WorldWideScience

Sample records for sintered fe-cr compacts

  1. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  2. Characteristics Of The Porous Body Sintered By Nano-Sized Fe-Cr-Al Alloy Powder

    Directory of Open Access Journals (Sweden)

    Lee Su-In

    2015-06-01

    Full Text Available Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE in ethanol. Its process consisted of the several steps; 1 coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2 heat treatment of debinding to remove the polyurethane sponge and 3 sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.

  3. Changes of Fe matrix lattice constant during liquid phase sintering of Fe-Cu-C compacts by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Mazli Mustapha; Abdul Kadir Masrom; Mohammad, M.; Meh, B.; Zawati Harun

    2002-01-01

    The dissolution of graphite and copper during sintering of PM steels prepared from iron, copper and graphite powder mixes were studied using X-Ray Diffraction method. This paper present the investigation carried out to study the changes of iron's lattice constant during liquid phase sintering of the compacts. The electrical conductivity measurement method was also used for determining the extent of carbon and copper dissolution and its influence on the formation of sintered compacts. In the experiment, the Fe-Cu-C powders were compacted into a pellets using hand press machine and were then sintered in a 5% H 2 + 95% N 2 gas atmosphere at different sintering temperature in the range of 400 degree C and 1200 degree C. The effect of sintering parameters on the mechanical properties of the sintered compacts was studied to find a correlation between mechanical behaviour, microstructure, and the resistivity in order to develop nondestructive testing method. It was observed that measurement of Fe matrix lattice constant and electrical conductivity of sintered compacts could be a viable method in studying all stages of sintering process. (Author)

  4. Sintering behavior, microstructure and properties of TiC-FeCr hard alloy

    Institute of Scientific and Technical Information of China (English)

    Farid Akhtar; Shiju Guo; Jawid Askari; Jianjun Tian

    2007-01-01

    TiC based cermets were produced with FeCr,as a binder,by conventional P/M (powder metallurgy) to near >97% of the theoretical density.Sintering temperature significantly affects the mechanical properties of the composite.The sintering temperature of>1360 ℃ caused severe chemical reaction between TiC particles and the binder phase.In the TiC-FeCr cermets,the mechanical properties did not vary linearly with the carbide content.Optimum mechanical properties were found in the composite containing 57wt%TiC reinforcement,when sintered at 1360 ℃ for 1 h.Use of carbon as an additive enhanced the mechanical properties of the composites.Cermets containing carbon as an additive with 49wt% TiC exhibited attractive mechanical properties.The microstructure of the developed composite contained less or no debonding,representing good wettability of the binder with TiC particles.Homogeneous distribution of the TiC particles ensured the presence of isotropic mechanical properties and homogeneous distribution of stresses in the composite.Preliminary experiments for evaluation of the oxidation resistance of FeCr bonded TiC cermets indicate that they are more resistant than WC-Co hardmetals.

  5. A preparation method and effects of Al–Cr coating on NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Lin, Min; Xia, Qingping

    2012-01-01

    A 50 μm Al–Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 °C. The morphology and composition of the Al–Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al–Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al–Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al–Cr coating moves positively from −0.67 to −0.48 V, which is in accordance with Nyquist and Bode plots. The Al–Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: ► The Al–Cr coating can be prepared by dipping in solution, shaking dry and heating. ► The coating morphology shows to be an intense overlapping structure. ► The barrier effect combines with passivation and cathodic protection. ► The anticorrosion abilities improve while magnetic properties change little. ► Compared with other surface treatments, this method is convenient and low cost.

  6. A preparation method and effects of Al-Cr coating on NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Lin, Min, E-mail: linm@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, 519 Road Zhuangshi, District Zhenghai, Ningbo 315201, People' s Republic of China (China); Xia, Qingping [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-11-15

    A 50 {mu}m Al-Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 Degree-Sign C. The morphology and composition of the Al-Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al-Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al-Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al-Cr coating moves positively from -0.67 to -0.48 V, which is in accordance with Nyquist and Bode plots. The Al-Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: Black-Right-Pointing-Pointer The Al-Cr coating can be prepared by dipping in solution, shaking dry and heating. Black-Right-Pointing-Pointer The coating morphology shows to be an intense overlapping structure. Black-Right-Pointing-Pointer The barrier effect combines with passivation and cathodic protection. Black-Right-Pointing-Pointer The anticorrosion abilities improve while magnetic properties change little. Black-Right-Pointing-Pointer Compared with other surface treatments, this method is convenient and low cost.

  7. Structural and magnetic properties of γ-Fe{sub 2}O{sub 3} nanostructured compacts processed by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, P., E-mail: psdrdo@gmail.com [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Sivaprahasam, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Chennai 600113 (India); Kamat, S.V. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2013-11-15

    Gram quantities of γ-Fe{sub 2}O{sub 3} nanopowders having mean particle size of 20±4 nm were synthesized using a hydrothermal method and then consolidated into dense nanostructured compacts by spark plasma sintering (SPS) at relatively low temperatures: 300–350 °C. The cubic spinel structure of the as-synthesized γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) did not get altered by the SPS process; nevertheless, a moderate increase in their grain sizes was evident in the SPSed compacts (80–125 nm). The physical properties such as density (ρ), coercivity (H{sub c}) and magnetization (M{sub s}) values of γ-Fe{sub 2}O{sub 3} NPs were affected by the SPS temperature. Significantly, higher values of ρ (4.45 g/cm{sup 3}), H{sub c} (274 Oe) and M{sub s} (67.2 emu/g) were achieved for the bulk compact SPSed at 350 °C. This work highlights the merits of sintering γ-Fe{sub 2}O{sub 3} NPs by SPS –as a new method of compaction with useful magnetic properties; which cannot be realized with the conventional sintering techniques. Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles with mean size of 20±4 nm were hydrothermally synthesized. • Spark plasma sintering of γ-Fe{sub 2}O{sub 3} was performed below phase transition temperature. • Sintered compacts were investigated with respect to SPS temperature: 300–350 °C. • Cubic spinel structure of γ-Fe{sub 2}O{sub 3} nanoparticles was retained in sintered compacts. • Maximum values: ρ (4.45 g/cm{sup 3}), H{sub c} (274 Oe) and M{sub s} (67.2 emu/g) obtained at 350 °C.

  8. Effects of forming temperature and sintering rate to the final properties of FeCuAl powder compacts formed through uniaxial die compaction process

    Science.gov (United States)

    Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

  9. The observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence

    Science.gov (United States)

    Silalahi, Marzuki; Purwanto, Setyo; Mujamilah; Dimyati, Arbi

    2018-03-01

    About the observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence. This paper reported about the observation of the resistivity change in the ultrasonic pre-treated Fe-Cr ODS sinter alloy under the influence of magnetic field at the Center for Science and Technology of Advanced Material, Nuclear Energy Agency of Indonesia. Fe-Cr ODS alloy were sinthesized by vacuum sintering of Fe- and Cr-powder dispersed Y2O3. However, before sintering the powder mixture was subjected to the irradiation process by ultrasonic for 50 hours at 20 kHz and then isostatic pressed up to 50.91 MPa to form a coin of 10 mm in diameter. LCR meassurement revealed the decreasing of resistivity about 3 times by increasing of applied magnetic field from 0 to 70 mT. In addition, VSM meassurement was performed on both as powder material and as sintered sample. The results showed increasing the magnetization with increasing magnetic field and the curve exhibits almost exact symmetry S-form with small hysterese indicating fast changing magnetization and demagnetization capability without energy loss. This opens strong speculations about the existence of magnetoresistant property of the material which is important for many application in field of sensors or electro magnetic valves.

  10. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  11. Fabrication of High-performance Sm-Fe-N isotropic bulk magnets by a combination of High-pressure compaction and current sintering

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Nakayama, Hiroyuki; Ozaki, Kimihiro; Kobayashi, Keizo [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2012-04-15

    TbCu{sub 7}-type Sm-Fe-N coarse powders in the flake form were consolidated without a bonding medium using a low-thermal-load process of current sintering combined with high-pressure compression. When compacted at 1.2 GPa, the relative density of the powder was increased by 80% with close stacking of the flake particles. Although the subsequent current heating was only briefly performed at a low temperature of 400 Degree-Sign C to avoid decomposition, the compact was consolidated into a rigid bulk in which the particles were bonded at the atomic level. Finally, by using cyclic compaction, this process produced bulk magnets with a density of 92% that exhibited the highest maximum energy product (BH)max of 16.2 MGOe, which surpasses that of conventional isotropic Sm-Fe-N bond magnets. - Highlights: Black-Right-Pointing-Pointer We conduct a consolidation of Sm{sub 1}Fe{sub 7}N bulk magnets without thermal decomposition. Black-Right-Pointing-Pointer Rapid current sintering with high-pressure compaction is used as a low-thermal-load process. Black-Right-Pointing-Pointer In this process, sintering occurs at a temperature of 400 Degree-Sign C, which is below the decomposition point. Black-Right-Pointing-Pointer As a result, bulk magnets with a density of over 92% are obtained without decomposition. Black-Right-Pointing-Pointer These magnets exhibit the highest (BH)max (16.2 MGOe) among isotropic Sm-Fe-N magnets.

  12. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    Science.gov (United States)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  13. Reactive synthesis of Ti-W-Cr-B mixing powder by spark plasma sintering; Hoden plasma shoketsu ni yoru Ti-W-Cr-B kongo funmatsu no hanno gosei

    Energy Technology Data Exchange (ETDEWEB)

    Kaga, H. [Hokkaido Industrial Technology Center, Sapporo (Japan); Carrillo-Heian, E.M.; Munir, Z.A. [University of California, CA, (United States)

    2000-08-15

    The reactive sintered compacts of Ti-W-Cr-B mixed powders were manufactured by a pulse electric current technique. Identification and characterization of the resulting boride phase were done using EPMA, XRD and other methods. The density of the sintered compacts rose rapidly with sintering temperature up to 1,773 K, at which temperature the relative density was 94%. Above this temperature, the density rose only slightly with increasing sintering temperature. The borides of Ti and W were synthesized from mixed metal powders by this method. The type of boride formed and its composition depended on sintering temperature. Compacts sintered at lower temperatures consisted of WB{sub 2} and TiB{sub 2} phases, but at the highest sintering temperature, 2,173K, the main phase was (Ti, W, Cr)B{sub 2} solid solution, in which W and Cr were dissolved in TiB{sub 2}. There was also a very small amount of {beta}-(W, Ti, Cr)B phase. By annealing compact sintered at high temperature, the (Ti, W, Cr)B{sub 2} solid solution phase decomposed and the amount decreased. (author)

  14. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    Science.gov (United States)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  15. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  16. Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Marinca, T.F.; Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS/University Joseph Fourier, BP 166, 38042 Grenoble Cédex 9 (France); Popa, F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Păşcuţă, P. [Physics and Chemistry Department Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania)

    2014-07-05

    Highlights: • Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying. • Spark plasma sintering was used for compaction of amorphous Fe{sub 75}Si{sub 20}B{sub 5} powder. • Increasing SPS time/temperature leads to improvement of AC/DC compacts properties. - Abstract: Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying route using benzene as surfactant. The amorphous phase is obtained after 60 h of milling. Structural, morphological, and thermal characteristics were investigated. The as-milled powder consists in micrometric particles with a mean diameter of 10.4 μm which are formed by the agglomeration of smaller particles. The amorphous powder is thermally stable up to the temperature of 490 °C. Spark plasma sintered compacts were prepared from the amorphous powders at sintering temperatures of 800, 850 and 900 °C. The phases formation and their evolution was investigated by X-ray diffraction technique showing that Fe{sub 3}Si and Fe{sub 2}B are the main phases formed during the spark plasma sintering process. Fe{sub 75}Si{sub 20}B{sub 5} (at.%) samples in the form of a ring were investigated in DC and AC magnetization regime. It was found that the boride phase formation (during sintering) and the low density of the compacts affect the magnetic properties of the compacts. In addition, a superficial contamination of the compacts with carbon (a layer of 2–3 μm) was evidenced, contributing thus to their soft magnetic deterioration. Increasing of the saturation induction, maximum relative permeability and initial relative permeability was observed by increasing both sintering temperature and time. It was generally observed that the compacts with high density have higher total core losses at high frequency.

  17. Microstructures and mechanical properties of Fe-28Al-5Cr/TiC composites produced by hot-pressing sintering

    International Nuclear Information System (INIS)

    Zhang Xinghua; Yang Jun; Ma Jiqiang; Bi Qinling; Cheng Jun; Liang Yongmin; Liu Weimin

    2011-01-01

    Highlights: → The near fully dense Fe-28Al-5Cr/TiC composites are produced by hot-pressing sintering. → All the materials exhibit high compressive and bending strength. → Compressive strength increases but bending strength and ductility diminish with rising TiC amount in the composites. → Wear resistance significantly increases with rising TiC amount. - Abstract: The mechanical properties and microstructures of Fe-28Al-5Cr based composites reinforced with 15, 25, 35, 50 wt.% TiC ceramic particle, produced by hot-pressing sintering method, were investigated. The relative density of all the composites was up to 99%. The distribution of TiC was uniform in the composites. Results of XRD analysis showed that the composites were composed of TiC and disorder Fe 3 Al phases. All the materials exhibited very high strength of 1200-2000 MPa. The hardness and compressive strength of the composites increased obviously but compressive strain decreased gradually except 50% composite with increasing TiC content. The bending strength and deflection of the composites decreased significantly with increasing TiC content. The bending fracture surfaces of all the materials were examined using scanning electron microscopy (SEM). The fracture mode transformed gradually from tough dimple fracture mode to brittle cleavage facets crack mode with the increase of TiC content. Wear resistance of the Fe-28Al-5Cr alloy was also significantly improved by addition of TiC.

  18. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-01-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe 80−x Cr x Co 20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe 55 Cr 25 Co 20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe 65 Cr 15 Co 20 reached to 172 emu/g. • Fe 65 Cr 15 Co 20 alloy is the suitable composition fabricated by SPS.

  19. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-15

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe{sub 55}Cr{sub 25}Co{sub 20} magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe{sub 65}Cr{sub 15}Co{sub 20} reached to 172 emu/g. • Fe{sub 65}Cr{sub 15}Co{sub 20} alloy is the suitable composition fabricated by SPS.

  20. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  1. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  2. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  3. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  4. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  5. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  6. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  7. Sintered nuclear fuel compact and method for its production

    International Nuclear Information System (INIS)

    Peehs, M.; Dorr, W.

    1988-01-01

    This patent describes a method of producing a sintered nuclear fuel compact with which reactivity losses in a nuclear reactor having long fuel element cycles are avoided, which comprises, forming a compact of a mixture of powders containing at least one nuclear fuel oxide selected from the group consisting of UO/sub 2/, PuO/sub 2/, ThO/sub 2/, mixed oxide (U, Pu)O/sub 2/ and mixed oxide (U, Th)O/sub 2/, at least one neutron poison selected from the group consisting of UB/sub x/, where x=2; 4 and/or 12 and B/sub 4/C, and sintering the compact of the mixture of powders so that the neutron piston is embedded in a sintered matrix of the nuclear fuel oxide at a treatment temperature in a range from 1000 0 C to 1400 0 C in an oxidizing sintering atmosphere, and then heat treating the sintered compact in a reducing gas atmosphere

  8. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  9. On the sintering behaviour of steel bonded TiC-Cr3C2 and TiC-Cr3C2-WC mixed carbides

    International Nuclear Information System (INIS)

    Stojanov, L.G.; Exner, H.E.

    1978-01-01

    Powder mixtures of TiC+Cr 3 C 2 and TiC+Cr 3 C 2 + WC were hot pressed to nearly full density. The lattice parameter of the resulting cubic mixed crystal decreases linearly with increasing additions of Cr 3 C 2 and (Cr 3 C 2 +WC 1:1). Microhardness increases with Cr 3 C 2 content up to 20 wt.%. By addition of WC, microhardness is increased further and reaches a maximum value of approx. 38 000 MN/m 2 for 20 wt.% Cr 3 C 2 and 20 wt.% WC. From these solid solutions powder compositions of Ferro-TiC type were produced by milling with 55 wt.% Fe and 0.4 wt.% C. The sintering behaviour of these powders was studied in a vacuum dilatometer. The pronounced increase of shrinkage by Cr 3 C 2 and higher amounts of Cr 3 C 2 +WC dissolved in TiC previous to binder phase melting is attributed to the increased solubility of the carbide in solid iron. Presintering at 700 0 C in hydrogen has a negative influence on sintering activity and requires much higher temperatures for complete densification during subsequent vacuum sintering. (orig.) [de

  10. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  11. Effect of {gamma}-ray irradiation on the magnetic properties of NdFeB and Fe-Cr-Co permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: zhenl@hit.edu.cn; Li, G.A. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, C.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2006-07-15

    The effect of {gamma}-ray irradiation on the magnetic properties of NdFeB and Fe-Cr-Co permanent magnets has been investigated. The magnetic flux loss of two kinds of magnets before and after irradiation was measured. Results show that the effect of {gamma}-ray irradiation on the magnetic properties of sintered NdFeB is not so obvious as that on Fe-Cr-Co magnet. Irradiation-induced damage from {gamma}-ray for the Fe-Cr-Co magnets was characterized for the first time. The decline of permanent magnetic properties of Fe-Cr-Co magnet induced by {gamma}-ray irradiation is reversible except for the maximum energy product (BH){sub max}. The difference of coercivity mechanism between these two kinds of permanent magnets is responsible for the different dependence of magnetic properties loss induced by {gamma}-ray irradiation.

  12. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  13. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain); Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Zambrano, J.C. [Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Afonso, C.R.M. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos (UFSCar), São Carlos, SP (Brazil); Amigó, V. [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain)

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock. High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and

  14. Microstructure and properties of multiphase sintered cermets Fe-Fe2B

    International Nuclear Information System (INIS)

    Nowacki, J.; Klimek, L.

    1998-01-01

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe 2 B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe 2 B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe 2 B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe 2 B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe 2 B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe 2 B cermets are a composite material in which iron boride, Fe 2 B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe 2 B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe 2 B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above, resulting from the cermet

  15. Compaction study of particulate iron-chromium matrix composite reinforced with alumina

    International Nuclear Information System (INIS)

    Saidatulakmar Shamsuddin; Shamsul Baharin Jamaludin; Zuhailawati Hussain; Zainal Arifin Ahmad

    2007-01-01

    Recently, a sharper focus on cost reduction in producing advanced composites systems has increased and leads to an interest in ferrous matrix composite which is cheaper compared to Cobalt, Nickel and their alloys that are scarce, expensive and their dust is especially harmful. In the present investigation, Fe-Cr-Al 2 O 3 composite was prepared using conventional powder metallurgy technique; mixing, compaction and sintering. Consolidation of particulate materials is dependent on the compaction process. As load is increased, the number of contacting asperities increases and they flatten and grow to form a planar contact surface. These asperities eventually merge to form bonding surfaces between particles. This paper focused on finding the optimum compaction parameter in a uniaxial pressing. Six different pressure were studied; (250, 375, 500, 625, 750 and 875)MPa. experimental results show that the optimum compaction parameter is 750 MPa that produced highest linear shrinkage, highest bulk density, lowest porosity and highest hardness value. Every sample has formed binary alloy of Fe-Cr alloy, confirmed by XRD and alumina are homogeneously distributed in the Fe-Cr matrix revealed by optical micrograph and SEM. from EDX, the composites consist of iron, chromium and alumina. (author)

  16. Ultrafine particles of Ni and FeCr studied by positron annihilation

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, N.J.; Sethi, S.A.

    1995-01-01

    Ultrafine particles of Ni and Fe80Cr20 have been produced by the gas condensation technique. After surface oxidation the paticles were heated in a reducing H2 atmosphere and positron lifetime and Doppler broadening measurements were carried out. Reduction of the oxide on the Ni powder takes place...... at about 350K and at about 650K for the FeCr powder. Electron microscopy shows sintering of the Ni particles above 450K, and the present results show that defects develop in the growing particles....

  17. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  18. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  19. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  20. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  1. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  2. Optimization of consolidation parameters of 18Cr-ODS ferritic steel through microstructural and microtexture characterization

    Science.gov (United States)

    Dash, Manmath Kumar; Mythili, R.; Dasgupta, Arup; Saroja, S.

    2018-04-01

    This paper reports the optimization of consolidation process based on the evolution of microstructure, microtexture and densification in 18%-Cr Oxide Dispersion Strengthened steel. The steel powder of composition Fe-18Cr-0.01C-2W-0.25Ti-0.35Y2O3 has been consolidated by cold isostatic pressing (CIP) for green compaction after mechanical milling. Sintering (1000-1250 °C) and hot isostatic pressing (HIP) at 1150 °C has been employed to achieve good densification on compacted CIP specimen. The effect of sintering temperatures on densification behavior was evaluated and sintering at 1150°C was identified to be optimum for achieving good compaction (92% density) and homogeneous polygonal microstructure with a uniform distribution of fine pores. In addition, HIP of CIP product at 1150°C was found to yield a more homogeneous microstructure as compared to sintered product with 97% density. A static/dynamic recrystallization associated with (1 1 1) texture is observed during consolidation process. A statistical comparison has been made based on frequency of grain boundary distribution and associated texture with its theoretical attributes.

  3. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  4. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  5. Porous Fe21Cr7Al1Mo0.5Y metal supports for oxygen transport membranes: Thermo-mechanical properties, sintering and corrosion behaviour

    DEFF Research Database (Denmark)

    Glasscock, Julie; Mikkelsen, Lars; Persson, Åsa Helen

    2013-01-01

    and creep rates are sufficiently low. Ceramic interlayers with graded porosity and pore-size were applied and co-fired with the metal supports, producing substrates that were shown to be viable for a 3 μm dense Ce 0.8Gd0.2O1.9 - δ oxygen transport membrane deposited using sputtering. © 2013 Elsevier B.V....... are optimised simultaneously in-situ during sintering by controlling the growth rate of the oxide scale. Oxidation of metal supports with 20-40% porosity at 850 C and oxygen partial pressure of 10- 11 kPa showed sub-parabolic kinetics and stability over 3000 h. The FeCrAl steel shows vastly superior oxidation...... resistance compared with an FeCr steel of similar composition and porosity. Modelling of the alloy lifetime as a function of surface area and Al-content was performed, and lifetimes over 30 000 h are predicted for a metal support with 30% porosity operating at a temperature of 750 C, where the oxidation...

  6. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  7. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  8. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  9. Sintering behaviour and mechanical properties of Cr3C2–NiCr ...

    Indian Academy of Sciences (India)

    fracture toughness. Keywords. Cermet; Cr3C2–NiCr; sintering; mechanical properties. ... et al investigated the mechanical properties of VC, Cr3C2 and NbC doped ..... Huang S G, Li L, Van der Biest O and Vleugels J 2008 J. Alloys. Compds.

  10. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    Energy Technology Data Exchange (ETDEWEB)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L., E-mail: rosatac@gmail.com, E-mail: raquel.lucchesi@icloud.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Wendhausen, Paulo A.P.; Evangelista, Leandro L., E-mail: paulo.wendhausen@ufsc.br, E-mail: leandro.materiais@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Laboratorio de Materiais

    2015-07-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of {sup 99}Mo production {sup 99m}Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  11. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    International Nuclear Information System (INIS)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L.; Wendhausen, Paulo A.P.; Evangelista, Leandro L.

    2015-01-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of 99 Mo production 99m Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  12. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  13. Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semi-closed containers

    Directory of Open Access Journals (Sweden)

    Cias A.

    2015-01-01

    Full Text Available Sintering of Cr, Mn and Si bearing steels has recently attracted both experimental and theoretical attention and processing in semiclosed containers has been reproposed. This paper brings together relevant thermodynamic data and considers the kinetics of some relevant chemical reactions. These involve iron and carbon, water vapour, carbon monoxide and dioxide, hydrogen and nitrogen of the sintering atmospheres and the alloying elements Cr, Mn, Mo and Si. The paper concludes by presenting mechanical properties data for three steels sintered in local microatmosphere with nitrogen, hydrogen, nitrogen-5% hydrogen and air as the furnace gas.

  14. Studies on the sintering behaviour of uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Das, P.; Chowdhury, R.

    1988-01-01

    Uranium dioxide fuel pellets are normally made from their precursor ammonium diuranate, followed by calcination, subsequent reduction to sinterable grade powders and a post operation treatment of pressing and sintering. The low temperature calcined powders, usually exhibiting non-crystalline behaviour (under X-ray diffraction studies) progressively transforms into a crystalline variety on subsequent heat treatment at higher temperature. It is observed however that powders calcined between 800 to 900 0 C exhibit enhanced densification behaviour when sintered at higher temperatures. The isothermal shrinkage versus time plot of the sintered compacts are well described by a hyperbolic relationship which takes care of the observed shrinkage (λ) as caused due to a cumulative effect from the initial sintering of the powder compacts at zero time (α) and that caused due to the structural transformation from a non-crystalline modification with increased thermal treatment (β). The derived equation is a modification of the sintering mechanism of the viscous flow type proposed by Frenkel, involving sintering of an amorphous phase, the viscosity of the latter is presumed to increase with increasing thermal treatment to assume the final modified form as λ=t/(α+βt), where t = time, λ = shrinkage and α and β are the unknown parameters. (orig.)

  15. Compactibility of Al/Al2O3 Isotropic Composite with Variation of Holding Time Sintering.

    Directory of Open Access Journals (Sweden)

    Eddy S Siradj

    2008-11-01

    Full Text Available The requirement of component with structural ability, light weight and also strength is increasing base on Metal Matrix Composites (MMCs by aluminum as matrix (AMCs. A structural ability is connected to composites compactibility which is depend on quality of interfacial bounding. Powder metallurgy is one of method to produce composite with powder mixing, compacting and sintering. Volume fractions reinforced and sintering time can influence composites compactibility. Volume fractions reinforced variable can produce different reinforcement effect. Beside that, on sintering enables the formation of new phase during sintering time. In this research, Al/Al2O3 isotropic composites are made with aluminum as matrix and alumina (Al2O3 as reinforced. Volume fraction reinforced used 10%. 20%. 30% and 40%. Sintering temperature and compaction pressure are each 600oC and 15 kN. The tests that applied are compression and metallographic test. The result that obtained is optimum compactibility of Al/Al2O3 composite reached at holding time 2 hour. During sintering, new phase can occur that is aluminum oxides (alumina, with unstable properties. The best volume fraction reinforced and holding time sintering are 40% and 2 hours.

  16. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  17. Effects of pressure and temperature on sintering of Cr-doped Al2O3 by pulsed electric current sintering process

    Science.gov (United States)

    Dang, K. Q.; Nanko, M.

    2011-03-01

    The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.

  18. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    Science.gov (United States)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  19. Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film

    Institute of Scientific and Technical Information of China (English)

    Zhuji Jin; Zewei Yuan; Renke Kang; Boxian Dong

    2009-01-01

    Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost.By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere.However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality.In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS).The process of ball milling,composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed.The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix.The density of composite can be improved by mechanical alloying.The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sintering in hardness, high-temperature oxidation resistance and wearability.These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film.

  20. Influence of Cr and Y Addition on Microstructure, Mechanical Properties, and Corrosion Resistance of SPSed Fe-Based Alloys

    Science.gov (United States)

    Muthaiah, V. M. Suntharavel; Mula, Suhrit

    2018-03-01

    Present work investigates the microstructural stability during spark plasma sintering (SPS) of Fe-Cr-Y alloys, its mechanical properties and corrosion behavior for its possible applications in nuclear power plant and petrochemical industries. The SPS was carried out for the Fe-7Cr-1Y and Fe-15Cr-1Y alloys at 800 °C, 900 °C, and 1000 °C due to their superior thermal stability as reported in Muthaiah et al. [Mater Charact 114:43-53, 2016]. Microstructural analysis through TEM and electron back scattered diffraction confirmed that the grain sizes of the sintered samples depicted a dual size grain distribution with >50 pct grains within a range of 200 nm and remaining grains in the range 200 nm to 2 µm. The best combination of hardness, wear resistance, and corrosion behavior was achieved for the samples sintered at 1000 °C. The high hardness (9.6 GPa), minimum coefficient of friction (0.25), and extremely low wear volume (0.00277 × 10-2 mm3) and low corrosion rate (3.43 mpy) are discussed in the light of solid solution strengthening, grain size strengthening, grain boundary segregation, excellent densification due to diffusion bonding, and precipitation hardening due to uniformly distributed nanosize Fe17Y2 phase in the alloy matrix. The SEM analysis of the worn surface and corroded features corroborated well with the wear resistance and corrosion behavior of the corresponding samples.

  1. Microstructure and properties of multiphase sintered cermets Fe-Fe{sub 2}B; Mikrostruktura i wlasnosci spiekanych reakcyjnie cermetali Fe-Fe{sub 2}B

    Energy Technology Data Exchange (ETDEWEB)

    Nowacki, J. [Wydzial Inzynierii Materialowej, Politechnika Szczecinska, Szczecin (Poland); Klimek, L. [Instytut Inzynierii Materialowej i Technik Bezwiorowych, Politechnika Lodzka, Lodz (Poland)

    1998-12-31

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe{sub 2}B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe{sub 2}B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe{sub 2}B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe{sub 2}B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe{sub 2}B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe{sub 2}B cermets are a composite material in which iron boride, Fe{sub 2}B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe{sub 2}B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe{sub 2}B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above

  2. The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, P. S.; Cavdar, U.

    2015-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra-High Frequency Induction Sintering (UHFIS) was reviewed for different environments. The three different environments: atmosphere, argon and vacuum were applied to the PM compacts. Iron based PM compacts were sintered at 1120 degree centigrade for a total of 550 seconds by using induction sintering machines with 2.8 kW power and 900 kHz frequency. Micro structural properties, densities, roughness and micro hardness values were obtained for all environments. The results were compared with each other. (Author)

  3. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  4. Microstructure and High Temperature Mechanical Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Metal Injection Molding Process

    Science.gov (United States)

    Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik

    2018-03-01

    This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.

  5. Forging loads, deformation modes and fracture in axi-symmetrric closed die cold forging of sintered aluminium powder compacts

    International Nuclear Information System (INIS)

    Butt, M.A.; Ali, L.

    2003-01-01

    An experimental investigation into closed-die cold forging of sintered aluminium powder rod- shaped compacts was carried out. Axi-symmetric components were forged from sintered powder preforms with different initial diameter to height ratios. Different compaction pressures, sintering and lubrication conditions were used as variables during the investigations. Detailed observations were made on green/sintered density, compaction defects, forging loads, deformation modes and on the onset of fracture during progressive forging of sintered powder compacts. Experimental results obtained during the investigations have been presented and discussed in detail. (author)

  6. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  7. Synthesis and densification of Cu added Fe-based BMG composite powders by gas atomization and electrical explosion of wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.C., E-mail: jckimpml@ulsan.ac.k [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Ryu, H.J.; Kim, J.S. [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Kim, B.K.; Kim, Y.J. [Department of Powder Materials, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Kim, H.J. [Advanced Materials Division, Korea Institute of Industrial Technology, Incheon 406-130 (Korea, Republic of)

    2009-08-26

    In this study, the Fe-based (Fe-C-Si-B-P-Cr-Mo-Al) BMG powders were produced by the high pressure gas atomization process, and they were combined with the ductile Cu powders produced by the electrical explosion of wire (EEW). The Fe-based amorphous powders and Cu added BMG composite powders were compacted by the spark plasma sintering (SPS) processes into cylindrical shape. In the SPS press, the as-prepared powders were sintered at 793 K and 843 K. The relative density increased to 98% when the pressure increased up to 500 MPa by optimum control of the SPS process parameters. The micro-Vickers hardness was over 1100 Hv.

  8. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  9. Mechanical properties and electrical conductivity of Cu-Cr and Cu-Cr-4% SiC nanocomposites for thermo-electric applications

    International Nuclear Information System (INIS)

    Mula, Suhrit; Sahani, Pankajini; Pratihar, S.K.; Mal, Siddhartha; Koch, Carl C.

    2011-01-01

    Highlights: → Ball-milled Cu-Cr and Cu-Cr-SiC nanopowders successfully consolidated by microwave sintering. → Addition of nanosize SiC in Cu-Cr leads to enhanced sintered density, wear and hardness. → A good combination of wear resistance, hardness and electrical conductivity resulted in Cu 94 Cr 6 -4% SiC. → Microwave suscepting SiC particles played a pivotal role in good densification retaining matrix grains 99 Cr 1 , Cu 94 Cr 6 , Cu 99 Cr 1 -4 wt.% SiC and Cu 94 Cr 6 -4 wt.% SiC (average particle size ∼30 nm). The 50 h ball-milled samples were uniaxially pressed, and then pellets were sintered at 800 deg. C, 900 deg. C and 1000 deg. C for a constant soaking period of 30 min by microwave sintering technique. Microstructural characterization was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Sintered compacts resulted a highly densified compacts (∼95% relative density) while retaining ultra-fine grains (100-200 nm) in the matrix. The mechanical properties, namely, hardness and wear resistance, and electrical conductivity of the sintered specimens were also evaluated. The best combination of mechanical properties (e.g. hardness ∼2.4 GPa) and electrical conductivity (60.3% of IACS) were obtained for Cu 94 Cr 6 -4 wt.% SiC sintered at 900 deg. C. This is possibly due to presence of ultra-fine grains in the bulk samples, good densification and proper bonding between particles. The results were analyzed in the light of interactions of microwaves between metallic matrix and microwave susceptive SiC particulates.

  10. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, S.; Maity, T.N.; Mukhopadhyay, S. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sarkar, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bhowmick, S. [Hysitron Inc., Eden Prairie, MN 55344 (United States); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-02

    Phase formation, microstructural evolution and the mechanical properties of novel multi-component equiatomic AlCoCrFeNi high entropy alloy synthesized by high energy ball milling followed by spark plasma sintering have been reported here. The microstructure of the mechanically alloyed (MA) powder and sintered samples were studied using X-ray diffraction, scanning electron and transmission electron microscopy, whereas the detailed investigation of the mechanical properties of the sintered samples were measured using micro and nano hardness techniques. The fracture toughness measurements were performed by applying single edge V notch beam (SEVNB) technique. The MA powder shows the presence of FCC (τ) and BCC (κ) solid solution phases. Extended ball milling (up to 60 h) does not change the phases present in MA powder. The sintered pellets show phase-separated microstructure consisting of Al-Ni rich L1{sub 2} phase, α′ and tetragonal Cr-Fe-Co based σ phase along with Al-Ni-Co-Fe FCC solid solution phase (ε) for sample sintered from 973 to 1273 K. The experimental evidences indicate that BCC (κ) solid solution undergoes eutectoid transformation during sintering leading to the formation of L1{sub 2} ordered α′ and σ phases, whereas FCC (τ) phase remains unaltered with a slight change in the lattice parameter. The hardness of the sample increases with sintering temperature and a sudden rise in hardness is observed 1173 K. The sample sintered at 1273 K shows the highest hardness of ~8 GPa. The elastic modulus mapping clearly indicates the presence of three phases having elastic moduli of about 300, 220 and 160 GPa. The fracture toughness obtained using SEVNB test shows a maximum value of 3.9 MPa m{sup 1/2}, which is attributed to the presence of brittle nanosized σ phase precipitates. It is proposed that significant increase in the fraction of σ phase precipitates and eutectoid transformation of the τ phase contribute to increase in hardness along with

  11. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Guy-Daniel Dutel

    2017-04-01

    Full Text Available Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  12. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  13. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Yu; Xiao-hui Fan; Min Gan; Xu-ling Chen

    2017-01-01

    As the emission control regulations get stricter, the NOx reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. The NOx emissions from the sintering machine account for 48% of total amount from the iron and steel industry.Thus, it is essential to reduce NOx emissions from the sintering machine, for the achievement of clean production of sinter.Ca-Fe oxides, serving as the main binding phase in the sinter, are therefore used as additives into the sintering mixture to reduce NOx emissions.The results show that the NOx re-duction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ig-nition and inhibit the nitrogen oxidation compared with the conventional condition.Meanwhile, the exist-ence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point com-pounds.The optimal mass fraction of Ca-Fe oxides additives should be less than 8% since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines, inhibiting the mineralization reaction of sintering mixture.Additionally, the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of -0.5 mm and 0.5-3.0 mm in size.

  14. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  15. Nd-Fe-B sintered magnets fabrication by using atomized powders

    International Nuclear Information System (INIS)

    Goto, R; Sugimoto, S; Matsuura, M; Tezuka, N; Une, Y; Sagawa, M

    2011-01-01

    Nd-Fe-B sintered magnets are required to achieve high coercivity for improvement of their thermal stability. Dy is added to increase coercivity, however, this element decrease magnetization and energy products. Therefore, Dy-lean Nd-Fe-B sintered magnets with high coercivity are strongly demanded. To increase coercivity, it is necessary that microstructure of sintered magnets is consisted of both fine main phase particles and homogeneously distributed Nd-rich phases around the main phase. To meet those requirements, Nd-Fe-B atomized powders were applied to the fabrication process of sintered magnets. Comparing with the case of using strip casting (SC) alloys, jet-milled powders from atomized powders show homogeneous distribution of Nd-rich phase. After optimized thermal treatment, coercivities of sintered magnets from atomized powders and SC alloys reach 1050 kA·m-1 and 1220 kA·m-1, respectively. This difference in coercivity was due to initial oxygen concentration of starting materials. Consequently, Nd-rich phases became oxides with high melting points, and did not melt and spread during sintering and annealing.

  16. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys

    International Nuclear Information System (INIS)

    Chang, Shih-Hsien; Chen, Song-Ling

    2014-01-01

    Highlights: • WC–Ni–Fe alloy sintered at 1400 °C had the highest hardness (HRA 85.3 ± 0.5). • The optimal WC–Ni–Fe sintered alloy possessed the highest TRS value (2524.5 ± 1.0 MPa). • The fracture toughness of the sintered WC–Ni–Fe alloys is mainly provided by the Ni–Fe binders. • WC–Ni–Fe sintered alloy possessed the highest fracture toughness of K IC (15.1 MPa m 1/2 ). • The WC–Ni–Fe sintered alloy had the much better corrosion resistance in 0.15 M HCl solution. -- Abstract: The aim of this study is to explore two different tungsten carbide binders (Co and Ni–Fe) and then impose various sintering temperature treatments. Experimental results show that the optimal sintering temperatures for WC–Co and WC–Ni–Fe hard metal alloys are 1350 °C and 1400 °C for 1 h, respectively. Meanwhile, the WC–Co and WC–Ni–Fe alloys undergo a well liquid-phase sintering and, thus, exhibit excellent mechanical properties. In addition, the sintered WC–Co and WC–Ni–Fe alloys show that when the relative density reached 99.76% and 99.68%, the hardness was enhanced to HRA 84.4 ± 0.5 and 85.3 ± 0.5, and the TRS increased to 2471.2 ± 1.0 and 2524.5 ± 1.0 MPa, respectively. Moreover, the corrosion test results show that the WC–Ni–Fe alloy sintered at 1400 °C had the lowest corrosion current (I corr ) of 1.11 × 10 −5 A cm −2 and the highest polarization resistance (R p ) of 2464.61 Ω cm 2 in 0.15 M HCl solution. Simultaneously, the fracture toughness of K IC increased to 15.1 MPa m 1/2 . Compared with sintered WC–Co alloys, the sintered WC–Ni–Fe hard metal alloys possessed much better corrosion resistance and mechanical properties

  17. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Yu, P. [Department of Micro-Nano Material and Device, The South University of Science and Technology of China, Shenzhen, 518055 (China); Schaffer, G.B. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia)

    2013-07-01

    An addition of 1.5 at% Co to Ti–48Al–2Cr–2Nb (in at%) transformed the alloy from essentially unsinterable to fully sinterable at 1300 °C. This, together with a simple powder coating process developed recently, has allowed near-net shape fabrication of the alloy for the first time by cold compaction and pressureless sintering. The addition of Co results in the formation of an intermediate face centred cubic (fcc) CoAl{sub 2}Ti phase prior to 1220 °C during heating. It subsequently reacts with an α phase leading to the formation of a Co-containing, wettable sintering liquid through a two-step process, CoAl{sub 2}Ti+α→Liquid at 1256.2 °C and CoAl{sub 2}Ti+α→γ-TiAl+Liquid at 1267.2 °C, and therefore full densification of the alloy. Without Co, sintering of the Ti–48Al–2Cr–2Nb alloy powder at 1300 °C is controlled by the slow self-diffusion of Ti and interdiffusion of Ti and Al according to the activation energy determined. Transmission electron microscopy (TEM) identified an fcc CoAl{sub 2}Ti phase and a hexagonal close packed (hcp) Co-enriched Ti(Al, Co, Cr, Nb) phase in the final as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy. They both form during cooling at 1240 °C through Liquid+α→CoAl{sub 2}Ti+Ti (Al, Co, Cr, Nb). The tensile and compressive properties of the as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy were compared to the original General Electric (GE) Ti–48Al–2Cr–2Nb alloy fabricated by casting or metal injection moulding.

