WorldWideScience

Sample records for sintered films independent

  1. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  2. Optical properties of CdS sintered film

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Chemical method has been used to prepare cadmium sulphide by using cadmium, hydrochloric acid and H2S. The reflection spectra of covered and uncovered sintered films of CdS have been recorded by 'Hitachi spectrophotometer' over the wavelength range 300–700 nm. The energy band gaps of these films ...

  3. Optical properties of CdS sintered film

    Indian Academy of Sciences (India)

    Chemical method has been used to prepare cadmium sulphide by using cadmium, hydrochloric acid and H2S. The reflection spectra of covered and uncovered sintered films of CdS have been recorded by 'Hitachi spectrophotometer' over the wavelength range 300–700 nm. The energy band gaps of these films have been ...

  4. Den danske independent film

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    2014-01-01

    at producere film, og derved er filmproduktion potentielt gjort tilgængelig for en større gruppe personer som både afsender og modtager. For det fjerde implicerer diskussionen af de to film også genre- og stilmæssige spørgsmål om dansk filmkultur, fordi indiefilmen både i film og uden for filmene italesætter...

  5. CdS sintered films: growth and characteristics

    International Nuclear Information System (INIS)

    Sharma, Monika; Kumar, Sushil; Sharma, L.M.; Sharma, T.P.; Husain, M.

    2004-01-01

    Cadmium sulphide finds extensive applications in a variety of optoelectronic devices. CdS, with a band gap of 2.43 eV, is a suitable window material in heterojunction solar cells that employ CdTe, Cu 2 S or CuInSe 2 as an absorber. Polycrystalline films of CdS, thickness ∼15 μm, were grown onto chemically clean and optically plane glass substrates by sintering process. A 10 min sintering time and 500 deg. C sintering temperature were found to be optimum. As deposited films were characterized through optical, structural and electrical transport properties using optical reflection spectroscopy, X-ray diffractometry and I-V characteristics techniques

  6. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  7. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects. (paper)

  8. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  9. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  10. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  11. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jason Dale [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce0.9Gd0.1O1.95, and to evaluate whether they could be used to produce dense, constrained Ce0.9Gd0.1O1.95 films at temperatures below 1000 C. To find the optimal sintering aid, Ce0.9Gd0.1O1.95 was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li2O-Gd2O3-CeO2 liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  12. Optical, structural and electrical properties of nanosized zinc oxide sintered films for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Kumar V.

    2013-01-01

    Full Text Available Zinc oxide films have been deposited on ultra-clean glass substrates by screenprinting method followed by sintering process. Optimum conditions for preparing good quality screen-printed films have been found. The optical band gap of the films has been studied using reflection spectra in wavelength range 325-600 nm by using double beam spectrophotometer. X-ray diffraction studies revealed that the films are polycrystalline in nature, single phase exhibiting wurtzite (hexagonal structure with strong preferential orientation of grains along the (101 direction. Surface morphology of films has been studied by scanning electron microscopy (SEM technique. The electrical resistivity of the films was measured in vacuum by two probe technique. PACS: 78.20.Ci; 78.50.Ge; 78.66.-w; 78.66.Hf.

  13. Sintered porous silicon. Physical properties and applications for layer-transfer silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.K.

    2007-07-16

    This work focusses on the characterisation of sintered porous silicon and on the development of monocrystalline silicon thin-film solar cells from the Porous Silicon Process (PSI process). For the fabrication of these solar cells, a thin silicon film is epitaxially grown on a monocrystalline silicon growth substrate, that features a layer of porous silicon (PS) at the surface. Due to the thermal activation during the epitaxial growth process, the PS layer reconfigurates and mechanically weakens, which later permits the transfer of the thin-film device to a second carrier substrate. When separating the epitaxial film from the growth substrate, a residual layer of sintered porous silicon (SPS) remains attached to the rear side of the device. So far, the physical properties of this layer and its impact on the performance of PSI solar cells have been poorly investigated. This thesis aims at a comprehensive determination of the physical properties of sintered porous silicon, in particular, its thermal, optical and electrical properties. For the thermal characterisation of the fragile free standing SPS films, a contactless measurement technique based on lock-in thermography is developed and experimentally verified. This analysis identifies a third order power law dependence of the thermal conductivity of SPS on the porosity, in agreement with the predictions of the Looyenga model. Phonon scattering at the pore walls, which is known to drastically reduce the thermal conductivity of as-prepared PS, is also present in the sintered state. The obtained results reveal that, in the case of SPS, this effect is less pronounced, due to the increased structure size of the sintered material compared to the as-prepared state. The effective refractive index of SPS complies with the predictions of effective medium models, whereas Mie's theory successfully describes light scattering by the spherical pores in SPS. An analysis of the measured scattering coefficient shows that the

  14. Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window

    Science.gov (United States)

    Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up

    2018-05-01

    Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.

  15. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  16. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Directory of Open Access Journals (Sweden)

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  17. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  18. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  19. Blockbuster genres in Danish independent film

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    2013-01-01

    genres and styles in the search for what is missing in Danish cinema. This works for some directors, principally, by directly reacting against the institutional and economic dominance and protectionism of primarily The Danish Film Institute. Indirectly, the some of the filmmakers seem to react against...

  20. Blockbuster genres in Danish independent film

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    market dominance. They respond, instead, by delving directly into international blockbuster genres and styles in the search for something missing in Danish cinema. This works, principally, by directly reacting against the institutional and economic dominance and protectionism of primarily The Danish Film...

  1. Danish independent film, or how to make films without public funding

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    Studying independent film in Denmark is a new and interesting way to analyse power relations in Danish film productions. The sheer magnitude of Danish indiefilms is in itself a very convincing voice to be heard. Throughout the past almost two decades we have seen a developing challenge to the typ...... production. This DIY-culture has very much provided Danish film subcultures with a bible and an idol to look up to....

  2. Growth and Characterization of Cd1−XZnXTe-Sintered Films

    Directory of Open Access Journals (Sweden)

    V. Kumar

    2007-01-01

    Sintering is a very simple and viable method compared to other cost-intensive methods. The results of the present investigation will be useful in characterizing the material CdZnTe for its applications in photovoltaics.

  3. On multichannel film dosimetry with channel-independent perturbations

    International Nuclear Information System (INIS)

    Méndez, I.; Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B.

    2014-01-01

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  4. On multichannel film dosimetry with channel-independent perturbations.

    Science.gov (United States)

    Méndez, I; Peterlin, P; Hudej, R; Strojnik, A; Casar, B

    2014-01-01

    Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth by Micke et al. ["Multichannel film dosimetry with nonuniformity correction," Med. Phys. 38, 2523-2534 (2011)] and Mayer et al. ["Enhanced dosimetry procedures and assessment for EBT2 radiochromic film," Med. Phys. 39, 2147-2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Four models of channel-independent perturbations were compared: weighted mean, Micke-Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 (http://www.iriseu.com). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke-Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning, between 75 ± 5 min and 20 ± 1 h waiting

  5. Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumee

    2014-08-01

    Full Text Available Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm as well as the sintering pressure (5–20 ton·m−2 and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested.

  6. Low temperature sintering of thin film polymer/TiO2 solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fahrenson, Christoph; Paul, Sylvia; Neher, Dieter [Universitaet Potsdam (Germany); Schroeder, Michael [Justus-Liebig-Universitaet Giessen (Germany); Janietz, Silvia [Fraunhofer-Institut fuer Angewandte Polymerforschung, Golm (Germany)

    2011-07-01

    Hybrid solar cells combine an organic semiconductor with a suitable inorganic semiconductor. In addition to studies on the well-known Graetzel cell, combinations of a dense or nanostructured TMO layer with soluble conjugated polymers have been subject to recent investigations. One of the problems in the development of efficient polymer/TiO{sub 2} cell is the sintering of TiO{sub 2}-layer. In most cases, the TiO{sub 2} layer is prepared via the sol-gel technique and annealing at high temperatures is needed to transform the amorphous layer morphology into a crystalline nanoporous structure. We present a new method to prepare thin layers from crystalline titania nanoparticles while keeping the processing temperature below 100 C. Interlinkage between the individual TiO{sub 2} particle is enforced by illumination with UVC-light. Scanning electron microscope (SEM) is used to image the morphology of the thin nanoporous layers. Solar cells were built with the Titanium dioxide layers sintered at moderate temperatures or after UVC sintering, using different donor polymers. Initial experiments show that cells with UVC-sintered layers show comparable solar cell performances than devices using conventional titania layers.

  7. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  8. Improvement in pH Sensitivity of Low-Temperature Polycrystalline-Silicon Thin-Film Transistor Sensors Using H2 Sintering

    Directory of Open Access Journals (Sweden)

    Li-Chen Yen

    2014-02-01

    Full Text Available In this article, we report an improvement in the pH sensitivity of low-temperature polycrystalline-silicon (poly-Si thin-film transistor (TFT sensors using an H2 sintering process. The low-temperature polycrystalline-silicon (LTPS TFT sensor with H2 sintering exhibited a high sensitivity than that without H2 sintering. This result may be due to the resulting increase in the number of Si–OH2+ and Si–O− bonds due to the incorporation of H in the gate oxide to reduce the dangling silicon bonds and hence create the surface active sites and the resulting increase in the number of chemical reactions at these surface active sites. Moreover, the LTPS TFT sensor device not only offers low cost and a simple fabrication processes, but the technique also can be extended to integrate the sensor into other systems.

  9. Uniform thin film electrode made of low-temperature-sinterable silver nanoparticles: optimized extent of ligand exchange from oleylamine to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Jong; Kim, Na Rae; Lee, Changsoo; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering (Korea, Republic of)

    2017-02-15

    Lowering the sintering temperature of nanoparticles in the electrode deposition process holds both academic and industrial interest because of the potential applications of such electrodes in polymer devices and flexible electronics. In addition, achieving uniform electrode formation after ligand exchange is equally important as lowering the sintering temperature. Here, we report a simple chemical treatment by the addition of ligand-exchanging interfaces to lower the sintering temperature; we also determine the optimum extent of ligand exchange for crack-free electrode formation. First, we investigated the structural change of Ag thin films with respect to the concentration of acrylic acid (AA) solutions. Second, we used thermal analysis to evaluate the effects of changes in the sintering temperature. We observed that the resulting conductivity of the Ag patterns was only one order of magnitude lower than that of bulk Ag when the patterns were sintered at 150 °C. The simple chemical treatment developed in this work for solution-processed Ag electrode formation can be adopted for flexible electronics, which would eliminate the need for vacuum and high-temperature processes.

  10. Doing It Yourself: A Handbook on Independent Film Distribution.

    Science.gov (United States)

    Reichert, Julia

    Written by filmmakers with five years experience as part of a cooperative for the distribution of feminist films, this handbook is designed primarily to instruct filmmakers on how to distribute their films and to assess whether self-distribution is advisable. Mainly non-theatrical use of 16mm films is discussed, with emphasis on educational…

  11. DC-magnetron sputtering of ZnO:Al films on (00.1)Al2O3 substrates from slip-casting sintered ceramic targets

    International Nuclear Information System (INIS)

    Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N.

    2014-01-01

    Highlights: • ZnO:Al was DC-sputtered on sapphire >350 °C by slip-casting sintered AZO target. • Films are highly (00.1)-oriented, smooth and transparent in the NIR–visible range. • Films growth rate decreases with temperature, while their grain size increases. • A high temperature reduction for sticking coefficients of impinging species is proved. • We prove that Thornton model does not apply to high-temperature DC-sputtered ZnO. - Abstract: High (>350 °C) temperature DC-sputtering deposition of ZnO:Al thin films onto single-crystal (00.1) oriented Al 2 O 3 (sapphire) substrates is reported, using a ultrahigh-density, low-resistivity and low-cost composite ceramic target produced by slip-casting (pressureless) sintering of ZnO–Al 2 O 3 (AZO) powders. The original combination of high-angle θ–2θ (Bragg–Brentano geometry) X-ray diffraction with low angle θ–2θ X-ray reflectivity (XRR) techniques allows us to define the AZO target composition and investigate the structural properties and surface/interface roughness of as-sputtered ZnO:Al films; besides, the growth dynamics of ZnO:Al is unambiguously determined. The target turned out composed of the sole wurtzite ZnO and spinel ZnAl 2 O 4 phases. X-ray diffraction analyses revealed highly (00.1)-oriented (epitaxial) ZnO:Al films, the material mean crystallite size being in the 13–20 nm range and increasing with temperature between 350 °C and 450 °C, while the film growth rate (determined via XRR measurements) decreases appreciably. XRR spectra also allowed to determine rms surface roughness <1 nm for present films and showed ZnO:Al density changes by only a few percent between 350 °C and 450 °C. The latter result disproves the often-adopted Thornton model for the description of the sputter-grown ZnO films and instead points out toward a reduction of the sticking coefficients of impinging species, as the main origin of film growth rate and grain size dependence with temperature. Zn

  12. Sinterable powders

    International Nuclear Information System (INIS)

    Zanghi, J.S.; Kasprzyk, M.R.

    1979-01-01

    A description is given of sinterable powders and methods of producing sintered products using such powders. The powders consist of (a) a particulate ceramic material, e.g. SiC, having specified particle size and surface area; (b) a carbon source material, e.g. sugar or a phenol-formaldehyde resin; and (c) a residue from a solution of H 3 BO 3 , B 2 O 3 , or mixtures of these as sintering aid. (U.K.)

  13. High-rate deposition of Ta-doped SnO2 films by reactive magnetron sputtering using a Sn–Ta metal-sintered target

    International Nuclear Information System (INIS)

    Muto, Y.; Nakatomi, S.; Oka, N.; Iwabuchi, Y.; Kotsubo, H.; Shigesato, Y.

    2012-01-01

    Ta-doped SnO 2 films were deposited on glass substrate (either unheated or heated at 200 °C) by reactive magnetron sputtering with a Sn–Ta metal-sintered target using a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system precisely controlled the flow of the reactive and sputtering gases (O 2 and Ar, respectively) by monitoring either discharge impedance or the plasma emission of the atomic O* line at 777 nm. The planar target was connected to the switching unit, which was operated in unipolar pulse mode. Power density on the target was maintained at 4.4 W cm −2 during deposition. The lowest obtained resistivity for the films deposited on heated substrate was 6.4 × 10 −3 Ωcm, where the deposition rate was 250 nm min −1 .

  14. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    International Nuclear Information System (INIS)

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-01-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF 4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF 4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic

  15. Beyond buckling: humidity-independent measurement of the mechanical properties of green nanobiocomposite films.

    Science.gov (United States)

    Gill, Urooj; Sutherland, Travis; Himbert, Sebastian; Zhu, Yujie; Rheinstädter, Maikel C; Cranston, Emily D; Moran-Mirabal, Jose M

    2017-06-14

    Precise knowledge of the mechanical properties of emerging nanomaterials and nanocomposites is crucial to match their performance with suitable applications. While methods to characterize mechanical properties exist, they are limited by instrument sensitivity and sample requirements. For bio-based nanomaterials this challenge is exacerbated by the extreme dependence of mechanical properties on humidity. This work presents an alternative approach, based on polymer shrinking-induced wrinkling mechanics, to determine the elastic modulus of nanobiocomposite films in a humidity-independent manner. Layer-by-layer (LbL) films containing cellulose nanocrystals (CNCs) and water-soluble polymers were deposited onto pre-stressed polystyrene substrates followed by thermal shrinking, which wrinkled the films to give them characteristic topographies. Three deposition parameters were varied during LbL assembly: (1) polymer type (xyloglucan - XG, or polyethyleneimine - PEI); (2) polymer concentration (0.1 or 1 wt%); and (3) number of deposition cycles, resulting in 10-600 nm thick nanobiocomposite films with tuneable compositions. Fast Fourier transform analysis on electron microscopy images of the wrinkled films was used to calculate humidity-independent moduli of 70 ± 2 GPa for CNC-XG 0.1 , 72 ± 2 GPa for CNC-PEI 0.1 , and 32.2 ± 0.8 GPa for CNC-PEI 1.0 films. This structuring method is straightforward and amenable to a wide range of supported thin films.

  16. Electromagnetic characterization of microwave sintered Sr1-xCaxMnO3 (0.0 ≤ x ≤ 0.4 thick films

    Directory of Open Access Journals (Sweden)

    Rani P. Pawar

    2013-03-01

    Full Text Available Electromagnetic characteristics of microwave sintered strontium calcium manganites thick film with variation in calcium content have been investigated. The X-ray diffraction analysis reveals tetragonal perovskite structure for all the compositions. The grain size increases with the increase in calcium content. The microwave absorption, complex permittivity, permeability and conductivity are reported in the frequency range of 8.2–18 GHz. The absorption loss is larger in Ku band while insertion loss is larger in X band. The permittivity, permeability and microwave conductivity decreases from X-band to Ku-band. The almost identical values of real part of permittivity and permeability indicate possible application as materials for impedance matching.

  17. Electrode size and boundary condition independent measurement of the effective piezoelectric coefficient of thin films

    Directory of Open Access Journals (Sweden)

    M. Stewart

    2015-02-01

    Full Text Available The determination of the piezoelectric coefficient of thin films using interferometry is hindered by bending contributions. Using finite element analysis (FEA simulations, we show that the Lefki and Dormans approximations using either single or double-beam measurements cannot be used with finite top electrode sizes. We introduce a novel method for characterising piezoelectric thin films which uses a differential measurement over the discontinuity at the electrode edge as an internal reference, thereby eliminating bending contributions. This step height is shown to be electrode size and boundary condition independent. An analytical expression is derived which gives good agreement with FEA predictions of the step height.

  18. Contesting a National Cinema in Becoming: The Cinemalaya Philippine Independent Film Festival (2005-2014

    Directory of Open Access Journals (Sweden)

    Emerald O. Flaviano

    2017-12-01

    Full Text Available Since its birth in 2005, the Cinemalaya Philippine Independent Film Festival has proven itself a major force in the Philippine f ilm industry. Established with the twin goals of “[encouraging] the creation of new cinematic works by Filipino filmmakers—works that boldly articulate and freely interpret the Filipino experience with fresh insight and artistic integrity” and “[invigorating] Philippine filmmaking by developing a new breed of Filipino filmmakers,” Cinemalaya has been instrumental in the recent rise of what Tiongson (“The Rise of the Philippine New Wave Indie Film” has called the “New Wave Indie” films. This recent wave of independent cinema, in turn, is taken to be the next significant moment in the history of Philippine national cinema. By considering the film festival—a spatiotemporally demarcated event and a unique discoursegenerating institution—as point of entry, this article discusses the contested process of constructing a coherent narrative of becoming of a national cinema. This process is found, more than ever, to surface resistance to any singular notion of “national cinema,” not least because of the inescapably transnational nature of all film production and consumption. It is within this context that any discussion about “saving” a Philippine national cinema is framed, particularly as to how international recognition has legitimized local independent cinema and influenced local spectatorship practices. Cinemalaya has helped revive a failing industry by giving shape to a new film movement, essentially def ined by contestation, as the f ilm festival’s experience in moderating the controversies it has found itself embroiled in has proven. More than anything, these contestations have brought to the fore previously unchallenged assumptions about what cinema a national public deserves to see.

  19. Preparation and characterization of a homemade Josephson junction prepared from a thin film sintered in a domestic microwave oven

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Gustavo Quereza; Moreto, Jeferson Aparecido [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano (IFGO), Rio Verde, GO (Brazil); Zadorosny, Rafael; Silveira, Joao Borsil; Carvalho, Claudio Luiz [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil); Cena, Cicero Rafael, E-mail: gustavoquereza@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Birigui, SP (Brazil)

    2016-03-15

    A homemade Josephson junction was successfully obtained using a superconductor thin film of the BSCCO system. The film was deposited on a lanthanum aluminate, produced from a commercial powder with a nominal composition Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}CaCu{sub 2}O{sub x}, was thermally treated by a domestic microwave oven. The XRD analysis of the film indicated the coexistence of Bi-2212 and Bi-2223 phases and SEM images revealed that a typical superconductor plate-like morphology was formed. From the electrical characterization, performed using DC four probes technique, it was observed an onset superconducting transition temperature measured around 81K. At the current-voltage characteristics curve, a step of electric current at zero-voltage could be observed, an indicative that the tunneling Josephson occurred. (author)

  20. Sinterização de filmes espessos de Ba(Ti0,85Zr0,15O3 por varredura laser Laser scanning sintering of Ba(Ti0.85Zr0.15O3 thick films

    Directory of Open Access Journals (Sweden)

    E. Antonelli

    2009-03-01

    Full Text Available São apresentados os resultados de sinterização de filmes espessos de BaTi0,85Zr0,15O3 (BTZ15, depositados pela técnica de eletroforese, utilizando como fonte de calor um laser de CO2. A montagem experimental foi otimizada de modo a permitir a sinterização de filmes com dimensões de até 70 mm de comprimento por 10mm de largura e espessuras variáveis. Os processos térmicos envolvidos durante a varredura contínua a laser atuaram de modo similar à sinterização em duas etapas. Os tempos de patamares em cada etapa foram dependentes da velocidade e do número de varreduras. A temperatura máxima que se pode atingir no filme espesso, durante cada varredura e para uma potência nominal do laser fixa, foi correlacionada com a densidade relativa. Após sinterizados, os filmes apresentaram homogeneidade microestrutural e uma porosidade aparente de ~7%.The results for sintering of BaTi0.85Zr0.15O3 (BTZ15 thick films, deposited by electrophoresis, using as heat source a CO2 laser are presented. The characteristics of the experimental apparatus were optimized in such a way as to allow the sintering of thick films whose dimensions were up to 70 mm in length, 10 mm in width and variable thicknesses. The related thermal process during the continuous laser scanning acted in a similar way as a two-step sintering. The step times in each stage were dependent on the speed and scan number. The maximum temperature that can be achieved in the thick film, during each scanning, and for a fixed rated laser power, was correlated with the relative density. After sintering the films presented a microstructural homogeneity and an apparent porosity of ~7%.

  1. Growth of superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} films by sedimentation deposition and liquid phase sintering and annealing technique

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R.L.C. [Condensed Matter Physics Laboratory, National Institute of Physics, University of the Philippines, Llamas Science Hall, Rm. 3122, E. Quirino Street, Diliman, Quezon City 1101 (Philippines)]. E-mail: rcmanahan@nip.upd.edu.ph; Sarmago, R.V. [Condensed Matter Physics Laboratory, National Institute of Physics, University of the Philippines, Llamas Science Hall, Rm. 3122, E. Quirino Street, Diliman, Quezon City 1101 (Philippines)

    2006-10-01

    We report on a technique of growing highly c-axis oriented Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212) thick films on MgO substrate using a combined sedimentation-deposition and liquid phase sintering and annealing process. The temperature profiles employed partial melting followed by rapid cooling to temperature below the melting point. Scanning electron micrographs show that the films have a smooth surface. No evidence of grain boundaries on the film's surface can be seen. The critical temperatures of the samples range from {approx}67 K to {approx}81 K. This method presents a quick and easy preparation for high quality epitaxial Bi-2212 films.

  2. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  3. Intense pulsed light sintering of copper nanoink for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak-Sung; Dhage, Sanjay R.; Shim, Dong-Eun [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Hahn, H.T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); University of California, Material Science and Engineering Department, California NanoSystems Institute, Los Angeles, CA (United States)

    2009-12-15

    An intense pulsed light (IPL) from a xenon flash lamp was used to sinter copper nanoink printed on low-temperature polymer substrates at room temperature in ambient condition. The IPL can sinter the copper nanoink without damaging the polymer substrates in extremely short time (2 ms). The microstructure of the sintered copper film was investigated using X-ray powder diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray micro tomography, and atomic force microscopy (AFM). The sintered copper film has a grainy structure with neck-like junctions. The resulting resistivity was 5{mu}{omega} cm of electrical resistivity which is only 3 times as high as that of bulk copper. The IPL sintering technique allows copper nanoparticles to be used in inkjet printing on low-temperature substrates such as polymers in ambient conditions. (orig.)

  4. Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals.

    Science.gov (United States)

    Yeo, Seon Ju; Tu, Fuquan; Kim, Seung-hyun; Yi, Gi-Ra; Yoo, Pil J; Lee, Daeyeon

    2015-02-28

    Colloidal photonic crystals (CPCs) provide a convenient way to generate structural colour with high stability against degradation under environmental factors. For a number of applications including flexible electronic and energy devices, it is important to generate flexible structural colour that maintains its colour regardless of the angle of observation and the extent of mechanical deformation. However, it is challenging to simultaneously achieve these goals because anisotropy in typical CPC structures (e.g., CPC films) tends to lead to angle-dependent photonic properties and also changes in the lattice constant due to mechanical deformation lead to changes in the photonic properties of CPCs. To overcome these challenges, we present a means of fabricating large-area free-standing films of CPC structures that exhibit angle- and strain-independent photonic characteristics. First, monodisperse double emulsions encapsulating colloidal crystal arrays are prepared using a microfluidic device. By inducing crystallization of highly charged polystyrene particles in the core of double emulsions using osmotic annealing, we generate angle independent colloidal photonic crystal (CPC) supraparticles. Moreover, the shape and crystallinity of the CPC supraparticles can be tuned by changing the concentration of salt in the solution used for osmotic annealing. Subsequently, an array of CPC supraparticles is embedded inside an elastomeric matrix to form a flexible free-standing film, which exhibits structural colours that are independent of viewing angles and externally applied strain.

  5. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  6. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  7. A method for sintering

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides a method for sintering, comprising in the following order the steps of: providing a body in the green state or in the pre-sintered state on a support; providing a load on at least one spacer on the support such that the load is located above said body in the green...

  8. Parratt-based and model-independent X-ray reflectivity fitting procedure for nanoscale thin film characterization.

    Science.gov (United States)

    Yu, Chung-Jong; Kim, Euikwoun; Kim, Jae-Yong

    2011-05-01

    A general-purpose fitting procedure is presented for X-ray reflectivity data. The Parratt formula was used to fit the low-angle region of the reflectivity data and the resulting electron density profile (continuous base EDP or cbEDP) was then divided into a series of electron density slabs of width 1 angstroms (discrete base EDP or dbEDP), which is then easily incorporated into the Distorted Wave Born Approximation (DWBA). An additional series of density slabs of resolution-limited width are overlapped to the dbEDP, and the density value of the each additional slab is allowed to vary to further fit the data model-independently using DWBA. Because this procedure combines the Parratt formula and the model-independent DWBA fitting, each fitting method can always be employed depending on the type of thin film. Moreover, it provides a way to overcome the difficulties when both fitting methods do not work well for certain types of thin films. Simulations show that this procedure is suitable for nanoscale thin film characterization.

  9. High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films.

    Science.gov (United States)

    Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude

    2017-02-01

    The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋ m ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋ p ) of up to 8 × 10 6 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋ m dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋ m between 0.55 and 4.40 Gy/min, while Ḋ p dependence was probed at the prototype machine for Ḋ p ranging from 7 × 10 3 to 8 × 10 6 Gy/s. Ḋ p dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋ m dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋ p

  10. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  11. Wettability-independent bouncing on flat surfaces mediated by thin air films

    Science.gov (United States)

    de Ruiter, Jolet; Lagraauw, Rudy; van den Ende, Dirk; Mugele, Frieder

    2015-01-01

    The impingement of drops onto solid surfaces plays a crucial role in a variety of processes, including inkjet printing, fog harvesting, anti-icing, dropwise condensation and spray coating. Recent efforts in understanding and controlling drop impact behaviour focused on superhydrophobic surfaces with specific surface structures enabling drop bouncing with reduced contact time. Here, we report a different universal bouncing mechanism that occurs on both wetting and non-wetting flat surfaces for both high and low surface tension liquids. Using high-speed multiple-wavelength interferometry, we show that this bouncing mechanism is based on the continuous presence of an air film for moderate drop impact velocities. This submicrometre `air cushion' slows down the incoming drop and reverses its momentum. Viscous forces in the air film play a key role in this process: they provide transient stability of the air cushion against squeeze-out, mediate momentum transfer, and contribute a substantial part of the energy dissipation during bouncing.

  12. Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM)

    Science.gov (United States)

    Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di

    2016-11-01

    Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO2 thin film on a glass fiber cloth whose surface contained 96% V4+ and 4% V5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V5+, which causes destabilization of the monoclinic phase of VO2. When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role.

  13. (SiC/AlN)2 multilayer film as an effective protective coating for sintered NdFeB by magnetron sputtering

    Science.gov (United States)

    You, Yu; Li, Heqin; Huang, Yiqin; Tang, Qiong; Zhang, Jing; Xu, Jun

    2017-08-01

    SiC/AlN and (SiC/AlN)2 multilayer films with a well-arranged bilayer structure and a four-layer structure are prepared respectively on NdFeB substrates by a magnetron sputtering method. Crystal phase and microstructures of the SiC/AlN and (SiC/AlN)2 films are investigated using x-ray diffraction (XRD), field-emission scanning electron microscope (FESEM) and atomic force microscope (AFM). It is observed that the surface of the (SiC/AlN)2 four-layer film is much denser and smoother than that of the SiC/AlN bilayer film. Corrosion behaviors of the NdFeB substrates coated with SiC/AlN and (SiC/AlN)2 films as well as the bare NdFeB substrate are evaluated by potentiodynamic polarization curve tests. It is revealed that the lateral growth structures developed in interfaces are favorable for an enhanced corrosion resistance. Corrosion current densities of the (SiC/AlN)2 coated NdFeB measured in acid, alkali and salt solutions are 2.796  ×  10-9, 3.65  ×  10-6, and 2.912  ×  10-6 A cm-2, respectively, which are much lower than those of the bare NdFeB and the SiC/AlN coated NdFeB.

