables. When creating your plate ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  16. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create ... Type 2 Education Series Hear audio clips and full recordings of past Q&A events at your ...

  17. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  18. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  19. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  20. Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

    Science.gov (United States)

    Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2018-04-01

    Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

  1. Laterally Loaded Nail-Plates

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Rathkjen, Arne

    Load-displacement curves from about 200 short-term and laterally loaded nail-plate joints are analysed. The nail-plates are from Gang-Nail Systems, type GNA 20 S. The test specimens and the measuring systems are described. The tests are divided into 32 different series. The influence of the number...

  2. Development of an innovative plate-type SG for fast breeder reactor. Proposal of the concept and the evaluation of the fabricating method by the test fabrication of the partial model

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi

    2006-01-01

    The concept of an innovative plate type SG for the fast reactor fabricated by using the HIP (Hot Isostatic Pressing) method was proposed. The heat transfer plate, which is assembled with rectangular tubes and is fabricated by HIP method, is surrounded by leakage detection spaces. It is possible to apply it to both the pool-type and the loop-type LMFR. In this report, the fabrication technique was studied about the concept for the loop-type LMFR, and the following results were obtained. Hip tests, tensile tests, and structure observation were performed to clarify the suitable HIP condition for the modified 9Cr-1Mo steel. As a result, the optimum condition of 1150 deg C x 1200 kgf/cm 2 x 3 hr was found. Nickel-type solder (BNi-5) and gold-type solder (BAu-4) were selected as a joining material to laminate the heat transfer tube plates. Through the comparison of tensile tests, BAu-4 that showed a more excellent joining performance was selected on the assumption of the margin of 5 mm from the welding line. After buckling load had been clarified, the BAu-4 brazing of the heat transfer tube plates was performed using a hot pressing method. Problems were not observed in the welding of simulated header, and in the fabricating of the partial model of SG. (author)

  3. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  4. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  5. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  6. Thermally stable sintered porous metal articles

    International Nuclear Information System (INIS)

    Gombach, A.L.; Thellmann, E.L.

    1980-01-01

    A sintered porous metal article is provided which is essentially thermally stable at elevated temperatures. In addition, a method for producing such an article is also provided which method comprises preparing a blend of base metal particles and active dispersoid particles, forming the mixture into an article of the desired shape, and heating the so-formed article at sintering temperatures

  7. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  8. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  9. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  10. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  11. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization

    International Nuclear Information System (INIS)

    Yar, M.A.; Wahlberg, Sverker; Bergqvist, Hans; Salem, H.G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    Nano-crystalline W-1%Y 2 O 3 (wt.%) powder was produced by a modified solution chemical reaction of ammonium paratungstate (APT) and yttrium nitrate. The precursor powder was found to consist of particles of bimodal morphology i.e. large APT-like particles up to 20 μm and rectangular yttrium containing ultrafine plates. After thermal processing tungsten crystals were evolved from W-O-Y plate like particles. spark plasma sintering (SPS) was used to consolidate the powder at 1100 and 1200 deg. C for different holding times in order to optimize the sintering conditions to yield high density but with reduced grain growth. Dispersion of yttrium oxide enhanced the sinterability of W powder with respect to lanthanum oxide. W-1%Y 2 O 3 composites with sub-micron grain size showed improved density and mechanical properties as compared to W-La 2 O 3 composites. Sample sintered in two steps showed improved density, due to longer holding time at lower temperature (900 deg. C) and less grain growth due to shorter holding time at higher temperature i.e. 1 min at 1100 deg. C.

  12. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates

    Science.gov (United States)

    Açlan, Mustafa; Altun, Yusuf

    2018-06-01

    The Esenköy pluton which is situated in the East Anatolian Accretionary Complex (EACC) is represented by I-type, metalumino, calc-alkaline, VAG + syn-COLG, gabbro, diorite, quartz diorite, tonalite and granodiorite type rocks. This paper presents the characteristics of the above granitoids on their major, trace, rare earth elements (REE) and their zircon U-Pb dating. Zircon U-Pb crystallisation ages for gabbro, tonalite and granodiorite are 22.3 ± 0.2 Ma, 21.7 ± 0.2 Ma and 21.8 ± 0.2 Ma respectively. Esenköy granitoids show medium and high-K calc-alkaline character, with six exceptional K-poor sample plot in tholeiitic series field. The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend. The data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U ages indicate that the collision which is take place between Arabian and Eurasian plates along the Bitlis-Zagros suture zone has begun in the Early Miocene (Aquitanian) or before from Early Miocene.

  13. Preparation of U-Si/U-Me (Me = Fe, Ni, Mn) aluminum-dispersion plate-type fuel (miniplates) for capsule irradiation

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Itoh, Akinori; Akabori, Mitsuo

    1993-06-01

    Details of equipment installed, method adopted and final products were described on the preparation of uranium silicides and other fuels for capsule irradiation. Main emphasis was placed on the preparation of laboratory-scale aluminum-dispersion plate-type fuel (miniplates) loaded to the first and second JMTR silicide capsules. Fuels contained in the capsules are as follows: (A) uranium-silicide base alloys U 3 Si 2 , Mo- added U 3 Si 2 , U 3 Si 2 +U 3 Si, U 3 Si 2 +USi, U 3 Si, U 3 (Si 0.8 Ge 0.2 ), U 3 (Si 0.6 Ge 0.4 ) (B) U 6 Me-type alloys with higher uranium density U 6 Mn, U 6 Ni, U 6 (Fe 0.4 Ni 0.6 ), U 6 (Fe 0.6 Mn 0.4 ) The powder-metallurgical picture-frame method was adopted and laboratory-scale technique was established for the preparation of miniplates. As a result of inspection for capsule irradiation, miniplates were prepared to meet the requirements of specification. (author)

  14. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  15. Compact heat and mass exchangers of the plate fin type in thermal sorption systems: Application in an absorption heat pump with the working pair CH3OH-LiBr/ZnBr2

    Science.gov (United States)

    Becker, Harry

    The possible application of Compact Heat and Mass Exchangers (CHME) in a gas fired Absorption Heat Pump (AHP) for domestic heating is studied. The above mentioned heat and mass exchangers are of the plate type. The space between the parallel and plain plates is filled up with corrugated plates of a certain height. The plain and finned plates are stacked and welded together. This gives a heat and mass exchanger which is very compact, expressed by a high area density (m2/m3). This leads to heat and mass transfer processes with small temperature and concentration differences. For testing purposes a pilot plant was built using the above type of components in order to test their heat and/or mass transfer performance. Only the generator is of the Shell And Tube (SAT) type. As the working pair, CH3OH - LiBr/ ZnBr2 was chosen, with the alcohol as the solvent and the salt mixture as the absorbent. This leads to sub atmospheric working pressures with only solvent in the vapor phase. Three series of experiments have been carried out, during which the input parameters were varied over a certain range. It is concluded that the plate fin CHMES are very suitable for application in an AHP for domestic heating purposes.

  16. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  17. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  18. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  19. Sexual dimorphism of growth plate prehypertrophic and hypertrophic chondrocytes in response to testosterone requires metabolism to dihydrotestosterone (DHT) by steroid 5-alpha reductase type 1.

    Science.gov (United States)

    Raz, P; Nasatzky, E; Boyan, B D; Ornoy, A; Schwartz, Z

    2005-05-01

    Rat costochondral growth plate chondrocytes exhibit sex-specific and cell maturation dependent responses to testosterone. Only male cells respond to testosterone, although testosterone receptors are present in both male and female cells, suggesting other mechanisms are involved. We examined the hypothesis that the sex-specific response of rat costochondral cartilage cells to testosterone requires further metabolism of the hormone to dihydrotestosterone (DHT). Resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) chondrocytes from male and female Sabra strain rats exhibited sex-specific responses to testosterone and DHT: only male cells were responsive. Testosterone and DHT treatment for 24 h caused a comparable dose-dependent increase in [3H]-thymidine incorporation in quiescent preconfluent cultures of male GC cells, and a comparable increase in alkaline phosphatase specific activity in confluent cultures. RC cells responded in a differential manner to testosterone and DHT. Testosterone decreased DNA synthesis in male RC cells but DHT had no effect and alkaline phosphatase specific activity of male RC cells was unaffected by either hormone. Inhibition of steroid 5alpha-reductase activity with finasteride (1, 5, or 10 microg/ml), reduced the response of male GC cells to testosterone in a dose-dependent manner, indicating that metabolism to DHT was required. RT-PCR showed that both male and female cells expressed mRNAs for steroid 5alpha-reductase type 1 but lacked mRNAs for the type 2 form of the enzyme. Male cells also exhibited 5alpha-reductase activity but activity of this enzyme was undetectable in female cells. These observations show that sex-specific responses of rat growth zone chondrocytes to testosterone requires the further metabolism of the hormone to DHT and that the effect of DHT in the male growth plate is maturation-state dependent. Failure of female chondrocytes to respond to testosterone may reflect differences in

  20. Solid state synthesis and sintering of monazite-type ceramics: application to minor actinides conditioning; Synthese par voie solide et frittage de ceramiques a structure monazite. Application au conditionnement des actinides mineurs

    Energy Technology Data Exchange (ETDEWEB)

    Bregiroux, D

    2005-11-15

    In the framework of the French law of 1991 concerning the nuclear waste management, several studies are undertaken to develop specific crystalline conditioning matrices. Monazite, a rare earth (TR{sup 3+}) orthophosphate with a general formula TR{sup 3+}PO{sub 4}, is a natural mineral containing significant amount of thorium and uranium. Monazite has been proposed as a host matrix for the minor actinides (Np, Am and Cm) specific conditioning, thanks to its high resistance to self irradiation and its low solubility. Its is now of prime importance to check the conservation of these properties on synthesized materials, which implies to master all the stages of the elaboration process, from the powder synthesis to the sintering of controlled microstructure pellets. This work can be divided into two main parts: The first part deals with the synthesis by high temperature solid state route of TR{sup 3+}PO{sub 4} powders (with TR{sup 3+} = La{sup 3+} to Gd{sup 3+}, Pu{sup 3+} and Am{sup 3+}). The chemical reactions occurring during the firing of starting reagents are described in the case of monazite with only one or several cations. From these results, a protocol of synthesis is described. The incorporation of tetravalent cations (Ce{sup 4+}, U{sup 4+}, Pu{sup 4+}) in the monazite structure was also studied. The second part of the present work deals with the elaboration of controlled density and microstructure monazite pellets and their related mechanical and thermal properties. The study of crushing and sintering is presented. For the first time, experimental results are confronted with theoretical models in order to deduce the densification and grain growth mechanisms. By the comprehension of the various physicochemical phenomena occurring during the various stages of the monazite pellets elaboration process (powder synthesis, crushing, sintering...), this work allowed the development of a protocol of elaboration of controlled microstructure monazite TR{sup 3+}PO{sub 4

  1. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  2. Effects of inclusions on the sintering behavior of YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Stearns, L.C.; Harmer, M.P.; Chan, H.M.