  18. Influence of sintering time on distribution of alloying elements composition in Zircaloy pellet

    International Nuclear Information System (INIS)

    Sigit; Muchlis B; Widjaksana; Eric, J.; Suryana, RA; Gunawan

    1996-01-01

    Influence of sintering time on distribution of alloying elements composition in zircaloy pellet has been studied. Zircaloy pellets were obtained by pressing of Zr, Fe, Cr and Sn powders mixture in adequate composition of zircaloy-4, than the green pellets were sintered at 1100 o C for 1 - 3 hours. The alloying elements (Fe, Cr and Sn) composition in zircaloy pellets as sintering product were determined by Scanning Electron Microscope - Energy Dispersive X-Ray Analyser (SEM-EDAX). The experiments showed that there was an accumulation of Sn in a site of the zircaloy green pellet of 17.46 %, but after sintering process, the Sn was distributed everywhere. The influence of sintering time up to 1 hour showed a decreasing Sn composition from 9 % to 2 % which then relatively constant, while for Fe and Cr its decreasing was relatively small, i.e. : 1.86 % to 0.6 % and 1.04 % to 0.17 % respectively. The sintering process revealed no clear grain boundaries and powder homogenization did not complete. Observation on metallographic photos showed that this condition was in initial stage of sintering process where there was a complex phenomenon i.e.: no powder homogenization in green pellet or initial heating rate was extremely quick

  19. Alloying effect on hardening of martensite stainless steels of the Fe-Cr-Ni and Fe-Cr-Co systems

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Savkina, L.Ya.

    1975-01-01

    The effect of alloying elements is considered on the γ → a-transformation and hardening of certain compositions of the ternary Fe-Cr-Ni- and Fe-Cr-Co alloy systems with the martensite structure. In martensite Fe-(10 to 14)% Cr base steels the elements Co, Cu, W, Ni, Mo, Si, Cr decrease, Mn, Si, Mo, Cu increase, and Cr, Ni, Co decrease the temperature of α → γ-transition. The tempering of martensite steels of the Fe-Cr-Ni- and Fe-Cr-Co-systems containing 10 to 14% Cr, 4 to 9% Ni, and 7 to 12% Co does not lead to hardening. Alloyage of the martensite Fe-Cr-Ni-, Fe-Cr-Co- and Fe-Cr-Ni-Co base separately with Mo, W, Si or Cu leads to a hardening during tempering, the hardening being the higher, the higher is the content of Ni and, especially, of Co. The increase in the content of Mo or Si produces the same effect as the increase in the Co content. In on Fe-Cr-Co or Fe-Cr-Ni-Co based steels alloyed with Mo or Si, two temperature ranges of ageing have been revealed which, evidently, have different hardening natures. The compositions studied could serve as the base material for producing maraging stainless steels having a complex variety of properties

  20. Assessment of polyphase sintered iron-cobalt-iron boride cermets

    International Nuclear Information System (INIS)

    Nowacki, J.; Pieczonka, T.

    2004-01-01

    Sintering of iron, cobalt and boron powders has been analysed. As a result iron-iron boride, Fe-Fe 2 B and iron/cobalt boride with a slight admixture of molybdenum, Fe - Co - (FeMoCo) 2 B cermets have been produced. Iron was introduced to the mixture as the Astalloy Mo Hoeganaes grade powder. Elemental amorphous boron powder was used, and formation of borides occurred both during heating and isothermal sintering periods causing dimensional changes of the sintered body. Dilatometry was chosen to control basic phenomena taking place during multiphase sintering of investigated systems. The microstructure and phase constituents of sintered compacts were controlled as well. The cermets produced were substituted to: metallographic tests, X-ray analysis, measurements of hardness and of microhardness, and of wear in the process of sliding dry friction. Cermets are made up of two phases; hard grains of iron - cobalt boride, (FeCo) 2 B (1800 HV) constituting the reinforcement and a relatively soft and plastic eutectic mixture Fe 2 B - Co (400-500 HV) constituting the matrix. (author)

  1. Comparison of Dental Prostheses Cast and Sintered by SLM from Co-Cr-Mo-W Alloy

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2016-12-01

    Full Text Available The article presents the results of a comparative analysis of the metal substructure for dental prosthesis made from a Co-Cr-Mo-W alloy by two techniques, i.e. precision investment casting and selective laser melting (SLM. It was found that the roughness of the raw surface of the SLM sinter is higher than the roughness of the cast surface, which is compensated by the process of blast cleaning during metal preparation for the application of a layer of porcelain. Castings have a dendritic structure, while SLM sinters are characterized by a compact, fine-grain microstructure of the hardness higher by about 100 HV units. High performance and high costs of implementation the SLM technology are the cause to use it for the purpose of many dental manufacturers under outsourcing rules. The result is a reduction in manufacturing costs of the product associated with dental work time necessary to scan, designing and treatment of sinter compared with the time needed to develop a substructure in wax, absorption in the refractory mass, casting, sand blasting and finishing. As a result of market competition and low cost of materials, sinter costs decrease which brings the total costs related to the construction unit making using the traditional method of casting, at far less commitment of time and greater predictability and consistent sinter quality.

  2. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    International Nuclear Information System (INIS)

    Auger, M.A.; Castro, V. de; Leguey, T.; Muñoz, A.; Pareja, R.

    2013-01-01

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y 2 O 3 powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y 2 O 3 (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS

  3. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A.; Castro, V. de [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Muñoz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain)

    2013-05-15

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y{sub 2}O{sub 3} powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y{sub 2}O{sub 3} (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS.

  4. The effect of magnetic ordering on the giant magnetoresistance of Cr-Fe-V and Cr-Fe-Mn

    International Nuclear Information System (INIS)

    Somsen, Ch.; Acet, M.; Nepecks, G.; Wassermann, E.F.

    2000-01-01

    Cr-rich Cr 1-x Fe x alloys with compositions in the vicinity of mixed ferromagnetic and antiferromagnetic exchange (x=0.18) exhibit giant magnetoresistance. In order to understand the influence of the antiferromagnetism of Cr on the giant magnetoresistance one can manipulate the antiferromagnetic exchange either by adding vanadium, which destroys the antiferromagnetism of Cr, or by adding manganese, which enhances it. Cr-Fe-V and Cr-Fe-Mn alloys also have Curie temperatures that lie between low temperatures and room temperature in the concentration region where giant magnetoresistance is observed. Therefore, they are also used as samples to study the magnetoresistance as a function of the strength of FM exchange. We discuss these points in the light of temperature and concentration-dependent magnetoresistance experiments on Cr 0.99-x Fe x V 0.01 , Cr 0.96-x Fe x V 0.04 , Cr 0.90-x Fe x Mn 0.10 and Cr 0.55 Fe x Mn 0.45-x alloys. Results indicate that the most favorable condition for a large magnetoresistance in these alloys occurs at temperatures near the Curie temperature

  5. Manufacturing And High Temperature Oxidation Properties Of Electro-Sprayed Fe-24.5% Cr-5%Al Powder Porous Metal

    Directory of Open Access Journals (Sweden)

    Lee Kee-Ahn

    2015-06-01

    Full Text Available Fe-Cr-Al based Powder porous metals were manufactured using a new electro-spray process, and the microstructures and high-temperature oxidation properties were examined. The porous materials were obtained at different sintering temperatures (1350°C, 1400°C, 1450°C, and 1500°C and with different pore sizes (500 μm, 450 μm, and 200 μm. High-temperature oxidation experiments (TGA, Thermal Gravimetry Analysis were conducted for 24 hours at 1000°C in a 79% N2+ 21% O2, 100 mL/min. atmosphere. The Fe-Cr-Al powder porous metals manufactured through the electro-spray process showed more-excellent oxidation resistance as sintering temperature and pore size increased. In addition, the fact that the densities and surface areas of the abovementioned powder porous metals had the largest effects on the metal’s oxidation properties could be identified.

  6. Improvement in mechanical properties of chromium-nickel sintered compacts by repeated rolling and annealing; Kuromu nickel shoketsuzai no kurikaeshi atsuen shodon ni yoru kikaiteki seishitsu no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y. [Toyohashi University of Technology, Aichi (Japan); Omori, M. [Hiroshima-Denki Institute of Technology, Hiroshima (Japan); Ando, H. [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Matsui, H. [Tadano Ltd., Kagawa (Japan); Okita, T. [Honda R and D Co. Ltd., Tokyo (Japan)

    1998-09-20

    Chromium-nickel sintered compacts containing 50 and 80 mass%Cr were tried to improve their mechanical properties by means of a thermo-mechanical treatment, i.e., repeated rolling and annealing. Specimens from the as-sintered compacts showed no ductility at room temperature and small ductility at temperatures higher than 1000 K because of poor alloying of nickel with chromium. Tensile properties of the sheets repeatedly rolled with the intermediate annealing at 1173 K were very similar to those of the as-sintered specimen. While the sheets rolled with the annealing at 1573 K were excellently improved in their strength and ductility due to the considerable interdiffusion of chromium and nickel. The intermediate temperature embrittlement, that is, the ductility minimum well observed around 1000 K in a chromium-nickel alloy appeared also in the sheets rolled with the annealing at 1573 K. 15 refs., 13 figs., 1 tab.

  7. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  8. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  9. Study of high-coercivity sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Bai, G.; Gao, R.W.; Sun, Y.; Han, G.B.; Wang, B.

    2007-01-01

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of j H c =25.6 kOe, B r =13.2 kG and (BH) max =39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors

  10. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  11. Influence of metallic additives on manganese ferrites sintering

    Science.gov (United States)

    Shevelev, S. A.; Luchnikov, P. A.; Yarullina, A. R.

    2018-01-01

    Influence of cuprum nanopowder additive received by electric explosion on the process of manganese ferrites MgFe2O4 consolidating at thermal sintering was researched by dilatometry method. Cuprum nanopowder at a rate of 5 mass % was added into the original commercial-grade powder of manganese ferrite MgFe2O4. Powder mixture was numerously blended with screening for better blending before pressing. Powder compacts were formed by cold one-axle static pressing. It was proved that introduction of cuprum additive caused shrinkage increase at final heating stage. There was abnormal compact enlarging at sintering in the air at isothermal stage; the specified process was not observed in vacuum. This difference can be explained by changes in conditions of gaseous discharge from volume of pores.

  12. Nanophase intermetallic FeAl obtained by sintering after mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, L., E-mail: luisa.dangelo@gmail.co [Departamento de Mecanica, UNEXPO, Luis Caballero Mejias, Charallave (Venezuela, Bolivarian Republic of); D' Onofrio, L. [Facultad de Ciencias, Dpto. Fisica, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Gonzalez, G., E-mail: gemagonz@ivic.v [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas, Apdo. 21827, Caracas 1020A (Venezuela, Bolivarian Republic of)

    2009-08-26

    The preparation of bulk nanophase materials from nanocrystalline powders has been carried out by the application of sintering at high pressure. Fe-50 at.%Al system has been prepared by mechanical alloying for different milling periods from 1 to 50 h, using vials and balls of stainless steel and a ball-to-powder weight ratio (BPR) of 8:1 in a SPEX 8000 mill. Sintering of the 5 and 50 h milled powders was performed under high uniaxial pressure at 700 deg. C. The characterization of powders from each interval of milling was performed by X-ray diffraction, Moessbauer spectroscopy, scanning and transmission electron microscopy. After 5 h of milling formation of a nanocrystalline alpha-Fe(Al) solid solution that remains stable up to 50 h occurs. The grain size decreases to 7 nm after 50 h of milling. The sintering of the milled powders resulted in a nanophase-ordered FeAl alloys with a grain size of 16 nm. Grain growth during sintering was very small due to the effect of the high pressure applied.

  13. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Science.gov (United States)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  14. Fractal characterization of the compaction and sintering of ferrites

    NARCIS (Netherlands)

    Glass, H.J.; With, de G.

    2001-01-01

    A novel parameter, the fractal exponent DE, is derived using the concept of fractal scaling. The fractal exponent DE relates the development of a feature within a material to the development of the size of the material. As an application, structural changes during the compaction and sintering of

  15. Study of high-coercivity sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Department of Mathematics and Physics, Xi' an Institute of Technology, Xi' an, 710032 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Sun, Y. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Han, G.B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Baotou Rare Earth Research Institute, Batou 014030 (China)

    2007-01-15

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of {sub j} H {sub c}=25.6 kOe, B {sub r}=13.2 kG and (BH){sub max}=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.

  16. Magnetic viscosity and coercivity mechanisms in sintered and melt spun NdFeB

    International Nuclear Information System (INIS)

    Street, R.; Bingham, D.; Day, R.K.; Dunlop, J.B.

    1988-01-01

    Magnetic viscosity parameters kT/q(=Sv) of sintered and melt spun NdFeB vary with internal field. During initial magnetization of thermally demagnetized specimens signifiant viscosity occurs with melt spun NdFeB but is negligible with sintered NdFeB. Differences in mechanisms of magnetization account for this behaviour

  17. Sintering of nanopowders of ZrO_2 (Y_2O_3): Effect of compaction pressure on densification

    International Nuclear Information System (INIS)

    Palmeira, Alexandre Alvarenga; Magnago, Roberto de Oliveira; Pereira, Glayce Cassaro; Bondioli, Marcelo Jose; Strecker, Kurt; Santos, Claudinei dos

    2014-01-01

    In this work studied the powders (nano) sintered of ZrO_2 (Y_2O_3) by dilatometry. Was identified the effect of compaction pressure variation in the final results of densification of materials. Powders were compacted at different compaction pressures. The compacts were subjected to temperatures of 1250°C to 1400°C with sintering levels ranging from 0 to 8 hours. Samples were characterized by X-ray diffraction and relative density using Archimedes method. The results were compared with powders (micro) of similar composition in order to compare the effect of particle size on densification parameters. The samples were further subjected to microstructural characterization in order to identify the average grain size of the sintering under each condition used in both materials. (author)

  18. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    International Nuclear Information System (INIS)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian; Okuniewski, Maria A.; Maloy, Stuart A.; Stubbins, James F.

    2016-01-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size of irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α′ precipitates. -- Graphical abstract: Addition of Cr in Fe suppressed the mobility of mobile 1/2<111> dislocation loops and increased the proportion of immobile <100> dislocation loops, leading to a transition of loop distribution from highly heterogeneous to uniform. Display Omitted

  19. The relationship between the addition method of the Ni-activator and the sinterability for the Ni-doped W-powder compact

    International Nuclear Information System (INIS)

    Moon, I.H.; Kim, J.S.

    1984-01-01

    The relationship between the nickel size added to tungsten powder and the sinterability was investigated for the Ni-doped W-powder compact. The Ni-added W-powder compact with various particle size ratios of W to Ni were prepared by mechanical mixing as well as by salt solution and reduction method. In the latter method the size of reduced Ni-particle could be controlled by drying rate of salt solution. The smaller the size of nickel particles added to W was, the activatedly sintered W-powder compact has shown higher sinterability in the initial stage of sintering. The dependence of sinterability on the size of Ni-activator could be partly explained by some physical characteristics of Ni-activator at sintering temperature. (Auth.)

  20. Green Compact Temperature Evolution during Current-Activated Tip-Based Sintering (CATS of Nickel

    Directory of Open Access Journals (Sweden)

    Khaled Morsi

    2013-04-01

    Full Text Available Current-activated tip-based sintering (CATS is a novel process where spark plasma sintering conditions are applied through an electrically conducting tip on a locally controlled area on a green powder compact/bed. The localization of electric current in CATS allows for unique temporal and spatial current and temperature distributions within the tip and powder compact. In this paper, special experimental setups were used to monitor the temperature profiles in the tip and at multiple locations on the surface of nickel powder compacts. A variation in the initial green density was found to have a significant effect on the maximum temperature in the tip as well as the temperature distribution across the powder compact. In general, the lowest green density specimens displayed the best conditions for localized densification. The concept of effective current density is introduced and results are discussed in relation to the densification parameter.

  1. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  2. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  3. Optimization of Sintering Time and Holding Time for 3D Printing of Fe-Based Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Wenzheng Wu

    2018-06-01

    Full Text Available Fe-based metallic glasses are amorphous alloys with high strength, high hardness, and excellent corrosion resistance; however, the immaturity of processing methods has prevented their wide application in industrial production. Fe-based metallic glass parts were manufactured employing pneumatic injection additive manufacturing in this study. An evenly dispersed and stable Fe-based metallic glass powder slurry with a solids content of 50% was prepared firstly. Then the Fe-based metallic glass parts were printed. The printed parts were dried, debinded, and sintered for strengthening. The deformations of the printed parts and sintered parts relative to the original model were then analyzed by a 3D scanning reconstruction method. The slightly average bulging and sunken deformation of the printed parts and sintered parts confirmed the good printing accuracy of the pneumatic injection manufacture system. The effects of the sintering temperature and holding time on the properties of the sintered parts were studied. For a sintering temperature of 580 °C and holding time of 1 h, the surface quality of the sintered parts was better. The sintering of 3D-printed Fe-based metallic glass parts was preliminarily realized in this study, and the feasibility of preparing Fe-based metallic glass using pneumatic injection additive manufacture was verified.

  4. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  5. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  6. Spark-plasma sintering and mechanical property of mechanically alloyed NiAl powder compact and ball-milled (Ni+Al) mixed powder compact

    International Nuclear Information System (INIS)

    Kim, J.S.; Jang, Y.I.; Kwon, Y.S.; Kim, Y.D.; Ahn, I.S.

    2001-01-01

    Mechanically-alloyed NiAl powder and (Ni+Al) powder mixture prepared by ball-milling were sintered by spark-plasma sintering (SPS) process. Densification behavior and mechanical property were determined from the experimental results and analysis such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Vicker's hardness and transverse rupture strength tests. Densification mechanisms for MA-NiAl powder compact and (Ni+Al) powder mixture were different from each other. While the former showed a rapid increase in densification rate only at higher temperature region of 800-900 o C, the latter revealed firstly a rapid increase in densification rate even at low temperature of 300 o C and a subsequent increase up to 500 o C. Densities of both powder compact (MA and mixture) sintered at 1150 o C for 5 min were 98 and above 99 %, respectively. Sintered bodies were composed mainly of NiAl phase with Ni 3 Al as secondary phase for both powders. Sintered body of MA-NiAl powder showed a very fine grain structure. Crystallite size determined by XRD result and the Sherrer's equation was approximately 80 nm. Vicker's hardness for the sintered bodies of (Ni+Al) powder mixture and MA-NiAl powder were 410±12 H v and 555±10 H v , respectively, whereas TRS values 1097±48 MPa and 1393±75 MPa. (author)

  7. Effect of sintering condition on the grain growth of Cr{sub 2}O{sub 3} doped UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jang Soo; Kim, Keon Sik; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, Cr{sub 2}O{sub 3} doped UO{sub 2} pellets were fabricated by two-step sintering process. The grain growth of pellet is related to dwell time in a hydrogen atmosphere during sintering process. A large grain pellet can minimize fission gas release and deform easily at an elevated temperature. So, the recent development of nuclear fuel pellet materials is mainly focused on the large grain pellets. The various methods of fabrication processes for large grain UO{sub 2} pellets have been investigated extensively. Those parameters include the additives, sintering temperature, sintering time, sintering atmosphere, and so on. Cr-doped UO{sub 2} pellet is one of the promising candidates for PCI remedy. It was shown that the grain size and softness of UO{sub 2} pellets could be enhanced by doping Cr or Cr compound in UO{sub 2}. Various in-pile test results revealed that the PCI properties were enhanced considerably [4]. In the sintering process of Cr-doped UO{sub 2} pellet, it was known that tight adjusting of sintering atmosphere is most important to achieve large grain pellet. The relevant research revealed that the doped Cr{sub 2}O{sub 3} became liquid phase in optimized oxygen potential and that liquid phase promoted the grain growth. Recently, KAERI has shown that grain size of Cr-doped UO{sub 2} pellet could be more enlarged by adjusting process parameters. In this paper, we introduced a sintering process which can form a liquid phase for a large grain growth in Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. The study on the effect of dwell time in H{sub 2} atmosphere during sintering process on the grain structure of sintered pellet is also a part of this work. In order to obtain large grain in pellet, it is important to increase amount of Cr that can form a liquid phase for grain growth by increasing dwell time in a hydrogen atmosphere during sintering process.

  8. Study of the oxidation of Fe-Cr alloys at high temperatures; Estudo da oxidacao de ligas Fe-Cr a altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J.F.; Sabioni, A.C.S. [Universidade Federal de Ouro Preto (LDM/DF/UFOP), MG (Brazil). Dept. de Fisica. Lab. de Difusao em Materiais; Trindade, V.B. [Universidade Federal de Ouro Preto (DEMM/UFOP), MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Ji, V. [Laboratoire d' Etude des Materiaux Hors-Equilibre (LEMHE), Orsay (France)

    2010-07-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1{mu}g. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10{sup -9}g{sup 2}.cm{sup -4}.s{sup -1}, for the alloy Fe-1.5% Cr, to 1.18 x 10-14g{sup 2}.cm{sup -4}.s{sup -1} for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  9. Microstructure and properties of FeSiCr/PA6 composites by injection molding using FeSiCr powders by phosphating and coupling treatment

    Science.gov (United States)

    Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing

    2018-04-01

    FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.

  10. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  11. IR-spectroscopical investigations on the glass structure of porous and sintered compacts of colloidal silica gels

    Science.gov (United States)

    Clasen, Rolf; Hornfeck, M.; Theiss, Wolfgang

    1991-08-01

    The forming and sintering of fumed silica powders is an interesting route for the preparation of large, very pure or doped silica glasses with a precise geometry. The processing from the shaping of a porous compact to the sintering of transparent silica glass can be successfully investigated with optical spectroscopy. As only the dielectric function DF (a dielectric function is the square root of the complex refractive index) characterizes the material, the vibrational bands were calculated from reflectance measurements. In compacts of fine particles, the topology cannot be neglected. Therefore, the models describing topological effects are briefly reviewed. With these model calculations it could be proven that new bands in the compacts and the significant shifts in the reflectance spectra during sintering are mainly caused by topological effects and that changes in the glass structure play only a secondary role.

  12. Effects of Fe and Cr on corrosion behavior of ZrFeCr alloys in 500 oC steam

    International Nuclear Information System (INIS)

    Wang Jun; Fan Hongyuan; Xiong Ji; Liu Hong; Miao Zhi; Ying Shihao; Yang Gang

    2011-01-01

    Research highlights: Amount and size of SPP will effect the corrosion resistance of Zr alloy at 500 o C/10.3 MPa. - Abstract: A study of the corrosion behaviors of ZrFeCr alloy and the influence of microstructure on corrosion resistance are described by X-ray diffraction and scanning electron microscope in this paper. The results show that several ZrFeCr alloys exhibit protective behavior throughout the test and oxide growth is stable and protective. The best alloy has the composition Zr1.0Fe0.6Cr. Fitting of the weight gain curves for the protective oxide alloys in the region of protective behavior, it showed nearly cubic behavior for the most protective alloys. The Zr1.0Fe0.6Cr has the more laves Zr(Fe,Cr) 2 precipitate in matrix and it has the better corrosion resistance. The Zr0.2Fe0.1Cr has little precipitate, the biggest hydrogen absorption and the worst corrosion resistance. The number of precipitates and the amount of hydrogen absorption in Zr alloy plays an important role on corrosion resistance behaviors in 500 o C/10.3 MPa steam.

  13. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Walther, Till; Hesse, Dietrich; Ebbinghaus, Stefan G.

    2014-01-01

    The synthesis of nano-crystalline CuFe 2 O 4 powders by a combustion-like process is described herein. Phase formation and evolution of the crystallite size during the decomposition process of a (CuFe 2 )—precursor gel were monitored up to 1000 °C. Phase-pure nano-sized CuFe 2 O 4 powders were obtained after reaction at 750 °C for 2 h resulting in a crystallite size of 36 nm, which increases to 96 nm after calcining at 1000 °C. The activation energy of the crystallite growth process was calculated as 389 kJ mol −1 . The tetragonal⇄cubic phase transition occurs between 402 and 419 °C and the enthalpy change (ΔH) was found to range between 1020 and 1229 J mol −1 depending on the calcination temperature. The optical band gap depends on the calcination temperature and was found between 2.03 and 1.89 eV. The shrinkage and sintering behaviour of compacted powders were examined. Dense ceramic bodies can be obtained either after conventional sintering at 950 °C or after a two-step sintering process at 800 °C. Magnetic measurements of both powders and corresponding ceramic bodies show that the saturation magnetization rises with increasing calcination-/sintering temperature up to 49.1 emu g −1 (2.1 µ B fu −1 ), whereas the coercivity and remanence values decrease. - Graphical abstract: A cheap one-pot synthesis was developed to obtain CuFe 2 O 4 nano-powders with different crystallite sizes (36–96 nm). The optical band gaps, phase transition temperatures and enthalpies were determined depending on the particle size. The sintering behaviour of nano CuFe 2 O 4 was studied in different sintering procedures. The magnetic behaviour of the nano-powders as well as the corresponding ceramic bodies were investigated. - Highlights: • Eco-friendly and simple synthesis for nano CuFe 2 O 4 powder using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the synthesis. • Determination of the optical band gap

  14. Compacting and sintering of agglomerated ultradispersed powders ZrO2

    International Nuclear Information System (INIS)

    Galakhov, A.V.; Vyazov, I.V.; Shevchenko, V.Ya.

    1989-01-01

    Results of investigation into the change of porous structure of shapings of submicron powders under compacting and its effect on the sintering kinetics are presented. ZrO 2 + 3%Y 2 O 3 (molar share) composition powders, produced by coprecipitation from Zr and Y mineral salts are used. Reduction of specific volume of interagglomerated pores is linked with the destruction of large soft agglomerates at the initial compacting shift. At this stage the filling of a part of interagglomerated pores with large agglomerate crushing products takes place. As a result of such a process a part of pores transfers from the class of interagglomerated to the class of intraagglomerated ones increasing their specific content in a compact

  15. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Dai, Qilin; Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Bowden, Mark; Engelhard, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, Idaho 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, Idaho 83401 (United States)

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  16. Microstructure, magnetic and Moessbauer studies on spark-plasma sintered Sm-Co-Fe/Fe(Co) nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N V Rama; Saravanan, P; Gopalan, R; Raja, M Manivel; Rao, D V Sreedhara; Chandrasekaran, V [Defence Metallurgical Research Laboratory, Hyderabad-500 058 (India); Sivaprahasam, D [International Advanced Research Centre for Powder Metallurgy and New Materials Hyderabad-500 005 (India); Ranganathan, R [Saha Institute of Nuclear Physics, Kolkata-700 064 (India)], E-mail: rg_gopy@yahoo.com

    2008-03-21

    Nanocomposite powders comprising Sm-Co-Fe intermetallic phases and Fe(Co) were synthesized by high-energy ball milling and were consolidated into bulk magnets by the spark-plasma sintering (SPS) technique. While the microstructure of the SPS samples was characterized by transmission electron microscopy (TEM), the solubility of Fe in different phases was investigated using Moessbauer spectroscopy. TEM studies revealed that the spark-plasma sintered sample has Sm(Co,Fe){sub 5} as a major phase with Sm{sub 2}(Co,Fe){sub 17}, Sm(Co,Fe){sub 2} and Fe(Co) as secondary phases. The size of the nanocrystalline grains of all these phases was found to be in the range 50-100 nm. The Moessbauer spectra of the as-milled powders exhibited two different subspectra: a sextet corresponding to the Fe phase and a broad sextet associated with the Fe(Co) phase; while that of the SPS sample showed four different subspectra: a sextet corresponding to Fe and other three sextets corresponding to the Fe(Co), Sm(Co,Fe){sub 5} and Sm{sub 2}(Co,Fe){sub 17} phases; these results are in accordance with the TEM observation. Recoil magnetization and reversible susceptibility measurements revealed magnetically single phase behaviour of the SPS magnets.

  17. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    International Nuclear Information System (INIS)

    Kaur, Maninder; Qiang, You; Dai, Qilin; Tang, Jinke; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr ( 2 O 3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs

  18. Modeling of chromium precipitation in Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wallenius, J.; Olsson, P.; Lagerstedt, C.; Sandberg, N.; Chakarova, R.; Pontikis, V.

    2004-01-01

    We have implemented a set of Embedded Atom Method (EAM) potentials for simulation of Fe-Cr alloys. The functions for the pure elements were fitted to the respective elastic constants, vacancy formation energy, and thermal expansion coefficients. For Cr, properties of the paramagnetic state were applied, providing a positive Cauchy pressure and hence applicability of the EAM. By relaxing the requirement of reproducing the pressure-volume relation at short interaction distances, stability of the self-interstitial could be obtained. Our Fe-potential gives E lang110rang f -E lang111rang f =-0.23 eV. Mixed Fe-Cr pair potentials were fitted to the calculated mixing enthalpy of ferromagnetic Fe-Cr, which is negative for Cr concentrations below 6%. Simulation of thermal aging in Fe-Cr alloys using a potential fitted to the mixing enthalpy of Fe-20Cr exhibited pronounced Cr-precipitation for temperatures below 900 K, in agreement with the phase diagram. No such ordering was observed at any temperature using a potential fitted to the mixing enthalpy of Fe-5Cr. Applied to recoil cascade simulations the new potentials predict a smaller number of surviving defects than potentials found in the literature. We obtain a cascade efficiency of 0.135 NRT for damage energies in between 10 and 20 keV. An enhanced probability for Cr atoms to end up in defect structures is observed

  19. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  20. Preparing Magnetocaloric LaFeSi Uniform Microstructures by Spark Plasma Sintering

    DEFF Research Database (Denmark)

    Vicente, N.; Ocanã, J.; Neves Bez, Henrique

    2014-01-01

    Spark Plasma Sintering (SPS) of LaFeSi alloy powders was conducted to prepare magnetocaloric La-Fe-Si-based uniform microstructures. Two electrically insulating discs made of alumina were interposed between the punches and powder sample inhibiting the flow of electric current across the powder...... from hydrogenated and decrypted casting ingot. The characterizations of sintered samples were performed by Scanning Electron Microscopy (SEM), Archimedes principle, Vicker’s hardness and microhardness. The uniformity of the microstructure was evaluated by checking the evidence of position on the Vicker...

  1. Cr2O3-doped MOX fuel: doping and sintering atmosphere optimization

    International Nuclear Information System (INIS)

    Thomas, R.

    2013-01-01

    Optimal use of the Mixed Oxide (U,Pu)O 2 nuclear fuel in pressurized water reactors is mainly limited by the behavior of gaseous fission produced during irradiation. Within the MOX microstructure, the probability of fission gas release is increased by the presence of rich localized plutonium areas exhibiting a higher local burn-up. A solution consists in optimizing plutonium distribution within the industrial product and promoting the crystalline growth of the fuel grains. For this purpose, addition of chromium sesquioxide during the manufacturing process is currently considered. A previous thesis has shown that the best results are obtained for a Cr addition slightly greater than the solubility limit of Cr in (U,Pu)O 2 . In order to explain the enhanced plutonium homogeneity, the author highlighted the formation of PuCrO 3 precipitates at grain boundaries. A sintering model under reducing atmosphere, with chromium addition, was proposed. However, several points have to be more thoroughly investigated, especially regarding the solubility limit of chromium, as well as the optimal conditions of PuCrO 3 precipitates formation. In a first part, speciation of solubilized and precipitated chromium in the mixed oxide (U,Pu)O 2 is studied using electron probe microanalysis (EPMA) and X-ray absorption spectroscopy (XAS). It was shown that the oxidation state and the environment of soluble chromium within the (U,Pu)O 2 matrix do not depend on the oxygen partial pressure during sintering, neither on the plutonium content of the mixed oxide. However, both chemical nature of the precipitates and chromium solubility depend on the thermodynamic variable and on the plutonium content.Based on these results, a chromium solubility model in the mixed oxide (U,Pu)O 2-x was built using the law of mass action governing solubility equilibrium. This model is described as a function of the plutonium content (y) of the solid solution (U 1-y Pu y )O 2-x (y = 0,11; 0,275 et 1) and in the

  2. Effect of continuous change of sintering atmosphere on the grain growth of Cr-doped UO2 pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Nam, Ik Hui; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    Cr-doped UO 2 pellet is one of the promising candidates for the high burn-up fuel in commercial LWRs. Major nuclear fuel vendors of such as AREVA or Westinghouse initiated the development of Cr-doped or Cr-containing additives doped UO 2 pellets since at the mid of 90's. Now, qualification programs are on-going to provide these pellets commercially. The main characteristics of the Cr-doped pellets are large-grain and visco-plasticity. Large grain pellet can reduce the corrosive fission gas release at high burn up. Viscoplastic soft pellets can lower the pressure to a cladding caused by a thermal expansion of a pellet at an elevated temperature during transient operations. Those advantages can provide room for additional power uprates and high burnup limits. Especially, PCI resistance improvement can be achieved by enlarging the pellet grain size and enhancing the fuel deformation at an elevated temperature. In this paper, to study the effect of oxygen partial pressure on grain growth in Cr-doped UO 2 pellets, Cr- doped UO 2 samples have been sintered with and without a step-wise change of sintering atmospheres. An introduction of a step-wise variation of oxygen partial pressure during the sintering enhances the grain growth of UO 2 pellets greatly. This step-wise sintering effect has been explained in terms of a continuous increase of Cr concentration along the grain boundary. The observed grain growth behavior under step-wisely changed sintering atmospheres demonstrates the possibility of reducing the amount of Cr 2 O 3 to minimum via control of oxygen partial pressure while keeping the large grain size

  3. High pressure sintering (HP-HT) of diamond powders with titanium and titanium carbide

    International Nuclear Information System (INIS)

    Jaworska, L.

    1999-01-01

    Polycrystalline diamond compacts for cutting tools are mostly manufactured using high pressure sintering (HP-HT). The standard diamond compacts are prepared by diamond powders sintering with metallic binding phase. The first group of metallic binder are metals able to solve carbon - Co, Ni. The second group of metal binders are carbide forming elements - Ti, Cr, W and others. The paper describes high pressure sintering of diamond powder with titanium and nonstoichiometry titanium carbide for cutting tool application. A type of binding phase has the significant influence on microstructure and mechanical properties of diamond compacts. Very homogeneous structure was achieved in case of compacts obtained from metalized diamond where diamond-TiC-diamond connection were predominant. In the case of compacts prepared by mechanical mixing of diamond with titanium powders the obtained structure was nonhomogeneous with titanium carbide clusters. They had more diamond to diamond connections. These compacts compared to the compact made of metallized diamond have greater wear resistance. In the case of the diamond and TiC 0.92 sintering the strong bonding of TiC diamond grains was obtained. The microstructure observations for diamond with 5% wt. Ti and diamond with 5% wt. TiC 0.92 (the initial composition) compacts were performed in transmission microscope. For two type of compacts the strong bonding phase TiC without defects is creating. (author)

  4. Carbon Co-Deposition During Gas Reduction of Water-Atomized Fe-Cr-Mo Powder

    Directory of Open Access Journals (Sweden)

    Ali B.

    2017-06-01

    Full Text Available The water atomization of iron powder with a composition of Fe-3Cr-0.5Mo (wt.% at 1600°C and 150 bar creates an oxide layer, which in this study was reduced using a mixture of methane (CH4 and argon (Ar gas. The lowest oxygen content was achieved with a 100 cc/min flow rate of CH4, but this also resulted in a co-deposition of carbon due to the cracking of CH4. This carbon can be used directly to create high-quality, sinter hardenable steel, thereby eliminating the need for an additional mixing step prior to sintering. An exponential relationship was found to exist between the CH4 gas flow rate and carbon content of the powder, meaning that its composition can be easily controlled to suit a variety of different applications.

  5. Formation of peripheral porosity regions around urania in zirconia-urania mixed oxide powder compact sintering

    International Nuclear Information System (INIS)

    Das, P.; Choudhury, R.

    1992-01-01

    Sintering studies of zirconia-urania mixed oxide powder compacts (in stages of 5% urania up to a maximum of 20% addition) were carried out at temperatures between 1000-1400deg C for various soaking periods. The formation of a peripheral porosity region around comparatively coarser urania particle was a characteristic feature in this mixed oxide sintered compact. At even a higher sintering temperature (1800deg C), where extensive solid solution formation takes place, this porosity region demarcates the solutionized particles from the host zirconia apparently acting as a discontinuity in the system. Relative shrinkage difference between the dissimilar particles probably contributes to the porosity regions around the minor second phase at a lower temperature while at higher temperature generation of 'Kirkendall porosity' may be responsible for such an effect. (orig.)

  6. Hard magnetic property and δM(H) plot for sintered NdFeB magnet

    International Nuclear Information System (INIS)

    Gao, R.W.; Zhang, D.H.; Li, W.; Li, X.M.; Zhang, J.C.

    2000-01-01

    The hard magnetic properties and the interactions between the grains for sintered Nd 16 Fe 73 Co 5 B 6 magnets are investigated by using δM(H) plot technique. The results show that the δM(H) plot of NdFeB sintered magnet can explain the effects of the microstructure (size, shape and orientation of the grains) and the intergrain interactions on the hard magnetic properties of the magnet. However, the value of δM(H) is positive when the applied field is not strong enough, which means that the common δM(H) plot theory is not completely consistent with the sintered NdFeB magnet

  7. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  8. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    Effect of different additives, namely Cr2O3, Fe2O3 and TiO2, up to 2 wt% was studied on the sinter- ing and .... mental distribution of the components is shown in figure 7. It shows ... Chiang Y M, Birniand D and Kingery W 1996 Physical ceram-.

  9. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  10. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    Directory of Open Access Journals (Sweden)

    Marek Przybylski

    2016-04-01

    Full Text Available Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  11. Modeling on Fe-Cr microstructure: evolution with Cr content

    International Nuclear Information System (INIS)

    Diaz Arroyo, D.; Perlado, J.M.; Hernandez-Mayoral, M.; Caturla, M.J.; Victoria, M.

    2007-01-01

    Full text of publication follows: The minimum energy configuration of interstitials in the Fe-Cr system, which is the base for the low activation steels being developed in the European fusion reactor materials community, is determined by magnetism. Magnetism plays also a role in the atomic configurations found with increasing Cr content. Results will be presented from a program in which the microstructure evolution produced after heavy ion irradiation in the range from room temperature to 80 K is studied as a function of the Cr content in alloys produced under well controlled conditions, i.e. from high purity elements and with adequate heat treatment. It is expected that these measurements will serve as matrix for model validation. The first step in such modeling sequence is being performed by modeling the evolution of displacement cascades in Fe using the Dudarev -Derlet and Mendeleev potentials for Fe and the Caro potential for Fe-Cr. It is of particular interest to study the evolution of high-energy cascades, where an attempt will be made to clarify the role of the evolution of sub-cascades. Kinetic Monte Carlo (kMC) techniques will be used then to simulate the defect evolution. A new parallel kMC code is being implemented for this purpose. (authors)

  12. Simulation of radiation damage in Fe and Fe-Cr

    International Nuclear Information System (INIS)

    Lagerstedt, Christina

    2005-11-01

    Steel is an important structural material in nuclear reactors used for example in pressure vessels and fast reactor cladding. In reactor environments it has been observed that ferritic steels are more resistant to swelling than the austenitic steels typically used. Much effort has been put into developing basic models of FeCr alloys which can serve as model alloys for describing ferritic steels. As a result, a number of interatomic potentials for Fe and FeCr alloys exist today. For the work in this thesis, basic material properties coming from experiments or ab initio calculations were used to fit interatomic potentials for Fe, Cr and FeCr implementing both the embedded atom method and the Finnis-Sinclair formalisms. The potentials were then validated by molecular dynamic calculations of material properties such as defect formation energies, migration energies and thermal expansion. Further studies of potential performance were carried out in simulations of radiation damage cascades and thermal aging. The influence of the interatomic potential on the primary defect state in materials under irradiation was analyzed in a study comparing results obtained using four different potentials. The objective of the study was to find correlations between potential properties and the primary damage state produced in simulations of displacement cascades. The defect evolution and clustering during different cascade stages were also investigated to try to gain a better understanding of these processes

  13. Migration of Cr-vacancy clusters and interstitial Cr in α-Fe using the dimer method

    International Nuclear Information System (INIS)

    Chen, D.; Gao, F.; Hu, S. Y.; Sun, X.; Heinisch, H. L.; Henager, C. H.; Khaleel, M. A.; Hu, W. Y.; Terentyev, D.

    2010-01-01

    The migration mechanisms and the corresponding activation energies of Cr-vacancy (Cr-V) clusters and Cr interstitials in α-Fe have been investigated using the dimer and the nudged elastic-band methods. Dimer searches are employed to find the possible transition states of these defects and the lowest-energy paths are used to determine the energy barriers for migration. A substitutional Cr atom can migrate to a nearest-neighbor vacancy through an energy barrier of 0.56 eV but this simple mechanism alone is unlikely to lead to the long-distance migration of Cr unless there is a supersaturated concentration of vacancies in the system. The Cr-vacancy clusters can lead to long-distance migration of a Cr atom that is accomplished by Fe and Cr atoms successively jumping to nearest-neighbor vacancy positions, defined as a self-vacancy-assisted migration mechanism, with the migration energies ranging from 0.64 to 0.89 eV. In addition, a mixed Cr-Fe dumbbell interstitial can easily migrate through Fe lattices, with the migration energy barrier of 0.17, which is lower than that of the Fe-Fe interstitial. The on-site rotation of the Cr-Fe interstitial and Cr atom hopping from one site to another are believed to comprise the dominant migration mechanism. The calculated binding energies of Cr-V clusters are strongly dependent on the size of clusters and the concentration of Cr atoms in clusters.