  14. Externalizing Tacit Knowledge in Independent Documentary Film Production via Pattern Language

    OpenAIRE

    Ming-Shu Yuan

    2008-01-01

    Recently, Taiwan locally made documentary has been received high regards at international movie festivals and by domestic reviewers. The independent documentary producers in Taiwan are different from the commercial documentary producers in other countries. Since these producers in Taiwan don’t have enough funds to have a big production team, they have to possess whole knowledge in documentary production. The knowledge is hidden in the producers’ mind which is difficult to express, share, and ...

  15. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  16. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  17. In Search of an Alternative Feminist Cinema: Gender, Crisis, and the Cultural Discourse of Nation Building in Chinese Independent Films

    Directory of Open Access Journals (Sweden)

    Jinhua Li

    2017-04-01

    Full Text Available Chinese feminist cinema in the postsocialist era is shaped by the grand narrative of nation building that glamorizes urban professional career women and their contributions to economic marketization and globalization. Such cinematic overemphasis on urban women proves inadequate as it creates a disturbing silence about the diasporic existence of non-urban women. This uneven condition demands the creation of an alternative cinematic feminism that visualizes the diversity of Chinese women and represents the heterogeneity of feminist cinematic expressions and female experiences. Using Li Yu’s 'Lost in Beijing' (2007, 'Pingguo' 苹果 and Li Yang’s 'Blind Mountain' (2007, 'Mang shan' 盲山 as case studies, this essay investigates how Chinese independent films re-negotiate female gender identity and crisis through commercialized visual realism and social intervention while in reality the postsocialist grand narrative of nation building redefines the living conditions of female migrant workers and women of limited resources.

  18. SinterHab

    Science.gov (United States)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover

  19. Zone refining of sintered, microwave-derived YBCO superconductors

    International Nuclear Information System (INIS)

    Warrier, K.G.K.; Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Balachandran, U.

    1993-07-01

    Post-sintering treatments such as zone melting under thermal gradient has been conducted on sintered YBCO tape cast films. YBCO precursor powder was derived through decomposition of a mixture of nitrates of cations in a microwave oven for ∼4 min. The resulting powder was characterized and made into thin sheets by tape casting and then sintered at 945 C for 5 h. The sintered tapes were subjected to repeated zone refining operations at relatively high speeds of ∼30 mm/h. A microstructure having uniformly oriented grains in the a-b plane throughout the bulk of the sample was obtained by three repeated zone refining operations. Details of precursor preparation, microwave processing and its advantages, zone refining conditions, and microstructural features are presented in this paper

  20. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Chung-Hyeon; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-10-30

    Highlights: • We performed the two-step flash light sintering for copper nanoparticle ink to remove substrate warping. • 12 J/cm{sup 2} of preheating and 7 J/cm{sup 2} of main sintering energies were determined as optimum conditions to sinter the copper nanoparticle ink. • The resistivity of two-step sintered copper nanoparticle ink was 3.81 μΩ cm with 5B adhesion level, 2.3 times greater than that of bulk copper. • The two-step sintered case showed a high conductivity without any substrate warping. - Abstract: A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  1. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  2. Preparation and characterization of solid-state sintered aluminum ...

    Indian Academy of Sciences (India)

    AZO target; ZnAl2O4 spinel; resistivity; AZO thin film. 1. Introduction. Transparent conducting oxides ... (i) low cost, (ii) low growth temperature, (iii) non-toxicity, and (iv) easy adjustment of conductivity by adding ... strate via sputtering, a target with high sintering density is required. In this work, preparation of high quality AZO ...

  3. Preparation and characterization of solid-state sintered aluminum ...

    Indian Academy of Sciences (India)

    Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents. YU-HSIEN CHOU. ∗. , J L H CHAU, W L WANG, C S CHEN, S H WANG and C C YANG. Nanopowder and Thin Film Technology Centre, ITRI–South, Industrial Technology Research Institute, Tainan 70955,.

  4. Simultaneous Patterning of Independent Metal/Metal Oxide Multi-Layer Films Using Two-Tone Photo-Acid Generating Compound Systems

    Directory of Open Access Journals (Sweden)

    Hideo Honma

    2012-10-01

    Full Text Available (1 The photo-induced solubility and positive-tone direct photo-patterning of iron, copper and lanthanides chelated with 4-(2-nitrobenzyloxycarbonylcatechol (NBOC or 4-(6-nitroveratryloxycarbonylcatechol (NVOC was investigated. Photo-patterning of iron, copper, cerium, samarium, europium, terbium, dysprosium, holmium, erbium and lutetium complexes was accomplished. Continuous films were formed by the pyrolysis of metal complex films at 500 °C. (2 Based on the difference in the photo-reaction excitation wavelength profile of NBOC and NVOC complexes, a short and simple method for simultaneous micro-patterning of two independent films on each side of a transparent glass substrate was developed. Using the developed procedure, indium tin oxide and/or titanium oxide films were formed on each side of a quartz substrate without use of resist or etching.

  5. Magnetic properties of liquid-phase-assisted sintered MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Drofenik Miha

    2002-01-01

    Full Text Available MnZn ferrites were sintered in the presence of a Bi2O3-SiO2 - rich liquid phase. The microstructure of MnZn-ferrite samples that contained various amounts of liquid phase during sintering was investigated. The results revealed that microstructure development and final magnetic permeability depend essentially on the amount of liquid phase present during sintering. The solution-reprecipitation (S-R process in MnZn ferrites starts when a continuous liquid-phase film is formed during grain growth. The status of the microstructure developed during solid-state sintering prior to the formation of the critical liquid-phase film is essential for the final microstructure developed during liquid-phase-assisted sintering.

  6. Sintering of B4C by pressureless liquid phase sintering

    International Nuclear Information System (INIS)

    Rocha, Rosa Maria da; Melo, Francisco Cristovao Lourenco de

    2009-01-01

    The effect of three different sintering additive systems on densification of boron carbide powder was investigated. The sintering additives were Al 2 O 3 :Y 2 O 3 , AlN:Y 2 O 3 and BN:Y 2 O 3 compositions. Powder mixtures were prepared with 10 vol% of sintering aids following conventional powder technology processes. Samples were sintered by pressureless sintering at 2050 deg C/30min in argon atmosphere. Sintered samples were compared to a sintered B 4 C without sintering additive. Samples were characterized by XRD to analyze the crystalline phases after sintering and SEM to observe the microstructure and the second phase distribution. YB 4 and YB 2 C 2 were identified in all samples, indicating a reaction between Y 2 O 3 , B 4 C and B 2 O 3 present at the B 4 C particle surface. The best densification result was achieved with Al 2 O 3 :Y 2 O 3 additive system, showing 92.0 % of theoretical density, low porosity and 15.2 % of linear shrinkage. But this sample showed the highest weight loss. (author)

  7. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  8. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    % was studied on the sinter- ing and microstructural developments of the chemically pure magnesia using the pressureless sintering technique between 1500 and 1600◦C. Sintering was evaluated by per cent densification and microstructural ...

  9. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  10. Film

    OpenAIRE

    Jones, Sarah

    2002-01-01

    This book looks at the movie industry and at the labour intensive but fascinating process of making a feature film. It examines each stage in the production of a film, from initial idea through to the final cut and screening, and highlights the main activities that take place along the way. The book not only looks at the work of prominent people in the film world, such as directors and actors, but also describes the equally important but less high profile contributions of the gaffer, best boy...

  11. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    , thermal conductivity, elastic modulus, Poisson's ratio, and yield stress all depended on the porosity content in bulk-sintered silver. The only investigated property that was independent of porosity in that range was coefficient of thermal expansion.

  12. Film

    OpenAIRE

    Bould, M.

    2014-01-01

    A critical overview of critical-theoretical understandings of sf film, especially those promulgated by critics devoted to sf as a prose fiction form. It also considers adaptation, spectacle and special effects.

  13. Models of current sintering

    Science.gov (United States)

    Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.

    2017-06-01

    Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.

  14. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  15. Sintering of solution-based nano-particles by a UV laser pulse train

    Science.gov (United States)

    Zhang, Jie; Li, Ming; Morimoto, Kiyoshi

    2011-03-01

    Sintering of palladium (Pd) and silicon (Si) nano-particles (NPs) by a 266nm laser pulse train on ink-printed films was investigated. Organic Pd-ink, and organic Si-ink were used as precursors. A high repetition rate DPSS laser (up to 300 kHz, 25ns, 266nm, Coherent AVIA series), which produces a ns pulse train with 3.3 μs -33.3 μs interval of pulse-topulse, was used as the heating source. Highly electrically conductive Pd (Resistivity=~150μΩ.cm) thin film on PET substrate and semi-conductive Si (Resistivity=~23kΩ.cm) thin film on glass substrate were successfully obtained with this laser pulse train sintering process. The sintered films were characterized by AFM, SEM, TEM and Raman spectroscopy, respectively. The pulse train heating process was also numerically simulated.

  16. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  17. Observation of dopant-profile independent electron transport in sub-monolayer TiOx stacked ZnO thin films grown by atomic layer deposition

    Science.gov (United States)

    Saha, D.; Misra, P.; Das, Gangadhar; Joshi, M. P.; Kukreja, L. M.

    2016-01-01

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiOx in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurement revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiOx structures in the emerging field of transparent oxide electronics.

  18. The sintering of nitrogen ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hampshire, S.

    1986-01-01

    The mechanism of densification with oxide additives and the role of the ..cap alpha..-BETA phase transformation is investigated in a detailed kinetic study. Selected compositions in the Si-Al-O-N system are detailed, with and without additives. Although the work is mainly concerned with the identification of the mechanisms of sintering, some property measurements on a sintered BETA-sialon are reported and the feasibility of preparing pure ..cap alpha..-sialon phases is explored.

  19. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  20. Field Independence and the Effect of Background Music on Film Understanding and Emotional Responses of American Indians.

    Science.gov (United States)

    Raburn, Josephine

    Fifty-five Indian students between the ages of 16 and 22 years were selected from the junior and senior English classes at the Fort Sill Indian School to examine the effects of background music in helping lower socio-economic American Indians understand film content and in manipulating their emotions. This study also looked at how cognitive style…

  1. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  2. Film

    OpenAIRE

    Balint, Ruth; Dolgopolov, Greg

    2008-01-01

    From the beginning of the twentieth century, Sydney defined cosmopolitanism and modernity in the national imagination, and central to this image was the cinema: its technology, its architecture, its stars, its marketing and the stories it circulated to its audiences about Australia and the world. Though it is difficult to define a genre of Sydney film, Sydney provided the backdrop for a host of ideas about the city, and later suburbia. Sydney came to be seen as a ‘tinsel town’ of cultural ban...

  3. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells.

    Science.gov (United States)

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-08-09

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs.

  4. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  5. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  6. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  7. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    ... involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  8. Effect of the sintering temperature and time on phase assemblage and electrical conductivity of zirconia-scandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2012-01-01

    ZrO 2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 deg C). In this work, commercial ZrO 2 containing 10 mol% Sc 2 O 3 and 1 mol% CeO 2 was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method. (author)

  9. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  10. Sintering additives for zirconia ceramics

    International Nuclear Information System (INIS)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification

  11. Sintering additives for zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  12. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  13. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    Science.gov (United States)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  14. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    Directory of Open Access Journals (Sweden)

    Juha M Lahnakoski

    Full Text Available Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA. Auditory annotations correlated with two independent components (IC disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  15. Impact of variable frequency microwave and rapid thermal sintering on microstructure of inkjet-printed silver nanoparticles

    OpenAIRE

    Cauchois, Romain; Saadaoui, Mohamed; Yakoub, Abdelwahhab; Inal, Karim; Dubois-Bonvalot, Béatrice; Fidalgo, Jean-Christophe

    2012-01-01

    International audience; The effect of thermal profile on microstructure is studied in the frame of thin films deposited by inkjet-printing technology. The role of sintering temperature and thermal ramp is particularly investigated. Fast heating ramps exhibit coarse grains and pores, especially when a hybrid microwave curing is performed. This enhanced growth is attributed to the quick activation of densifying sintering regimes without undergoing thermal energy loss at low temperature. Microst...

  16. Sintered wire cesium dispenser photocathode

    Science.gov (United States)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  17. Nuclear tracks in sinterized gemstones

    International Nuclear Information System (INIS)

    Espinosa, G.; Rodriguez, L.V.; Golzarri, J.I.; Castano, V.M.

    1993-01-01

    The responses of sinterized gemstones to alpha particles attempt analyzed with the objective of finding new materials for SSNTD, and also to understand their interaction with radiation and the formation of tracks. In this work we present the results of the characterization of these materials as SSNTD. The micro structural changes observed by electron microscopy. The preparation, etching solution concentration, etching time and effects of temperature are discussed. (Author)

  18. Sintering kinetics in (Th, 5%U)O2 in the initial stage

    International Nuclear Information System (INIS)

    Ferraz, W.B.; Cardoso, P.E.; Lameiras, F.S.

    1990-01-01

    The initial sintering kinetics of (Th,5%U)O 2 pellets, in air and Ar-4%H 2 atmosphere in the temperature range 950-1175 0 C, was examined by dilatometric analysis. It was observed that the sintering in air occurs at a lower temperature. Based on Johnson's model, the volume diffusion and the grain boundary diffusion were assumed to cause the linear shrinkage. From the general equation of this model Δl/l=kt n the values n approx. 0,49 and n≥ 0,33, for sintering in air and Ar-4%H 2 atmosphere respectively, were observed. These results revealed that the initial sintering kinetics in air is controlled by volume diffusion and in Ar-4%H 2 atmosphere is weakly predominated by the grain boundary diffusion. The estimated volumetric diffusion coefficient for the sintering in air is about three orders of magnitude greater than in Ar-4%H 2 atmosphere, indicating a strong influence of the stoichiometrie on the sintering kinetics. The grain boundary diffusion coefficient appears to be independent of the sintering atmosphere. (author) [pt

  19. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  20. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    OpenAIRE

    Changzhou Yu; Peng Cao; Mark Ian Jones

    2017-01-01

    Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P.) titanium in a graphite furnace backfilled with argon and stu...

  1. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  2. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  3. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process.

    Science.gov (United States)

    Guo, Hanzheng; Baker, Amanda; Guo, Jing; Randall, Clive A

    2016-11-22

    The sintering process is an essential step in taking particulate materials into dense ceramic materials. Although a number of sintering techniques have emerged over the past few years, the sintering process is still performed at high temperatures. Here we establish a protocol to achieve dense ceramic solids at extremely low temperatures (sustainable manufacturing practices.

  4. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    Science.gov (United States)

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  5. To Create the American Film Institute as an Independent Agency; Hearings before the Select Subcommittee on Education of the Committee on Education and Labor, House of Representatives, 93rd Congress, Second Session, on H.R. 17021, A Bill to Amend the National Foundation on the Arts and Humanities Act of 1965 to Create the American Film Institute as an Independent Agency, Held in Washington, D.C. Oct. 7 and 8, 1974.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    This report is on the hearings before the House Select Subcommittee on Education, conducted on October 7 and 8, 1974, to consider the creation of the American Film Institute as an independent agency. Witnesses testifying before the subcommittee included: Maya Angelou, Ellen Burstyn, John Culkin, Ed Emshwiller, John Hancock, Nancy Hanks, Charlton…

  6. Selective Laser Sintering of Conductive Inks for Inkjet Printing Based on Nanoparticle Compositions with Organic Silver Salts

    Science.gov (United States)

    Titkov, A. I.; Gadirov, R. M.; Nikonov, S. Yu.; Odod, A. V.; Solodova, T. A.; Kurtсevich, A. E.; Kopylova, T. N.; Yukhin, Yu. M.; Lyakhov, N. Z.

    2018-02-01

    Inkjet ink based on silver nanoparticles with sizes of 11.1 ± 2.4 nm has been developed. Test images are printed on a laboratory inkjet printer, followed by sintering the printed patterns with a diode laser having a wavelength of 453 nm. The structure and electrical properties of the resulting films are studied depending on the parameters of laser sintering. It is found that under optimal conditions, an electrically conductive film with a low resistivity of 12.2 μΩ· cm can be formed.

  7. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  8. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  9. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  10. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  11. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current,...

  12. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  13. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  14. Sintering of zirconia in high-pressure

    International Nuclear Information System (INIS)

    Kunrath, A.O.; Strohaecker, T.R.; Pereira, A.S.; Jornada, J.A.H. da; Piermarini, G.J.

    1989-01-01

    A systematic study about the sintering of zirconia hyperfines powders in high-pressure is presented. The differents conditions effect of sintering in microstructure and in hardness and tenacity properties of zirconia samples with a very fine grain is also studied. (C.G.C.) [pt

  15. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural respon...

  16. Modeling the Microstructural Evolution During Constrained Sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini

    2015-01-01

    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as ...

  17. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The present work deals with the sintering of ... recently become an attractive area of research and deve- lopment. The major advantages of ... without the usage of sintering aids (Lee and Case 1999;. Goldstein et al 1999). Several studies have ...

  18. THE POLARIZING EFFECTS IN SINTERED KAOLIN

    African Journals Online (AJOL)

    compacted and sintered density of the ceramic have been studied, and a density — pressure relationship for before- and after-sintering conditions obtained. INTRODUCTION. Ceramics have been known to mankind for thousands of years, and have been used in construction materials. In many applications, ceramics have.

  19. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  20. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  1. Sinterização de filmes finos de LiNbO3 em forno microondas: estudo da influência da direção do fluxo de calor Sintering of LiNbO3 thin films in microwave furnace: study of the influence of the heat flow direction

    Directory of Open Access Journals (Sweden)

    N. S. L. S. Vasconcelos

    2004-06-01

    Full Text Available Filmes finos de LiNbO3 foram preparados pelo método dos precursores poliméricos e depositados por "spin coating" sobre substratos de safira (0001. Os filmes foram tratados em forno microondas doméstico a 400 ºC por 15 e 20 min. Um material com alta perda dielétrica (susceptor de SiC foi usado para absorver energia das microondas e transformá-la em calor. Este calor foi transferido para o filme a fim de promover a sua cristalização. O susceptor foi posicionado acima do filme ou embaixo do substrato. Desta forma, a influência da direção do fluxo de calor na cristalização das amostras foi verificada. Os filmes foram caracterizados por difração de raios X, microscopia de força atômica e espectrofotometria (transmitância na região UV-visível e o índice de refração foi determinado por elipsometria. O crescimento epitaxial foi observado para o filme com susceptor posicionado embaixo do substrato. Verificou-se que os grãos apresentaram crescimento aleatório quando o susceptor foi posicionado acima do filme. Os filmes apresentaram-se relativamente densos, homogêneos e lisos, com boas propriedades ópticas.LiNbO3 thin films were prepared using a polymeric precursor solution deposited by spin coating on (0001 sapphire substrate. Heat treatment of the films was carried out in a microwave oven at 400 ºC for 15 and 20 min. A SiC susceptor (material with high dielectric loss was used to absorb microwave energy and transfer the heat to the film in order to promote crystallization. The susceptor was placed above the film or below the substrate. Thus, the influence of the heat flux direction on the sample crystallization was verified. The films were characterized by X-ray diffraction, atomic force microscopy and spectrophotometry (transmittance in the UV-Visible region and the refractive index was determined with an ellipsometer. The epitaxial growth was observed for the film with the susceptor placed below the substrate. Random growth

  2. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.

    Science.gov (United States)

    Hwang, Hyun-Jun; Chung, Wan-Ho; Kim, Hak-Sung

    2012-12-07

    In this work, a flash-light sintering process for Cu nanoinks was studied. In order to precisely monitor the milliseconds flash-light sintering process, a real-time Wheatstone bridge electrical circuit and a high-rate data acquisition system were used. The effects of several flash-light irradiation conditions (irradiation energy, pulse number, on-time, and off-time) and the effects of the amount of poly(N-vinylpyrrolidone) in the Cu nanoink on the flash-light sintering process were investigated. The microstructures of the sintered Cu films were analyzed by scanning electron microscopy. To investigate the oxidation or reduction of the oxide-covered copper nanoparticles, a crystal phase analysis using x-ray diffraction was performed. In addition, the sheet resistance of Cu film was measured using a four-point probe method. From this study, it was found that the flash-light sintered Cu nanoink films have a conductivity of 72 Ωm/sq without any damage to the polyimide substrate. Similar nanoinks are expected to be widely used in printed and flexible electronics products in the near future.

  3. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  4. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  5. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo

    2015-03-19

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  6. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  7. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    , the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co......-firing, the model only had a qualitative agreement with the measured ash deposit formation rates.Sintering measurements were carried out by means of compression strength testing of ash pellets. This method showed to not be applicable for the salt rich fly ash derived from straw combustion. For the fly ashes...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  8. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  9. Effects of ball milling and sintering on alumina and alumina-boron compounds

    Science.gov (United States)

    Cross, Thomas

    samples are larger than anticipated likely due to a poor sinter. Higher boron compositions appear to have the greatest effect on post sintering properties by producing the smallest relative porosities and largest changes in densification. Reduction of crystallite size during high-energy ball milling is independent of boron composition in the range of compositions that were investigated. The lattice parameters of the main alumina phase as a function of milling time did not follow the same trends shown in literature, indicating any impurities within the literature samples affected the lattice parameter measurements. Increased milling times on the samples that contain 1.0 weight percent boron are observed to have a higher densification during sintering. Higher boron additions increase the densification from sintering while maintaining a relatively lower porosity. Relative to the other samples, the highest sample densification is observed from both 1.0 weight percent boron additions and ball milling for 12 hours and sintering for one and 10 hours.

  10. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  11. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  12. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    Microwave sintering was performed in 2.45 GHz multimode microwave furnace at temperatures ranging from 570–630 °C. Microwave sintering at a heating rate of as high as 22°C/min resulted in ∼55% reduction of processing time as compared to conventional sintering. A lower sintered density observed in the case of ...

  13. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  14. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...

  15. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  16. Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property

    Science.gov (United States)

    Yang, Wendong; Wang, Changhai; Arrighi, Valeria

    2018-02-01

    Favorable conductivity at low temperature is desirable for flexible electronics technology, where formulation of a suitable ink material is very critical. In this paper, a type of silver organic decomposable ink (10 wt.% silver content) was formulated by using as-prepared silver oxalate and butylamine, producing silver films with good uniformity and conductivity on a polyimide substrate after sintering below 130°C (15.72 μΩ cm) and even at 100°C (36.29 μΩ cm). Silver oxalate powder with good properties and an appropriate solid amine complex with lower decomposition temperature were synthesized, both differing from those reported in the literature. The influence of the factors on the electrical properties of the produced silver films such as sintering temperature and time was studied in detail and the relationship between them was demonstrated.

  17. Thermal barrier coating resistant to sintering

    Science.gov (United States)

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  18. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  19. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  20. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  1. Development of microstructure during sintering and aluminium exposure of titanium diboride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Gunnar

    1997-12-31

    In the production of aluminium, much less energy need be consumed if an inert, wetted cathode is present in the electrolysis cell. Titanium diboride, TiB{sub 2}, is easily wetted and does not readily dissolve in liquid aluminium, but it degrades, probably because aluminium penetrates into it during electrolysis. This degradation is linked to impurities present in the TiB{sub 2} after sintering. This thesis studies the sintering process and how aluminium penetrates into the material. High-purity, high-density TiB{sub 2} compacts were made by hot pressing at 50 MPa in an argon atmosphere at 1790-1960 {sup o}C. Samples were made with different impurity additions. These samples were exposed to liquid aluminium at 980 {sup o}C for 24 hours. All samples were penetrated, but the amount and appearance depended on the sintering aid used. Unlike the other samples, pure TiB{sub 2} was easily penetrated by metallic aluminium because of the open porosity and microcracks of this material. Grain boundary penetration was common among the samples. Differences in penetration behaviour between grain boundaries are probably due to differences in grain boundary energy. But no relation to segregants or boundary misorientation was found. The orientation of grain boundary planes and de-wetting of thin films upon cooling may explain the observed microstructure development. The samples sintered with Ti addition suffered extensive penetration despite their high densities. The grain boundaries of these samples became faceted and contained thicker films of metallic aluminium, presumably because of increased solubility due to iron segregations. All secondary phases present in the grain junctions after sintering, except from the B{sub 4}C phase, reacted with the penetrated aluminium. This did not cause swelling and cracking, as has been suggested by other authors. 101 refs., 48 figs., 7 tabs.

  2. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  3. Microstructures and photocatalytic properties of porous ZnO films synthesized by chemical bath deposition method

    International Nuclear Information System (INIS)

    Wang Huihu; Dong, Shijie; Chang Ying; Zhou Xiaoping; Hu Xinbin

    2012-01-01

    Different porous ZnO film structures on the surface of alumina substrates were prepared through a simple chemical bath deposition method in the methanolic zinc acetate solution. The surface morphology and phase structure of porous ZnO film were determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Both initial zinc acetate concentration and sintering temperature have great impact on the final film structures. With the increase of initial zinc acetate concentration, the porous structures can be finely tuned from circular nest like assemblies composed film into successive nest like film, and finally to globular aggregates composed film. By increasing the sintering temperature, the porous structure of successive nest like film can be further controlled. Furthermore, the crystallinity of photocatalysts also can be greatly improved. The photodegradation results of Methyl Orange revealed that porous ZnO film with successive nest like structure sintered at 500 °C exhibited the highest photocatalytic activity under UV illumination.

  4. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  5. Calcium Hex aluminate reaction sintering by Spark Plasma Sintering; Sinterizacion reactiva de Hexaluminato de Calcio mediante Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, P. G. de la; Garcia-Moreno, O.; Torrecillas, R.; Menendez, J. L.

    2012-11-01

    Calcium hex aluminate (CaAl{sub 1}2O{sub 1}9) is the most alumina-rich intermediate compound of the CaO-Al{sub 2}O{sub 3} system. The formation of this aluminate is produced by the reaction between calcium oxide and alumina with the consequent formation of intermediates compounds with lower alumina content with increasing temperature (CaAl{sub 2}O{sub 4}, CaAl4O{sub 7}). In this study we studied the variation of sintering parameters for obtaining dense and pure calcium hex aluminate by reaction sintering by Spark Plasma Sintering (SPS). A mixing of Al{sub 2}O{sub 3} and CaCO{sub 3} were used as reactive. Final densities close to the theoretical and phase transformation over 93% were achieved by this method. (Author) 22 refs.

  6. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  7. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  8. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  9. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  10. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    The lifetimes of heterogeneous catalysts in many widely used industrial processes are determined by the loss of active surface area. In this context, the underlying physical sintering mechanism and quantitative information about the rate of sintering at industrial conditions are relevant....... In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  11. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    the crystalline framework of a zeolite creates a steric hindrance against agglomeration into larger clusters. In the present study, experimental protocols for encapsulation of metal nanoparticles inside zeolites were developed. Two different methodologies were proposed to encapsulate gold, palladium and platinum......One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  12. Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering

    Science.gov (United States)

    Tomida, T.; Sumiyoshi, A.; Nie, G.; Ochi, T.; Suzuki, S.; Kikuchi, M.; Mukaiyama, K.; Guo, J. Q.

    2017-05-01

    Filled skutterudite is a promising material for thermoelectric power generation because its ZT value is relatively high. However, mass production of high-performance thermoelectric materials remains a challenge. This study focused on the sintering process of thermoelectric materials. Large-diameter n-type (Yb or La, Ca, Al, Ga, In)0.8(Co, Fe)4Sb12 skutterudite sintering bodies with a small thickness were successfully produced by the spark plasma sintering (SPS) method. When direct current flows through the thermoelectric sintering body during the SPS pulse, the Peltier effect causes a temperature difference within the sintering body. To eliminate the Peltier effect, an electrical insulating material was inserted between the punch (electrode) and the sintering body. In this way, an n-type La-filled skutterudite sample with a diameter of 200 mm, thickness of 21 mm, and weight of 5 kg was successfully produced. The thermoelectric properties and microstructures of the sample were almost the same throughout the whole sintering body, and the dimensionless figure of merit reached 1.0 at 773 K.

  13. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. YE. Kapustyan

    2014-04-01

    Full Text Available Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original substance. Forming of blanks, whose chemical composition corresponded to BT1-0 alloy, was carried out using the powder metallurgy method. Compounds were obtained by flash welding without preheating. Microstructural investigations and mechanical tests were carried out. To compare the results investigations of BT1-0 cast alloy were conducted. Findings. Samples of welded joints of sintered titanium blanks from VT1-0 alloy using the flash butt welding method were obtained. During welding the microstructure of basic metal consisting of grains of an a-phase, with sizes 40...70 mkm, is transformed for the seam weld and HAZ into the lamellar structure of an a-phase. The remaining pores in seam weld were practically absent; in the HAZ their size was up to 2 mkm, with 30 mkm in the basic metal. Attainable level of mechanical properties of the welded joint in sintered titanium alloys is comparable to the basic metal. Originality. Structure qualitative changes and attainable property complex of compounds of sintered titanium alloys, formed as a result of flash butt welding were found out. Practical value. The principal possibility of high-quality compounds obtaining of sintered titanium alloys by flash welding is shown. This gives a basis for wider application of sintered titanium alloys due to long-length blanks production that are correspond to deformable strand semi finished product.