    1990-01-01

    The sintering behavior of two types of heterogeneous compacts of YBa 2 Cu 3 O 6+x was studied: Soft agglomerates present in the starting powder were used to study the effect of rapidly densifying inclusions on the overall sample densification. In this case, the induced stresses caused severe cracklike damage in the sintered microstructure. On the other hand, when nondensifying inclusions (same composition) were incorporated into the starting powder, no sintering damage was observed. Further, there was no retardation of densification or coarsening due to the presence of these dense inclusions, over a wide range of inclusion size. Several possibilities for this behavior are discussed, based on the distribution of stresses induced by differential sintering rates

  3. Orientation distribution in Bi2Te3-based compound prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Kim, K.T.; Kim, Y.H.; Lim, C.H.; Cho, D.C.; Lee, Y.S.; Lee, C.H.

    2005-01-01

    P-type Bi 0.5 Sb 1.5 Te 3 compounds doped with 3wt.% Te were fabricated by spark plasma sintering after mixing large powders(P L ) and small powders(P S ). We could obtained the highest figure of merit(Z C ) of 2.89 x 10 -3 /K in sintered compound mixed to P L :P S =80:20. This resulted from the increase of orientation by large powders(P S ) and the reduce of pores by small powders. The figure of merit(Z C ) of the sintered compound using only small powders(P S ) showed lower value of 2.67 x 10 -3 /K compared with that of sintered compound mixed to P L :P S =80:20 due to the increase of electrical resistivity. (orig.)

  4. Determinants of the quality of sintered steel for the automotive industry

    Directory of Open Access Journals (Sweden)

    Barbara Lisiecka

    2016-03-01

    Full Text Available The increasing demand on components obtained using powder metallurgy is driven by economic changes that have turned product quality into the most basic criterion which affects the interest in a component and its successful use. The improvement in quality should be expected in the beginning of the planning of the technological process and selection of adequate raw materials. High requirements concerning product quality management and production improvement stimulates the development of the current automotive industry where sintered steels represent the highest percentage of products. The multiphase sinters investigated in the study were prepared from two types of water–atomized steel powders: 316L and 409L. Optical microscopy, X–ray phase analysis and examinations of microhardness were performed in order to determine the microstructure and basic properties of sintered steels. The main assumption for this study was to analyse the microstructure and mechanical properties of sintered steels used for manufacturing of various car parts.

  5. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  6. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  7. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  8. Magnetic properties, microstructure and corrosion behavior of (Pr,nd)12.6Fe81.3B6.1-type sintered magnets doped with (Pr,nd)30Fe62Ga8

    Science.gov (United States)

    Ni, Junjie; Zhang, Zhenyu; Liu, Ying; Jia, Zhengfeng; Huang, Baoxu; Yin, Yibin

    2016-10-01

    NdFeB sintered magnets with (Pr,Nd)30Fe62Ga8 were prepared by a binary powder blending method and their magnetic properties, microstructure and corrosion behavior were investigated. Addition of 3 wt% (Pr,Nd)30Fe62Ga8 was found to be the most effective for improving (BH)max and iHc of the magnets. The increase in both magnetic parameters was related to the alteration in microstructure. However, in other samples the occurrence of micropore and the aggregation of intergranular phases harmed the magnetic properties. Such disadvantageous microstructure features also caused higher corrosion current density, thus decreasing the corrosion resistance of the sample with higher additive content. In addition, the Ga-containing intergranular phases that are more stable than the (Pr,Nd)-rich phase formed in the additive doped magnets, leading to better corrosion resistance of the 3 wt% additives doped sample in comparison with the contrastive sample.

  9. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Guy-Daniel Dutel

    2017-04-01

    Full Text Available Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  10. Influence of the silicon content on the core corrosion properties of dispersion type fuel plates; Influencia del Contenido en silicio sobre la corrosion acuosa de los nucleos de placas combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, C; Saenz de Tejada, L M; Diaz Diaz, J

    1969-07-01

    A new process to produce aluminium base dispersion type fuel plates has been developed at the Spanish JEN (Junta de Energia Nuclear). The dispersed fuel material is obtained by an aluminothermic process to render a stoichiometric cermet of UAI{sub 3} and AI{sub 2}O{sub 3} according to the reaction. (Author)

  11. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  12. Improvement of insertion loss and quality factor of flexural plate-wave-based alpha-fetoprotein biosensor using groove-type reflective grating structures

    Science.gov (United States)

    Lin, Chang-Yu; Huang, I.-Yu; Lan, Je-Wei

    2013-01-01

    Conventional flexural plate-wave (FPW) transducers have limited applications in biomedical sensing due to their disadvantages such as high insertion loss and low quality factor. To overcome these shortcomings, we propose a FPW transducer on a low phase velocity insulator membrane (5-μm-thick SiO2) with a novel groove-type reflective grating structure design. Additionally, a cystamine self-assembly monolayer and a glutaraldehyde cross-linking layer are implemented on the backside of the FPW device to immobilize alpha-fetoprotein (AFP) antibody. A FPW-based AFP biosensor with low detection limit (5 ng/mL) can be achieved and used to measure the extreme low concentration of AFP antigen in human serum for early detection of hepatocellular carcinoma. The proposed FPW-based AFP biosensor also demonstrates a very high quality factor (206), low insertion loss (-40.854 dB), low operating frequency (6.388 MHz), and high sensing linearity (90.7%).

  13. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  14. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  16. Apparatus for unloading nuclear fuel pellets from a sintering boat

    International Nuclear Information System (INIS)

    Bucher, G.D.; Raymond, T.E.

    1987-01-01

    An apparatus is described for unloading nuclear fuel pellets from a loaded sintering boat having an open top, comprising: (a) means for receiving the boat in an upright position with the pellets contained therein, the boat receiving means including a platform for supporting the loaded boat in the upright position, the boat supporting platform having first and second portions; (b) means for clamping the boat including a pair of plates disposed at lateral sides of the boat and being movable in a first direction relative to one another for applying clamping forces to the boat on the platform and in a second direction relative to one another for releasing the clamping forces from the boat. The pair of plates have inner surfaces facing toward one another, the first and second platform portions of the boat supporting platform being mounted to the plates on the respective facing surfaces thereof and disposed in a common plane. One of the plates and one of the platform portions mounted thereto are disposed in a stationary position and the other of the plates and the other of the platform portions mounted thereto are movable relative thereto in the first and second directions for applying and releasing clamping forces to and from the boat while the boat is supported in the upright position by the platform portions; (c) means for transferring the clamped boat from the upright position to an inverted position and then back to the upright position; and (d) means of receiving the pellets from the clamped boat as the boat is being transferred from the upright position to the inverted position

  17. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  18. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  19. Effect of rigid inclusions on sintering

    International Nuclear Information System (INIS)

    Rahaman, M.N.; De Jonghe, L.C.

    1988-01-01

    The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed

  20. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  1. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  2. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  3. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  4. Pressureless sintering of whisker-toughened ceramic composites

    Science.gov (United States)

    Tiegs, T.N.

    1993-05-04

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  5. Effect of Sintering Temperature on the Properties of Aluminium-Aluminium Oxide Composite Materials

    Directory of Open Access Journals (Sweden)

    Dewan Muhammad Nuruzzaman

    2016-12-01

    Full Text Available In this study, aluminium-aluminium oxide (Al-Al2O3 metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.

  6. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available stream_source_info chikosha_2011.pdf.txt stream_content_type text/plain stream_size 4354 Content-Encoding UTF-8 stream_name chikosha_2011.pdf.txt Content-Type text/plain; charset=UTF-8 PHASE CHARACTERISATION IN SPARK... to form “necks”  Radiant Joule heat and pressure drives “neck” growth and material transfer © CSIR 2006 www.csir.co.za Page 6 Objective  Produce TiPt alloy compacts by Spark plasma sintering (SPS) of equiatomic...

  7. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  8. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered .... product, could be due to oxidation of SiC, e.g. 50% weight gain of a green SiC sample ... because, the charging current is 90° advanced in phase, ideally, with respect to the ...

  9. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  10. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  11. Spark Plasma Sintering of Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Curtis W. [CK Technologies, Camirillo, CA (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tucker, Dennis [NASA Johnson Space Center, Houston, TX (United States); Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Zhongyang [Auburn Univ., AL (United States)

    2016-01-01

    A solid-state ultracapacitor module to replace standard electrochemical batteries would achieve major performance gains and mass/volume reduction. This report summarizes a project to evaluate an alternative sintering process to produce a solid-state ultracapacitor to overcome the limitations of both the electrochemical batteries presently in use on spacecraft and of currently available electrochemical ultracapacitors. It will provide a robust energy storage device with higher reliability, wider working temperature range, longer lifetime, and less weight and volume than electrochemical batteries. As modern electronics decrease in size, more efficient and robust remote power is needed. Current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. Solid-state ultracapacitors are recyclable energy storage devices that offer the promise of higher power and a greater number of charge/discharge cycles than current rechargeable batteries. In addition, the theoretical energy density when compared to current electrochemical batteries indicates that a significant weight savings is possible. This is a project to develop a very high density solid-state ultracapacitor with giant permittivity and acceptable dielectric loss to overcome the energy-density barrier such that it will be a suitable replacement for batteries.

