WorldWideScience

Sample records for sintered cylindrical samples

  1. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.

    1984-01-01

    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  2. Magnetization curves for general cylindrical samples in a transverse ...

    Indian Academy of Sciences (India)

    complexity associated with the task of determining and studying the movement of the flux- front as the flux ... a volume current density causing the flux-front to move by an appropriate amount. Since the flux-front does ... Let us consider an infinite cylindrical sample with its axis along the z-axis and its cross- section bounded ...

  3. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  4. Approximate determination of efficiency for activity measurements of cylindrical samples

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, W [Nuclear Engineering and Analytics Rossendorf, Inc. (VKTA), Dresden (Germany); Bothe, M [Nuclear Engineering and Analytics Rossendorf, Inc. (VKTA), Dresden (Germany)

    1997-03-01

    Some calibration samples are necessary with the same geometrical parameters but of different materials, containing known activities A homogeniously distributed. Their densities are measured, their mass absorption coefficients may be unknown. These calibration samples are positioned in the counting geometry, for instance directly on the detector. The efficiency function {epsilon}(E) for each sample is gained by measuring the gamma spectra and evaluating all usable gamma energy peaks. From these {epsilon}(E) the common valid {epsilon}{sub geom}(E) will be deduced. For this purpose the functions {epsilon}{sub mu}(E) for these samples have to be established. (orig.)

  5. Influence of the radial spacing between cathodes on the surface composition of iron samples sintered by hollow cathode electric discharge

    Directory of Open Access Journals (Sweden)

    Brunatto S.F.

    2001-01-01

    Full Text Available The present work reports an investigation of the influence of the radial spacing between cathodes on the iron sintering process by hollow cathode electrical discharge, with surface enrichment of the alloying elements Cr and Ni. Pressed cylindrical samples of 9.5 mm diameter and density of 7.0 ± 0.1 g/cm³ were prepared by compaction of Ancorsteel 1000C iron powder. These samples, constituting the central cathode, were positioned concentrically in the interior of an external cathode machined from a tube of stainless steel AISI 310 (containing: 25% Cr, 16% Ni, 1.5% Mn, 1.5% Si, 0.03% C and the remainder Fe. Sintering was done at 1150 °C, for 120 min, utilizing radial spacings between the central and hollow cathodes of 3, 6 and 9 mm and a gas mixture of 80% Ar and 20% H2, with a flow rate of 5 cm³/s at a pressure of 3 Torr. The electric discharge was generated using a pulsed voltage power source, with a period of 200 mus. The radial spacing had only a slight influence on the quantity of atoms of alloying elements deposited and diffused on the surface of the sample. Analysis with a microprobe showed the presence of chrome (up to 4.0% and nickel (up to 3.0%, in at. % at the surface of the samples. This surface enrichment can be attributed to the mechanism of sputtering of the metallic atoms present in the external cathode, with the deposition of these elements on the sample surface and consequent diffusion within the sample.

  6. Magnetization curves for general cylindrical samples in a transverse ...

    Indian Academy of Sciences (India)

    The method uses the technique of conformal mapping to express the sample surface and the flux-fronts in terms of a set of coefficients that depend on a parameter. The flux-fronts are to be determined by solving a system of nonlinear ordinary differential equations for the coefficients. Retaining only a certain finite number of ...

  7. Nematic liquid crystal in a cylindrical sample: Theoretical analysis of the electrical response

    Science.gov (United States)

    Gomes, O. A.; Yednak, C. A. R.; da Silva, B. V. H. V.; Teixeira-Souza, R. T.

    2018-02-01

    The electrical responses of a nematic liquid crystal sample confined between two cylindrical surfaces are investigated in the framework of elastic continuum theory. The responses are the result of the molecular reorientation induced by both the applied electric field and the cylindrical geometry of the sample. The nematic medium is considered as a parallel RC circuit since the capacitance and the resistance are under the same difference of potential. The electrical properties, including the total electric current, are determined from the molecular reorientation of the director. The elastic anisotropy has been shown to influence substantially the profile of the electrical current, capacitance, and resistance characterizing the equivalent circuit for the medium.

  8. Calculation of the effective D-d neutron energy distribution incident on a cylindrical shell sample

    International Nuclear Information System (INIS)

    Gotoh, Hiroshi

    1977-07-01

    A method is proposed to calculate the effective energy distribution of neutrons incident on a cylindrical shell sample placed perpendicularly to the direction of the deuteron beam bombarding a deuterium metal target. The Monte Carlo method is used and the Fortran program is contained. (auth.)

  9. Enhancement of critical currents in superconducting cylindrical samples by circular magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A; Makiej, B

    1986-07-16

    Evidence is presented for an enhancement of the critical current by a circular magnetization in cylindrical samples of superconductors such as Sn, In, and In-Pb alloy containing 20 wt% ferromagnetic carbon steel particles. The mechanism of this phenomenon is explained.

  10. Studying hardness, workability and minimum bending radius in selectively laser-sintered Ti–6Al–4V alloy samples

    Science.gov (United States)

    Galkina, N. V.; Nosova, Y. A.; Balyakin, A. V.

    2018-03-01

    This research is relevant as it tries to improve the mechanical and service performance of the Ti–6Al–4V titanium alloy obtained by selective laser sintering. For that purpose, sintered samples were annealed at 750 and 850°C for an hour. Sintered and annealed samples were tested for hardness, workability and microstructure. It was found that incomplete annealing of selectively laser-sintered Ti–6Al–4V samples results in an insignificant reduction in hardness and ductility. Sintered and incompletely annealed samples had a hardness of 32..33 HRC, which is lower than the value of annealed parts specified in standards. Complete annealing at temperature 850°C reduces the hardness to 25 HRC and ductility by 15...20%. Incomplete annealing lowers the ductility factor from 0.08 to 0.06. Complete annealing lowers that value to 0.025. Complete annealing probably results in the embrittlement of sintered samples, perhaps due to their oxidation and hydrogenation in the air. Optical metallography showed lateral fractures in both sintered and annealed samples, which might be the reason why they had lower hardness and ductility.

  11. Effect of sintering pressure on structure and magnetic properties of Zn0.99Ni0.01O bulk samples synthesized under different pressures

    International Nuclear Information System (INIS)

    Wang, Yongqiang; Yuan, Chaosheng; Su, Lei; Wang, Zheng; Hao, Junhong; Ren, Yufen

    2015-01-01

    A series of Zn 0.99 Ni 0.01 O bulk samples were prepared by a coprecipitation method, and then sintered at 600 °C under various pressures from normal pressure(NP) to 3 GPa. The effects of sintering pressure (P S ) on the structure, morphology and magnetic properties of the doping samples were investigated in detail. The XRD and HRTEM results reveal that all samples are of single-phase hexagonal structure. Compared with the sample sintered at normal pressure, the lattice parameters a and c of the samples sintered at high pressures (HP) show a sharply decrease. With the increase of sintering pressure, the particle size gradually increases as well as the particles get closer to each other. At 300 K, the sample sintered at normal pressure shows a superparamagnetic-like behavior, while the samples sintered at high pressures display typical ferromagnetic behaviors. The saturation magnetization of the samples sintered at high pressures is three orders of magnitude larger than that of the one sintered at normal pressure. Our results reveal that an appropriate sintering pressure can tune the magnetic properties of Ni-doped ZnO system by changing the lattice parameters, particle size and inter-particle spacing, which may be helpful to the practical applications. - Highlights: • A series of Zn 0.99 Ni 0.01 O bulk samples were sintered in different pressures. • The lattice constants of the samples sintered at high pressure clearly decrease. • The particle size increases gradually with the increase of sintering pressure. • The samples sintered at different pressures show different magnetic behaviors. • Appropriate sintering pressure can tune the magnetic properties of Zn–Ni–O system