  14. Optical properties of CdS sintered film

    Indian Academy of Sciences (India)

    Unknown

    the field of II–VI semiconductors for their use in solar cells. Cadmium sulphide belonging to the II–VI group is the most widely used material for CdS/CdTe and CdS/Cu2S heterojunction solar cells. It is because of the fact that CdS has intermediate energy band gap, reasonable conversion efficiency, stability and low cost ...

  15. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available The conclusions drawn from this presentation are that Spark Plasma Sintering (SPS) of equiatomic BE TiPt powder produces fully sintered specimens, with incomplete homogenisation. There is a need for improved furnace atmosphere control so...

  16. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  17. Fusibility and sintering characteristics of ash

    International Nuclear Information System (INIS)

    Ots, A. A.

    2012-01-01

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R B/A of their alkaline and acid components between 0.03 and 4. Acritical value of R B/A is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  18. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  19. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  20. Effect of increasing lanthanum substitution and the sintering ...

    Indian Academy of Sciences (India)

    Administrator

    Young's modulus of the microwave sintered samples (8.8–12.5 and 160–180 GPa) are higher than that for conventional sintered (8–10 and 135–155 GPa) samples. Keywords. Microwave sintering; La-substituted SBTi ceramics; mechanical properties. 1. Introduction. In recent years, bismuth layer-structured ferroelectrics.

  1. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    International Nuclear Information System (INIS)

    Yao, Huizhen; Ma, Jinwen; Mu, Yannan; Su, Shi; Lv, Pin; Zhang, Xiaoling; Zhou, Liying; Li, Xue; Liu, Li; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm 2 , which is higher than that of samples prepared at other temperatures. Furthermore, CdCl 2 treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl 2 treatment improved to 2.97 mA/cm 2 , indicating a potential application in photovoltaic devices

  2. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  3. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  4. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    tions ranging from kiln furniture to membrane material. Keywords. Microwave sintering; biaxial flexure; silicon carbide. 1. Introduction. Silicon carbide (SiC) ceramics is a very well known candidate material for a structural application. However, due to (i) poor densification due to highly directional bonding, (ii) susceptibility of ...

  5. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  6. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  7. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  8. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  9. Air-sintering mechanisms of chromites

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bates, J.L.; Maupin, G.D.

    1991-07-01

    The sintering behaviors of La{sub 1-x}Sr{sub x}CrO{sub 3} and Y{sub 1-x}Ca{sub x}CrO{sub 3} in air at 1550{degrees}C are described as functions of alkaline earth concentration and chromium enrichment or depletion. Vapor-, liquid-, and solid-phase mass transport mechanisms appear to be operative in both systems. Liquid-phase sintering appears dominant an Y{sub 1-x}Ca{sub x}CrO{sub 3} with x = 0.15 to 0.40, especially with Cr enrichment. Either vapor- or solid-phase transport may dominate in the La{sub 1-x}Sr{sub x}CrO{sub 3} system. Slight depletion or enrichment of Cr in both systems has dramatic effects on air-sintered density and microstructure, probably due to modulation of vapor-phase transport and liquid-phase formation. Substantial Cr depletion enhances sintering. 10 refs., 9 figs.

  10. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Zinc oxide; microwave sintering; microhardness. 1. Introduction. The application of microwave energy for the processing of ceramics has become an attractive area of research and innovation recently. The major advantages of the micro- wave processing of ceramic materials are accelerated densification rate as a ...

  11. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  12. Sintering of silicon nitride ceramics with magnesium silicon nitride and yttrium oxide as sintering aids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J; Xu, J Y [Shanghai Institute of Technology, Shanghai 200235 (China); Peng, G H [Guangxi Normal University, Guilin 541004, Guangxi (China); Zhuang, H R; Li, W L; Xu, S Y [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Mao, Y J, E-mail: guojianjiang@sit.edu.cn [Shanghai University, Shanghai 200444 (China)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramics had been produced through pressureless sintering and hot-pressing sintering with MgSiN{sub 2}-Y{sub 2}O{sub 3} or only MgSiN{sub 2} as sintering aids. The influences of the amount of MgSiN{sub 2} and Y{sub 2}O{sub 3} and sintering methods on the properties of Si{sub 3}N{sub 4} ceramics were investigated. The results show that the bend strength of Si{sub 3}N{sub 4} ceramic fabricated through pressureless sintering at 1820 deg. C for 4 h with 5.6 wt.% MgSiN{sub 2}-15.8 wt.% Y{sub 2}O{sub 3} as sintering additive could achieve 839 MPa. However, the bend strength of Si{sub 3}N{sub 4} ceramic produced by hot-pressing sintering at 1750 deg. C for 1 h under uniaxial pressure of 20 MPa with 4.76 wt.% MgSiN{sub 2} was 1149 MPa. The thermal conductivity of the Si{sub 3}N{sub 4} ceramic 2 3 4 could reach to 129 W{center_dot}m{sup -1{center_dot}}K{sup 1}. The present work demonstrated that MgSiN{sub 2} aids and hot-pressing sintering were effective to improve the thermal conductivity of Si{sub 3}N{sub 4} ceramic.

  13. Yttrium oxide transparent ceramics by low-temperature microwave sintering

    International Nuclear Information System (INIS)

    Luo, Junming; Zhong, Zhenchen; Xu, Jilin

    2012-01-01

    Graphical abstract: The figure shows the SEM photos of the surfaces of the Y 2 O 3 transparent ceramic samples obtained by microwave sintering and vacuum sintering. It is clearly demonstrated that the grain distribution of the vacuum sintering sample is not uniform with the smallest and the largest particle size at about 2 μm and 15 μm respectively, while the grain distribution of microwave sintering sample is uniform with the average diameter at about 2–4 μm (the smallest reported so far) and with no abnormal growth-up or coarsening phenomenon. We have further found out that the smaller the grain size, the higher the mechanical and optical properties. Display Omitted Highlights: ► The microwave sintering temperature of the sample is lower compared with vacuum. ► The microwave sintering time of the sample is shorter compared with vacuum. ► The mechanical properties of the microwave sintering sample is improved greatly. ► The Y 2 O 3 grain of microwave sintering sample is the smallest reported so far. -- Abstract: Yttrium oxide (Y 2 O 3 ) transparent ceramics samples have been successfully fabricated by microwave sintering processing at relatively low temperatures. In comparison with the vacuum sintering processing, Y 2 O 3 transparent ceramics can be obtained by microwave sintering at lower sintering temperature and shorter sintering time, and they possess higher transmittances and mechanical properties. The technologies of low-temperature microwave sintering and the relationships of the microstructures and properties of the specified samples have been investigated in detail. We have found out that the low-temperature microwave sintering technique has its obvious advantages over the conventional methods in manufacturing yttrium oxide transparent ceramics.

  14. Magnetic properties and sintering characteristics of NiZn(Ag, Cu) ferrite for LTCC applications

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H. [Department of Metallurgical and Materials Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of); Park, J.H. [Department of Metallurgical and Materials Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of); Institute of Diamond Tools, Shinhan Diamond Industrial Company, Incheon 405-100 (Korea, Republic of); Choa, Y.H. [Department of Chemical Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of); Kim, J. [Department of Metallurgical and Materials Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of)]. E-mail: jina@hanyang.ac.kr

    2005-04-15

    For applying low-temperature co-fired ceramics technology to ferrite with Ag electrode, Ni{sub 0.2}Zn{sub 0.5}Cu{sub 0.3} ferrite nanopowders with AgO contents of 0, 0.1 and 1 wt% were synthesized using metal nitrates. Thick films fabricated by a doctor blade method were sintered for 72 h at different temperatures (925, 900, 875, 850 deg. C). As a result, the saturation magnetization, coercivity and permeability of Ni{sub 0.2}Zn{sub 0.5}Cu{sub 0.3} ferrite with AgO contents of 0.1 wt% at a sintering temperature of 875 deg. C were 4.05 kG, 4 Oe and 521, respectively, which were close to those of bulk NiZn ferrite.

  15. TiO2 doped UO2 fuels sintered by spark plasma sintering

    Science.gov (United States)

    Yao, Tiankai; Scott, Spencer M.; Xin, Guoqing; Lian, Jie

    2016-02-01

    UO2 fuels doped with oxide additives Cr2O3 and TiO2 display larger grain size, improving fission product retention capability and thus accident tolerance. Spark plasma sintering (SPS) was applied to consolidate TiO2-doped UO2 fuel pellets with 0.5 wt % dopant concentration, above its solubility, in order to induce eutectic phase formation and promote sintering kinetics. The grain size can reach 80 μm by sintering at 1700 °C for 20 min, and liquid U-Ti-O eutectic phase occurs at the triple junction of grain boundaries and significantly improves grain growth during sintering. The oxide additive also impedes the reduction of the initial hyperstoichiometric fuel powders to more stoichiometric fuel pellets upon SPS process. Thermal-mechanical properties of the sintered doped fuel pellets including thermal conductivity and hardness are measured and compared with undoped fuel pellets. The enlarged grain size (80 μm) and densification within short sintering duration highlight the immense possibility of SPS in fabricating large grained UO2 fuel pellets to improve fuel performance.

  16. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  17. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  18. Phase transformation of NiTi alloys during vacuum sintering

    Science.gov (United States)

    Wang, Jun; Hu, Kuang

    2017-05-01

    The aim of this study is to ascertain the Phase transformation of NiTi alloys during vacuum sintering. NiTi shape memory alloys (SMA) of atomic ratio 1:1 were prepared through press forming and vacuum sintering with the mixture of Ni and Ti powders. Different samples were prepared by changing the sintering time and the sintering temperature. Phase and porosity of the samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that in the process of sintering NiTi2 and Ni3Ti phases are formed firstly and then transform into NiTi phase. The quantity of NiTi2 and Ni3Ti phases gradually decreased but not eliminate completely with increase of sintering time. The porosity of specimen sintering at 900°C decreases slightly with increase of sintering time. With increase of sintering time the porosity of specimen sintering at 1050°C decreased firstly and then increased because of generation rich titanium liquid in the process of sintering.

  19. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  20. Selective laser sintering (SLS) 3D printing of medicines.

    Science.gov (United States)

    Fina, Fabrizio; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W

    2017-08-30

    Selective laser sintering (SLS) 3-dimensional printing is currently used for industrial manufacturing of plastic, metallic and ceramic objects. To date there have been no reports on the use of SLS to fabricate oral drug loaded products; therefore, the aim of this work was to explore the suitability of SLS printing for manufacturing medicines. Two thermoplastic pharmaceutical grade polymers, Kollicoat IR (75% polyvinyl alcohol and 25% polyethylene glycol copolymer) and Eudragit L100-55 (50% methacrylic acid and 50% ethyl acrylate copolymer), with immediate and modified release characteristics respectively, were selected to investigate the versatility of a SLS printer. Each polymer was investigated with three different drug loadings of paracetamol (acetaminophen) (5, 20 and 35%). To aid the sintering process, 3% Candurin ® gold sheen was added to each of the powdered formulations. In total, six solid formulations were successfully printed; the printlets (3D printed tablets) were robust, and no evidence of drug degradation was observed. In biorelevant bicarbonate dissolution media, the Kollicoat formulations showed pH-independent release characteristics, with the release rate dependent on the drug content. In the case of the Eudragit formulations, these showed pH-dependent, modified-release profiles independent of drug loading, with complete release being achieved over 12h. In conclusion, this work has demonstrated that SLS is a versatile and practical 3D printing technology which can be applied to the pharmaceutical field, thus widening the armamentarium of 3D printing technologies available for the manufacture of modern medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Numerical simulation of electric field assisted sintering

    Science.gov (United States)

    McWilliams, Brandon A.

    A fully coupled thermal-electric-sintering finite element model was developed and implemented to explore electric field assisted sintering techniques (FAST). FAST is a single step processing operation for producing bulk materials from powders, in which the powder is heated by the application of electric current under pressure. This process differs from other powder processing techniques such as hot isostatic pressing (HIP) and traditional press and sinter operations where the powder or compact is heated externally, in that the powder is heated directly as a result of internal Joule heating (for conductive powders) and/or by direct conduction from the die and punches. The overall result is much more efficient heating which allows heating rates of >1000°C/min to be achieved which is desirable for sintering bulk nanocrystalline and other novel high performance materials. Previous modeling efforts on FAST have only considered the thermal-electric aspect of the problem and have neglected densification. In addition to the introduction of a sintering model, a detailed thermal-electric study of process parameters was carried out in order to identify key system variables and quantify their effect on the overall system response and subsequent thermal history of a consolidated sample. This analysis was compared to empirical data from a parallel experimental study and shown to satisfactorily predict the observed trends. This model was then integrated with a phenomenologically based sintering model to capture the densification of the sample. This fully coupled model was used to predict densification kinetics under FAST like conditions and examine the evolution of material properties as the sample transitions from a loose powder to a fully dense compact and the resulting effect on the electrical and thermal fields within the compact. This model was also used to explore the effect of non-uniform thermal, electrical, stress and density fields on the final geometry and local

  2. An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells

    KAUST Repository

    Sun, Wenping

    2014-07-25

    Yttrium and indium co-doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2-xInxO3- δ possesses a pure cubic perovskite structure. The sintering activity of BaZr0.8Y0.2-xInxO3- δ increases significantly with In concentration. BaZr0.8Y0.15In0.05O3- δ (BZYI5) exhibits the highest total electrical conductivity among the sintered oxides. BZYI5 also retains high chemical stability against CO2, vapor, and reduction of H2. The good sintering activity, high conductivity, and chemical stability of BZYI5 facilitate the fabrication of durable SOFCs based on a highly conductive BZYI5 electrolyte film by cost-effective ceramic processes. Fully dense BZYI5 electrolyte film is successfully prepared on the anode substrate by a facile drop-coating technique followed by co-firing at 1400 °C for 5 h in air. The BZYI5 film exhibits one of the highest conductivity among the BaZrO3-based electrolyte films with various sintering aids. BZYI5-based single cells output very encouraging and by far the highest peak power density for BaZrO3-based proton-conducting SOFCs, reaching as high as 379 mW cm-2 at 700 °C. The results demonstrate that Y and In co-doping is an effective strategy for exploring sintering active and chemically stable BaZrO3-based proton conductors for high performance proton-conducting SOFCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reheating of zinc-titanate sintered specimens

    Directory of Open Access Journals (Sweden)

    Labus N.

    2015-01-01

    Full Text Available The scope of this work was observing dimensional and heat transfer changes in ZnTiO3 samples during heating in nitrogen and air atmosphere. Interactions of bulk specimens with gaseous surrounding induce microstructure changes during heating. Sintered ZnTiO3 nanopowder samples were submitted to subsequent heating. Dilatation curves and thermogravimetric with simultaneous differential thermal analysis TGA/DTA curves were recorded. Reheating was performed in air and nitrogen atmospheres. Reheated samples obtained at different characteristic temperatures in air were analyzed by X-ray diffraction (XRD. Microstructures obtained by scanning electron microscopy (SEM of reheated sintered samples are presented and compared. Reheating in a different atmosphere induced different microstructures. The goal was indicating possible causes leading to the microstructure changes. [Projekat Ministarstva nauke Republike Srbije, br. OI172057 i br. III45014

  4. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...

  5. Sintering techniques for microstructure control in ceramics

    Science.gov (United States)

    Rosenberger, Andrew T.

    Sintering techniques can be manipulated to enhance densification in difficult to sinter materials and to produce property enhancing microstructures. However, the interplay between materials, sintering techniques, and end properties is not fully understood in many material systems, and some fundamental aspects of sintering such as the nature of the effects of electric fields remains unknown. The processing property relationships were examined in two classes of materials; zirconium diboride ultra high temperature ceramic composites, and all solid lithium-ion battery phosphate materials. Investigation of zirconium diboride ceramics focused on the effects of zirconium carbide as a secondary or tertiary phase in ZrB2 and ZrB2 -- SiC. Addition of zirconium carbide was observed to increase flexural strength of composites up to 590MPa at 50wt% ZrC, significantly higher than the flexural strength of 380MPa observed in similarly prepared ZrB2 -- SiC. This difference was attributed to the absence of CTE mismatch induced residual stresses in the ZrB2 -- ZrC composites. A high temperature reaction between ZrB2 and TiC producing Zr1-xTixB2 -- ZrC composites was discovered and found to enhance densification while reducing the average grain size to as small as 1.4mum, lower than the starting powder size of 1.8mum. While a high flexural strength of 670MPa was observed, a strength dependence on the ZrC grain size indicative of CTE mismatch residual stresses was also seen. Finally, the oxidation and ablation resistance of ZrB2 -- ZrC -- SiC composites as a function of ZrC fraction and ZrC:SiC ratio was investigated. Above 5vol% ZrC, the oxidation and ablation resistance of the composites was significantly reduced due to ZrC oxidation, regardless of SiC content. While ZrC can significantly enhance the mechanical properties of the composite, the volume fraction must be kept low to avoid an undesirable reduction in the oxidation resistance. The influence of applied electrical fields

  6. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  7. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  8. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering

    Science.gov (United States)

    Chen, Binling; Berretta, Silvia; Evans, Ken; Smith, Kaylie; Ghita, Oana

    2018-01-01

    This paper proposes two methods of preparation of graphene/PEEK powders for Laser Sintering (LS) and investigates their behaviour in relation to their microstructure and their properties. Thin composite films were fabricated in an attempt to replicate the thin layer formation of the powder bed process. Both methods of composite powder preparation (wet and dry) led to enhanced mechanical performance of the composite films at 0.1 and 0.5 wt% graphene nano-platelets (GNP) concentrations. The TEM images show that the GNP act as a nucleation point in crystallisation of PEEK, being at the centre of the spherulites. The hot stage microscopy reveals a 20 s delay in the onset of GNP/PEEK nanocomposite coalescence in comparison with plain PEEK. This is a very important observation for laser sintering, as it will influence the build strategy and specific parameters (e.g. time between layers deposition, multiple exposures). The excellent electrical conductivity properties of graphene were noticeable in the nanocomposite films at concentrations above 1 wt% GNP.

  9. Sintering Behavior, Microstructure, and Mechanical Properties: A Comparison among Pressureless Sintered Ultra-Refractory Carbides

    Directory of Open Access Journals (Sweden)

    Laura Silvestroni

    2010-01-01

    Full Text Available Nearly fully dense carbides of zirconium, hafnium, and tantalum were obtained by pressureless sintering at 1950°C with the addition of 5–20 vol% of MoSi2. Increasing the amount of sintering aid, the final density increased too, thanks to the formation of small amounts of liquid phase constituted by M-Mo-Si-O-C, where M is either Zr, Hf, or Ta. The matrices of the composites obtained with the standard procedure showed faceted squared grains; when an ultrasonication step was introduced in the powder treatment, the grains were more rounded and no exaggerated grains growth occurred. Other secondary phases observed in the microstructure were SiC and mixed silicides of the transition metals. Among the three carbides prepared by pressurless sintering, TaC-based composites had the highest mechanical properties at room temperature (strength 590 MPa, Young's modulus 480 GPa, toughness 3.8 MPa·m1/2. HfC-based materials showed the highest sinterability (in terms of final density versus amount of sintering aid and the highest high-temperature strength (300 MPa at 1500  °C.

  10. Fabrication of Sintered Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2010-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for uprating the power density of a Pressurized Water Reactor fuel assembly. An annular fuel has a geometrically inherent advantage such as an increased heat transfer area and a thin pellet thickness. It results in a lot of advantages from the point of a fuel safety and its economy. In order to actualize the dual cooled fuel, an essential element is the annular pellet with precisely controlled diametric tolerance. However, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance specification. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional doubleacting press. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a centerless grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications for the inner diameter in an as-fabricated pellet. In the present study, we are trying to find a way to minimize the diametric tolerance of the sintered annular pellet without inner surface grinding. This paper deals with a new approach that we have tried to reduce the diametric tolerance of the sintered annular pellet

  11. Sintering of titanium alloy by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Cosme, C.R.M. [Universidade de Brasilia (UnB), DF (Brazil); Henriques, V.A.R.; Cairo, C.A.A.; Taddei, E.B. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    Full text: Titanium alloys are suitable for biomaterial applications, considering its biocompatibility and low elastic modulus compared to steel. Bone resorption in this case can be reduced by load sharing between the implant and natural bone.Starting powders were obtained by hydride method, carried out under positive hydrogen pressure at 500 deg C for titanium and 800 deg C for Nb, Zr and Ta powders. After reaching the nominal temperature, the material was held for 3h, with subsequent cooling to room temperature and milling of the friable hydride. Samples were produce by mixing of initial metallic powders followed by and cold isostatic pressing. Subsequent densification by sintering was performed at temperature range between 900 and 1700 deg C. Characterization was carried out with scanning electron microscopy, X-ray diffractometry and microhardness measurements. Microstructural examinations revealed higher amount of &⧣946;-phase for higher sintering temperature and dissolution of Ta and NB particles. In vitro tests revealed low cytotoxicity of sintered samples. (author)

  12. Sintering and deformation of nanocrystalline ceramics

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hofler, H.J.; Logas, J.

    1991-01-01

    Nanocrystalline ceramics have been produced by the method of inert gas condensation of ultra-small particles and in situ consolidation. Sintering characteristics and microstructural parameter such as grain size, porosity and pore size distributions have been investigated by a variety of techniques, including: X-ray diffraction, gravimetry, nitrogen adsorption, scanning electron microscopy and small angle neutron scattering. In pure TiO 2 , the sintering temperatures are drastically lowered compared to conventional ceramics, however, extensive grain growth occurs before full densification is achieved. High density, nanocrystalline ceramics can be prepared by pressure assisted sintering, doping and additions of second phases. High temperature microhardness and creep deformation in compression were measured and it was found that creep processes occur at lower temperatures than in ceramics with larger grain sizes. Nanocrystalline TiO 2 with densities >99% can be deformed plastically without fracture at temperatures below half the melting point. The total strains exceed 0.6 at strain rates as high as 10 -3 s -l . The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is G -q with q in the range of 1-1.5. In this paper it is concluded that the creep deformation occurs by an interface reaction controlled mechanism

  13. Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Leming, Andres [Univ. of California, Berkeley, CA (United States)

    2003-06-16

    A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.

  14. Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process

    Science.gov (United States)

    Liu, Dong-hui; Liu, Hao; Zhang, Jian-liang; Liu, Zheng-jian; Xue, Xun; Wang, Guang-wei; Kang, Qing-feng

    2017-09-01

    The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Δ T) and the softening start temperature ( T 10%) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO·SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.

  15. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-01-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO 2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO 2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO 2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  16. Co-Sintering behaviour of zirconia-ferritic steel composites

    Directory of Open Access Journals (Sweden)

    Alexander Michaelis

    2016-08-01

    Full Text Available The combination of metallic and ceramic materials allows the combination of positive properties of both and can be applied in various industrial fields. At the moment, the deployment of these composites faces difficult and complex manufacturing. One attempt, which offers a short process route and a high degree of flexibility regarding design is a combined shaping (co-shaping with a combined sintering (co-sintering. The article will show co-sintering results of different metal-ceramic symmetric and asymmetric multi-layered tapes, consisting of yttria stabilized zirconia combined with a ferritic iron chromium steel. Focus is on the densification and co-sintering behaviour of ceramic layers depending on the sintering behaviour of metallic layers. Co-sintered composites were characterized by field emission scanning electron microscopy, x-ray diffraction measurements and in terms of adhesive tensile strength.

  17. Evaluation of Photocatalytic Active Coatings on Sintered Glass Tubes by Methylene Blue

    Directory of Open Access Journals (Sweden)

    Colin Awungacha Lekelefac

    2013-01-01

    Full Text Available A comparative study between ten different photocatalytic active coatings was done. The effectiveness and photocatalytic activity of the coatings were studied by degradation experiments of methylene blue (MB dye under UV light illumination. The reactor design consisting of sintered glass packed in a borosilicate tube placed between two planar dielectric barrier discharge lamps (Osram Planon is reported for the first time. The coatings consisted of either titania, silica, or zinc on sintered borosilicate glass. The advantage of sol-gel in catalyst preparation was exploited to combine catalyst to act as cocatalyst. TiO2-P25 widely applied in suspension systems was effectively immobilized on sintered glass support with the aid of tetraethylorthosilicate (TEOS solution which acted as support material. Results indicated that TiO2-P25+SiO2, TiO2-P25+SiO2+Pt, and TiOSO4_30,6wt% films showed highest degradation rates close to 100% after 90 min illumination with degradation rates exceeding 50% after 30 minutes. TTIP+Pt showed lowest degradation rate.

  18. Reactive Sintering of Bimodal WC-Co Hardmetals

    OpenAIRE

    Marek Tarraste; Kristjan Juhani; Jüri Pirso; Mart Viljus

    2015-01-01

    Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal har...

  19. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Directory of Open Access Journals (Sweden)

    Barbara Malič

    2015-12-01

    Full Text Available The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions and different atmospheres (i.e., defect chemistry on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT.

  20. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Science.gov (United States)

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  1. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  2. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  3. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  4. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  5. Independent Directors

    DEFF Research Database (Denmark)

    Ringe, Wolf-Georg

    2013-01-01

    about board independence in Western jurisdictions, a surprising disharmony prevails about the justification, extent and purpose of independence requirements. These considerations lead me to question the benefits of the current system. Instead, this paper proposes a new, ‘functional’ concept of board...

  6. American = Independent?

    Science.gov (United States)

    Markus, Hazel Rose

    2017-09-01

    U.S. American cultures and psyches reflect and promote independence. Devos and Banaji (2005) asked, does American equal White? This article asks, does American equal independent? The answer is that when compared to people in East Asian or South Asian contexts, people in American contexts tend to show an independent psychological signature-a sense of self as individual, separate, influencing others and the world, free from influence, and equal to, if not better than, others (Markus & Conner, 2013). Independence is a reasonable description of the selves of people in the White, middle-class American mainstream. Yet it is a less good characterization of the selves of the majority of Americans who are working-class and/or people of color. A cultural psychological approach reveals that much of North American psychology is still grounded in an independent model of the self and, as such, neglects social contexts and the psychologies of a majority of Americans. Given the prominence of independence in American ideas and institutions, the interdependent tendencies that arise from intersections of national culture with social class, race, and ethnicity go unrecognized and are often misunderstood and stigmatized. This unseen clash of independence and interdependence is a significant factor in many challenges, including those of education, employment, health, immigration, criminal justice, and political polarization.

  7. Residual stresses in a co-sintered SOC half-cell during post-sintering cooling

    DEFF Research Database (Denmark)

    Charlas, Benoit; Chatzichristodoulou, Christodoulos; Brodersen, Karen

    2014-01-01

    Due to the thermal expansion mismatch between the layers of a Solid Oxide Cell, residual stresses (thermal stresses) develop during the cooling after sintering. Residual stresses can induce cell curvature for asymmetric cells but more importantly they also result in more fragile cells. Depending...

  8. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  9. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  10. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  11. The Effect of Sintering Oxygen Partial Pressure on a SmBiO3 Buffer Layer for Coated Conductors via Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhu

    2016-10-01

    Full Text Available The application of high-temperature YBa2Cu3O7−δ (YBCO superconducting material is a considerable prospect for the growing energy shortages. Here, SmBiO3 (SBO films were deposited on (100-orientated yttrium-stabilized zirconia (YSZ simple crystal substrates via the chemical solution deposition (CSD approach for coated conductors, and the effects of sintering oxygen partial pressure on SBO films were studied. The crystalline structures and surface morphologies of SBO films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and atomic force microscope (AFM. The optimized growth temperature, the intensity ratios of the SBO (200 peak to the SBO (111 peak, and the crystallinities of SBO films increased with the sintering oxygen partial pressure. The SEM and AFM images displayed a smooth and well-distributed surface in the argon atmosphere. The subsequent YBCO films with superconducting transition temperatures (Tc = 89.5 K, 90.2 K, and 86.2 K and critical current densities (Jc = 0.88 MA/cm2, 1.69 MA/cm2, and 0.09 MA/cm2; 77 K, self-field were deposited to further check the qualities of the SBO layer. These results indicated that sintering oxygen partial pressure had an effect on the epitaxial growth of the SBO buffer layer and YBCO superconducting properties. The experimental results may be a usable reference for the epitaxial growth of YBCO-coated conductors and other oxides.

  12. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  13. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  14. Monitoring sintering burn-through point using infrared thermography.

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-08-09

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  15. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    A near net-shape forming process represents a suitable solution to obtain the final product by avoiding secondary machining processes. In this field, electro sinter forging is capable of accomplishing the advantages of sintering in a reduced amount of time. Classified as a high field mode (HFM...

  16. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  17. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  18. Effect of sintering temperature on structural and electrical properties ...

    Indian Academy of Sciences (India)

    TECS

    vity measurement. The crystallinity and surface morphology of the samples improved with sintering tempera- ture. Further, the electrical conductivity measurement indicated that the conduction mechanism is mainly ionic. The conductivity of samples sintered at 1673 K and 1773 K at 800°C are of the order of 0⋅1 S-cm. –1.