  14. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giant magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe

  15. Phase identification and morphology study of hematite (Fe2O3) with sintering time varitions

    Science.gov (United States)

    Yazirin, Cepi; Puspitasari, Poppy; Sasongko, Muhammad Ilman Nur; Tsamroh, Dewi Izzatus; Risdanareni, Puput

    2017-09-01

    Iron oxide has been the interest of many studies due to its applications in various scientific and industrial fields including in environment, corrosion, soil science, and exhaust emissions. Iron oxide (Fe2O3) has potential applications in catalytic reactions in electronic devices such as semiconductors, paint formulations, and lithium rechargeable batteries. Fe2O3 can be synthesized through the process of stirring, decomposition of organic iron, sol-gel, combustion, and evaporating solvents. Most of the methods used involve several steps and take a long time. The aim of this research was to investigate the phase and morphology characterization of iron oxide (Fe2O3) powder with solvent ethylene glycol after being sintered for 1 hour, 2 hours and 3 hours. The characterization tools utilized were XRD, SEM-EDX, and FTIR. The results of XRD analysis showed that the Fe2O3 sintered for 1 hour had the smallest crystallite size with a diameter of 21.05 nm. In the XRD test, the beam of X-ray was shot directly at the grain being tested. The results of SEM analysis showed thatthe Fe2O3 sintered for 1 hour produced the best result due to its crystallite size of 12.36 nm and hada shape of homogeneous nanosphere; the duration of sintering indeed had a great influence on the grain size of iron oxide (Fe2O3). In addition, the results of the elemental composition analysis indicate that the longer the sintering process, the higher the concentration of O but the lower the Fe.

  16. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  17. Surface half-metallicity of half-Heusler compound FeCrSe and interface half-metallicity of FeCrSe/GaP

    Energy Technology Data Exchange (ETDEWEB)

    Khalaf Al-zyadi, Jabbar M., E-mail: jabbar_alzyadi@yahoo.com [Department of Physics, College of Education for Pure Sciences, University of Basrah (Iraq); Jolan, Mudhahir H. [Department of Physics, College of Education for Pure Sciences, University of Basrah (Iraq); Yao, Kai-Lun, E-mail: klyao@mail.hust.edu.cn [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of Sciences, Shenyang 110015 (China)

    2016-04-01

    Recent studies showed that half-Heusler FeCrSe exhibits half-metallic ferromagnetism (Huang et al. [20]). In this paper, we investigate extensively the electronic, magnetic, and half-metallic properties of the half-Heusler alloy FeCrSe (111) and (001) surfaces and the interface with GaP (111) substrate by using the first-principles calculations within the density functional theory. The atomic density of states demonstrates that the half-me tallicity verified in the bulk FeCrSe is maintained at the CrSe-terminated (001) and Se-terminated (111) surfaces, but lost at both Cr- and Fe-terminated (111) surfaces and the Fe-terminated (001) surface. Alternatively, for the interface of FeCrSe/GaP (111), the bulk half-metallicity is destroyed at Se–P configuration while Se–Ga interface and subinterface show nearly 100% spin polarization. Moreover, the calculated interfacial adhesion energies exhibit that Se–Ga shape is more stable than the Se–P one. The calculated magnetic moments of Se, Ga at the Se–Ga (111) interface and P at the Se–P (111) interface increase with respect to the corresponding bulk values while the atomic magnetic moment of Se atom at the Se–P (111) interface decreases. We also notice that the magnetic moments of subinterface Fe at both Se–Ga and Se–P (111) interfaces decrease compared to the bulk values. - Highlights: • The half-metallicity verified in the bulk FeCrSe is kept at the CrSe-terminated (001) and Se-terminated (111) surfaces. • The calculated interfacial adhesion energies exhibit that Se–Ga shape is more stable than Se–P. • The magnetic moments of Se, Ga and P atoms at the interface increase. • The Se–Ga interface shows nearly 100% spin polarization.

  18. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    Science.gov (United States)

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p alloy. This could affect health on long

  19. Effect of repressing of briquettes at high hydrostatic pressures on fine structure of carbide fraction in compacts and sintered BK10 alloy

    International Nuclear Information System (INIS)

    Chernyj, Yu.F.; Mikhajlenko, G.P.; Labinskaya, N.G.; Vangengeim, S.D.; Fal'kovskij, V.A.; Lavrukhina, L.I.

    1977-01-01

    The effect was studied of the repressing at high hydrostatic pressures of preforms of hard alloy powder mixture with different degree of fineness on changes in fine structure of the carbide phase of compacts and the VK10 sintered alloy. X-ray diffraction method was used. Sufficient widening of diffraction lines of the WC phase in compacts and in a sintered alloy with the increase in hydrostatic pressure testifies to the fact of the production of more inperfect carbide substructure mainly due to fragmentation subgrains. The effect of processing pressure manifests itself to a greater extent in compacts of the coarse-ground mixture; in the sintered alloy the repressing pressure effect ''is being smoothed'' to some extent. The density of dislocation in the compacts and the sintered alloy were evaluated quantatively depending on the hydrostatic pressure values during processing of preforms

  20. EFFECT OF DIFFERENT COMPACTION PRESSURE AND DIFFERENT SINTERING ROUTE ON K0.5NA0.5NBO₃ PHYSICAL AND DIELECTRIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nor Fatin Khairah Bahanurddin

    2016-07-01

    Full Text Available Alkaline niobate known as K0.5Na0.5NbO3 (KNN, a lead-free piezoelectric ceramic was synthesized via a solid state reaction method. The samples were compacted at different pressures (100, 200, 300 and 400 MPa and sintered using two different techniques (conventional furnace and hot isostatic pressing (HIP. The effect of compaction pressure and sintering technique on physical and dielectric properties was studied. The optimum compaction pressure (300 MPa and sintering via HIP (at 1080 °C for 30 min increased the density and grain size ( range 30 - 300 nm and improved its dielectric properties. Therefore, the combination of suitable compaction pressure and sintering technique has produced larger grain size and higher density of KNN which resulted in outstanding dielectric properties. At room temperature, excellent values of ε r (5517.35 and tan δ (0.954, recorded at 1 MHz were measured for the KNN300HIP sample with highest density (4.4885 g/cm³.

  1. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  2. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  3. Microstructural comparison of effects of hafnium and titanium additions in spark-plasma-sintered Fe-based oxide-dispersion strengthened alloys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yina, E-mail: huangyina1981@hotmail.com [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Hongtao [Department of Materials, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Auger, Maria A.; Hong, Zuliang [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Ning, Huanpo [School of Engineering of Materials Science, Queen Mary University of London, London, E1 4NS (United Kingdom); Nanoforce Technology Ltd, London, E1 4NS (United Kingdom); Gorley, Michael J. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Grant, Patrick S. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Reece, Michael J.; Yan, Haixue [School of Engineering of Materials Science, Queen Mary University of London, London, E1 4NS (United Kingdom); Nanoforce Technology Ltd, London, E1 4NS (United Kingdom); Roberts, Steve G. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2017-04-15

    Two oxide dispersion strengthened alloys: 14Cr-0.25Y{sub 2}O{sub 3}-0.22Hf (wt.%) and Fe-14Cr-0.25Y{sub 2}O{sub 3}-0.4Ti (wt.%) were fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). Electron backscatter diffraction showed grain sizes in the range 0.5–15 μm in both alloys. Transmission electron microscopy and scanning transmission electron microscopy showed a homogeneous distribution of nano-oxides precipitated during SPS. Using high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography, several different oxide phases were found in both alloys, but the majority of dispersoids were Y-Hf-O type in Fe-14Cr-0.25Y{sub 2}O{sub 3}-0.22Hf and Y-Ti-O type in Fe-14Cr-0.25Y{sub 2}O{sub 3}-0.4Ti. There were a variety of orientation relationships between the different dispersoids and the ferritic matrix. Both alloys had dispersoid densities of ∼10{sup 23}/m{sup 3}, with average diameters of 4.3 nm and 3.5 nm in the 0.22Hf and 0.4Ti containing alloys, respectively. Per atom added, Hf (0.07 at.%) is suggested to be more potent than Ti (0.46 at.%) in refining the nano-oxides.

  4. Improvement of the microstructure and magnetic properties of sintered NdFeB permant magnets

    International Nuclear Information System (INIS)

    Vial, F.; Rozendaal, E.; Sagawa, M.

    1998-01-01

    A correlation between sintered NdFeB process, microstructure of the products at each step of the process and magnetic properties has been established. To increase (BH) max of sintered NdFeB magnets, the total rare-earth content in the alloy has to be decreased and to keep coercivity as high as possible, the unavoidable oxygen pick-up has to be substantially reduced. The composition improvements tend to create a high sensitivity to form abnormal grain growth which can potentially occur during the sintering operation. Special attention has been given to characterising, understanding the mechanisms and solving this defect which could affect the magnetic properties. In addition, the composition and each step of the process have been optimised to improve magnetic properties, thermal stability and corrosion resistance of the NdFeB permanent magnets. These collaborative studies have resulted in a significant improvement of both remanence and coercivity of the sintered NdFeB permanent magnets, covering a wide coercivity range from 800 to 2500 kA/m (10 to 35 kOe) with respective associated energy products of 400 to 270 kJ/m3 (52 to 35 MGOe). (orig.)

  5. Structure and grindability of cast Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Pan, C.-H.; Wu, S.-C.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure, microhardness and grindability of Ti-5Cr and a series of ternary Ti-5Cr-xFe alloys with 0.1, 0.5, 1, 3 and 5 wt.% Fe, respectively. This study evaluated the phase and structure of Ti-5Cr and Ti-5Cr-xFe alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. In addition, grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min), with the goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The results showed that the structure of Ti-5Cr-xFe alloys is sensitive to the Fe content. With Fe contents higher than 0.5 wt.%, the equi-axed β phase is entirely retained, while ω phase was found in the Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The largest quantity of ω phase and highest microhardness were found in Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The grinding rates of the Ti-5Cr and Ti-5Cr-xFe alloys showed a similar tendency to the microhardness. The Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys exhibited the best grindability, especially at 500, 750 and 1000 m/min. Furthermore, the grindability of the tested metals increased in proportion to grinding speed up to 1000 m/min, with a decrease after 1200 m/min. This study concluded that Fe may be used to harden titanium and improve the grindability

  6. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  7. The Reduction of Cr(VI) to Cr(III) by Natural Fe-Bearing Minerals: A Synchrotron XAS Study

    Science.gov (United States)

    Xu, H.; Guo, X.; Ding, M.; Migdissov, A. A.; Boukhalfa, H.; Sun, C.; Roback, R. C.; Reimus, P. W.; Katzman, D.

    2017-12-01

    Cr(VI) in the form of CrO42- is a pollutant species in groundwater and soils that can pose health and environmental problems. Cr(VI) associated with use as a corrosion inhibitor at a power plant from 1956-1972 is present in a deep groundwater aquifer at Los Alamos National Laboratory. A potential remediation strategy for the Cr contamination is reduction of Cr(VI) to Cr(III) via the acceptance of electrons from naturally occurring or induced Fe(II) occurring in Fe-bearing minerals. In this work, using synchrotron-based X-ray techniques, we investigated the Cr reduction behavior by Fe-bearing minerals from outcrop and core samples representative of the contaminated portion of the aquifer. Samples were exposed to solutions with a range of known Cr (VI) concentrations. XANES and EXAFS spectra showed that all the Cr(VI) had been reduced to Cr(III), and micro XRF mapping revealed close correlation of Cr and Fe distribution, implying that Fe(II) in minerals reduced Cr(VI) in the solution. Similar behavior was observed from in-situ XANES measurements on Cr reduction and adsorption by mineral separates from the rock samples in Cr(VI)-bearing solutions. In addition, to obtain reference parameters for interpreting the data of natural samples, we collected Cr and Fe EXAFS spectra of Cr(III)-Fe(III) hydroxide solid solutions, which show progressive changes in the local structure around Cr and Fe over the whole series.

  8. The effect of explosive compacting on the properties of the 60% LaCr03-40% Cr cermet

    International Nuclear Information System (INIS)

    Atroshenko, E.S.; Barykin, B.M.; Ivanov, V.S.; Krasulin, Yu.L.; Spirodonov, E.G.

    1976-01-01

    A technique of explosive compacting of composite cermet materials (M + M0) has been used for producing large blanks with a density close to theoretical. A study has been made of the properties of an explosively compacted 60% LaCr0 3 -40% Cr cermet over a wide temperature range. Cermets compacted explosively are shown to have a number of advantages over ones prepared by conventional powder metallurgical techniques. (author)

  9. Gas response properties of citrate gel synthesized nanocrystalline MgFe2O4: Effect of sintering temperature

    International Nuclear Information System (INIS)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe 2 O 4 by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe 2 O 4 . ► Enhancement in selectivity of MgFe 2 O 4 towards LPG with sintering temperature. ► Use of MgFe 2 O 4 to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe 2 O 4 material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe 2 O 4 material. It was revealed that MgFe 2 O 4 sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe 2 O 4 sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  10. Study of the oxidation of Fe-Cr alloys at high temperatures

    International Nuclear Information System (INIS)

    Carneiro, J.F.; Sabioni, A.C.S.

    2010-01-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1μg. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10 -9 g 2 .cm -4 .s -1 , for the alloy Fe-1.5% Cr, to 1.18 x 10-14g 2 .cm -4 .s -1 for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  11. Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Rui [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Lu, Chenyang; Li, Zhengyuan [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Ding, Xueyong [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    Highlights: • A 9Cr-ODS steel was produced by mechanical alloying and spark plasma sintering. • Bimodal grain size distribution was observed. • Formation mechanism of bimodal grain size distribution was discussed. • The size and number density of nanoscale particles were obtained by SAXS and HRTEM. • The contribution of nano-sized particles to yield strength is dominating. - Abstract: 9Cr oxide dispersion strengthened (ODS) steel was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The nano-sized particles, grain size distribution and mechanical properties of 9Cr-ODS steel sintered at 950 °C were studied by synchrotron radiation small angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), electron backscatter diffraction (EBSD) and tensile experiment. The results showed that bimodal grain size distribution in the matrix is observed, which is attributed to the heterogeneous recrystallization process during the SPS. High-density nano-sized Y{sub 2}Ti{sub 2}O{sub 7} and some large oxides of Cr{sub 2}Mn(Ti)O{sub 4} are formed in 9Cr-ODS steel. The number density and average size of Y{sub 2}Ti{sub 2}O{sub 7} obtained from SAXS are 4.72 × 10{sup 22}/m{sup 3} and 4.4 nm, respectively. The yield strengths of 9Cr-ODS steel fabricated by SPS are compared with the typical 9Cr-ODS steel produced by HIP.

  12. Amorphization of C-implanted Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1991-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is a prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C and Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C only do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibit good aqueous corrosion resistance. (orig.)

  13. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    Science.gov (United States)

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  14. Surface morphology of scale on FeCrAl (Pd, Pt, Y) alloys

    International Nuclear Information System (INIS)

    Amano, T.; Takezawa, Y.; Shiino, A.; Shishido, T.

    2008-01-01

    The high temperature oxidation behavior of Fe-20Cr-4Al, floating zone refined (FZ) Fe-20Cr-4Al, Fe-20Cr-4Al-0.5Pd, Fe-20Cr-4Al-0.5Pt and Fe-20Cr-4Al-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys was studied in oxygen for 0.6-18 ks at 1273-1673 K by mass gain measurements, X-ray diffraction and scanning electron microscopy. The mass gains of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys showed almost the same values. Those of FeCrAl-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys decreased with increasing yttrium of up to 0.1% followed by an increase with the yttrium content after oxidation for 18 ks at 1473 K. Needle-like oxide particles were partially observed on FeCrAl alloy after oxidation for 7.2 ks at 1273 K. These oxide particles decreased in size with increasing oxidation time of more than 7.2 ks at 1473 K, and then disappeared after oxidation for 7.2 ks at 1573 K. It is suggested that a new oxide develops at the oxygen/scale interface. The scale surface of FeCrAl alloy showed a wavy morphology after oxidation for 7.2 ks at 1273 K which then changed to planar morphology after an oxidation time of more than 7.2 ks at 1573 K. On the other hand, the scale surfaces of other alloys were planar after all oxidation conditions in this study. The scale surfaces of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys were rough, however, those of FeCrAl-(0.1, 0.2, 0.5)Y alloys were smooth. The oxide scales formed on FeCrAl-(0.1, 0.2, 0.5)Y alloys were found to be α-Al 2 O 3 with small amounts of Y 3 Al 5 O 12 , and those of the other alloys were only α-Al 2 O 3

  15. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  16. The investigation of the microstructure and mechanical properties of ordered alominide-iron (boron) nanostructures produced by mechanical alloying and sintering

    Science.gov (United States)

    Izadi, S.; Akbari, Gh.; Janghorban, K.; Ghaffari, M.

    In this study, mechanical alloying (MA) of Fe-50Al, Fe-49.5Al-1B, and Fe-47.5Al-5B (at.%) alloy powders and mechanical properties of sintered products of the as-milled powders were investigated. X-ray diffraction (XRD) results showed the addition of B caused more crystallite refinement compared to the B-free powders. To consider the sintering and ordering behaviors of the parts produced from cold compaction of the powders milled for 80 h, sintering was conducted at various temperatures. It was found that the sintering temperature has no meaningful effect on the long-range order parameter. The transformation of the disordered solid solution developed by MA to ordered Fe-Al- (B) intermetallics was a consequence of sintering. Also, the nano-scale structure of the samples was retained even after sintering. The microhardness of pore-free zones of the nanostructured specimens decreased by increasing the sintering temperature. Moreover, the sintering temperature has no effect on the compressive yield stress. However, the fracture strain increased by increasing the sintering temperature. The samples containing 1 at.% B showed more strain to fracture compared with the B-free and 5 at.% B samples.

  17. Effects of V and Cr on Laser Cladded Fe-Based Coatings

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2018-03-01

    Full Text Available Fe-based coatings with high V and Cr content were obtained by laser cladding using Fe-based powder with different Cr3C2 and FeV50 content. The results showed that Fe-based coatings were uniform and dense. The constituent phases were mainly composed of α-Fe solid solution with the increase of Cr3C2 and FeV50, γ-Fe and V8C7 phases were achieved. The microstructure of the coatings exhibited a typical dendrite structure. The concentration of C, V and Cr were saturated in dendritic areas, and the other alloying elements were mainly dissolved in the interdendritic areas. The hardness and wear resistance of Fe-based coatings were enhanced with the Cr3C2 and FeV50 addition. The specimen with 15% Cr3C2 and 16% FeV50 had the highest hardness of 66.1 ± 0.6 HRC, which was 1.05 times higher than the sample with 4.5% Cr3C2 and 5% FeV50, and the wear resistance of the former was three times greater than the latter.

  18. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    Energy Technology Data Exchange (ETDEWEB)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.; Köpp, F.; Cologna, M.; Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Praha 1, 115 19 (Czech Republic)

    2015-02-15

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. The facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.

  19. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    International Nuclear Information System (INIS)

    Auger, M.A.; Leguey, T.; Munoz, A.; Monge, M.A.; Castro, V. de; Fernandez, P.; Garces, G.; Pareja, R.

    2011-01-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y 2 O 3 alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y 2 O 3 developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y 2 O 3 free alloy. Strengthening induced by the Y 2 O 3 dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  20. Study on Sintering Mechanism of Stainless Steel Fiber Felts by X-ray Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2016-01-01

    Full Text Available The microstructure evolution of Fe-17 wt. % Cr-12 wt. % Ni-2 wt. % Mo stainless steel fiber felts during the fast sintering process was investigated by the synchrotron radiation X-ray computed tomography technique. The equation of dynamics of stable inter-fiber neck growth was established for the first time based on the geometry model of sintering joints of two fibers and Kucsynski’s two-sphere model. The specific evolutions of different kinds of sintering joints were observed in the three-dimensional images. The sintering mechanisms during sintering were proposed as plastic flow and grain boundary diffusion, the former leading to a quick growth of sintering joints.

  1. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    Science.gov (United States)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  2. Ion irradiation effects on high purity bcc Fe and model FeCr alloys

    International Nuclear Information System (INIS)

    Bhattacharya, Arunodaya

    2014-01-01

    FeCr binary alloys are a simple representative of the reduced activation ferritic/martensitic (F-M) steels, which are currently the most promising candidates as structural materials for the sodium cooled fast reactors (SFR) and future fusion systems. However, the impact of Cr on the evolution of the irradiated microstructure in these materials is not well understood in these materials. Moreover, particularly for fusion applications, the radiation damage scenario is expected to be complicated further by the presence of large quantities of He produced by the nuclear transmutation (∼ 10 appm He/dpa). Within this context, an elaborate ion irradiation study was performed at 500 C on a wide variety of high purity FeCr alloys (with Cr content ranging from ∼ 3 wt.% to 14 wt.%) and a bcc Fe, to probe in detail the influence of Cr and He on the evolution of microstructure. The irradiations were performed using Fe self-ions, in single beam mode and in dual beam mode (damage by Fe ions and co-implantation of He), to separate ballistic damage effect from the impact of simultaneous He injection. Three different dose ranges were studied: high dose (157 dpa, 17 appm He/dpa for the dual beam case), intermediate dose (45 dpa, 57 appm He/dpa for dual beam case) and in-situ low dose (0.33 dpa, 3030 appm He/dpa for the dual beam case). The experiments were performed at the JANNuS triple beam facility and dual beam in situ irradiation facility at CEA-Saclay and CSNSM, Orsay respectively. The microstructure was principally characterized by conventional TEM, APT and EDS in STEM mode. The main results are as follows: 1) A comparison of the cavity microstructure in high dose irradiated Fe revealed strong swelling reduction by the addition of He. It was achieved by a drastic reduction in cavity sizes and an increased number density. This behaviour was observed all along the damage depth, up to the damage peak. 2) Cavity microstructure was also studied in the dual beam high dose

  3. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    Science.gov (United States)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  4. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  5. Cation distribution and crystallographic characterization of the spinel oxides MgCr{sub x}Fe{sub 2−x}O{sub 4} by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, A.K.M., E-mail: zakaria6403@yahoo.com [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Nesa, Faizun [Department of Natural Science, Daffodil International University, Dhaka (Bangladesh); Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Saeed Khan, M.A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Datta, T.K.; Aktar, Sanjida; Liba, Samia Islam; Hossain, Shahzad; Das, A.K.; Kamal, I.; Yunus, S.M. [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Eriksson, S.-G. [Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2015-06-05

    Highlights: • MgCr{sub x}Fe{sub 2−x}O{sub 4} ferrites crystallize at 1300 °C and possess cubic symmetry. • Cation distribution and crystallographic parameters have been determined precisely. • Cell parameter decreases with increasing Cr content in the system. • Ferrimagnetic ordering was found at room temperature for all the samples. - Abstract: The spinel system MgCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) has been prepared by solid state sintering method in air at 1573 K. X-ray and neutron powder diffraction experiments have been performed on the samples at room temperature for structural characterization. Rietveld refinement of the neutron diffraction data reveals that all the samples of the series possess cubic symmetry corresponding to the space group F d-3m. The distribution of the three cations Mg, Fe and Cr over the two sublattices and other crystallographic parameters has been determined precisely. The results reveal that Cr has been substituted for Fe selectively. Cr ions invariably occupy the octahedral (B) site for all values of x. Mg and Fe ions are distributed over both A and B sites for all x values. With increasing x the occupation of Mg increases in the A site and decreases in the B site for all the samples, while the Fe ions gradually decreases in both the sites for all values of x. The lattice constant decreases with increasing Cr content in the system. The magnetic structure at room temperature was ferrimagnetic for all the samples.

  6. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  7. An investigation of the tribological and nano-scratch behaviors of Fe–Ni–Cr alloy sintered by direct metal laser sintering

    International Nuclear Information System (INIS)

    Amanov, Auezhan; Sasaki, Shinya; Cho, In-Sik; Suzuki, Yusuke; Kim, Hae-Jin; Kim, Dae-Eun

    2013-01-01

    Highlights: ► Fe–Ni–Cr alloy was sintered by direct metal laser sintering. ► HFUP technique was able to produce a hardened surface layer. ► HFUP-treated specimen showed better tribological and scratch properties. - Abstract: In this work, the friction and wear behavior of Fe–Ni–Cr alloy specimens processed by direct metal laser sintering (DMLS) method was investigated by using a ball-on-disk reciprocating tribotester sliding against a hardened steel ball under dry sliding conditions. After DMLS, the specimens were further treated by hot isostatic pressing (HIP) in order to reduce the porosity and to increase the density. Subsequently, one of the specimens was subjected to high-frequency ultrasonic peening (HFUP) with the aim to enhance the tribological properties. The microstructural characterization was conducted using a scanning electron microscope (SEM) and an atomic force microscope (AFM). In addition, nano-scratch tests were carried out on the specimens using a nano-scratch testing (NST) system. The friction and nano-scratch tests results showed that the HFUP-treated specimen led to a reduction in friction coefficient and wear rate, and an increase in resistance to scratch compared to that of the HFUP-free specimen, which may be attributed to the increase in hardness and the formation of corrugated structure

  8. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  9. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  10. Electrochemical properties of the passive film on bulk Zr–Fe–Cr intermetallic fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yakui [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xing, Shupei; Ma, Wen [School of Materials Science and Engineering, Inner Mongolia University of Technology, Huhhot 010051 (China)

    2016-12-01

    Highlights: • SPS was employed to prepare Zr-based intermetallics which were commonly existed in zircaloy. • Zr-based intermetallics act as cathode when they embedded in zirconium matrix. • The passive films on surface of intermetallics behaved as n-type semiconductors. • Carrier concentration of Zr(Fe{sub 3}Cr){sub 2} was much lower than that of other intermetallics. - Abstract: Although Zr-based second phase particles (SPPs) are important factors influencing corrosion resistance of zircaloy cladding materials, the corrosion behavior of SPPs has not been investigated by means of electrochemical method so far. In order to clarify the role of SPPs commonly existed in zircaloy, bulk Zr-based intermetallics were firstly fabricated by spark plasma sintering (SPS) at temperatures 1373 K and an applied pressure of 60 MPa in this work. Both the natural passive film on surface and oxidation behavior of intermetallic has been investigated in this work. X-ray diffraction (XRD) pattern showed that as-prepared intermetallic of crystal structure belongs to Laves phase with AB{sub 2} type. Electrochemical measurement of passive film on surface of bulk Zr-based intermetallic exhibited significant difference with that of zirconium. Potentiodynamic measurements results revealed that intermetallic exhibited higher corrosion potential and lower corrosion current density than that of pure zirconium, implying that Zr-based second phase will act as cathode when they are included in zirconium matrix. Meanwhile, significant improvement of Zr–Fe–Cr intermetallic on the water chemistry corrosion resistance was demonstrated comparing with Zr–Fe and Zr–Cr binary intermetallics.

  11. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    OpenAIRE

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-01-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressur...

  12. Effect of sintering on structure and mechanical properties of alumina-15 vol% zirconia nanocomposite compacts

    International Nuclear Information System (INIS)

    Maneshian, Mohammad H.; Banerjee, Malay K.

    2010-01-01

    The sintering and densification behavior of high energy ball milled (HEBM-ed) alumina-15 vol% zirconia nanocomposite were carried out and the probable tetragonal to monoclinic phase transformation of ZrO 2 during sintering was investigated. Evolution of microstructure resulting from sintering was followed up by means of scanning electron microscopy (SEM) on polished samples, and the degree of phase transformation was determined by quantitative X-ray analysis (XRD). Moreover, synergetic effect of milling time and dopant composition on properties such as relative density, hardness, and fracture toughness was studied. The results have shown that mechanical properties of the composites were strongly dependent on the dopant content, structure and the fraction of tetragonal to monoclinic induced by HEBM and subsequent sintering. The extent of retention of t-ZrO 2 depends on the balance of magnitude of the strain energy arising from HEBM and releasing from sintering. In fact, compacts with aggressive HEBM history showed improved fracture toughness. Also it is shown the homogeneous microstructure obtained by HEBM and subsequent sintering promotes better densification.

  13. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A., E-mail: mauger@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Munoz, A., E-mail: amunoz@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Castro, V. de, E-mail: vanessa.decastro@materials.ox.ac.uk [Department of Materials, University of Oxford, OX1 3PH (United Kingdom); Fernandez, P., E-mail: pilar.fernandez@ciemat.es [National Fusion Laboratory-CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Garces, G., E-mail: ggarces@cenim.csic.es [Departamento de Metalurgia Fisica, CENIM (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Pareja, R., E-mail: rpp@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain)

    2011-10-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y{sub 2}O{sub 3} alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y{sub 2}O{sub 3} developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y{sub 2}O{sub 3} free alloy. Strengthening induced by the Y{sub 2}O{sub 3} dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  14. Molecular dynamics study on threshold displacement energies in Fe-Cr alloys

    Science.gov (United States)

    Fu, Jiawei; Ding, Wenyi; Zheng, Mingjie; Mao, Xiaodong

    2018-03-01

    The threshold displacement energies (Ed) of Fe and Cr atoms in Fe-Cr alloys with Cr contents ranging from 0% to 21% have been obtained with molecular dynamics (MD) method. The values of Ed have been calculated along the three high-symmetry crystallographic directions [0 0 1], [0 1 1] and [1 1 1], a slightly 2° tilt from these directions, and a high-index crystallographic directions [1 3 5]. The results showed that [0 1 1] crystallographic direction had the highest Ed among the three high-symmetry directions in each Cr content alloy. Fe-9Cr had higher weighted average Ed than the other Cr content alloys for both Fe and Cr PKA due to its statistically high Ed along the [0 1 1] crystallographic direction up to 44.3 eV. And the statistical analysis on the primary damage configuration demonstrated that 〈1 1 0〉Fe-Fe dumbbells were the dominant defect structures after relaxation. These data can enrich the database of Ed in Fe-Cr alloys and have potential applications in guiding the optimization design of radiation-resistant RAFM steels.

  15. Production and corrosion resistance of NdFeBZr magnets with an improved response to thermal variations during sintering

    International Nuclear Information System (INIS)

    Yu, L.Q.; Zhong, X.L.; Zhang, Y.P.; Yan, Y.G.; Zhen, Y.H.; Zakotnik, M.

    2011-01-01

    This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature even at industrial scale. The best sintered magnets were produced by jet-milling the powder (to achieve an average 3.4 μm particle size), and then aligned, pressed and sintered under argon at 1100 o C for 3 h followed by appropriate heat treatment. The magnetic properties of the resulting magnets were: (BH) m =403.8 kJ m -3 (±4.7 kJ m -3 ), B r =1430 mT (±9 mT) and i H c =907 kA m -1 (±12 kA m -1 ). Large grain growth, in excess of 100 μm in the Zr-free magnets, was observed during sintering at 1100 o C. This did not occur in the presence of Zr. These observations imply that the sensitivity of this class of magnets to high sintering temperatures is greatly reduced by Zr addition. Corrosion resistance of NdFeB was therefore significantly improved by the addition of small amounts of Zr. - Research highlights: →This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. → It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature; even at industrial scale. → The magnetic properties of the resulting magnets were: (BH) m =403.8 kJ m -3 (±4.7 kJ m -3 ), B r =1430 mT (±9 mT) and i H c =907 kA m -1 (±12 kA m -1 ).

  16. Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering

    International Nuclear Information System (INIS)

    Qu Xiurong; Lue Shuchen; Hu Jianmin; Meng Qingyu

    2011-01-01

    Highlights: → With increasing hot-pressing (HP) temperature, the thermoelectric figure of merit of β-FeSi 2 ceramics is improved slightly. → The grain size of the sample sintered by the spark plasma sintering (SPS) process is smaller than that by the HP process. → The SPS sample shows excellent thermoelectric performance attributed to low thermal conductivity. - Abstract: The microstructure and thermoelectric properties of β-FeSi 2 ceramics by hot pressing (HP) and spark plasma sintering (SPS) are investigated. With increasing hot-pressing temperature, the density, electronic conductivity and thermal conductivity of the samples increase significantly, the thermoelectric figure of merit is improved slightly. The microstructure study indicates that the sizes of the β-FeSi 2 and ε-FeSi phases in the sample sintered by the SPS process are smaller than that by the HP process. The SPS sample shows excellent thermoelectric performance due to the low thermal conductivity.

  17. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels

    Science.gov (United States)

    McMurray, J. W.; Hu, R.; Ushakov, S. V.; Shin, D.; Pint, B. A.; Terrani, K. A.; Navrotsky, A.

    2017-08-01

    Ferritic FeCrAl alloys are candidate accident tolerant cladding materials. There is a paucity of data concerning the melting behavior for FeCrAl and its oxides. Analysis tools have therefore had to utilize assumptions for simulations using FeCrAl cladding. The focus of this study is to examine in some detail the solid-liquid phase equilibria of FeCrAl alloys and spinels with the aim of improving the accuracy of severe accident scenario computational studies.

  18. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  19. Magnetic and Moessbauer study of Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Widatallah, H.; Gismelseed, A.; Bouziane, K.; Yousif, A.; Al Rawas, A.; Al-Omari, I.; Sellai, A. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2006-02-15

    The ferrites Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} (0x0.9) were prepared using the conventional double sintering method. The XRD showed that the samples maintain a single spinel cubic phase. The Moessbauer measurements were carried out at room and liquid nitrogen temperatures. From the area ratios of the A and B sites, it was found that the Fe cation population of the A and B sites decreases in proportion to Cr concentration. The contact hyperfine fields at the A and B sites were found to decrease with increasing Cr contents. This was found to be in approximate agreement with the results of magnetization measurement. The distributions of Mg and Mn cations versus Cr concentration were also determined using the Moessbauer and magnetization results. The Curie temperatures were determined and found to agree with the reported values. As the Cr contents increases the relative magnetization, was found to increase at low temperatures and decreases at higher temperatures.

  20. Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-06-01

    Full Text Available In the present study, SnSb, SnSb/Fe, SnSb/Co, and SnSb/Ni alloy powders processed by co-precipitation were subjected to spark plasma-sintering (SPS) at 400 °C for 5 min. The compacts were structurally and morphologically characterized by X...

  1. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys; Influencia de um revestimento de niobio sobre a resistencia a sulfetacao das ligas FeCr e FeCrY

    Energy Technology Data Exchange (ETDEWEB)

    Geribola, Gulherme Altomari

    2014-07-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H{sub 2}/2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  2. FP corrosion dependence on carbon and chromium content in Fe-Cr steel

    International Nuclear Information System (INIS)

    Sasaki, Koei; Tanigaki, Takanori; Fukumoto, Ken-ichi; Uno, Masayoshi

    2015-01-01

    In an attempt to investigate Cs or Cs-Te corrosion dependence on chromium or carbon content in Fe-Cr steel, cesium and Cs-Te corrosion test were performed to three specimens, Fe-9Cr-0C, Fe-9Cr-0.14C and Fe-13Cr-0.14C, for 100 hours at 973K in simulated high burn-up fuel pin environment. Cesium corrosion depth has no dependence on chromium or carbon content in Fe-Cr steel. Cs-Te corrosion was appeared in only Fe-13Cr-0.14C which has chromium carbides ranged along grain boundary. Appearance of the Cs-Te corrosion was determined by distribution or arrangement of chromium carbides which depends on chromium and carbon content. (author)

  3. 58Fe AND 54Cr IN EARLY SOLAR SYSTEM MATERIALS

    International Nuclear Information System (INIS)

    Wang, Kun; Moynier, Frederic; Podosek, Frank; Foriel, Julien

    2011-01-01

    Stepwise dissolution of primitive meteorites exhibits large 54 Cr anomalies but no collateral effects on 58 Fe and 48 Ca, two other neutron-rich nuclides from the iron peak. These results suggest that 54 Cr must have been produced in particular zones of the rare Type Ia supernovae or that 48 Ca and/or 58 Fe were produced together in Type II supernovae and were chemically separated into some mineral phase that favors Cr over Ca and Fe, and it is the dissolution properties of that phase that is driving the isotopic effect in leaching. The recent findings of nanometer-size oxide grains with very large 54 Cr excesses favored the latter scenario for the origin of the mono-isotopic Cr isotopic effect. In addition, the absence of isotopic variations in the 58 Fe/ 54 Fe ratio at the mineral scale confirms that the short-lived nuclide 60 Fe (T 1/2 = 2.62 Myr) was homogeneously distributed to a less than 15% dispersion in the early solar nebula.

  4. 58Fe and 54Cr in Early Solar System Materials

    Science.gov (United States)

    Wang, Kun; Moynier, Frederic; Podosek, Frank; Foriel, Julien

    2011-10-01

    Stepwise dissolution of primitive meteorites exhibits large 54Cr anomalies but no collateral effects on 58Fe and 48Ca, two other neutron-rich nuclides from the iron peak. These results suggest that 54Cr must have been produced in particular zones of the rare Type Ia supernovae or that 48Ca and/or 58Fe were produced together in Type II supernovae and were chemically separated into some mineral phase that favors Cr over Ca and Fe, and it is the dissolution properties of that phase that is driving the isotopic effect in leaching. The recent findings of nanometer-size oxide grains with very large 54Cr excesses favored the latter scenario for the origin of the mono-isotopic Cr isotopic effect. In addition, the absence of isotopic variations in the 58Fe/54Fe ratio at the mineral scale confirms that the short-lived nuclide 60Fe (T 1/2 = 2.62 Myr) was homogeneously distributed to a less than 15% dispersion in the early solar nebula.

  5. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Patil, J.Y. [School of Physical Sciences, Solapur University Solapur-413255 (India); Mulla, I.S. [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology(C-MET) Pune-411 008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University Solapur-413255 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  6. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R, E-mail: yangh@nimte.ac.cn [Zhejiang province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of {sub j}H{sub c}=36.3kOe, B{sub r}=11.7kGs and (BH){sub max}=34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  7. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    International Nuclear Information System (INIS)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of j H c =36.3kOe, B r =11.7kGs and (BH) max =34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  8. Negative impact of oxygen molecular activation on Cr(VI) removal with core–shell Fe@Fe2O3 nanowires

    International Nuclear Information System (INIS)

    Mu, Yi; Wu, Hao; Ai, Zhihui

    2015-01-01

    Highlights: • The presence of oxygen inhibited Cr(VI) removal efficiency with nZVI by near 3 times. • Cr(VI) removal with nZVI was related to adsorption, reduction, co-precipitation, and adsorption reactions. • Molecular oxygen activation competed donor electrons from Fe 0 core and surface bound Fe(II) of nZVI. • Thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell of nZVI leaded to the electron transfer inhibition. - Abstract: In this study, we demonstrate that the presence of oxygen molecule can inhibit Cr(VI) removal with core–shell Fe@Fe 2 O 3 nanowires at neutral pH of 6.1. 100% of Cr(VI) removal was achieved by the Fe@Fe 2 O 3 nanowires within 60 min in the anoxic condition, in contrast, only 81.2% of Cr(VI) was sequestrated in the oxic condition. Removal kinetics analysis indicated that the presence of oxygen could inhibit the Cr(VI) removal efficiency by near 3 times. XRD, SEM, and XPS analysis revealed that either the anoxic or oxic Cr(VI) removal was involved with adsorption, reduction, co-precipitation, and re-adsorption processes. More Cr(VI) was bound in a reduced state of Cr(III) in the anoxic process, while a thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell, leading to inhibiting the electron transfer, was found under the oxic process. The negative impact of oxygen molecule was attributed to the oxygen molecular activation which competed with Cr(VI) adsorbed for the consumption of donor electrons from Fe 0 core and ferrous ions bound on the iron oxides surface under the oxic condition. This study sheds light on the understanding of the fate and transport of Cr(VI) in oxic and anoxic environment, as well provides helpful guide for optimizing Cr(VI) removal conditions in real applications

  9. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    Science.gov (United States)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  10. Development of an EAM potential for simulation of radiation damage in Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wallenius, J.; Abrikosov, I.A.; Chakarova, R.; Lagerstedt, C.; Malerba, L.; Olsson, P.; Pontikis, V.; Sandberg, N.; Terentyev, D.

    2004-01-01

    We have developed a set of EAM potentials for simulation of Fe-Cr alloys. By relaxing the requirement of reproducing the pressure-volume relation at short distances and by fitting to the thermal expansion coefficients of Fe and Cr, stability of the self-interstitial could be obtained. For Cr, properties of the paramagnetic state were applied, providing a positive Cauchy pressure. Mixed Fe-Cr pair potentials were fitted to the calculated mixing enthalpy of ferromagnetic Fe-Cr. Simulation of thermal ageing in Fe-Cr alloys using the Fe-20Cr potential exhibited pronounced Cr-precipitation for temperatures below 900 K, a feature not observed at any temperature using a potential fitted to the mixing enthalpy of Fe-5Cr

  11. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings.

    Science.gov (United States)

    Kim, Myung-Joo; Choi, Yun-Jung; Kim, Seong-Kyun; Heo, Seong-Joo; Koak, Jai-Young

    2017-01-23

    Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture) milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance), a Scheffe's test, and Pearson's correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps ( p marginal discrepancy and the internal gap variables ( r = 0.654), except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  12. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  13. The Effect of Nano-TiC Addition on Sintered Nd-Fe-B Permanent Magnets

    DEFF Research Database (Denmark)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets....... It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop...