  12. Thermal neutron absorption cross-section for small samples (experiments in cylindrical geometry)

    International Nuclear Information System (INIS)

    Czubek, J.A.; Drozdowicz, K.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1982-01-01

    Measurement results for thermal neutron macroscopic absorption cross-sections Σsub(a)1 when applying the cylindrical sample-moderator system are presented. Experiments for liquid (water solutions of H 3 BO 3 ) and solid (crushed basalts) samples are reported. Solid samples have been saturated with the H 3 BO 3 ''poisoning'' solution. The accuracy obtained for the determination of the absorption cross-section of the solid material was σ(Σsub(ma))=(1.2+2.2) c.u. in the case when porosity was measured with the accuracy of σ(phi)=0.001+0.002. The dispersion of the Σsub(ma) data obtained for basalts (taken from different quarries) was higher than the accuracy of the measurement. All experimental data for the fundamental decay constants lambda 0 together with the whole information about the samples are given. (author)

  13. Flux pinning characteristics in cylindrical niobium samples used for superconducting radio frequency cavity fabrication

    Science.gov (United States)

    Dhavale, Asavari S.; Dhakal, Pashupati; Polyanskii, Anatolii A.; Ciovati, Gianluigi

    2012-06-01

    We present the results from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low-temperature baking as they are typically applied to SRF cavities. The magnetization data are analyzed using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples, favorable to lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  14. Flux pinning characteristics in cylindrical niobium samples used for superconducting radio frequency cavity fabrication

    International Nuclear Information System (INIS)

    Dhavale, Asavari S; Dhakal, Pashupati; Ciovati, Gianluigi; Polyanskii, Anatolii A

    2012-01-01

    We present the results from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low-temperature baking as they are typically applied to SRF cavities. The magnetization data are analyzed using a modified critical state model. The critical current density J c and pinning force F p are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples, favorable to lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities. (paper)

  15. Fusibility and sintering characteristics of ash

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  16. Attenuation correction for the collimated gamma ray assay of cylindrical samples

    International Nuclear Information System (INIS)

    Patra, Sabyasachi; Agarwal, Chhavi; Goswami, A.; Gathibandhe, M.

    2015-01-01

    The Hybrid Monte Carlo (HMC) method developed earlier for attenuation correction of non-collimated samples [Agarwal et al., 2008, Nucl. Instrum. Methods A 597, 198], has been extended to the segmented gamma ray assay of cylindrical samples. The method has been validated both experimentally and theoretically. For experimental validation, the results of HMC calculation have been compared with the experimentally obtained attenuation correction factors. The HMC attenuation correction factors have also been compared with the results obtained from literature available near-field and far-field formulae at two sample-to-detector distances (10.3 cm and 20.4 cm). The method has been found to be valid at all sample-to-detector distances over a wide range of transmittance. On the other hand, the literature available near-field and far-field formulae have been found to work over a limited range of sample-to detector distances and transmittances. The HMC method has been further extended to circular collimated geometries where analytical formula for attenuation correction does not exist. - Highlights: • Hybrid Monte Carlo method for attenuation correction developed for SGA system. • Method found to work for all sample-detector geometries for all transmittances. • The near-field formula applicable only after certain sample-detector distance. • The far-field formula applicable only for higher transmittances (>18%). • Hybrid Monte Carlo method further extended to circular collimated geometry

  17. Final Report on Initial Samples Supplied by LLNL for Task 3.3 Binder Burnout and Sintering Schedule Optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Walls, P

    1999-01-04

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Run 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A

  18. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Meid, Carla; Wischek, Janine; Bartsch, Marion [German Aerospace Center (DLR), Institute of Materials Research, 51147 Cologne (Germany); Okasinski, John; Almer, Jonathan [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Karlsson, Anette M. [Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (United States)

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  19. The Theory of the Reentrant Effect in Susceptibility of Cylindrical Mesoscopic Samples

    International Nuclear Information System (INIS)

    Gogadze, G.A.

    2006-01-01

    A theory has been developed to explain the anomalous behavior of the magnetic susceptibility of a normal metal-superconductor (NS) structure in weak magnetic fields at milli kelvin temperatures. The effect was discovered experimentally [A. C. Mota et al., Phys. Rev. Lett. 65, 1514 (1990)]. In cylindrical superconducting samples covered with a thin normal pure metal layer, the susceptibility exhibited a reentrant effect: it started to increase unexpectedly when the temperature was lowered below 100 mK. The effect was observed in mesoscopic NS structures when the N and S metals were in good electric contact. The theory proposed is essentially based on the properties of the Andreev levels in the normal metal. When the magnetic field (or temperature) changes, each of the Andreev levels coincides from time to time with the chemical potential of the metal. As a result, the state of the NS structure experiences strong degeneracy, and the quasiparticle density of states exhibits resonance spikes. This generates a large paramagnetic contribution to the susceptibility, which adds to the diamagnetic contribution, thus leading to the reentrant effect. The explanation proposed was obtained within the model of free electrons. The theory provides a good description of the experimental results

  20. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  1. Final report on initial samples supplied by LLNL for task 3.3 binder burnout and sintering schedule optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Walls, P

    1999-01-04

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Run 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089 mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A

  2. NDT oriented equipment for observing the Doppler broadening of radiation produced by the annihilation of positrons in cylindrical samples

    International Nuclear Information System (INIS)

    Coleman, C.F.; Smith, F.A.; Hughes, A.E.

    1976-11-01

    This report describes the development of equipment for measuring annihilation line broadening in cylindrical samples a few millimetres in diameter, suitable for use in fatigue testing programs. A detached positron source is employed, allowing the samples to be scanned both longitudinally (resolution approximately 1 cm) and in azimuth. Some of the advantages of and problems associated with this configuration are discussed. The statistical precision of a number of parameters

  3. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  4. Influence of sintering parameters in the ferroelectric properties os strontium bismuth tantalate samples obtained by oxide mixture

    International Nuclear Information System (INIS)

    Souza, R.R. de; Pereira, A.S.; Sousa, V.C.; Egea, J.R.J.

    2012-01-01

    The family of compounds layered-type perovskite, know as Aurivilius presents great alternative not only by the absence of lead in the composition, but because the polarization retention, replacing PZT in FeRAM devices. The strontium bismuth tantalate (SrBi 2 Ta 2 O 9 ) or SBT is ferroelectric material that has attracted considerable interest, since it has high fatigue resistance, supporting high hysteresis loops, with the change in polarization.Checking polarization and depolarization currents stimulated by temperature it is possible to obtain, for example, information about the nature of charges and about the activation energy for the process of dielectric relaxation. For analysis of ferroelectric properties of this compound, it is essential to obtain specimens with a relative density around 95%. Thus, it is important the optimization of the sintering process in order to obtain a ceramic body with a high densification. The influence of sintering parameters to obtain SrBi 2 Ta 2 O 9 in the polarization properties and in the microstructure of sintered samples was investigated by thermostimulated currents and electronic microscopy, respectively. Results show that variation of these parameters may cause changes in the ferroelectric properties of the material. (author)

  5. Material failure and inertial instabilities in a shocked imploded cylindrical aluminum sample

    International Nuclear Information System (INIS)

    Chandler, E.A.; Egan, P.; Stokes, J.