  12. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  13. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1981-01-01

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  14. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  15. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  16. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  17. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  18. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  19. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  20. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  1. Histomorphometric Parameters of the Growth Plate and Trabecular Bone in Wild-Type and Trefoil Factor Family 3 (Tff3)-Deficient Mice Analyzed by Free and Open-Source Image Processing Software.

    Science.gov (United States)

    Bijelić, Nikola; Belovari, Tatjana; Stolnik, Dunja; Lovrić, Ivana; Baus Lončar, Mirela

    2017-08-01

    Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.

  2. Thermal-hydraulic behavior of physical quantities at critical velocities in a nuclear research reactor core channel using plate type fuel

    Directory of Open Access Journals (Sweden)

    Sidi Ali Kamel

    2012-01-01

    Full Text Available The thermal-hydraulic study presented here relates to a channel of a nuclear reactor core. This channel is defined as being the space between two fuel plates where a coolant fluid flows. The flow velocity of this coolant should not generate vibrations in fuel plates. The aim of this study is to know the distribution of the temperature in the fuel plates, in the cladding and in the coolant fluid at the critical velocities of Miller, of Wambsganss, and of Cekirge and Ural. The velocity expressions given by these authors are function of the geometry of the fuel plate, the mechanical characteristics of the fuel plate’s material and the thermal characteristics of the coolant fluid. The thermal-hydraulic study is made under steady-state; the equation set-up of the thermal problem is made according to El Wakil and to Delhaye. Once the equation set-up is validated, the three critical velocities are calculated and then used in the calculations of the different temperature profiles. The average heat flux and the critical heat flux are evaluated for each critical velocity and their ratio reported. The recommended critical velocity to be used in nuclear channel calculations is that of Wambsganss. The mathematical model used is more precise and all the physical quantities, when using this critical velocity, stay in safe margins.

  3. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  4. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    Directory of Open Access Journals (Sweden)

    Barba, Antonio

    2014-04-01

    Full Text Available Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering.En este trabajo se han estudiado los cambios microestructurales que se producen durante el tratamiento térmico de las ferritas de cobre-níquel-cinc y se ha analizado el proceso de precipitación de los dos tipos de cristales que aparecen durante el proceso de sinterización. Se ha encontrado que este proceso depende de la densidad relativa en seco de las muestras compactadas y de las siguientes variables de la etapa de sinterización: temperatura y tiempo de sinterización y velocidad de enfriamiento. La caracterización de los cristales precipitados se ha realizado por microscopía electrónica de barrido (MEB, microanálisis por dispersión de energía de rayos X (EDX, difracción de rayos X (DRX, y espectroscopía de fotoelectrones de rayos X (XPS. Estas técnicas han permitido determinar la naturaleza de estos cristales, que en este caso corresponden a los óxidos de cinc y de cobre. Se han propuesto dos reacciones químicas que permiten explicar el proceso de precipitación y la posterior re-disolución de estos cristales precipitados durante la

  5. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Wen-ming Tian; Song-mei Li; Bo Wang; Xin Chen; Jian-hua Liu; Mei Yu

    2016-01-01

    Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sinter-ing (SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide (Al4C3) is not formed during SPS processing. Further addition of graphene (above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.

  6. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  7. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    by measuring the electrical resistance during the sintering process [5], since low electrical resistance corresponds to high density. It is, however, necessary to be aware that increased temperature, on the other hand, increases the resistance. SEM micrographs and Computed Tomography (CT) are carried out......Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current......, up to 10 kA, and the low voltage, 1-2 V, resulting in heat generation in the powder. Figure 1 shows the experimental setup. The punches were made of a conductive material; namely a copper alloy. The die, which has to be electrically insulating, was made of alumina. The ESF process takes 3-4s...

  8. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  9. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  10. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  11. Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates

    Energy Technology Data Exchange (ETDEWEB)

    Paknejad, S.A. [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom); Dumas, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); West, G. [Loughborough University, Materials Department, Loughborough LE11 3TU (United Kingdom); Lewis, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); Mannan, S.H., E-mail: samjid.mannan@kcl.ac.uk [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom)

    2014-12-25

    Highlights: • Shear strength of pressure-free sintered Ag found to increase during ageing at 300 °C on Ag substrate. • Rapid collapse of void number density after 24 h ageing in the sintered Ag layer. • Higher porosity at edge of joint compared to the middle. • Shear strength of pressure-free sintered Ag decreases during ageing at 300 °C due to high porosity layer growth. • Void free layer and high porosity layer growth explained in terms of atomic diffusion and grain boundary migration. - Abstract: A silver nanoparticle based die attach material was used in a pressure free process to bond 2.5 mm square Ag plated Si die to Ag and Au plated substrates. The assemblies were stored at 300 °C for up to 500 h and the morphology of the sintered Ag and the shear strength were monitored as a function of time. On Ag substrate it was found that die shear strength increased and that the Ag grains grew in size and porosity decreased over time. There was also a clear difference in morphology between sintered Ag at the die edge and centre. On Au substrate, it was observed that the initially high die shear strength decreased with storage time and that voids migrated away from the Ag/Au interface and into the Ag joint. This has led to the formation of a void free layer at the interface followed by a high porosity region, which weakened the joint. The microstructure reveals a high density of grain and twin boundaries which facilitate the Ag and Au atomic diffusion responsible. The grain structure of the plated Au led to diffusion of Au into the Ag via high-angle tilt grain boundaries, and grain boundary migration further dispersed the Au into the Ag layer.

  12. Dry Sintered Metal Coating of Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    James C. Nicholson

    2016-09-01

    Full Text Available Halloysite nanotubes (HNTs are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste.

  13. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  14. Fusibility and sintering characteristics of ash

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  15. Current state of the Uranium dioxide sintering theory

    International Nuclear Information System (INIS)

    Baranov, V.; Devyatko, Y.; Tenishev, A.; Khlunov, A.; Khomyakov, O.

    2011-01-01

    The basic approaches to the description of the ceramics sintering phenomenon are considered. It is established that diffusive sintering models incorrectly describe an intermediate stage of this process. The physical model of sintering, considering the substance plastic flow of pressing under the influence of internal stress forces and capillary forces, as the basic mechanism defining the shrinkage of sintering oxide nuclear fuel, is offered. (authors)

  16. Peculiarities of formation and sintering of fine dispersed molybdenum powders

    International Nuclear Information System (INIS)

    Kalamazov, R.U.; Pak, V.I.; Tsvetkov, Yu.V.; Lem, I.N.

    1989-01-01

    Pressing of fine dispersed Mo powders sintering of compacts in H 2 and vacuum is studied. It is shown that powder preannealing at 600 deg C in H 2 for 2 hours is necessary for formation of dense sintered compacts. Qualitatively choice of pressing conditions is possible when using electron-positron annihilation method. Peculiarities of compacting and sintering of fine- and coarse-dispersed powder mixtures are considered. The obtained results are discussed from the view point of sintering recrystallization mechanism

  17. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  18. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  19. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  20. The influence of dislocation defects on the sintering kinetics of ferrite powders

    International Nuclear Information System (INIS)

    Fadeeva, I.V.; Portnoi, K.V.; Oleinikov, N.N.; Tretyakov, D.Yu.

    1976-01-01

    In the presented paper are given the results of the X-ray investigations of non-equilibrium defects in powders of nickel-zinc ferrites. The block size, the crystal lattice microdistortions and stacking faults of two types were determined by the method of Fourier's analysis of diffraction line profiles. The influence of similar defects on sintering of ferrite powders was shown. The kinetics data on densification processes occurring during sintering of active powders can adequately be described in terms of the equations which describe reactions in the solid phase, where the interaction limit is on the border of the phases with different geomtery of the border. The correlation between the behaviour of compacts and dislocation defects in powders during sintering is established

  1. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  2. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  3. Effect of High Speed Sintering on the Properties of Zirconia Oxide Materials

    Science.gov (United States)

    2018-03-22

    12. REPORT TYPE 22/03/2018 Poster 4. TITLE AND SUBTITLE Effect of High-Speed Sintering on the Properties ofZirconia-Oxide Materials 6. AUTHOR(S...2018-03/24/2018 Sa. CONTRACT NUMBER Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER Sd. PROJECT NUMBER Se. TASK NUMBER Sf. WORK UNIT NUMBER 8

  4. Blast furnace sinter performance improvement; Melhoria do rendimento de sinter de alto forno

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ricardo Baeta; Ferreira, Antonio Marcos M.; Perez, Jose Antonio; Nobrega, Carlos A.; Madeira Filho, Nelson Santos; Silva, Jose Coutinho da; Sampaio, Silvio; Larcher, Marcos A.; Silva Filho, Jose Maximo da; Nogueira, Carlos Alberto; Ramalho Filho, Wilson; Costa, Jose Luiz Lage da; Silva, Mauro Correa da [Companhia Siderurgica de Tubarao (CST), Serra, ES (Brazil)

    1995-07-01

    The article discusses the following issues of methodology maid and the accomplished actions aiming at the blast furnace sinter performance improvement: performance concept; performance historical evolution; problem boarding; influence factors; interpretation of the results; actions implementation; and economic benefit.

  5. Baking process of thin plate carbonaceous compact

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Shimada, Toyokazu

    1987-06-27

    As a production process of a thin plate carbonaceous compact for separator of phosphoric acid fuel cell, there is a process to knead carbonaceous powder and thermosetting resin solution, to form and harden the kneaded material and then to bake, carbonize and graphitize it. However in this baking and carbonization treatment, many thin plate compacts are set in a compiled manner within a heating furnace and receive a heat treatment from their circumference. Since the above compacts to be heated tend generally to be heated from their peripheries, their baked conditions are not homogeneous easily causing the formation of cracks, etc.. As a process to heat and bake homogeneously by removing the above problematical points, this invention offers a process to set in a heating furnace a laminate consisting of the lamination of thin plate carbonaceous compacts and the heat resistant soaking plates which hold the upper and lower ends of the above lamination, to fill the upper and under peripheries of the laminate above with high heat conductive packing material and its side periphery with low heat conductive packing material respectively and to heat and sinter it. In addition, the invention specifies the high and low heat conductive packing materials respectively. (1 fig, 2 tabs)

  6. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  7. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  8. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  9. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  10. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    Effect of different additives, namely Cr2O3, Fe2O3 and TiO2, up to 2 wt% was studied on the sinter- ing and .... mental distribution of the components is shown in figure 7. It shows ... Chiang Y M, Birniand D and Kingery W 1996 Physical ceram-.