  14. Structural and magnetic studies on spark plasma sintered SmCo{sub 5}/Fe bulk nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rama Rao, N.V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Gopalan, R. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India)]. E-mail: rg_gopy@yahoo.com; Manivel Raja, M. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chakravarty, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Sundaresan, R. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Ranganathan, R. [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Hono, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305 0047 (Japan)

    2007-05-15

    SmCo{sub 5}+xwt% Fe (x=0, 5 and 10) nanocomposite powders were synthesized by mechanical milling and were consolidated into bulk shape by spark plasma sintering (SPS) technique. The evolution of structure and magnetic properties were systematically investigated in milled powders as well as in SPS samples. A maximum coercivity of 8.9kOe was achieved in spark plasma sintered SmCo{sub 5}+5wt% Fe sample. The exchange spring interaction between the hard and soft magnetic phases was evaluated using {delta}M-H measurements and the analysis revealed that the SPS sample containing 5wt% Fe had a stronger exchange coupling between the magnetic phases than that of the sample with10wt% Fe.

  15. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  16. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  17. Cr(VI) retention and transport through Fe(III)-coated natural zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gaoxiang [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Zhaohui, E-mail: li@uwp.edu [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Libing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Hanson, Renee; Leick, Samantha; Hoeppner, Nicole [Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2012-06-30

    Graphical abstract: Breakthrough curves of Cr(VI) from columns packed with raw zeolite (a) and Fe(III)-zeolite (b). The solid line in (b) is the HYDRUS-1D fit to the observed data with adsorption term only, while the dashed line in (b) includes a reduction term in the HYDRUS-1D fit. Highlights: Black-Right-Pointing-Pointer Zeolite modified with Fe(III) could be used for adsorption and retention of Cr(VI). Black-Right-Pointing-Pointer The Fe present on zeolite was in an amorphous Fe(OH){sub 3} form. Black-Right-Pointing-Pointer A Cr(VI) adsorption capacity of 82 mg/kg was found on Fe(III)-zeolite. Black-Right-Pointing-Pointer A Cr(VI) retardation factor of 3 or 5 was determined from column and batch studies. - Abstract: Cr(VI) is a group A chemical based on the weight of evidence of carcinogenicity. Its transport and retention in soils and groundwater have been studied extensively. Zeolite is a major component in deposits originated from volcanic ash and tuff after alteration. In this study, zeolite aggregates with the particle size of 1.4-2.4 mm were preloaded with Fe(III). The influence of present Fe(III) on Cr(VI) retention by and transport through zeolite was studied under batch and column experiments. The added Fe(III) resulted in an enhanced Cr(VI) retention by the zeolite with a capacity of 82 mg/kg. The Cr(VI) adsorption on Fe(III)-zeolite followed a pseudo-second order kinetically and the Freundlich adsorption isotherm thermodynamically. Fitting the column experimental data to HYDRUS-1D resulted in a retardation factor of 3 in comparison to 5 calculated from batch tests at an initial Cr(VI) concentration of 3 mg/L. The results from this study showed that enhanced adsorption and retention of Cr(VI) may happen in soils derived from volcanic ash and tuff that contains significant amounts of zeolite with extensive Fe(III) coating.

  18. Determination of the Fe-Cr-Ni and Fe-Cr-Mo Phase Diagrams at Intermediate Temperatures using a Novel Dual-Anneal Diffusion-Multiple Approach

    Science.gov (United States)

    Cao, Siwei

    Phase diagrams at intermediate temperatures are critical both for alloy design and for improving the reliability of thermodynamic databases. There is a significant shortage of experimental data for phase diagrams at the intermediate temperatures which are defined as around half of the homologous melting point (in Kelvin). The goal of this study is to test a novel dual-anneal diffusion multiple (DADM) methodology for efficient determination of intermediate temperature phase diagrams using both the Fe-Cr-Ni and Fe-Cr-Mo systems as the test beds since both are very useful for steel development. Four Fe-Cr-Ni-Mo-Co diffusion multiples were made and annealed at 1200 °C for 500 hrs. One sample was used directly for evaluating the isothermal sections at 1200 ° C. The other samples (and cut slices) were used to perform a subsequent dual annealing at 900 °C (500 hrs), 800 °C (1000 hrs), 700 °C (1000 hrs), and 600 °C (4500 hrs), respectively. The second annealing induced phase precipitation from the supersaturated solid solutions that were created during the first 1200 °C annealing. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were used to identify the phases and precipitation locations in order to obtain the compositions to construct the isothermal sections of both ternary systems at four different temperatures. The major results obtained from this study are isothermal sections of the Fe-Cr-Ni and Fe-Cr-Mo systems at 1200 °C, 900 °C, 800 °C, and 700 °C. For the Fe-Cr-Ni system, the results from DADMs agree with the majority of the literature results except for results at both 800 °C and 700 °C where the solubility of Cr in the fcc phase was found to be significantly higher than what was computed from thermodynamic calculations using the TCFE5 database. Overall, it seems that the Fe-Cr-Ni thermodynamic assessment only needs slight improvement to

  19. Development of an EAM potential for simulation of radiation damage in Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Abrikosov, I.A.; Chakarova, R.; Lagerstedt, C. E-mail: christina@neutron.kth.se; Malerba, L.; Olsson, P.; Pontikis, V.; Sandberg, N.; Terentyev, D

    2004-08-01

    We have developed a set of EAM potentials for simulation of Fe-Cr alloys. By relaxing the requirement of reproducing the pressure-volume relation at short distances and by fitting to the thermal expansion coefficients of Fe and Cr, stability of the <1 1 0> self-interstitial could be obtained. For Cr, properties of the paramagnetic state were applied, providing a positive Cauchy pressure. Mixed Fe-Cr pair potentials were fitted to the calculated mixing enthalpy of ferromagnetic Fe-Cr. Simulation of thermal ageing in Fe-Cr alloys using the Fe-20Cr potential exhibited pronounced Cr-precipitation for temperatures below 900 K, a feature not observed at any temperature using a potential fitted to the mixing enthalpy of Fe-5Cr.

  20. Relation between Nd2Fe14B grain alignment and coercive force decrease ratio in NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Matsuura, Yutaka; Hoshijima, Jun; Ishii, Rintaro

    2013-01-01

    It was found that the coercive force of NdFeB sintered magnets decreases as the Nd 2 Fe 14 B grain alignment improves. Because of this phenomenon, studies looked at the relation between this alignment and the coercive force decrease ratio. In experiments, it was expected that the coercive force of perfectly aligned magnet reached 0.7 of coercive force in istotropically aligned magnet. When it is postulated that the coercive force is determined by the Stoner–Wohlfarth model, coercive force increases as the alignment improves and it becomes difficult to explain our experimental data. On the other hand, when the coercive force is determined by magnetic domain wall motion, the coercive force decreases as the alignment improves and the coercive force of the perfectly aligned magnet reaches 1/√(2) of the isotropically aligned magnet. This tendency and value was very close to our data. It strongly suggests that the coercive force of NdFeB sintered magnets is determined by the domain wall motion. - Highlights: ► Coercive force of NdFeB sintered magnets decreases as grains alignment improves. ► Coercive force decrease ratio reaches −30% at the perfect aligned magnet. ►These experimental results are different from the Stoner–Wohlfarth model. ► The magnetic domain wall motion could explain this coercive force decrease ratio

  1. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  2. Fundamental investigation of point defect interactions in FE-CR alloys

    International Nuclear Information System (INIS)

    Wirth, B.D.; Lee, H.J.; Wong, K.

    2008-01-01

    Full text of publication follows. Fe-Cr alloys are a leading candidate material for structural applications in Generation TV and fusion reactors, and there is a relatively large database on their irradiation performance. However, complete understanding of the response of Fe-Cr alloys to intermediate-to-high temperature irradiation, including the radiation induced segregation of Cr, requires knowledge of point defect and point defect cluster interactions with Cr solute atoms and impurities. We present results from a hierarchical multi-scale modelling approach of defect cluster behaviour in Fe-Cr alloys. The modelling includes ab initio electronic structure calculations performed using the VASP code with projector-augmented electron wave functions using PBE pseudo-potentials and a collinear treatment of magnetic spins, molecular dynamics using semi-empirical Finnic-Sinclair type potentials, and kinetic Monte Carlo simulations of coupled defect and Cr transport responsible for microstructural evolution. The modelling results are compared to experimental observations in both binary Fe-Cr and more complex ferritic-martensitic alloys, and provide a basis for understanding a dislocation loop evolution and the observations of Cr enrichment and depletion at grain boundaries in various irradiation experiments. (authors)

  3. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  4. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  5. Ordering phenomena in FeCo-films and Fe/Cr-multilayers: an X-ray and neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, B.

    2001-07-01

    The following topics are covered: critical phenomena in thin films, critical adsorption, finite size scaling, FeCo Ising model, kinematical scattering theory for thin films, FeCo thin films, growth and characterisation of single crystal FeCo thin films, X-ray study of ordering in FeCo films, antiferromagnetic coupling in Fe/Cr multilayers, neutron scattering on Fe/Cr multilayers (WL)

  6. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Cole, James I. [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Alsagabi, Sultan F. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States)

    2016-03-15

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La{sub 2}O{sub 3} (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr–Ti–La–O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 10{sup 24} m{sup −3}. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  7. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  8. A study for preparation of Ti-Fe coating by high temperature sintering method

    International Nuclear Information System (INIS)

    Hu Yonghai

    1995-03-01

    A new technology for preparation of Ti-Fe alloy coating on the steel substrate was investigated by high temperature sintering method. The pulp of titanium hydride powder was coated on the cleaned steel substrate, then heated in vacuum for desorption of hydrogen and sintered at high temperature in argon atmosphere for forming Ti-Fe alloy coating. The electron probe analysis shows a strong coherent diffusion layer formed between the elements of titanium and iron. X-ray diffraction analysis indicates that the coating consists of α-Ti, TiFe and TiFe 2 three phases. The wear resistance of the coating is twice as large as that of grey cast iron and the hardness determined can reach 7300∼7800 N/mm 2 . The coating is almost porous free. The corrosion potential increases with the time and the corrosion resistance is near to that of pure titanium. The working life of ridge-type diaphragm valve coated by Ti-Fe alloy for carbonization tower of alkali factories is five times higher than that of valve made of grey cast iron. Therefore, this new technology can be widely used in metallurgical, chemical and nuclear industries. (9 figs., 10 tabs.)

  9. Synthesis and characterization of Cr doped CoFe2O4

    Science.gov (United States)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  10. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    International Nuclear Information System (INIS)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E.

    2014-01-01

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH) 3 ·3H 2 O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH) 3 (am) was stable with a solubility lower than 50 μg/l in the range 5.7 0.75 Cr 0.25 (OH) 3 , the stability region was extended to 4.8 3 ·xH 2 O whereas in the presence of iron the precipitate is a mixed Fe (1−x) Cr x (OH) 3 phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe x ,Cr 1−x )(OH) 3 hydroxides as compared to the stability of Cr(OH) 3 . We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH) 3 ·3H 2 O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH) 3 (am) phase. Mixed Fe 0.75 Cr 0.25 (OH) 3 hydroxides were found to be of the ferrihydrite structure, Fe(OH) 3 , and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)–Cr(III) hydroxides are more effective enhancers of groundwater quality, in comparison to the plain amorphous or crystalline Cr(III) hydroxides, the latter found to have a solubility typically higher than 50 μg/l (maximum EU permitted Cr level in drinking water), while the amorphous Cr(OH) 3 (am) phase was within the drinking water threshold in the range 5.7 0.75 Cr 0.25 (OH) 3 hydroxides studied were of extended stability in the 4.8 < pH < 13.5 range

  11. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys

    International Nuclear Information System (INIS)

    Geribola, Gulherme Altomari

    2014-01-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H 2 /2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  12. Sintering of Mo2FeB2 based cermet and its layered composites containing Sic fibers

    International Nuclear Information System (INIS)

    Rao, D.; Upadhyaya, G.S.

    2001-01-01

    In the present investigation Mo 2 FeB 2 based cermet (KH-C50) and its composites containing SiC fibers were sintered in two different atmospheres namely hydrogen and vacuum. It was observed that vacuum sintered samples have remarkably lower porosities than the hydrogen sintered ones. Two different sintering cycles were employed for each of the atmosphere and properties of the material were studied. Introduction of fibers in the composite imparts shrinkage anisotropy during sintering. Fiber containing cermets have rather poor densification and transverse rupture strength (TRS). TRS, macro and microhardness, and boride grain size measurements were also carried out for the cermets sintered in different atmospheres. (author)

  13. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Grain boundary segregation in FeCrNi model alloys; Korngrenzensegregation in FeCrNi-Modellegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, B.; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Muraleedharan, P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy

    1998-12-31

    P and S segregate at the grain boundaries and thus increase susceptibility to intergranular corrosion at those sites. This could be proven by means of nitric acid-chromate tests and potentiostatic etching tests. There is a direct connection between loss in mass, mean depth of intergranular corrosion attacks, dissolution current density, and level of segregation-induced concentration of P and S at the grain boundaries. The segregation effect at these sites was found to be most evident in specimens of the examined Fe-Cr-Ni steel which had been heat-treated for 1000 hours at 550 C. However, segregation occurs also in materials that received a heat treatment of 400 C/5000 hours, while intergranular corrosion is observed only after heat treatment of 500 C/1000 hours. Apart from segregation of P, formation of Cr-rich phosphides is observed, which leads to depletion of Cr at the precipitates. (orig./CB) [Deutsch] P und S segregieren an die KG und erhoehen dort die IK-Anfaelligkeit. Dies konnte mit Hilfe von Salpetersaeure-Chromat- und Potentiostatischem Aetztest nachgewiesen werden. Es besteht ein direkter Zusammenhang zwischen Masseverlust, mittlerer IK-Angriffstiefe, Aufloesungsstromdichte und Hoehe der segregationsbedingten Anreicherungen von P und S an den KG. Der KG-Segregationseffekt am untersuchten Fe-Cr-Ni-Stahl ist im Waermebehandlungszustand 550 C/1000 h am deutlichsten ausgepraegt. Aber auch bereits bei 400 C/5000 h findet Segregation statt. IKSpRK tritt nur im Waermebehandlungszustand 550 C/1000 h auf. Neben der P-Segregation wird die Bildung Cr-reicher Phosphide beobachtet, die zur Abreicherung von Cr an den Ausscheidungen fuehrt. (orig.)

  15. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E., E-mail: gantipas@metal.ntua.gr

    2014-01-15

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH){sub 3}·3H{sub 2}O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH){sub 3}(am) was stable with a solubility lower than 50 μg/l in the range 5.7 < pH < 11. • For mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3}, the stability region was extended to 4.8 < pH < 13.5. -- Abstract: Chromium is a common contaminant of soils and aquifers and constitutes a major environmental problem. In nature, chromium usually exists in the form of two oxidation states, trivalent, Cr(III), which is relatively innocuous for biota and for the aquatic environment, and hexavalent, Cr(VI) which is toxic, carcinogenic and very soluble. Accordingly, the majority of wastewater and groundwater treatment technologies, include a stage where Cr(VI) is reduced to Cr(III), in order to remove chromium from the aqueous phase and bind the element in the form of environmentally stable solid compounds. In the absence of iron the final product is typically of the form Cr(OH){sub 3}·xH{sub 2}O whereas in the presence of iron the precipitate is a mixed Fe{sub (1−x)}Cr{sub x}(OH){sub 3} phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe{sub x},Cr{sub 1−x})(OH){sub 3} hydroxides as compared to the stability of Cr(OH){sub 3}. We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH){sub 3}·3H{sub 2}O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH){sub 3}(am) phase. Mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3} hydroxides were found to be of the ferrihydrite structure, Fe(OH){sub 3}, and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)–Cr

  16. Grain growth behavior of Cr dispersed UO{sub 2} pellets according to change of oxygen potential during the isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jang Soo; Yang, Jae Ho; Kim, Dong Joo; Kim, Jong Hun; Nam, Ik Hui; Rhee, Young Woo; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recent development of advanced UO{sub 2} pellet materials for commercial reactors is mainly focused on the large grain pellet which can deform easily at an elevated temperature. Cr{sub 2}O{sub 3}-doped UO{sub 2} pellet is one of the promising candidates. To increase the grain size effectively, it is important to control the additive content and sintering atmosphere. Relevant research on the Cr{sub 2}O{sub 3} doped UO{sub 2} system revealed that the doped Cr{sub 2}O{sub 3} formed a liquid phase under optimized oxygen potential, and those liquid phases promoted the grain growth. Recent work also showed that step-wise variation of sintering atmosphere during the isothermal annealing step significantly increased the grain size of Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. In this paper, we investigated effect of oxygen potential change at the beginning of isothermal sintering stage on the grain growth in metallic Cr dispersed UO{sub 2} pellets. The study on the milling effect of powder mixture on the grain growth is also a part of this work.

  17. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  18. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    Science.gov (United States)

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (Pcorrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings

    Directory of Open Access Journals (Sweden)

    Myung-Joo Kim

    2017-01-01

    Full Text Available Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance, a Scheffe’s test, and Pearson’s correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps (p < 0.05. The CAD/CAM milled group revealed a significantly high axial internal gap. There are moderate correlations between the vertical marginal discrepancy and the internal gap variables (r = 0.654, except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  20. Effect of processing variables on mechanical properties of sintered manganese steels Fe-3%Mn-0.8%C

    International Nuclear Information System (INIS)

    Sulowski, M.; Cias, A.

    1998-01-01

    The powder metallurgy route may allow sintered manganese steels to be made based on pure iron powder and ferromanganese powder with control over alloy microstructure. The factors that contribute to the mechanical properties of sintered Fe-3%Mn-0.8%C manganese steel, such as the sintering atmosphere, dew point, sintering temperature, cooling rate are summarised. The paper shows the influence of these parameters on the tensile strength, yield strength, transverse rupture strength, impact strength and hardness. It is showed that tensile high strength level higher than those of many present sintered steels can be obtained already in the as-sintered condition. (author)

  1. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    Science.gov (United States)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  2. The microstructure of neutron-irradiated Fe-Cr alloys: A small-angle neutron scattering study

    International Nuclear Information System (INIS)

    Heintze, C.; Bergner, F.; Ulbricht, A.; Eckerlebe, H.

    2009-01-01

    Ferritic-martensitic chromium steels are candidate materials for future applications in both Gen-IV fission and fusion technology. Experimental investigation of neutron-irradiated Fe-Cr model alloys is important in order to gain a better understanding of the interplay of chromium content and irradiation behaviour. Small-angle neutron scattering (SANS) is particularly well suited to unfold the size distribution of non-planar irradiation-induced nanoscale features such as defect-solute clusters, nanovoids and α'- particles. This size distribution represents a statistically reliable average over a macroscopic volume. Assumptions on the dominant type of features can be checked against the ratio of magnetic and nuclear scattering. The materials investigated in this work are commercial-purity Fe-Cr alloys of nominal compositions Fe-2.5Cr, Fe-5Cr, Fe- 9Cr and Fe-12.5Cr (at %). Neutron irradiation was performed in the reactor BR2 at Mol (Belgium) at a temperature of 300 deg. C and neutron flux of 9 x 10 13 cm -2 s -1 (E > 1 MeV) [Matijasevic, JNM 377 (2008) 147]. The neutron exposures expressed in units of displacements per atom correspond to 0.6 and 1.5 dpa. A wavelength of 0.58 nm and three detector-sample distances of 1, 4 and 16 m were used in the SANS experiments carried out at the SANS-2 facility of GKSS Geesthacht (Germany). The samples were placed in a saturation magnetic field in order to separate magnetic and nuclear contributions. The scattering curves obtained for the unirradiated conditions of the four Fe-Cr alloys were taken as reference. We have found that the volume fraction of scatterers slightly increases with neutron exposure (Fe-9Cr) or exhibits a saturation-like behaviour (Fe-2.5Cr, Fe-5Cr and Fe-12.5Cr) and that the volume fraction at 1.5 dpa is an increasing function of the chromium level with a slight increase up to 9 at%Cr and a steep increase between 9 and 12.5 at%Cr. The radii of irradiation-induced scatterers are essentially less than 8 nm and

  3. Atomistic simulation of the influence of Cr on the mobility of the edge dislocation in Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Hafez Haghighat, S.M.; Terentyev, D.; Schaeublin, R.

    2011-01-01

    In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called α' precipitates, which are obstacles to dislocations, affect mechanical properties, leading to hardening and loss of ductility. The flow stress to move an edge dislocation in a Cr solid solution in pure Fe is studied as a function of Cr content. The strength of a nanometric Cr precipitate as obstacle to an edge dislocation in pure Fe is investigated as a function of its Cr content. Results show that with increasing Cr content the precipitate obstacle strength increases, with a strong sensitivity to the local atomic order. Temperature induces a monotonic decrease of the flow stress of the Cr solid solution and of the Cr precipitate obstacle strength.

  4. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  5. First-principles investigation of Cr-doped Fe2B: Structural, mechanical, electronic and magnetic properties

    Science.gov (United States)

    Wei, Xiang; Chen, Zhiguo; Zhong, Jue; Wang, Li; Wang, Yipeng; Shu, Zhongliang

    2018-06-01

    The structural, mechanical, electronic and magnetic properties of Fe8-xCrxB4 (x = 0, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7 and 8) have been investigated by first-principles calculation. It was found that the calculated structural parameters are well consistent with available experimental data. Moreover, all studied compounds are thermodynamically stable phases. On the whole, the moduli of the compounds firstly increase and then decrease with the increase of Cr concentration, whereas the variation of hardness exhibits more fluctuations. All Cr-doped Fe2B have better ductility than Fe2B except Fe2Cr6B4 and Fe5Cr3B4. Interestingly, Fe4Cr4B4 is of not only the slightly larger hardness, but also much better ductility than Fe2B. As the Cr concentration is lower than 20 wt%, the hardness of Cr-doped Fe2B slightly decreases with increasing Cr, whereas the sharply increased hardness of (Fe, Cr)2B in Fe-B alloys or boriding layer should be attributed to the multiple alloying effects resulting from Cr and the other alloying elements. The electronic structures revealed that the Fe-B and/or Cr-B bonds are mainly responsible for their mechanical properties, and the M-N (M = Fe or Cr, N = Fe or Cr) bonds in 〈2 2 0〉 and 〈1 1 3〉 orientations show covalent character. Additionally, the magnetic moments (Ms) of the compounds do not monotonically decrease with increasing Cr.

  6. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  7. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    Science.gov (United States)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  8. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Olsson, P.; Domain, Ch.; Wallenius, J.

    2008-01-01

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  9. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  10. NiCrxFe2− xO4 ferrite nanoparticles and their composites with ...

    Indian Academy of Sciences (India)

    Half of the samples have been sintered at 620°C and the other at 1175°C. Then polypyrrole (PPy)–NiCrFe2-O4 composites have been synthesized by polymerization of pyrrole monomer in the presence of NiCrFe2-O4 nanoparticles. The structure, morphology and magnetic properties of the samples have been ...

  11. Magnetic properties of point defect interaction with impurity atoms in Fe-Cr alloys

    Science.gov (United States)

    Nguyen-Manh, D.; Lavrentiev, M. Yu.; Dudarev, S. L.

    2009-04-01

    An integrated ab initio and statistical Monte Carlo investigation has been recently carried out to model the thermodynamic and kinetic properties of Fe-Cr alloys. We found that the conventional Fe-Cr phase diagram is not adequate at low temperature region where the magnetic contribution to the free energy plays an important role in the prediction of an ordered Fe 15Cr phase and its negative enthalpy of formation. The origin of the anomalous thermodynamic and magnetic properties of Fe-Cr alloys can be understood using a tight-binding Stoner model combined with the charge neutrality condition. We investigate the environmental dependence of magnetic moment distributions for various self-interstitial atom dumbbells configurations using spin density maps found using density functional theory calculations. The mixed dumbbell Fe-Cr and Fe-Mn binding energies are found to be positive due to magnetic interactions. Finally, we discuss the relationship between the migration energy of vacancy in Fe-Cr alloys and magnetism at the saddle point configuration.

  12. Multi-phase EBSD mapping and local texture analysis in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G., E-mail: t.woodcock@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany)

    2011-02-15

    A combination of electron backscatter diffraction and energy-dispersive X-ray spectroscopy has been used to identify the crystal structure and composition of all the phases present in commercially available NdFeB sintered magnets and to map their spatial distribution. The Nd{sub 2}Fe{sub 14}B and NdO grains were shown to have low defect densities. The fcc Nd-rich and Nd{sub 2}O{sub 3} grains had intra-grain misorientation angles of up to 14{sup o}, which was shown to be due to defects. Large numbers ({approx}100) of data points for each phase were used to study texture in the NdO, Nd{sub 2}O{sub 3} and Nd{sub 2}Fe{sub 14}B phases. The Nd{sub 2}Fe{sub 14}B grains exhibited a <0 0 1> fibre texture. The Nd oxide phases showed no strong texture, which implied that no strongly preferred orientation relationships between those phases and Nd{sub 2}Fe{sub 14}B exist. The result was shown to be valid for optimally annealed samples exhibiting high coercivity and as-sintered samples exhibiting low coercivity.

  13. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wróbel, J.S., E-mail: jan.wrobel@inmat.pw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D.; Dudarev, S.L. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Highlights: • Properties of point defects depend on the local atomic environment. • As the degree of chemical order increases, the formation energies increase, too. • Relaxation volumes are larger for the more ordered structures. - Abstract: The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe{sub 50}Cr{sub 25}Ni{sub 25} and Fe{sub 55}Cr{sub 15}Ni{sub 30}, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and 〈1 0 0〉 dumbbells are introduced in the Fe{sub 2}CrNi intermetallic phase as well as in two Fe{sub 55}Cr{sub 15}Ni{sub 30} alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  14. Hydrogen Decrepitation Press-Less Process Recycling of NdFeB sintered magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered...

  15. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    Science.gov (United States)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  16. Inhibited Aluminization of an ODS FeCr Alloy

    International Nuclear Information System (INIS)

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A.

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small (∼ 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  17. Relation between Nd{sub 2}Fe{sub 14}B grain alignment and coercive force decrease ratio in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yutaka, E-mail: Yutaka_Matsuura@hitachi-metals.co.jp [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan); Hoshijima, Jun; Ishii, Rintaro [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan)

    2013-06-15

    It was found that the coercive force of NdFeB sintered magnets decreases as the Nd{sub 2}Fe{sub 14}B grain alignment improves. Because of this phenomenon, studies looked at the relation between this alignment and the coercive force decrease ratio. In experiments, it was expected that the coercive force of perfectly aligned magnet reached 0.7 of coercive force in istotropically aligned magnet. When it is postulated that the coercive force is determined by the Stoner–Wohlfarth model, coercive force increases as the alignment improves and it becomes difficult to explain our experimental data. On the other hand, when the coercive force is determined by magnetic domain wall motion, the coercive force decreases as the alignment improves and the coercive force of the perfectly aligned magnet reaches 1/√(2) of the isotropically aligned magnet. This tendency and value was very close to our data. It strongly suggests that the coercive force of NdFeB sintered magnets is determined by the domain wall motion. - Highlights: ► Coercive force of NdFeB sintered magnets decreases as grains alignment improves. ► Coercive force decrease ratio reaches −30% at the perfect aligned magnet. ►These experimental results are different from the Stoner–Wohlfarth model. ► The magnetic domain wall motion could explain this coercive force decrease ratio.

  18. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique

    Science.gov (United States)

    Salea, A.; Dasaesamoh, A.; Prathumwan, R.; Kongkaew, T.; Subannajui, K.

    2017-09-01

    CuFeO2 is a metal oxide mineral material which is called delafossite. It can potentially be used as a chemical catalyst, and gas sensing material. There are methods to fabricate CuFeO2 such as chemical synthesis, sintering, sputtering, and chemical vapor deposition. In our work, CuFeO2 is prepared by Fused Deposition Modeling (FDM) 3D printing. The composite filament which composed of Cu and Fe elements is printed in three dimensions, and then sintered and annealed at high temperature to obtain CuFeO2. Suitable polymer blend and maximum percent volume of metal powder are studied. When percent volume of metal powder is increased, melt flow rate of polymer blend is also increased. The most suitable printing condition is reported and the properties of CuFeO2 are observed by Scanning Electron Microscopy, and Dynamic Scanning Calorimeter, X-ray diffraction. As a new method to produce semiconductor, this technique has a potential to allow any scientist or students to design and print a catalyst or sensing material by the most conventional 3D printing machine which is commonly used around the world.

  19. Database on Performance of Neutron Irradiated FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States); Littrell, Ken [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerance of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.

  20. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    International Nuclear Information System (INIS)

    Jin, Y.; O'Connell, A.; Kharel, P.; Lukashev, P.; Staten, B.; Tutic, I.; Valloppilly, S.; Herran, J.; Mitrakumar, M.; Bhusal, B.; Huh, Y.; Yang, K.; Skomski, R.; Sellmyer, D. J.

    2016-01-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L2 1 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (T C ) significantly above room temperature. The measured T C for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μ B /f.u. and 2.78 μ B /f.u., respectively, which are close to the theoretically predicted value of 3 μ B /f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  1. Production of NdFeB powders by HDDR from sintered magnets

    International Nuclear Information System (INIS)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G.; Campos, M.F. de

    2010-01-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd 2 Fe 14 B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  2. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    OpenAIRE

    M. Mahmoudiniya; Sh. Kheirandish; M. Asadi Asadabad

    2017-01-01

    Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile st...

  3. The compaction and sintering of UO_2-Zr cermet pellets

    International Nuclear Information System (INIS)

    Tri Yulianto; Meniek Rachmawati; Etty Mutiara

    2013-01-01

    An innovative fuel pellet of UO_2-Zr cermet has been developed to improve thermal conductivity of UO_2 pellet by adding small amount Zr metal in to UO_2 matrix below 10 % weight. Zirconium powder will serve for the creation of bridges or web structure during compaction and will effectively reduce contact between of UO_2 particles. Based on the theory of phase equilibrium of metals-metal oxides-ceramic, this fabrication technique may produce UO_2 pellets containing continuous metal channel on the grain boundary of UO_2 through sintering in a reduction atmosphere. The fabrication was done by varying process parameters of mixing and compaction. Characterisation of UO_2-Zr cermet pellet involved visual test, dimensional and density measurement, and ceramography test. This advanced cermet fabrication technology may address common issue with cermet fuels such as microstructure with continuous metal channel structure in the UO_2 matrix, which is more effectively than the commonly accepted microstructure involving fraction of UO_2 pellet by standard fabrication route. (author)

  4. The Effects of Post-Sintering Treatments on Microstructure and Mechanical Properties of Mn-Mo Steel

    Science.gov (United States)

    Fiał, Ch.

    2017-12-01

    The effect of heat treatment on density, hardness, microstructure and tensile properties of Fe-0.85Mo-1.3Mn-0.6C sintered steel were investigated. Pre-alloyed Astaloy 85Mo, ferromanganese and UF4 graphite powders were mixed for 60 minutes in a Turbula mixer and then pressed in single-action die at 660MPa to produce green compacts (according to PN EN ISO 2740).The compacts were sintered in a specially designed semi-closed container at 1120 or 1250°C for 60 minutes in N2. The chemical composition of the sintering atmosphere was modified by adding getter and/or activator into the container. Two different types of heat treatment in nitrogen were carried out: sinteraustempering at 525°C for 60 minutes; and sinterhardening with additional tempering at 200°C for 60 minutes. The slightly better combination of strength and plasticity of steel for both sintering temperatures were achieved after sinterhardening+tempering variant. Average values of 0.2% offset yield stress, ultimate tensile strength and elongation after sintering in 1250°C, were 415MPa, 700MPa, and 2.0%, respectively.

  5. Diffusion of 51Cr along high-diffusivity paths in Ni-Fe alloys

    International Nuclear Information System (INIS)

    Cermak, J.

    1990-01-01

    Penetration profiles of 51 Cr in polycrystalline alloys Ni-xFe (x = 0, 20, 40, and 60 wt.% Fe) after diffusion anneals at temperatures between 693 and 1473 K are studied. Sectioning of diffusion zones of samples annealed above 858 K is carried out by grinding, at lower temperatures by DC glow discharge sputtering. The concentration of 51 Cr in depth x is assumed to be proportional to relative radioactivity of individual sections. With help of volume and pipe self-diffusion data taken from literature, the temperature dependence of product P = δD g (δ and D g are grain boundary width and grain boundary diffusion coefficient, respectively) is obtained: P = (2.68 - 0.88 +1.3 ) x 10 -11 exp [-(221.3 ± 3.0) kJ/mol/RT]m 3 /s. This result agrees well with the previous measurements of 51 Cr diffusivity in Fe-18 Cr-12 Ni and Fe-21 Cr-31 Ni. It indicates that the mean chemical composition of Fe-Cr-Ni ternary alloys is not a dominant factor affecting the grain boundary diffusivity of Cr in these alloys. (author)

  6. Vector magnetometry of Fe/Cr/Fe trilayers with biquadratic coupling

    International Nuclear Information System (INIS)

    Mansell, R; Petit, D; Fernández-Pacheco, A; Lee, J H; Chin, S-L; Lavrijsen, R; Cowburn, R P

    2017-01-01

    The magnetic reversal of epitaxial Fe/Cr/Fe trilayer samples grown on GaAs is studied. In wedged samples both long and short period coupling oscillations associated with Ruderman–Kittel–Kasuya–Yosida (RKKY) coupling in Cr are seen in the easy axis saturation fields. By using vector vibrating sample magnetometry and both longitudinal and transverse magneto-optical Kerr effect magnetometry we are able to determine the exact reversal path of both the magnetic layers. Changes in the reversal behavior are seen with sub-monolayer changes of the thickness of the Cr interlayer. The two main reversal paths are described in terms of whether the reversal is dominated by bilinear RKKY coupling, which leads to an antiparallel state at remanence or by biquadratic coupling which leads to a 90 degree alignment of layers at remanence. The changing reversal behaviour is discussed with respect to the possibility of using such systems for multilayer memory applications and, in particular, the limits on the required accuracy of the sample growth. (letter)

  7. Comparative study of cytotoxicity of direct metal laser sintered and cast Co-Cr-Mo dental alloy

    Directory of Open Access Journals (Sweden)

    T. Puskar

    2015-07-01

    Full Text Available The presented work investigated the cytotoxicity of direct metal laser sintered (DMLS and cast Co-Cr-Mo (CCM dental alloy. In vitro tests were done on human fibroblast cell line MRC-5. There was no statistically significant difference in the cytotoxic effects of DMLS and CCM alloy specimens. The results of this investigation show good potential of DMLS Co-Cr-Mo alloy for application in dentistry.

  8. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  9. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  10. Technological parameter effect on properties of sintered hard-magnetic type Nd-Fe-B materials

    International Nuclear Information System (INIS)

    Rastegaev, V.S.; Stepanova, G.I.; Gudim, Z.Yu.

    1989-01-01

    The effect of each technological operation on manufacturing hard magnets from Nd-Fe-B alloys on properties of sintered permanent magnets is studied. It is noted that violation of the metting regime can result in burn-up of boron and rare earths, and violation of the grinding mode-formation of nonmagnetic powder fractions, etc. Special attention is paid to material protection against oxidation by introducing passivating additions and creating of particular conditions for alloy sintering and heat treatment

  11. Partial amorphization of an α-FeCr alloy by ball-milling

    International Nuclear Information System (INIS)

    Loureiro, J. M.; Costa, B. F. O.; Caer, G. Le; Delcroix, P.

    2008-01-01

    The structural changes of near-equiatomic α-FeCr alloys, ground in a vibratory mill in vacuum and in argon, were followed as a function of milling time. An amorphous phase forms in both cases but at a much faster rate when milling in argon than when milling in vacuum. Amorphisation by ball-milling of α-FeCr alloys is deduced to be an intrinsic phenomenon which is however speeded-up by oxygen. The amorphous phase crystallizes into a bcc Cr-rich phase and a bcc Fe-rich phase when annealed for short times.

  12. Exchange bias in Fe/Cr double superlattices

    International Nuclear Information System (INIS)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C.; Bader, S. D.

    1999-01-01

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter-deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains

  13. Exchange bias in Fe/Cr double superlattices

    International Nuclear Information System (INIS)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C. S.; Bader, S. D.

    2000-01-01

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains. (c) 2000 American Vacuum Society

  14. CoCr/NiFe double layers studied by FMR and VSM

    NARCIS (Netherlands)

    Stam, M.T.H.C.W.; Gerritsma, G.J.; Lodder, J.C.; Popma, T.J.A.

    1987-01-01

    CoCr/NiFe double layers were investigated by FMR and VSM. The FMR linewidth of NiFe of the double layer is about twice that of a single NiFe layer. The resonance field is the same in both cases. Using the VSM the coercive field of the CoCr layer of the double layer was obtained. It is approximately

  15. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  16. Magnetic and structural properties of spark plasma sintered nanocrystalline NdFeB-powders

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, H., E-mail: holger.wuest@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Bommer, L., E-mail: lars.bommer@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Weissgaerber, T., E-mail: thomas.weissgaerber@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Kieback, B., E-mail: bernd.kieback@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute for Materials Science, Helmholtzstraße 7, 01069 Dresden (Germany)

    2015-10-15

    Near-stoichiometric NdFeB melt-spun ribbons have been subjected to spark plasma sintering varying the process temperature T{sub SPS} and pressure p{sub SPS} between 600 and 800 °C and 50–300 MPa, respectively. Produced bulk magnets were analyzed regarding microstructure and magnetic properties. For all samples the intrinsic coercivity H{sub c,J} gradually decreases with increasing sintering temperature and pressure, while residual induction B{sub r} increases simultaneously with sample density. Densities close to the theoretical limit were achieved for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. With increasing T{sub SPS} precipitations of Nd-rich and Fe-rich phases have been observed as a result of a decomposition of the hard magnetic Nd{sub 2}Fe{sub 14}B phase. Under optimum sintering conditions of p{sub SPS}=300 MPa and T{sub SPS}=650 °C high-density bulk magnets with H{sub c,J}=652 kA/m, B{sub r}=0.86 T and (BH){sub max}=106 kJ/m{sup 3} have been produced. - Highlights: • Consolidation close to the theoretical density for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. • Highest (BH){sub max} of 106 kJ/m{sup 3} for p{sub SPS}=300 MPa and T{sub SPS}=650 °C with 98% theo. • H{sub c,J} gradually decreases with increasing T{sub SPS}, while B{sub r} increases simultaneously with. • With increasing T{sub SPS}, Nd- and Fe-rich precipitations are observed. • Reduction in t{sub SPS} is economic but does not increase (BH){sub max} significantly.

  17. Capture cross sections for Cr, Fe and Ni

    International Nuclear Information System (INIS)

    Corvi, F.

    1990-01-01

    Since stainless steel represents about 25% of the volume of a fast power reactor, its constituent elements strongly influence its two main neutronic parameters: critical enrichment and breeding gain. Also, capture in the narrow p and d-wave resonances of Cr, Fe and Ni contributes as much as 10 to 15% of the Doppler coefficient of reactivity. Following sensitivity calculations, typical accuracy requirements in the energy range 0.1-100 keV are 5-10% for capture in Fe and 10-20% for capture in Ni and Cr. 11 refs, 2 tabs

  18. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  19. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  20. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  1. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon...

  2. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  3. Oxidation performance of a Fe-13Cr alloy with additions of rare earth elements

    International Nuclear Information System (INIS)

    Martinez-Villafane, A.; Chacon-Nava, J.G.; Gaona-Tiburcio, C.; Almeraya-Calderon, F.; Dominguez-Patino, G.; Gonzalez-Rodriguez, J.G.

    2003-01-01

    The influence of rare earth elements (REE's) i.e. Neodymium (Nd) and Praseodymium (Pr) on the oxidation behavior of a Fe-13Cr alloy has been studied, and its role on the oxidation rate and oxide morphology and formation is discussed. Specimens were isothermally oxidized in oxygen at 800 deg. C for 24 h. It was found that a small addition (≤0.03 wt.%) of either Nd or Pr, reduced the oxidation rate of the Fe-13Cr base alloy. Moreover, the simultaneous addition of both elements to the alloy produced a dramatic reduction in the oxidation kinetics. Analysis by scanning electronic microscope (SEM) revealed that the morphology of oxides formed on Fe-13Cr specimens with and without REE's specimens was very different. In fact, a fine-grained oxide morphology was observed for alloys with REE's addition. For these alloys only, chromium enrichment at the metal/scale interface was observed. From transmission electronic microscope (TEM) analysis, it was found the following: at the early stages of oxide formation, after 0.25 h, Cr 2 O 3 , Fe 3 O 4 , α-Fe 2 O 3 and γ-Fe 2 O 3 were formed; at 6 h, Cr 2 O 3 , FeCr 2 O 4 and α-Fe 2 O 3 were identified and, for exposure times greater than 6 h, Cr 2 O 3 , α-Fe 2 O 3 and a spinel which was presumably transformed into a solid solution (Fe 2 O 3 ·Cr 2 O 3 ) were found

  4. Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Cinert, Jakub; Pala, Zdeněk

    2016-01-01

    Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016

  5. Effects of composition and heat treatments on the strength and ductility of Fe-Cr-Co alloys

    International Nuclear Information System (INIS)

    Kubarych, K.G.