    1998-01-01

    The authors have used the LANL Pegasus Z-pinch facility to drive a thin cylindrically-convergent Al liner to ∼3 km/s to launch ∼30 GPa shocks in a 3-mm thick 10-mm-i.d. aluminum cylinder whose interior is filled with 1 atm Xe gas. The subsequent material motion of the metal and gas is diagnosed with both radial and axial flash x-rays and with optical framing cameras. Instabilities are seeded by implanting wires of assorted higher density metal parallel to the cylinder axis. The authors have done two shots, varying the target from Al 1100-O to Al 6061-T6 to explore the effect of changing material strength. The images show the spallation failure of the metal-gas interface on shock release and the effect of the seeded instabilities

  6. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling

    International Nuclear Information System (INIS)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P.; Universidade Federal do Rio Grande do Norte

    2010-01-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  7. Studies of ZrO2-Y2O3 ceramics properties sintered in conventional and microwave oven

    International Nuclear Information System (INIS)

    Gelfuso, M.V.; Capistrano, D.; Thomazini, D.; Grzebielucka, E.C.; Chinelatto, A.L.; Chinelatto, A.S.A.

    2009-01-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  8. Improvements to the Chebyshev expansion of attenuation correction factors for cylindrical samples

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Carpenter, J.M.

    1990-01-01

    The accuracy of the Chebyshev expansion coefficients used for the calculation of attenuation correction factors for cylinderical samples has been improved. An increased order of expansion allows the method to be useful over a greater range of attenuation. It is shown that many of these coefficients are exactly zero, others are rational numbers, and others are rational frations of π -1 . The assumptions of Sears in his asymptotic expression of the attenuation correction factor are also examined. (orig.)

  9. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    OpenAIRE

    Barbosa, C. S.; Hanai, J.B.

    2009-01-01

    This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm²). The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and str...

  10. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    Directory of Open Access Journals (Sweden)

    C. S. Barbosa

    Full Text Available This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm². The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and strain analyses were made based on concrete’s modulus of elasticity obtained in the sample tests as well as on measured strain in the blocks’ face-shells and webs. A peculiar stress-strain analysis, based on the superposition of effects, provided an estimation of the block load capacity based on its deformations. In addition, a tentative method to preview the block deformability from the concrete mechanical properties is described and tested. This analysis is a part of a broader research that aims to support a detailed structural analysis of blocks, prisms and masonry constructions.

  11. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  12. Electrokinetic flows in cylindrical and slit capillaries in clays: from pore scale to sample scale

    International Nuclear Information System (INIS)

    Obliger, Amael; Jardat, Marie; Rotenberg, Benjamin; Duvail, Magali; Bekri, Samir; Coelho, Daniel

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Transport on the nanometer scale of clay interlayers and on the macroscopic sample scale can be well characterized experimentally, using either X-ray or neutron diffraction and diffusion on the one hand, and solute diffusion experiments on the other hand. Current imaging techniques do not allow to provide a direct picture of the pore network on the scale of several nanometers to several micrometers. The lack of knowledge of the pore network structure on intermediate scales requires to use numerical models of analog porous media. We attempt to describe the ionic transport in meso (diam. ∼ 10-50 nm) and macro-porosity (diam. > 50 nm) (due to the organization of clays particles) with a multi-scale approach provided by the Pore Network Model (PNM) that takes into consideration the topology of the media. Such an approach requires to know the transport coefficients of solvent and solutes in a throat connecting two pores, modelled as a capillary. The challenge in the case of clays, compared to the usual PNM methods, is to capture the effect of the surface charge of clay minerals on the transport of ions and water, under the effect of macroscopic pressure, salt concentration and electric potential gradients. Solvent and ionic transports are governed by the Stokes, the Nernst-Planck and the Poisson- Boltzmann equations. This set of equations can be solved analytically using the linearized form of the latter in order to get an approximation of the electro-osmotic speed and the ionic density profile. At variant with most previous works, we consider the case of a fixed surface charge instead of fixed surface potential. In addition to the Nernst-Einstein and chemical flows of solute, we calculated analytically the Poiseuille flow of solutes and the electro-osmotic flow of solvent and solutes. When the linearization is not possible, one must use numerical results for transport coefficients

  13. Theoretical and experimental drying of a cylindrical sample by applying hot air and infrared radiation in an inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    B. Honarvar

    2012-06-01

    Full Text Available Drying of a cylindrical sample in a fluidized bed dryer containing inert particles was studied. For this purpose, a pilot-scaled fluidized bed dryer was constructed in which two different heat sources, hot air and infrared radiation were applied, and pieces of carrot were chosen as test samples. The heat transfer coefficient for cylindrical objects in a fluidized bed was also measured. The heat absorption coefficient for carrot was studied. The absorption coefficient can be computed by dividing the absorbed heat by the carrot to the heat absorbed for the water and black ink. In this regard, absorbed heat values by the carrot, water and black ink were used A mathematical model was proposed based on the mass and heat transfer phenomena within the drying sample. The results obtained by the proposed model were in favorable agreement with the experimental data.

  14. Influence of sintering atmospheres on the aluminium sintering characteristics

    International Nuclear Information System (INIS)

    Mintzer, S.; Bermudez Belkys, S.

    1993-01-01

    This paper describes the aluminium powder (Al) cool compacted (at 95% from theoretical density) which was sintered at 903 K during 4 hours at different atmospheres; oxidizing (air), inert Argon (Ar), Nitrogen (N) and high vacuum. The results obtained show: a) porosity measurements; greater porosity when sintering in Ar and air. b) Metallographic and Scanning observations: many fine pores (< 1 μm) and pore lines distributed at random, at air sintering and greater pores distributed preferentially near the surface, in Ar and N atmospheres. c) Dimensional changes: tendency to contraction of the samples at N and vacuum sintering and expansion in Ar or air. d) Mechanical properties: greater strength and fluence stresses at air and N sintering. The analysis of the results is performed considering sintering modes in presence of an oxide layer and dropped inert gases. (Author)

  15. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  16. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

    Directory of Open Access Journals (Sweden)

    Amir Mostafaei

    2017-02-01

    Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

  17. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  18. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  19. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  20. A semi-empirical approach to analyze the activities of cylindrical radioactive samples using gamma energies from 185 to 1764 keV.

    Science.gov (United States)

    Huy, Ngo Quang; Binh, Do Quang

    2014-12-01

    This work suggests a method for determining the activities of cylindrical radioactive samples. The self-attenuation factor was applied for providing the self-absorption correction of gamma rays in the sample material. The experimental measurement of a (238)U reference sample and the calculation using the MCNP5 code allow obtaining the semi-empirical formulae of detecting efficiencies for the gamma energies ranged from 185 to 1764keV. These formulae were used to determine the activities of the (238)U, (226)Ra, (232)Th, (137)Cs and (40)K nuclides in the IAEA RGU-1, IAEA-434, IAEA RGTh-1, IAEA-152 and IAEA RGK-1 radioactive standards. The coincidence summing corrections for gamma rays in the (238)U and (232)Th series were applied. The activities obtained in this work were in good agreement with the reference values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characterization of sintered samples of La/Sr/Cu/O by X-ray diffraction, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Gonzalez, C.O. de; Polla, Griselda; Manghi, Estela

    1987-01-01

    Samples of La/Sr/Cu/O were sinterized by solid state reaction starting from a nominal composition of La 1 .8, Sr 0 .2, CuO 4 . They presented superconductive properties with T c = 40.9 K (onset) and δ T c = 17 K. Two phases were observed by X-ray diffraction and the more abundant was the tetragonal phase. The mean grain size was 1-5 μm. The X-ray photoelectron spectroscopy measurements were carried out using Mg kα (1486.6 eV) as incident radiation. Sample temperature was varied between -180 deg C and 420 deg C, approximately. The temperature variation produces a change in the atomic concentration of the surface components. Deconvolutions of the O 1s peaks show three components with binding energies (B.E.). The decomposition of Cu 2p 3 /2 peaks presents two components corresponding to Cu + and Cu 2+ . (Author) [es