  19. The sintering behavior of close-packed spheres

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2012-01-01

    The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...

  20. Field assisted hot pressing of sintering Inconel 718 MIM samples

    Science.gov (United States)

    Dugauguez, Olivier; Torralba, Jose Manuel; Barriere, Thierry; Gelin, Jean-Claude

    2016-10-01

    In this investigation on samples obtained by Metal Injection Molding (MIM), the conventional way of sintering in a furnace will be compared to Field Assisted Hot pressing (FAHP) sintering. The difficulty of this method is to be able to control the shrinkage of the sample and so its shape. It has yet not been investigated with a super alloy powder and so, the effects of a high sintering rate. By accelerating the sintering kinetics, the thermal behavior may be modified. Hence, the behavior of the Inconel 718 sintered by FAHP has been investigated. The sintered samples were all injected from a feedstock composed of a fine particle Inconel powder and a binder principally composed of Cellulose Acetate Butyrate CAB and Poly-Ethylene Glycol PEG. The effects of the two methods on the microstructure and the mechanical properties are then compared. There was no difference in distribution of pores between the conventional sintering and the FAHP sintering but a finer grain size showed better hardness.

  1. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  2. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    Dense mullite aggregates with 72% Al2O3 have been synthesized by reaction sintering of two varieties of Indian bauxite and silica sol. The bauxites used are of inferior grade with different levels of accessory impurities such as Fe2O3, TiO2, CaO. The phase and microstructure development of sintered samples were ...

  3. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    NiZnCu hexagonal ferrite (abbreviated as ZT/NZC) composite samples were prepared successfully by using restricted shrinkage sintering process (RSS) (Liu et al 2009a, b). But the electromagnetic performance degra- dation of co-sintered layer ...

  4. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  5. The Emergence of Quantitative Sintering Theory from 1945 to 1955

    Science.gov (United States)

    German, Randall M.

    2017-04-01

    Particles flow and pack under stress, allowing shaping of the particles into target engineering geometries. Subsequently, in a process termed sintering, the particles are heated to induce bonding that results in a strong solid. Although first practiced 26,000 years ago, sintering was largely unexplained until recent times. Sintering science moved from an empirical and largely qualitative notion into a quantitative theory over a relatively short time period following World War II. That conceptual transition took place just as commercial applications for sintered materials underwent significant growth. This article highlights the key changes in sintering concepts that occurred in the 1945-1955 time period. This time span starts with the first quantitative neck growth model from Frenkel and ends with the quantitative shrinkage model from Kingery and Berg that includes several transport mechanisms.

  6. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  7. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  8. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  9. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  10. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J.; Backman, R.; Lauren, T.; Uusikartano, T.; Malm, H.; Stenstroem, P.; Vesterkvist, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). During 1996 the work has focused on identifying bed agglomeration mechanisms and analysing bed agglomerates in both full scale and lab scale FB reactors, as well as comparing how well the compression strength based sintering test can predict bed agglomeration in an FB furnace. (orig.)

  11. Study on selective laser sintering of glass fiber reinforced polystyrene

    Science.gov (United States)

    Yang, Laixia; Wang, Bo; Zhou, Wenming

    2017-12-01

    In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.

  12. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  13. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  14. Sintering and microstructure evolution in columnar thermal barrier coatings

    International Nuclear Information System (INIS)

    Krishnamurthy, Ramanathan; Srolovitz, David J.

    2009-01-01

    Sintering of thermal barrier coatings changes their key properties, such as thermal conductivity and thermal shock resistance, thus adversely impacting their reliability. We present a novel modeling approach to study the evolution of coating structure during sintering. We model the sintering of individual columns using a thermodynamic principle, and incorporate the center-to-center approach rates for the columns calculated using this principle in a larger scale discrete dynamics model for the evolution of a large number of columns. Surface energies, grain boundary energies and strain energies associated with the deformation of the columns are all included in this framework, while sintering is assumed to occur by the concerted action of surface and grain boundary diffusion. Two sets of initial conditions corresponding to different extents of pre-sintering among neighboring columns are considered. When the extent of pre-sintering is small, we observe that small clusters containing 5-20 columns are formed. In contrast, where a larger amount of pre-sintering exists, we observe, especially at large column densities, that clusters containing 50-100 columns separated by large inter-cluster pores/channels that appear to organize themselves into a network are formed. These observations are in good agreement with recently published experimental observations. We also explain how these results can explain the development of a 'mud-crack'-like pattern

  15. Embrittling Components in Sintered Steels: Comparison of Phosphorus and Boron

    Science.gov (United States)

    Danninger, Herbert; Vassileva, Vassilka; Gierl-Mayer, Christian

    2017-12-01

    In ferrous powder metallurgy, both boron and phosphorus have been known to be sintering activators for a long time. However, the use has been widely different: while P is a standard additive to sintered iron and steels, boron has been frequently studied, but its use in practice is very limited. Both additives are also known to be potentially embrittling, though in a different way. In the present study the differences between the effects of both elements are shown: while P activates sintering up to a certain threshold, in part by stabilizing ferrite, in part by forming a transient liquid phase, boron is the classical additive enhancing persistent liquid phase, being virtually insoluble in the iron matrix. The consequence is that sintered steels can tolerate quite a proportion of phosphorus, depending on composition and sintering process; boron however is strongly embrittling in particular in combination with carbon, which requires establishing a precisely defined content that enhances sintering but is not yet embrittling. The fracture mode of embrittled materials is also different: while with Fe-P the classical intergranular fracture is observed, with boron a much more rugged fracture surface appears, indicating some failure through the eutectic interparticle network but mostly transgranular cleavage. If carbon is added, in both cases transgranular cleavage dominates even in the severely embrittled specimens, indicating that no more the grain boundaries and sintering necks are the weakest links in the systems.

  16. Fabrication of Pb (Zr, Ti) O3 Thin Film for Non-Volatile Memory Device Application

    International Nuclear Information System (INIS)

    Mar Lar Win

    2011-12-01

    Ferroelectric lead zirconate titanate powder was composed of mainly the oxides of titanium, zirconium and lead. PZT powder was firstly prepared by thermal synthesis at different Zr/Ti ratios with various sintering temperatures. PZT thin film was fabricated on SiO2/Si substrate by using thermal evaporation method. Physical and elemental analysis were carried out by using SEM, EDX and XRD The ferroelectric properties and the switching behaviour of the PZT thin films were investigated. The ferroelectric properties and switching properties of the PZT thin film (near morphotropic phase boundary sintered at 800 C) could function as a nonvolatile memory.

  17. Chemical solution deposition of CaCu 3 Ti 4 O 12 thin film

    Indian Academy of Sciences (India)

    CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron ...

  18. Effects of various additives on sintering of aluminum nitride

    Science.gov (United States)

    Komeya, K.; Inoue, H.; Tsuge, A.

    1982-01-01

    Effects of thirty additives on sintering A/N were investigated. The addition of alkali earth oxides and rare earth oxides gave fully densified aluminum nitride. This is due to the formation of nitrogen-containing aluminate liquid in the system aluminum nitride-alkali earth oxides or rare earth oxides. Microstructural studies of the sintered specimens with the above two types of additives suggested that the densification was due to the liquid phase sintering. Additions of silicon compounds resulted in poor densification by the formation of highly refractory compounds such as A/N polytypes.

  19. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  20. Phenomenological theory of sintering and its application to swelling

    Directory of Open Access Journals (Sweden)

    Kornyushin Y.

    2004-01-01

    Full Text Available The general phenomenological theory of sintering, formulated by the author in 1998 is applied to the problem of swelling. Driving forces, caused by the presence of the evolution of heat in the volume of a sample (electric contact, hf, inductive heating or penetrating radiation, e.g., neutrons could be the sources of the heat in the bulk of a sample are considered. The influence of these driving forces on sintering, structure and properties is discussed. The role of mobile and immobile dislocations, grain boundaries, and pores is considered. Cycling and pulsing regimes of sintering are investigated.

  1. Microwave sintering of nanophase ceramics without concomitant grain growth

    Science.gov (United States)

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  2. Manufacturing of metal supported BSCF membranes by spark plasma sintering

    OpenAIRE

    Laptev, Alexander; Bram, Martin; Zivcec, Maria; Baumann, Stefan; Jarligo, Maria Ophelia; Sebold, Doris; Pfaff, Ewald; Broeckmann, Christoph

    2013-01-01

    Spark plasma sintering (SPS), also known as field assisted sintering technique (FAST), is a relatively new method for rapid consolidation of metallic or ceramic powders. In the present work, its suitability for the manufacturing of metal supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) based membrane by co-sintering of functional ceramic BSCF layer and porous metallic support has been investigated. The BSCF based membranes are highly attractive for oxygen separation from air due to mixed ionic and e...

  3. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  4. Low temperature spark plasma sintering of YIG powders

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-07-16

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 {sup o}C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 {sup o}C leads to dense samples with minimal formation of YFeO{sub 3}, opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  5. Effect of porosity on thermal and electrical properties of polycrystalline bulk ZrN prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Adachi, Jun; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2007-01-01

    Two kinds of polycrystalline zirconium nitride (ZrN) pellets were prepared by a spark plasma sintering (SPS). Thermal and electrical properties were measured from room temperature to 1473 and 1000 K, respectively. Thermal expansion is almost independent of porosity. On the other hand, electrical and thermal conductivities systematically decreased with increasing porosity. Porosity dependences of electrical and thermal conductivities are studied through the Maxwell-Eucken's equation

  6. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  7. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  8. Transparent nanocrystalline ZnO films prepared by spin coating

    International Nuclear Information System (INIS)

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  9. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    1999-10-28

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product minerology. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process.

  10. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    International Nuclear Information System (INIS)

    Chandler, G.

    1999-01-01

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product mineralogy. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process

  11. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  12. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  13. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; de Florio, D. Z.

    2017-01-01

    Gadolinium, yttrium and samarium-doped barium cerate pressed pellets were submitted to flash sintering experiments isothermally in the temperature range 800-1300oC under 200 V cm-1 electric field. The pellets were positioned inside a dilatometer furnace with Pt-Ir electrodes connected either...... to a power supply or to an impedance analyzer to evaluate the bulk and the grain boundary contributions to the electrical resistivity. Near full density was achieved in the sintered samples. The combined results of dilatometry and impedance measurements in conventionally and flash sintered specimens show...... substantial improvement of the electrical conductivity. Joule heating is assumed to be the primary effect for sintering. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively, as the reasons for the decrease...

  14. Onset conditions for flash sintering of UO2

    Science.gov (United States)

    Raftery, Alicia M.; Pereira da Silva, João Gustavo; Byler, Darrin D.; Andersson, David A.; Uberuaga, Blas P.; Stanek, Christopher R.; McClellan, Kenneth J.

    2017-09-01

    In this work, flash sintering was demonstrated on stoichiometric and non-stoichiometric uranium dioxide pellets at temperatures ranging from room temperature (26 °C) up to 600 °C . The onset conditions for flash sintering were determined for three stoichiometries (UO2.00, UO2.08, and UO2.16) and analyzed against an established thermal runaway model. The presence of excess oxygen was found to enhance the flash sintering onset behavior of uranium dioxide, lowering the field required to flash and shortening the time required for a flash to occur. The results from this study highlight the effect of stoichiometry on the flash sintering behavior of uranium dioxide and will serve as the foundation for future studies on this material.

  15. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic......Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...

  16. Efficient Radiation Shielding Through Direct Metal Laser Sintering

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a method for efficient component-level radiation shielding that can be printed by direct metal laser sintering (DMLS) from files generated by the...

  17. Non-pressurized sintered silicon carbide with titanium carbide reinforcement

    International Nuclear Information System (INIS)

    Adler, J.

    1992-01-01

    A non-pressurized compression of SiC-TiC composite materials can be achieved via liquid phase sintering by the application of oxidic additives. Materials with TiC proportions up to 40% by volume of TiC and densities of 97 to 98% TD were produced at sintering temperatures around 1875 C. With SiC sintered in the liquid phase an increase of toughness at fracture of 80% compared with conventionally non-pressurized sintered SiC was achieved with B/C additive. No further increase could be achieved by the addition of TiC particles. However, the oxidation resistance at 1200 C was worsened. (orig.) [de

  18. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  19. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe...... the densification and stress developments during sintering of tubular bi-layered samples. The correspondence between linear elastic and linear viscous theories is used as a basis for derivation of the model. The developed model is first verified by finite element simulation for sintering of tubular bi-layer system....... Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  20. Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-16

    Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer products like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.

  1. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  2. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  4. Corrosion Properties of Sintered and Wrought Stainless Seel

    DEFF Research Database (Denmark)

    Mathiesen, Troels; Maahn, Ernst Emanuel

    1997-01-01

    The corrosion properties of a range of stainless steels produced by powder metallurgy (PM) are compared with wrought AISI304 and AISI316 Steel. Characterisation of the passivation properties in 0.5M H2SO4 and pittingresistance in 0.3% chloride solution by polarisation show properties...... of the sintered PM150 that are comparable or better than those of wrought 316 steel depending on the applied sintering technique....

  5. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  6. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  7. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    Science.gov (United States)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  8. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    Science.gov (United States)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  9. Industrial Sintering of Uranium Oxide in a Continuous Furnace

    International Nuclear Information System (INIS)

    Hauser, R.; Porneuf, A.

    1963-01-01

    Under a USAEC-EURATOM research contract, CICAF (Compagnie industrielle de combustibles atomiques frittes) was asked by the French Atomic Energy Commission to design and construct a continuous furnace sintering under a reducing atmosphere at high temperature. The characteristic features of the furnace are automatic operation, rigorous control of presintering and sintering atmospheres, flexibility of temperature regulation so that the thermal cycle can be adjusted to the product to be sintered and high output (5 t of uranium oxide per month). It can operate continuously up to 1700 deg. C, the presintering taking place at a lower temperature (800 deg. C) in a preliminary furnace which forms an integral part of the whole. The sintering atmosphere is cracked ammonia or pure hydrogen; the presintering atmosphere is a mixture o f about 10% hydrogen and 90% nitrogen. The sintered pellets densify to above 97% of theoretical density, with a total dispersion of less than 1%. Structurally, they are equi-axed grains of about 10μm. It was established that the stoichiometric variation of the uranium oxide sintered in a continuous furnace was less than 0.005. (author) [fr

  10. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  11. Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging

    International Nuclear Information System (INIS)

    Chen, Gang; Yu, Lin; Mei, Yunhui; Li, Xin; Chen, Xu; Lu, Guo-Quan

    2014-01-01

    Uniaxial ratcheting behavior and the fatigue life of sintered nanosilver joint were investigated at room temperature. All tests were carried out under stress-controlled mode. Force–displacement data were recorded during the entire fatigue lifespan by a non-contact displacement detecting system. Effects of stress amplitude, mean stress, stress rate, and stress ratio on the uniaxial ratcheting behavior of the sintered nanosilver joint were discussed. Stress-life (S–N) curves of the sintered joints were also obtained. The Smith–Watson–Topper (SWT) model, the Gerber model and the modified Goodman model, all of which took effect of mean stress into consideration, were compared for predicting the fatigue life of the sintered joint. Both the ratcheting strain and its rate increased with increasing stress amplitude or mean stress. The increase in stress amplitude and mean stress both reduced the fatigue life of the sintered joint, while the fatigue life prolonged with the increase in stress rate and stress ratio. The modified Goodman model predicted the fatigue life of the sintered joints well

  12. Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Haibin Zhang, Byung-Nam Kim, Koji Morita, Hidehiro Yoshida Keijiro Hiraga and Yoshio Sakka

    2011-01-01

    Full Text Available Aiming to characterize the effect of sintering temperature on transparency of zirconia, we have evaluated the optical properties and microstructure of translucent cubic zirconia prepared by high-pressure spark plasma sintering (SPS at 1000–1200 circleC. Color centers (oxygen vacancies with trapped electrons and residual pores were primary defects in the samples. In SPS samples, the total forward transmittance and in-line transmittance are mainly affected by color centers with a limited contribution from residual pores; in contrast, the changes in reflectance are only related to the porosity. The amounts of color centers and residual pores increase with sintering temperature that reduces the total forward and in-line transmittance of the as-sintered zirconia. Annealing in oxidizing atmosphere improves the total forward and in-line transmittance. During the annealing, the concentration of color centers decreases but the porosity increases.

  13. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  14. Polymer powders for selective laser sintering (SLS)

    Science.gov (United States)

    Schmid, Manfred; Amado, Antonio; Wegener, Konrad

    2015-05-01

    Selective Laser Sintering (SLS) is close to be accepted as a production technique (Additive Manufacturing). However, one problem limiting employment of SLS for additive manufacturing in a wide-ranging industrial scope is the narrow variety of applicable polymers. The commonly applied SLS powder to date is polyamide 12 (PA 12). PA 12 or ccompounds of PA 12 (dry blends) are approximately 90 % of complete industrial consumption. The remaining small quantity is distributed on polyamide 11 (PA11) and some other `exotic' polymers (TPU, PEBA, P(E)EK). Industry is awaiting commodity polymers like polypropylene (PP) or polyethylene (PE) crucial to open new market segments. But several approaches launching those polymers failed. But what are the reasons for the difficulties in developing new SLS powders? The contribution is to answer this and highlights the combination of intrinsic and extrinsic polymer properties necessary to generate a polymer powder promising for SLS application. Particle shape, powder distribution, thermal, rheological and optical requirements must be considered and only a particularly controlled property combination leads to successful SLS implementation. Thermal behavior, particle shape and -distribution is discussed in detail, although the other properties can't be disregarded for providing new commercially successful SLS powder finally.

  15. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  16. Damage Behavior of Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2015-04-01

    Full Text Available The reduction of aircraft noise is important due to a rising number of flights and the growth of urban centers close to airports. During landing, a significant part of the noise is generated by flow around the airframe. To reduce that noise porous trailing edges are investigated. Ideally, the porous materials should to be structural materials as well. Therefore, the mechanical properties and damage behavior are of major interest. The aim of this study is to show the change of structure and the damage behavior of sintered fiber felts, which are promising materials for porous trailing edges, under tensile loading using a combination of tensile tests and three dimensional computed tomography scans. By stopping the tensile test after a defined stress or strain and scanning the sample, it is possible to correlate structural changes and the development of damage to certain features in the stress-strain curve and follow the damage process with a high spatial resolution. Finally, the correlation between material structure and mechanical behavior is demonstrated.

  17. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  18. Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process

    International Nuclear Information System (INIS)

    Kaigawa, R.; Uesugi, T.; Yoshida, T.; Merdes, S.; Klenk, R.

    2009-01-01

    CuInSe 2 (CIS) films are successfully prepared by means of non-vacuum, instantaneous, direct synthesis from elemental In, Cu, Se particles precursor films without prior synthesis of CIS nanoparticle precursors and without selenization with H 2 Se or Se vapor. Our precursor films were prepared on metal substrates by spraying the solvent with added elemental In, Cu, and Se particles. Precursor films were instantaneously sintered using a spot welding machine. When the electric power was fixed to 0.6 kVA, elemental In, Cu, or Se peaks were not observed and only peaks of CIS are observed by X-ray diffraction (XRD) on the film sintered for 7/8 s. We can observe XRD peaks indicative of the chalcopyrite-type structure, such as (101), (103) and (211) diffraction peaks. We conclude that the synthesized CIS crystals have chalcopyrite-type structure with high crystallinity

  19. Dry Sintered Metal Coating of Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    James C. Nicholson

    2016-09-01

    Full Text Available Halloysite nanotubes (HNTs are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste.

  20. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States); Ramana, C. V., E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2016-08-21

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  1. Film/NotFilm

    OpenAIRE

    Willems, Gertjan

    2016-01-01

    Although Samuel Beckett (1906-1989) showed a genuine interest in audio-visual media in his fascinating and innovative radio plays and television works, and in 1936 even wrote a letter to Sergei Eisenstein to be accepted to the famous Soviet film school VGIK, the 22-minute Film (1965) was his only venture into cinema. Beckett conceived the film, wrote the screenplay, supervised the production and, as one of the film’s crew members recalled and as the director Alan Schneider himself acknowledge...

  2. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  3. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    2016-05-01

    Full Text Available Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  4. Cell response to hydroxyapatite surface topography modulated by sintering temperature.

    Science.gov (United States)

    Mealy, Jacob; O'Kelly, Kevin

    2015-11-01

    Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2)  = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response. © 2015 Wiley Periodicals, Inc.

  5. Consolidation of metallic hollow spheres by electric sintering

    Science.gov (United States)

    Mironov, V.; Tatarinov, A.; Lapkovsky, V.

    2017-07-01

    This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.

  6. Leaching of metals from fresh and sintered red mud.

    Science.gov (United States)

    Ghosh, Indrani; Guha, Saumyen; Balasubramaniam, R; Kumar, A V Ramesh

    2011-01-30

    The disposal of red mud, a solid waste generated during the extraction of alumina from bauxite, is one of the major problems faced by the aluminum industry. Proper disposal followed by its utilization, for example as bricks, can provide a satisfactory solution to this problem. Pollution potential of red mud and its finished product, due to metals leaching out from them under certain environmental conditions, need to be studied. Sintering of red mud was performed in a resistance type vertical tube furnace to simulate the brick-making conditions in lab-scale. Leachability of metals in red mud and the sintered product was evaluated by performing sequential extraction experiments on both. The metals studied were the 'macro metals' iron and aluminum and the 'trace metals' copper and chromium. The total extractabilities of all the metals estimated by the microwave digestion of red mud samples decreased due to sintering. The leachability in sequential extraction of the macro metals iron and aluminum, on the other hand, increased due to sintering in all phases of sequential extraction. However, the effect of sintering on the leachability of the trace metals by sequential extraction was different for copper and chromium in different fractions of sequential extraction. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  8. Superconducting films of YBaCuO

    International Nuclear Information System (INIS)

    Coelho, A.L.

    1991-01-01

    Thick films of YBa 2 Cu 3 O 7 - x have been prepared on alumina and YSZ (Yttria-stabilized zirconia) substrates by the screen printing technique. Several experimental conditions have been studied, for instance: sintering time, temperature, thickness and atmosphere annealed. The resulting films have been characterized by X-ray diffraction, AC electrical resistance, AC susceptibility and scanning electron microscopy. The surface and cross-section have been observed with an optical microscope. The X-ray diffraction patterns have been compared with a typical pattern and that has indicated the good quality of the samples. AC resistance and its temperature dependence have been measured in the standard four-probe configuration. Films thickness has been estimated in the scanning electron microscope. This technique has been suitable for production of high T c superconducting films being a simple and inexpensive method. (author)

  9. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  10. Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange.

    Science.gov (United States)

    Hoffman, Jacob B; Schleper, A Lennart; Kamat, Prashant V

    2016-07-13

    All-inorganic cesium lead halide (CsPbX3, X = Br(-), I(-)) perovskites could potentially provide comparable photovoltaic performance with enhanced stability compared to organic-inorganic lead halide species. However, small-bandgap cubic CsPbI3 has been difficult to study due to challenges forming CsPbI3 in the cubic phase. Here, a low-temperature procedure to form cubic CsPbI3 has been developed through a halide exchange reaction using films of sintered CsPbBr3 nanocrystals. The reaction was found to be strongly dependent upon temperature, featuring an Arrhenius relationship. Additionally, film thickness played a significant role in determining internal film structure at intermediate reaction times. Thin films (50 nm) showed only a small distribution of CsPbBrxI3-x species, while thicker films (350 nm) exhibited much broader distributions. Furthermore, internal film structure was ordered, featuring a compositional gradient within film. Transient absorption spectroscopy showed the influence of halide exchange on the excited state of the material. In thicker films, charge carriers were rapidly transferred to iodide-rich regions near the film surface within the first several picoseconds after excitation. This ultrafast vectorial charge-transfer process illustrates the potential of utilizing compositional gradients to direct charge flow in perovskite-based photovoltaics.

  11. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    Science.gov (United States)

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

  12. Granulation of coke breeze fine for using in the sintering process

    Directory of Open Access Journals (Sweden)

    Mohamed F.M.

    2010-01-01

    Full Text Available Coke breeze is the main fuel used in the sintering process. The value of -3+1 mm. represents the most favorable particle size for coke breeze in the sintering process. About 20% of total coke fines (-0.5 mm are produced during different steps of preparation. Introducing these fines during the sintering process proves to be very harmful for different operating parameters. Thus ,this study aims at investigating the production of granules resulting from these fines using molasses as organic binder and its application in sintering of an iron ore. The results showed that the granules having the highest mechanical properties were obtained with 14.5 wt % molasses addition. The sintering experiments were performed by using coke breeze in different shapes (-3+1 mm in size, coke breeze without sieving and coke breeze granules -3+1 mm. The reduction experiments, microscopic structure and X-ray analysis for the produced sinter were carried out. The results revealed that, all sinter properties (such as shatter test, productivity of sinter machine and blast furnace, reduction time and chemical composition for produced sinter by using coke breeze with size -3+1 mm and coke breeze granules were almost the same. The iron ore sinter which was produced by using coke breeze without sieving yielded low productivity for both sinter machine and blast furnace. Furthermore, using coke breeze without sieving in sintering of an iron ore decreases the vertical velocity of sinter machine and increases the reduction time.

  13. High performance sinter-HIP for hard metals

    International Nuclear Information System (INIS)

    Hongxia Chen; Deming Zhang; Yang Li; Jingping Chen

    2001-01-01

    The horizontal sinter-HIP equipment with great charge capacity and high performance, developed and manufactured by Central Iron and Steel Research Institute(CISRI), is mainly used for sintering and condensation of hard metals. This equipment is characterized by large hot zone, high heating speed, good temperature uniformity and fast cooling system. The equipment can provide uniform hot zone with temperature difference less than 6 o C at 1500-1600 o C and 6-10 MPa by controlling temperature, pressure and circulation of gas precisely. Using large scale horizontal sinter-HIP equipment to produce hard matals have many advantages such as stable quality, high efficiency of production, high rate of finished products and low production cost, so this equipment is a good choice for manufacturer of hard metals. (author)

  14. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; Zanetti De Florio, Daniel

    2017-01-01

    -5 A the electric current pulse amplitude. The sintering experiments were carried out in ambient atmosphere with the pellets positioned inside a vertical dilatometer furnace with Pt-Ir electrodes connected either to a power supply for applying the electric field or to an impedance analyzer for collecting [-Z''(ω) x......Gadolinium, yttrium and samarium-doped barium cerate (BCGd, BCY and BCSm, respectively) polycrystalline green pellets were submitted to electric field-assisted pressureless sintering experiments isothermally in the temperature range 800-1200oC under 100-200 V cm-1 electric fields, limiting to 1...... of the electrical conductivity of flash sintered specimens. Joule heating is assumed to be the primary effect of the electric current pulse through the specimens. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively...

  15. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    Ceramic multi-layered composites are being used as components in various technologies ranging from electronics to energy conversion devices. Thus, different architectures of multi-layers involving ceramic materials are often required to be produced by powder processing, followed by sintering...... the camber development during co-firing. The effect of extrinsic factors (e.g. gravity, thickness ratio and friction) on the shape evolution of bi-layers during co-firing has been studied using the developed model and experiments. Furthermore, a new analytical model describing stresses during sintering...... of tubular bi-layer structures has been developed by using the direct correspondence between elasticity and linear viscous problems. The finite element model developed in this study and sintering experiments of tubular bi-layer sample have been used to verify and validate the developed analytical model...

  16. Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Lin C.

    2011-01-01

    Full Text Available Micron-spherical granules of hydroxyapatite (HAp nanoparticles were prepared by powder granulation methods. Through subsequent sintering, porous HAp microspheres with tailored pore and grain framework structures were obtained. Detailed microstructure investigation by SEM and TEM revealed the correlation of the pore structure and the necking strength with the sintering profiles that determine the coalescence features of the nanoparticles. The partially sintered porous HAp microspheres containing more than 50% porosity consisting of pores and grains both in nano-scale are active in inducing the precipitation of HAp in simulated body fluid. The nano-porous HAp microspheres with an extensive surface and interconnecting pores thus demonstrate the potential of stimulating the formation of collagen and bone and the integration with the newly formed bones during physiological bone remodeling.

  17. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for HEPA filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to assume trouble-free operation. Subsequent pilot-scale testing was performed with fly ash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 volume percent water vapor in the gas stream

  18. Evaluation of dilatometric techniques for studies of sintering kinetics

    International Nuclear Information System (INIS)

    El-Sayed Ali, M.; Toft Soerensen, O.

    1985-04-01

    The kinetics of the initial sintering stage of CeO 2 is evaluated by three different techniques: constant heating rate dilatometry, constant shrinkage rate dilatometry and a new technique recently introduced by the authors called Stepwise Isothermal Dilatometry (SID). Comparative measurements with these techniques showed that too high activation energies were obtained with the two first techniques, both of which can be termed as nonisothermal, whereas activation energies comparable to those reported for cation diffusion in other fluorite oxides were obtained with the latter technique. Of the three techniques SID is thus considered to be the most accurate for studies of the sintering kinetics. In contrast to the two nonisothermal techniques SID has the further advantage that both the controlling mechanism and its activation energy can be determined in a single experiment. From the SID-measurement it was concluded that the initial sintering stage of CeO 2 is controlled by grain-boundary diffusion. (author)

  19. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 vol % water vapor in the gas stream

  20. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  1. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    Directory of Open Access Journals (Sweden)

    Shuang-Tao Feng

    2016-07-01

    Full Text Available Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT. However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM. This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

  2. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  3. Pressure sintering and creep deformation: a joint modeling approach

    International Nuclear Information System (INIS)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials

  4. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...