    1980-06-01

    The relationship between the microstructure and mechanical properties of spinodally decomposed Fe-Cr-Co ductile permanent magnet alloys was investigated using transmission electron microscopy, electron diffraction, tensile testing, and Charpy impact testing. Isothermal aging and step aging of four alloys (Fe-28 wt % Cr-15 wt % Co, Fe-23 wt % Cr-15-wt % Co-5 wt % V, Fe-23 wt % Cr-15 wt % Co-3 wt % V-2 wt % Ti, and Fe-31 wt % Cr-23 % Co) resulted in decomposition into two phases, an Fe-Co rich (α 1 ) phase and a Cr rich (α 2 ) phase. The microstructural features of the decomposition products were consistent with those expected from a spinodal reaction and agree with the reported work on the Fe-Cr-Co system. An Fe-23 wt % Cr-15 wt % Co-5 wt % V alloy was found to have, among the four alloys, the best combinations of strength and ductility

  6. Corrosion behaviour of Nd-Fe-B magnets containing Co and Cr

    International Nuclear Information System (INIS)

    Pawlowska, G.; Bala, H.; Szymura, S.

    1993-01-01

    The effect of partial substitution of iron by Co and Cr on corrosion behaviour of Nd 16 Fe 76 B 8 permanent magnets has been investigated. Small additions of Cr (1 to 4%at) are enough to ensure maximal corrosion inhibition. Greater amount of Cr into Nd-Fe-B alloy (>8%at), against expectations, practically do not affect the corrosion behaviour and additionally, considerably worsen its magnetic properties. Corrosion tests have shown a distinct effect of cobalt addition on the inhibition of both acid corrosion and the abnormal dissolution process of the Nd-Fe-Co-B magnets. Cobalt additions inhibit the atmosphere corrosion of Nd-Fe-B permanent magnets, especially a salt-spray environment. (author). 6 refs, 4 figs, 1 tab

  7. Structure and Hyperfine Interactions in Aurivillius Bi9Ti3Fe5O27 Conventionally Sintered Compound

    International Nuclear Information System (INIS)

    Mazurek, M.; Lisinska-Czekaj, A.; Surowiec, Z.; Jartych, E.; Czekaj, D.

    2011-01-01

    The structure and hyperfine interactions in the Bi 9 Ti 3 Fe 5 O 27 Aurivillius compound were studied using X-ray diffraction and Moessbauer spectroscopy. Samples were prepared by the conventional solid-state sintering method at various temperatures. An X-ray diffraction analysis proved that the sintered compounds formed single phases at temperature above 993 K. Moessbauer measurements have been carried out at room and liquid nitrogen temperatures. Room-temperature Moessbauer spectrum of the Bi 9 Ti 3 Fe 5 O 27 compound confirmed its paramagnetic properties. However, low temperature measurements revealed the additional paramagnetic phase besides the antiferromagnetic one. (authors)

  8. Microstructures of neutron-irradiated Fe-12Cr-XMn (X=15-30) ternary alloys

    International Nuclear Information System (INIS)

    Miyahara, K.; Hosoi, Y.; Garner, F.A.

    1992-01-01

    The objective of this effort is to determine the factors which control the stability of irradiated alloys proposed for reduced activation applications. The Fe-Cr-Mn alloy system is being studied as an alternative to the Fe-Cr-Ni system because of the need to reduce long-term radioactivation in fusion-power devices. In this study, four Fe-12Cr-XMn (X =15, 20, 25, 30 wt%) alloys were irradiated in the Fast Flux Test Facility to 20 dpa at 643K and 40 dpa at 679, 793, and 873K to investigate the influence of manganese content on void swelling and phase stability. The results confirm and expand the results of earlier studies that indicate that the Fe-Cr-Mn system is relatively unstable compared to that of the Fe-Cr-Ni system, with alpha and sigma phases forming as a consequence of thermal aging or high temperature irradiation

  9. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  10. Microstructural response of an Al-modified Ni-Cr-Fe ternary alloy during thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Akinlade, D.A. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada)], E-mail: dotun172@yahoo.co.uk; Caley, W.F. [Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS (Canada); Richards, N.L.; Chaturvedi, M.C. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada)

    2008-07-15

    A thermodynamic package was used to predict the phase transformations that occurred during thermal processing of a superalloy based on the composition of a ternary Ni-Cr-Fe alloy. The effect of the addition of 6 w/o Al on phase transformation in the material sintered were estimated and compared with results obtained experimentally by X-ray diffraction and metallography, while the transformation temperature of the modified alloy was corroborated by differential scanning calorimetry (DSC). Mechanical property of the alloy was estimated in terms of Vickers hardness. These results suggest that despite potential problems encountered in high-temperature powder processing of superalloys that often tend to influence the feasibility of using thermodynamic predictions to model such alloy systems, the software and predictions used in this study offer a way to simulate both design and characterisation of the experimental alloy.

  11. Peculiarities of formation and sintering of fine dispersed molybdenum powders

    International Nuclear Information System (INIS)

    Kalamazov, R.U.; Pak, V.I.; Tsvetkov, Yu.V.; Lem, I.N.

    1989-01-01

    Pressing of fine dispersed Mo powders sintering of compacts in H 2 and vacuum is studied. It is shown that powder preannealing at 600 deg C in H 2 for 2 hours is necessary for formation of dense sintered compacts. Qualitatively choice of pressing conditions is possible when using electron-positron annihilation method. Peculiarities of compacting and sintering of fine- and coarse-dispersed powder mixtures are considered. The obtained results are discussed from the view point of sintering recrystallization mechanism

  12. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong; Bahl, Christian R.H.; Abrahamsen, Asger Bech; Bez, Henrique Neves; Link, Joosep; Veinthal, Renno

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m 3 . The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  13. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mural, Zorjana, E-mail: zorjana.mural@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Kollo, Lauri [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Xia, Manlong; Bahl, Christian R.H. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Abrahamsen, Asger Bech [Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Bez, Henrique Neves [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Link, Joosep [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Veinthal, Renno [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2017-05-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m{sup 3}. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  14. Magnetic viscosity, susceptibility and fluctuation fields in sintered NdFeB

    International Nuclear Information System (INIS)

    Tomka, G.J.; Bissell, P.R.; O'Grady, K.; Chantrell, R.W.

    1990-01-01

    Magnetic viscosity and irreversible susceptibility of a sample of anisotropic sintered NdFeB have been measured using a vibrating sample magnetometer. The fluctuation field as a function of local field is found to decrease with increasing demagnetizing field with a dip at the coercivity. This behavior is compared with an existing computer model based on a non-interacting system of fine, uniaxial, randomly oriented particles

  15. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys; Influencia da composicao quimica na textura cristalografica de ligas Fe-Cr-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Moura, L.B.; Guimaraes, R.F. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, Fortaleza, CE (Brazil). Dept. da Industria; Abreu, H.F.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2010-07-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  16. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  17. Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho{sub 63.4}Fe{sub 36.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Wu, Chen; Zhang, Pei; Liu, Xiaolian; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-01-01

    High coercivity Nd–Fe–B sintered magnets serving in high-temperature environments always consume expensive and scarce heavy rare-earth Dy, which has simulated considerable interest to reduce Dy usage. In this work, coercivity of Dy-free magnets was investigated through intergranular adding eutectic Ho{sub 63.4}Fe{sub 36.6} powders. The coercivity increases gradually up to 4 wt% Ho{sub 63.4}Fe{sub 36.6} addition, however the remanence starts to deteriorate drastically as the addition is over 2.5 wt%. Coercivity above 18.0 kOe is obtained at the expense of a slight reduction in remanence through optimizing the addition amount and sintering conditions. The coercivity enhancement is explained through microstructural observations and elemental distribution analysis. (i) (Nd, Ho){sub 2}Fe{sub 14}B shell forms in the outer region of 2:14:1 phase grains, strengthening the local magnetic anisotropy filed, (ii) RE-rich grain boundary phase with low Fe content is thickened, weakening the magnetic coupling between adjacent 2:14:1 phase grains, and (iii) 2:14:1 phase grains are refined upon lowering sintering temperature, reducing the microstructural defects and the stray fields aroused from neighboring grains. - Highlights: • Eutectic Ho{sub 63.4}Fe{sub 36.6} powders were intergranular added to NdFeB sintered magnets. • The doped Dy-free magnet possessed coercivity of 18.0 kOe, remanence of 13.15 kGs. • (Nd, Ho){sub 2}Fe{sub 14}B shell formed in the surface of the matrix grains, increasing the H{sub A}. • Thick grain boundaries with low Fe content formed, decoupling the matrix grains. • By sintered at lower temperature, the matrix phase grains were refined.

  18. Radiation damage in Fe-Cr alloys: Atomistic studies

    International Nuclear Information System (INIS)

    Terentyev, Dmitry; Malerba, Lorenzo; Bonny, Giovanni; Castin, Nicolas

    2009-01-01

    High-Cr ferritic-martensitic steels are the most promising candidate structural materials for future advanced fission reactors, as well as for fusion systems, due to their better thermomechanical properties and higher radiation resistance as compared to austenitic steels. The performance of these steels, especially under irradiation, appears to be largely determined by the Cr content. For instance, the current choice of steel compositions around ∼9 wt% Cr is mainly based on the observation of a local minimum in the ductile-brittle transition temperature shift at this composition. On the other hand, reduced void swelling is observed between 3 and 12 wt% Cr. The origin of these and other Cr-dependent effects remained unexplained for a long time, thereby calling for a physical modelling effort addressing these questions. In this presentation, an overview is given on the effort made in recent years to construct a whole modelling framework, from ab initio to dislocations, to provide explanations to the above-mentioned issues. Ab initio calculations combined to the development of the interatomic potentials capable of grasping key features of Cr atoms embedded in perfect and defected Fe matrix, were required. Primary damage, defect migration, Cr mass transport, phase separation, Cr-defect segregation and dislocation-defect interactions could then be studied using fully atomistic approaches. Our research shows that many of the effects of Cr content on the behaviour of these alloys under irradiation can be attributed to the only recently highlighted high solubility of Cr in Fe (∼10 wt%), below which, in addition, Cr atoms tend to order. The presentation will clarify how this aspect, combined with the high affinity between Cr atoms and self-interstitials defects, influences and partly explain both microstructure evolution and mechanical behaviour of high-Cr steels under irradiation. (author)

  19. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    Science.gov (United States)

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  20. Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.

    2018-02-01

    The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).

  1. Influence of Various Process Parameters on the Density of Sintered Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Mateusz Laska

    2012-01-01

    Full Text Available This paper presents the results of density measurements carried out on Alumix sintered parts. ECKA Alumix aluminium powders were used because of their wide application in the powder metallurgy industry. The compacts were produced using a wide range of compaction pressures for three different chemical compositions. The compacts were then sintered under a pure dry nitrogen atmosphere at three different temperatures. The heating and cooling rates were the same throughout the entire test. The results showed that the green density increases with compaction pressure, but that sintered density is independent of green density (compaction pressure for each sintering temperature.

  2. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  3. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  4. Tunable blue–violet Cr3+:LiCAF + BiBO compact laser

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2015-01-01

    We present a compact continuous wave (CW) external-cavity tunable Cr 3+ :LiCaAlF 6 (Cr:LiCAF) laser which is intracavity frequency doubled using a BiB 3 O 6 (BiBO) nonlinear crystal to obtain tunable blue–violet radiation. The generated second harmonic (SH) can be tuned by means of either angular or temperature variation of the nonlinear crystal. We have obtained SH radiation between 390–415 nm and a maximum output power of 34 mW at 400 nm. Future improvements on the SH tuning range and output power are addressed in the text. Our results may be applied in the design of compact tunable composite external-cavity solid-state lasers. (paper)

  5. High temperature oxidation-sulfidation behavior of Cr-Al2O3 and Nb-Al2O3 composites densified by spark plasma sintering

    International Nuclear Information System (INIS)

    Saucedo-Acuna, R.A.; Monreal-Romero, H.; Martinez-Villafane, A.; Chacon-Nava, J.G.; Arce-Colunga, U.; Gaona-Tiburcio, C.; De la Torre, S.D.

    2007-01-01

    The high temperature oxidation-sulfidation behavior of Cr-Al 2 O 3 and Nb-Al 2 O 3 composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO 2 + 3.6%O 2 + N 2 (balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al 2 O 3 and Nb-Al 2 O 3 composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr 2 O 3 layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al 2 O 3 composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy

  6. Design of experiment approach for sintering study of nanocrystalline SiC fabricated using plasma pressure compaction

    Directory of Open Access Journals (Sweden)

    Bothara M.G.

    2009-01-01

    Full Text Available Plasma pressure compaction (P2C is a novel sintering technique that enables the consolidation of silicon carbide with a nanoscale microstructure at a relatively low temperature. To achieve a high final density with optimized mechanical properties, the effects of various sintering factors pertaining to the temperature-time profile and pressure were characterized. This paper reports a design of experiment approach used to optimize the processing for a 100 nm SiC powder focused on four sintering factors: temperature, time, pressure, and heating rate. Response variables included the density and mechanical properties. A L9 orthogonal array approach that includes the signal-to-noise (S/N ratio and analysis of variance (ANOVA was employed to optimize the processing factors. All of the sintering factors have significant effect on the density and mechanical properties. A final density of 98.1% was achieved with a temperature of 1600°C, hold time of 30 min, pressure of 50 MPa, and heating rate of 100°C/min. The hardness reached 18.4 GPa with a fracture toughness of 4.6 MPa√m, and these are comparable to reports from prior studies using higher consolidation temperatures.

  7. Probing exotic magnetic phases and electrical transport in Cr-rich γ-NiFeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pampa [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Majumdar, A.K., E-mail: akm@bose.res.in [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Ramakrishna Mission Vivekananda University, PO Belur Math, Howrah 711202 (India); Nigam, A.K. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2015-05-01

    We have identified ferromagnetic, antiferromagnetic, and re-entrant spin-glass-like phases in Cr-rich γ-NiFeCr alloys and studied their critical magnetic behavior. Their electrical resistivity exhibits distinct minima between 10 and 24 K with ρ∞−√T due to electron–electron interaction effects. Electron–phonon and electron–magnon contributions to ρ are isolated. The magnetoresistance shows hysteresis effects, a signature of spin-glass-like phases and a sign reversal with change of magnetic states. We have also observed that the nature of magnetic states strongly depends on the concentration of Fe and Cr. In this system, even a small amount of Fe enhances ferromagnetism a lot while addition of a little bit of Cr suppresses ferromagnetism and takes the system to the antiferromagnetic regime. The correlation between the magnetic and the electrical properties are more meaningful here since both studies were done on the same set of samples which have rather high melting points. - Highlights: • Identified ferro, antiferro, and re-entrant spin-glass phases in Ni–Fe–Cr alloys. • Resistivity ρ~−√T shows minima from 10–24 K due to electron–electron interaction. • Electron–phonon and electron–magnon contributions to ρ are isolated. • Magneto-transport measurements strengthened the magnetic phases identified. • Correlation in magnetic/electrical properties more meaningful if same samples used.

  8. Spectral Analysis of CO2 Corrosion Product Scales on 13Cr Tubing Steel

    International Nuclear Information System (INIS)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng; Xun-yuan, Xu

    2008-01-01

    CO 2 corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO 2 corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO 3 , and the inner layer is composed of compact fine FeCO 3 crystals and amorphous Cr(OH) 3 . Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO 2 corrosion environment

  9. Influence of sintering atmospheres on the aluminium sintering characteristics

    International Nuclear Information System (INIS)

    Mintzer, S.; Bermudez Belkys, S.

    1993-01-01

    This paper describes the aluminium powder (Al) cool compacted (at 95% from theoretical density) which was sintered at 903 K during 4 hours at different atmospheres; oxidizing (air), inert Argon (Ar), Nitrogen (N) and high vacuum. The results obtained show: a) porosity measurements; greater porosity when sintering in Ar and air. b) Metallographic and Scanning observations: many fine pores (< 1 μm) and pore lines distributed at random, at air sintering and greater pores distributed preferentially near the surface, in Ar and N atmospheres. c) Dimensional changes: tendency to contraction of the samples at N and vacuum sintering and expansion in Ar or air. d) Mechanical properties: greater strength and fluence stresses at air and N sintering. The analysis of the results is performed considering sintering modes in presence of an oxide layer and dropped inert gases. (Author)

  10. Phase evolution, mechanical and corrosion behavior of Fe(100-x) Ni(x) alloys synthesized by powder metallurgy

    Science.gov (United States)

    Singh, Neera; Parkash, Om; Kumar, Devendra

    2018-03-01

    In the present investigation, Fe(100-x) Ni(x) alloys (x = 10, 20, 30, 40 and 50 wt%) were synthesized through the evolution of γ-taenite and α-kamacite phases by powder metallurgy route using commercially available Fe and Ni powders. Mechanically mixed powders of Fe and Ni were compacted at room temperature and sintered at three different temperatures 1000, 1200 and 1250 °C for 1 h. Both Ni concentration and sintering temperature have shown a strong impact on the phase formation, tribological and electrochemical behavior. Micro structural study has shown the formation of taenite (γ-Fe,Ni) and kamacite (α-Fe,Ni) phases in the sintered specimens. An increase in Ni fraction resulted in formation of more taenite which reduces hardness and wear resistance of specimens. Increasing the sintering temperature decreased the defect concentration with enhanced taenite formation, aiding to higher densification. Taenite formed completely in Fe50Ni50 after sintering at 1250 °C. Tribological test revealed the maximum wear resistance for Fe70Ni30 specimen due to the presence of both kamacite and taenite in significant proportions. The formation of taenite as well as the decrease in defect concentration improves the corrosion resistance of the specimens significantly in 1M HCl solution. A maximum corrosion protection efficiency of around ∼87% was achieved in acidic medium for Fe50Ni50, sintered at 1250 °C.

  11. Influence of the Cr2O3 sintering additive on the homogenization of the plutonium distribution inside an heterogeneous MOX pellet

    International Nuclear Information System (INIS)

    Pieragnoli, A.

    2007-12-01

    This work has revealed the nature of the Cr 2 O 3 action mechanisms on the development of the microstructure of a MOX pellet and particularly on the improvement of the plutonium distribution. At first, it has been necessary to study thoroughly the description of the interaction phenomena occurring inside the U-Pu-Cr-O system. A model system constituted by the same materials UO 2 , (U, Pu)O 2 and Cr 2 O 3 than those present in a MOX pellet and thermically heated in similar sintering conditions has been carried out. These tests have been completed by studies concerning the reactivity between PuO 2 and Cr 2 O 3 , the interdiffusion between UO 2 and (U, Pu)O 2 in presence of chromium and the solubility of chromium in (U, Pu)O 2 . Then, with all the data acquired, it has been possible to describe the evolution of a MOX pellet in presence of chromium during the sintering of the microstructure. Microstructural characteristics such as the plutonium homogenization degree and the grain size have been studied with temperature and sintering level period. The chromium oxide inside microstructure has been studied too. At last, an interpretation of the influence of the presence of chromium on the development of a MOX pellet microstructure has been given in focusing particularly on the plutonium distribution. This interpretation is based on the formation of the (U, Pu)CrO 3 phase and on the plutonium oxidation degree stabilization (+III) by chromium at the grain boundaries level. Advices aiming at optimizing the chromium impact on the development of microstructure are given. In most of the cases, these advices are based on solutions which will contribute, during the sintering thermal treatment, to the presence at lower temperature of the (U, Pu)CrO 3 phase and to keep longer a greater quantity of chromium inside the MOX pellet. (O.M.)

  12. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    Directory of Open Access Journals (Sweden)

    M. Mahmoudiniya

    2017-03-01

    Full Text Available Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment

  13. Temperature stability and corrosion behavior of sintered Nd-Dy-Fe-Co-TM-B magnets, TM:V,Mo (abstract)

    International Nuclear Information System (INIS)

    Adler, E.; Rodewald, W.; Wall, B.

    1991-01-01

    By simultaneous additions of Co and V or of Co and Mo the temperature stability of sintered Nd-Fe-Al-B magnets can be improved. 1--3 A partial substitution of Nd by Dy increases the coercivity by 1.4 kA/cm per wt. % Dy in the alloy, which results in strong coercivities at high temperatures. At 150 degree C, for instance, coercivities of about 9 kA/cm can be achieved. The magnetizing behavior is determined by nucleation of reversed domains. A complete magnetization requires a magnetizing field strength of about 25 kA/cm and does not depend on the coercive field strength. Although in Nd-Dy-Fe-Co-Mo-B magnets the Nd-rich Fe eutectic and the Nd 1.1 Fe 4 B 4 boride are replaced by the Nd 3 Co compound and the Mo 2 FeB 2 boride, respectively, the corrosion is similar to sintered Nd-Dy-Fe-B magnets. The corrosion rate at the 85 degree C--85% relative humidity test is much more determined by the surface treatment of the magnets

  14. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  15. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars

    Science.gov (United States)

    Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.

    2017-11-01

    The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.

  16. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  17. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  18. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    Science.gov (United States)

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  19. Microstructure and Mechanical Properties of n-irradiated Fe-Cr Model Alloys

    International Nuclear Information System (INIS)

    Matijasevic, Milena; Al Mazouzi, Abderrahim

    2008-01-01

    High chromium ( 9-12 wt %) ferritic/martensitic steels are candidate structural materials for future fusion reactors and other advanced systems such as accelerator driven systems (ADS). Their use for these applications requires a careful assessment of their mechanical stability under high energy neutron irradiation and in aggressive environments. In particular, the Cr concentration has been shown to be a key parameter to be optimized in order to guarantee the best corrosion and swelling resistance, together with the least embrittlement. In this work, the characterization of the neutron irradiated Fe-Cr model alloys with different Cr % with respect to microstructure and mechanical tests will be presented. The behavior of Fe-Cr alloys have been studied using tensile tests at different temperature range ( from -160 deg. C to 300 deg. C). Irradiation-induced microstructure changes have been studied by TEM for two different irradiation doses at 300 deg. C. The density and the size distribution of the defects induced have been determined. The tensile test results indicate that Cr content affects the hardening behavior of Fe-Cr binary alloys. Hardening mechanisms are discussed in terms of Orowan type of approach by correlating TEM data to the measured irradiation hardening. (authors)

  20. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  1. Phase-Pure of BiFeO3 Ceramic Based on Citric Acid - Assisted Gel by Sintering Time Variation

    Science.gov (United States)

    Suastiyanti, Dwita; Ismojo

    2017-07-01

    Bismuth ferrite powder (BiFeO3/BFO) with high purity was synthesized by sol-gel process. It was used Bi5O(OH)9(NO3)4 and Fe(NO3)3.9H2O as main compound sources. Citric acid (C6H8O7) was used as fuell. As multiferroic material, BFO promises important technological applications in several devices like data strorage, spinotronics, sensor, actuator devices etc. This research would know the optimum process condition of sol-gel process to produce BFO powder by varying of sintering time. The novelty of this research is how to produce BFO in single phase by simple method. It was used calcination condition at 160°C for 4 hours and sintering condition at 600°C with varying of sintering time of 4, 6 and 8 hours. Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), X Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to characterize the powder. Loss of mass and heat flow were seen at TGA/DTA test at 160°C approximately (used as reference of calcination temperature). BFO powder sintered at for 8 hours has no secondary phase, meanwhile for another sintering time (4 and 6 hours) it has Bi2O3 as secondary phase. It is also show at SEM observation result that powder with sintering time of 8 hours has finer grain than of 4 and 6 hours sintering at the same temperature. The grains of BFO powder has heterogenous in size, shape and still agglomerated.

  2. Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity

    Directory of Open Access Journals (Sweden)

    Cui X.G.

    2009-01-01

    Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.

  3. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sun, Zhiqian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process in a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  4. Microstructural and electrochemical characterization of Ni/Ti/sub 2/N composite coating for sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Ali, A.; Ahmad, A.; Deen, K.M.; Ahmad, R.

    2009-01-01

    Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in humid or moist environments. The paper presents the anticorrosion characteristics of a novel Ni/Ti/sub 2/N composite coating applied through electrodeposition and cathodic arc physical vapour deposition (CAPVD) to sintered NdFeB permanent magnets. The performance of composite coating was evaluated in simulated marine environment with the help of dc polarization techniques. The rate of coating degradation was also determined by employing ac electrochemical impedance spectroscopy (EIS). The coating morphology and surface chemistry were studied with scanning electron microscope (SEM). X-ray diffraction (XRD) was used for identification of component phases in the coating-substrate system. The results showed that the composite coating provided an adequately improved corrosion protection to the sintered NdFeB magnets in the simulated marine environment compared to the earlier reported ceramic and metallic coatings. The composite coating did not damage the magnetic properties of coating-substrate system that remained at par with the ceramic and nickel coating having copper interlayer. (author)

  5. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    Science.gov (United States)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  6. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Xia, M.; Abrahamsen, A.B.; Bahl, C.R.H.; Veluri, B.; Søegaard, A.I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10 4 ppm and 4·10 4 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  7. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, M., E-mail: maxi@dtu.dk [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Abrahamsen, A.B. [Department of Wind Energy, DTU Risø campus, Technical University of Denmark, Roskilde (Denmark); Bahl, C.R.H. [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Veluri, B.; Søegaard, A.I. [Grundfos A/S, DK-8850 Bjerringbro (Denmark); Bøjsøe, P. [Holm Magnetics APS, 2800 Kongens Lyngby (Denmark); Millot, S. [FJ Industries A/S, 5863 Ferritslev (Denmark)

    2017-01-15

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10{sup 4} ppm and 4·10{sup 4} ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  8. Characterization of rust layer formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich environment by Cl and Fe K-edge XANES measurements

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    Chloride in atmosphere considerably reduces the corrosion resistance of conventional weathering steel containing a small amount of Cr. Ni is an effective anticorrosive element for improving the corrosion resistance of steel in a Cl-rich environment. In order to clarify the structure of the protective rust layer of weathering steel, Cl and Fe K-edge X-ray absorption near edge structure (XANES) spectra of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich atmosphere were measured. The Fe K-XANES measurements enable the characterization of mixture of iron oxides such as rust. The chemical composition of the rust was determined by performing pattern fitting of the measured spectra. All the rust is composed mainly of goethite, akaganeite, lepidocrocite and magnetite. Among these iron oxides, akaganeite in particular is the major component in the rust. Additionally, the amount of akaganeite in the rust of Fe-Ni alloy is much greater than that in rust of Fe-Cr alloy. Akaganeite is generally considered to facilitate the corrosion of steel, but our results indicate that akaganeite in the rust of Fe-Ni alloy is quantitatively different from that in rust of Fe-Cr alloy and does not facilitate the corrosion of steel. The shoulder peak observed in Cl K-XANES spectra reveals that the rust contains a chloride other than akaganeite. The energy of the shoulder peak does not correspond to that of any well-known chlorides. In the measured spectra, there is no proof that Cl, by combining with the alloying element, inhibits the alloying element from acting in corrosion resistance. The shoulder peak appears only when the content of the alloying element is lower than a certain value. This suggests that the generation of the unidentified chloride is related to the corrosion rate of steel. (author)

  9. NEUTRON-INDUCED SWELLING OF Fe-Cr BINARY ALLOYS IN FFTF AT ∼400 DEGREES C

    International Nuclear Information System (INIS)

    Garner, Francis A.; Greenwood, Lawrence R.; Okita, Taira; Sekimura, Naoto; Wolfer, W. G.

    2002-01-01

    The purpose of this effort is to determine the influence of dpa rate, He/dpa ratio and composition on the void swelling of simple binary Fe-Cr alloys. Contrary to the behavior of swelling of model fcc Fe-Cr-Ni alloys irradiated in the same FFTF-MOTA experiment, model bcc Fe-Cr alloys do not exhibit a dependence of swelling on dpa rate at approximately 400 degrees C. This is surprising in that an apparent flux-sensitivity was observed in an earlier comparative irradiation of Fe-Cr binaries conducted in EBR-II and FFTF. The difference in behavior is ascribed to the higher helium generation rates of Fe-Cr alloys in EBR-II compared to that of FFTF, and also the fact that lower dpa rates in FFTF are accompanied by progressively lower helium generation rates.

  10. Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys

    International Nuclear Information System (INIS)

    Lin, Chi-Ming; Lai, Hsuan-Han; Kuo, Jui-Chao; Wu, Weite

    2011-01-01

    A combination of transmission electron microscopy, electron backscatter diffraction and wavelength dispersive spectrum has been used to identify crystal structure, grain boundary characteristic and chemical composition of the constituent phases in Cr-Fe-C alloys with three different carbon concentrations. Depending on the three different carbon concentrations, the solidification structures are found to consist of primary α-phase and [α + (Cr,Fe) 23 C 6 ] eutectic in Cr-18.4Fe-2.3 C alloy; primary (Cr,Fe) 23 C 6 and [α + (Cr,Fe) 23 C 6 ] eutectic in Cr-24.5Fe-3.8 C alloy and primary (Cr,Fe) 7 C 3 and [α + (Cr,Fe) 7 C 3 ] eutectic in Cr-21.1Fe-5.9 C alloy, respectively. The grain boundary analysis is useful to understand growth mechanism of the primary phase. The morphologies of primary (Cr,Fe) 23 C 6 and (Cr,Fe) 7 C 3 carbides are faceted structures with polygonal shapes, different from primary α-phase with dendritic shape. The primary (Cr,Fe) 23 C 6 and (Cr,Fe) 7 C 3 carbides with strong texture exist a single crystal structure and contain a slight low angle boundary, resulting in the polygonal growth mechanism. Nevertheless, the primary α-phase with relative random orientation exhibits a polycrystalline structure and comprises a massive high-angle boundary, caused by the dendritic growth mechanism. - Highlights: ► Microstructures of the as-clad Cr-based alloys are characterized by TEM. ► EBSD technique has been use to characterize the grain boundary of primary phases. ► We examine transitions in morphology about the primary phases. ► Morphologies of primary carbides are polygonal different from primary α-phase. ► Solidification structures rely on C concentrations in Cr-Fe-C alloy.

  11. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  12. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  13. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  14. From solid solution to cluster formation of Fe and Cr in α-Zr

    International Nuclear Information System (INIS)

    Burr, P.A.; Wenman, M.R.; Gault, B.; Moody, M.P.; Ivermark, M.; Rushton, M.J.D.; Preuss, M.; Edwards, L.; Grimes, R.W.

    2015-01-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  15. From solid solution to cluster formation of Fe and Cr in α-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Burr, P.A., E-mail: burr.patrick@gmail.com [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Wenman, M.R. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Gault, B.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Ivermark, M. [High Temperature Materials, Sandvik Materials Technology, 734 27 Hallstahammar (Sweden); University of Manchester, School of Materials, M13 9PL (United Kingdom); Rushton, M.J.D. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Preuss, M. [University of Manchester, School of Materials, M13 9PL (United Kingdom); Edwards, L. [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Grimes, R.W. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom)

    2015-12-15

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  16. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  17. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  18. Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2013-01-01

    Full Text Available In this study the SPS method was applied for low RE content (8,5% at. and high RE content (13,5 % at. MQ powders. The powders were sintered in a wide range of temperature, for 5 min., under pressure of 35 MPa. The low RE content grade, densified reluctantly and gained the density close to the theoretical value only for 850 °C. The coercivity decreased gradually with increasing sintering temperature. On the other hand, the densification of the higher RE content grade powder occurred much easier and the coercivity, close to the theoretical value, was achieved already at 650 °C. The coercivity of this material also decreased with increasing sintering temperature. Microstructural studies revealed that the SPS sintering process leads to partial decomposition of the Nd2Fe14B phase. The proportion of the RE-rich and iron phases increases parallel to the increasing sintering temperature. On the basis of the current results one can conclude that fabrication of high density MQ powders based magnets by the SPS method is possible, however the powders having higher RE content should be used for this purpose and the sintering temperature as low as possible, related to density, should be kept.

  19. Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q., E-mail: liuweiqiang77@hotmail.co [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Sun, H. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yi, X.F. [Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui 231500 (China); Liu, X.C.; Zhang, D.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yue, M., E-mail: yueming@bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Zhang, J.X. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2010-07-02

    Nd-Fe-B permanent magnets with a small amount of Dysprosium (Dy) nanoparticles doping were prepared by conventional sintered method, and the microstructure and magnetic properties of the magnets were studied. Investigation shows that the coercivity rises gradually, while the remanence decreases simultaneously with increased Dy doping amount. As a result, the magnet with 1.5 wt.% Dy exhibits optimal magnetic properties. Further investigation presumed that Dy is enriched as (Nd, Dy){sub 2}Fe{sub 14}B phase in the surface region of the Nd{sub 2}Fe{sub 14}B matrix grains indicated by the enhancement of the magneto-crystalline anisotropy field of the Nd{sub 2}Fe{sub 14}B phase. As a result, the magnet doped with a small amount of Dy nanoparticles possesses remarkably enhanced coercivity without sacrificing its magnetization noticeably.

  20. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  1. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Directory of Open Access Journals (Sweden)

    Jeon Byoungjun

    2015-06-01

    Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.

  2. Moessbauer effect study of charge and spin transfer in Fe-Cr

    International Nuclear Information System (INIS)

    Dubiel, S.M.; Zukrowski, J.

    1981-01-01

    The influence of temperature and time of annealing on hyperfine fields and isomer shifts has been studied for a range of Fe-Cr alloys containing 1-45 at% Cr. It has been revealed that up to 15 at% Cr neither time or temperature of annealing practically does affect the hyperfine parameters. For more concentrated samples, however, both temperature and time of annealing are important. In particular, the Moessbauer spectrum of Fe-45.5 at% Cr annealed at 700 0 C for 5 h was a single-line indicating that the sample was paramagnetic. The observed changes of the hyperfine fields and the isomer shifts have been interpreted in terms of a spin and charge transfer, respectively. Strong linear correlations between the following quantities have been revealed: the hyperfine field H(0,0) and the isomer shift IS(0,0); the average hyperfine field anti H and the average isomer shift anti Ianti S; the average hyperfine field anti H and the average number of Cr atoms in the first two coordination spheres, anti N. It has been calculated from the first two correlations that a) a change of polarization of itinerant s-like electrons of one electron is equivalent to a change of the hyperfine field of 1602 kOe, and b) on average, a unit change of s-like electron polarization is equivalent to 3277 kOe. The two constants are very close to theoretical estimations, which can be found in literature. Correlation between the hyperfine field and the isomer shift led to a conclusion that the substitution of Fe atoms by Cr ones decreases the density of spin-up electrons on average by 0.026 electrons per one Cr atom in a unit cell. These electrons are most likely trapped by Cr atoms, because the hyperfine field at neighbouring Fe nuclei decreases and the density of charge at those nuclei increases at the rate of 0.029 electrons per one Cr atom in a unit cell. (orig./BHO)

  3. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  4. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the development of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.

  5. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  6. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  7. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe_3O_4/halloysite nanohybrid

    International Nuclear Information System (INIS)

    Tian, Xike; Wang, Weiwei; Tian, Na; Zhou, Chaoxin; Yang, Chao; Komarneni, Sridhar

    2016-01-01

    Highlights: • A novel magnetic nonohybrids (Fe_3O_4/HNTs@C) were synthesized for Cr(VI) removal. • Cr(VI) was reduced to Cr(III) by Fe_3O_4 nanoparticles and hydroxyl groups. • Cr ions were attached on Fe_3O_4/HNTs@C by ion exchange and coordination interaction. - Abstract: In this work, a novel “Dumbbell-like” magnetic Fe_3O_4/Halloysite nanohybrid (Fe_3O_4/HNTs@C) with oxygen-containing organic group grafting on the surface of natural halloysite nanotubes (HNTs) and homogeneous Fe_3O_4 nanospheres selectively aggregating at the tips of modified halloysite nanotubes was successfully synthesized. XRD, TEM, IR spectroscopy, XPS and VSM were used to characterize this newly halloysite nanohybrid and its formation mechanism was discussed. Cr(VI) ions adsorption experiments showed that the Fe_3O_4/halloysite nanohybrid exhibited higher adsorption ability with a maximum adsorption capacity of 132 mg/L at 303 K, which is about 100 times higher than that of unmodified halloysite nanotubes. More importantly, with the reduction of Fe_3O_4 and electron–donor effect of oxygen-containing organic groups, Cr(VI) ions were easily reduced into low toxicity Cr(III) and then adsorbed onto the surface of halloysite nanohybrid. In addition, appreciable magnetization was observed due to the aggregation of magnetite nanoparticles, which make adsorbent facility separated from aqueous solutions after Cr pollution adsorption.

  8. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  9. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  10. The analysis of adhesion failure between Ni-coating and sintered NdFeB substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hengxiu, Y; Yong, D; Zhenlun, S, E-mail: yanghengxiu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 (China)

    2011-01-01

    Ni-coating was widely used to protect the sintered NdFeB magnet from corrosion by Watt electro-deposition solution. However, the protection failure always occurs due to poor adhesion strength between Ni-coating and NdFeB substrate. In present work, the adhesion strength of the Ni-coating on NdFeB substrate was measured by vertical tensile method to strip Ni-coating from NdFeB substrate. The results revealed that the adhesion failure was occurred in the side of the NdFeB substrate due to a weak zone sometimes shown cracks located inside of NdFeB substrate, rather than in the interface between Ni-coating and NdFeB substrate. Comparing with cross section morphology of NdFeB magnet after pretreatment, it is concluded that the crack could be formed during the electro-deposition process. The effect of the pH value of bath on adhesion strength indicated that the crack could be induced due to electrochemical hydrogenation of NdFeB substrate during electro-deposition.

  11. Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys

    International Nuclear Information System (INIS)

    Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.

    2011-01-01

    The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

  12. Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.

    2011-03-15

    The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

  13. Manufacturing of FeCrAl/Zr Dual Layer tube for its application to LWR Fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Lim, Do Wan; Jung, Yang Il; Kim, Hyun Gil; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many advanced materials such as MAX phases, Mo, SiC, and Fe-based alloys are being considered a possible candidate to substitute the Zr-based alloy cladding has been used in light water reactors. Among the proposed candidate materials, Fe-based alloy is one of the most promising candidates owing to its excellent formability, very good high strength, and corrosion resistance at high temperature. However, neutron cross section of FeCrAl alloy is much higher than that of existing Zr-based alloys. In this study, FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. The thickness of outer FeCrAl layer was varied from 50 to 250 μm but all the FeCrAl/Zr dual layer tube samples maintained its total thickness of 570 μm. For a detailed microstructural characterization of FeCrAl/Zr dual layer, polarized optical microscopy and scanning electron microscopy (SEM) study carried out and its mechanical property was measured by ring compression test. FeCrAl/Zr dual layer tube sample was successfully manufactured with good adhesion between both layers. Inter layer showing gradual element variation was observed at interface. Result obtained from simulated LOCA test indicates that FeCrAl/Zr dual layer tube may maintain its integrity during LOCA and its accident tolerance had greatly improved compared to that of Zr-based alloy.

  14. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the AlCoFeCr

  15. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition

    Science.gov (United States)

    Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Quan, Qichen; Zhang, Lili; Liu, Renhui; Hu, Xianjun; He, Lunke; Qi, Zhiqi; Ju, Zhihua; Zhong, Minglong; Ma, Shengcan; Zhong, Zhenchen

    2018-05-01

    Nd2Fe14B-type permanent magnets have been widely applied in various fields such as wind power, voice coil motors, and medical instruments. The large temperature dependence of coercivity, however, limits their further applications. We have systematically investigated the magnetic properties, thermal stabilities and coercivity mechanisms of the (Pr0.2Nd0.8)13Fe81-xB6Hfx (x=0, 0.5) nanocrystalline magnets fabricated by a spark plasma sintering (SPS) technique. The results indicate that the influence of Hf addition is significant on magnetic properties and thermal stabilities of the (PrNd)2Fe14B-type sintered magnets. It is shown that the sample with x = 0.5 at 300 K has much higher coercivity and remanent magnetization than those counterparts without Hf. The temperature coefficients of remanence (α) and coercivity (β) of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets are improved significantly from -0.23 %/K, -0.57 %/K for the sample at x = 0 to -0.17 %/K, -0.49 %/K for the sample at x = 0.5 in the temperature range of 300-400 K. Furthermore, it is found out that the domain wall pinning mechanism is more likely responsible for enhancing the coercivity of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets.