  2. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  3. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling; Sinterizacao a plasma de aco ferritico reforcado com carbeto de niobio preparado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Materiais Ceramicos e Metais Especiais; Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Processamento de Materiais por Plasma

    2010-07-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  4. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  5. Studies of ZrO{sub 2}-Y{sub 2}O{sub 3} ceramics properties sintered in conventional and microwave oven; Estudos das propriedades de ceramicas de ZrO{sub 2}-Y{sub 2}O{sub 3} sinterizadas em forno convencional de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Gelfuso, M V; Capistrano, D; Thomazini, D [Universidade de Fortaleza (UNIFOR), CE (Brazil); Grzebielucka, E C; Chinelatto, A L; Chinelatto, A S.A. [Universidade Estadual de Ponta Grossa (DEMa/UFPG), PR (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  6. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  7. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  8. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  9. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  10. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  11. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  12. Study of the impact of treatment modes on hardness, deformability and microstructure of VT6 (Ti-6Al-4V and VV751P (Ni-15Co-10Cr alloy samples after selective laser sintering

    Directory of Open Access Journals (Sweden)

    Galkina Natalia V.

    2017-01-01

    Full Text Available Selective laser sintering is an advanced method for obtaining sophisticated products and assembly permanent joints. This is particularly relevant for heat resistant alloys employed in aviation equipment. Heat treatment modes traditionally applied to the products are chosen in accordance with conditions of further product operation. In this paper there are given the results of experimental study of hardness, deformability and microstructure of samples after selective laser sintering of Ni-15Co-10Cr and Ti–6Al–4V alloy powders. It has been determined that Ni-15Co-10Cr alloy ageing increases the hardness and deformability of samples; these characteristics decrease if the ageing lasts for 9-19 hours. Annealing of Ti–6Al–4V alloy samples results in preserving original hardness. After complete annealing, the hardness of samples decreases from 32 … 33HRC to 24 … 26HRC. Microstructural studies showed that there are cracks between layers in the surface of Ti–6Al–4V alloy samples after sintering and not complete annealing. After full annealing, cracks' width and length decreased. Cracks in Ni-15Co-10Cr alloy samples' microstructure were not detected.

  13. Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method

    Directory of Open Access Journals (Sweden)

    Marjan Darabi

    2018-01-01

    Full Text Available In this research, copper (Cu-carbon nanotubes (CNTs nanocomposites were synthesized with different weight percentages of CNTs by double pressing double sintering (DPDS method as well as conventional sintering method. A planetary ball mill was used to disperse CNTs in Cu matrix. The milled powders were first cold pressed to 450 MPa in a uniaxial stainless-steel die with cylindrical compacts (diameter: 12 mm and height: 5 mm. The effect of CNTs content and the DPDS method on the properties of the nanocomposites were investigated. The microstructure and phase analysis of Cu-CNTs nanocomposite samples were studied by FESEM and X-Ray Diffraction. The electrical conductivity of nanocomposites was measured and compared to both sintering methods. Mechanical properties of Cu-CNTs nanocomposites were characterized using bending strength and micro-hardness measurements. Enhancements of about 32% in bending strength, 31.6% in hardness and 19.5% in electrical conductivity of Cu-1 wt.% CNTs nanocomposite synthesized by DPDS method were observed as compared to Cu-1 wt.% CNTs nanocomposites fabricated under the similar condition by a conventional sintering process.

  14. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  15. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  16. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  17. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  18. Cylindrical acoustic levitator/concentrator

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  19. Dosimetric and thermoluminescent characteristics of sintered samples based on Li{sub 2}OAl{sub 2}O{sub 3}nSiO{sub 2} systems

    Energy Technology Data Exchange (ETDEWEB)

    Cogollo P, R.; Salcedo Q, J. [Universidad de Cordoba, Materials and Applied Physics Group, Carrera 6 No. 76-103, Monteria, Cordoba (Colombia); Gutierrez F, O., E-mail: rafaelcogollo@correo.unicordoba.edu.co [Metropolitan Technological Institute, Alquimia Group, Calle 54 No. 30-01, Medellin (Colombia)

    2013-10-01

    This work describes the thermoluminescent (Tl) characteristics of lithium aluminosilicates, Li{sub 2}OAl{sub 2}O{sub 3}nSiO{sub 2}, for its possible use as Tl dosimeter for low doses. The sinterized tablets of Li{sub 2}OAl{sub 2}O{sub 3}nSiO{sub 2} were characterized by means of X-ray diffraction (XRD), and irradiated at different doses using a Theratron 780 C-{sup 60}Co unit in air at room temperature. The Rasheedy's technique was used for the kinetic trap parameters determination. The XRD results show a mixture of two phases of 64% {beta}-spodumene and 36% {beta}-eucryptite in the sinterized tablets. Tl analysis indicates that in these systems, recombination processes prevail, and that these systems can be used successfully as Tl dosimeters for therapeutic dose ranges. (Author)

  20. Properties of millimetre wave sintered and oxygenated YBa2Cu3Ox bulk material

    International Nuclear Information System (INIS)

    Hunyar, C.

    1999-12-01

    High temperature superconductors are ceramic materials whose properties strongly depend on the techniques used for their production. The successful use of microwaves for the sintering of other oxidic ceramics suggests the examination of the advantages and disadvantages of that production technique for superconductors. For this purpose pellets of commercially available YBa 2 Cu 3 O x powder from the Solvay company were pressed and sintered by millimetre wave heating (30 GHz, generated in a gyrotron). In various experiments the sintering temperatures were varied between 920 C and 990 C, and the holding times between 15 min and 240 min. The densities of the pellets were measured by the Archimedes method and the material structure was examined with an optical microscope. A strong densification from 86 to 93% of theoretical density could be observed within 30 min at a holding temperature of 960 C. With sintering temperatures above 960 C no significant increase in density occurred. At 950 C, only minor grain growth could be observed, which increased up to 960 C temperature. At higher temperatures a mixture of small grains and crystallites of about 150 μm size established itself. CuO already present in the original powder started to melt along the grain boundaries where it acts as a limiting factor for grain growth. With millimetre wave sintering the same material densities could be achieved in less than one third of the time needed for conventional sintering processes. In addition the effects of millimetre wave heating on the oxygen diffusion in YBCO were investigated with several pairs of identical samples. The pairs were deoxygenated and subsequently oxygenated in an atmosphere of pure O 2 in a conventional tube furnace and by millimetre wave heating respectively. To compare the oxygen concentration of the samples, their specific surface resistance at room temperature, which correlates with the oxygen content, was measured in a cylindrical copper resonator with

  1. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered .... product, could be due to oxidation of SiC, e.g. 50% weight gain of a green SiC sample ... because, the charging current is 90° advanced in phase, ideally, with respect to the ...

  2. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  3. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part II, Fabrication of sintered pressed samples UO{sub 2} (Final report); Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, II Deo - Dobijanje sinterovanih ispresaka UO{sub 2} (zavrsni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Ristic, M M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Procedure for fabrication of sintered ceramic UO{sub 2} pellets was developed in the Department of reactor materials. The tasks described in this report deal with design and construction of laboratory equipment for treatment of ceramic materials, and fabrication of UO{sub 2} pellets. The procedure was based on cold pressing of appropriately prepared powder and sintering of the of thus obtained pressed samples.