  5. Pressure sintering and creep deformation: a joint modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials.

  6. Method and apparatus for radio frequency ceramic sintering

    Science.gov (United States)

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  7. Sintering of Kernel UO2 for High Temperature Reactor Fuel

    International Nuclear Information System (INIS)

    Sukarsono; Dwi-Heru-Sucahyo; Hidayati; Evi-Hertiviana; Bambang-Sugeng

    2000-01-01

    Sintering investigation of UO 2 gel has been done. The gel was preparedthrough two ways. The first, gel was produced using PVA as additive agent.The second gel was produced using HMTA and Urea as additive agent. From thepreparation of gel, the PVA method better than the urea - HMTA method,because was not necessary the cold temperature for sol preparation and alsowas not necessary the hot temperature for gelation process. After nextprocessing, the sintered gel of gel through PVA, also better than HMTAprocess. (author)

  8. Sintering and microstructure of ZnO varistor

    International Nuclear Information System (INIS)

    Leite, E.R.; Longo, E.; Varela, J.A.

    1987-01-01

    The sintering and microstructure of ZnO-Bi 2 O 3 (ZB) and ZuO-Sb 2 O 3 -CoO-Bi 2 O 3 (ZSCB) varistors in several temperatures, for one hour in dry air temperature were studied. The compounds were analyzed by scanning electron microscopy, X-ray diffraction, differential thermal analysis and the density and porosity were determined by mercury picnometry. The experimental results showed that the ZB and ZSCB system sinters by liquid means and that liquid will control the density and grain growth mechanisms. (E.G.) [pt

  9. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available on the basis of obtaining a defect-free part after sintering and also determining a sintering time that gives high sintering density. Thermal debinding was conducted after solvent debinding. The feedstock used to produce green compacts composed of Ti6Al4V... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  10. Model for the evaluation and prediction of production rate of sinter ...

    African Journals Online (AJOL)

    A model has been derived for evaluation and prediction of production rate of sinter machine operating on vertical mode. The quadratic model expressed as: P = 0.4395 V – 0.0526 V2 + 0.54, showed that the production rate of the sinter machine was dependent on the vertical sintering height. The maximum deviation of the ...

  11. Influence of various manufacturing parameters on some characteristics of UO2 powders and their sintering behaviour

    International Nuclear Information System (INIS)

    Mintz, M.H.; Vaknin, Sh.; Kremener, A.; Hadari, Z.

    1977-02-01

    Various parameters in the process of manufacturing uranium dioxide are examined and their influence on the characteristics and sintering behaviour of the powders obtained established. In addition some correlations between the powder aggregates microstructure and their adhesion properties and sintering behaviour are indicated. Shrinkage during the sintering process is also discussed

  12. Application of fine-grained coke breeze fractions in the process of iron ore sintering

    Directory of Open Access Journals (Sweden)

    M. Niesler

    2014-01-01

    Full Text Available The testing cycle, described in the paper, included fine-grained coke breeze granulation tests and iron concentrate sintering tests with the use of selected granulate samples. The use of granulated coke breeze in the sintering process results in a higher process efficiency, shorter sintering duration and fuel saving.

  13. Sintering of uranium dioxide pellets (UO2) in an oxidizing atmosphere (C O2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  14. Fabrication of High Strength and Ductile Stainless Steel Fiber Felts by Sintering

    Science.gov (United States)

    Wang, J. Z.; Tang, H. P.; Qian, M.; Li, A. J.; Ma, J.; Xu, Z. G.; Li, C. L.; Liu, Y.; Wang, Y.

    2016-03-01

    Stainless steel fiber felts are important porous stainless steel products for a variety of industry applications. A systematic study of the sintering of 28- µm stainless steel fibers has been conducted for the first time, assisted with synchrotron radiation experiments to understand the evolution of the sintered joints. The critical sintering conditions for the formation of bamboo-like grain structures in the fiber ligaments were identified. The evolution of the number density of the sintered joints and the average sintered neck radius during sintering was assessed based on synchrotron radiation experiments. The optimum sintering condition for the fabrication of high strength and ductile 28- µm-diameter stainless steel fiber felts was determined to be sintering at 1000°C for 900 s. Sintering under this optimum condition increased the tensile strength of the as-sintered stainless steel fiber felts by 50% compared to conventional sintering (1200°C for 7200 s), in addition to much reduced sintering cycle and energy consumption.

  15. Spark Plasma Sintered AlN-BN Composites and Its Thermal Conductivity

    NARCIS (Netherlands)

    Zhao Haiyang, [No Value; Wang Weimin, [No Value; Wang Hao, [No Value; Fu Zhengyi, [No Value

    2008-01-01

    A series of samples of hexagonal boron nitride-aluminum nitride ceramic composites with different amounts of CaF(2) as sintering aid were prepared by spark plasma sintered at 1700-1850 degrees C for 5 min. The addition of CaF(2) effectively lowered the sintering temperature and promoted the

  16. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  17. Film processing characteristics of nano gold suitable for conductive application on flexible substrates

    International Nuclear Information System (INIS)

    Gupta, Ashish; Mandal, Saumen; Katiyar, Monica; Mohapatra, Yashowanta N.

    2012-01-01

    In spite of large number of studies and wide use of thiol encapsulated gold nanoparticles, the mechanism of their transformation to thin gold films for conductive applications is not as yet well understood. In order to understand and optimize the process of conversion of nanoparticle based ink for printing on plastic substrates, we synthesize and study thiolated Au nanoparticles, with average size of 2 nm, but with differing carbon chain length viz. butane (Au-C4), hexane (Au-C6) and octane (Au-C8). The link between the properties of Au nanoparticle and its transformation from nonconductive gold nanoparticle ink to conductive gold film is studied using a variety of techniques such as thermo gravimetric analysis (TGA), X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy and electrical conductivity measurements. A combined study of the shape of solution TGA and differential thermal analysis indicates occurrence of two distinct processes corresponding to disentanglement and debonding of thiol chains preceding the sintering of nanoparticles. The lowest sintering temperature is observed to be approximately 155 °C for chain length C4, and hence Au-C4 on polyethylene terephthalate substrates is studied in detail. Though XRD peaks of thick drop-cast films on polyethylene terephthalate substrate show increasing peak intensity with annealing temperature as expected, for spin coated thin films, in contrast, the peak intensity decreases with increase in annealing temperature. Electrical conductivity of the thin films is comparable to bulk gold after conversion, but decreases with increase in annealing temperature demonstrating the usefulness of insights obtained in the study for optimization of annealing schedules. - Highlights: ► Sintering of alkanethiol capped Au nanoparticles is chainlength dependent. ► Sintering temperature depends on thiol debonding. ► Butanethiol capped Au nanoparticles are the most suitable for flexible substrates.

  18. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der

    2011-07-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  19. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... used as a model system for the investigation of ce- ramic sintering behavior [1, 2]. However, the system ... cially available metal foams are based on aluminium, copper, nickel and metal alloys [4]. ... Zhao et al [9] reported that the porosity of the as- manufactured foam is determined by the density of.

  20. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ventional vacuum furnace (10. −2 torr). The transverse rupture strength (TRS) samples (31·7 ... testing machine (model: 1195, INSTRON, UK) at a cross- head speed of 0·5 mm/min and SEM of fractured surfaces ... Photographs of 7775 alloy sintered under vacuum at. 590. ◦. C and 630. ◦. C in conventional furnace. where f is ...

  1. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  2. Effect of sintering temperature and time on the mechanical ...

    Indian Academy of Sciences (India)

    Administrator

    partial sintering of the alloy particles on the cell walls. Pore size and pore interconnectivity are critical factors in porous material for tissue engineering. Micropores are scale to provide pathways for body fluid and nutrient transpor- tation, needed for bone regeneration and growth.25 In addition, these kinds of pores provide ...

  3. Diffusion of silver during sintering in high permittivity COG dielectrics

    NARCIS (Netherlands)

    Mikkenie, R.; Groen, W.A.; Drift, R. van der

    2010-01-01

    To achieve cost reduction in multi-layer ceramic capacitors and actuators, which use a silver-palladium alloy as internal electrode, the trend is to use alloys with the highest silver content possible. This requires ceramic materials which must be sintered at a relative low temperature. Goal is to

  4. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–magnesium titanate dielectrics/nickel–zinc–copper ferrite layer composites were prepared by tape- casting technique combined with a uniaxial pressure shaping technique. The sintering and camber development of the composites were investigated. The results show that the difference of shrinkage in the ...

  5. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    Electrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with different process parameters. The metal removal rate and tool removal rate were found to increase with the applied pulse on-time. The surface roughness of machined surface also changed with the applied pulse on-time.

  6. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 1. Sintering ... To eliminate or decrease the camber, a new method semi-fixed uniaxial pressure technique (SUP) was proposed. ... Department of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China ...

  7. Sintering Reaction of Pseudoleucite Syenite: Thermodynamic Analysis and Process Evaluation

    Science.gov (United States)

    TAN, Danjun; MA, Hongwen; LI, Ge; LIU, Hao; ZOU, Dan

    On the basis of comprehensive analysis of the modal composition of a pseudoleucite syenite ore sample, collected from the Zijin Hill of Lin County, Shanxi Province, thermodynamic analysis of the pseudoleucite syenite sintering process with sodium carbonate as the additive was carried out. It indicated that when the pseudoleucite syenite was sintered at 760-880°C for 1.0-1.5 h, with sodium carbonate as the additive. The decomposition rate of minerals in the pseudoleucite syenite could reach 97.1%. The thermodynamic calculation shows that it needs to consume Na 2CO 3, i.e., 0.65 t treating per ton pseudoleucite syenite ore and approximately 95% of Na 2CO 3 could be recycled. This process consumes heat energy (2.29-2.48)×10 -6 kJ, corresponding to standard coal 190.97-206.82 kg as the thermal efficiency was 40% and CO 2 emission was 0.77-0.81 t. Compared with the Russian limestone-sintering technique, the natural mineral resources and energy consumptions and greenhouse gas emissions of the soda-sintering technique were reduced by 65%, 63%, and 65%, respectively. It is, therefore, feasible that the procedure suggested in this article could be industrialized providing both economic benefit and environmental conservation.

  8. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    sintering of various Al-based composites. Microwave heat- ing of metallic powders (Al–Cu–Fe) to single phase was first reported by Vauchera et al (2008). To the best of our know- ... insulation also consisted of graphite coated SiC rods. Tem- perature ... Figure 3 compares thermal profile for 7775 aluminum alloy compacts ...

  9. Coal fly ash utilization: low temperature sintering of wall tiles.

    Science.gov (United States)

    Chandra, Navin; Sharma, Priya; Pashkov, G L; Voskresenskaya, E N; Amritphale, S S; Baghel, Narendra S

    2008-01-01

    We present here a study of the sintering of fly ash and its mixture with low alkali pyrophyllite in the presence of sodium hexa meta phosphate (SHMP), a complex activator of sintering, for the purpose of wall tile manufacturing. The sintering of fly ash with SHMP in the temperature range 925-1050 degrees C produces tiles with low impact strength; however, the incremental addition of low alkali pyrophyllite improves impact strength. The impact strength of composites with >or=40% (w/w) pyrophyllite in the fly ash-pyrophyllite mix satisfies the acceptable limit (19.6 J/m) set by the Indian Standards Institute for wall tiles. Increasing the pyrophyllite content results in an increase in the apparent density of tiles, while shrinkage and water absorption decrease. The strength of fly ash tiles is attributed to the formation of a silicophosphate phase; in pyrophyllite rich tiles, it is attributed to the formation of a tridymite-structured T-AlPO(4) phase. Scanning electron micrographs show that the reinforcing rod shaped T-AlPO(4) crystals become more prominent as the pyrophyllite content increases in the sintered tiles.

  10. Preparation and Characterization of Sintered Microporous Polymeric Filters

    Directory of Open Access Journals (Sweden)

    Meysam Salari

    2017-09-01

    Full Text Available Nowadays filtration process is increasingly used in various areas such as water purification, food industries, filtering the air dust and other separation applications. In this work, the HDPE microporous filters have been fabricated at different pressure and time conditions via sintering process and then were characterized by different techniques. It can be expected that microstructure and mechanical properties of the samples could be controlled by changing the fabrication parameters like temperature, pressure, time of the process and also by changing the properties of the resin such as powder shape, particle size and rheological properties. In the first step, by using DSC, MFI, rheology test and optical microscope, the most suitable polymeric powder for sintering process was chosen. The sintering temperature was fixed in the vicinity of melting temperature of the used HDPE powder, based on DSC result. In order to evaluate mechanical properties and porosity of the samples, the results obtained from the shear punch test, acetone drop permeability, gas permeability, transition optical microscopy and SEM, have been used; then the effect of pressure and time parameters on the characteristics of the product has been studied. Finally, it was concluded that it is possible to make microporous filters with suitable mechanical properties, using sintering process at controlled pressure and temperature conditions.It can be seen that by increasing time and pressure, on the one hand the mechanical properties of the products increase, and on the other hand, their porosity and the gas permeability of the vents decrease.

  11. Effect of sintering on controlled release profile of diltiazem ...

    African Journals Online (AJOL)

    The study was designed to formulate and evaluate diltiazem hydrochloride wax matrix tablets for controlled release using sintering technique. Granules of diltiazem hydrochloride-wax were prepared by melt granulation technique. This was formed by triturating the drug powder with a melted carnauba wax (drug: wax ratio, ...

  12. The polarising effects in sintered kaolin | D'ujanga | Tanzania ...

    African Journals Online (AJOL)

    The polarizing effects in sintered kaolin samples were analysed in terms of the sample density (or porosity) using direct current (dc) techniques. More porous samples exhibited higher polarizing effects than the less porous ones. The conduction carriers in kaolin samples at room temperature were found to be mainly ...

  13. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    Unknown

    MS received 7 November 2005. Abstract. Electrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with differ- ... electric breakdown process spreads at an explosive rate, resulting in the formation of a .... of cutting fluid takes place which would give out a car- bon residue. The visual black layer ...

  14. New membranes made of sintered clay application to crossflow ...

    African Journals Online (AJOL)

    The new mineral membranes made of sintered clay are performed and characterized in terms of porosity, hydraulic resistance, pore diameter and mechanical resistance. It is shown that these membranes can be used as microfiltration membrane. The variations of the filtrate flux as a function of time are measured during the ...

  15. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  16. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    purpose are clay minerals such as kaolinite, pyrophyllite, si- llimanite group ... racterized in terms of bulk density, apparent porosity, phase .... density at 1650. ◦. C. Gradual removal of open pores with an increase in sintering temperature is the reason for higher den- sification. Formation of higher amount of low density glass.

  17. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    Synthesis and electrical field-assisted sintering behaviour of yttria-stabilized tetragonal ZrO2 nanopowders by polyacrylamide gel method. XINGHUA SU. ∗. , BENPAN WANG, JIE ZHOU and HAOYU SUN. School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China. MS received 5 May 2015; ...

  18. Effect of increasing lanthanum substitution and the sintering ...

    Indian Academy of Sciences (India)

    Compared with SBTi ceramics and other lanthanide-substituted compositions, the incorporation of La3+ results in clear improvement in properties for SBLT ( ∼ 0.75) with respect to the values of hardness and Young's modulus of the microwave sintered samples (8.8–12.5 and 160–180 GPa) are higher than that for ...

  19. High-level radioactive waste fixation in sintered vitreous matrix

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    The safe storage of high-level wastes from fuel elements reprocessing includes, as a first step, the fixation of the same in materials having a good resistance to the leaching in aqueous medium, such as borosilicate glass. As an alternative to the usual method of the molten glasses, a procedure for the sintering of a powdered glass and waste mixture at lower temperatures (600-700 deg C) has been developed, which minimizes the volatilization of active compounds during the process. Two glasses matrices of different composition and characteristics were used, to which the simulated wastes were added in the ratio of a 10% in weight of oxides. Two sintering techniques were employed 1: cold pressing and further sintering; 2: hot pressing and sintering under pressure. The densities were measured, the microstructure of the samples was analyzed and leaching essays were made in distilled water. The pellet's microstructure was observed by means of optical microscopy, by reflection in polished samples and by transparency in thin slices. The presence of crystalline compounds was analyzed by means of x rays and electron microprobe. The results have shown the convenience to continue with hot pressing essays, because a denser product with a higher resistance to the leaching is thus obtained. (M.E.L.) [es

  20. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    2014-01-01

    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate dens...

  1. Joining of β-SiC by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Grasso, S.; Tatarko, Peter; Rizzo, S.; Porwal, H.; Hu, Ch.; Katoh, Y.; Salvo, M.; Reece, M. J.; Ferraris, M.

    2014-01-01

    Roč. 34, č. 7 (2014), s. 1681-1686 ISSN 0955-2219 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : β-SiC * joining * Spark plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  2. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting

    NARCIS (Netherlands)

    Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; van Vaerenbergh, J.; Froyen, L.; Rombouts, M.

    2005-01-01

    Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the

  3. New developments in laser sintering of diamond cutting disks

    NARCIS (Netherlands)

    Kovalenko, V.; Golovko, L.; Meijer, J.; Anyakin, M.

    2007-01-01

    The analysis of techniques and problems in the fabrication of cutting tools based on super hard composites results in a solution by the application of lasers. The results of systematic study of diamond composites sintering with laser radiation are discussed. A mathematical modeling of the heat

  4. Photoconductive cells from screen-printed and sintered cadmium sulfoselenide

    Czech Academy of Sciences Publication Activity Database

    Franc, Jiří; Nešpůrek, Stanislav

    2008-01-01

    Roč. 25, č. 3 (2008), s. 41-46 ISSN 1356-5362 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : photoconductivity * detectors (circuits) * sintering * pastes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.471, year: 2008

  5. Consolidation of copper and aluminium powders by spark plasma sintering

    Science.gov (United States)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  6. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongtao [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Yue, Qinyan, E-mail: qyyue@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Su, Yuan; Gao, Baoyu; Gao, Yue; Wang, Jingzhou; Yu, Hui [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The best condition was red mud content of 40% and sintering at 1050 Degree-Sign C for 2 h. Black-Right-Pointing-Pointer Bricks' weight loss was caused by the removal of absorbed water and crystal water. Black-Right-Pointing-Pointer Bricks' sintering shrinkage depended on the sodium and iron compounds of red mud. Black-Right-Pointing-Pointer Sintering can strengthen bricks and decrease leaching concentration of toxic metal. - Abstract: The preparation, characteristics and mechanisms of sintered bricks manufactured by Yellow River silt and red mud were studied. The sintering shrinkage, weight loss on ignition, water absorption and compressive strength were tested to determine the optimum preparation condition. Sintering mechanisms were discussed through linear regression analysis. Crystalline components of raw materials and bricks were analyzed by X-ray diffraction. Leaching toxicity of raw materials and bricks were measured according to sulphuric acid and nitric acid method. Radiation safety of the sintered bricks was characterized by calculating internal exposure index and external exposure index. The results showed that at the chosen best parameters (red mud content of 40%, sintering temperature of 1050 Degree-Sign C and sintering time of 2 h), the best characteristics of sintered bricks could be obtained. The weight loss on ignition of sintered bricks was principally caused by the removal of absorbed water and crystal water. The sintering shrinkage of sintered bricks mainly depended on sodium compounds and iron compounds of red mud. The sintering process made some components of raw materials transform into other crystals having better thermostability. Besides, the leaching toxicity and radioactivity index of sintered bricks produced under the optimum condition were all below standards.

  7. Microstructural optimization of solid-state sintered silicon carbide

    Science.gov (United States)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  8. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  9. Effect of sintering process parameters on the properties of 3Y-PSZ ceramics

    International Nuclear Information System (INIS)

    Chu, H L; Chen, R S; Wang, C L; Hwang, W S; Lee, H E; Sie, Y Y; Wang, M C

    2013-01-01

    The effect of sintering process parameters on the properties of 3 mol% yttria partially stability zirconia (3Y-PSZ) ceramics has been investigated. The relative density of the sintered pellet rapidly increases from 70.5 to 93.6% with rose temperature from 1473 to 1573 K. In addition, the relative density only slightly increases from 94.9 to 96.6 %, when rose sintered temperature from 1573 to 1773 K. This result shows that no significant influence on the densification behavior when sintering at 1573 to 1773 K for 2 h. The Vickers hardness and toughness also increase with the sintered temperature

  10. PRESSURELESS SINTERING OF B4C-NANOTiB2 NANOCOMPOSITE BY ADDITION OF Fe AND Ni AS SINTERING AIDS

    Directory of Open Access Journals (Sweden)

    M. M. Mohammadi Samani

    2014-12-01

    Full Text Available B4C and its composites with TiB2 as second phase continues to be extensively used as the preferred ceramic material in military applications as armor systems for absorbing and dissipating kinetic energy from high velocity projectiles. It also exhibits a high melting point (2427 °C, and high neutron absorption cross section. Pressureless sintering of the B 4C-nanoTiB2 nanocomposite using small amount of Fe and Ni (≤3 Wt% as sintering aids was investigated in order to clarify the role of Fe and Ni additions on the mechanical and microstructural properties of B4C-nanoTiB2 nanocomposites. Different amount of Fe and Ni, mainly 1 to 3 Wt% were added to the base material. Pressureless sintering was conducted at 2175, 2225 and 2300 °C. It was found that Addition of 3 Wt% Fe and 3 wt% Ni and sintering at 2300 °C resulted in improving the density of the samples to about 99% of theoretical density. The nanocomposite samples exhibited high density, hardness, and microstructural uniformity.

  11. Studies on sintering kinetics of ThO2-UO2 pellets using master sintering curve approach

    Science.gov (United States)

    Banerjee, Joydipta; Ray, Aditi; Kumar, Arun; Banerjee, Srikumar

    2013-11-01

    Three different compositions of thoria-urania pellets, namely, ThO2-4%UO2, ThO2-10%UO2 and ThO2-20%UO2 (all compositions are in wt% containing natural uranium) were fabricated by Coated Agglomerate Pelletization (CAP) process. The compositions studied in the current paper are the proposed fuels for the forthcoming Indian Advanced Heavy water Reactor (AHWR) and its variant based on low enriched uranium. Sintering kinetics of ThO2-x%UO2 (x = 4, 10, 20) green pellets, thus fabricated, were evaluated using constant heating rate experiments in a vertical dilatometer. Activation energies of sintering (Q) were estimated using Arrhenius plot as proposed by Wang and Raj. Master Sintering Curves (MSC) for the above three compositions were constructed using shrinkage data. A FORTRAN program, employing optimization based numerical algorithm for fitting relative density vs. work of sintering data with sigmoid function, was used for this purpose. The apparent activation energies, evaluated using MSC principle, appear to be consistent with the values obtained by Arrhenius plot.

  12. Sintering behavior, microstructure and mechanical properties of vacuum sintered SiC/spinel nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoqiang, E-mail: lguoqi1@lsu.edu [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Mechanical Engineering, Southern University, Baton Rouge, LA 70813 (United States); Tavangarian, Fariborz [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2014-12-05

    Highlights: • Bulk SiC/spinel nanocomposite was synthesized from talc, aluminum and graphite powders. • Sintering behavior and mechanical properties of SiC/spinel nanocomposite was studied. • The obtained bulk SiC/spinel nanocomposite had a mean crystallite size of about 34 nm. - Abstract: A mixture of SiC and spinel (MgAl{sub 2}O{sub 4}) nanopowder was prepared through the ball milling of talc, aluminum and graphite powder. The powder was uniaxially pressed into the form of pellets and the prepared specimens were annealed at various temperatures for different holding times. The prepared samples were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), nanoindentation test, cold crushing strength (CCS) test and Archimedes principle test. The obtained results showed that the hardness, CCS and bulk density did not follow the same trend at different temperatures due to the interaction among various parameters. The detailed investigation of microstructure, phase changes and experimental conditions revealed the mechanisms behind these behaviors. The best sample obtained after annealing at 1200 °C for 1 h in vacuum had the mean hardness of 1.6 GPa and the mean CCS of 118 MPa.

  13. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering

    Directory of Open Access Journals (Sweden)

    Songlin Duan

    2015-03-01

    Full Text Available CaO-Al2O3-SiO2 (CAS as a liquid phase was introduced into hydroxyapatite (HAp to prepare bone scaffolds. The effects of the CAS content (1, 2, 3, 4 and 5 wt% on microstructure and mechanical properties of HAp ceramics were investigated. The optimal compression strength, fracture toughness and Vickers hardness reached 22.22 MPa, 1.68 MPa·m1/2 and 4.47 GPa when 3 wt% CAS was added, which were increased by 105%, 63% and 11% compared with those of HAp ceramics without CAS, respectively. The improvement of the mechanical properties was attributed to the improved densification, which was caused by the solid particle to rearrange during liquid phase sintering. Moreover, simulated body fluid (SBF study indicated the HAp ceramics could maintain the mechanical properties and form a bone-like apatite layer when they were immersed in SBF. Cell culture was used to evaluate biocompatibility of the HAp ceramics. The results demonstrated MG-63 cells adhered and spread well.

  14. In situ Investigation of Titanium Powder Microwave Sintering by Synchrotron Radiation Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    2016-01-01

    Full Text Available In this study, synchrotron radiation computed tomography was applied to investigate the mechanisms of titanium powder microwave sintering in situ. On the basis of reconstructed images, we observed that the sintering described in this study differs from conventional sintering in terms of particle smoothing, rounding, and short-term growth. Contacted particles were also isolated. The kinetic curves of sintering neck growth and particle surface area were obtained and compared with those of other microwave-sintered metals to examine the interaction mechanisms between mass and microwave fields. Results show that sintering neck growth accelerated from the intermediate period; however, this finding is inconsistent with that of aluminum powder microwave sintering described in previous work. The free surface areas of the particles were also quantitatively analyzed. In addition to the eddy current loss in metal particles, other heating mechanisms, including dielectric loss, interfacial polarization effect, and local plasma-activated sintering, contributed to sintering neck growth. Thermal and non-thermal effects possibly accelerated the sintering neck growth of titanium. This study provides a useful reference of further research on interaction mechanisms between mass and microwave fields during microwave sintering.

  15. Development of a Master Sintering Curve for Al-Mg Alloy

    Directory of Open Access Journals (Sweden)

    Yong-Shin Lee

    2016-01-01

    Full Text Available A new master sintering curve (MSC is proposed for Al-Mg alloy in order to effectively design the pressure-assisted sintering process. In this work, hot pressing experiments of Al-Mg alloy powders are performed. The changes of relative density during hot pressing are measured for the various heating rates of 5°C/min, 10°C/min, and 20°C/min at the fixed pressure of 50 MPa. A work of sintering, designated as Θ, is introduced and defined as Θ(t,T=∫0t1/Texp-Q/RTdt. A work of sintering, Θ, could be interpreted as a measure for the amount of sintering work. The MSC in this work defines the relation between the apparent density and a work of sintering, Θ. Since the measurement of an apparent activation energy, Q, is very difficult, the correct value of Q is obtained numerically using a mean residual square method. Then, the master sintering curves for sintering of Al-Mg alloy powders are proposed for the sintering temperatures of 400°C and 500°C through scaling procedures. It is expected that the master sintering curves proposed in this work could help an engineer to design pressure-assisted sintering process for Al-Mg alloy.

  16. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  17. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  18. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  19. The effect of lanthanum boride on the sintering, sintered microstructure and mechanical properties of titanium and titanium alloys

    International Nuclear Information System (INIS)

    Yang, Y.F.; Luo, S.D.; Qian, M.

    2014-01-01

    An addition of ≤0.5 wt% lanthanum boride (LaB 6 ) to powder metallurgy commercially pure Ti (CP-Ti), Ti–6Al–4V and Ti–10V–2Fe–3Al (all in wt%) resulted in improved sintered density, substantial microstructural refinement, and noticeably increased tensile elongation. The addition of LaB 6 led to scavenging of both oxygen (O) and chlorine (Cl) from the titanium powder during sintering, evidenced by the formation of La 2 O 3 and LaCl x O y . The pinning effect of La 2 O 3 , LaCl x O y and TiB inhibited prior-β grain growth and resulted in subsequent smaller α-laths. The formation of nearly equiaxed α-Ti phase is partially attributed to the nucleation effect of α-Ti on TiB. The improved sintered density was caused by B from LaB 6 rather than La, while excessive formation of La 2 O 3 and TiB with an addition of >0.5 wt% LaB 6 resulted in a noticeable decrease in sintered density. The improved tensile elongation with an addition of ≤0.5 wt% LaB 6 was mainly attributed to the scavenging of oxygen by LaB 6 , partially assisted by the improved sintered density. However, an addition of >0.5 wt% LaB 6 led to the formation of large La 2 O 3 aggregates and more brittle TiB whiskers and therefore decreased tensile elongation. Balanced scavenging of O is thus important. The optimal addition of LaB 6 was 0.5 wt% but this may change depending on the powder size of the LaB 6 to be used

  20. Effect of sintering temperature on microstructure and compressive strength of B4C-AlSi eutectic alloy

    International Nuclear Information System (INIS)

    Liu Jinyun; Zha Wusheng; Liu Gaihua; Lan Jun; Feng Quanhe; Zou Congpei

    2008-01-01

    The block neutron absorber of B 4 C based on Al-Si eutectic alloy has been prepared by powder-metallurgy method. The effects of sinter temperature on microstructure, compressive strength, and ductility of sintered billets have been investigated. It has been shown that the sintering temperature decides sensitively the compressive strength and ductility of sintered billets. Sintered under 550, 555, 560, and 565 degree C, the billet shows different states, such as sub-sintered, best-sintered, over-sintered, and molten. Sintered under 550 degree C, the powder have not been metallurgically combined with each other. Beyond 560 degree C, the billets are molten. The 555 degree C is the best sintering temperature, under which the powder have been partly melted and the metallurgical combination has been occurred, then the billets have a better ductility. (authors)

  1. NdFeB thick films prepared by tape casting

    International Nuclear Information System (INIS)

    Pawlowski, B.; Schwarzer, S.; Rahmig, A.; Toepfer, J.