  11. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  12. Stiffness Analysis of Nail-Plate Joints Subjected to Short-Term Loads

    DEFF Research Database (Denmark)

    Nielsen, Jacob

    nail-plates are designed for trusses. For many years, joints were made of boards with nails, but the increasing industrialism and the need for quick and usable assembly had the result that today nearly all trusses are pre-fabricated with nail-plates. The word "nail-plate" has been used for different...... types of plates. There are two main types of nail-plates: steel plates perforated with holes in which separate nails are used and steel plates perforated by a stamping machine, so the nails are made from the plate, see figur 1.2 on page 7. This type is sometimes called "punching metal plate...

  13. Hexagonal OsB{sub 2}: Sintering, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Institute for Problems of Materials Science, 3 Krzhizhanivskii Str., Kyiv 03142 (Ukraine); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Graule, Thomas; Kuebler, Jakob [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, CH-8600 Dubendorf (Switzerland); Mueller, Martin [Laboratory of Mechanical Metallurgy, EPFL, CH-1015 Lausanne (Switzerland); Gao, Huili [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Radovic, Miladin [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Cullen, David A. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-15

    Highlights: • ReB{sub 2}-type hexagonal OsB{sub 2} powder has been densified by spark plasma sintering. • The sintered OsB{sub 2} contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB{sub 2} sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB{sub 2}-type hexagonal OsB{sub 2} bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB{sub 2} were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB{sub 2} bulk ceramics.

  14. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  15. Microstructure and properties of multiphase sintered cermets Fe-Fe2B

    International Nuclear Information System (INIS)

    Nowacki, J.; Klimek, L.

    1998-01-01

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe 2 B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe 2 B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe 2 B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe 2 B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe 2 B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe 2 B cermets are a composite material in which iron boride, Fe 2 B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe 2 B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe 2 B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above, resulting from the cermet

  16. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Saleem S., E-mail: saleem.drera@gmail.com [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Hofman, Gerard L. [Argonne National Laboratory, Chicago, IL 60439 (United States); Kee, Robert J. [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); King, Jeffrey C. [Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-10-15

    Highlights: • This article presents a cellular automata (CA) algorithm to synthesize the growth of intermetallic interaction layers in U–Mo/Al dispersion fuel. • The method utilizes a 3D representation of the fuel, which is discretized into separate voxels that can change identy based on derived CA rules. • The CA model is compared to ILT measurements for RERTR experimental data. • The primary objective of the model is to synthesize three-dimensional microstructures that can be used in subsequent thermal and mechanical modeling. • The CA model can be used for predictive analysis. For example, it can be used to study the dependence of temperature on interaction layer growth. - Abstract: Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium–molybdenum (U–Mo) particles within an aluminum matrix. Fresh U–Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction–diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.

  17. The quantitative characterization of sintering of urania powders

    International Nuclear Information System (INIS)

    Das, P.; Kulkarni, U.D.

    1981-01-01

    This paper presents a unified approach towards characterization of the sintering behaviour of UO 2 powders in terms of their extrinsic properties. Empirical equations connecting the sintering index with various powder parameters have been set up. The influence of various powder parameters, either individually or as dimensionless/dimensional groups, on the sintering behaviour has been studied. The relative importance of these factors has also been analysed. A good polynomial fit has been obtained for variation of sintering index with some of the powder parameters and dimensionless/dimensional groups. The equations are expected to provide a good basis for assessing the sinterability of UO 2 powders. (Auth.)

  18. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  19. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  20. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  1. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  2. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  3. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  4. Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering

    International Nuclear Information System (INIS)

    Mussi, A.; Granger, G. Bernard; Addad, A.; Benameur, N.; Beclin, F.; Bataille, A.

    2009-01-01

    The distribution of inversion defects of Al was investigated in dense magnesium-aluminate spinel elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering. This study was conducted by energy electron loss spectroscopy analyses and more particularly by energy loss near edge structure investigations of the Al-L 2,3 edge. Several aspects are discussed with the purpose of understanding why charged defects dispersal reveals a special configuration.

  5. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  6. MHD free convection flow of a visco-elastic (Kuvshiniski type dusty gas through a semi infinite plate moving with velocity decreasing exponentially with time and radiative heat transfer

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2011-06-01

    Full Text Available The present paper is concerned with the study of MHD free convective flow of a visco-elastic (Kuvshinski type dusty gas through a porous medium induced by the motion of a semi-infinite flat plate under the influence of radiative heat transfer moving with velocity decreasing exponentially with time. The expressions for velocity distribution of a dusty gas and dust particles, concentration profile and temperature field are obtained. The effect of Schmidt number (Sc, Magnetic field parameter (M and Radiation parameter (N on velocity distribution of dusty gas and dust particles, concentration and temperature distribution are discussed graphically.

  7. FDTD simulation of microwave sintering in large (500/4000 liter) multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Subirats, M.; Iskander, M.F.; White, M.J. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.; Kiggans, J. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    To help develop large-scale microwave-sintering processes and to explore the feasibility of the commercial utilization of this technology, the authors used the recently developed multi-grid 3D Finite-Difference Time-Domain (FDTD) code and the 3D Finite-Difference Heat-Transfer (FDHT) code to determine the electromagnetic (EM) fields, the microwave power deposition, and temperature-distribution patterns in layers of samples processed in large-scale multimode microwave cavities. This paper presents results obtained from the simulation of realistic sintering experiments carried out in both 500 and 4,000 liter furnaces operating at 2.45 GHz. The ceramic ware being sintered is placed inside a cubical crucible box made of rectangular plates of various ceramic materials with various electrical and thermal properties. The crucible box can accommodate up to 5 layers of ceramic samples with 16 to 20 cup-like samples per layer. Simulation results provided guidelines regarding selection of crucible-box materials, crucible-box geometry, number of layers, shelf material between layers, and the fraction volume of the load vs. that of the furnace. Results from the FDTD and FDHT simulations will be presented and various tradeoffs involved in designing an effective microwave-processing system will be compared graphically.

  8. A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers with Variable Coefficients

    International Nuclear Information System (INIS)

    López, R; Lecuona, A; Ventas, R; Vereda, C

    2012-01-01

    In Plate Heat Exchangers it is important to determine the flow distribution and pressure drops, because they affect directly the performance of a heat exchanger. This work proposes an incompressible, one-dimensional, steady state, discrete model allowing for variable overall momentum coefficients to determine these magnitudes. The model consists on a modified version of the Bajura and Jones model for dividing and combining flow manifolds. The numerical procedure is based on the finite differences approximation approach proposed by Datta and Majumdar. A linear overall momentum coefficient distribution is used in the dividing manifold, but the model is not limited to linear distributions. Comparisons are made with experimental, numerical and analytical data, yielding good results.

  9. Create Your Plate

    Medline Plus

    Full Text Available ... foods you want, but changes the portion sizes so you are getting larger portions of non-starchy ... plate. Then on one side, cut it again so you will have three sections on your plate. ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  12. High pressure sintering (HP-HT) of diamond powders with titanium and titanium carbide

    International Nuclear Information System (INIS)

    Jaworska, L.

    1999-01-01

    Polycrystalline diamond compacts for cutting tools are mostly manufactured using high pressure sintering (HP-HT). The standard diamond compacts are prepared by diamond powders sintering with metallic binding phase. The first group of metallic binder are metals able to solve carbon - Co, Ni. The second group of metal binders are carbide forming elements - Ti, Cr, W and others. The paper describes high pressure sintering of diamond powder with titanium and nonstoichiometry titanium carbide for cutting tool application. A type of binding phase has the significant influence on microstructure and mechanical properties of diamond compacts. Very homogeneous structure was achieved in case of compacts obtained from metalized diamond where diamond-TiC-diamond connection were predominant. In the case of compacts prepared by mechanical mixing of diamond with titanium powders the obtained structure was nonhomogeneous with titanium carbide clusters. They had more diamond to diamond connections. These compacts compared to the compact made of metallized diamond have greater wear resistance. In the case of the diamond and TiC 0.92 sintering the strong bonding of TiC diamond grains was obtained. The microstructure observations for diamond with 5% wt. Ti and diamond with 5% wt. TiC 0.92 (the initial composition) compacts were performed in transmission microscope. For two type of compacts the strong bonding phase TiC without defects is creating. (author)

  13. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  14. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  15. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  16. The dimensional accuracy of the sintered billets

    Directory of Open Access Journals (Sweden)

    Чингиз Ариф оглы Алиев

    2016-01-01

    Full Text Available The article presents the results of assessing the impact of the behaviour stability of the components included in the compositions and process parameters of their production, on the dimensional accuracy of workpieces. It was found that by increasing the amount of oxide in the composition is greater compaction of the sintered billet in the process of heat treatment. This also increases the density of all components of the composition

  17. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  18. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  19. Voltage-current characteristics of a pin-plate system with different plate configurations

    International Nuclear Information System (INIS)

    Feng, Zhuangbo; Long, Zhengwei

    2013-01-01

    In this paper, the voltage-current (V-I) characteristics of a pin-plate system with four types of collection plate configurations are studied experimentally. The collection plates consider a single metal plate, a metal plate with a fly ash cake layer, a metal plate with a clean filter media and a metal plate with a dirty filter media. The results show that the clean filter media has no obvious effect on the V-I characteristics. But the dirty filter media reduces the current density because of its high resistance. The thick fly ash cake layer increase current density because of the anti-corona effect but the increment is not very obvious.

  20. Paper microzone plates.

    Science.gov (United States)

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  1. Parametric study of fission-induced U-Mo fuel creep and structural analysis of fuel plates in view of implications for microstructure evolution

    International Nuclear Information System (INIS)

    Kim, Y.S.; Hofman, G.L.; Choo, Y.S.; Robinson, A.B.