  16. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  17. Activity of Aniline Methylation over Fe-Cu-Cr Ternary Spinel Systems

    Directory of Open Access Journals (Sweden)

    Reni George

    2014-03-01

    Full Text Available A series of spinels having thegeneral formula CuCr2-xFexO4 with x=0.25,0.75, 1.25, 1.75 were prepared by co-precipitation method. The catalysts werecharacterized by various physico-chemical methods like XRD, BET, UV-DRS, SEM,EDX, TPD etc. The reaction of aniline with methanol was studied in a fixed-bedreactor system as a potential source for the production of various methylanilines. It was observed that systems possessing low ‘x’ values are highlyselective and active for N-monoalkylation of aniline leading toN-methylaniline. Reaction parameters were properly varied to optimize thereaction conditions for obtaining N-methylaniline selectively and in betteryield. Among the systems CuCr1.75Fe0.25O4 isremarkable due to its very high activity and excellent stability. Under theoptimized conditions N-methylaniline selectivity exceeded 91%. CuCr1.25Fe0.75O4gives better conversion than CuCr1.75Fe0.25O4in CuCr2-xFexO4 series. The Lewis acid sitesof the catalysts are mainly responsible for the good catalytic performance. © 2014 BCREC UNDIP. All rights reservedSubmitted: 18th July 2013; Revised: 5th November 2013; Accepted: 1st December 2013[How to Cite: George, R., George, K., Sugunan, S. (2014. Activity of Aniline Methylation over Fe-Cu-Cr Ternary Spinel Systems. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 39-44. (doi:10.9767/bcrec.9.1.5169.39-44][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5169.39-44] 

  18. Microstructure of reactive synthesis TiC/Cr18Ni8 stainless steel bonded carbides

    Institute of Scientific and Technical Information of China (English)

    Jiang Junsheng; Liu Junbo; Wang Limei

    2008-01-01

    TiC/Cr18Ni8 steel bonded carbides were synthesized by vacuum sintering with mixed powders of iron, ferrotitanium, ferrochromium, colloidal graphite and nickel as raw materials. The microstructure and microhardness of the steel bonded carbides were analyzed by scanning electron microscope (SEM),X-ray diffraction (XRD) and Rockwell hardometer. Results show that the phases of steel bonded carbides mainly consist of TiC and Fe-Cr-Ni solid solution. The synthesized TiC particles are fine. Most of them are not more than 1 μm With the increase of sintering temperature, the porosity of TiC/Cr18Ni8 steel bonded carbides decreases and the density and hardness increase, but the size of TiC panicles slightly increases. Under the same sintering conditions, the density and hardness of steel bonded carbides with C/Ti atomic ratio 0.9 are higher than those with C/Ti atomic ratio 1.0.The TiC particles with C/Ti atomic ratio 0.9 are much finer and more homogeneous.

  19. Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys

    DEFF Research Database (Denmark)

    Prokhodtseva, A.; Décamps, B.; Ramar, Amuthan

    2013-01-01

    The effect of He on the primary damage induced by irradiation in ultrahigh-purity (UHP) Fe and Fe(Cr) alloys was investigated by transmission electron microscopy (TEM). Materials were irradiated at room temperature in situ by TEM in a microscope coupled to two ion accelerators, simultaneously pro...

  20. Behaviour of Ca2Fe2O5 with Nb substitution and sintering temperatures seen by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Duhalde, S.; Saragovi, C.; Moraes, I.J.; Terrile, M.C.; Francisco, R.H.P.

    1991-01-01

    Moessbauer spectroscopy of samples of Ca 2 Fe 2-x Nb x O 5+x with x values ranging from 0 to 0.8 and sintering temperatures of 1200degC and 1300degC shows the presence of two magnetic fields and a paramagnetic signal. The behaviour of the parameters as a function of x and of the sintering temperatures are discussed and compared with XRD results. (orig.)

  1. Uniform magnetization reversal in dual main-phase (Ce,Nd)2Fe14B sintered magnets with inhomogeneous microstructure

    International Nuclear Information System (INIS)

    Zhang, Le-le; Li, Zhu-bai; Zhang, Xue-feng; Ma, Qiang; Liu, Yan-li; Li, Yong-feng; Zhao, Qian

    2017-01-01

    The element distribution and the magnetic properties were investigated in (Ce,Nd)–Fe–B sintered magnets prepared by mixing Nd 13.5 Fe 80 B 6.5 and Ce 9 Nd 4.5 Fe 80 B 6.5 powders with different mass ratios. Two main phases exist, but element diffusion is evident, and the chemical composition of the main phase is widely different from that of the master alloy. The Ce element tends to be expelled from the Ce-rich Re 2 Fe 14 B phase. Compared with the Ce-rich main phase, the Nd-rich Re 2 Fe 14 B phase is more stable in structure. Although the microstructure is inhomogeneous and the magnetocrystalline anisotropy is variable, the magnetization reversal is uniform in these dual main-phase magnets, which should ascribe to the existence of the exchange coupling, and magnetization reversal undergoes the nucleation of the reversed domain in irreversible magnetization. It is expected to further improve the coercivity by optimizing the distribution of the Nd-rich main phase in preparing the resource-saving (Ce,Nd) 2 Fe 14 B sintered magnets. (paper)

  2. Fabrication of Cr-doped UO2 Fuel Pellet using Liquid Phase Sintering

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Koo, Yang Hyun

    2013-01-01

    An enhancement of the thermal conductivity of a pellet can be obtained by the addition of a higher thermal conductive material in the pellet. In addition, the resistance to the PCI can be increased through a plasticity increase of the pellet. Thermal conductivity of ceramic materials is generally lower than that of metallic materials. The thermal conductivity of uranium oxide which is a typical ceramic material is low as well. The steep temperature gradient in the fuel pellet results from the low thermal conductivity. Therefore, the thermal conductivity improvement of a nuclear fuel pellet can enhance the fuel performance in various aspects. The lower centerline temperature of a fuel pellet affects the enhancement of fuel safety as well as fuel pellet integrity during nuclear reactor operation. Besides, the nuclear reactor power can be uprated due to the higher safety margin. So, many researches to enhance the thermal conductivity of nuclear fuel pellet have been performed in various ways. To improve the thermal conductivity of UO 2 pellet, an appropriate arrangement of the high thermal conductive material in UO 2 matrix is one of the various methods. We intended to control a placement of chromium as the high thermal conductive material. The metallic chromium and chromium oxide were arranged in a grain boundary of UO 2 using a liquid phase sintering method. The liquid phase sintering of Cr-doped UO 2 pellet could be adjusted using a control of an oxygen potential in sintering atmosphere

  3. Microstructural Characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr Model Alloy s

    Energy Technology Data Exchange (ETDEWEB)

    De Castro, V.; Jenkins, M.L. [Oxford Univ., Dept. of Materials (United Kingdom); Leguey, T.; Mufioz, A.; Pareja, R.; Monge, M.A. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic (RAFM) steels with Cr contents ranging between 9-12 wt% are promising candidates for use as structural materials in future fusion reactors. They are likely to be superior to austenitic steels because of their better thermal properties and higher swelling resistance. A major concern of these materials is their maximum service temperature, as this determines the overall efficiency of the reactor. It has been demonstrated that one way to increase this temperature is to homogeneously disperse hard nano-sized oxide particles, such as Y{sub 2}O{sub 3}, into the steel matrix. Oxide dispersion strengthened (ODS) steels produced by mechanical milling and hot isostatic pressing (HIP ) are considered as potential structural materials for fusion reactors. In Europe, efforts have been focused on the ODS-RAFM-9CrW steel EUROFER. These ODS steels show good tensile and creep properties, acceptable ductility, but poor impact properties. Microstructural characterization of real steels, especially of the structures of oxide/steel matrix interfaces which play an important role in the performance of the material, is a difficult task. In the present work we have fabricated and characterised a simpler model ODS system based on a Fe-Cr binary alloy, in the belief that this will help us better to understand complex ODS-RAFM steels. Two Fe-12wt% Cr batches, one containing 0.3 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3} free have been produced by milling plus compaction by HIP. These materials are being characterized by X-ray diffraction, electron microscopy and atom probe field ion microscopy. Results will be compared with those obtained for ODS-EUROFER produced under the same conditions. (authors)

  4. Spark-plasma-sintering magnetic field assisted compaction of Co{sub 80}Ni{sub 20} nanowires for anisotropic ferromagnetic bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Ouar, Nassima; Schoenstein, Frédéric; Mercone, Silvana; Farhat, Samir; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, LSPM—UPR 3407, Université Paris 13, Sorbonne-Paris-Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse (France); Villeroy, Benjamin [Institut de Chimie et des Matériaux Paris Est, CNRS, ICMPE—UMR 7182, Equipe de Chimie Métallurgique des Terres Rares, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Leridon, Brigitte [Laboratoire de Physique et d’Étude des Matériaux, LPEM, ESPCI-ParisTech, CNRS, UPMC, 10 rue Vauquelin, F-75231 Paris Cedex 5 (France)

    2013-10-28

    We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co{sub 80}Ni{sub 20} nanowires and a massic yield of ∼97% was obtained. The thus obtained nanowires show an average diameter of ∼6 nm and a length of ∼270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression and low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction)

  5. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Moura, L.B.; Guimaraes, R.F.

    2010-01-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  6. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-04-01

    Full Text Available This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2 by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase with the presence of other minor phases. It is found that dehydrogenation of TiH2 significantly affects the sintering behavior and resultant microstructure. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH2 compact leads to less densification, yet higher chemical homogenization, after high temperature sintering but not in the case of low temperature sintering. Moreover, there is a direct evidence of the eutectoid decomposition of NiTi at ca. 847 and 823 K for Ni/Ti and Ni/TiH2, respectively, during furnace cooling. The static and cyclic stress-strain behaviors of the porous NiTi alloys made from the Ni/Ti and Ni/TiH2 compacts were also investigated. As compared with the Ni/Ti sintered samples, the samplessintered from the Ni/TiH2 compact exhibited a much higher porosity, a higher close-to-total porosity, a larger pore size and lower tensile and compressive fracture strength.

  7. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    Science.gov (United States)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  8. The Fe-Cr-Zn system in relation with the galvanizing process in chromium-added zinc bath

    Energy Technology Data Exchange (ETDEWEB)

    Reumont, G.; Mathon, M.; Fourmentin, R.; Perrot, P. [LMPGM, UMR CNRS 8517, Univ. de Lille I, Villeneuve d' Ascq (France)

    2003-04-01

    Taking into account new experimental measurements, the Fe-Zn-Cr ternary system is critically modified at 460 C. A continuous solid solution between {zeta}-FeZn{sub 13} and CrZn{sub 13} compounds is shown but is shared at 460 C by the stable CrZn{sub 17} compound containing about 2 wt.% Fe. This ternary system is assessed with the CALPHAD method using the PARROT modulus of the Thermo-Calc software. The liquid and solid solution phases are modeled with Redlich-Kister-Muggianu equations. The intermetallic compounds {zeta}-(Fe,Cr)Zn{sub 13} and CrZn{sub 17} are treated as stoichiometric compounds in the binary systems. The experimental Fe and Cr solubilities at various temperatures modify the shape of the liquidus curve and are satisfying for industrial applications. A set of parameters consistent with most of the available experimental data on both phase diagram and solubility measurements is obtained by optimization. A comparison with previous experimental work is also presented and a reactional model between iron substrate and Zn-Cr bath is proposed. This optimization allows to interpret the growth of intermetallic layers and the formation of dross when galvanizing in Cr-added Zn bath. (orig.)

  9. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  10. Influence of atomic ordering on sigma phase precipitation of the Fe{sub 50}Cr{sub 50} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Vélez, G.Y., E-mail: g.y.velezcastillo@gmail.com [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia); Instituto de Física, Universidad Autónoma de San Luis Potosí, avenida Manuel Nava 6, zona universitaria, 78290 San Luis Potosí, SLP México (Mexico); Pérez Alcázar, G.A. [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia)

    2015-09-25

    Highlights: • σ-FeCr phase can be delayed when α-FeCr phase is ordered. • The formation of σ phase is favored by concentration gradients of α phase. • We determine the iron occupation number of the five sites of σ-Fe{sub 50}Cr{sub 50}. - Abstract: In this work we report a study of the kinetic of the formation of the σ-Fe{sub 50}Cr{sub 50} alloy which is obtained by heat treatment of α-FeCr samples with different atomic ordering. Two α-FeCr alloys were obtained, one by mechanical alloying and the other by arc-melting. Both alloys were heated at 925 K for 170 h and then quenched into ice water. Before heat treatment both alloys exhibit α-FeCr disordered structure with greater ferromagnetic behavior in the alloy obtained by mechanical alloying due to its higher atomic disorder. The sigma phase precipitation is influenced by the atomic ordering of the bcc samples: in the alloy obtained by mechanical alloying, the bcc phase is completely transformed into the σ phase; in the alloy obtained by melted the α–σ transformation is partial.

  11. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  12. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Larry J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristics are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate

  13. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  14. Interdiffusion between Co3O4 coating and the oxide scale of Fe-22Cr alloy

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Friehling, Peter B.; Linderoth, Søren

    2002-01-01

    on Fe-Cr alloys. Coatings of Co3O4 were deposited on a Fe-22Cr alloy by plasma spraying and spray-painting. As-deposited samples were oxidised in air containing 1% H2O at 900C for various exposure time. During exposure the Fe-22Cr alloy forms an oxide scale, which reacts with the coating. The effects...

  15. Effects of CaO on the compaction and sintering by plasma of Powder-metallurgical iron

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2017-12-01

    This work the effect of the addition of Calcium Oxide (CaO) in the compaction and sintering of powder metallurgical iron Ancoor Steel 1000® is studied. Iron samples were made with proportions of: 0.5%, 1%, 1.5% and 2% by weight of CaO. The samples were sintered in a luminescent discharge furnace, in an atmosphere of H2+Ar at a temperature of 1150°C. XRD analysis was used to determine the formation of compounds, this analysis evidenced the formation of: hematite and magnetite, which were found both on the surface and in the volume. A characterization of the ability to protect against corrosive effects was carried out using the EIS electrochemical impedance spectroscopy method on the samples, in a solution of 1000ppm of chloride, with this procedure it was found that at a concentration of 0.5% and 1% CaO, the electrochemical impedance value is increased with values of 11.7MΩ, 2.2MΩ respectively.

  16. Relations microstructure - magnetic properties - squareness factor of PrFeB and NdFeB sintered magnets prepared with hydrogen

    International Nuclear Information System (INIS)

    Perigo, Elio Alberto

    2009-01-01

    In this work, it has firstly been evaluated the preparation of Pr 16 Fe 76 B 8 sintered permanent magnets (% at.) by means of high-energy milling using a planetary ball mill. The influence of both milling speed and time has been verified. The best magnetic properties [J R = (1.02 ± 0.02) T, μ 0J H c = (1.42 ± 0.03) T and (BH) max = (200 ± 4) kJm -3 ] have been found for a permanent magnet prepared with the magnetic alloy milled during 75 minutes using a rotational milling speed of 200 rpm. In order to improve the remanence, the hydrogen decrepitation process time has been reduced from 60 minutes to 2 minutes. In this case, it has been obtained a sintered magnet with J R = (1.14 ± 0.02) T, μ 0J H c = (1.44 ± 0.03) T and (BH) max = (250 ± 5) kJm -3 due to the improvement of crystallographic alignment of the hard magnetic phase. During such investigation, a new methodology to quantify the parameter has been developed. Subsequently, for the first time, a quantitative correlation between the microstructure and the squareness factor in anisotropic sintered RE 16 Fe 76 B 8 (RE = Nd or Pr) magnets has been proposed. The presented expression utilizes the mean size, the mean elongation and the mean roundness of the hard magnetic grains as well as their respective standard deviations. The squareness factor can be improved with a microstructure with rounder grains and with a sharp grain size distribution. The grain size homogeneity is more important to enhance the squareness factor compared to grain shape homogeneity. Furthermore, it has also been verified that the annealing after sintering improves the grain shape homogeneity and the milling enhances the grain size homogeneity. Moreover, the effect of the temperature on the squareness factor of anisotropic sintered magnets has also been evaluated. Such parameter is mainly controlled by the sample's microstructure, in agreement with the proposed expression. Furthermore, a quantitative correlation between the maximum

  17. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  18. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    International Nuclear Information System (INIS)

    Fabrizi, A; Timelli, G

    2016-01-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al 15 (Fe,Mn,Cr) 3 Si 2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al 5 (Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates. (paper)

  19. Phase separation process in FeCr alloys studied by neutron small angle scattering

    International Nuclear Information System (INIS)

    Furusaka, Michihiro; Ishikawa, Yoshikazu; Yamaguchi, Sadae; Fujino, Yutaka.

    1986-01-01

    The very early stage as well as late stage of phase separation process in FeCr alloys (Fe-20, 30, 40, 60 at%Cr) have been studied by pulsed cold neutron small angle scattering instrument (SAN). At the early stage, scattering intensity I(q) obeys q -2 dependence at the high q side of the scattering function. The results are in accord with the theory of Langer et al. which takes into account nonlinear and thermal fluctuations effects. At the late stage where I(q) shows q -4 dependence, a dynamical scaling law holds, while it is not the case for the earlier stage. Phase diagram of FeCr system is also determined by critical scattering measurements. (author)

  20. CoCr double-layered media with NiFe and CoZrNb soft-magnetic layers (invited)

    International Nuclear Information System (INIS)

    Bernards, J.P.C.; Schrauwen, C.P.G.; Zieren, V.; Luitjens, S.B.

    1988-01-01

    The magnetic, structural, and recording properties of CoCr double-layered media are investigated. The underlayer materials NiFe (crystalline) and CoZrNb (amorphous) were combined with two different kinds of intermediate layers: Ti (crystalline) and Ge (amorphous). Applying a bias voltage during sputtering of NiFe results in a low coercivity of the NiFe layer and in a high coercivity of the CoCr layer. The structure of the NiFe layer influences the structure of the CoCr layer. A Ti layer between the NiFe and CoCr layers decreases the in-plane remanence of the CoCr layer. The coercivity of all CoZrNb layers is low, independent of the application of a bias voltage. The orientation and structure of CoCr on CoZrNb can be improved by using a Ge intermediate layer, which results in a low coercivity of the CoCr. A Ti intermediate layer increases the coercivity. Ring heads show a dependence of spike noise on the underlayer coercivity and on the applied normal force. A probe-type head shows a dependence of its output on the CoCr coercivity, which may be understood in terms of demagnetization and writing depth

  1. Design and characterization of FeCrNiCoAlCu and FeCrNiCo(AlCu){sub 0,5} multicomponent alloys; Previsao e caracterizacao de ligas multicomponentes FeCrNiCoAlCu e FeCrNiCo(AlCu){sub 0,5}

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, Carlos; Artacho, Victor Falcao [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais

    2014-07-01

    High entropy alloys using multi-element main quasi-equivalent atomic proportions and generally forms single-phase solid solution and has the ability to enhance levels of strain hardening combined with high levels of plastic deformation at room temperature. In this work two high-entropy alloys with almost similar composition were studied and the factors influencing the formation of solid solution phases (δ atomic radius difference, ΔH{sub mix} mixing enthalpy, ΔS{sub mix} mixing entropy) were evaluated. The microstructure as-cast and the compositions of phases in the two alloys were analyzed by SEM and XRD. The mechanical characterization was realized by measurements of microhardness and cold compression test. The results showed that FeCrNiCo(AlCu){sub 0,5} and FeCrNiCoAlCu alloys with δ equal to 5,7 and 4,9, respectively, form alloys with solid solutions of high entropy. However, the presence of FC and BCCC structures greatly influence the mechanical properties. (author)

  2. Effect of grain alignment distribution on magnetic properties in (MM, Nd)-Fe-B sintered magnets

    Science.gov (United States)

    Yu, Xiaoqiang; Yue, Ming; Zhu, Minggang; Liu, Weiqiang; Li, Yuqing; Xi, Longlong; Li, Jiajie; Zhang, Jiuxing; Li, Wei

    2018-03-01

    H cj of (MM x Nd1-x )-Fe-B sintered magnets decreases distinctly with x increasing when misch metal (MM) content (x) ranges from 0.3 to 1. Practical application is taken into consideration so that the (MM0.6Nd0.4)-Fe-B components are chosen to analyze the changes in behavior of the magnetic properties. Both Magnet II and Magnet III belong to (MM0.6Nd0.4)-Fe-B sintered magnets, however, it should be noted that Magnet II is prepared by the single alloying method (SAM) and Magnet III is prepared by the double main phase alloy method (DMPAM). Core-shell structures of the magnets prepared by DMPAM can result in the higher H cj and lower knee-point coercivity (H k) compared with that by SAM. Furthermore, for Magnet II, the abnormal grain growth contributes to a better grain alignment and smaller distribution coefficient (σ) defined as the degree of grain alignment, which will enforce a higher tendency of the H cj decreasing and H k increasing. The expression of their normalized coercivity h(σ) is deduced by combining Gao’s starting field model with Kronmüller’s nucleation mechanism. Based on the overall h(σ) ~ σ curve, the best desirable h(σ) value is calculated when σ  =  0.09. Theoretically, for Magnet III, the resultant larger σ should be attributed to the more uniform grain alignment. In addition, the deviations of grain size distributions on the c-plane become more remarkable with more MM concentrates, which can be presented by SEM images. Meanwhile, by means of the pole figures, it is also verified that the grain alignment distribution becomes much more diverse with x increasing. Therefore, it can be predicted whether the grain alignment distribution is significant for H k and H cj of (MM x Nd1-x )-Fe-B sintered magnets (x  ≠  0.6) prepared by SAM/DMPAM or not.

  3. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, F., E-mail: f.bittner@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Schultz, L. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Schwöbel, C. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Fraunhofer ISC, Projektgruppe für Werkstoffkreisläufe und Ressourcenstrategie IWKS, Rodenbacher Chaussee 4, 63457 Hanau (Germany); Zickler, G.A.; Fidler, J. [Technische Universität Wien, Institute of Solid State Physics, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Üstüner, K.; Katter, M. [Vacuumschmelze GmbH & Co. KG, 63412 Hanau (Germany)

    2017-03-15

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  4. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    International Nuclear Information System (INIS)

    Bittner, F.; Woodcock, T.G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G.A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-01-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  5. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Jun Fujisaki

    2016-05-01

    Full Text Available This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  6. The influence of a Cr-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2009-01-01

    The effects of a Cr-dopant on the precipitation of acicular α-FeOOH particles, the formation of solid solutions, particle size and shape were investigated using X-ray powder diffraction (XRD), Moessbauer and Fourier transform infrared (FT-IR) spectroscopies and field emission scanning electron microscopy (FE-SEM). Acicular and monodisperse α-FeOOH particles were precipitated at a very high pH by heating the suspension obtained by adding a tetramethylammonium hydroxide solution to an aqueous solution of FeCl 3 . The influence of the Cr-dopant was investigated by addition of various amounts of Cr 3+ ions to the initial FeCl 3 solution, where r = 100[Cr]/([Cr] + [Fe]) stands for the added amount of Cr. XRD analysis of the obtained powders (with r values from 0 to 23.08) showed only the presence of the diffraction lines characteristic for α-FeOOH. Moessbauer spectroscopy showed a decrease in hyperfine magnetic field of α-FeOOH with an increase in Cr addition which indicates Cr incorporation into the α-FeOOH structure. The OH bending bands in the FT-IR spectra showed only a slight change in position with an increase in r, but the considerable increase in the lattice band wave number indicated a decrease in thickness of the lath-like α-FeOOH particles. This conclusion was confirmed by FE-SEM observations

  7. Change of Cr atoms distribution in Fe85Cr15 alloy caused by 250 keV He+ ion irradiation to different doses

    International Nuclear Information System (INIS)

    Dubiel, S.M.; Żukrowski, J.

    2015-01-01

    Highlights: • Effect of He-ion irradiation dose on Fe 85 Cr 15 alloy. • Irradiation-induced clustering of Cr atoms. • Irradiation-caused reorientation of the surface magnetization vector. • Irradiation-caused increase of Fe-site spin-density. - Abstract: Redistribution of Cr atoms in a Fe 85 Cr 15 alloy caused by its irradiation with 250 keV He + ions to different doses, D = 8 ⋅ 10 16 , 16 ⋅ 10 16 and 48 ⋅ 10 16 ions/cm 2 was investigated by means of conversion electrons Mössbauer spectroscopy. The redistribution was expressed in terms of the Warren–Cowley short-range order parameters α 1 , α 2 and α 12 pertaining to the first (1NN), second (2NN) and both i.e. 1NN + 2NN shells, respectively. Clear evidence was found, both for non-irradiated and irradiated samples that the actual distribution of Cr atoms is characteristic of the shell, and for a given shell it depends on the irradiation dose. In particular, α 1 is positive, hence indicates an under population of Cr atoms in 1NN with respect to the random case, α 2 is negative, giving evidence thereby that 2NN is overpopulated by Cr atoms, and α 12 is weakly positive. Under the applied irradiation the number of Cr atoms in both neighbor shells decreased signifying thereby a clustering of Cr atoms. The underlying decrease of Cr concentration within the 1NN–2NN volume around the probe Fe atoms was estimated at 1.5 at.% ranging between 2.1 for the lowest and 0.8 at.% for the highest dose

  8. Effects of Milling Atmosphere and Increasing Sintering Temperature on the Magnetic Properties of Nanocrystalline Ni0.36Zn0.64Fe2O4

    Directory of Open Access Journals (Sweden)

    Abdollah Hajalilou

    2015-01-01

    Full Text Available Nanocrystalline Ni0.36Zn0.64Fe2O4 was synthesized by milling a powder mixture of Zn, NiO, and Fe2O3 in a high-energy ball mill for 30 h under three different atmospheres of air, argon, and oxygen. After sintering the 30 h milled samples at 500°C, the XRD patterns suggested the formation of a single phase of Ni-Zn ferrite. The XRD results indicated the average crystallite sizes to be 15, 14, and 16 nm, respectively, for the 30 h milled samples in air, argon, and oxygen atmospheres sintered at 500°C. From the FeSEM micrographs, the average grain sizes of the mentioned samples were 83, 75, and 105 nm, respectively, which grew to 284, 243, and 302 nm after sintering to 900°C. A density of all the samples increased while a porosity decreased by elevating sintering temperature. The parallel evolution of changes in magnetic properties, due to microstructural variations with changes in the milling atmosphere and sintering temperature in the rage of 500–900°C with 100°C increments, is also studied in this work.

  9. Creep rupture properties of laves phase strengthened Fe--Ta--Cr--W and Fe--Ta--Cr--W--Mo alloys

    International Nuclear Information System (INIS)

    Singh, S.

    1975-12-01

    A small addition of tungsten (0.5 at. percent) was shown to have an effect similar to that of molybdenum on the phase transformation characteristics of alloy Ta7Cr (with a nominal composition of 1 at. percent Ta, 7 at. percent Cr, balance Fe). The existence of time-temperature dependent transformation behavior in alloy Ta7Cr0.5W was confirmed. The effect of spheroidization time and temperature on creep strength was determined. In addition, effect of mechanical processing prior to aging, on creep strength was also determined. It was also shown that by suitable modifications of composition, the grain boundary film can be broken during the aging treatment without the use of spheroidization treatment. Microhardness, tensile and creep properties have been determined. Optical metallography and scanning electron microscopy have been used to follow the microstructural changes and mode of fracture. The creep rupture strength of alloy Ta7CrW alloy was found to be superior to many of the best commercially available ferritic alloys at 1200 0 F. (21 fig., 8 tables)

  10. TSEE from Fe-Cr alloy system and its application to the estimation of gasoline deterioration

    International Nuclear Information System (INIS)

    Shimada, H.; Nakajima, K.

    1983-01-01

    The exoelectron glow curves for oxide surface on Fe-Cr alloy were measured as a function of Cr content. It was seen that with increasing Cr content the total counts of thermally stimulated exoelectron emission (TSEE), threshold temperature for measuring the glow curve (starting temperature of the glow curve) and the activation energy clearly indicate a good coincidence with the oxidation process of the surface. The interaction of Fe-Cr alloy with gasoline was examined by applying the test for the oxidation induced period (ASTM D525). The induction period became minimum at about 4%Cr, and the deposit of gasoline gum was maximum at its composition. The results were compared with that of TSEE, and it was found that the catalytic effect of Fe-Cr alloy on the deterioration of gasoline is explained from the starting temperature of the glow curves. (author)

  11. Observation of magnetization and exchange bias reversals in NdFe{sub 0.5}Cr{sub 0.5}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sharannia, M.P.; De, Santanu [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Singh, Ripandeep; Das, A. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nirmala, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Santhosh, P.N., E-mail: santhosh@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-05-15

    Polycrystalline NdFe{sub 0.5}Cr{sub 0.5}O{sub 3} has orthorhombic structure with Pnma space group and is magnetically ordered at room temperature as confirmed by neutron diffraction. The magnetic structure involves C{sub x}G{sub y}F{sub z} type ordering of Fe{sup 3+}/Cr{sup 3+} ions. NdFe{sub 0.5}Cr{sub 0.5}O{sub 3} shows magnetization reversal and sign reversal of exchange bias at ~16 K. Nd{sup 3+} moments that get induced by the internal field of |Fe+Cr| sublattice couple antiferromagnetically with the ferromagnetic component of |Fe+Cr| sublattice. Nd{sup 3+} moments overcome the |Fe+Cr| moments at ~16 K below which the material shows negative magnetization and positive exchange bias. - Highlights: • Neutron diffraction confirms magnetic ordering at 300 K in NdFe{sub 0.5}Cr{sub 0.5}O{sub 3}. • Magnetic structure involves C{sub x}G{sub y}F{sub z} type ordering of Fe{sup 3+}/Cr{sup 3+} ions. • Nd{sup 3+} moments couple antiferromagnetically with |Fe+Cr| ferromagnetic moments. • Shows magnetization reversal and exchange bias reversal.

  12. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions

    Directory of Open Access Journals (Sweden)

    Alvaro A. Rodriguez

    2018-01-01

    Full Text Available The corrosion behavior of high-entropy alloys (HEAs CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276 and stainless steel 316L (UNS 31600 to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.

  13. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    This Report addresses the Milestone M2MS-16LA0501032 of NEAMS Program (“Develop hardening model for FeCrAl cladding), with a deadline of 09/30/2016. Here we report a constitutive law for thermal creep of FeCrAl. This Report adds to and complements the one for Milestone M3MS-16LA0501034 (“Interface hardening models with MOOSE-BISON”), where we presented a hardening law for irradiated FeCrAl. The last component of our polycrystal-based constitutive behavior, namely, an irradiation creep model for FeCrAl, will be developed as part of the FY17 Milestones, and the three regimes will be coupled and interfaced with MOOSE-BISON.

  14. The CrIIL reduction of [2Fe-2S] ferredoxins and site of attachment of CrIII using 1H NMR and site-directed mutagenesis.

    Science.gov (United States)

    Im, S C; Worrall, J A; Liu, G; Aliverti, A; Zanetti, G; Luchinat, C; Bertini, I; Sykes, A G

    2000-04-17

    The recently reported NMR solution structure of FeIIIFeIII parsley FdI has made possible 2D NOESY NMR studies to determine the point of attachment of CrIIIL in FeIIIFeIII...CrIIIL. The latter Cr-modified product was obtained by reduction of FeIIIFeIII parsley and spinach FdI forms with [Cr(15-aneN4) (H2O)2]2+ (15-aneN4 = 1,4,8,12-tetraazacyclopentadecane), referred to here as CrIIL, followed by air oxidation and chromatographic purification. From a comparison of NMR cross-peak intensities of native and Cr-modified proteins, two surface sites designated A and B, giving large paramagnetic CrIIIL broadening of a number of amino acid peaks, have been identified. The effects at site A (residues 19-22, 27, and 30) are greater than those at site B (residues 92-94 and 96), which is on the opposite side of the protein. From metal (ICP-AES) and electrospray ionization mass spectrometry (EIMS) analyses on the Cr-modified protein, attachment of a single CrIIIL only is confirmed for both parsley and spinach FdI and FdII proteins. Electrostatic interaction of the 3+ CrIIIL center covalently attached to one protein molecule (charge approximately -18) with a second (like) molecule provides an explanation for the involvement of two regions. Thus for 3-4 mM FeIIIFeIII...CrIIIL solutions used in NMR studies (CrIIIL attached at A), broadening effects due to electrostatic interactions at B on a second molecule are observed. Experiments with the Cys18Ala spinach FdI variant have confirmed that the previously suggested Cys-18 at site A is not the site of CrIIIL attachment. Line broadening at Val-22 of A gives the largest effect, and CrIIIL attachment at one or more adjacent (conserved) acidic residues in this region is indicated. The ability of CrIIL to bind in some (parsley and spinach) but not all cases (Anabaena variabilis) suggests that intramolecular H-bonding of acidic residues at A is relevant. The parsley and spinach FeIIFeIII...CrIIIL products undergo a second stage of reduction

  15. Single-phase highly densified SrBi{sub 2}Ta{sub 2}O{sub 9} compacts produced by high-pressure sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Altair Soria; Souza, Ricson Rocha de; Sousa, Vania Caldas de, E-mail: altair@if.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: The development of high-performance lead-free piezoelectric ceramics is an important scientific and technological challenge, as environmental and health issues have imposed restrictions to the use of lead zirconate titanates, the most employed material in ferroelectric devices [1]. Strontium bismuth tantalate (SBT),SrBi{sub 2}Ta{sub 2}O{sub 9}, is an interesting alternative ferroelectric material as its polarization can be modified at low voltages and it shows limited polarization switching fatigue. However, the production of highly densified single-phase bulk SBT by conventional sintering procedures is strongly compromised by stoichiometric changes due to bismuth loss. In this work, high-pressure sintering has been exploited as an alternative procedure to obtain SBT highly-densified single-phase compacts. Using toroidal-type high-pressure chambers, samples were produced by reaction sintering of BiTaO{sub 4} and SrCO{sub 3} powders, mixed in the stoichiometric ratio corresponding to SrBi{sub 2}Ta{sub 2}O{sub 9}, at pressures of 2.5 GPa and 7.7 GPa, and temperatures up to 1250°C, during 10 min. X-ray diffraction and scanning electron microscopy associated to energy-dispersive X-ray spectroscopy were used to follow the phase composition and the microstructure evolution as a function of the processing conditions. A single-phase SBT compact, with a relative density of 93% and a homogeneous microstructure, was produced by sintering at 2.5 GPa/900°C [2]. References: [1] K. Panda, J. Mater. Sci. 44, 5049-5062 (2009). [2] Ricson R.Souza, Rejane K. Kirchner, Jose R. Jurado, Altair S. Pereira, Vania C. Sousa. Journal of Solid State Chemistry 233, 259-268 (2016). (author)

  16. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6

    International Nuclear Information System (INIS)

    Batuk, Dmitry; De Dobbelaere, Christopher; Tsirlin, Alexander A.; Abakumov, Artem M.; Hardy, An; Van Bael, Marlies K.; Greenblatt, Martha; Hadermann, Joke

    2013-01-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe 2 O 6 is possible by the solution–gel method. • The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr 3+ for Mn 3+ substitution in the BiMnFe 2 O 6 structure. The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe 2 O 6 structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R I = 0.036, R P = 0.011) with only a slight decrease in the cell parameters associated with the Cr 3+ for Mn 3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr x Mn 1−x Fe 2 O 6 (x = 0.2; 0.3) and parent BiMnFe 2 O 6 . Only T N slightly decreases upon Cr doping that indicates a very subtle influence of Cr 3+ cations on the magnetic properties at the available substitution rates

  17. Mobility of dislocations in thermal aged and irradiated Fe-Cr alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; Bonny, G.; Malerba, L.

    2007-01-01

    Full text of publication follows: The choice of the Cr concentration in reduced-activation ferritic/martensitic steels for fusion applications is largely based on the observed minimum radiation-induced embrittlement, in terms of ductile-to-brittle transition temperature shift (ΔDBTT), found around 9%Cr [1]. To date, no physical explanation for the existence of this minimum has been provided. It is known that in high-Cr ferritic alloys the precipitation of the Cr-rich, coherent α' phase occurs for concentrations above 9% Cr, both due to irradiation or thermal ageing at high enough temperature [2]. The formation of a fine dispersion of precipitates can therefore explain the increased embrittlement above this concentration, but it is unclear why the ΔDBTT should increase also for lower Cr concentrations. In addition, it is suspected that under irradiation a' precipitation may be induced also for Cr contents below 9% [3]. At the same time, it is known that below 9% Cr ferritic alloys exhibit a tendency to ordering, i.e. Cr atoms are not distributed as in a random solid solution and try to be as far apart as possible from each other, thereby tending to create a superlattice [4]. In order to cast some light on the effect that these phase changes may have on dislocation motion in the presence of radiation damage, we study at the atomic level the mobility of dislocations in FeCr alloys of different concentrations where Cr is distributed in different fashions (i.e. ordered, clustered or in a random solid solution) and in the presence of radiation damage (e.g. point-defect clusters created by cascades). The microstructure will be obtained by making the system evolve according to the acting thermodynamic driving forces (also in the presence of defects) using Metropolis Monte Carlo techniques. Subsequently, the simulation of the dislocation motion will be performed using large scale molecular dynamics, whereby the corresponding stress-strain curve can be obtained. The

  18. A study on martensitic structure in Fe-4Cr-0.4C steel

    International Nuclear Information System (INIS)

    Won, S.B.

    1980-01-01

    Morphology, dependence of prior austenite grain size and packet size upon austenitizing temperature, distribution of lath width, and habit plane of martensitic structure in Fe-4Cr-0.4C steel has been studied by optical microscopy and transmission electron microscopy. The results obtained are as follows. 1) Optical microstructures of martensitic Fe-4Cr-0.4C steel consist of lath martensite and lens martensite. Also the four types of morphology are observed by electron microscopy. The most common morphologies are a regular paralleled martensite and an irregular dovetailed lath martensite, while the remainder of microstructures consists mainly of groups of internally twinned martensite and autotempered laths. 2) Prior austenite grain size and packet size increased with austenizing temperature, and also the numbers of lath contained in a prior austenite grain or a packet are increased with austenizing temperature. 3) The mean width of lath in Fe-4Cr-0.4C steel is about 0.23μm and most of lath widths are below 0.5μm. 4) Martensite habit plane of Fe-4Cr-0.4C steel is nearly [110]α'. (author)

  19. Antibacterial Effect of CrO and CoFe2O4 Nanoparticles upon Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Saber Imani

    2011-12-01

    Full Text Available Background & Objectives: The use of metal oxide nanoparticles can be effective to eliminate the bacterial infections, as an alternative to antibiotics. In this study, antibacterial properties of nonmaterials of CrO and CoFe2O4 are investigated against Staphylococcus aureus as a major and prevalent pathogenic bacterium to achieve sterile nano-containers. Materials & Methods: Different concentrations of CrO and CoFe2O4 nanoparticles, (0.2, 0.4, 0.6, 0.8, and 1% of each, were examined with respect to their optical density (OD culture separately. Different percentages of each nanoparticles were also examined together for the best antibacterial combination. Kinetics of Bactericidal of nanoparticles were calculated in two-hour periods and were compared with the power of other common antibiotics. Ratios of MIC/MBC were calculated by Micro dilution method, to demonstrate the bactericidal power of nanoparticles. Results: The best concentration of the nanoparticles with the highest effect of bactericidal was obtained in the presence of 1% concentration of CrO that the OD of S. aureus culture medium had reduced 4/6 times than the control group (p<0/001.Ratio of 70% CrO to 30% CoFe2O4 was the best of the Bacteriostatic properties that OD was reduced 3/3 times than the control group (p<0/05. Best kinetics of bactericidal with survival rate in the presence of 1% CrO and CoFe2O4 were obtained in 24 and 36 hours respectively. In critical concentration of 1% CrO and CoFe2O4 bactericidal power was about 67 and 56 % respectively. The MIC/MBC rate for CrO and CoFe2O4 was obtained 0/2 and 0/4 respectively. Conclusion: The results showed that CrO nanoparticle compared with CoFe2O4 has a higher bactericidal power for S. aureus infection. Therefore, by completion of these experiments and the use of metal oxide nanoparticles complex in sensitive environments such as food storage containers, etc. are suggested.

  20. Method of simultaneous continuous determination of transfer rates of iron and chromium into solution during Fe-Cr alloys dissolution

    International Nuclear Information System (INIS)

    Shirinov, T.I.; Florianovich, G.M.; Skuratnik, Ya.B.

    1978-01-01

    Radiometry method of simultaneous continuous registration of transfer rates of iron and chromium into solution from Fe-Cr alloys with various composition has been developed. Using gamma-spectrometer components of Fe-Cr alloys can be determined with high sensitivity in separate samples according to Fe 59 and Cr 51 radioactive labels, obtained by neutron activation. The above method is applied to estimate Fe and Cr transfer rates into H 2 SO 4 solution at the temperature of 50 deg from Fe - 28% Cr alloy during its active dissolution. It is established, that beginning with some seconds of alloy and solution contact, its components transfer into the solution in the same composition, as in the alloy. The method enables to determine Fe with the accuracy of up to 5% and Cr with that of up to 10%

  1. FEM modeling on the compaction of Fe and Al composite powders

    Directory of Open Access Journals (Sweden)

    Han P.

    2015-01-01

    Full Text Available The compaction process of Fe and Al composite powders subjected to single action die compaction was numerically modeled by FEM method. The relationship between the overall relative density and compaction pressure of the compacts with various Al contents was firstly identified, and the influences of Al content on the local relative density, stress, and their distributions were studied. Then the compaction pressure effects on the above properties with fixed Al content were discussed. Furthermore, detailed flow behaviors of the composite powders during compaction and the relationship between the compaction pressure and the ejection force/spring back of the compact were analyzed. The results show that: (1 With each compaction pressure, higher relative density can be realized with the increase of Al content and the relative density distribution tends to be uniform; (2 When the Al content is fixed, higher compaction pressure can lead to composite compact with higher relative density, and the equivalent Von Mises stress in the central part of the compact increases gradually; (3 Convective flow occurs at the top and bottom parts of the compact close to the die wall, each indicates a different flow behavior; (4 The larger the compaction pressure for each case, the higher the residual elasticity, and the larger the ejection force needed.