    2003-01-01

    NdFeB films of thickness between 100 and 800 μm were prepared by tape casting of a slurry containing 84-95 wt% of commercial NdFeB powder (MQP-B, -Q and -S). After curing the flexible green tapes at 120 deg. C non-porous magnetic films are obtained. The remanence of the films is in the range of 350-450 mT and the coercivity is between 300 and 800 kA/m depending on the type of MQP powder used. The magnetic properties of the films are discussed in relation to film composition and type of magnetic material. For MEMS applications the thick films are magnetized with a multi-pole stripe pattern with 1 mm pole pitch. The induction at the surface of the films was measured with a Hall probe and compared to theoretical calculations. The results indicate that the films are completely magnetized regardless of the film thickness. Tape-casted NdFeB thick films are promising candidates for applications in micro-systems or actuators. Miniaturization of the magnet components is one of the key issues in the development of electromagnetic micro-systems, thus creating a need for replacement of small sintered magnets by magnetic thick film components. Other applications include encoders

  2. Microstructural Studies of Ni-P Thick Film Resistor Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Barbara Holodnik

    1986-01-01

    Full Text Available Thick Ni-P films have been widely investigated at our Institute. This article tends to visualize by use of various microscopic methods how the growth and sintering of individual conducting grains, results in the formation of nickel dendrites responsible for the metallic character of electrical conduction.

  3. Nuclear films

    International Nuclear Information System (INIS)

    Malone, Peter.

    1985-01-01

    This booklet is a resource for the study of feature films that highlight the theme of nuclear war. It provides basic credits and brief indication of the theme, treatment, quality and particular notable aspects; and a series of questions raised by the film. Seventy feature films and thirty documentaries are examined

  4. Spark plasma sintering and porosity studies of uranium nitride

    Science.gov (United States)

    Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-01

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.

  5. Method of making bonded or sintered permanent magnets

    Science.gov (United States)

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  6. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless......Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... calculations, made by use of the computer programme Thermo-Calc, were also correlated with the observed microstructure. Corrosion measurements by electrochemical techniques show no signs of intergranular corrosion in contrast to the case of AISI 316L based steel. Furthermore most of the material showed...

  7. Effective elastic properties of sintered materials with branched cracks

    Science.gov (United States)

    Fedelinski, Piotr

    2018-01-01

    The aim of work is analysis of sintered materials with branched cracks growing from the voids situated at corners of fibers. The material is modelled as a two-dimensional linear-elastic structure using the boundary element method (BEM). The materials without voids and with voids having different shapes are considered. The influence of lengths of cracks and shapes of voids on stress intensity factors (SIF) and effective elastic properties (the Young modulus and the Poisson ratio) are studied. The overall properties of the sintered materials are determined by considering the representative volume element (RVE) with large number of branched cracks. The sensitivity of effective elastic properties on boundary conditions imposed on the RVE is studied.

  8. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  9. Strain rate dependency of laser sintered polyamide 12

    Directory of Open Access Journals (Sweden)

    Cook J.E.T.

    2015-01-01

    Full Text Available Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10−3 to 10+3 s−1 at room temperature, and the dependence on these parameters is presented.

  10. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth

    2010-09-01

    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  11. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  12. O2 plasma sintering study of TiO2 photoelectrodes in dye solar cells

    Science.gov (United States)

    Moraes, R. S.; Gonçalves, A. D.; Stegemann, C.; da Silva Sobrinho, A. S.; Miyakawa, W.; Massi, M.

    2017-08-01

    The development of more efficient photoelectrochemical solar cells has been, over the years, the subject of many scientific researches. In this paper a methodology was established to carry out the sintering process of nanoporous TiO2 layer by using plasma, which was compared with sintered layers made by the conventional sintering process in a furnace. The TiO2 commercial paste was spread by doctor-blading technique and subjected to different sintering processes. Porous layer samples were subjected to structural and morphological analyses. Then photoelectrodes dye-loading was measured by optical spectrophotometry. The quality of the layers under plasma sintering process in terms of weight loss and removal of organic compounds was evaluated by thermogravimetric analysis, mass spectrometry and FT-IR. The results showed that the plasma sintering process favors the adsorption of dye on the layer surface due to the creation of active states caused by O2 reactive plasma. Furthermore the O2 plasma process provides enough energy for removing organic compounds arising from the TiO2 paste and for providing nanoparticle sintering. Solar cells assembled with the plasma-sintered layers had a power conversion efficiency 20.1% higher than the obtained in solar cells sintered in a conventional furnace, proving the efficiency of the plasma sintering process.

  13. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Cole, James I. [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Alsagabi, Sultan F. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States)

    2016-03-15

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La{sub 2}O{sub 3} (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr–Ti–La–O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 10{sup 24} m{sup −3}. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  14. Evaluation of alpha-SiC sintering using statistical methods

    Science.gov (United States)

    Hurst, J. B.; Millard, M. L.

    1985-01-01

    The effect of time and temperature on the density and strength of alpha-SiC was studied and mathematically modeled using a central composite experimental design. A sintering temperature of 2150 C for 1.7 h maximized the flexural strength and densification values. However, temperatures above 2200 C promoted abnormal grain growth, with resulting appreciable decreases in strength. Flexural strength increased exponentially with increasing density for specimens with densities less than or equal to 92 percent of theoretical.

  15. Technological aspects of UO2 sintering at low temperature

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Dominguez, Carlos A.; Benitez, Ana M.; Marajofsky, Adolfo

    1999-01-01

    Within the Fuel Cycle Program of CNEA, the knowledge that plant personnel has on sintering at low temperature was evaluated, because this process could decrease costs for UO 2 and (U,Gd)O 2 pellets production, simplify the furnace maintenance and facilitate the automation of the production process, specially convenient for uranium recovery. By applying this technology, some companies have achieved production at pilot-scale and irradiated a significant number of pellets. (author)

  16. A Gas Pressure Sintering Furnace for Structural Ceramics

    National Research Council Canada - National Science Library

    Chen, I-Wei

    2001-01-01

    .... Since funds were used from University sources to advance the payment of the gas pressure sintering, we have used the residue funds to purchase characterization equipment for a' -SiAlON research. The new equipment has been delivered and has allowed characterization of a'-SiAlON, especially the mechanical properties (R-curve, creep, and high temperature strength) to be carried out in our laboratory.

  17. Spark Plasma Sintering (SPS) for Nanostructured Smart Materials

    Science.gov (United States)

    2006-02-05

    ferromagnetic SMA composites, piezo-composites with and without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites...without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites. These composites will be used for higher performance...g) Sintering Ambience Air. vacuum or inert gas (h) Viewing Windows 0 50mm A O80mm quartz glass with individual protecting plates Wi) Vacuum Neters

  18. Microwave Sintering and Its Application on Cemented Carbides

    OpenAIRE

    Rumman Md Raihanuzzaman; Lee Chang Chuan; Zonghan Xie; Reza Ghomashchi

    2015-01-01

    Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used to prepare a wide range of materials including ceramics. A deep understanding ...

  19. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    The 3YSZ nanopowders with mean particle size of 12 nm can be densified in 1 h at 800 ∘ C, by the application of a d.c. electrical field. Under a constant d.c. electrical field, the current density through the specimen of 3YSZ rose rapidly when the temperature increased to a certain value. In the sintering process, the current ...

  20. NEUTRON IRRADIATION EFFECTS ON SPARK PLASMA SINTERED BORON CARBIDE

    OpenAIRE

    Buyuk, Bulent; Cengiz, Meral; Tugrul, A. Beril

    2015-01-01

    In this study, spark plasma sintered boron carbide (B4C) was examined against neutrons. The specimens were irradiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x1021n m-2. Thermal and fast neutrons cause swelling by different interactions with boron (10B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and ...

  1. INFLUENCE OF SINTERING TEMPERATURE ON THE POLARIZATION RESISTANCE OF LaO20.6SrO20.4CoO20.2FeO20.8O3-δ - SDC CARBONATE COMPOSITE CATHODE

    Directory of Open Access Journals (Sweden)

    Nurul Akidah Baharuddin

    2016-05-01

    Full Text Available The effects of sintering temperature of an LSCF-samarium-doped ceria carbonate (SDCC cathode composite film on its polarization resistance (Rp were evaluated in this study. An LSCF-SDCC composite cathode was prepared for cathode film development by electrophoretic deposition (EPD. The LSCF-SDCC composite cathode was prepared at 50:50 weight percentage ratio. An EPD suspension which is based on an organic aqueous solution was used, and a mixture of ethanol and deionized water was used as medium with poly diallyl dimethyl ammonium chloride (PDADMAC as a dispersing agent. SDCC substrate was used, and EPD was performed on both sides. A symmetrical cell with cathode composite LSCF-SDCC films on both sides of the substrate was subjected to sintering at five different temperatures (from 550°C to 750°C. A symmetrical cell was painted using silver paste before undergoing electrochemical performance test (air condition, in which the impedance, Z data, was measured. The effects of sintering temperature change on element content and film porosity were first investigated by energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, and J-image analysis. Ceramic-based cathode LSCF-SDCC that was sintered at 600°C exhibited the lowest Rp at a value of 0.68 Ω when operated at 650°C. This study proved that EPD has potential in developing IT-LT solid oxide fuel cell cathode components with high electrochemical performance in terms of Rp values.

  2. Nanostructured CoSi Obtained by Spark Plasma Sintering

    Science.gov (United States)

    Longhin, Marco; Viennois, Romain; Ravot, Didier; Robin, Jean-Jacques; Villeroy, Benjamin; Vaney, Jean-Baptiste; Candolfi, Christophe; Lenoir, Bertrand; Papet, Philippe

    2015-06-01

    Cobalt monosilicide is a cheap, environmentally friendly thermoelectric material for medium temperatures (200-700°C). While its power factor is similar to the state-of-the-art thermoelectric materials, its thermal conductivity is too large to reach high ZT values. Nanostructuring might be an interesting strategy to reduce the phonon mean free path thereby improving the thermoelectric performance. In this paper, we report on a 35% reduction of the thermal conductivity of n-type CoSi by a nanostructuring approach. CoSi nanostructured powders were synthesized by arc melting, followed by 4° h mechanical milling. By optimizing the spark plasma sintering thermal and pressure cycle, pellets with 5â€"10% porosity were obtained. During sintering, a small amount of Co2Si extra phase appeared and grains coarsened. After sintering, the pellets remained nanostructured, with an averaged grain size of 70 nm. The reduction of thermal conductivity is ascribed to a decrease in both the electronic and lattice contributions. The former is directly related to a decrease in the electrical conductivity, which appears to be the limiting factor preventing nanostructured CoSi from reaching enhanced thermoelectric performances.

  3. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  4. Reactive Spark Plasma Sintering: Successes and Challenges of Nanomaterial Synthesis

    Directory of Open Access Journals (Sweden)

    Dina V. Dudina

    2013-01-01

    Full Text Available Spark plasma sintering (SPS, initially developed as an advanced sintering technique for consolidating nanopowders into nanostructured bulk materials, has been recently looked at in much broader perspective and gained a strong reputation of a versatile method of solid state processing of metals, ceramics, and composites. The powders in the SPS-dies experience the action of pulsed electric current and uniaxial pressure; they are heated at very high rates unachievable in furnace heating and sintered within shorter times and at lower temperatures than in conventional methods. The principle of SPS and convenient design of the facilities make it attractive for conducting solid state synthesis. In this paper, based on our own results and the literature data, we analyze the microstructure formation of the products of chemical reactions occurring in the SPS in an attempt to formulate the requirements to the microstructure parameters of reactant mixtures and SPS conditions that should be fulfilled in order to produce a nanostructured material. We present successful syntheses of nanostructured ceramics and metal matrix composite with nanosized reinforcements in terms of microstructure stability and attractive properties of the materials and discuss the challenges of making a dense nanostructured material when reaction and densification do not coincide during the SPS. In the final part of the paper, we provide an outlook on the further uses of reactive SPS in the synthesis of nanostructured materials.

  5. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  6. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  7. Experimental performance evaluation of sintered Gd spheres packed beds

    DEFF Research Database (Denmark)

    Tura, A.; Nielsen, Klaus K.; Van Nong, Ngo

    2016-01-01

    Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison of the pe......Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison...... of the performance of AMRs consisting of Gd spheres with diameters ranging from 450-550 microns partially sintered by Spark Plasma Sintering (SPS) to similar spheres, sorted in the same size range and from the same batch, but merely packed. Pressure drop is compared at uniform temperature and at a range of heat...... rejection temperatures and temperature spans. Performance is compared in terms of temperature span at a range of heat rejection temperatures (295-308 K) and 0 and 10 W cooling loads. Results show a moderate increase of pressure drop with the sintered spheres, while temperature spans were consistently 2...

  8. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  9. Synthesis, Characterization, and Low Temperature Sintering of Nanostructured BaWO4 for Optical and LTCC Applications

    Directory of Open Access Journals (Sweden)

    S. Vidya

    2013-01-01

    Full Text Available Synthesis of nano-BaWO4 by a modified combustion technique and its suitability for various applications are reported. The structure and phase purity of the sample analyzed by X-ray diffraction, Fourier transform Raman, and infrared spectroscopy show that the sample is phase pure with tetragonal structure. The particle size from the transmission electron microscopy is 22 nm. The basic optical properties and optical constants of the nano BaWO4 are studied using UV-visible absorption spectroscopy which showed that the material is a wide band gap semiconductor with band gap of 4.1 eV. The sample shows poor transmittance in ultraviolet region while maximum in visible-near infrared regions. The photoluminescence spectra show intense emission in blue region. The sample is sintered at low temperature of 810°C, without any sintering aid. Surface morphology of the sample is analyzed by scanning electron microscopy. The dielectric constant and loss factor measured at 5 MHz are 9 and 1.56×10-3. The temperature coefficient of dielectric constant is −22 ppm/°C. The experimental results obtained in the present work claim the potential use of nano BaWO4 as UV filters, transparent films for window layers on solar cells, antireflection coatings, scintillators, detectors, and for LTCC applications.

  10. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells

    Science.gov (United States)

    Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku

    2015-04-01

    The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation

  11. Experimental and finite element modeling study of co-sintering of multilayer, multifunctional ceramics

    Science.gov (United States)

    Wu, Kuan

    2007-12-01

    The co-sintering behavior of low temperature co-fired ceramics (LTCC) is investigated by combining experiment and simulation methods. The numerical method offers a way to provide quantitative information regarding the final sintered shape of multilayer ceramics, which can be used to optimize the design of multilayer, multifunctional components and help reduce tedious and expensive empirical design iterations. To predict the sintering behavior of LTCC, parameters in the viscoplastic constitutive equations for single materials (such as shear viscosity G, bulk viscosity K, and sintering stress sigma s, etc.) need to be known. An apparatus was constructed for in situ measurements of the longitudinal and radial shrinkage during free sintering and sinter forging experiments. Cylindrical samples of individual LTCC materials (DuPont 951AX, Heraeus CT-800, Ferro A6-S) were made. Free sintering and sinter-forging experiments have been performed at various heating rates and under different intermittently applied axial loads. Various methods for analyzing the data were used to extract those parameters and their dependence on temperature and relative density. The constitutive parameters obtained from experiments were then implemented in the user subroutine UMAT of the general-purpose finite element program ABAQUS to simulate the free sintering behavior of bi-layer structures (DU951/CT800) with different thickness ratios. The simulation results were then compared with the actual experimental results, which were obtained by free co-sintering bi-layer planar samples with different thickness ratios. Simulation results showed the finite element analysis was successful in predicting the shape changes and the stresses at different positions during sintering of bi-layer structures. This finite element model was also used to examine the sensitivity to various parameters of the sintering results, such as elastic Poisson's ratio v, Young's modulus E, sintering stress sigmas, shear and

  12. Preparation and sintering of Zr(C,N,O) phases

    International Nuclear Information System (INIS)

    Tamborenea, S.; Mazzoni, A.D.; Aglietti, E.F.

    2003-01-01

    The Zr(C,O,N) compounds form a great mono-phase zone belonging to the pseudoternary ZrO-ZrN-ZrC system.Theses phases have cubic crystalline structure with a o parameter depending on the C, O 2 and N 2 content.These phases have many potential applications in the manufacture of ceramic pieces utilizable as electronic conductors.The Zr (C,O,N) phases can be obtained from ZrO 2 by carbonitriding reactions: that is carbothermal reduction and simultaneous nitriding.In this work a series of experiences of carbonitriding of zirconia under different conditions (temperatures between 1400 and 1600degC, times of 120 min, carbon content between 20 and 40%) in order to obtain suitable powders to be sintered.The XRD analysis shows the Zr(C,O,N) as the main products and β -ZrON as the only secondary product in proportions depending on the obtaining conditions.The variables employed were the C content and the reaction temperature.The Zr(C,O,N) content varies between 40 and 90% and tends to increase with the temperature and the carbon content whereas the β -ZrON phase varies between the 40 and 10 % decreasing its proportion with temperature and the carbon content.The oxidation resistance of these phases was studied by DTA-TG tests in air.Results show complete oxidation reaction at ∼500degC in air.The sintering of these materials was made on disks obtained by pressing of powders of Zr(C,N,O) contents higher than 90%.Sintering was performed in nitrogen atmosphere and temperatures between 1450 and 1620degC.Disks were characterized by pycnometry and Hg volumeter.The densities obtained were between 5 and 6,6g/cm 3 with a tendency to increase with the Zr(C,N,O) phase content, the temperature and the sintering time.Sintered disks were characterized by dilatometry in N 2

  13. Effect of temperature on porosity of iron ore sinter with biochar derived from EFB

    Science.gov (United States)

    Purwanto, H.; Rozhan, A. N.; Zakiyuddin, A.; Mohamad, A. S.

    2018-01-01

    In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.

  14. Effect of heating mode on sinterability of Fe-Ni steels.

    Science.gov (United States)

    Annamalai, A Raja; Kumar, Rajiv; Upadhyaya, Anish; Agrawal, Dinesh

    2011-01-01

    The present study examines the effect of heating mode on the densification, microstructure, and mechanical properties of iron-nickel steel with graphite and phosphorus addition. The compacts were sintered in conventional (radiatively-heated) and microwave (2.45 GHz, multimode) furnaces at 1120 degrees C for 1 hour in forming gas (dissociated ammonia atmosphere, 95% N2-5% H2). The experimental results show that microwave sintered alloy has better properties compared with the conventionally sintered counterparts. Detailed analyses by using optical microscopy and scanning electron microscopy (SEM) reveal that microwave sintered sample has finer microstructure. SEM examination of the fractured surfaces indicate that a mixed mode fracture containing both, ductile and brittle types, is present in microwave sintered alloy, in contrast with the brittle fracture only in conventional sintered counterpart.

  15. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    Energy Technology Data Exchange (ETDEWEB)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-05-30

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws.

  16. Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same

    Energy Technology Data Exchange (ETDEWEB)

    Lavens, T.R.; Corrigan, F.R.; Shott, R.L.; Bovenkerk, H.P.

    1987-06-16

    A method is described for making re-sintered polycrystalline cubic boron nitride (CBN) which comprises: (a) placing sintered substantially catalyst-free boron-rich polycrystalline cubic boron nitride particles in a high pressure/high temperature apparatus, the particles being substantially free of sintering inhibiting impurities; (b) subjecting the boron-rich cubic boron nitride particles to a pressure and a temperature adequate to re-sinter the particles, the temperature being below the CBN reconversion temperature; (c) maintaining the temperature and pressure for a time sufficient to re-sinter the boron-rich cubic boron nitride particles in the apparatus, and (d) recovering the re-sintered polycrystalline cubic boron nitride from the apparatus.

  17. The Study of Microwave and Electric Hybrid Sintering Process of AZO Target

    Directory of Open Access Journals (Sweden)

    Ling-yun Han

    2016-01-01

    Full Text Available We simulated the microwave sintering of ZnO by 3D modelling. A large-size Al-doped ZnO (AZO green ceramic compact was prepared by slurry casting. Through studying the microwave and electric hybrid sintering of the green compact, a relative density of up to 98.1% could be obtained by starting microwave heating at 1200°C and increasing the power 20 min later to 4 kW for an AZO ceramic target measuring 120 × 240 × 12 mm. The resistivity of AZO targets sintered with microwave assistance was investigated. The energy consumption of sintering could be greatly reduced by this heating method. Until now, few studies have been reported on the microwave and electric hybrid sintering of large-size AZO ceramic targets. This research can aid in developing sintering technology for large-size high-quality oxide ceramic targets.

  18. One step sintering of homogenized bauxite raw material and kinetic study

    Science.gov (United States)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  19. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    Science.gov (United States)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  20. Addition of niobia in alumina and its effects at its sintered microstructure

    International Nuclear Information System (INIS)

    Gomes, L.B.; Lima, M.M.O.; Pereira, A.S.; Bergmann, C.P.

    2016-01-01

    In this work, niobia was used as sintering additive of alumina in concentrations of 0.15, 0.5, 2 and 4 wt%. Homogenized powders was uniaxially pressed (200MPa) forming ceramic pellets with 10 mm diameter. The green bodies were sintered at 1400, 1500 and 1600°C for 60 minutes using a heating rate of 2,5°C.min -1 . After sintering, the specimens were polished using diamond paste with different particle sizes. The specimen's microstructure was analyzed by Scanning Electron Microscopy (SEM) and crystalline phases were determined by X-ray Diffraction (XRD). Results indicate that when niobia and alumina react they form AlNbO4 by liquid phase sintering. This phase is located among alumina grain. It was also verified that niobia addition promotes grain growth, acting as sintering agent, and this effect grows as niobia content and sintering temperature increase. (author)

  1. Microstructural stability of spark-plasma-sintered Wf/W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation

    Directory of Open Access Journals (Sweden)

    M. Avello de Lama

    2017-12-01

    In this paper, the durability and chemical stability of Wf/W composite specimens under cyclic heat-flux loads up to 20 MW/m² (surface temperature: 1260 °C was investigated using hydrogen neutral beam. The bulk material was fabricated by means of spark-plasma-sintering (SPS method using fine tungsten powder and a stack of tungsten wire meshes as reinforcement where the surface of the wire was coated with zirconia thin film to produce an engineered interface. The impact of plasma beam irradiation on microstructure was examined for two kinds of specimens produced at different sintering temperatures, 1400 °C and 1700 °C. Results of microscopic (SEM and chemical (EDX analysis are presented comparing the microstructure and element distribution maps obtained before and after heat flux loading. Effects of different sintering temperatures on damage behaviour are discussed. The present composite materials are shown to be applicable as plasma-facing material for high-heat-flux components.

  2. A new method to fabricate Fe-TiC composite using conventional sintering and steam hammer

    OpenAIRE

    LAHOUEL, Ali; BOUDEBANE, Saïd; IOST, Alain; MONTAGNE, Alex

    2017-01-01

    International audience; The aim of this research paper is to fabricate a Fe-TiC composite by a novel and simple manufacturing method. The latter is based on two cumulative processes; a conventional sintering (transient liquid phase sintering) and a hot forging with steam hammer respectively. The blinder phase of the studied simples is varied from carbon steel to high alloy steel using alloying additive powders. The obtained outcomes showed that after the sintering process, the relative densit...

  3. The sintering of dioxide pellets (UO2) in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.; Riella, H.G.

    1993-06-01

    In this study the process of sintering of U O 2 pellets in oxidative atmosphere has been evaluated. Temperature and time of study have been varied in order to determine the influence of these parameters on final density and microstructure of the material. The NIKUSI process, allows to work in a temperature range below to those that have been employed in the conventional process, lowering in up to 50% the sintering cycle because it is possible to decrease the time of sintering. (author)

  4. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  5. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens.

    Science.gov (United States)

    Marinis, Aristotelis; Aquilino, Steven A; Lund, Peter S; Gratton, David G; Stanford, Clark M; Diaz-Arnold, Ana M; Qian, Fang

    2013-03-01

    The fabrication of zirconium dioxide (ZrO2) dental prosthetic substructures requires an extended sintering process (8 to 10 hours) in a conventional oven. Microwave sintering is a shorter process (2 hours) than conventional sintering. The purpose of this study was to compare the fracture toughness of 3 mol % Y2O3-stabilized ZrO2 sintered in a conventional or microwave oven. Partially sintered ZrO2 specimens from 3 manufacturers, KaVo, Lava 3M, and Crystal HS were milled (KaVo Everest engine) and randomly divided into 2 groups: conventional sintering and microwave sintering (n=16 per group). The specimens were sintered according to the manufacturers' recommendations and stored in artificial saliva for 10 days. Fracture toughness was determined by using a 4-point bend test, and load to fracture was recorded. Mean fracture toughness for each material was calculated. A 2-way ANOVA followed by the Tukey HDS post hoc test was used to assess the significance of sintering and material effects on fracture toughness, including an interaction between the 2 factors (α=.05). The 2-way ANOVA suggested a significant main effect for ZrO2 manufacturer (P.05). The main effect of the sintering process (Conventional [5.30 MPa·m(1/2) ±1.00] or Microwave [5.36 MPa·m(1/2) ±0.92]) was not significant (P=.76), and there was no interaction between sintering and ZrO2 manufacturer (P=.91). Based on the results of this study, no statistically significant difference was observed in the fracture toughness of ZrO2 sintered in microwave or conventional ovens. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    Directory of Open Access Journals (Sweden)

    Barba, Antonio

    2014-04-01

    Full Text Available Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering.En este trabajo se han estudiado los cambios microestructurales que se producen durante el tratamiento térmico de las ferritas de cobre-níquel-cinc y se ha analizado el proceso de precipitación de los dos tipos de cristales que aparecen durante el proceso de sinterización. Se ha encontrado que este proceso depende de la densidad relativa en seco de las muestras compactadas y de las siguientes variables de la etapa de sinterización: temperatura y tiempo de sinterización y velocidad de enfriamiento. La caracterización de los cristales precipitados se ha realizado por microscopía electrónica de barrido (MEB, microanálisis por dispersión de energía de rayos X (EDX, difracción de rayos X (DRX, y espectroscopía de fotoelectrones de rayos X (XPS. Estas técnicas han permitido determinar la naturaleza de estos cristales, que en este caso corresponden a los óxidos de cinc y de cobre. Se han propuesto dos reacciones químicas que permiten explicar el proceso de precipitación y la posterior re-disolución de estos cristales precipitados durante la

  7. Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering

    International Nuclear Information System (INIS)

    Dash, K.; Ray, B.C.; Chaira, D.

    2012-01-01

    Graphical abstract: The evolution of microstructure, density and hardness of Cu–Al 2 O 3 metal matrix composites with different techniques of sintering has been demonstrated here. The effect of sintering atmosphere has also been discussed. Synthesis of microcomposites was carried out by reinforcing 5, 10 and 15 vol.% of alumina powder particle (average size ∼5.71 μm) in copper matrix via conventional sintering using H 2 and N 2 atmospheres. Nanocomposites of 1, 5, 7 vol.% alumina (average size 2 O 3 metal matrix microcomposites and nanocomposites via conventional route and spark plasma sintering routes are studied and compared. Maximum Vickers hardness of 60 and 80 are obtained when the Cu–15 vol.% Al 2 O 3 is conventionally sintered in N 2 and H 2 atmosphere respectively. However, maximum hardness value of 125 is achieved for the Cu–5 vol.% Al 2 O 3 nanocomposite prepared by spark plasma sintering. It has been observed that Cu–Al 2 O 3 metal matrix composite (MMC) shows poor mechanical properties when it is conventionally sintered in N 2 atmosphere than H 2 atmosphere. Highlights: ► Better matrix–reinforcement interfacial bonding and compatibility in hydrogen atmosphere than nitrogen atmosphere. ► An improvement in density and hardness under hydrogen atmosphere than in nitrogen atmosphere is manifested. ► Spark plasma sintering method results in higher density and hardness values than conventional sintering. - Abstract: The evolution of microstructure, density and hardness of Cu–Al 2 O 3 metal matrix composites with different techniques of sintering have been demonstrated here. The effect of sintering atmosphere on the interfacial compatibility of matrix and reinforcement has also been discussed. Synthesis of microcomposites was carried out by reinforcing 5, 10 and 15 vol.% of alumina powder particles (average size ∼5.71 μm) in copper matrix via conventional sintering using N 2, H 2 and Ar atmospheres. Nanocomposites of 1, 5, 7 vol

  8. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    OpenAIRE

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2015-01-01

    This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2) by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase...