  4. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  5. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  6. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  7. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  8. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  10. Kinetics of UO2 sintering

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    Detailed conclusions related to the UO 2 sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO 2 sintering process

  11. Translucence in dental prosthesis based on zirconia ceramics: effect of the sintering parameters

    International Nuclear Information System (INIS)

    Santos, C.

    2011-01-01

    In this work the translucence of Zirconia dental ceramics was evaluated as function of sintering conditions (temperature and isothermal holding time). Samples with 15x15x1mm, were sintered at 1450 to 1600 deg C, with holding of 2h or 4h. Sintered samples were characterized by relative density, crystalline phases and microstructural aspects. Full density was obtained in samples sintered at 1530 and 1600 deg C, which presented higher grain sizes. Na increasing of translucence was observed in samples sintered at 1530 and 1600, correlating these properties with increasing of density and grain size of the samples. (author)

  12. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  13. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  14. Sintering Theory and Practice

    Science.gov (United States)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal

  15. Sintering unalloyed titanium in DC electrical abnormal glow discharge

    Directory of Open Access Journals (Sweden)

    Allan Seeber

    2010-03-01

    Full Text Available Powder metallurgy is widely used in the manufacture of components that have complex geometry. The good dimensional control, reduction in manufacturing steps and operating costs which has favored the use of this technique for manufacturing of titanium alloys components. However, the high affinity of this material with oxygen hinders strongly the sintering process. For this, the sintering associated with plasma technology can be considered an alternative technique for the processing of this material. The strict control of sintering atmosphere performed at low pressures and the reactive species present in the plasma environment can help to improve the sintering of this material. The results presented in this paper show a good correlation between the parameters used for the compaction of the samples and the microstructure develop during the plasma sintering of samples. The microstructure of the plasma assisted samples is also affected by the particular configuration used in the plasma reactor.

  16. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  17. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  19. Magnetic flux motion in (PrxY1−xBa2Cu3O7−δ polycrystal samples sintered in Ar and O2 atmospheres

    Directory of Open Access Journals (Sweden)

    S. Favre

    2016-09-01

    Full Text Available We present a comparative study of the magnetic flux motion in ceramic pellets made of (PrxY1−xBa2Cu3O7−δ as a function of their composition and morphology. Samples produced in Ar or O2 atmosphere present noticeable differences in their magnetic response that we explain in terms of their structural parameters. The material’s parameters that most influence the flux dynamics are morphology and oxygen content, that change dramatically with the sintering atmosphere. Moderate changes are also observed as a function of the Pr content. Magnetic pinning efficiency is discussed in terms of intergranular couplings and effective activation energies, estimated from AC-susceptibility and magnetoresistance measurements.

  20. Sintering of composite

    International Nuclear Information System (INIS)

    Bordia, R.K.; Scherer, G.W.

    1988-01-01

    Several constitutive laws have been used in the literature to predict the response of sintering bodies under external and internal stress fields. These analyses are based on the assumptions of linear and isotropic behavior. The authors provide a critical examination of these equations and show that some of the available constitutive laws predict a negative Poisson's ratio. These laws have been used to analyze sintering of ceramic matrix composites with rigid inclusions and predict large values of the internal stresses and significant retardation of the densification of composites. Since a negative value of Poisson's ratio has never been observed in sinter - forging experiments, the authors conclude that either the stresses are small (as predicted by the constitutive laws with positive Poisson's ratio) or the basic assumption of linearity and isotropy used in all the analyses is incorrect. Finally, the authors discuss some phenomena that could be important in understanding the densification of ceramic matrix composites

  1. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  2. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    Science.gov (United States)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  3. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi; Lin, Tao, E-mail: lintao@ustb.edu.cn; He, Xinbo; Shao, Huiping; Zheng, Jianshu; Qu, Xuanhui

    2015-11-25

    In the paper, the TiC −50 wt.% high manganese steel cermet was made with different sintering processes including vacuum sintering, hot pressing, microwave sintering and spark plasma sintering (SPS). The microstructure, porosity and fracture morphology of the samples were analyzed with scanning electron microscopy (SEM). Phase analysis was carried out using X-ray diffraction (XRD). The density, hardness, transverse rupture strength (TRS) and wear resistance were investigated for the effect of the sintering processes. The results showed that the core–shell structure was not clearly observed for the TiC particles in microstructures and the high manganese steel matrix is BCC structure. Hot pressing, microwave sintering and SPS are useful processes for densification of the cermet. Nearly full density and higher hardness can be reached by these three processes at a lower sintering temperature and in a shorter sintering time. However, higher TRS can be reached by means of alloying completely in a longer sintering time, for example vacuum sintering. Pre-sintering in a long sintering time at a lower sintering temperature is also useful for improving the TRS. Finally, vacuum sintering is an effective process for producing this composite with the lowest cost in the mass production. - Highlights: • TiC-high manganese steel cermets were prepared by four sintering processes. • The core–shell structure was not clearly observed for the TiC particles in microstructures. • Th high manganese steel matrix is BCC structure instead of FCC structure. • Pre-sintering before microwave sintering is also useful for improving the TRS. • Vacuum sintering can be effective way for prepare this cermet in mass production.

  4. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  5. Comparison of Ti(C,N)-based cermets processed by hot-pressing sintering and conventional pressureless sintering

    International Nuclear Information System (INIS)

    Xu, Qingzhong; Ai, Xing; Zhao, Jun; Qin, Weizhen; Wang, Yintao; Gong, Feng

    2015-01-01

    Highlights: • The HP sintered Ti(C,N)-based cermets exhibit high hardness with fine grain size. • The PLS sintered cermets possess high mechanical properties with low porosity. • The applied pressure can rearrange particles and contribute to grain refinement. • The heating rate can greatly affect the solid and liquid phase sintering of cermets. - Abstract: A suitable sintering method is important to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were fabricated by hot-pressing sintering (HP) and conventional pressureless sintering (PLS) technology, respectively, to investigate the influence of different sintering methods on the microstructure and mechanical properties of cermets materials. The microstructure, fracture morphology, indention cracks and phase composition were observed and detected using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K IC ) were also measured. The results reveal that all of the Ti(C,N)-based cermets exhibit core–rim microstructures with black cores, white cores and grey rims embedded into metal binder phases. The grain size of the samples fabricated by HP is much finer and the structure is more compact than those fabricated by PLS, while there exist pores in the HP sintered samples. The sintering process has no influence on the phase composition of cermets, but affects the phase content and crystallinity. The samples fabricated by PLS present higher transverse rupture strength, fracture toughness and density than samples fabricated by HP. However, the HP sintered samples possess a higher hardness

  6. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  7. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  8. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    Science.gov (United States)

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  9. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  10. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  11. Synthesis, Sintering, and Electrical Properties of BaCe0.9−xZrxY0.1O3−δ

    DEFF Research Database (Denmark)

    Ricote, S.; Caboche, G.; Estournes, C.

    2008-01-01

    BaCe0.9-xZrxY0.1O3-delta powders were synthesized by a solid-state reaction. Different contents of cerium and zirconium were studied. Pellets were sintered using either conventional sintering in air at 1700 degrees C or the Spark Plasma Sintering (SPS) technique. The density of the samples sintered...

  12. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  13. Sintering of Mo2FeB2 based cermet and its layered composites containing Sic fibers

    International Nuclear Information System (INIS)

    Rao, D.; Upadhyaya, G.S.