    2010-01-01

    U-Mo fuel deformation during irradiation in U-Mo/Al dispersion plates is investigated by using the irradiation data from the RERTR-3 through -9 tests. The observation of fuel particle sintering during irradiation is also presented and its influence for fuel performance is discussed. Structural analysis was also performed to examine the relationship between the stress distribution in the plate and the location of matrix-pore formation in the plate. (author)

  2. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1980-06-01

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO 2 gels and UO 2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO 2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author) [pt

  3. Studies on the Sintering Behaviour of UO2-Gd2O3 Nuclear Fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Gracher Riella, Humberto

    2008-01-01

    The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fuel cycles and optimized fuel utilization. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low diffusivity Gd rich (U,Gd)O 2 phase. Experimental evidences indicated the existence of phases in the (U,Gd)O 2 system with structure different from the fluorite type structure of UO 2 . The apparition of these new phases coincides with the lowering of the density after sintering and with the lowering of the interdiffusion coefficient. However, it has been shown experimentally that the sintering blockage phenomena cannot be explained on the basis of the formation of low diffusivity Gd rich (U,Gd)O 2 phases. The work was continued to investigate other possible blocking mechanism. (authors)

  4. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  5. Sintering behavior of porous wall tile bodies during fast single-firing process

    Directory of Open Access Journals (Sweden)

    Sidnei José Gomes Sousa

    2005-06-01

    Full Text Available In ceramic wall tile processing, fast single-firing cycles have been widely used. In this investigation a fast single-firing porous wall tile mixture was prepared using raw materials from the North Fluminense region.Specimens were obtained by uniaxial pressing and sintered in air at various temperatures (1080 - 1200 °C using a fast-firing cycle (60 minutes. Evolution of the microstructure was followed by XRD and SEM. The results revealed that the main phases formed during the sintering step are anorthite, gehlenite and hematite. It appears that the sintering process is characterized by the presence of a small amount of a liquid phase below 1140 °C. As a result, the microstructure of the ceramic bodies showed a network of small dense zones interconnected with a porous phase. In addition, the strength of the material below 1140 °C appeared to be related to the type and quantity of crystalline phases in the sintered bodies.

  6. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  7. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  8. HAp physical investigation - the effect of sintering temperature

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Idris Besar; Rusnah Mustaffa; Cik Rohaida Che Hak

    2004-01-01

    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp). In this study, the HAp was prepared using polymeric sponge techniques with different binder concentration. The sintering process was carried out in air for temperature ranging from 1200 degree C to 1600 degree C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentration HAp showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut also be presented in this paper. (Author)

  9. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  10. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  11. Properties, structure and machnining capabilities sintered corundum abrasives

    Directory of Open Access Journals (Sweden)

    Cz.J. Niżankowski

    2010-07-01

    Full Text Available The diversity of sintered corundum abrasives used in both bonded and in the embankment of abrasive tools currently poses substantialproblems for their choice of technology to specific tasks. Therefore performed a comparative study of ownership structures and capacitiesof elected representatives machnining sintered corundum abrasives of different generations, and this is normal sintered alumina,submicrocrystalline alumina sintered and nanocrystalline alumina sintered. Were studied some properties of a set of abrasive particles,physicochemical properties and structural and mechanical and technological properties. The studies used the method of microscopicmeasurement to determine the shape of abrasive particles, the pycnometer to determine the density of abrasive, a spectrometer todetermine the chemical composition of the magnetic analyzer for determining the magnetic fraction, scanning electron microscope toanalysis of abrasive grains and a special position to designate the machining capacity abrasive grains. The results showed a significantincrease in machining capacity sintered corundum abrasives with increasing degree of fragmentation of the crystallites sintered corundum abrasives and distinctive bands in the emerging microchip. The originality of the development provides a comparative summary ofproperties of sintered corundum abrasives of different generations and functions obtained by the author making the change in value indexof machininhcapacity grit from cutting speeds for different generations of sintered corundum.

  12. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  13. Replacement divider plate performance under LOCA loading

    International Nuclear Information System (INIS)

    Huynk, H.M.; MClellan, G.H.; Schneider, W.G.

    1997-01-01

    A primary divider plate in a nuclear steam generator is required to perform its partitioning function with a minimum of cross leakage, without degradation in operating performance and without loss of structural integrity resulting from normal and accident loading. The design of the replacement divider plate for normal operating conditions is discussed in some detail in reference 1 and 2. This paper describes the structural response of the replacement divider plate to the severe loading resulting from a burst primary pipe. The loads for which the divider plate structural performance must be evaluated are mild to severe differential pressure transients resulting from several postulated sizes and types of pipe break scenarios. In the unlikely event of a severe Loss of Coolant Accident (LOCA) the divider plate or parts thereof must not exit the steam generator nor completely block the outlet nozzle. For the milder LOCA loads, the integrity of the divider plate and seat bars must be maintained. Analysis for the milder LOCA loads was carried out employing a conservative approach which ignores the actual interaction between the structure and the primary fluid. For these load cases it was shown that the divider plate does not become disengaged from the seat bars. For the more severe pipe breaks, the thermal-hydraulic analysis was coupled iteratively with the structural analysis, thereby taking into account divider plate deformation, in order to obtain a better prediction of the behaviour of the divider plate. In this manner substantial reduction in divider plate response to the more severe LOCA loading was achieved. It has been shown that, for the case of a postulated large LOCA (100% reactor inlet header), the disengagement of the divider plate from the seat bars resulted in an opening smaller than 1% of the divider plate area. (author)

  14. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  15. Gentilly 2 divider plate replacement

    International Nuclear Information System (INIS)

    Forest, J.; Klisel, E.; McClellan, G.; Schnelder, W.

    1995-01-01

    The steam generators at the Gentilly 2 Nuclear Plant in operation since 1983 were built with primary divider plates of a bolted panel configuration. During a routine outage inspection, it was noted that two bolts had dislodged from the divider and were located lying in the primary head. Subsequent inspections revealed erosion damage to a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. After evaluation of various options, it was decided that the panel type dividers would be replaced with a single piece floating design. The divider itself was to be of a one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat bar was provided. To counteract erosion concerns, the new divider is fitted with erosion resistant inserts or weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider strength during LOCA conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider to a variety of small and large LOCA conditions. The paper describes the diagnosis of the original divider plates and the design, manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)

  16. Comparison of reconstruction plate screw fixation and percutaneous cannulated screw fixation in treatment of Tile B1 type pubic symphysis diastasis: a finite element analysis and 10-year clinical experience.

    Science.gov (United States)

    Yu, Ke-He; Hong, Jian-Jun; Guo, Xiao-Shan; Zhou, Dong-Sheng

    2015-09-22

    The objective of this study is to compare the biomechanical properties and clinical outcomes of Tile B1 type pubic symphysis diastasis (PSD) treated by percutaneous cannulated screw fixation (PCSF) and reconstruction plate screw fixation (RPSF). Finite element analysis (FEA) was used to compare the biomechanical properties between PCSF and RPSF. CT scan data of one PSD patient were used for three-dimensional reconstructions. After a validated pelvic finite element model was established, both PCSF and RPSF were simulated, and a vertical downward load of 600 N was loaded. The distance of pubic symphysis and stress were tested. Then, 51 Tile type B1 PSD patients (24 in the PCSF group; 27 in the RPSF group) were reviewed. Intra-operative blood loss, operative time, and the length of the skin scar were recorded. The distance of pubic symphysis was measured, and complications of infection, implant failure, and revision surgery were recorded. The Majeed scoring system was also evaluated. The maximum displacement of the pubic symphysis was 0.408 and 0.643 mm in the RPSF and PCSF models, respectively. The maximum stress of the plate in RPSF was 1846 MPa and that of the cannulated screw in PCSF was 30.92 MPa. All 51 patients received follow-up at least 18 months post-surgery (range 18-54 months). Intra-operative blood loss, operative time, and the length of the skin scar in the PCSF group were significantly different than those in the RPSF group. No significant differences were found in wound infection, implant failure, rate of revision surgery, distance of pubic symphysis, and Majeed score. PCSF can provide comparable biomechanical properties to RPSF in the treatment of Tile B1 type PSD. Meanwhile, PCSF and RPSF have similar clinical and radiographic outcomes. Furthermore, PCSF also has the advantages of being minimally invasive, has less blood loss, and has shorter operative time and skin scar.

  17. Effect of sintering time on the physical characteristics of CaCu_3Ti_4O_1_2

    International Nuclear Information System (INIS)

    Carvalho, E. de; Muccillo, E.N.S.

    2011-01-01

    Polycrystalline CaCu_3Ti_4O_1_2 (CCTO) with the perovskite type structure has a high dielectric constant that can do up to 10"5, at room temperature, which make it an interesting material to be applied at several microelectronic devices. In this work, CCTO was prepared by the conventional solid state method, in order to identify the influence of process parameters in its properties. Powders were homogenized in a mechanical mixer, calcined at 900 °C for 18 hours, pressed into 10 mm diameter pellets and sintered at 1050 °C for 12 and 18 hours. Density achieved was 94 and 87%, pellets sintered for 12 and 18 hours, respectively. X-ray diffraction confirms the presence of the cubic phase of perovskite type. The observation of micrographs shows an increase of the grain size with the sintering time. Dielectric properties present a dependence on the sample process. (author)

  18. Gas response properties of citrate gel synthesized nanocrystalline MgFe2O4: Effect of sintering temperature

    International Nuclear Information System (INIS)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe 2 O 4 by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe 2 O 4 . ► Enhancement in selectivity of MgFe 2 O 4 towards LPG with sintering temperature. ► Use of MgFe 2 O 4 to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe 2 O 4 material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe 2 O 4 material. It was revealed that MgFe 2 O 4 sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe 2 O 4 sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  19. Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization

    Science.gov (United States)

    Wang, Ping; Liu, Dong-Yan

    2012-01-01

    Performances of two common types of red mud, Bayer red mud and Sintering red mud, were investigated in this research. Their compositions, mechanical properties and microstructure characterization were measured through XRD, TG and SEM analysis. Their shear strength, particle size, density and hydraulic characteristics also had been performed. Huge differences between the basic mineral types of these two kinds of red mud also can be found. The comparison of compositions shows that CaCO3 content in Sintering red mud is higher, Bayer red mud has more hazardous elements such as As, Pb and Hg and both have a high concentration of radioactivity. The micro particle of Bayer red mud is finer and more disperse, but the Sintering red mud has higher shear strength. Combining the TG and hydraulic characteristics analysis, it can be shown that Bayer red mud has higher value of water content and Sintering red mud has higher hydraulic conductivity. The paper then illustrates that Sintering red mud can become the main filling material of supporting structure of red mud stocking yard. Bayer red mud has a high reuse value and also can be used as a mixing material of masonry mortar.