  2. Multiple recycling of NdFeB-type sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakotnik, M. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: miha.zakotnik@gmail.com; Harris, I.R.; Williams, A.J. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-05

    Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density and in the magnetic properties. The chemical analysis indicated that this was due to the progressive oxidation of the Nd-rich material and to some Nd loss by evaporation. The procedure was then repeated but with the addition (blending) of a fine powder of neodymium hydride after the first cycle. It was found that the addition of 1 at.% of neodymium at each stage was sufficient to maintain the density and the magnetic properties of the recycled magnets up to and including the 4th cycle. Inductively coupled plasma (ICP) and metallographic analysis indicated that the neodymium hydride additions compensated for the neodymium loss due to evaporation and to oxidation so that the proportion of Nd-rich material remained approximately constant. The additional amount of Nd{sub 2}O{sub 3} in the blended recycled magnets appeared to inhibit grain growth on the 3rd and 4th cycles when compared to that of the unblended magnets. The next challenge is to see if the process can be scaled-up to an industrial scale.

  3. Correlative Microscopy of Alpha Prime Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-01

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. This work represents the current state-of-the-art on both techniques for analysis of α' precipitate microstructures and the processes and mechanisms governing its formation in neutron-irradiated Fe-Cr-Al alloys.

  4. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle...

  5. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  6. Vacuum-sintered body of a novel apatite for artificial bone

    Science.gov (United States)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  7. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    Science.gov (United States)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  8. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    Science.gov (United States)

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  9. Fabrication of core-shell Fe{sub 3}O{sub 4}@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingxiang, E-mail: qxyangzz@163.com; Zhao, Qianqian; Ren, ShuangShuang; Lu, Qiongqiong; Guo, Xinmeng; Chen, Zhijun, E-mail: chenzj@zzuli.edu.cn

    2016-12-15

    Facile regeneration of an adsorbent is very important for commercial feasibility. One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) with diameter about of 350 nm were successfully synthesized. The growth of MIL-100(Fe) shell on the surface of Fe{sub 3}O{sub 4} was utilized precursor as crystal seed via in-situ step hydrothermal reaction. It is a simple way to obtain well organized core-shell MOF composites, compared to the step-by-step method. MMCs were firstly used to uptake of Cr(VI) anions in aqueous solution. Adsorption experiments were carried out in batch sorption mode investigating with the factors of contact time (0–1000 min), pH (from 2 to 12), dose of adsorbent (4–25 mg), and initial Cr(VI) concentration (range from 10 to 100 ppm). - Graphical abstract: One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) were successfully synthesized. Utilizing Fe{sub 3}O{sub 4} precursor as crystal seed to grow MIL-100(Fe) shell by in-situ step hydrothermal reaction. It is a simple way to obtain core-shell MOF composites. MMCs could effectively uptake of Cr(VI) anions in aqueous solution. - Highlights: • Fe{sub 3}O{sub 4}@MIL-100(Fe) composites with core-shell structure were successfully prepared through a simple method. • The influence factors on Cr(VI) adsorption by Fe{sub 3}O{sub 4}@MIL-100(Fe) were investigated. • Cr(VI) can efficiently adsorbed by Fe{sub 3}O{sub 4}@MIL-100(Fe) composites from aqueous solution.

  10. High temperature oxidation-sulfidation behavior of Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composites densified by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Acuna, R.A. [Instituto e Ingenieria y Tecnologia, Universidad Autonoma de Cd. Juarez, Av. Del Charro 450 Norte, Col. Partido Romero, C.P. 32310, Cd. Juarez, Chihuahua (Mexico); Monreal-Romero, H.; Martinez-Villafane, A. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Chacon-Nava, J.G. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico)], E-mail: jose.chacon@cimav.edu.mx; Arce-Colunga, U. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Universidad Autonoma de Tamaulipas, Matamoros 8 y 9 Col. Centro C.P. 87110, Cd. Victoria, Tamaulipas (Mexico); Gaona-Tiburcio, C. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); De la Torre, S.D. [Centro de Investigacion e Innovacion Tecnologica (CIITEC)-IPN, D.F. Mexico (Mexico)

    2007-12-15

    The high temperature oxidation-sulfidation behavior of Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO{sub 2} + 3.6%O{sub 2} + N{sub 2}(balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr{sub 2}O{sub 3} layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al{sub 2}O{sub 3} composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy.

  11. On the passivation mechanism of Fe{sub 3}O{sub 4} nanoparticles during Cr(VI) removal from water: A XAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Pinakidou, F., E-mail: fpina@physics.auth.gr [Aristotle University of Thessaloniki, Department of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece); Katsikini, M. [Aristotle University of Thessaloniki, School of Physics, Section of Solid State Physics, 54124 Thessaloniki (Greece); Simeonidis, K.; Kaprara, E. [Aristotle University of Thessaloniki, Department of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece); Paloura, E.C. [Aristotle University of Thessaloniki, School of Physics, Section of Solid State Physics, 54124 Thessaloniki (Greece); Mitrakas, M. [Aristotle University of Thessaloniki, Department of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece)

    2016-01-01

    Graphical abstract: - Highlights: • Presence of Fe(II) even after high Cr-loading. • The vacancies in the γ-Fe{sub 2}O{sub 3} layer formed offer sites for Cr(III) sorption. • Cr(III) sorbs into the vacancies and Cr(VI) forms outer sphere complexes. • Increasing surface Cr(III) loading changes the polymerization of the Fe–O–Fe chains. • Cr(III) sorption modifies Fe{sub 3}O{sub 4} structure obstructing further Cr(VI) removal. - Abstract: X-Ray Absorption Spectroscopies (XAFS) are employed in order to gather a thorough insight on the uptake mechanism of Cr(VI) by Fe{sub 3}O{sub 4} nanoparticles under water treatment conditions. The XANES measurements identify that the reducing potential of Fe{sub 3}O{sub 4} activates the precipitation of Cr(VI) in the form of insoluble and non-toxic Cr(III). However, electron donation from Fe(II) is responsible for its gradual consumption, resulting in the presence of a surface maghemite layer and the formation of structural vacancies. EXAFS analysis reveal that adsorption of Cr(III)-oxyanions occurs on sorption sites provided by the vacancies in the maghemite layer, where Cr(III) is involved in a bidentate binuclear ({sup 2}E) geometry with Fe-octahedra while it also forms monodentate ({sup 1}V) complexes with the Fe(III)O{sub 4} tetrahedra. The surface maghemitization along with the reduced Cr(III) adsorption into the vacancies, tracks the degree of Cr-reduction, since this surface structural modifications hinder Cr(VI) access to the Fe(II) ions of the magnetite nanoparticles. Thus, high surface coverage leads to the passivation of the reduction ability since physisorbed Cr(VI) is also detected through the formation of outer sphere complexes.

  12. Magnetic and microstructural properties of Ni-Zn ferrites synthesized and sintered by microwave energy; Propriedades magneticas e microestruturais de ferritas Ni-Zn sintetizadas e sinterizadas oir energia de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.A.; Diniz, V.C.S.; Sousa, J-P.LM.L.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Engenharia de Materiais; Cornejo, D.R. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2009-07-01

    The soft ferrites (or soft) and the Ni-Zn type are composed of spinel with cubic structure, which exhibit a permanent magnetization, called ferrimagnetism. Thus, this work will be assessed the structure and magnetic properties of ferrites Ni{sub 0},{sub 5}Zn{sub 0},{sub 5}Fe{sub 2}O{sub 4} prepared by combustion reaction using microwave energy as a source of heat and urea as fuel and after sintering by microwave energy. The synthesized powders were compacted by uniaxial pressing. The synthesized powders and the samples after sintering were characterized by XRD, SEM and magnetic measures. The diffractogram X-ray powder and the sintered samples showed the presence of the desired phase Ni{sub 0},{sub 5}Zn{sub 0},{sub 5}Fe{sub 2}O{sub 4} in both cases. The powders and sintered samples resulted in the Ms value of 8.09 emu/g and 67.73 emu/g, respectively. (author)

  13. Ab initio based kinetic Monte-Carlo simulations of phase transformations in FeCrAl

    International Nuclear Information System (INIS)

    Olsson, Paer

    2015-01-01

    Document available in abstract form only, full text follows: Corrosion and erosion in lead cooled reactors can be a serious issue due to the high operating temperature and the necessary flow rates. FeCrAl alloys are under consideration as cladding or as coating for stainless steel cladding tubes for lead cooled reactor concepts. The alumina scale that is formed, as Al segregates to the surface and Fe and Cr rich oxides break off, offers a highly protective layer against lead corrosion in a large range of temperatures. However, there are concerns about the phase stability of the alloy under irradiation conditions and of possible induced alpha-prime precipitation. Here a theoretical model of the ternary FeCrAl alloy is presented, based on density functional theory predictions and linked to a kinetic Monte-Carlo simulation framework. The effect of Al on the FeCr miscibility properties are discussed and the coupling of irradiation induced defects with the solutes are treated. Simulations of the micro-structure evolution are tentatively compared to available experiments. (authors)

  14. High-resolution electron microscopy study of Ni81Fe19 film with Co33Cr67 buffer layer

    International Nuclear Information System (INIS)

    Xu, Q.Y.; Wang, Z.M.; Shen, F.; Du, Y.W.; Zhang, Z.

    2003-01-01

    The anisotropic magnetoresistance (AMR) in permalloy Ni 81 Fe 19 film deposited on a 1.2 nm Co 33 Cr 67 buffer layer was significantly enhanced. The high-resolution electron microscopy was used to study the microstructure of Ni 81 Fe 19 film with and without Co 33 Cr 67 buffer layer. It was found that Co 33 Cr 67 buffer layer can induce good (1 1 1) texture, while without Co 33 Cr 67 buffer layer, Ni 81 Fe 19 film show randomly oriented grain structure. The Δρ/ρ enhancement is attributed to the decrease in the resistivity ρ of the Ni 81 Fe 19 film due to the formation of the large (1 1 1) textured grains in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer. However, the surface roughness of substrate may limit the (1 1 1) textured grain size and induce additional grain boundaries in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer, limit the enhancement of the AMR effect

  15. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  16. Solubility of sulfur in Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Bogolyubskij, S.D.; Petrova, E.F.; Rogov, A.I.; Shvartsman, L.A.

    1979-01-01

    The solubility of 35 S was determined in Fe-Cr-Ni alloys in the range of temperatures between 910 and 1050 deg C by the method of radiometric analysis. It was found that the solubility of sulfur increases with the concentration of chromium in alloys with 20% Ni

  17. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling

    Science.gov (United States)

    Chaudhary, V.; Ramanujan, R. V.

    2016-10-01

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100-xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg-1. Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications.

  18. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  19. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe{sub 3}O{sub 4}/halloysite nanohybrid

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xike, E-mail: xktian@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Wang, Weiwei; Tian, Na; Zhou, Chaoxin; Yang, Chao [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Komarneni, Sridhar [Materials Research Laboratory, Materials Research Institute and Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-15

    Highlights: • A novel magnetic nonohybrids (Fe{sub 3}O{sub 4}/HNTs@C) were synthesized for Cr(VI) removal. • Cr(VI) was reduced to Cr(III) by Fe{sub 3}O{sub 4} nanoparticles and hydroxyl groups. • Cr ions were attached on Fe{sub 3}O{sub 4}/HNTs@C by ion exchange and coordination interaction. - Abstract: In this work, a novel “Dumbbell-like” magnetic Fe{sub 3}O{sub 4}/Halloysite nanohybrid (Fe{sub 3}O{sub 4}/HNTs@C) with oxygen-containing organic group grafting on the surface of natural halloysite nanotubes (HNTs) and homogeneous Fe{sub 3}O{sub 4} nanospheres selectively aggregating at the tips of modified halloysite nanotubes was successfully synthesized. XRD, TEM, IR spectroscopy, XPS and VSM were used to characterize this newly halloysite nanohybrid and its formation mechanism was discussed. Cr(VI) ions adsorption experiments showed that the Fe{sub 3}O{sub 4}/halloysite nanohybrid exhibited higher adsorption ability with a maximum adsorption capacity of 132 mg/L at 303 K, which is about 100 times higher than that of unmodified halloysite nanotubes. More importantly, with the reduction of Fe{sub 3}O{sub 4} and electron–donor effect of oxygen-containing organic groups, Cr(VI) ions were easily reduced into low toxicity Cr(III) and then adsorbed onto the surface of halloysite nanohybrid. In addition, appreciable magnetization was observed due to the aggregation of magnetite nanoparticles, which make adsorbent facility separated from aqueous solutions after Cr pollution adsorption.

  20. Methods of making high performance compacts and products

    International Nuclear Information System (INIS)

    Fey, M.G.; Iyer, N.C.; Male, A.T.; Lovic, W.R.

    1990-01-01

    This patent describes a method of forming a pressed, dense compact. It comprises: providing a compactable particulate combination of: Class 1 metals selected from the group consisting of Ag, Cu, Al, and mixtures thereof, with material selected from the class consisting of CdO, SnO, SnO 2 , C, Co, Ni, Fe, Cr, Cr 3 C 2 , Cr 7 C 3 , W, WC, W 2 C, WB, Mo, Mo 2 C, MoB, Mo 2 B, TiC, TiN, TiB 2 , Si, SiC, Si 3 N 4 , and mixtures thereof; uniaxially pressing the particulate combination to provide a compact; placing at least one compact in an open pan; evacuating air from the pan; sealing the open top portion of the pan; stacking the pans next to each other, with plates having a high electrical resistance disposed between each pan so that the pans and plates alternate with each other, where a layer of thermally conductive, granular, pressure transmitting material is disposed between each pan and plate, which granular material acts to provide heat transfer and uniform mechanical loading to the compacts in the pans upon subsequent pressing; placing the stack in a press, passing an electrical current through the pans and high electrical resistance plates to cause a heating effect on the compacts in the pans, and uniaxial pressing the alternating pans and plates; cooling and releasing pressure on the alternating pans and plates; and separating the pans from the plates and the compacts from the pans

  1. Study on Formation Mechanism of Fayalite (Fe2SiO4) by Solid State Reaction in Sintering Process

    Science.gov (United States)

    Wang, Zhongbing; Peng, Bing; Zhang, Lifeng; Zhao, Zongwen; Liu, Degang; Peng, Ning; Wang, Dawei; He, Yinghe; Liang, Yanjie; Liu, Hui

    2018-04-01

    The sintering behaviors among SiO2, FeS and Fe3O4 were detected to reveal the formation mechanism of Fe2SiO4. The results indicated that the formation mechanism is divided into five steps: (1) migration of O2- induced by S2- under a reducing atmosphere; (2) formation of Fe3O4- β ; (3) migration of Fe(II) into a ferrite cluster structure to gain oxygen and form Fe3- x O4; (4) Fe(II) invaded the silicon atomic position and released Si(IV); and (5) formation of the stable structure of Fe2SiO4 through chemical diffusion between cations of Fe(II) and Si(IV). These findings can provide theoretical support for controlling the process of the recovery of valuable metals in copper slag through the combined roasting modification-magnetic separation process.

  2. Effects of Cr underlayer and Pt buffer layer on the interfacial structure and magnetic characteristics of sputtered FePt films

    International Nuclear Information System (INIS)

    Sun, A.-C.; Hsu, J.-H.; Huang, H.L.; Kuo, P.C.

    2006-01-01

    This work develops a new method for growing L1 0 FePt(0 0 1) thin film on a Pt/Cr bilayer using an amorphous glass substrate. Semi-coherent epitaxial growth was initiated from the Cr(0 0 2) underlayer, continued through the Pt(0 0 1) buffer layer, and extended into the L1 0 FePt(0 0 1) magnetic layer. The squareness of the L1 0 FePt film in the presence of both a Cr underlayer and a Pt buffer layer was close to unity as the magnetic field was applied perpendicular to the film plane. The single L1 0 FePt(1 1 1) orientation was observed in the absence of a Cr underlayer. When a Cr underlayer is inserted, the preferred orientation switched from L1 0 FePt(1 1 1) to L1 0 FePt(0 0 1) and the magnetic film exhibited perpendicular magnetic anisotropy. However, in the absence of an Pt intermediate layer, the Cr atoms diffused directly into the FePt magnetic layer and prevented the formation of the L1 0 FePt(0 0 1) preferred orientation. When a Pt buffer layer was introduced between the FePt and Cr underlayer, the L1 0 FePt(0 0 1) peak appeared. The thickness of the Pt buffer layer also substantially affected the magnetic properties and atomic arrangement at the FePt/Pt and Pt/Cr interfaces

  3. Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets

    Science.gov (United States)

    Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul

    2017-11-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.

  4. Uptake of CrO42- ions by Fe-treated tri-calcium phosphate

    International Nuclear Information System (INIS)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E.

    2010-01-01

    CrO 4 2- ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10 -4 M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO 4 2- ions was 7.10 x 10 -3 mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters ΔH 0 , ΔG 0 and ΔS 0 were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  5. FeCrAl/Zr dual layer fuel cladding for improved safety margin under accident scenario

    International Nuclear Information System (INIS)

    Park, D.J.; Park, J.H.; Jung, Y.I.; Kim, H.G.; Park, J.Y.; Koo, Y.H.

    2014-01-01

    For application of advanced steel as a cladding material in light water reactor (LWR), FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. To optimize HIP condition for joining both FeCrAl and Zr alloys, HIP was carried out under various temperature conditions. Tensile test and 3-point bend test performed for measuring mechanical properties of HIPed sample. To better understand microstructural characteristics in interface region between two alloys, SEM and TEM study were conducted by using HIPed sample with different process conditions. Based on this optimization study and analyzed results, optimized HIP condition was determined and FeCrAl/Zr dual layer fuel cladding having same wall thickness with current LWR fuel cladding was manufactured. Simulated loss-of-coolant accident test was carried out using FeCrAl/Zr dual layer cladding sample and fuel integrity was measured by mechanical test. (authors)

  6. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  7. Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

    OpenAIRE

    Jung-Ho Moon; Tae Kwon Ha

    2014-01-01

    High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreas...

  8. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  9. Influence of the radial spacing between cathodes on the surface composition of iron samples sintered by hollow cathode electric discharge

    Directory of Open Access Journals (Sweden)

    Brunatto S.F.

    2001-01-01

    Full Text Available The present work reports an investigation of the influence of the radial spacing between cathodes on the iron sintering process by hollow cathode electrical discharge, with surface enrichment of the alloying elements Cr and Ni. Pressed cylindrical samples of 9.5 mm diameter and density of 7.0 ± 0.1 g/cm³ were prepared by compaction of Ancorsteel 1000C iron powder. These samples, constituting the central cathode, were positioned concentrically in the interior of an external cathode machined from a tube of stainless steel AISI 310 (containing: 25% Cr, 16% Ni, 1.5% Mn, 1.5% Si, 0.03% C and the remainder Fe. Sintering was done at 1150 °C, for 120 min, utilizing radial spacings between the central and hollow cathodes of 3, 6 and 9 mm and a gas mixture of 80% Ar and 20% H2, with a flow rate of 5 cm³/s at a pressure of 3 Torr. The electric discharge was generated using a pulsed voltage power source, with a period of 200 mus. The radial spacing had only a slight influence on the quantity of atoms of alloying elements deposited and diffused on the surface of the sample. Analysis with a microprobe showed the presence of chrome (up to 4.0% and nickel (up to 3.0%, in at. % at the surface of the samples. This surface enrichment can be attributed to the mechanism of sputtering of the metallic atoms present in the external cathode, with the deposition of these elements on the sample surface and consequent diffusion within the sample.

  10. The functionally graded sintered steel WC-Co-NbC matrix

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.A.A.; Silva Junior, J.F. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil)

    2009-07-01

    Full text: The high speed steels are used for machining, including cutting tools at high speeds because their wear resistance, high temperature properties and excellent hardness. They are ferrous based alloys of the Fe-C-X component system where X represents a group of elements comprising Cr, W or Mo, V and Co. The aim of this work was to study the feasibility of powder metallurgy technique to develop functionally graded alloy material added by WC, Co and NbC. The morphology of the composite powders and sintered MMC were characterized by scanning electron microscopy and XRD measurements. (author)

  11. First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe

    International Nuclear Information System (INIS)

    Shi, Li Bin; Wang, Yong Ping; Dong, Hai Kuan

    2015-01-01

    Graphical abstract: - Highlights: • Cr, Mn and Fe doped graphene is more active to adsorb HCN molecule than pristine graphene. • The conductivity of Fe and Mn doped graphene hardly changes after adsorption HCN molecule. • The conductivity of Cr doped graphene can be affected significantly due to HCN adsorption. • The Cr, Mn and Fe may destroy the long range order in graphene. • Phonon density of states suggests that Cr doped graphene is stable. - Abstract: The adsorption energy, electronic structure, lattice vibration and magnetic properties of Cr, Mn and Fe doped graphene with and without HCN adsorption are investigated by the first principles based on density functional theory. The physisorption and chemisorption have been identified. In the paper, Cr-NG, Mn-NG and Fe-NG denote HCN adsorption on Cr, Mn and Fe doped graphene with N atom toward the adsorption site. It is found that the adsorption energy is −1.36 eV for Fe-NG, −0.60 eV for Mn-NG and −0.86 eV for Cr-NG. The Cr-NG will convert from half-metallic behavior to semiconductor after adsorbing HCN molecule, which indicates that the conductivity changes significantly. Phonon density of states (PDOS) shows that the long range order in graphene can be destroyed by doping Fe, Mn and Cr. The imaginary frequency mode in PDOS suggests that Fe and Mn doped graphene is unstable, while Cr doped graphene is stable. The electronic properties are sensitive toward adsorbing HCN, indicating that Cr doped graphene is a promising sensor for detecting HCN molecule. This study provides a useful basis for understanding of a wide variety of physical properties on graphene

  12. Synthesis and characterization of La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, F.A., E-mail: fernandafabianro@gmail.com [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Pedra, P.P.; Filho, J.L.S. [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Duque, J.G.S.; Meneses, C.T. [Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, Departamento de Física, 49500-000 Itabaiana, SE (Brazil)

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO{sub 3}, LaFeO{sub 3} and LaMnO{sub 3} nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO{sub 3} sample with T{sub N}~289 K, and a weak ferromagnetic ordering for the LaMnO{sub 3} sample with T{sub c}~200 K. - Highlights: • La(Cr,Fe,Mn)O{sub 3} nanoparticles were synthesized by coprecipitation method. • XRD results confirm the formation single phase in the compounds studied. • Magnetic property in the La(Fe,Cr,Mn)O{sub 3} nanoparticles dependent on the TM. • La(Cr,Fe)O{sub 3} nanoparticles presented behavior antiferromagnetic and LaMnO{sub 3} ferromagnetic.

  13. Hot rolling effect on the characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2015-01-01

    Characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy after hot rolling have been studied. The objective of this research was to obtain of hot rolling effect on the characteristics of microstructures, hardness and phases formed in Zr-0.6Nb-0.5Fe-0.5Cr alloy. The hot rolling process of alloy carried out at temperature of 800 °C with retention time of 1.5 and 2 hours and a thickness reduction between 5 to 25 %. The results of this experiment showed that the Zr-0.6Nb-0.5Fe-0.5Cr alloy has Widmanstaetten structure with microstructure evolving into deformed columnar grains and deformed elongated grains with increasing thickness reduction. Besides, the longer the retention time at temperature of 800 °C is the larger are the grain structures and formation of α-Zr and Zr_3Fe phase. The hardness of Zr-0.6Nb-0.5Fe-0.5Cr alloy has same trends i.e the larger thickness reduction gives higher hardness. The Zr-0.6Nb-0.5Fe-0.5Cr alloy can under go hot rolling deformation at a thickness reduction of 25 % and the formation of α-Zr and Zr_3Fe can increased of hardness and strength of Zr-0.6 Nb-0.5 Fe-0.5 Cr alloy. (author)

  14. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    Science.gov (United States)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  15. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  16. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  17. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    C, respectively. Process variables were defined and effects of individual parameters were studied systematically through control variable method with Li2MoO4-water system. Crystalline structure, fractured surface morphology and chemical bonding information of the cold sintered pellets were studied with X-ray diffraction (XRD), field effect scanning electron microscopy (FE-SEM) and Raman spectroscopy, etc. Densification mechanism studies were conducted on ZnO. Through comparison experiments, it was found that the Zn2+ concentration in the solution is critical for densification, while dissolution of grains only serves as a means to the former. Through pressure dependent studies, a critical value was found, which correlated well with the hydrostatic pressure keeping liquid water from thermal expansion. These results confirmed establishment of hydrothermal condition that would be important for mass transport in densification. Densification rate variations with process time was estimated and similar time dependence to Kingery's model was found. The densification process was proposed to be consist of three consecutive stages, which are quick initial compaction, grain rearrangement and dissolution-reprecipitation events. Binary metal oxides with different acidities were subjected to cold sintering with various aqueous solutions in establishing a criteria for material selection. It was found that in general materials with high solubility at around neutral pH, high dissolution kinetics and similar free energy to their hydroxides or hydrates at ambient would be more likely for full densification with high phase purity. The anions in solution should also be wisely selected to avoid stable compound or complex formation. To extend the applicable material list for full densification, non-aqueous solvent of dimethyl sulfoxide (DMSO) based solution was studied for cold sintering. Both improvement of pellet density and suppression of hydroxide formation were achieved for MnO by using DMSO

  18. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  19. Pressure effects on spin density wave in Cr rich Cr-Al, Si, Mn, Fe and Co alloys

    International Nuclear Information System (INIS)

    Mizuki, Jun-ichiro; Endoh, Yasuo; Ishikawa, Yoshikazu

    1982-01-01

    The effect of pressure on the spin density wave (SDW) state in Cr rich Cr-Al, Si, Nn, Fe and Co alloys has been elucidated by neutron diffraction studies. We found that the change of the SDW wave vector Q, by applying pressure, 1/Q. delta Q/ delta P, is linearly related to the decrease of T sub(N) with increasing pressure 1/T sub(N). delta T sub(N)/ delta P and that all the results from the Cr-Si, Fe and Co alloys fall on a single straight line independent of their concentrations. Their magnetic phase diagrams in a temperature-pressure coordinate system can be related to the alloy phase diagram by employing an empirical rule that applying pressure corresponds to a decrese in the electron to atom ratio. The non transition metal Si impurity has been found to act as an electron donor, while the effect of Al is not interpreted by the two band nesting model. (author)

  20. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  1. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  2. Progress of sintered NdFeB permanent magnets by the diffusion of non-rare earth elements and their alloy compounds

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available It has been found that the coercivity (HC and corrosivity of sintered NdFeB magnets are closely related to the components and microstructure of their intergranular phase.The traditional smelting NdFeB magnets with adding heavy rare earth elements can modify intergranular phase to improve the HC and corrosion resistance of magnets.However,it makes the additives be homogenously distributed on the main phase,and causes magnetic decrease and cost increase.With the addition of non-rare earth materials into grain boundary,the microstructure of intergranular phase as well as its electrochemical potential and wettability can be optimized.As a result,the amount of heavy rare earth elements and cost of magnets could be reduced whilst the HC and corrosion resistance of magnets can be improved.This paper summarized the research on regulating the components and the microstructure of intergranular phase in sintered NdFeB magnets by non-rare earth metals and compounds,and its influence on coercivity and corrosion resistance.

  3. Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media

    Science.gov (United States)

    Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.

    1985-04-01

    The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.

  4. Preparation and Characterization of TiB2-(Supra-Nano-Dual-Phase High-Entropy Alloy Cermet by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Shulei Zhang

    2018-01-01

    Full Text Available This paper introduces the preparation method and characterization results of TiB2 ceramics with CoCrFeNiAl high-entropy alloy (HEA as a sintering aid by Spark Plasma Sintering (SPS. Good wettability between HEA and TiB2 was proved by the sessile drop method, indicating promising prospects for this composite. The sintering results showed that the addition of HEA could dramatically promote the sinterability of TiB2. TiB2-5 wt. % HEA dense ceramics prepared at the optimal temperature of 1650 °C showed fine morphology without formation of brittle phases. The liquid phase in the ceramics was highly consistent with the so-called “supra-nano-dual-phase materials (SNDPM”, with near-ideal strength. This study represents the first time that a ceramic-SNDPM composite has been fabricated since the invention of such structures.

  5. Kinetics of sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Soni, N.C.; Moorthy, V.K.

    1978-01-01

    The kinetics of sintering of UO 2 powders derived from ADU route and calcined at different temperatures was studied. The activation energy for sintering was found to depend on the calcination temperature, the density chosen and the sintering temperature range. The motive force for sintering is the excess free energy in the particle system. This exists in the powder compact in the form of surface energy and the excess lattice energy due to defects. The defects which can be eliminated at the operating temperature are responsible for the mobility and hence sintering. This concept of the motive force for sintering has been used to explain the difference in the activation energies observed in the present study. This would also explain phenomena such as attainment of limiting density, presence of optimum sintering temperature and the influence of calcination treatments on the sintering behaviour of powders. (author)

  6. Electronic configuration of nFe/3Cr/nFe (n=1-6) trilayers in FM state

    International Nuclear Information System (INIS)

    Botana, J.; Pereiro, M.; Baldomir, D.; Arias, J.E.; Warda, K.; Wojtczak, L.

    2007-01-01

    Ab initio calculations have been performed on several ultrathin Fe/Cr/Fe trilayer systems in ferromagnetic configuration, with a fixed width of the spacer chromium slab of three atomic monolayers, and both iron slabs symmetrically varying in a range from 1 to 6 atomic monolayers. We have calculated the charge distribution of these trilayers and calculated and plotted the density of states of every one of them. We have identified Friedel-like oscillations of the charge distribution from the Mulliken population analysis in the Fe slabs

  7. Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China); Terentyev, Dmitry [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Yu, Long [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Jin, Zhaohui [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China)

    2016-08-15

    The thermo-mechanical behavior of non-irradiated (at 223 K, 302 K and 573 K) and neutron irradiated (at 573 K) Fe-2.5Cr, Fe-5Cr and Fe-9Cr alloys is studied by a self-consistent plasticity theory, which consists of constitutive equations describing the contribution of radiation defects at grain level, and the elastic-viscoplastic self-consistent method to obtain polycrystalline behaviors. Attention is paid to two types of radiation-induced defects: interstitial dislocation loops and solute rich clusters, which are believed to be the main sources of hardening in Fe-Cr alloys at medium irradiation doses. Both the hardening mechanism and microstructural evolution are investigated by using available experimental data on microstructures, and implementing hardening rules derived from atomistic data. Good agreement with experimental data is achieved for both the yield stress and strain hardening of non-irradiated and irradiated Fe-Cr alloys by treating dislocation loops as strong thermally activated obstacles and solute rich clusters as weak shearable ones. - Highlights: • A self-consistent plasticity theory is proposed for irradiated Fe-Cr alloys. • Both the irradiation-induced hardening and plastic flow evolution are studied. • Dislocation loops and solute rich clusters are considered as the main defects. • Numerical results of the proposed model match with corresponding experimental data.

  8. Structural and Giant Magneto-impedance properties of Cr-incorporated Co-Fe-Si-B amorphous microwires

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Partha [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Basu Mallick, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Roy, R.K. [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Panda, A.K., E-mail: akpanda@nmlindia.org [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Mitra, A. [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2012-04-15

    The investigation is focused on the effect of Cr incorporation for Co/Fe in (Co{sub 0.5}Fe{sub 0.5}){sub 78-x}Cr{sub x}Si{sub 8}B{sub 14} (x=0-12) amorphous microwires of 110 {mu}m diameter prepared by in-water quenching technique. The rise in crystallization onset T{sub X1} with Cr addition revealed the elemental contribution against devitrification and a consequent thermal stability. Cr is unfavorable towards ferromagnetic ordering leading to a linear drop in Curie temperature T{sub ca} with its rise in concentration. The presence of low Cr content upto Cr-4 at.% has been effective in drastically improving the Giant magneto-impedance (GMI) property. Cr content in the range of 4{<=}X{<=}10 has low magnetostriction and maximum field sensitivity in the as-quenched state. The GMI properties are further improved after annealing treatment. High content of Cr>10 is found to be deleterious towards GMI behavior and its consequent application as sensor material. - Highlights: Black-Right-Pointing-Pointer Cr incorporation in CoFeSiB alloy enhanced thermal stability against devitrification. Black-Right-Pointing-Pointer Optimal Cr content induced low magnetostriction in the rapidly quenched microwires. Black-Right-Pointing-Pointer High GMI ratio and field sensitivity was obtained with optimum Cr in the microwires. Black-Right-Pointing-Pointer Annealing treatment at 725 K for 15 min improved the GMI response of microwires.

  9. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is an innovative sintering process based on the principle of electrical Joule heating. The electrical current is flowing through the powder compact, which is under mechanical pressure. As compared to conventional sintering [1] and spark plasma sintering [2], the main...... advantages are the decreased sintering time and high relative density [3]. Near net-shape components can be manufactured and post-removal processing is limited to surface polishing. The present work is focused on analysing the influence of the main process parameters, namely compacting pressure, sintering...... time and electrical current density, on the final density of a disc sample made from commercially pure titanium powder. The maximum achieved relative density was 94% of the bulk density of pure titanium. The density estimation was carried out by using both Archimedes’ and 3D scanning....

  10. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    Science.gov (United States)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  11. A phase-field and electron microscopy study of phase separation in Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hedstroem, Peter, E-mail: pheds@kth.se [Materials Science and Engineering, KTH (Royal Institute of Technology), SE-100 44 Stockholm (Sweden); Baghsheikhi, Saeed [Materials Science and Engineering, KTH (Royal Institute of Technology), SE-100 44 Stockholm (Sweden); Liu, Ping [Sandvik Materials Technology, R and D Centre, SE-81181 Sandviken (Sweden); Odqvist, Joakim [Materials Science and Engineering, KTH (Royal Institute of Technology), SE-100 44 Stockholm (Sweden); Sandvik Materials Technology, R and D Centre, SE-81181 Sandviken (Sweden)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Experimental characterization and Phase-field modeling of phase separation in Fe-Cr. Black-Right-Pointing-Pointer Transition from particle-like to spinodal-like structure observed. Black-Right-Pointing-Pointer Structural evolution generates increased hardness. Black-Right-Pointing-Pointer Results in agreement with recent thermodynamic description. Black-Right-Pointing-Pointer Quantitative kinetic modeling must include thermal noise and improved kinetic data. - Abstract: Phase separation in the binary Fe-Cr system, the basis for the entire stainless steel family, is considered responsible for the low temperature embrittlement in ferritic, martensitic and duplex stainless steels. These steels are often used in load-bearing applications with considerable service time at elevated temperature. Thus, understanding the effect of microstructure on mechanical properties and predicting dynamics of phase separation are key issues. In the present work, experimental evaluation of structure and mechanical properties in binary Fe-Cr alloys as well as phase-field modeling, using a new thermodynamic description of Fe-Cr, is conducted. A significant hardening evolution with time is found for alloys aged between 400 and 550 Degree-Sign C, and it can be attributed to phase separation. The decomposed structure changed with increasing Cr content at 500 Degree-Sign C, with a more particle-like structure at 25 wt% Cr and a more spinodal-like structure at 30 wt% Cr. The observed transition of structure agrees with the thermodynamically predicted spinodal, although the transition is expected to be gradual. The phase-field simulations qualitatively agree with experiments. However, to enable accurate quantitative predictions, the diffusional mobilities must be evaluated further and thermal fluctuations as well as 3D diffusion fields must be properly accounted for.

  12. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  13. KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr- 0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN

    Directory of Open Access Journals (Sweden)

    Sungkono Sungkono

    2015-07-01

    Full Text Available KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr-0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN. Logam paduan Zr-Nb-Fe-Cr dikembangkan sebagai material kelongsong elemen bakar dengan fraksi bakar tinggi untuk reaktor daya maju. Dalam penelitian ini telah dibuat paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr yang mendapat perlakuan panas pada temperatur 650 dan 750°C dengan waktu penahanan 1–2 jam. Tujuan penelitian adalah mendapatkan karakter paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas dan pengerolan dingin yaitu mikrostruktur, struktur kristal dan fasa-fasa yang ada dalam paduan. Hasil penelitian menunjukkan bahwa paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650ºC, 1-2 jam mempunyai struktur butir ekuiaksial dengan ukuran butir bertambah besar seiring dengan bertambahnya waktu penahanan. Sementara itu, pasca perlakuan panas (750ºC, 1-2 jam terjadi perubahan mikrostruktur paduan dari butir ekuiaksial dan kolumnar menjadi butir ekuiaksial lebih besar. Paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650°C, 1 jam dan (750°C, 1 jam tidak dapat dirol dingin dengan reduksi tebal 5 – 10%, sedangkan pasca perlakuan panas (650ºC, 2 jam dan (750°C, 1.5-2 jam mampu menerima deformasi dingin dengan reduksi ketebalan 5-10% tanpa mengalami keretakan. Senyawa Zr2Fe, ZrCr2 dan FeCr teridentifikai dari hasil uji kristalografi paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr.   MICROSTRUCTURE AND PHASE CHARACTERISTICSOF Zr-0.3%Nb-0.5%Fe-0.5%Cr ALLOY POST HEAT TREATMENT AND COLD ROLLING. Zr-Nb-Fe-Cr alloys was developed as fuel elements cladding with high burn up for advanced power reactors. In this research has been made of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy were heat treated with varying temperatures at650 and 750°C for 1 until 2 hours. The objectives of this research was to obtain the character of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy post heat treatment and cold rolling, microstructure nomenclature, crystal structure and phases that presents in the

  14. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features

    International Nuclear Information System (INIS)

    Simchi, A.

    2006-01-01

    In the present work, the densification and microstructural evolution during direct laser sintering of metal powders were studied. Various ferrous powders including Fe, Fe-C, Fe-Cu, Fe-C-Cu-P, 316L stainless steel, and M2 high-speed steel were used. The empirical sintering rate data was related to the energy input of the laser beam according to the first order kinetics equation to establish a simple sintering model. The equation calculates the densification of metal powders during direct laser sintering process as a function of operating parameters including laser power, scan rate, layer thickness and scan line spacing. It was found that when melting/solidification approach is the mechanism of sintering, the densification of metals powders (D) can be expressed as an exponential function of laser specific energy input (ψ) as ln(1 - D) = -Kψ. The coefficient K is designated as 'densification coefficient'; a material dependent parameter that varies with chemical composition, powder particle size, and oxygen content of the powder material. The mechanism of particle bonding and microstructural features of the laser sintered powders are addressed

  15. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  16. New carbazole-based Schiff base: Colorimetric chemosensor for Fe{sup 3+} and fluorescent turn-on chemosensor for Fe{sup 3+} and Cr{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiju; Yang, Lianlian; Fang, Min; Wu, Zhenyu; Zhang, Qing; Yin, Fangfang; Huang, Qiang; Li, Cun, E-mail: cun_li@126.com

    2015-02-15

    Two novel carbazole-based Schiff-bases L1 and L2 have been synthesized and characterized by {sup 1}H NMR, {sup 13}C NMR, FT-IR spectroscopy and elemental analysis. L1 can selectively detect Fe{sup 3+} by UV–vis spectroscopy and Fe{sup 3+}/Cr{sup 3+} by fluorescent spectroscopy in CH{sub 3}CN among various metal ions. The addition of Fe{sup 3+} ions to a L1 solution results in a significant blue-shift from 410 nm to 378 nm accompanied with color change from yellowish green to colorless. Upon excitation at 380 nm, the addition of Fe{sup 3+} or Cr{sup 3+} causes a 13-fold or 11-fold fluorescence enhancement. The binding stoichiometry ratio of L1–Fe{sup 3+} and L1–Cr{sup 3+} is recognized as 2:1 by the method of Job's plot, and the possible binding mode of the system also proposes. The results indicate that L1 is an ideal chemosensor for Fe{sup 3+} and Cr{sup 3+} recognition. However, L2 without hydroxyl in ortho imino group cannot selectively recognize the tasted metal ions, indicating that the introduction of the appropriate coordination binding site to receptor can improve efficiently the selectivity of chemosensor. - Highlights: • We designed and synthesized two new carbazole-based Schiff bases L1 and L2. • L1 could selectively recognize Fe{sup 3+} but L2 could not, which suggested that increase recognition site helped to improve the selectivity of probe. • L1 not only could serve as a highly selective visual chemosensor for Fe{sup 3+} ion without the aid of any instruments, but also could be used as a fluorescent chemosensor for Fe{sup 3+} and Cr{sup 3+}.