    2001-01-01

    In the present investigation Mo 2 FeB 2 based cermet (KH-C50) and its composites containing SiC fibers were sintered in two different atmospheres namely hydrogen and vacuum. It was observed that vacuum sintered samples have remarkably lower porosities than the hydrogen sintered ones. Two different sintering cycles were employed for each of the atmosphere and properties of the material were studied. Introduction of fibers in the composite imparts shrinkage anisotropy during sintering. Fiber containing cermets have rather poor densification and transverse rupture strength (TRS). TRS, macro and microhardness, and boride grain size measurements were also carried out for the cermets sintered in different atmospheres. (author)

  14. Some aspects of barreling in sintered plain carbon steel powder metallurgy preforms during cold upsetting

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2012-04-01

    Full Text Available The present research establishes a relationship of bulged diameter with densification and hydrostatic stress in forming of sintered iron (Fe powder metallurgy preforms cold upset under two different frictional conditions, namely, nil/no and graphite lubricant condition. Sintered plain carbon steel cylindrical preforms with carbon (C contents of 0, 0.35, 0.75 and 1.1% with constant initial theoretical density of 84% and aspect ratio of 0.4 and 0.6 were prepared using a suitable die-set assembly on a 1 MN capacity hydraulic press and sintered for 90 minutes at 1200 °C. Each sintered preform was cold upset under two different frictional constraints. It is seen that the degree of bulging reduces with reducing frictional constraints at the die contact surface. Further, it is found that the bulging ratio changed as a function of relative density and hydrostatic stress, respectively, according to the power law equations.

  15. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  16. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  17. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  18. Photoacoustic spectroscopy investigation of sintered zinc-tin-oxide ceramics

    Directory of Open Access Journals (Sweden)

    Ivetić Tamara B.

    2007-01-01

    Full Text Available In this paper the changes that occurred in differently activated ZnO-SnO2 and sintered samples were investigated using photoacoustic spectroscopy. ZnO and SnO2 powders, mixed in the molar ratio 2:1, were mechanically activated in a planetary ball mill for 10-160 min. The mixtures were pres­sed and isothermally sintered at 1300°C for two hours. X-ray diffraction analysis of the obtained sintered samples was performed in order to investigate changes of the phase composition and confirmed only the presence of a pure zinc stannate (Zn2SnO4 phase in all the sintered samples as a result of the solid state reaction and reaction sintering between the starting ZnO and SnO2 powders. The microstructure of the sintered sam­ples was examined by scanning electron microscopy and showed that mechanical activation leads to the formation of a structure with reduced particle size which accelerates spinel formation. Grain growth of the spinel phase slows down the densification process and together with the agglomerates formed during mechanical activation causes the appearance of a porous microstructure. The photoacoustic (PA phase and amplitude spectra of the sintered samples were recorded as a function of the chopped frequency of the laser beam used (red laser with a power of 25 mW, λ=632 nm in a thermal-transmission detection configuration. PA experimental data were analyzed using the Rosenzweig-Gersho thermal-piston model, which enabled determination of the thermal diffusivity, ZT (m2s-1, diffusion coefficient of the minority free carriers D (m2s-1 and the optical absorption coefficient (m-1. The detected differences of the measured thermal-electrical properties of the obtained Zn2SnO4 ceramics indicate changes in the material induced by the different preparation procedure of the starting powders before the sintering process.

  19. Mechanisms of sintering

    International Nuclear Information System (INIS)

    Mohan, Ashok; Soni, N.C.; Moorthy, V.K.

    1980-01-01

    The basic mechanisms by which the material moves during sintering have not only held a strange fascination but are also very important in determining the properties of the end product. Kuczynski's exponent method has been subsequently refined by several schools to make it increasingly reliable. There is now a fairly good understanding of mechanisms in some of the materials. However in others the issue is complicated by their basic nature. The problems of ambiguity in criterion and that of more than one mechanism being simultaneously operative have been tackled with dexterity by Ashby for drawing sintering mechanism diagrams. The method has been modified to give Relative Contribution Diagrams (RCD). These yield additional information and have been used for analysis. The main criticism against this is that it uses a very large number of rate equations and material properties, which can communicate their inaccuracies to the diagram. A case study of UO 2 was undertaken and it has been shown quantitatively that inaccuracies in a smaller number of properties only affect the diagrams to any significant extent. (auth.)

  20. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    International Nuclear Information System (INIS)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-01-01

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws

  1. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  2. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    Science.gov (United States)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-03-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.

  3. Zone refining of sintered, microwave-derived YBCO superconductors

    International Nuclear Information System (INIS)

    Warrier, K.G.K.; Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Balachandran, U.

    1993-07-01

    Post-sintering treatments such as zone melting under thermal gradient has been conducted on sintered YBCO tape cast films. YBCO precursor powder was derived through decomposition of a mixture of nitrates of cations in a microwave oven for ∼4 min. The resulting powder was characterized and made into thin sheets by tape casting and then sintered at 945 C for 5 h. The sintered tapes were subjected to repeated zone refining operations at relatively high speeds of ∼30 mm/h. A microstructure having uniformly oriented grains in the a-b plane throughout the bulk of the sample was obtained by three repeated zone refining operations. Details of precursor preparation, microwave processing and its advantages, zone refining conditions, and microstructural features are presented in this paper

  4. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  5. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  6. Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics

    International Nuclear Information System (INIS)

    Wang, Siwei; Zhang, Lei; Zhang, Lingling; Brinkman, Kyle; Chen, Fanglin

    2013-01-01

    Ultra-fine grained dense BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) ceramics have been successfully prepared via a two-step sintering method. Co-precipitation method has been adopted to prepare nano-sized BZCYYb precursors with an average particle size of 30 nm. By controlling the sintering profile, an average grain size of 184 nm was obtained for dense BZCYYb ceramics via the two-step sintering method, compared to 445 nm for the conventional sintered samples. The two-step sintered BZCYYb samples showed less impurity and an enhanced electrical conductivity compared with the conventional sintered ones. Further, the two-step sintering method was applied to fabricate anode supported solid oxide fuel cells (SOFCs) using BZCYYb as the electrolyte, resulting in dense ultrafine-grained electrolyte membranes and porous anode substrates with fine particles. Due to the reduced ohmic as well as polarization resistances, the maximum power output of the cells fabricated from the two-step sintering method reached 349 mW m −2 at 700 °C, significantly improved from 172 mW cm −2 for the conventional sintered cells, suggesting that two-step sintering method is very promising for optimizing the microstructure and thus enhancing the electrochemical performances for barium cerate based proton-conducting SOFCs.

  7. Shearfree cylindrical gravitational collapse

    International Nuclear Information System (INIS)

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-01-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  8. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  9. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  10. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  11. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  12. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  13. SINTERING EFFECTS ON THE DENSIFICATION OF NANOCRYSTALLINE HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    M. Amiriyan

    2011-06-01

    Full Text Available The effects of sintering profiles on the densification behaviour of synthesized nanocrystalline hydroxyapatite (HA powder were investigated in terms of phase stability and mechanical properties. A wet chemical precipitation method was successfully employed to synthesize a high purity and single phase HA powder. Green HA compacts were prepared and subjected to sintering in air atmosphere over a temperature range of 700° C to 1300° C. In this study two different holding times were compared, i.e. 1 minute versus the standard 120 minutes. The results revealed that the 1 minute holding time sintering profile was indeed effective in producing a HA body with high density of 98% theoretical when sintered at 1200° C. High mechanical properties such as fracture toughness of 1.41 MPa.m1/2 and hardness of 9.5 GPa were also measured for HA samples sintered under this profile. Additionally, XRD analysis indicated that decomposition of the HA phase during sintering at high temperatures was suppressed.