  20. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Lee, Min-Ku; Rhee, Chang-Kyu; Rhee, Won-Hyuk

    2015-01-01

    Highlights: • 6061Al–B 4 C neutron shielding composites are fabricated by sintering and HIP. • HIP process improves the wettability of B 4 C particles into 6061Al matrix. • Neutron attenuation performance can be enhanced by application of HIP process. - Abstract: Sandwich type of 6061Al–B 4 C composite plates, which are used as a thermal neutron absorber for spent nuclear fuel pool storage rack, were fabricated using two different consolidation ways as sintering and hot isostatic pressing (HIP) processes and their thermal neutron shielding efficiency was investigated as a function of B 4 C concentration ranging from 0 to 40 wt.%. For this purpose, two respective inner core compaction parts of sintered and HIPped neutron absorbing composite materials were first produced and then cladded them between two outer plates by HIP process. The application of HIP process provided not only a lead of excellent interfacial adhesion due to the improved wettability but also an enhancement of thermal neutron shielding efficiency owing to the more uniform dispersion of B 4 C particles

  1. Utilisation of different types of coal fly ash in the production of ceramic tiles

    OpenAIRE

    KocKal, N. U.

    2012-01-01

    The influence of varying proportions of different types of fly ash (used in place of feldspar) and different sintering temperatures on the sintered properties of ceramic tile bodies was evaluated. The results indicated that sintering ceramic tiles with a high fly ash content at a high temperature caused a decrease in the properties because of bloating. The ceramic samples containing a higher amount of fly ash that were sintered at low temperature exhibited lower water absorption, larger shrin...

  2. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  3. Spark Plasma Sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Alayli, N. [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Université de Versailles-Saint-Quentin-en-Yvelines, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre National de la Recherche Scientifique/INSU, Laboratoire Atmosphères Milieux Observations Spatiales-IPSL, Quartier des Garennes, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Schoenstein, F., E-mail: frederic.schoenstein@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Girard, A. [Office National d' Étude et de Recherches Aérospatiales, Laboratoire d' Étude des Microstructures, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 104, 29 avenue de la Division Leclerc, F-92322 Châtillon (France); and others

    2014-11-14

    Processing parameters of Spark Plasma Sintering (SPS) technique were constrained to process nano sized silver particles bound in a paste for interconnection in power electronic devices. A novel strategy combining debinding step and consolidation processes (SPS) in order to elaborate nano-structured silver bulk material is investigated. Optimum parameters were sought for industrial power electronics packaging from the microstructural and morphological properties of the sintered material. The latter was studied by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to determine the density and the grain size of crystallites. Two types of samples, termed S1 (bulk) and S2 (multilayer) were elaborated and characterized. They are homogeneous with a low degree of porosity and a good adhesion to the substrate and the process parameters are compatible with industrial constraints. As the experimental results show, the mean crystallite size is between 60 nm and 790 nm with a density between 50% and 92% resulting in mechanical and thermal properties that are better than that of lead free solder. The best SPS sintering parameters, the applied pressure, the temperature and the processing time were determined as being 3 MPa, 300 °C and 1 min respectively when the desizing time of the preprocessing step was kept below 5 min at 150 °C. Using these processing parameters, acceptable for automotive packaging industry, a semi-conductor power chip was successfully connected to a metalized substrate by sintered silver with thermal and electrical properties better than those of current solders and with thermomechanical properties allowing absorption of thermoplastic stresses. - Highlights: • The sintered silver joints have nanometric structure. • The grain growth was controlled by the SPS sintering parameters. • New connection material improve thermal and electrical properties of current solders. • Interconnection's plastic strain can absorb thermo

  4. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  5. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  6. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  7. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  8. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  9. Large self-biased and multi-peak magnetoelectric coupling in transducer of Pb(Zr,Ti)O3 plates and H-type magnetization-graded ferromagnetic fork

    Science.gov (United States)

    Shen, Yongchun; Ling, Zhihao; Lu, Caijiang

    2015-12-01

    This paper develops a self-biased magnetoelectric (ME) composite Metglas/H-type-FeNi/PZT (MHFP) of H-type magnetization-graded Metglas/H-type-FeNi fork and piezoelectric Pb(Zr,Ti)O3 (PZT) plate. By using the magnetization-graded magnetostrictive layer and symmetrical H-type structure, giant self-biased ME coupling and multi-peak phenomenon are observed. The zero-biased ME voltage coefficient of MHFP composite reaches ˜63.8 V/cm Oe, which is ˜37.5 times higher than that of traditional FeNi/PZT laminate. The output ME voltage has a good near linear relation with Hac and is determined to be ˜5.1 V/Oe and ˜10.6 mV/Oe at ˜65 kHz and 1 kHz, respectively. These indicate that the proposed composite show promising applications for ME transducers and high-sensitivity self-biased magnetic sensors.

  10. Applications of high-Tc-superconductors to power engineering. Manufacture of YBCO plate-type conductors and construction of a HTS current limiter model up to 1 MVA nominal power. Final report

    International Nuclear Information System (INIS)

    Utz, B.; Schmidt, W.; Schilling, W.; Fischperer, I.; Kraemer, H.P.; Wacker, B.; Gromoll, B.; Neumueller, H.W.; Arndt, A.; Karras, B.; Krueger, U.; Pyritz, U.; Schiewe, H.; Schiller, H.P.; Volkmar, R.R.; Hering, U.; Roessler, R.; Freyhardt, H.C.; Sievers, S.; Hoffmann, J.; Dzich, J.; Kinder, H.; Hoffmann, C.; Lindmayer, M.; Grundmann, J.; Woerdenweber, R.; Hollmann, E.; Kutzner, R.; Klein, W.; Bunte, S.; Kuhn, M.

    2002-06-01

    In terms of materials, the main focus of the work was on the manufacture of large-area YBCO plate-type conductors with homogeneous properties and maximum current densities of j c >1 MA/cm 2 . j c values of better than 3 MA/cm 2 were achieved reproducibly on sapphire substrates of 100 mm diameter and 10 x 20 cm 2 in size with a homogeneity of 10%; on polycrystalline substrates of 10 x 20 cm 2 in size, homogeneous j c values of up to 2 MA/cm 2 were also successfully demonstrated. Of the total of four methods of coating available at the start of the project, thermal co-evaporation (TCE) proved best for YBCO thin films and the IBAD method best for quasi single-crystal buffer films. The latter are necessary to achieve high j c on polycrystalline substrates such as ZrO 2 (Y), glass and Al 2 O 3 . Polycrystalline substrates are essential in order to make the HTS current limiter as a future product commercially feasible. The favoured solutions ZrO 2 (Y) and glass have not come up to expectations, because present investigations into quench propagation are showing that, with this approach, the high values of power density required for the switching process (1600 VA/cm 2 ) cannot be achieved. Towards the end of the project, polycrystalline Al 2 O 3 began to be seen as a successful alternative; the work is being pursued further within the context of a follow-on project. The coating processes were stabilized successfully and, when combined with strict quality control, allowed the yield of tested, ready-to-use plate-type conductors to be improved to 85%. This success was an essential prerequisite for the building of a 3-phase, 1.2 MVA model (7.2 kV) comprising a total of sixty-three 100 mm plate-type conductors. At the Berlin factory the model has been successfully tested up to a prospective short-circuit current of 5 kV. This has demonstrated the basic suitability of HTS thin-film technology for use in current limiters. So far the model has been switched a total of 43 times

  11. Microstructural Analysis of Sintered Gradient Materials Based on Distaloy SE Powder

    Directory of Open Access Journals (Sweden)

    Zarębski K.

    2016-06-01

    Full Text Available The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products

  12. Patient satisfaction with laser-sintered removable partial dentures: A crossover pilot clinical trial.

    Science.gov (United States)

    Almufleh, Balqees; Emami, Elham; Alageel, Omar; de Melo, Fabiana; Seng, Francois; Caron, Eric; Nader, Samer Abi; Al-Hashedi, Ashwaq; Albuquerque, Rubens; Feine, Jocelyne; Tamimi, Faleh

    2018-04-01

    Clinical data regarding newly introduced laser-sintered removable partial dentures (RPDs) are needed before this technique can be recommended. Currently, only a few clinical reports have been published, with no clinical studies. This clinical trial compared short-term satisfaction in patients wearing RPDs fabricated with conventional or computer-aided design and computer-aided manufacturing (CAD-CAM) laser-sintering technology. Twelve participants with partial edentulism were enrolled in this pilot crossover double-blinded clinical trial. Participants were randomly assigned to wear cast or CAD-CAM laser-sintered RPDs for alternate periods of 30 days. The outcome of interest was patient satisfaction as measured using the McGill Denture Satisfaction Instrument. Assessments was conducted at 1, 2, and 4 weeks. The participant's preference in regard to the type of prosthesis was assessed at the final evaluation. The linear mixed effects regression models for repeated measures were used to analyze the data, using the intention-to-treat principle. To assess the robustness of potential, incomplete adherence, sensitivity analyses were conducted. Statistically significant differences were found in patients' satisfaction between the 2 methods of RPD fabrication. Participants were significantly more satisfied with laser-sintered prostheses than cast prostheses in regard to general satisfaction, ability to speak, ability to clean, comfort, ability to masticate, masticatory efficiency, and oral condition (Premovable partial dentures may lead to better outcomes in terms of patient satisfaction in the short term. The conclusion from this pilot study requires confirmation by a larger randomized controlled trial. ClinicalTrials.gov. A study about patient satisfaction with laser-sintered removable partial dentures; NCT02769715. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  14. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  15. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  16. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  17. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  18. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  19. Sintering of uranium dioxide obtained by continuous precipitation of AUC

    International Nuclear Information System (INIS)

    Amaya, C.D.; Sterba, M.E.; Russo, D.O.