  9. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2017-12-01

    Full Text Available This study discusses the potentials of spark plasma sintering (SPS integrated with high temperature process that can enable sintering of SiC/Cf composites without any sintering aids. The random distribution of carbon fibers was obtained through mixing composite components in ethanol by using a shaker mill for 10 min. The corresponding sintering process was carried out at 1900 and 2200 °C with 50 MPa pressure applied at maximum temperature. The results showed that 89 ± 0.9 and 97 ± 0.8% of the theoretical density can be obtained for sintering temperatures of 1900 and 2200 °C, respectively. The densification curves were plotted to monitor sintering behavior with punch displacement changes. The appropriate bonding between SiC particles and carbon fibers was detected using FE-SEM for sample which was sintered at 2200 °C. The clear maximum in hardness (2992 ± 33 Vickers, bending strength (427 ± 26 MPa and fracture toughness (4.2 ± 0.3 MPa m1/2 were identified for sample sintered at 2200 °C. XRD investigations supposed that SiC and carbon were the only crystalline phases in both sintered samples.

  10. Independence and Product Systems

    OpenAIRE

    Skeide, Michael

    2003-01-01

    Starting from elementary considerations about independence and Markov processes in classical probability we arrive at the new concept of conditional monotone independence (or operator-valued monotone independence). With the help of product systems of Hilbert modules we show that monotone conditional independence arises naturally in dilation theory.

  11. Use of a Routh-Russel deformation map to achieve film formation of a latex with a high glass transition temperature.

    Science.gov (United States)

    Gonzalez, Edurne; Paulis, María; Barandiaran, María Jesús; Keddie, Joseph L

    2013-02-12

    In the film formation of latex, particle deformation can occur by processes of wet sintering, dry sintering, or capillary action. When latex films dry nonuniformly and when particles deform and coalesce while the film is still wet, a detrimental skin layer will develop at the film surface. In their process model, Routh and Russel proposed that the operative particle deformation mechanism can be determined by the values of control parameters on a deformation map. Here, the film formation processes of three methyl methacrylate/butyl acrylate copolymer latexes with high glass transition temperatures (T(g)), ranging from 45 to 64 °C, have been studied when heated by infrared radiation. Adjusting the infrared (IR) power density enables the film temperature, polymer viscosity, and evaporation rate during latex film formation to be controlled precisely. Different polymer particle deformation mechanisms have been demonstrated for the same latex under a variety of film formation process conditions. When the temperature is too high, a skin layer develops. On the other hand, when the temperature is too low, particles deform by dry sintering, and the process requires extended time periods. The deduced mechanisms can be interpreted and explained by the Routh-Russel deformation maps. Film formation of hard (high T(g)) coatings is achieved without using coalescing aids that emit volatile organic compounds (VOCs), which is a significant technical achievement.

  12. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  13. Demens Film

    DEFF Research Database (Denmark)

    Jensen, Anders Møller

    2012-01-01

    Vi vil skabe film til mennesker med demens – ikke film om demens sygdommen eller beretninger om livet og hverdagen med en kronisk lidelse. Filmene skal medvirke til at frembringe en behagelig stemning omkring og hos mennesker med demens, så hverdagen bliver så tryg som mulig. Filmene skal samtidig...... var at afgrænse og prioritere projektet, samt komme med anbefalinger omkring hvad der er vigtigt, i forbindelse med produktion af film målrettet mennesker med demens. Resultat af ekspertgruppen sammenfattes i denne rapport. Projektet gennemføres som et samarbejde mellem Retrospect Film...

  14. Permeability model of sintered porous media: analysis and experiments

    Science.gov (United States)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  15. The production of sinterable uranium dioxide from ammonium diuranate

    International Nuclear Information System (INIS)

    Fane, A.G.; Le Page, A.H.

    1975-02-01

    The development of a 0.13 m diameter pulsed fluidised bed reactor for the continuous production of sinterable uranium dioxide from ammonium diuranate is described. Calcination-reduction at 670 to 680 0 C produced powders with surface areas of 4 to 6 m 2 g -1 giving pellet densities in excess of 10.6 g cm -3 . Sinterability was relatively insensitive to changes in operating conditions, provided the availability of hydrogen was adequate, for gas flow rates in the range 0.95 to 1.4 l S -1 , pulse frequencies of 0.5 and 0.75 Hz and mean residence times of the solids from 0.6 to 1.4 hours. Sinterability was shown to be improved either by use of higher input concentrations, or by use of a secondary flow of hydrogen (about 5 per cent of input) fed into the powder collection system and flowing countercurrent to the UO 2 product. The maximum throughput of 17 kg UO 2 h -1 (0.6 hours mean residence time) required only 120 per cent of the stoichiometric requirement at an input concentration of 50 vol.per cent with secondary hydrogen flow. Results are given for studies of the kinetics of reduction of calcined ammonia diuranate in hydrogen and the residence time distribution of solids in a pulsed fluidised bed. Estimates based on these data suggested that the overall conversion of ammonium diuranate to uranium dioxide in the continuously operated pulsed fluidised bed reactor was in excess of 99 per cent. Continuous stabilisation of the UO 2 product was demonstrated at 12 kg h -1 or UO 2 , in a 0.15 m diameter glass stabiliser, using 10 vol.per cent air in nitrogen and a temperature of about 50 0 C. (author)

  16. Reaction sintering of a zirconia-containing barium feldspar ceramic

    International Nuclear Information System (INIS)

    Nordmann, A.; Cheng, Y-B.; Muddle, B. C.

    1996-01-01

    Zircon (ZrSiO 4 ) is a natural mineral resource known to react with certain oxides to produce a dispersion of zirconia particles within ceramic or glass-ceramic matrices. Barium aluminosilicates, particularly the celsian polymorphs of BaO- Al 2 O 3 2SiO 2 display oxidation resistance and refractory characteristics commensurate with the properties required of high temperature materials. Such properties, coupled with the high melting point of ZrO 2 (2680 deg C), suggest that barium aluminosilicates and zirconia are an ideal combination from which to fabricate high temperature materials. A recent study has indicated that a barium aluminosilicate containing up to 40mol% ZrO 2 can be prepared via a sol-gel process. However, the desire to utilise a natural resource in the form of zircon in the present work has led to the choice of reaction sintering as an alternative processing route. The current work was undertaken to investigate the possibility of forming a zirconia-containing barium feldspar composite material using the reaction sintering of zircon and assuming the following stoichiometric reaction: 2ZrSiO 4 + BaCO 3 + Al 2 O 3 → 2ZrO 2 + BaO-Al 2 O 3 -2SiO 2 + CO 2 ↑. The reaction sintering of zircon with alumina and barium carbonate produces a composite material comprising distributed ZrO 2 in a continous barium feldspar matrix. Yttria added during processing allows a significant fraction of the ZrO 2 to be retained as tetragonal phase to room temperature and thus the potential for a measure of transformation toughening

  17. Spark plasma sintering of commercial and development titanium alloy powders

    OpenAIRE

    Weston, N.S.; Derguti, F.; Tudball, A.; Jackson, M.

    2015-01-01

    Emerging lower cost titanium metal powder produced via an electrolytic method has been fully consolidated using spark plasma sintering (SPS) generating microstructures comparable to those observed in Ti–6Al–4V PM product. This is the first time powder from an alternative titanium extraction method has been processed via SPS and it is benchmarked with commercial alloys (CP–Ti, Ti–6Al–4V, and Ti–5Al–5V–5Mo–3Cr). The effect of powder feedstock size, morphology, and alloy chemistry on the consoli...

  18. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Butt, Drryl P.; Jaques, Brian

    2009-01-01

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (U x , Dy 1-x )N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  19. Piso intertravado produzido com rejeito de sinter feed

    OpenAIRE

    Costa, A. V.; Gumieri, A. G.; Brandão, P. R. G.

    2014-01-01

    O presente trabalho apresenta a viabilidade técnica do aproveitamento e da conveniência ecológica do emprego do rejeito de sinter feed,oriundo de atividades mineradoras de ferro, como agregado na produção do concreto, inicialmente para a fabricação de elementos pré-fabrica dos destinados à pavimentação, com possibilidade de expansão para outras finalidades. Inicialmente, foram realizados os seguintes ensaios de caracterização dos materiais: caracterização física, química e ambiental do rejeit...

  20. Highly defective oxides as sinter resistant thermal barrier coating

    Science.gov (United States)

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  1. Method for preparing a sinterable uranium dioxide powder

    International Nuclear Information System (INIS)

    Thornton, T.A.; Holaday, V.D. Jr.

    1985-01-01

    This invention provides an improved method for preparing a sinterable uranium dioxide powder for the preparation of nuclear fuel, using microwave radiation in a microwave induction furnace. The starting compound may be uranyl nitrate hexahydrate, ammonium diuranate or ammonium uranyl carbonate. The starting compound is heated in a microwave induction furnace for a period of time sufficient for compound decomposition. The decomposed compound is heated in a microwave induction furnace in a reducing atmosphere for a period of time sufficient to reduce the decomposed compound to uranium dioxide powder

  2. Progress in Dual (Piezoelectric-Magnetostrictive Phase Magnetoelectric Sintered Composites

    Directory of Open Access Journals (Sweden)

    Rashed Adnan Islam

    2012-01-01

    Full Text Available The primary aims of this review article are (a to develop the fundamental understanding of ME behavior in perovskite piezoelectric-spinel magnetostrictive composite systems, (b to identify the role of composition, microstructural variables, phase transformations, composite geometry, and postsintering heat treatment on ME coefficient, and (c to synthesize, characterize, and utilize the high ME coefficient composite. The desired range of ME coefficient in the sintered composite is 0.5–1 V/cm⋅Oe. The studies showed that the soft piezoelectric phase quantified by smaller elastic modulus, large grain size of piezoelectric phase (~1 μm, and layered structures yields higher magnitude of ME coefficient. It is also found that postsintering thermal treatment such as annealing and aging alters the magnitude of magnetization providing an increase in the magnitude of ME coefficient. A trilayer composite was synthesized using pressure-assisted sintering with soft phase [0.9 PZT–0.1 PZN] having grain size larger than 1 μm and soft ferromagnetic phase of composition Ni0.8Cu0.2Zn0.2Fe2O4 [NCZF]. The composite showed a high ME coefficient of 412 and 494 mV/cm⋅Oe after sintering and annealing, respectively. Optimized ferrite to PZT thickness ratio was found to be 5.33, providing ME coefficient of 525 mV/cm⋅Oe. The ME coefficient exhibited orientation dependence with respect to applied magnetic field. Multilayering the PZT layer increased the magnitude of ME coefficient to 782 mV/cm⋅Oe. Piezoelectric grain texturing and nanoparticulate assembly techniques were incorporated with the layered geometry. It was found that with moderate texturing, d33 and ME coefficient reached up to 325 pC/N and 878 mV/cm⋅Oe, respectively. Nanoparticulate core shell assembly shows the promise for achieving large ME coefficient in the sintered composites. A systematic relationship between composition, microstructure, geometry, and properties is

  3. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  4. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  5. Characterization and Sintering of Armstrong Process Titanium Powder

    Science.gov (United States)

    Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien

    2017-04-01

    Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.

  6. Compaction of lithium-silicate ceramics using spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Lukáč, František; Mušálek, Radek; Brožek, Vlastimil; Stehlíková, K.; Chráska, Tomáš

    2017-01-01

    Roč. 61, č. 1 (2017), s. 40-44 ISSN 0862-5468 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Li2Si2O5 * Li2SiO3 * Spark plasma sintering (SPS) * Quantitative Rietveld refinement * X-ray diffraction (XRD) Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.439, year: 2016 http://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=789

  7. Marangoni and Gibbs elasticity of flowing soap films

    Science.gov (United States)

    Kim, Ildoo; Sane, Aakash; Mandre, Shreyas

    2017-11-01

    A flowing soap film has two elasticities. Marangoni elasticity dynamically stabilizes the film from sudden disturbance, and Gibbs elasticity is an equilibrium property that influences the film's persistence over time. In our experimental investigation, we find that Marangoni elasticity is 22 mN/m independent of the film thickness. On the other hand, Gibbs elasticity depends both on the film thickness and the soap concentration. Interestingly, the soap film made of dilute soap solution has the greater Gibbs elasticity, which is not consistent to the existing theory. Such discrepancy is originated from the flowing nature of our soap films, in which surfactants are continuously replenished.

  8. Mechanism of constitution liquid film migration

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Hongjun [Univ. of Alabama, Birmingham, AL (United States)

    1999-06-01

    Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.

  9. Into films

    DEFF Research Database (Denmark)

    Tan, Ed S.; Doicaru, Miruna M.; Hakemulder, Frank

    2017-01-01

    Most film viewers know the experience of being deeply absorbed in the story of a popular film. It seems that at such moments they lose awareness of watching a movie. And yet it is highly unlikely that they completely ignore the fact that they watch a narrative and technological construction...

  10. Intermediate Phase Study on YBCO Films Coated by Precursor Solutions With F/Ba Atomic Ratio of 2

    DEFF Research Database (Denmark)

    Wu, W.; Feng, F.; Zhao, Y.

    2016-01-01

    infrared studies. The intermediate phase evolution prior to the end of the sintering stage is also investigated by X-ray diffractometry and scanning electron microscopy. Liquid-like structures are observed, which are proposed to be responsible for the film densification in the early stage of YBCO formation...

  11. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  12. Characterization of Sintered and Sintered/Plasma-Nitrided Fe-1.5% Mo Alloy by SEM, X-Ray Diffraction and Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Alves Neto José de Pinho

    2002-01-01

    Full Text Available Electrochemical experiments together with SEM and X-Ray techniques were carried out in order to evaluate the corrosion resistance, to analyze the surface condition and to characterize the nitride layer of the sintered and sintered/plasma-nitrided Fe-1.5% Mo alloy in Mg(NO32 0.5mol.L-1 solution (pH 7.0. The sintered/plasma-nitrided samples presented a higher corrosion resistance, indicating that the surface treatment improved the electrochemical properties of the sintered material. In addition, the nitride layer formed at 500 °C showed better corrosion resistance that the layers formed at higher temperatures. This difference can be ascribed to the nitrogen content in the nitride layer, which at 500°C is higher due to the formation of a phase rich in nitrogen (epsilon phase while at higher temperatures a phase poor in nitrogen (gamma' phase is formed.

  13. The Effect of the O/U Ratio on the Sintered Density of the UO2 Pellet

    International Nuclear Information System (INIS)

    Na, S. H.; Kang, K. H.; Kim, Y. H.; Park, C. J.; Song, K. C.; Yoo, M. J.

    2008-01-01

    The sintered density of the UO 2 pellet is an important factor to assure a stable nuclear reactor control. There are some methods to control the sintered density of the UO 2 pellet, that is, a sintering temperature and its time, a green density, an addition of pore-former or U 3 O 8 , etc. In general, it is well known that the sintered density of UO 2 pellet increases as the sintering temperature and its time and the green density increases. However the addition of a pore-former or U 3 O 8 decreases the sintered density of the UO 2 pellet, due to the leave various sizes of pore in the UO 2 matrix during sintering. In this work, the effect of the O/U ratio on the sintered density of the UO 2 pellet are investigated

  14. Magnetic viscosity and coercivity mechanisms in sintered and melt spun NdFeB

    International Nuclear Information System (INIS)

    Street, R.; Bingham, D.; Day, R.K.; Dunlop, J.B.

    1988-01-01

    Magnetic viscosity parameters kT/q(=Sv) of sintered and melt spun NdFeB vary with internal field. During initial magnetization of thermally demagnetized specimens signifiant viscosity occurs with melt spun NdFeB but is negligible with sintered NdFeB. Differences in mechanisms of magnetization account for this behaviour

  15. Selective light sintering of Aerosol-Jet printed silver nanoparticle inks on polymer substrates

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, K., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de; Hoerber, J., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de; Franke, J., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de [Institute for Factory Automation and Production Systems, University of Erlangen-Nuremberg (Germany)

    2014-05-15

    Printing silver nanoparticle inks to generate conductive structures for electronics on polymer substrates has gained increasing relevance in recent years. In this context, the Aerosol-Jet Technology is well suited to print silver ink on 3D-Molded Interconnect Devices (MID). The deposited ink requires thermal post-treatment to obtain sufficient electrical conductivity and adhesion. However, commonly used oven sintering cannot be applied for many thermoplastic substrates due to low melting temperatures. In this study a new sintering technology, selective light sintering, is presented, based on the focused, continuous light beam of a xenon lamp. Sintering experiments were conducted with Aerosol-Jet printed structures on various polycarbonate (PC) substrates. Especially on neat, light transparent PC, silver tracks were evenly sintered with marginal impact to the substrate. Electrical conductivities significantly exceed the values obtained with conventional oven sintering. Adhesive strength is sufficient for conductive tracks. Experiments with non-transparent PC substrates led to substrate damage due to increased light absorption. Therefore a concept for a variation of light sintering was developed, using optical filters. First experiments showed significant reduction of substrate damage and good sintering qualities. The highly promising results of the conducted experiments provide a base for further investigations to increase adhesion and qualifying the technology for MID applications and a broad spectrum of thermoplastic substrates.

  16. Microwave Sintering of Ceramic Materials for Industrial Application Final Report CRADA No. TC-1116-95

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tandon, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callis, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The goal of this project was to develop the commercial capability in the US to sinter alumina oxide ceramic parts for the semiconductor manufacturing equipment industry. We planned to use the millimeter microwave (30 GHz) sintering system first developed by IAP in Russia.

  17. Sintering behaviour and mechanical properties of Cr3C2–NiCr ...

    Indian Academy of Sciences (India)

    the densification were remarkably promoted by the liquid phase formation at 1350. ◦. C. The densities as high as 97% of the theoretical density have been achieved by liquid phase sintering through the solution–reprecipitation and grain. Figure 1. XRD pattern of powder mixture and cermet samples sintered at four.

  18. Microwave flash sintering of inkjet-printed silver tracks on polymer substrates

    NARCIS (Netherlands)

    Perelaer, J.; Klokkenburg, M.; Hendriks, C.E.; Schubert, U.S.

    2009-01-01

    Microwave flash sintering of inkjet printed colloidal silver dispersions on thin polymer substrates was studied as a function of the antenna area and initial resistance. The presence of conductive antennae promotes nanoparticle sintering in predried ink lines. For dried nanoparticle inks connected

  19. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  20. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif...

  1. Analysis and modeling of sintering of Sr-hexaferrite produced by PIM technology

    Directory of Open Access Journals (Sweden)

    Zlatkov B.S.

    2011-01-01

    Full Text Available The powder injection moulding (PIM technology is lately becoming more and more significant due to complex design possibilities and good repeatability. This technology requires optimization of all steps starting with material and binder, injection, debinding and sintering parameters. Sintering is one of the key links in this technology. The powder injection moulding process is specific as during feedstock injection powder particles mixed into the binder do not come into mechanical contact. Shrinkage during sintering of PIM samples is high. In this work we have analyzed and modeled the sintering process of isotropic PIM samples of Sr-hexaferrite. The Master Sintering Curve (MSC principle has been applied to analyze sintering of two types of PIM Sr-hexaferrite samples with completely removed binder and only the extraction step of the debinding procedure (thermal debinding proceeding simultaneously with sintering. Influence of the heating rate on resulting sample microstructures has also been analyzed. Influence of the sintering time and temperature was analyzed using three different phenomenological equations.

  2. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Boric acid has been added in 0⋅1–0⋅6% range for studying the densification characteristics of solid state sintered barium hexaferrite. Sintering studies have been carried out at three different temperatures. Physical properties like density and porosity have been studied for all compositions. The phase identification.

  3. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  4. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Sintering studies have been carried out at three different temperatures. Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification ...

  5. Pressure-assisted low-temperature sintering for paper-based writing electronics.

    Science.gov (United States)

    Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D

    2013-09-06

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10⁻⁷ Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10⁻⁷ to 1.57 × 10⁻⁷ Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics.

  6. Pressure-assisted low-temperature sintering for paper-based writing electronics

    International Nuclear Information System (INIS)

    Xu, L Y; Yang, G Y; Jing, H Y; Han, Y D; Wei, J

    2013-01-01

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10 −7 Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10 −7 to 1.57 × 10 −7 Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics. (paper)

  7. Finite element modeling of camber evolution during sintering of bi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Ni, De Wei; Bulatova, Regina

    2014-01-01

    The need for understanding the mechanisms and optimization of shape distortions during sintering of bilayers is necessary while producing structures with functionally graded architectures. A finite element model based on the continuum theory of sintering was developed to understand the camber dev...

  8. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  9. DC resistivity of alumina and zirconia sintered with TiC

    Indian Academy of Sciences (India)

    Pure alumina and zirconia powders were sintered separately with increasing amount of TiC up to ∼ 65 vol.%, as a conducting second phase with an aim to prepare conducting structural ceramics which can be precisely machined by EDM technique. TiC did not help in sintering the parent phase but it decreased the d.c. ...

  10. Effects of talc and clay addition on pressureless sintering of porous ...

    Indian Academy of Sciences (India)

    Porous Si3N4 ceramics were successfully synthesized using cheaper talc and clay as sintering additives by pressureless sintering technology and the microstructure and mechanical properties of the ceramics were also investigated. The results indicated that the ceramics consisted of elongated -Si3N4 and small Si2N2O ...

  11. Mechanistic evaluation of the effect of sintering on Compritol 888 ATO matrices

    DEFF Research Database (Denmark)

    Rao, Monica; Ranpise, Anuradha; Borate, Sameer

    2009-01-01

    transform infrared spectroscopy results did not show any drug-wax interaction due to sintering. Differential scanning calorimetric and powder X-ray diffraction studies ruled out the occurrence of solid solution and polymorphic changes of the drug. Drug release from the wax tablets with or without sintering...... was best described by the Higuchi equation....

  12. Effect of recycling blast furnace flue dust as pellets on the sintering performance

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2010-01-01

    Full Text Available The Egyptian Iron and Steel Company generates a great amount of blast furnace flue dust. The recovery of metals and carbon from this flue dust becomes a very important demand due to the increase of the price of coke breeze and the decrease of the primary source of metals. At the same time, it make the environment more safe by decreasing pollution. Introducing these dust fines in the sintering process proves to be very harmful for different operating parameters. Thus, this study aims at investigating the production of pellets resulting from these fines, using molasses as organic binder and its application in sintering of iron ore. The sintering experiments were performed using flue dust as pellets as a substitute of coke breeze. The results revealed that, sintering properties such as inter strength increases with using the flue dust pellets, while productivity of both the sinter machine and sinter machine at blast furnace yard decreases. Also the vertical velocity of the sinter machine and the weight loss during the reduction of produced the sinter by hydrogen decrease.

  13. Thermoelectric properties of SiC/C composites from wood charcoal by pulse current sintering

    NARCIS (Netherlands)

    Fujisawa, M; Hata, T; Bronsveld, P; Castro, [No Value; Tanaka, F; Kikuchi, H; Imamura, Y

    2005-01-01

    SiC/C composites were investigated by sintering a mix of wood charcoal and SiO2 powder (32-45 mu m) at 1400, 1600 and 1800 degrees C under N-2 atmosphere with a pulse current sintering method. Thermoelectric properties of SiC/C composites were investigated by measuring the Seebeck coefficient and

  14. Sintering behaviour and mechanical properties of Cr3C2–NiCr ...

    Indian Academy of Sciences (India)

    The highest relative density obtained was 97% when sintered at 1350 °C. As the relative density increased, elastic modulus, transverse rupture strength, fracture toughness and hardness of the samples reached to a maximum of 314 GPa, 810 MPa, 10.4 MPa.m1/2 and 11.3 GPa, respectively. However, sintering at 1400 °C ...

  15. Effect of surface roughness on grain growth and sintering of alumina

    Indian Academy of Sciences (India)

    Administrator

    quality of the final product. Ceramic material shrinks linearly around 20% during sintering. In general, sintered ceramic product having accurate ..... Marshall D B, Evans A G, Yakub B T K, Tien J W and Kino G. S 1983 Proc. R. Soc. London A385 461. Mendelson M I 1969 J. Am. Ceram. Soc. 52 443. Narayan P and Hancock ...

  16. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle ra...

  17. Selective light sintering of Aerosol-Jet printed silver nanoparticle inks on polymer substrates

    International Nuclear Information System (INIS)

    Schuetz, K.; Hoerber, J.; Franke, J.

    2014-01-01

    Printing silver nanoparticle inks to generate conductive structures for electronics on polymer substrates has gained increasing relevance in recent years. In this context, the Aerosol-Jet Technology is well suited to print silver ink on 3D-Molded Interconnect Devices (MID). The deposited ink requires thermal post-treatment to obtain sufficient electrical conductivity and adhesion. However, commonly used oven sintering cannot be applied for many thermoplastic substrates due to low melting temperatures. In this study a new sintering technology, selective light sintering, is presented, based on the focused, continuous light beam of a xenon lamp. Sintering experiments were conducted with Aerosol-Jet printed structures on various polycarbonate (PC) substrates. Especially on neat, light transparent PC, silver tracks were evenly sintered with marginal impact to the substrate. Electrical conductivities significantly exceed the values obtained with conventional oven sintering. Adhesive strength is sufficient for conductive tracks. Experiments with non-transparent PC substrates led to substrate damage due to increased light absorption. Therefore a concept for a variation of light sintering was developed, using optical filters. First experiments showed significant reduction of substrate damage and good sintering qualities. The highly promising results of the conducted experiments provide a base for further investigations to increase adhesion and qualifying the technology for MID applications and a broad spectrum of thermoplastic substrates

  18. Porous copper template from partially spark plasma-sintered Cu–Zn ...

    Indian Academy of Sciences (India)

    X-ray diffraction, optical microscopy and SEM–EDS are carried out to examine microstructural evolution and subsequent changes in hardness with sintering temperatures and different Zn percentages. Dezincification and pore formation are conducted on sintered 0.5 mm thick 12 mm diameter disc samples. The size ...

  19. Porous copper template from partially spark plasma-sintered Cu–Zn ...

    Indian Academy of Sciences (India)

    Administrator

    Dezincification and pore formation are conducted on sintered 0∙5 mm thick 12 mm diameter disc samples. The size, distribution and nature of pores in porous templates of Cu are then investigated using optical microscopy and SEM–EDS analysis. Keywords. Metal; corrosion; porous structure; sintering; powder metallurgy. 1.

  20. An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C ...

    Indian Academy of Sciences (India)

    CTM-100, supplier: Blue Star, India) using zinc stearate as a die wall lubricant. The green (as pressed) compacts were sintered in microwave furnaces. Microwave sintering of the green compacts were carried out using a multimode ca- vity 2·45 GHz, 6 kW commercial microwave furnace (Cober. Electronics, Ct, USA).

  1. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification characteristics. Keywords. Barium ferrite; sintering aid; densification. 1.

  2. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    the use of sintering aids. In the meantime, Prochazka. (1975) reported that with addition of boron and carbon to submicron size β-SiC, sintering of silicon carbide to near theoretical density was achieved. He proposed that during the firing of pure submicron powders of covalently bonded solids, densification is prevented by a ...

  3. DC resistivity of alumina and zirconia sintered with TiC

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Pure alumina and zirconia powders were sintered separately with increasing amount of TiC up to. ~ 65 vol.%, as a conducting second phase with an aim to prepare conducting structural ceramics which can be precisely machined by EDM technique. TiC did not help in sintering the parent phase but it decreased the ...

  4. Improved Modeling Approaches for Constrained Sintering of Bi-Layered Porous Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Esposito, Vincenzo

    2012-01-01

    Shape instabilities during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been analyzed. An analytical and a numerical model based on the continuum theory of sintering has been implemented to describe the evolution of bow and densificat...

  5. Effects of talc and clay addition on pressureless sintering of porous ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Porous Si3N4 ceramics were successfully synthesized using cheaper talc and clay as sintering addi- tives by pressureless sintering technology and the microstructure and mechanical properties of the ceramics were also investigated. The results indicated that the ceramics consisted of elongated β-Si3N4 and ...

  6. Multiple recycling of NdFeB-type sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakotnik, M. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: miha.zakotnik@gmail.com; Harris, I.R.; Williams, A.J. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-05

    Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density and in the magnetic properties. The chemical analysis indicated that this was due to the progressive oxidation of the Nd-rich material and to some Nd loss by evaporation. The procedure was then repeated but with the addition (blending) of a fine powder of neodymium hydride after the first cycle. It was found that the addition of 1 at.% of neodymium at each stage was sufficient to maintain the density and the magnetic properties of the recycled magnets up to and including the 4th cycle. Inductively coupled plasma (ICP) and metallographic analysis indicated that the neodymium hydride additions compensated for the neodymium loss due to evaporation and to oxidation so that the proportion of Nd-rich material remained approximately constant. The additional amount of Nd{sub 2}O{sub 3} in the blended recycled magnets appeared to inhibit grain growth on the 3rd and 4th cycles when compared to that of the unblended magnets. The next challenge is to see if the process can be scaled-up to an industrial scale.