  14. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-01-01

    Highlights: • ReB 2 -type hexagonal OsB 2 powder has been densified by spark plasma sintering. • The sintered OsB 2 contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB 2 sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB 2 -type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics

  15. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  16. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2017-12-01

    Full Text Available This study discusses the potentials of spark plasma sintering (SPS integrated with high temperature process that can enable sintering of SiC/Cf composites without any sintering aids. The random distribution of carbon fibers was obtained through mixing composite components in ethanol by using a shaker mill for 10 min. The corresponding sintering process was carried out at 1900 and 2200 °C with 50 MPa pressure applied at maximum temperature. The results showed that 89 ± 0.9 and 97 ± 0.8% of the theoretical density can be obtained for sintering temperatures of 1900 and 2200 °C, respectively. The densification curves were plotted to monitor sintering behavior with punch displacement changes. The appropriate bonding between SiC particles and carbon fibers was detected using FE-SEM for sample which was sintered at 2200 °C. The clear maximum in hardness (2992 ± 33 Vickers, bending strength (427 ± 26 MPa and fracture toughness (4.2 ± 0.3 MPa m1/2 were identified for sample sintered at 2200 °C. XRD investigations supposed that SiC and carbon were the only crystalline phases in both sintered samples.

  17. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  18. The Influence of Spark Plasma Sintering Temperature on the Microstructure and the Thermoelectric Properties of Al, Ga dually-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2012-01-01

    Al, Ga dually-doped ZnO was prepared by spark plasma sintering with different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples with a sintering temperature above 1223K obtained higher relative densities...

  19. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Directory of Open Access Journals (Sweden)

    Jeon Byoungjun

    2015-06-01

    Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.

  20. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  1. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is an innovative sintering process based on the principle of electrical Joule heating. The electrical current is flowing through the powder compact, which is under mechanical pressure. As compared to conventional sintering [1] and spark plasma sintering [2], the main...... advantages are the decreased sintering time and high relative density [3]. Near net-shape components can be manufactured and post-removal processing is limited to surface polishing. The present work is focused on analysing the influence of the main process parameters, namely compacting pressure, sintering...... time and electrical current density, on the final density of a disc sample made from commercially pure titanium powder. The maximum achieved relative density was 94% of the bulk density of pure titanium. The density estimation was carried out by using both Archimedes’ and 3D scanning....

  2. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    Science.gov (United States)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  3. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is a sintering process based on the resistance heating principle, which makes it faster than conventional sintering. The process is investigated as a function of the main process parameters, namely compacting pressure, electrical current density and sintering time....... The present work is focused on analysing the influence of these process parameters on the final density of a disc sample made from commercially pure titanium powder. Applying the design of experiments (DoE) approach, the electrical current was seen to be of largest influence. The maximum obtained density...

  4. The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2013-01-01

    ZnO dual-doped with Al and Ga was prepared by spark plasma sintering using different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples obtained with sintering temperature above 1223 K had higher relative...... of ZnO particles and microstructure evolution at different sintering temperatures were investigated by simulation of the self-Joule-heating effect of the individual particles....

  5. The Effects of Wear upon the Axial Profile of a Grinding Wheel in the Construction of Innovative Grinding Wheels for Internal Cylindrical Grinding

    OpenAIRE

    Nadolny, K.; Słowiński, B.

    2011-01-01

    The article describes the effects of wear upon the axial profile of a grinding wheel in the axial cylindrical grinding processes. This mechanism was used to develop a grinding wheel with zone diversified structure made of microcrystalline sintered corundum abrasive grains and vitrifies bond. Such a grinding wheel is characterized by the conical rough grinding zone that is made by grains of a relatively large size, and a cylindrical finish grinding zone with grains of a smaller size and can be...

  6. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  7. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...

  8. FDTD simulation of microwave sintering of ceramics in multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, M.F.; Smith, R.L.; Andrade, A.O.M.; Walsh, L.M. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Electrical Engineering); Kimrey, H. Jr. (Oak Ridge National Lab., TN (United States))

    1994-05-01

    At present, various aspects of the sintering process such as preparation of sample sizes and shapes, types of insulations, and the desirability of including a process stimulus such as SiC rods are considered forms of art and highly dependent on human expertise. The simulation of realistic sintering experiments in a multimode cavity may provide an improved understanding of critical parameters involved and allow for the development of guidelines towards the optimization of the sintering process. In this paper, the authors utilize the FDTD technique to model various geometrical arrangements and material compatibility aspects in multimode microwave cavities and to simulate realistic sintering experiments. The FDTD procedure starts with the simulation of a field distribution in multimode microwave cavities that resembles a set of measured data using liquid crystal sheets. Also included in the simulation is the waveguide feed as well as a ceramic loading plate placed at the base of the cavity. The FDTD simulation thus provides realistic representation of a typical sintering experiment. Aspects that have been successfully simulated include the effects of various types of insulation, the role of SiC rods on the uniformity of the resulting microwave fields, and the possible shielding effects that may result from excessive use of SiC. These results as well as others showing the electromagnetic fields and power-deposition patterns in multiple ceramic samples are presented.

  9. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  10. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  11. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  12. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  13. Kinetics of sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Soni, N.C.; Moorthy, V.K.

    1978-01-01

    The kinetics of sintering of UO 2 powders derived from ADU route and calcined at different temperatures was studied. The activation energy for sintering was found to depend on the calcination temperature, the density chosen and the sintering temperature range. The motive force for sintering is the excess free energy in the particle system. This exists in the powder compact in the form of surface energy and the excess lattice energy due to defects. The defects which can be eliminated at the operating temperature are responsible for the mobility and hence sintering. This concept of the motive force for sintering has been used to explain the difference in the activation energies observed in the present study. This would also explain phenomena such as attainment of limiting density, presence of optimum sintering temperature and the influence of calcination treatments on the sintering behaviour of powders. (author)

  14. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  15. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  16. Sintering process of Eu doped luminescent glass prepared from porous glass

    International Nuclear Information System (INIS)

    Akai, T; Murakami, M; Yamashita, M; Okajima, T; Umesaki, N

    2011-01-01

    Eu doped high silica glass prepared by sintering porous glass exhibits blue luminescence with high quantum efficiency. In this work, we studied effects of sintering temperature on valance state of europium ion. To investigate a change of valance state of Eu, X-ray absorption near edge structure (XANES) spectroscopy measurements were carried out. Intensity of blue emission at around 430nm drastically increases when the sintering temperature is above 1000 deg. C. From XANES spectra, it is found that almost all the Eu exist as Eu 3+ in a samples sintered below 900 deg. C, while more than 70% of Eu exist as Eu 2+ in the sample sintered at 1050 deg. C and 1100 deg. C. The drastic change of oxidation state of europium ion between 900 and 1050 deg. C is discussed in relation to the structural change probed by infrared (IR) spectroscopy.

  17. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  18. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  19. Dismantling OPAL's cylindrical magnet core

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.

  20. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  1. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  2. Method and apparatus for radio frequency ceramic sintering

    Science.gov (United States)

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  3. Direct laser sintered WC-10Co/Cu nanocomposites

    Science.gov (United States)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  4. Direct laser sintered WC-10Co/Cu nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gu Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)], E-mail: dongdonggu@nuaa.edu.cn; Shen Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)

    2008-04-30

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  5. Final flotation waste kinetics of sintering at different heating regimes

    Directory of Open Access Journals (Sweden)

    Cocić Mira

    2016-01-01

    Full Text Available In the copper extraction, especially during the process of flotation enrichment and the pyrometallurgical processing, the waste materials that represent huge polluters of environment are being generated. In order to examine the application of Final flotation waste (FFW in the manufacturing of new materials from the glass-ceramic group phase and mineral composition were examined as well as thermal properties. FFW kinetics of sintering has been tested at different dyamics (1°C/min, 29°C/min and 43°C/min, in order to find the optimum conditions for sintering with a minimum amount of energy and time consumption. The samples were examined using: X-ray diffraction, X-ray fluorescence analysis, SEM (Scanning Electron Microscopy and thermal microscopy. The best results for the production of glass ceramic materials were obtained during the sintering at heating regime of 29°C/min. [Projekat Ministarstva nauke Republike Srbije, br. 176010

  6. Direct laser sintered WC-10Co/Cu nanocomposites

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa

  7. Effect of sintering temperature and time on the mechanical ...

    Indian Academy of Sciences (India)

    Administrator

    that the shape of stress–strain curves were similar to each other, compacted ... sample sintered at 1250°C for 3 h showed an appropriate range of pore sizes and interconnectivity. The ..... Ping Li J, de Wijn J R, Van Blitterswijk C A and de Groot.