    1993-01-01

    The Nuclear Materials Division in Bariloche Atomic Center evaluates the ceramic behaviour of UO 2 powders obtained from continuously precipitated and reduced AUC (Ammonium Uranyl Tri Carbonate). An analysis is made of powder characteristics (particle morphology and size distribution and specific area) on behaviour of UO 2 during sintering (compaction, sintering, pore and grain microstructure, etc.). 1 ref

  20. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    Science.gov (United States)

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  1. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ratures ranging from 570–630 ◦C. Microwave sintering at a heating rate of as high as 22◦. C/min resulted in ... The effect of heating mode and sintering temperature are discussed .... the compacts. This is attributed to the Zn evaporated from the.

  2. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  3. Densification of LSGM electrolytes using activated microwave sintering

    Science.gov (United States)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  4. Sintering unalloyed titanium in DC electrical abnormal glow discharge

    Directory of Open Access Journals (Sweden)

    Allan Seeber

    2010-03-01

    Full Text Available Powder metallurgy is widely used in the manufacture of components that have complex geometry. The good dimensional control, reduction in manufacturing steps and operating costs which has favored the use of this technique for manufacturing of titanium alloys components. However, the high affinity of this material with oxygen hinders strongly the sintering process. For this, the sintering associated with plasma technology can be considered an alternative technique for the processing of this material. The strict control of sintering atmosphere performed at low pressures and the reactive species present in the plasma environment can help to improve the sintering of this material. The results presented in this paper show a good correlation between the parameters used for the compaction of the samples and the microstructure develop during the plasma sintering of samples. The microstructure of the plasma assisted samples is also affected by the particular configuration used in the plasma reactor.

  5. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  6. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  7. Effect of particle size distribution on sintering of tungsten

    International Nuclear Information System (INIS)

    Patterson, B.R.; Griffin, J.A.

    1984-01-01

    To date, very little is known about the effect of the nature of the particle size distribution on sintering. It is reasonable that there should be an effect of size distribution, and theory and prior experimental work examining the effects of variations in bimodal and continuous distributions have shown marked effects on sintering. Most importantly, even with constant mean particle size, variations in distribution width, or standard deviation, have been shown to produce marked variations in microstructure and sintering rate. In the latter work, in which spherical copper powders were blended to produce lognormal distributions of constant geometric mean particle size by weight frequency, blends with larger values of geometric standard deviation, 1nσ, sintered more rapidly. The goals of the present study were to examine in more detail the effects of variations in the width of lognormal particle size distributions of tungsten powder and determine the effects of 1nσ on the microstructural evolution during sintering

  8. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... ready, you can try new foods within each food category. Try these seven steps to get started: Using your dinner plate, put a line down the middle of the plate. Then on one side, cut it ... and starchy foods. See this list of grains and starchy foods . ...

  12. Note on measurement of thermal conductivity of sintered uranium dioxide; Note relative a la mesure de la conductivite thermique du bioxyde d'uranium fritte

    Energy Technology Data Exchange (ETDEWEB)

    Englander, M

    1951-06-01

    Thermal conductivity of sintered UO{sub 2} was determined by measuring the quantity of heat having passed in unit time through a plate of given dimensions when a certain temperature difference was being maintained at the faces of the plate. Specimens, about 10 and 40 mm thick and about 65 mm in diameter, were heated electrically, the temperature of both faces being measured by means of iron-constantan thermocouples. The accuracy of the device in its present shape is not high, the relative error being {approx} 15%. The thermal conductivity of sintered UO{sub 2} in the temperature range 20 to 250 deg. C was found to be about 9 x 10{sup -3} cgs units. (author)

  13. The Effects of Post-Sintering Treatments on Microstructure and Mechanical Properties of Mn-Mo Steel

    Science.gov (United States)

    Fiał, Ch.

    2017-12-01

    The effect of heat treatment on density, hardness, microstructure and tensile properties of Fe-0.85Mo-1.3Mn-0.6C sintered steel were investigated. Pre-alloyed Astaloy 85Mo, ferromanganese and UF4 graphite powders were mixed for 60 minutes in a Turbula mixer and then pressed in single-action die at 660MPa to produce green compacts (according to PN EN ISO 2740).The compacts were sintered in a specially designed semi-closed container at 1120 or 1250°C for 60 minutes in N2. The chemical composition of the sintering atmosphere was modified by adding getter and/or activator into the container. Two different types of heat treatment in nitrogen were carried out: sinteraustempering at 525°C for 60 minutes; and sinterhardening with additional tempering at 200°C for 60 minutes. The slightly better combination of strength and plasticity of steel for both sintering temperatures were achieved after sinterhardening+tempering variant. Average values of 0.2% offset yield stress, ultimate tensile strength and elongation after sintering in 1250°C, were 415MPa, 700MPa, and 2.0%, respectively.

  14. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  15. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  16. Multi-layered electroless Ni-P coatings on powder-sintered Nd-Fe-B permanent magnet

    International Nuclear Information System (INIS)

    Chen Zhong; Ng, Alice; Yi Jianzhang; Chen Xingfu

    2006-01-01

    This paper has shown a successful protective coating scheme for powder-sintered Nd-Fe-B permanent magnet using multi-layered electroless nickel (EN) deposition. A low-phosphorus nickel layer is plated with an alkaline EN solution first, followed by a high-phosphorus nickel layer plated with an acidic solution. An additional topcoat by medium-phosphorus nickel on the high-phosphorus coating is also explored. It is shown that the high-phosphorus nickel layer coated in acidic solution provides the best corrosion protection because of its dense amorphous structure. The medium phosphorus topcoat is also dense and is able to provide reasonable corrosion resistance. The low-phosphorus layer itself does not have enough corrosion resistance; its main role is to provide an intermediate coating on the powder-sintered magnet. X-ray diffraction measurement shows that the low-phosphorus coating consists of nano-crystallines, and the high- and the medium-phosphorus coatings are dominated by amorphous structure. Microscopic observation and scratch test on these composite coatings demonstrate good adhesion between the magnet and the coatings. Remanence and coercivity of the plated magnet decrease with the applied coatings, but measured values are still very attractive for practical applications among known hard magnets

  17. Study on two-phase flow in a coolant channel of a plate-type fuel with use of neutron radiography technique

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Nishihara, H.

    1992-01-01

    Two-phase flow in a narrow rectangular duct is important related to abnormal cooling conditions of a MTR type research reactor. In view of this, flow regime, void fraction, slug bubble velocity and pressure loss were measured for rectangular ducts with a narrow gap. The neutron radiography technique was used to visualize the flow and the void fraction was obtained by image processing. The void fraction was correlated well by the drift flux model with existing correlation for the distribution parameter which was about 1.35. Similar results were obtained for slug bubble velocity, however the distribution parameter was in the range from 1.0 to 1.2. The frictional pressure loss was correlated well by the Chisholm-Laird correlation. In collaboration with previously obtained data, it was found that the Chisholm's parameter C, however, changed from 21 to zero as the gap decreased. (author)

  18. Immature intra-oceanic arc-type volcanism on the Izanagi Plate revealed by the geochemistry of the Daimaruyama greenstones in the Hiroo Complex, southern Hidaka Belt, central Hokkaido, Japan

    Science.gov (United States)

    Yamasaki, Toru; Nanayama, Futoshi

    2018-03-01

    The Izanagi Plate is assumed to have underlain the western Panthalassa Ocean to the east of Eurasia, and to have been subducting under the Eurasian continent. Although the Izanagi Plate has been lost to subduction, the subduction complexes of the circum-Panthalassa continental margins provide evidence that subduction-related volcanism occurred within the Panthalassa Ocean, and not just along its margins. The Daimaruyama mass is a kilometer-sized allochthonous greenstone body in the Hiroo Complex in the southeastern part of the Nakanogawa Group in the southern Hidaka Belt, northern Japan. The Hiroo Complex is a subduction complex that formed within the Paleo-Kuril arc-trench system at 57-48 Ma. The Daimaruyama greenstones consist mainly of coarse volcaniclastic rocks with lesser amount of lava. Red bedded chert, red shale, and micritic limestone are also observed as blocks associated with the greenstones. The presence of Early Cretaceous (Aptian-Albian) radiolaria in red bedded cherts within the greenstones indicates that the Daimaruyama greenstones formed after this time. An integrated major and trace element geochemical dataset for whole-rocks and clinopyroxenes of the greenstones indicates a calc-alkaline magmatic trend with low TiO2 contents and increases in SiO2 and decreases in FeO* with increasing differentiation. Negative anomalies of Nb, Ta, and Ti in normal mid-ocean-ridge basalt type normalized patterns are interpreted as "arc-signatures". Using "rhyolite-MELTS", we conducted a numerical simulation of magmatic differentiation under conditions of 1.5 kbar and H2O = 3 wt% to reproduce the liquid line of descent of the Daimaruyama greenstones. Back-calculations of the equilibrium melt compositions from the trace element chemistry of the clinopyroxenes generally agree with the whole-rock rare earth element compositions of the Daimaruyama greenstones, therefore providing support for the conditions used for the rhyolite-MELTS calculations as well as the actual

  19. Comparison of Ti(C,N)-based cermets processed by hot-pressing sintering and conventional pressureless sintering

    International Nuclear Information System (INIS)

    Xu, Qingzhong; Ai, Xing; Zhao, Jun; Qin, Weizhen; Wang, Yintao; Gong, Feng

    2015-01-01

    Highlights: • The HP sintered Ti(C,N)-based cermets exhibit high hardness with fine grain size. • The PLS sintered cermets possess high mechanical properties with low porosity. • The applied pressure can rearrange particles and contribute to grain refinement. • The heating rate can greatly affect the solid and liquid phase sintering of cermets. - Abstract: A suitable sintering method is important to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were fabricated by hot-pressing sintering (HP) and conventional pressureless sintering (PLS) technology, respectively, to investigate the influence of different sintering methods on the microstructure and mechanical properties of cermets materials. The microstructure, fracture morphology, indention cracks and phase composition were observed and detected using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K IC ) were also measured. The results reveal that all of the Ti(C,N)-based cermets exhibit core–rim microstructures with black cores, white cores and grey rims embedded into metal binder phases. The grain size of the samples fabricated by HP is much finer and the structure is more compact than those fabricated by PLS, while there exist pores in the HP sintered samples. The sintering process has no influence on the phase composition of cermets, but affects the phase content and crystallinity. The samples fabricated by PLS present higher transverse rupture strength, fracture toughness and density than samples fabricated by HP. However, the HP sintered samples possess a higher hardness

  20. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (I) - Effect of Type and Flow Rate of Shielding Gases on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    In this study, welding of pure titanium was carried out by using a continuous wave fiber laser with a maximum output of 6.3 kW. Because brittle regions form easily in titanium as a result of oxidation or nitriding, the weld must be protected from the atmosphere by using an appropriate shielding gas. Experiments were performed by changing the type and the flow rate of shielding gases to obtain the optimal shielding condition, and the weldability was then evaluated. The degree of oxidation and nitriding was distinguished by observing the color of beads, and weld microstructure was observed by using an optical microscope and a scanning electron microscope. The mechanical properties of the weld were examined by measuring hardness. When the weld was oxidized or nitrified, the bead color was gray or yellow, and the oxygen or nitrogen content in the bead surface and overall weld tended to be high, as a result of which the hardness of the weld was thrice that of the base metal. A sound silvery white bead was obtained by using Ar as the shielding gas.