  17. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  18. Magnetic and hyperfine interactions in HoFe{sub 1−x}Cr{sub x}O{sub 3} (0≤x≤1) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kotnana, Ganesh [Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India); Reddy, V. Raghavendra [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001 (India); Jammalamadaka, S. Narayana, E-mail: surya@iith.ac.in [Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India)

    2017-05-01

    We report on the magnetic and Mössbauer properties of polycrystalline HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. Magnetization data reveals the continuous tailoring of magnetic transition due to weakening of Ho{sup 3+}-Fe{sup 3+} and Fe{sup 3+}-Fe{sup 3+} interactions in the entire temperature range by replacing the Fe{sup 3+} ions with Cr{sup 3+} ions. The observed decrease in Néel temperature (T{sub N}) and increase in spin re-orientation transition temperature (T{sub SR}) with the replacement of Fe{sup 3+} with Cr{sup 3+} is ascribed to the weakening of Fe(Cr)-O-Fe(Cr) antiferromagnetic exchange interaction. In addition, we also attribute such a change in T{sub N} to the enhancement of ferromagnetic interaction of adjacent Cr{sup 3+} moments through t-e hybridization as a result of the structural distortion. The decrease in isomer shift (IS) suggests enhancement of the interaction between nuclear charge with the 3s electrons as a result of decrease in radial part of 3d wave function with Cr addition. In this paper we also discuss about the variation of quadrupole splitting (QS) and hyperfine fields (H{sub hf}) with Cr addition in HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. - Highlights: • Magnetic and Mössbauer properties of HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. • T{sub N} changes due to weakening of Ho{sup 3+}-Fe{sup 3+} and Fe{sup 3+}-Fe{sup 3+} interactions with Cr. • The decrease in isomer shift (IS) is due to decrease in radial part of 3d wavefunction. • Octahedral distortion leads to increase in quadrupole splitting.

  19. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  20. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  1. Structural Properties of the Cr(III)-Fe(III) (Oxy)Hydroxide Compositional Series: Insights for a Nanomaterial 'Solid Solution'

    International Nuclear Information System (INIS)

    Tang, Y.; Zhang, L.; Michel, F.M.; Harrington, R.; Parise, J.B.; Reeder, R.J.

    2010-01-01

    Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of ∼27 (angstrom). The Cr end member, with a coherent domain size of ∼10 (angstrom), has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive structural

  2. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    Science.gov (United States)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.

    2018-05-01

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.

  3. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    Science.gov (United States)

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  4. Reduction and Simultaneous Removal of 99 Tc and Cr by Fe(OH) 2 (s) Mineral Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Um, Wooyong [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Engelhard, Mark H. [Environmental; Bowden, Mark E. [Environmental; Lukens, Wayne [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States; Leavy, Ian I. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Riley, Brian J. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Kim, Dong-Sang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Schweiger, Michael J. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Kruger, Albert A. [United

    2017-07-17

    Technetium (Tc) remains a priority remediation concern due to persistent challenges, including rapid re-oxidation of immobilized Tc, and competing contaminants, e.g. Cr(VI), that inhibit targeted Tc reduction and incorporation into stable mineral phases. Here Fe(OH)2(s) is investigated as a comprehensive solution for overcoming these challenges, by serving as both the reductant, (Fe(II)), and immobilization agent to form Tc-incorporated magnetite (Fe3O4). Trace metal analysis suggests removal of Tc(VII) and Cr(VI) from solution occurs simultaneously; however, complete removal and reduction of Cr(VI) is achieved earlier than the removal/reduction of co-mingled Tc(VII). Bulk oxidation state analysis of the magnetite solid phase by XANES confirms that the majority of Tc is Tc(IV), which is corroborated by XPS. Furthermore, EXAFS results show successful Tc(IV) incorporation into magnetite octahedral sites without additional substitution of Cr or Tc into neighboring Fe octahedral sites. XPS analysis of Cr confirms reduction to Cr(III) and the formation of a Cr-incorporated spinel, Cr2O3, and Cr(OH)3 phases. Spinel (modeled as Fe3O4), goethite, and feroxyhyte are detected in all reacted solid phase samples analyzed by XRD, where Tc(IV) incorporation has little effect on the spinel lattice structure. In the presence of Cr(III) a spinel phase along the magnetite-chromite (Fe3O4-FeCr2O4) solid-solution line is formed.

  5. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  6. Structural and optical properties of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano ferrites: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant, E-mail: prashant007thakur@gmail.com; Sharma, Rohit; Sharma, Vineet, E-mail: vineet.sharma@juiit.ac.in; Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in

    2017-06-01

    Mn-Zn ferrites have shown various remarkable applications e.g. in magnetic amplifiers, power transformers and electromagnetic interference etc. due to their high initial permeability. Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. Optical properties have been correlated with the structural properties. For structural properties X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR) have been employed. It has been observed that there is an increase in crystallite size with sintering from 973 K to 1373 K and FTIR confirms the formation of bond between metal ion and oxygen ion at the octahedral site and tetrahedral site. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Graphical abstract: Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Highlights: • Nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} have been prepared by the co-precipitation method. • There is an increase in crystallite size with sintering from 973 K to 1373 K. • A red shift is found in UV–visible and PL spectra with an increase in sintering temperature.

  7. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  8. Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion

    DEFF Research Database (Denmark)

    Yin, Weizhao; Li, Yongtao; Wu, Jinhua

    2017-01-01

    Abstract A one-pot bio-iron system was established to investigate synergetic abiotic and biotic effects between iron and microorganisms on Cr(VI) removal. More diverse iron corrosion and reactive solids, such as green rusts, lepidocrocite and magnetite were found in the bio-iron system than...... transfer on the solid phase. The results also showed that the reduction of Cr(VI) by microorganisms was insignificant, indicating the adsorption/co-precipitation of Cr by iron oxides on iron surface was responsible for the overall Cr(VI) removal. Our study demonstrated that the bio-amended iron corrosion...... in the Fe0-H2O system, leading to 4.3 times higher Cr(VI) removal efficiency in the bio-iron system than in the Fe0-H2O system. The cycling experiment also showed that the Cr(VI) removal capacity of Fe0 in the bio-iron system was 12.4 times higher than that in the Fe0-H2O system. A 62 days of life...

  9. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  10. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Science.gov (United States)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  11. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  12. Removable partial denture alloys processed by laser-sintering technique.

    Science.gov (United States)

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  13. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  14. Magnetic and magnetocaloric properties of HoCr0.75Fe0.25O3 compound

    Science.gov (United States)

    Kotnana, Ganesh; Babu, P. D.; Jammalamadaka, S. Narayana

    2018-05-01

    We report on the magnetic and magnetocaloric properties of HoCr0.75Fe0.25O3 compound around the Néel temperature (TN), which is due to Cr3+ ordering. Susceptibility (χ) vs. temperature (T) graph of HoCr0.75Fe0.25O3 compound infer two transitions due to the ordering of Cr3+ moments (TN ˜ 155 K) and Ho3+ moments (TNHo ˜ 8 K). Magnetic entropy (-ΔSM) value of 1.14 J kg-1 K-1 around 157.5 K with a magnetic field (H) of 90 kOe is attributed to antiferromagnetic (AFM) ordering of Cr3+ moments. A maximum value of adiabatic temperature (ΔTad) ˜ 0.41 K around TN is obtained and is found to increases with applied magnetic field. Negative slope for H/M vs. M2 graph is evident for HoCr0.75Fe0.25O3 compound below TN, which indicates the first order phase transition. Quantified values of -ΔSM and ΔTad open the way to explore rare earth orthochromites for the MCE properties and refrigeration applications.

  15. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Weisenburger, Alfons; Jianu, Adrian; Mueller, Georg [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Modified FeCrAl coatings show oxide scale formation when exposed to liquid lead. Black-Right-Pointing-Pointer Formation of thin Al-rich oxide scales is promoted by the presence of Y. Black-Right-Pointing-Pointer FeCrAlY with at least 8 wt.% Al forms thin Al-rich oxide scales. Black-Right-Pointing-Pointer For low Al content, thick multilayer Fe-based oxide scales are found. - Abstract: Modified FeCrAl coatings were studied with respect to their capability to form a thin protective oxide scale in liquid lead environment. They were manufactured by low pressure plasma spraying and GESA surface melting, thereby tuning the Al content. The specimens were exposed for 900 h to liquid lead containing 10{sup -6} and 10{sup -8} wt.% oxygen, respectively, at various temperatures from 400 to 550 Degree-Sign C. Threshold values for an Al content that guarantees the formation of thin protective Al-rich oxide scales are determined, dependent on the respective chromium content, on the presence of yttrium in the modified coating, and on the exposure conditions.

  16. Modification of Surface Roughness and Area of FeCrAl Substrate for Catalytic Converter using Ultrasonic Treatment

    Directory of Open Access Journals (Sweden)

    Yanuandri Putrasari

    2012-03-01

    Full Text Available Surface roughness and area play important role especially in deposition and reaction of the catalyst in the catalytic converter substrate. The aim of this paper is to show the modification of surface roughness and area of FeCrAl substrate for catalytic converter using ultrasonic method. The method was conducted by agitating the FeCrAl in 10 minutes 35 kHz ultrasonic cleaning bath. The  surface roughness, morphology, and chemical components of FeCrAl catalytic converter substrate after ultrasonic treatment were analyzed using atomic force microscope (AFM and examined with scanning electron microscope (SEM in combination with energy dispersive X-ray spectroscopy (EDS. The ultrasonic treatment assisted with Al2O3 powders successfully increased the roughness and surface area of FeCrAl better than SiC powders. 

  17. Phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Kobayashi, Satoru; Schneider, Andre; Zaefferer, Stefan; Frommeyer, Georg; Raabe, Dierk

    2005-01-01

    In the context of the development of high-strength Fe 3 Al-based alloys, phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC phases in the Fe-Al-Cr-Ti-C quinary system and the formation of TiC were determined. A pseudo-eutectic trough (L α + L + TiC) exists at 1470 deg C at around Fe-26Al-5Cr-2Ti-1.7C on the vertical section between Fe-26Al-5Cr (α) and Ti-46C (TiC) in at.%. Large faceted TiC precipitates form from the melt after the formation of primary α phase even in hypoeutectic alloys. The TiC formation is thought to be due to the composition change of the liquid towards the hypereutectic compositions by solidification of the primary α. In order to remove the faceted TiC, which are unfavourable for strengthening the material, two different processing routes have been successfully tested: (i) solidification with an increased rate to reduce the composition variation of the liquid during solidification, and (ii) unidirectional solidification to separate the light TiC precipitates from the melt

  18. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Batuk, Dmitry, E-mail: Dmitry.batuk@ua.ac.be [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry Group, Hasselt University, Institute for Materials Research, Agoralaan Building D, B-3590, Diepenbeek (Belgium); Tsirlin, Alexander A. [National Institute of Chemical Physics and Biophysics, 12618, Tallinn (Estonia); Abakumov, Artem M. [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp (Belgium); Hardy, An; Van Bael, Marlies K. [Inorganic and Physical Chemistry Group, Hasselt University, Institute for Materials Research, Agoralaan Building D, B-3590, Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Agoralaan Building D, B-3590, Diepenbeek (Belgium); Greenblatt, Martha [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey, 08854-8087 (United States); Hadermann, Joke [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp (Belgium)

    2013-09-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe{sub 2}O{sub 6} is possible by the solution–gel method. • The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr{sup 3+} for Mn{sup 3+} substitution in the BiMnFe{sub 2}O{sub 6} structure. The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe{sub 2}O{sub 6} structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R{sub I} = 0.036, R{sub P} = 0.011) with only a slight decrease in the cell parameters associated with the Cr{sup 3+} for Mn{sup 3+} substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} (x = 0.2; 0.3) and parent BiMnFe{sub 2}O{sub 6}. Only T{sub N} slightly decreases upon Cr doping that indicates a very subtle influence of Cr{sup 3+} cations on the magnetic properties at the available substitution rates.

  19. Multiwall carbon nanotubes decorated with FeCr{sub 2}O{sub 4}, a new selective electrochemical sensor for amoxicillin determination

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali Asghar, E-mail: Ensafi@cc.iut.ac.ir; Allafchian, Ali Reza; Rezaei, Behzad [Isfahan University of Technology, Department of Chemistry (Iran, Islamic Republic of)

    2012-11-15

    FeCr{sub 2}O{sub 4} nanoparticles were synthesized and then multiwall carbon nanotubes (MWCNTs) were decorated with FeCr{sub 2}O{sub 4} nanoparticles. The new nanoparticles were characterized with different techniques such as vibrating sample magnetometer, Fourier transform infrared spectroscopy, scanning surface microscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. The results of the study confirm that the particles are pure FeCr{sub 2}O{sub 4}-MWCNTs with a cubic structure. No diffraction peaks of other impurities such as FeO or Cr{sub 2}O{sub 3} were observed. The diffractive peaks of FeCr{sub 2}O{sub 4}-MWCNTs are broadened, implying that the crystalline size of FeCr{sub 2}O{sub 4}-MWCNTs particles is quite small. The mean particle size of FeCr{sub 2}O{sub 4}-MWCNTs calculated by Scherrer equation is about 25 nm, whereas the existence of particles with less than 30 nm size at FeCr{sub 2}O{sub 4}-MWCNTs is clearly reflected in 2D and 3D AFM images. The TEM image confirms that the spaghetti-like FeCr{sub 2}O{sub 4}-MWCNTs formed a porous structure. The synthesized FeCr{sub 2}O{sub 4}-MWCNTs nanoparticles could be used as a new electrocatalysis for voltammetric determination of amoxicillin (AMC). Under the optimized conditions at pH 7.5 and in differential pulse voltammetry, the oxidation peak current of AMC at the surface of the mediator has two linear dynamic ranges including 0.1-10.0 and 10.0-70.0 {mu}mol L{sup -1}. The detection limit of 0.05 {mu}mol L{sup -1} was achieved. The influence of potential interfering compounds on the selectivity was studied. Finally, the modified electrode showed good sensitivity, selectivity, and stability for the determination of AMC in real samples.

  20. Effect of Organic Matter on Cr(VI Removal from Groundwaters by Fe(II Reductive Precipitation for Groundwater Treatment

    Directory of Open Access Journals (Sweden)

    Anna Gröhlich

    2017-06-01

    Full Text Available Due to its toxicity, Cr(VI is undesirable in groundwater. Its chemical reduction to Cr(III species, followed by precipitation is the most widely practiced treatment technique for the removal of Cr(VI from polluted waters. The resulting Cr(III species present low solubility, is much less toxic, and can be subsequently removed either by precipitation, or by adsorption onto iron oxy-hydroxides and co-precipitation. The effects of several parameters, such as the pH value of water to be treated, the applied Fe(II dose, and the presence of appropriate mineral surfaces, are well investigated and understood. However, the impact of the presence of humic acids (HAs in this process has only been considered by rather few studies. The main aim of this study was to determine the effect of humic substances on Fe(II reductive precipitation of Cr(VI within a pH range relevant for drinking water treatment. Jar test experiments were performed, using artificial groundwater of defined composition and initial Cr(VI concentration 100 μg/L, ferrous sulphate dosages 0.25–2 mg Fe(II/L, and pH values 6.5–8. It was found that Cr(VI and total chromium (Cr(total can be reliably removed in the absence of HAs in the tested pH range with the addition of Fe(II dosage of 1 mg Fe(II/L. Further on, the results indicated that the reduction of Cr(VI is only slightly affected by the presence of HAs. However, increased residual total Cr concentrations were found at lower Fe(II dosages and/or higher pH values. Additionally, the removal of the Cr(III species formed during Cr(VI reduction was strongly inhibited by the presence of HAs under the examined experimental conditions, since residual concentrations higher than 60 μg/L were determined. The results of this study will have implications to the ongoing discussion of a new, stricter, European Union regulation limit, regarding the presence of total chromium in drinking water.

  1. Effect of Partial Substitution of Neodymium with Praseodymium on the Magnetic and Process Properties of Sintered Magnets of Type NdFeB

    Science.gov (United States)

    Dormidontov, N. A.; Dormidontov, A. G.; Lileev, A. S.; Kamynin, A. V.; Lukin, A. A.

    2017-01-01

    The effect of substitution of neodymium with praseodymium in sintered magnets of type NdFeB on their magnetic and process properties in the concentration range of [Pr] = 0 - 13 wt.% is studied. The special features of milling of the alloys, sintering processes and heat treatments in the production of magnets containing praseodymium are discussed. Hysteresis characteristics of B r ≥ 1.2 T, H cJ ≥ 1200 kA/m, H cb ≥ 880 kA/m, H k ≥ 960 kA/m, and BH max ≥ 280 kJ/m3 are obtained for magnets with composition (in wt.%) 33 Nd, 10 Pr, 1.5 (Ti + Al + Cu), 1.3 B, the remainder Fe.

  2. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  3. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  4. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  5. Cl K-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2004-01-01

    Cl K-edge XANES measurements of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys in chloride pollution have been performed using synchrotron radiation in order to clarify roles of anticorrosive alloying elements and of Cl in the corrosion resistance of weathering steel. The spectra of binary alloys show a shoulder structure near the absorption edge. The intensity of the shoulder peak depends on the kind and amount of the alloying element, whereas the energy position is invariant. This indicates that Cl is not combined directly with alloying elements in the rust. (author)

  6. A preliminary electron backscattered diffraction study of sintered NdFeB-type magnets.

    Science.gov (United States)

    Lillywhite, S J; Williams, A J; Davies, B E; Harris, I R

    2002-03-01

    This paper reports, for the first time, the use of electron backscattered diffraction (EBSD) to study orientation in sintered NdFeB type magnets. The magnetic properties of NdFeB magnets are greatly improved if a strong crystallographic texture is firstly achieved, namely, the direction of the c-axis is along the direction of magnetization. A systematic survey of sample preparation techniques showed that samples that were mechanically polished and then etched gave the most reliable EBSD data. Analyses were made using both fully automated EBSD scans and by EBSD measurements taken after manual movement of the beam. The EBSD results are presented as secondary electron SEM micrographs, orientation images and 001 pole figures. For the selection of grains investigated, the deviation of the c-axis was shown to be between 10 degrees and 30 degrees from the ideal [001]//magnetization direction. It is demonstrated that EBSD is a valuable tool for characterizing the microstructure and texture relationships and for assessing the performance of the processing routes of NdFeB magnets.

  7. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Williams, A.J., E-mail: a.j.williams@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2012-01-15

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10({+-}0.02) T and an intrinsic coercivity of 800 ({+-}16) kA m{sup -1} and giving a (BH){sub max} of 129({+-}2.5) kJ m{sup -3}. - Highlights: > Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. > Reaction pressure increases with increasing processing temperature. > Best magnetic properties achieved by processing at 880 deg. C.

  8. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    International Nuclear Information System (INIS)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R.; Williams, A.J.

    2012-01-01

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m -1 and giving a (BH) max of 129(±2.5) kJ m -3 . - Highlights: → Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. → Reaction pressure increases with increasing processing temperature. → Best magnetic properties achieved by processing at 880 deg. C.

  9. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    Science.gov (United States)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  10. In situ observation and neutron diffraction of NiTi powder sintering

    International Nuclear Information System (INIS)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2014-01-01

    This study investigated NiTi powder sintering behaviour from elemental powder mixtures of Ni/Ti and Ni/TiH 2 using in situ neutron diffraction and in situ scanning electron microscopy. The sintered porous alloys have open porosities ranging from 2.7% to 36.0%. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH 2 compact leads to less densification yet higher chemical homogenization only after high-temperature sintering. For the first time, direct evidence of the eutectoid phase transformation of NiTi at 620 °C is reported by in situ neutron diffraction. A comparative study of cyclic stress–strain behaviours of the porous NiTi alloys made from Ni/Ti and Ni/TiH 2 compacts indicate that the samples sintered from the Ni/TiH 2 compact exhibited a much higher porosity, larger pore size, lower fracture strength, lower close-to-overall porosity ratio and lower Young’s modulus. Instead of enhanced densification by the use of TiH 2 as reported in the literature, this study shows an adverse effect of TiH 2 on powder densification in NiTi

  11. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid.

    Science.gov (United States)

    Tian, Xike; Wang, Weiwei; Tian, Na; Zhou, Chaoxin; Yang, Chao; Komarneni, Sridhar

    2016-05-15

    In this work, a novel "Dumbbell-like" magnetic Fe3O4/Halloysite nanohybrid (Fe3O4/HNTs@C) with oxygen-containing organic group grafting on the surface of natural halloysite nanotubes (HNTs) and homogeneous Fe3O4 nanospheres selectively aggregating at the tips of modified halloysite nanotubes was successfully synthesized. XRD, TEM, IR spectroscopy, XPS and VSM were used to characterize this newly halloysite nanohybrid and its formation mechanism was discussed. Cr(VI) ions adsorption experiments showed that the Fe3O4/halloysite nanohybrid exhibited higher adsorption ability with a maximum adsorption capacity of 132 mg/L at 303K, which is about 100 times higher than that of unmodified halloysite nanotubes. More importantly, with the reduction of Fe3O4 and electron-donor effect of oxygen-containing organic groups, Cr(VI) ions were easily reduced into low toxicity Cr(III) and then adsorbed onto the surface of halloysite nanohybrid. In addition, appreciable magnetization was observed due to the aggregation of magnetite nanoparticles, which make adsorbent facility separated from aqueous solutions after Cr pollution adsorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared; Xu, Huifang; Ginder-Vogel, Matthew (UW)

    2017-08-01

    Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethite or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially

  13. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  14. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  15. Sintering of nanopowders of ZrO{sub 2} (Y{sub 2}O{sub 3}): Effect of compaction pressure on densification; Sinterizacao de pos nanoparticulados de ZrO{sub 2} (Y{sub 2}O{sub 3}): efeito da pressao de compactacao na densificacao

    Energy Technology Data Exchange (ETDEWEB)

    Palmeira, Alexandre Alvarenga; Magnago, Roberto de Oliveira; Pereira, Glayce Cassaro [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Bondioli, Marcelo Jose; Strecker, Kurt [Universidade Federal Sao Joao Del-Rey (UFSJ), MG (Brazil); Santos, Claudinei dos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2014-06-15

    In this work studied the powders (nano) sintered of ZrO{sub 2} (Y{sub 2}O{sub 3}) by dilatometry. Was identified the effect of compaction pressure variation in the final results of densification of materials. Powders were compacted at different compaction pressures. The compacts were subjected to temperatures of 1250°C to 1400°C with sintering levels ranging from 0 to 8 hours. Samples were characterized by X-ray diffraction and relative density using Archimedes method. The results were compared with powders (micro) of similar composition in order to compare the effect of particle size on densification parameters. The samples were further subjected to microstructural characterization in order to identify the average grain size of the sintering under each condition used in both materials. (author)

  16. Giant magnetoresistance in CrFeMn alloys

    International Nuclear Information System (INIS)

    Xu, W.M.; Zheng, P.; Chen, Z.J.

    1997-01-01

    The electrical resistance and longitudinal magnetoresistance of Cr 75 (Fe x Mn 1-x ) 25 alloys, x=0.64, 0.72, are studied in the temperature range 1.5-270 K in applied field up to 7.5 T. The magnetoresistance is negative and strongly correlated with the spin reorientation. In the temperature range where the antiferromagnetic and ferromagnetic domains coexist, the samples display giant magnetoresistance which follows a H n -law at high field. (orig.)

  17. Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys

    International Nuclear Information System (INIS)

    Shreder, E; Streltsov, S V; Svyazhin, A; Makhnev, A; Marchenkov, V V; Lukoyanov, A; Weber, H W

    2008-01-01

    We present the results of experiments on the optical, electrical and magnetic properties and electronic structure and optical spectrum calculations of the Heusler alloys Fe 2 TiAl, Fe 2 VAl and Fe 2 CrAl. We find that the drastic transformation of the band spectrum, especially near the Fermi level, when replacing the Me element (Me = Ti, V, Cr), is accompanied by a significant change in the electrical and optical properties. The electrical and optical properties of Fe 2 TiAl are typical for metals. The abnormal behavior of the electrical resistivity and the optical properties in the infrared range for Fe 2 VAl and Fe 2 CrAl are determined by electronic states at the Fermi level. Both the optical spectroscopic measurements and the theoretical calculations demonstrate the presence of low-energy gaps in the band spectrum of the Heusler alloys. In addition, we demonstrate that the formation of Fe clusters may be responsible for the large enhancement of the total magnetic moment in Fe 2 CrAl

  18. Effect of the application of surface treatments before and after sintering on the flexural strength, phase transformation and surface topography of zirconia.

    Science.gov (United States)

    Kurtulmus-Yilmaz, Sevcan; Aktore, Huseyin

    2018-05-01

    To evaluate the effects of airborne-particle abrasion (APA) and Er,Cr:YSGG laser irradiation on 4-point-flexural strength, phase transformation and morphologic changes of zirconia ceramics treated at pre-sintered or post-sintered stage. Three hundred and forty-two bar shaped zirconia specimens were milled with different sizes according to the flexural strength test (n = 10), X-ray diffraction (XRD) (n = 4) and field emission scanning electron microscope (FE-SEM) (n = 4) analyses. For each test protocol, specimens were divided into 4 main groups whether the surface treatments applied before or after sintering and whether the specimens received heat treatment or not as pre-sintered, post-sintered no-heat and post-sintered heat-treated groups, and a group was served as control. Main groups were further divided into 6 equal subgroups according to surface treatment method applied (2 W-, 3 W-, 4 W-, 5 W-, 6 W-laser irradiations and APA). Surface treatments were applied to pre-sintered groups before sintering and to post-sintered groups after sintering. Post-sintered heat-treated groups were subjected to veneer ceramic firing simulation after surface treatments. Flexural strength and flexural modulus values were statistically analysed and monoclinic phase content was calculated. Weibull analysis was used to evaluate strength reliability and fractographic analysis was conducted. Highest flexural strength values were detected at post-sintered no-heat APA and 4W-laser groups (P SEM images pre-sintered groups. Application of surface treatments at pre-sintered stage may be detrimental for zirconia ceramics in terms of flexural strength. Treating the surface of zirconia ceramic before sintering process is not recommended due to significant decrease in flexural strength values. 2 W-4 W Er,Cr:YSGG laser irradiations can be regarded as alternative surface treatment methods when zirconia restoration would be subjected to veneer ceramic firing procedures

  19. The corrosion and mechanical behaviour of Al, FeCrAlY, and CoCrAlY coatings in aggressive environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Geerdink, Bert; Fransen, T.; Gellings, P.J.

    1991-01-01

    The mechanical and chemical behaviours of aluminide coatings applied by pack cementation, FeCrAlY coatings applied by plasma spraying and CoCrAlY coatings applied by electrodeposition were studied. The coatings were pretreated for 0.5 h in argon at 1373 K to improve the adhesion and structural

  20. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)

    2017-02-28

    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  1. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    Science.gov (United States)

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (Palloy (Palloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  3. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhi, E-mail: Zhi.Tang@alcoa.com [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Senkov, Oleg N. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433 (United States); Parish, Chad M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, Chuan; Zhang, Fan [CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719 (United States); Santodonato, Louis J. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, Gongyao [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Zhao, Guangfeng; Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Liaw, Peter K., E-mail: pliaw@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-10-28

    The microstructure and phase composition of an AlCoCrFeNi high-entropy alloy (HEA) were studied in as-cast (AlCoCrFeNi-AC, AC represents as-cast) and homogenized (AlCoCrFeNi-HP, HP signifies hot isostatic pressed and homogenized) conditions. The AlCoCrFeNi-AC ally has a dendritric structure in the consisting primarily of a nano-lamellar mixture of A2 (disordered body-centered-cubic (BCC)) and B2 (ordered BCC) phases, formed by an eutectic reaction. The homogenization heat treatment, consisting of hot isostatic pressed for 1 h at 1100 °C, 207 MPa and annealing at 1150 °C for 50 h, resulted in an increase in the volume fraction of the A1 phase and formation of a Sigma (σ) phase. Tensile properties in as-cast and homogenized conditions are reported at 700 °C. The ultimate tensile strength was virtually unaffected by heat treatment, and was 396±4 MPa at 700 °C. However, homogenization produced a noticeable increase in ductility. The AlCoCrFeNi-AC alloy showed a tensile elongation of only 1.0%, while after the heat-treatment, the elongation of AlCoCrFeNi-HP was 11.7%. Thermodynamic modeling of non-equilibrium and equilibrium phase diagrams for the AlCoCrFeNi HEA gave good agreement with the experimental observations of the phase contents in the AlCoCrFeNi-AC and AlCoCrFeNi-HP. The reasons for the improvement of ductility after the heat treatment and the crack initiation subjected to tensile loading were discussed.

  4. Effects of a FeCrAl layer fabricated by sputtering process on pool boiling critical heat flux

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Son, Hong Hyun; Jeun, Gyoodong; Kim, Sung Joong

    2016-01-01

    The thermal safety margin of a FeCrAl-layered heater was investigated measuring pool boiling critical heat flux (CHF). Boiling experiments were conducted in a pool of deionized water at atmospheric pressure. For a comparison work, bare and FeCrAl-layered heater samples were prepared. The sputtering technique was employed to fabricate the FeCrAl layer. It was confirmed that the key sputtering parameters on the surface structure were substrate temperature and deposition time. As compared to the bare sample, surface wettability and roughness increased. Higher values of the surface roughness were observed at temperatures of 150degC and 600degC. The FeCrAl-layered heaters showed improved CHF up to ∼40%. The highest enhancement of 42% was observed for the heater sample fabricated at a substrate temperature of 150degC. With employing recent CHF models that incorporate the surface effects, it was evaluated that increased roughness at the micrometer scale mainly contributed to the CHF enhancement. Furthermore, visual observations showed at least 2 msec reduction in the rewetting times for the FeCrAl-layered heaters, and the improved CHF may be attributed to the suppressed hot dry spots due to the rewetting phenomena. (author)

  5. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    Science.gov (United States)

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; Zhang, Yanwen

    2018-01-01

    The role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably, the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding eg to t2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.

  6. On the evaluation of residual stress and mechanical properties of FeCrBSi coatings by nanoindentation

    International Nuclear Information System (INIS)

    Zhu Lina; Xu Binshi; Wang Haidou; Wang Chengbiao

    2012-01-01

    Highlights: ► Ni/Al coating can reduce the mismatch degree between the coating and substrate. ► No obvious pile-up is observed for the nanoindents of the FeCrBSi coating. ► The higher the tensile residual stress, the lower the hardness and elastic modulus. - Abstract: In this paper, the residual stress in the plasma-sprayed FeCrBSi coating was determined by nanoindentation and X-ray diffraction (XRD). The XRD results showed that tensile residual stress was generated in the FeCrBSi coating, and the through-thickness values range between 40 MPa and 112 MPa. The residual stress measured by nanoindentation is 753 MPa. The difference between the XRD and nanoindentation results was discussed. It is found that the factors limiting the nanoindentation measurement of residual stress include the ‘sink-in’ deformation around the indenter, the roughness of the FeCrBSi coating, and the use of reference sample without residual stress. The above three factors lead to the over-prediction of residual stress by nanoindentation.

  7. Magnetic properties of pure and Fe doped HoCrO{sub 3} thin films fabricated via a solution route

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shiqi; Sauyet, Theodore [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Guild, Curt [Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Suib, S.L. [Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Jain, Menka, E-mail: menka.jain@uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2017-04-15

    Multiferroic properties of orthorhombically distorted perovskite rare-earth chromites, such as HoCrO{sub 3}, are being investigated extensively in recent years. In the present work, we report on the effect of Fe substitution on the magnetic properties of HoCrO{sub 3} thin films. Thin films of HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} were fabricated via a solution route on platinized silicon substrates. Structural properties of the films were evaluated by X-ray diffraction and Raman spectroscopy techniques. The surface morphology and cross-sections of the films were examined using scanning electron microscopy. Optical band gaps of pure and Fe doped HoCrO{sub 3} films are found to be 3.45 eV and 3.39 eV, respectively. The magnetization measurements show that the Néel temperatures (where Cr{sup 3+} orders) for the HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} films are 134 and 148 K, respectively. In a magnetic field of 2 T, the maximum entropy change and relative cooling power, two parameters to evaluate the magnetocaloric properties of a material, were 0.813 J/kg K at 11 K and 21.1 J/kg for HoCrO{sub 3} film, in comparison with 0.748 J/kg K at 15 K and 26.8 J/kg for HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} film. To our knowledge, this is the first work exploring the band gap and magnetocaloric properties of rare-earth chromite thin films. These findings should inspire the development of rare-earth chromite thin films for temperature control of nanoscale electronic devices and sensors in the low temperature region (< 30 K). - Highlights: • Phase-pure HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3}films were fabricated on platinized Sivia a solution route. • This is the first work on the exploration of band gap and magnetocaloric properties of rare-earth chromitefilms. • From 0-2 T, maximum entropy change for the HoCrO{sub 3} film was 0.813 J/kg K at 11 K.From 0-2 T, maximum entropy change for HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} film was 0.748 J/kg K at 15

  8. Unraveling the magnetic properties of BiFe0.5Cr0.5O3 thin films

    Directory of Open Access Journals (Sweden)

    G. Vinai

    2015-11-01

    Full Text Available We investigate the structural, chemical, and magnetic properties on BiFe0.5Cr0.5O3 (BFCO thin films grown on (001 (110 and (111 oriented SrTiO3 (STO substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.

  9. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  10. Effect of Power Characteristics on the Densification of Sintered Alumina

    International Nuclear Information System (INIS)

    Al-Sarraj, Z.S.A.; Noor, S.S.

    2011-01-01

    The effect of particle size distribution, soaking time and sintering temperatures on the densification behaviors of α-Al 2 O 3 was investigated. Two different average particle sizes of 36 and 45μ were examined as a variable to analyze the difference in density, radial and axial shrinkage, densification, and microstructure developments. Conventional powder technology route was used to prepare disc-shaped green pellets sintered at 1200-1600 0 C for different periods. Density measurements for both green and sintered compacts allow for the refinement of processing parameters to obtain dense sintered bodies. Compacts with particle size of 36 μm were noticed to attain higher relative densities as compared with those of 45μm. Densification parameter (ΔP) calculations clearly reveals the presence of definite temperatures and times in which limited densification retardation occurred, which permits the suggesting of suitable sintering schemes for this material. Scanning electron micrographs analysis revealed a pore structure assist the observed behaviours for the different schemes. (author)

  11. Interplay between magnetism and energetics in Fe-Cr alloys from a predictive noncollinear magnetic tight-binding model

    DEFF Research Database (Denmark)

    Soulairol, R.; Barreteau, Cyrille; Fu, Chu-Chun

    2016-01-01

    Magnetism is a key driving force controlling several thermodynamic and kinetic properties of Fe-Cr systems. We present a tight-binding model for Fe-Cr, where magnetism is treated beyond the usual collinear approximation. A major advantage of this model consists in a rather simple fitting procedur...

  12. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  13. Metallurgical structure modification of UO{sub 2} pellet during sintering - experience at NFC, Hyderabad, India

    Energy Technology Data Exchange (ETDEWEB)

    Santra, N.; Sinha, T.K.; Singh, A.K.; Sairam, S.; Sheela, S.; Saibaba, N., E-mail: santra@nfc.gov.in [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2013-07-01

    Nuclear Fuel Complex (NFC), Department of Atomic Energy (DAE) produces UO{sub 2} fuel pellets by powder compaction, high temperature sintering followed by centreless wet grinding method from the stabilized UO{sub 2} powder generated through ADU-route. Enhancement of fuel burn up of the Indian PHWRs becomes very important in order to effectively utilize the fuel to the maximum extent inside the reactor. Burn up is mainly limited by increased fission gas release from the fuel during reactor operation. Without introducing much change in the design, rate of release of fission gas can be reduced through enlargement of UO{sub 2} grain size. In Powder Metallurgical (PM) route of fuel fabrication, trials were taken by doping various oxide powder additives like TiO{sub 2}, Al{sub 2}O{sub 3}, SiO{sub 2}, Nb{sub 2}O{sub 5} and Cr{sub 2}O{sub 3}. The dopant normally goes into the solid solution of parent matrix during sintering at 1700 {sup o}C and thus enhance the rate of diffusion. Aliovalant dopant can alter the defect chemistry of the parent material either by creating vacancy or interstitial. It is apparently understood that the combination of above mechanisms are responsible for structural modification of UO{sub 2}. Hence selection of dopant remains largely empirical. It has been observed at NFC Hyderabad that the Cr{sub 2}O{sub 3} is the most suitable for achieving average UO{sub 2} grain size of about 70 micron and 98%TD of the sintered pellet. The paper discusses about the various experimental trials, sintered densities, metallographic examination, effect of different quantities, analysis and result obtained thereof. (author)

  14. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment.

    Science.gov (United States)

    Huang, Bin; Gu, Lipeng; He, Huan; Xu, Zhixiang; Pan, Xuejun

    2016-09-14

    This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.

  15. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  16. Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB

    International Nuclear Information System (INIS)

    Yu, L.Q.; Wen, Y.H.; Yan, M.

    2004-01-01

    Dy and Nb were added into the sintered NdFeB magnets with the aim of improving their magnetic properties and corrosion resistance. It was found that intrinsic coercivity of magnets is promoted whilst remanence is reduced as a result of Dy addition. Simultaneous addition of Dy and Nb not only gives rise to greatly improved coercivity, but also suppresses the undesirable effect of Dy on the remanence. The optimum magnetic properties were achieved when 1.0% Dy and 1.5% Nb were incorporated. Moreover, corrosion resistance of NdFeB magnets improves with the increase in the content of Dy and Nb

  17. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  18. Fe-Ti-Cr-Oxides in Martian Meteorite EETA79001 Studied by Point-counting Procedure Using Raman Spectroscopy

    Science.gov (United States)

    Wang, Alian; Kuebler, Karla E.; Jolliff, Bradley L.; Haskin, Larry A.

    2003-01-01

    Fe-Ti-Cr-Oxide minerals contain much information about rock petrogenesis and alteration. Among the most important in the petrology of common intrusive and extrusive rocks are those of the FeO-TiO2-Cr2O3 compositional system chromite, ulv spinel-magnetite, and ilmenite-hematite. These minerals retain memories of oxygen fugacity. Their exsolution into companion mineral pairs give constraints on formation temperature and cooling rate. Laser Raman spectroscopy is anticipated to be a powerful technique for characterization of materials on the surface of Mars. A Mars Microbeam Raman Spectrometer (MMRS) is under development. It combines a micro sized laser beam and an automatic point-counting mechanism, and so can detect minor minerals or weak Raman-scattering phases such as Fe- Ti-Cr-oxides in mixtures (rocks & soils), and provide information on grain size and mineral mode. Most Fe-Ti-Cr-oxides produce weaker Raman signals than those from oxyanionic minerals, e.g. carbonates, sulfates, phosphates, and silicates, partly because most of them are intrinsically weaker Raman scatters, and partly because their dark colors limit the penetration depth of the excitation laser beam (visible wavelength) and of the Raman radiation produced. The purpose of this study is to show how well the Fe-Ti-Cr-oxides can be characterized by on-surface planetary exploration using Raman spectroscopy. We studied the basic Raman features of common examples of these minerals using well-characterized individual mineral grains. The knowledge gained was then used to study the Fe-Ti-Cr-oxides in Martian meteorite EETA79001, especially effects of compositional and structural variations on their Raman features.

  19. Microstructural Evolution during Pressureless Sintering of Blended Elemental Ti-Al-V-Fe Titanium Alloys from Fine Hydrogenated-Dehydrogenated Titanium Powder

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-07-01

    Full Text Available A comprehensive study was conducted on microstructural evolution of sintered Ti-Al-V-Fe titanium alloys utilizing very fine hydrogenation-dehydrogenation (HDH titanium powder with a median particle size of 8.84 μm. Both micropores (5–15 μm and macropores (50–200 μm were identified in sintered titanium alloys. Spherical micropores were observed in Ti-6Al-4V sintered with fine Ti at the lowest temperature of 1150 °C. The addition of iron can help reduce microporosity and improve microstructural and compositional homogenization. A theoretical calculation of evaporation based on the Miedema model and Langmuir equation indicates that the evaporation of aluminum could be responsible for the formation of the macropores. Although reasonable densification was achieved at low sintering temperatures (93–96% relative density the samples had poor mechanical properties due mainly to the presence of the macroporosity and the high inherent oxygen content in the as-received fine powders.

  20. Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr).

    Science.gov (United States)

    Zhao, Songjian; Mei, Jian; Xu, Haomiao; Liu, Wei; Qu, Zan; Cui, Yong; Yan, Naiqiang

    2018-06-05

    Metal-organic frameworks (MOFs) adsorbent Mil-101(Cr) was introduced for the removal of elemental mercury from sintering flue gas. Physical and chemical characterization of the adsorbents showed that MIL-101(Cr) had the largest BET surface area, high thermal stability and oxidation capacity. Hg 0 removal performance analysis indicated that the Hg 0 removal efficiency of MIL-101(Cr) increased with the increasing temperature and oxygen content. Besides, MIL-101(Cr) had the highest Hg 0 removal performance compared with Cu-BTC, UiO-66 and activated carbon, which can reach about 88% at 250 °C. The XPS and Hg-TPD methods were used to analyze the Hg 0 removal mechanism; the results show that Hg 0 was first adsorbed on the surface of Mil-101(Cr), and then oxidized by the open metal site Cr 3+ . The generated Hg 2+ was then combined surface adsorbed oxygen of adsorbent to form HgO, and the open metal site Cr 2+ was oxidized to Cr 3+ by surface active oxygen again. Furthermore, MIL-101(Cr) had good chemical and thermal stability. Copyright © 2017 Elsevier B.V. All rights reserved.