  7. Evaluation of aluminosilicate glass sintering during differential scanning calorimetry

    International Nuclear Information System (INIS)

    Souza, Juliana Pereira de

    2015-01-01

    In this work a difference in the baseline in differential scanning calorimetry analyses, observed in a work where aluminosilicate glasses microspheres containing Ho were studied for application in selective internal radiotherapy as hepatocellular carcinoma treatment, was studied. The glasses with nominal composition 53,7 SiO 2 .10,5 Al 2 O 3 . 35,8 MgO in %mol were produced from traditional melting. The first obtained were milled and sieved in the range of 45 a 63 μm. The material was used to produce glass microspheres by the gravitational fall method. The glass powder and the microspheres were characterized by X ray fluorescence spectrometry, laser diffraction, X ray diffraction, differential scanning calorimetry, differential thermal analysis, thermogravimetry, mass spectrometry, and scanning electron microscopy. After the thermal analyses, pellets were formed in the crucibles and were analyzed by scanning electron microscopy, X ray diffraction, and He pycnometry. The difference in the baseline was associated to the viscous flow sintering process and happens because of the decrease in the detected heat flow due to the sample shrinkage. Other events as concurrent crystallization with the sintering process were also studied. (author)

  8. Magnetic losses versus sintering treatment in Mn-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Beatrice, Cinzia, E-mail: c.beatrice@inrim.it [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy); Tsakaloudi, Vasiliki [Laboratory of Inorganic Materials, CERTH, Thermi-Thessaloniki (Greece); Dobák, Samuel [Institute of Physics, P.J. Šafárik University, Košice (Slovakia); Zaspalis, Vassilios [Department of Chemical Engineering Aristotle University of Thessaloniki, Thessaloniki (Greece); Fiorillo, Fausto [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy)

    2017-05-01

    Mn-Zn ferrites prepared by different sintering schedules at 1325 °C, 1340 °C, and 1360 °C, have been characterized from the structural, electrical, and magnetic viewpoint. Magnetic losses and complex permeability have been, in particular, measured and analyzed from quasi-static excitation up to 1 GHz. It is observed that lower sintering temperatures and shorter treatment times lead to more homogeneous grain structure and better soft magnetic response at all frequencies. It is shown, however, that, once the contribution by eddy currents is singled out, the energy losses tend to coincide beyond a few MHz in the differently treated samples. The interpretative approach consists in separating the contributions by the domain wall displacements and the magnetization rotations to complex permeability and losses as a function of frequency. This can be accomplished in a relatively simple way in the low induction region described by the Rayleigh law, where these quantities can be quantitatively related and the linear Landau-Lifshitz-Gilbert equation applies, account being taken of the distribution in amplitude and orientation of the local anisotropy fields. - Highlights: • DC-1 GHz magnetic losses and complex permeability of Mn-Zn ferrites are analyzed. • Contributions by domain wall displacements and rotations are separately obtained. • Energy losses caused by eddy currents and spin damping are separately identified. • Microstructure is shown to chiefly affect the domain wall processes. • Rotational permeability and loss are predicted through Landau-Lifshitz equation.

  9. Room temperature sintering of printer silver nanoparticle conductive ink

    Science.gov (United States)

    Corsino, Dianne C.; Balela, Mary Donnabelle L.

    2017-11-01

    Future electronics devices are not only smaller and thinner, but are also flexible, bendable and even wearable. This evolution in technology requires direct printing of patterns onto any substrate using conductive inks made of a dispersion of metallic nanoparticles. In this study, Cl- ions was used to induce spontaneous sintering of silver nanoparticles (Ag NPs). Ag NPs with an average diameter of 56 nm were synthesized by polyol method using silver nitrate (AgNO3) and ethylene glycol (EG) as precursor and solvent, respectively. Poly(vinyl pyrrolidone) was used as the capping agent. Water-based inks were formulated containing different Ag NP loading (10–25 wt %). Using 50 mM NaCl aqueous solution as the dispersing medium, an ink with 15 wt % Ag exhibited a sheet resistance of about 2.85 Ω/sq. This very low sheet resistance was attributed to sintering of Ag NPs, which was accompanied by an increase in average diameter of nanoparticles from 56 to 569 nm.

  10. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  11. Are Independent Fiscal Institutions Really Independent?

    Directory of Open Access Journals (Sweden)

    Slawomir Franek

    2015-08-01

    Full Text Available In the last decade the number of independent fiscal institutions (known also as fiscal councils has tripled. They play an important oversight role over fiscal policy-making in democratic societies, especially as they seek to restore public finance stability in the wake of the recent financial crisis. Although common functions of such institutions include a role in analysis of fiscal policy, forecasting, monitoring compliance with fiscal rules or costing of spending proposals, their roles, resources and structures vary considerably across countries. The aim of the article is to determine the degree of independence of such institutions based on the analysis of the independence index of independent fiscal institutions. The analysis of this index values may be useful to determine the relations between the degree of independence of fiscal councils and fiscal performance of particular countries. The data used to calculate the index values will be derived from European Commission and IMF, which collect sets of information about characteristics of activity of fiscal councils.

  12. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamos National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO2. The critical field studies are complete for UO2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to

  13. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  14. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  15. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.

    Science.gov (United States)

    Wang, Xiaopeng; Chen, Yuyong; Xu, LiJuan; Xiao, Shulong; Kong, Fantao; Woo, Kee Do

    2011-11-01

    A β-type Ti-based composite, Ti-35Nb-2.5Sn-15-hydroxyapatite (HA), has been synthesized by mechanical alloying and powder metallurgy. The effects of milling time on microstructure, mechanical properties and biocompatibility of the sintered composites were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), microhardness tests, compression tests and cells culture. The results revealed when milling time increased, the homogeneity and relative density of the sintered composite increased, but the finished sintering temperature decreased. The compression Young's modulus of sintered composite from 12 h milled powders was about 22 GPa and its compression strength was 877 MPa. The cell culture results indicated cell viability for these sintered composites was very good. These results revealed the Ti-35Nb-2.5Sn-15HA composite could be useful for medical implants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Two steps sintering alumina doped with niobia; Sinterizacao em duas etapas de alumina aditivada com niobia

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P., E-mail: lucas.gomes@ufrgs.br [Universidade Federal do Rio Grande do Sul (LACER/UFRGS) Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2014-07-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  17. Sintering analysis of 8YSZ electrolyte correlated to the electrical performance

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiane Abrantes da; Furtado, Jose Geraldo de Melo [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Miranda, Paulo Emilio Valadao de, E-mail: pmiranda@labh2.coppe.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departmento de Engenharia Metalurgica e de Materiais

    2010-07-01

    The understanding of the mechanisms associated with densification and sintering of yttria stabilized zirconia (YSZ), a main solid oxide fuel cell electrolyte, enables the improvement of its microstructure. The present work that has the objective to study the sintering and densification processes of polycrystalline nanostructured 8% mol YSZ (8YSZ), correlating the microstructural development with the electrical performance of the material. The sintering behaviors of nanocrystalline 8YSZ powders obtained by two different chemical synthesis techniques (glycine-nitrate combustion process and Pechini method) were studied based on sintering dilatometer method. X-ray diffraction and scanning electron microscopy were used in the microstructural characterization. Full-densified 8YSZ (98.8%) were obtained and it was found that the samples obtained by the Pechini's method showed a higher densification degree in the final stage of sintering and resulted in ceramics with higher final relative density and better electrical behavior. (author)

  18. Sintering process of Eu doped luminescent glass prepared from porous glass

    International Nuclear Information System (INIS)

    Akai, T; Murakami, M; Yamashita, M; Okajima, T; Umesaki, N

    2011-01-01

    Eu doped high silica glass prepared by sintering porous glass exhibits blue luminescence with high quantum efficiency. In this work, we studied effects of sintering temperature on valance state of europium ion. To investigate a change of valance state of Eu, X-ray absorption near edge structure (XANES) spectroscopy measurements were carried out. Intensity of blue emission at around 430nm drastically increases when the sintering temperature is above 1000 deg. C. From XANES spectra, it is found that almost all the Eu exist as Eu 3+ in a samples sintered below 900 deg. C, while more than 70% of Eu exist as Eu 2+ in the sample sintered at 1050 deg. C and 1100 deg. C. The drastic change of oxidation state of europium ion between 900 and 1050 deg. C is discussed in relation to the structural change probed by infrared (IR) spectroscopy.

  19. [The effect of sintering temperature on the physical and mechanical properties of dental zirconia toughened ceramic].

    Science.gov (United States)

    Zhang, Bin; Chen, Ji-hua; Sun, Lian-jun

    2003-07-01

    To investigate the effects of sintering temperature on the physical and mechanical properties of dental zirconia toughened ceramic (ZTC). 3 mol% yttria-stabilized zirconia compacts were prepared by dry press method and then sintered at 1,490 degrees C, 1,530 degrees C, 1,570 degrees C and 1,610 degrees C respectively. The physical properties and bending strength were then measured. The result of the study indicated along with the rise of sintering temperature density and shrinkage of ZTC increased, but the pore structure decreased. It also showed the peak of bending strength was in 1,570 degrees C. In terms of sintering temperature and bending strength among the selected temperature, the best sintering temperature of 3 mol% yttria-stabilized zirconia should be about 1,570 degrees C.

  20. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, E N; Krotova, L I; Minaev, N V; Minaeva, S A; Mironov, A V; Popov, V K [Institute on Laser and Information Technologies of the Russian Academy of Sciencies, Troitsk, Moscow (Russian Federation); Bagratashvili, V N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 – 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering. (interaction of laser radiation with matter. laser plasma)

  1. Improvement of mechanical properties by additive assisted laser sintering of PEEK

    International Nuclear Information System (INIS)

    Kroh, M.; Bonten, C.; Eyerer, P.

    2014-01-01

    The additive assisted laser sintering was recently developed at IKT: A carbon black (CB) additive is used to adjust the polymer's laser absorption behavior with the aim to improve the interconnection of sintered powder layers. In this paper a parameter study, Polyetheretherketone (PEEK) samples were prepared with different contents of carbon black and were laser sintered with varying thermal treatment. The samples were mechanically tested and investigated by optical light and transmission electron microscopy. An influence on the morphology at the border areas of particles and intersections of laser sintered layers was found. Depending on the viscosity of the raw material and CB content, different shapes of lamellae were observed. These (trans-) crystalline or polymorph structures, respectively, influence the thermal and mechanical behavior of the virgin PEEK. Moreover, the thermal treatment during the sintering process caused an improvement of mechanical properties like tensile strength and elongation at break

  2. Properties of Carbide Ceramics from Gelcasting and Pressure-less Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Dongliang; Zhang Jingxian, E-mail: dljiang@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050 (China)

    2011-10-29

    In this paper, the properties of carbide ceramics (SiC, and B{sub 4}C) from aqueous gelcasting and pressure-less sintering were studied systematically. The optimized sintering process was achieved via a series of experiments with effective control of grain size and microstructure for developing high performance ceramics. SiC samples can be pressure-less sintered to 98% TD with B{sub 4}C and C as the sintering additives. The samples showed excellent mechanical properties, homogeneous microstructure and improved reliability. B{sub 4}C samples can also be pressure-less sintered with the relative density around 96%. Results showed that gelcasting is a reliable process for the manufacturing of carbide ceramics with satisfied properties.

  3. The Influence of Sintering Temperature toward Density and Strength of Plastic-Ruber Composite

    Directory of Open Access Journals (Sweden)

    Heru Sukanto

    2012-11-01

    Full Text Available The research investigates the effect of sintering temperature on density and mechanical properties of HDPE-rubbercomposite which was produced by pressured sintering methodThe materials that were used are HDPE plastic waste of oilbottle and unused tire. These materials were powdered via mechanical grinding manually. The powder size of -20 mesh wasselected as a raw material for specimen. Producing the specimens involved powder technology. Pressured sintering processwas commited for 5 minutes under pressure load of 1 MPa. The sintering temperature was variated along 110 to 140oC byincreasing 10oC incrementally. Specimen testing involved density, bending strength and izot impact strength. All of testingwas conducted on ASTM standard testing.The result reveals that increasing sintering temperature will grow up the density,bending strength and impact strength of specimen up to 10%, 12% and 72% respectively. The extreme increasing ofspecimen properties occurs at the temperature range of 120 to 130oC..

  4. The role of the binder phase in the WC-Co sintering

    Directory of Open Access Journals (Sweden)

    Silva A.G.P. da

    2001-01-01

    Full Text Available The sintering of hardmetal in the solid state is studied. The influence of the WC particle size on the sintering kinetics, the role of the binder phase in the densification process and how sintering depends on the heating conditions are investigated. It is observed that alloys with different WC particle size show quite different structural evolution during sintering, although the densification mechanisms are the same. This is explained by the formation of agglomerates of WC and Co. Hardmetal alloys can sinter very rapidly when high heating rates are used, since rapid heating accelerates the binder spreading and the formation of WC-Co agglomerates. The binder phase (Co spreads on the WC particles initially as a thin layer. Subsequently, more Co spreads on this layer and WC-Co agglomerates are formed.

  5. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Reza; Safavi, Seyed Mohsen; Karimzadeh, Fathallah [Isfahan University, Isfahan (Iran, Islamic Republic of)

    2016-05-15

    Bulk Al/4wt-%Al{sub 2}O{sub 3} nanocomposites were prepared by consolidating nanocomposite powders using pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing techniques. Microstructural observations revealed that the microwave-assisted hot press sintering at different sintering temperatures of 400.deg.C and 500.deg.C resulted in more densification and smaller grain size for Al/Al{sub 2}O{sub 3} nanocomposite as compared with the conventional hot pressing. Moreover, the application of pressure in microwave sintering process led to more densification and grain growth. Mechanical properties resulting from microhardness and nanoindentation tests were also compared between three-method processed samples. It was found that the microwave-assisted hot-pressed sample exhibited higher hardness and elastic modulus in comparison with microwave-sintered and conventional hot-pressed samples. The improvement in the mechanical properties can be ascribed to lower porosity of microwave-assisted hot-pressed sample.

  6. Interaction domains in high performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, Tom; Khlopkov, Kirill; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, IMW, Dresden (Germany); Walther, Arno [Insitut Neel, CNRS-UJF, Grenoble (France); CEA Leti - MINATEC, Grenoble (France); Dempsey, Nora; Givord, Dominique [Insitut Neel, CNRS-UJF, Grenoble (France)

    2009-07-01

    Thick sputtered films (5-300 micron) of NdFeB have excellent hard magnetic properties which make them attractive for applications in micro-electro-mechanical systems (MEMS). A two step process consisting of triode sputtering and high temperature annealing produced films with energy densities approaching those of sintered NdFeB magnets. Magnetic force microscopy (MFM) using hard magnetic tips showed that the films deposited without substrate heating and at 300 C exhibited magnetic domains typical of low anisotropy materials. These films were amorphous in the as-deposited state. The film deposited at 500 C was crystalline and displaid hard magnetic properties. This was reflected in the magnetic microstructure which showed interaction domains typical of highly textured and high magnetic anisotropy materials with a grain size below or equal to the critical single-domain particle limit. With increasing substrate temperature, the domain patterns of the annealed films became coarser, indicating higher degrees of texture.

  7. Effect of crystallinity on the magnetoresistance in perovskite manganese oxide thin films

    International Nuclear Information System (INIS)

    Shreekala, R.; Rajeswari, M.; Ghosh, K.; Goyal, A.; Gu, J.Y.; Kwon, C.; Trajanovic, Z.; Boettcher, T.; Greene, R.L.; Ramesh, R.; Venkatesan, T.

    1997-01-01

    We report our study of the effect of crystallinity on the magnetoresistance in epitaxial and polycrystalline La 2/3 Ba 1/3 MnO 3 and La 2/3 Ca 1/3 MnO 3 thin films. Magnetoresistance in epitaxial films exhibits field dependence and temperature dependence similar to bulk single crystals and sintered bulk ceramics. The polycrystalline films exhibit a markedly different behavior. The magnetoresistance in this case shows either a monotonic increase or saturation with decreasing temperature in contrast to that of epitaxial films in which the magnetoresistance peaks close to the ferromagnetic transition temperature. The field dependence in the polycrystalline films is also remarkably different. At low fields, we observe a sharp drop in resistance followed by a more gradual decrease at higher fields. Our data suggest that in addition to the intrinsic magnetoresistance, grain-boundary transport contributes significantly to the magnetoresistance in polycrystalline films. copyright 1997 American Institute of Physics

  8. RBS and NRA of cobalt oxide thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Andrade, E.; Huerta, L.; Pineda, J.C.; Zavala, E.P.; Barrera, E.; Rocha, M. F.; Vargas, C.A.

    2001-01-01

    This work presents a study of cobalt oxide thin films produced by the sol-gel process on aluminum and glass substrates. These films have been analyzed using two ion beam analysis (IBA) techniques: a) a standard RBS 4 He 2 MeV and b) nuclear reaction analysis (NRA) using a 1 MeV deuterium beam. The 12 C(d,p 0 ) 13 C nuclear reaction provides information that carbon is incorporated into the film structure, which could be associated to the sinterization film process. Other film measurements such as optical properties, XRD, and SEM were performed in order to complement the IBA analysis. The results show that cobalt oxide film coatings prepared by this technique have good optical properties as solar absorbers and potential uses in solar energy applications

  9. Effect of TiO2 additive on the sintering of nuclear fuel (U,Pu)O2. Contribution of surface diffusion to plutonium distribution

    International Nuclear Information System (INIS)

    Bremier, Stephane

    1997-01-01

    This thesis has as objective the study of the effect of TiO 2 additive on the development of MOX fuel microstructure during sintering in reducing atmosphere. To understand better the mechanisms governing the evolution of microstructure, the behavior of UO 2 in the presence of TiO 2 has been established and the influence of the PuO 2 distribution in the initial state of the material was taken into account. The chapter II is devoted to the bibliographic study of the transport mechanisms responsible of the sintering in the ceramics UO 2 and UO 2 -PuO 2 . The results concerning the influence of TiO 2 upon density, grain size and homogenization are discussed. The following chapter describes the characteristics of initial powder, the procedures and installations of heat treatment, as well as the techniques of characterization used. Then the sintering features of UO 2 alone or in the presence of TiO 2 are presented. It appears that in the last case the surface diffusion becomes sufficient fast so that the distribution of the additive occurs naturally during a slow temperature increase. The fifth chapter treats the effect of UO 2 -PuO 2 preparation upon the initial microstructure of the materials and the role played by the PuO 2 grains in sintering. The potentiality of surface diffusion as a means of PuO 2 spreading in the UO 2 is evaluated and correlated with the reduced capacity of sintering the UO 2 ceramics containing PuO 2 . The last chapter deals with the influence of TiO 2 on the development of microstructure in UO 2 -PuO 2 ceramics. While at temperatures below 1500 deg.C the TiO 2 additive affects the surface diffusion and so the plutonium distribution, at values T≥ 1600 deg.C the additive gives rise to a dissolution-reprecipitation process taking place in a intergranular liquid phase appeared between UO 2 , PuO 2 and titanium oxide. Thus the objective is the optimizing the temperature conditions, the oxygen potential as sintering gas and the additive

  10. Sintering and microstructure evolution of columnar nickel-based superalloy sheets prepared by EB-PVD

    International Nuclear Information System (INIS)

    Chen, S.; Qu, S.J.; Liang, J.; Han, J.C.

    2010-01-01

    Research highlights: → EB-PVD technology is commonly used to deposit thermal barrier coatings (TBCs) and columnar structure is commonly seen in EB-PVD condensates. The unique columnar structure can provide outstanding resistance against thermal shock and mechanical strains for TBCs. However, a number of researchers have found that the columnar structure can affect the mechanical properties of EB-PVD alloy thin sheet significantly. As yet, works on how to reduce this kind of effects are seldom done. In the present article, we tried to reveal the sintering effects on microstructure evolution and mechanical properties of columnar Ni-based superalloy sheet. The results suggests that after sintering, the columnar structure degrades. Degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering. - Abstract: A ∼0.15 mm-thick columnar nickel-based superalloy sheet was obtained by electron beam physical vapor deposition (EB-PVD). The as-deposited alloy sheet was sintered at different conditions. The microstructure of the specimens before and after sintering was characterized by using scanning electron microscopy. An X'Pert texture facility was used to determine the crystallographic orientation of the as-deposited alloy sheet. The phase transformation was investigated by X-ray diffraction. Tensile tests were conducted at room temperature on as-deposited and sintered specimens. The results show that the as-deposited sheet is composed of typical columnar structures. After sintering, however, the columnar structure degrades. The degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering.

  11. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  12. Central Bank independence

    Directory of Open Access Journals (Sweden)

    Vasile DEDU

    2012-08-01

    Full Text Available In this paper we present the key aspects regarding central bank’s independence. Most economists consider that the factor which positively influences the efficiency of monetary policy measures is the high independence of the central bank. We determined that the National Bank of Romania (NBR has a high degree of independence. NBR has both goal and instrument independence. We also consider that the hike of NBR’s independence played an important role in the significant disinflation process, as headline inflation dropped inside the targeted band of 3% ± 1 percentage point recently.

  13. Applying "Spark Plasma Sintering" Technology to Enhance the Resistance to Contact Fatigue of Sintered Steel Based on Astaloy CRL

    Science.gov (United States)

    Rodziňák, D.; Čerňan, J.; Puchý, V.

    2017-12-01

    The article deals with the effect of porosity on the contact fatigue of sintered material type Astaloy CrL with 0.3 and 0.4% C. Sets of samples were used with densities beginning from the value of 7000 kg.m-3 to the value of almost 7859 kg.m-3 which represents almost zero porosity (compact material). It has been found out that the increase of compacting pressure applied simultaneously with temperature results in the reduction of porosity from the value of 9.10% to 0.0005% and increase in hardness from 145 to 193 HV10, depending on the carbon content. Logically there is also an increase in the fatigue life by the contact fatigue tests for the value of 50×106 cycles from the value of 900 MPa to 1150 MPa for samples with 0.3% of C and from 900 MPa to 1300 MPa for samples with 0.4% C. These investigations were also carried out in the past, but to achieve the reduction of porosity, different technonologies were used at each level such as double pressing, hot pressing, saturation, hot forging, etc. In this case, the single technology of "spark plasma sintering" making use of compacting at high temperatures is capable to continuously reduce porosity to zero.

  14. Demens Film

    DEFF Research Database (Denmark)

    Ridder, Hanne Mette Ochsner

    2012-01-01

    I forbindelse med opstarten af Demens Film projektet har der været nedsat en ekspertgruppe, som er kommet med en række anbefalinger omkring film til mennesker med demens. Anbefalingerne skal bruges i de næste faser af projektet. Deltagerne i ekspertgruppen var sammensat af en bred gruppe...... fagpersoner inde for forskellige fagområder. Læs mere om gruppens anbefalinger og sammensætning af ekspertgruppen i den kort rapport som er offentlig tilgængelig. Læs Ekspertgruppe anbefalingerne til Demens Film projekt....

  15. Low-sintering condenser materials on the basis of barium titanate; Niedrig-sinternde Kondensatorwerkstoffe auf der Basis von Bariumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Naghib zadeh, Hamid

    2010-07-01

    The main objective of this work was the development of new barium titanate capacitor materials, which fully densified at a sintering temperature of 900 C and exhibit a high and almost temperature-independent dielectric constant as well as low dielectric loss. In order to decrease the sintering temperature of barium titanate from ca. 1300 C to 900 C, addition of various types of sintering aids have been tested. Li-containing sintering additives show the best result concerning densification and dielectric properties. By addition of 2 to 3 wt% (SrO-B{sub 2}O{sub 3}-Li{sub 2}O) -, (ZnO-B{sub 2}O{sub 3}-Li{sub 2}O) - or (LiF-SrCO{sub 3})-additive combinations to commercially available barium titanate powder 95 % of the theoretical density was achieved after sintering at 900 C. The sintered capacitor materials with the above mentioned additive combinations possess high dielectric constants from 1800 to 3590. It is well known that for a high temperature stability of dielectric constant the formation of core-shell structure in a fine-grained microstructure is required (average grain size < 1 {mu}m). For BaTiO{sub 3} samples contained 2 wt% LiF-SrCO{sub 3} is temperature coefficient of capacitance (TCC) relatively low. The TCC in temperature range between 0 C and 80 C is less than {+-} 15%. The formation of the core-shell structure in a fine-grained microstructure of this sample, which is required to have low TCC, was detected by TEM / EDX analyses. The significantly higher TCC for the BaTiO{sub 3} samples contained 3 wt% SrO-B{sub 2}O{sub 3}-Li{sub 2}O is due to the strong grain growth during sintering. To reduce the TCC in this sample Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} was added. By addition of 1.5 wt% Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} the temperature stability of the dielectric constant could be significantly improved as a result of the grain growth inhibition and the core-shell formation during sintering. For BaTiO{sub 3} samples contained ZnO-B{sub 2}O{sub 3}-Li

  16. 實徵研究/獨立紀錄片工作者之隱性知識研究─以製片流程為例/張哲偉;阮明淑 │ The Study of Tacit Knowledge in Independent Documentary Film Production / Cher-Wei Chang ; Ming-Shu Yuan

    Directory of Open Access Journals (Sweden)

    張哲偉、阮明淑 Cher-Wei Chang ; Ming-Shu Yuan

    2008-10-01

    證IF─THEN─BECAUSE的隱性知識編 碼方式,發現其結構性的呈現有助於隱性知識的辨識。Taiwan’s production of documentary is well-developed. But, the related research is not as sufficient. The insufficient research of the tacit knowledge in documentary film-producing due to the reason that tacit knowledge in the field is complicated, and besides the un-categorized layers and difficult to communicate orally as well. In addition to related techniques, knowledge and creativeness, it is believed that there are unrevealed the tacit knowledge behind. This study aims to probe the types and characteristics of the tacit knowledge in independent documentary film-producing, so as the methods of acquiring the tacit knowledge of the profession. Via literature analysis, five major categories: “material”, “viewpoint”, "production”, “post-production”, and “miscellaneous” were utilized to develop a semi-structured in-depth interview with six selected professional and semi-professional independent documentary film-producers. Researchers conduct the coding style of “IF-THEN-BECAUSE” model to structure types and characteristics of the tacit knowledge of the interview contents accordingly. Findings of the study are: 1The four major steps in the routine cycle of documentary film-producing process; 2Through explicating, internalizing, and presenting of the knowledge film-producing, film-producers enable to reveal his personal tacit knowledge; 3By utilizing five categories from the literature analysis and the application of the coding “IF-THEN-BECAUSE” style, 17 tacit knowledge types were summarized; 4With the summarized outcome of 17 tacit knowledge types, concerned parties will be able to deal with different situation in film-producing and develop individual tacit knowledge accordingly; 5The acquisition methods of the tacit knowledge including learning by interacting with related parties, learning by practicing, learning by contacting with films, books, and the professional

  17. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  18. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    International Nuclear Information System (INIS)

    Sein, Htet; Ahmed, Waqar; Jackson, Mark; Woodwards, Robert; Polini, Riccardo

    2004-01-01

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 μm were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools

  19. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings.

    Science.gov (United States)

    Latka, Leszek; Goryachev, Sergey B; Kozerski, Stefan; Pawlowski, Lech

    2010-07-01

    Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating's microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings' growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m²,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating's growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension plasma spraying. The formation

  20. Nano or micro grained alumina powder? A choose before sintering

    Directory of Open Access Journals (Sweden)

    Román, R.

    2008-12-01

    Full Text Available Two different wet routes have been used to synthesize alumina powders in order to compare the characteristics of the final product and its behaviour during sintering. The Homogeneous Precipitation (HP gives rise to nanoparticulated powders of about 2 nm. However, such particles quickly aggregate and grow with calcination temperature. The Polymerized Organic-Inorganic Synthesis (POI produces homogeneous particle size powders (about 1 micron after resin charring. The characterization of the powder surface is the basis of an efficient process control. Particle characterization parameters (morphology, crystallinity and degree of aggregation are characterized by different techniques, such as DTA/TG, IR, XRD, SEM and TEM, and compared between these synthesis methods. The results show the evolution from the amorphous to the corundum alumina phase for both processes and their ability for sintering, as well discuses the beneficial of nanoparticles obtained by HP during sintering.

    Se han utilizado dos diferentes síntesis por vía húmeda para la preparación de polvos de alúmina con el fin de comparar las características de los productos finales y su comportamiento durante la sinterización. La Precipitación Homogénea (HP da lugar a polvos nanoparticulados de unos 2nm. Se observa sin embargo, como estas partículas se agregan rápidamente y crecen con la temperatura de calcinación. La Síntesis por Polimerización Orgánica-Inorgánica (POI produce polvos de tamaño de partícula homogéneo (en torno a 1 micra después de la descomposión de la resina. La caracterización de la superficie de los polvos es la base de un control eficiente del proceso. Los parámetros de caracterización de las partículas obtenidas (morfología, cristalinidad y grado de agregación se obtienen por diferentes técnicas como DTA/TG, IR, XRD, SEM y TEM, y se comparan entre estos métodos de síntesis. Los resultados muestran la evolución desde el amorfo a la fase