  1. Influence of sintering temperature on the properties of pulsed electric current sintered hybrid coreshell powders

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Larismaa, J.; Heczko, Oleg; Cura, M.E.; Hannula, S.-P.

    2013-01-01

    Roč. 33, č. 12 (2013), s. 2233-2239 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : sintering * silver * iron oxide * SiO 2 * phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.307, year: 2013 http://dx.doi.org/10.1016/j.jeurceramsoc.2012.12.023

  2. Fiscal 1998 intellectual infrastructure project utilizing civil sector functions. Research and development project on prompt-effect type intellectual infrastructure creation (Research and development concerning relations between sintered body textural structure and material characteristics in fine ceramics); 1998 nendo minkan no kino wo katsuyoshita chiteki kiban jigyo seika hokokusho. Sokkogata chiteki kiban sosei kenkyu kaihatsu jigyo (fine ceramics no shoketsutai soshiki kozo to zairyo tokusei tono kankei ni kansuru kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development was carried out involving fine ceramic sintered body textural structure evaluation methods for the development of process technologies for achieving higher quality and lower cost. Studies centered about a method for evaluating coarse pores and coarse grains in sintered bodies, relations between sintered body fracture strength and textural structure, and the standardization of evaluation methods. As the result, an evaluation method for observing pore structures in a sintered body flake specimen under an optical microscope and another for observing coarse grains under a polarization microscope were proposed. As for the effect of coarse defects on the fracture strength of ceramics, it was demonstrated experimentally and theoretically that coarse defects several tens of micrometers in size greatly affected the fracture strength. In the study of methods for sintered body grain size evaluation, findings were obtained about the processing of the specimen surface. (NEDO)

  3. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    Directory of Open Access Journals (Sweden)

    Marek Przybylski

    2016-04-01

    Full Text Available Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  4. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Energy Technology Data Exchange (ETDEWEB)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F., E-mail: Zaiou_21@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: semouni84@gmail.com, E-mail: guechia@yahoo.fr, E-mail: kanour17@yahoo.fr, E-mail: mtb25dz@gmail.com, E-mail: zouaisouheila@yahoo.fr, E-mail: guerfatiha@gmail.com [Ceramics Lab., Faculty of Exact Science, Physics Department, Mentouri University of Constantine (Algeria)

    2016-10-15

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO{sub 3} is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm{sup 3} ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  5. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Directory of Open Access Journals (Sweden)

    S. Zaiou

    Full Text Available Abstract In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type and 20 wt% calcium oxide extracted from CaCO3 is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm3. Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  6. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    International Nuclear Information System (INIS)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F.

    2016-01-01

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO 3 is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm 3 ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  7. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  8. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  9. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  10. Sintering and microstructure evolution in columnar thermal barrier coatings

    International Nuclear Information System (INIS)

    Krishnamurthy, Ramanathan; Srolovitz, David J.

    2009-01-01

    Sintering of thermal barrier coatings changes their key properties, such as thermal conductivity and thermal shock resistance, thus adversely impacting their reliability. We present a novel modeling approach to study the evolution of coating structure during sintering. We model the sintering of individual columns using a thermodynamic principle, and incorporate the center-to-center approach rates for the columns calculated using this principle in a larger scale discrete dynamics model for the evolution of a large number of columns. Surface energies, grain boundary energies and strain energies associated with the deformation of the columns are all included in this framework, while sintering is assumed to occur by the concerted action of surface and grain boundary diffusion. Two sets of initial conditions corresponding to different extents of pre-sintering among neighboring columns are considered. When the extent of pre-sintering is small, we observe that small clusters containing 5-20 columns are formed. In contrast, where a larger amount of pre-sintering exists, we observe, especially at large column densities, that clusters containing 50-100 columns separated by large inter-cluster pores/channels that appear to organize themselves into a network are formed. These observations are in good agreement with recently published experimental observations. We also explain how these results can explain the development of a 'mud-crack'-like pattern

  11. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  12. Removable partial denture alloys processed by laser-sintering technique.

    Science.gov (United States)

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  13. Is There Really A North American Plate?

    Science.gov (United States)

    Krill, A.

    2011-12-01

    elsewhere, such as S.J. Shand (1933), E.B. Bailey (1939), and Arthur Holmes (1944), presented continental drift as a working hypothesis that could elegantly solve important geological problems. Americans were preconditioned to dislike continental drift theory, ever since James Dwight Dana taught in his Manual of Geology (1863...1895) that North America was the type continent of the world, and that it had stood alone since earliest time. Such beliefs sometimes trump geologic evidence. As noted by Stephen Jay Gould (1999) Sigmund Freud had much insight into the psychology of scientific revolutions: they involve a scientific development that shows humans to have lesser status than previously perceived. In the Copernican revolution (geocentrism vs. heliocentrism) humans no longer inhabited the center of the universe. In the Darwinian revolution (creationism vs. evolutionism) humans were no longer uniquely created. In the Wegenerian revolution (fixism vs. mobilism) North America was no longer uniquely created; it was just other fragment from Pangaea. North American geologists were pleased when Press & Siever gave them their own lithospheric plate. Being a global-tectonic killjoy, I would like to take away that small consolation as well. Or at least pose the question: Is there really a North American Plate?

  14. Inkjet Printing and Ebeam Sintering Approach to Fabrication of GHz Meta material Absorber

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, Y. J.; Lee, Y. P.; Park, I. S.; Kang, J. H.; Lim, Jongwoo; Kim, Jonghee; Kim, Hyotae

    2013-01-01

    Metamaterial absorber structure of GHz range is fabricated by inkjet printing and e-beam sintering. The inkjet printing is of interest, which give the easier and quicker way to fabricate large scale metamaterials than the approaches by the lithographic process, Furthermore it is more suitable to make flexible electronics, which has yet been great technologic trend. Usual post process of inkjet printing is the sintering to ensure solvent-free from the printed pattern and to its better conductivity comparable to the ordinary vacuum deposition process. E-beam irradiation sintering of the pattern is promising because it is inherently local and low temperature process. The main procedure of metamaterials fabrication is printing a resonator structure with lossy metal such as Ag or Au. We designed two types of Ag based multiband absorber which are double and quadruple bands. Those adsorber patterns are printed on polyimide substrate with commercially available Ag ink (DGP 40LT-15C, 25C). The absorbance performance of fabricated metamaterials is characterized by Hewlett-Packard E836B network analyzer in microwave anechoic chamber. The conductivity enhancement after e-beam or other sintering process is checked by measuring sheet resistance. The absorbance of the fabricated metamaterial is measured around 60% for the types designed. The absorbance is not high enough to practical use, which is attributed to low conductivity of the printed pattern. The spectrum shows, however, quite interesting large broadness, which come in the interval between each pack absorbance, witch needs further study. Though the extent of its effectiveness of inkjet printing in metamaterials needs more experimental studies, the demonstrated capability of quick and large area fabrication to flexible substrate is excellent

  15. LOW TEMPERATURE SINTERING OF ALUMINA BIOCERAMIC UNDER NORMAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superfine alumina powder with high purity (mean particle size is less than 0. 35μm) were used as main starting material for sintering alumina ceramic. A multiple additive MgO-ZrO2 (Y2O3) was homogeneously added into the batch by the chemical coprecipitation method. Sintering of alumina bioceramic at low tempera ture (<1600C) was achieved resulting in a dense and high strength alumina ceramic with the bending strength up to 382 MPa and an improved fracture toughness. Mechanism that the multiple additives promote the sintering of alumina ceramic is discussed on the base of XRD and SEM analysis.

  16. The sintering behavior of close-packed spheres

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2012-01-01

    The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...... density is reached for all systems. During sintering, the grains change shape from spherical to tetrakaidecahedron, similar to the geometry analyzed by Coble [R.L. Coble, J. Appl. Phys. 32 (1961) 787]....

  17. Modeling sintering of multilayers under influence of gravity

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Olevsky, Eugene; Tadesse Molla, Tesfaye

    2013-01-01

    , which describes the combined effect of sintering and gravity of thin multilayers, is derived and later compared with experimental results. It allows for consideration of both uniaxial and biaxial stress states. The model is based on the Skorohod-Olevsky viscous sintering framework, the classical...... laminate theory and the elastic-viscoelastic correspondence principle. The modeling approach is then applied to illustrate the effect of gravity during sintering of thin layers of cerium gadolinium oxide (CGO), and it is found to be significant. © 2012 The American Ceramic Society....

  18. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  19. Selective laser sintering: A qualitative and objective approach

    Science.gov (United States)

    Kumar, Sanjay

    2003-10-01

    This article presents an overview of selective laser sintering (SLS) work as reported in various journals and proceedings. Selective laser sintering was first done mainly on polymers and nylon to create prototypes for audio-visual help and fit-to-form tests. Gradually it was expanded to include metals and alloys to manufacture functional prototypes and develop rapid tooling. The growth gained momentum with the entry of commercial entities such as DTM Corporation and EOS GmbH Electro Optical Systems. Computational modeling has been used to understand the SLS process, optimize the process parameters, and enhance the efficiency of the sintering machine.

  20. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design