  8. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  9. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  10. SINTERING OF NASCENT CALCIUM OXIDE

    Science.gov (United States)

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  11. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    OpenAIRE

    Gerda Vaitkūnaitė; Vladislav Markovič; Olegas Černašėjus

    2015-01-01

    The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS) method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treat...

  12. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  13. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  14. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  15. Cylindrical collapse and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)

    2005-06-21

    We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.

  16. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  17. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  18. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  19. Sintering behaviour of CeO2-Gd2O3 powders prepared by the oxalate coprecipitation method

    International Nuclear Information System (INIS)

    Duran, P.; Jurado, J.R.; Moure, C.

    1993-01-01

    The powder and compact characteristics as well as the sintering behaviour of two CeO 2 -Gd 2 O 3 compositions prepared by the oxalate coprecipitation method are studied as a function of the powder particle size and the pore-size distribution in the powder compacts. Shrinkage was measured at a constant heating rate and the results are compared with those obtained by isothermal sintering experiments. Grain growth and microstructural development on sintered samples were studied. (orig.)

  20. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Reza; Safavi, Seyed Mohsen; Karimzadeh, Fathallah [Isfahan University, Isfahan (Iran, Islamic Republic of)

    2016-05-15

    Bulk Al/4wt-%Al{sub 2}O{sub 3} nanocomposites were prepared by consolidating nanocomposite powders using pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing techniques. Microstructural observations revealed that the microwave-assisted hot press sintering at different sintering temperatures of 400.deg.C and 500.deg.C resulted in more densification and smaller grain size for Al/Al{sub 2}O{sub 3} nanocomposite as compared with the conventional hot pressing. Moreover, the application of pressure in microwave sintering process led to more densification and grain growth. Mechanical properties resulting from microhardness and nanoindentation tests were also compared between three-method processed samples. It was found that the microwave-assisted hot-pressed sample exhibited higher hardness and elastic modulus in comparison with microwave-sintered and conventional hot-pressed samples. The improvement in the mechanical properties can be ascribed to lower porosity of microwave-assisted hot-pressed sample.

  1. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  2. Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating

    CERN Document Server

    Rosaz, Guillaume; Calatroni, Sergio; Sublet, Alban; Tobarelli, Mauro

    2016-01-01

    We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnet profiles. These show a good agreement between the expected and actual values. the qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016A.cm^-2 to 0.074A.cm^-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10^-3 mbar and a plasma source power of 300W.

  3. Dynamic Consolidation and Investigation of Nanostructural W-Cu / W-Y Cylindrical Billets

    Science.gov (United States)

    Godibadze, B.; Dgebuadze, A.; Chagelishvili, E.; Mamniashvili, G.; Peikrishvili, A.

    2018-03-01

    higher than 0.5 wt. %. Investigation revealed that the Y rich phases were complex (W-Y) oxides formed during the sintering process. Also very interesting to use doping chromium with yttrium-containing alloys. e.g. (W - 10÷12 Cr -0.5÷2 Y) wt. %. The extent up to which yttrium acts as an active element improving the adherence and stability of the protective Cr 2 O 3 layer formed during oxidation is assessed. The structure and characteristics of the obtained samples depends on the phase content, distribution of phases and processing parameters during explosive synthesis and consolidation. Cu – (10-30%) W powder mixtures were formed into cylindrical rods using a hot shock wave consolidation (HSWC) process. Different type of Cu - W precursor composition containing 10, 20 and 30% of nanoscale W were consolidated near theoretical density under 900°C The loading intensity was under 10 GPa. The investigation showed that the combination of high temperatures (above 800°C) and two stage shock wave compression was beneficial to the consolidation of the W-Cu & W-Y composites, resulting in high densities, good integrity and good electronic properties.

  4. Energy corrections in pulsed neutron measurements for cylindrical geometry

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Woznicka, U.

    1982-01-01

    A solution of the thermal neutron diffusion equation for a two-region concentric cylindrical system, with a constant neutron flux in the inner medium assumed, is given. The velocity-averaged dynamic parameters for thermal neutrons are used in the method. The corrections due to the diffusion cooling are introduced into the dynamic material buckling and into the velocity distribution of the thermal neutron flux. Detailed relations obtained for a hydrogenous moderator are given. Results of the measurements of the thermal neutron macroscopic absorption cross-sections for the samples in the two-region cylindrical systems are presented. (author)

  5. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  6. High-level radioactive waste fixation in sintered vitreous matrix

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    The safe storage of high-level wastes from fuel elements reprocessing includes, as a first step, the fixation of the same in materials having a good resistance to the leaching in aqueous medium, such as borosilicate glass. As an alternative to the usual method of the molten glasses, a procedure for the sintering of a powdered glass and waste mixture at lower temperatures (600-700 deg C) has been developed, which minimizes the volatilization of active compounds during the process. Two glasses matrices of different composition and characteristics were used, to which the simulated wastes were added in the ratio of a 10% in weight of oxides. Two sintering techniques were employed 1: cold pressing and further sintering; 2: hot pressing and sintering under pressure. The densities were measured, the microstructure of the samples was analyzed and leaching essays were made in distilled water. The pellet's microstructure was observed by means of optical microscopy, by reflection in polished samples and by transparency in thin slices. The presence of crystalline compounds was analyzed by means of x rays and electron microprobe. The results have shown the convenience to continue with hot pressing essays, because a denser product with a higher resistance to the leaching is thus obtained. (M.E.L.) [es

  7. Two step sintering of zirconia-escandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2011-01-01

    Recent reports show that the ceramic system based on zirconia-scandia-ceria is a good candidate to act as solid electrolyte in solid oxide fuel cells operating at intermediate temperatures (600-800 °C). In this work, commercial ZrO_2 containing 10 mol% scandium oxide and 1 mol% cerium oxide was sintered by the two stage method. This technique was proposed to in order to obtain ceramic materials with high density along with fine grain sizes, because it avoids the grain growth occurring in the last stage of sintering. A number of experimental conditions were fully exploited by varying the dwell temperature (T_2) and the dwell time. The peak temperature (T_1) was chosen from linear shrinkage results. High (>98%) density values were obtained using this method. The medium grain size was evaluated for selected sintered samples. X-ray diffraction patterns reveal a secondary (rhombohedral) phase in sintered samples. The intensity of the secondary phase is a function of T_1 being small for relatively higher peak temperatures. (author)

  8. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  9. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  10. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  11. Lubricant influence on the ejection and roughness of in-die electro sinter forged Ti-discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    2018-01-01

    Electro Sinter Forging (ESF) is a new sintering process based on Joule heating by high electrical current flowing through compacted metal powder under mechanical pressure. The whole process takes about three seconds and is based on a closed-die setup, where the sample is sintered inside a die....... A near-net shape component is therefore manufactured. One of the challenges associated with this process is the ejection of the sample after sintering. Due to powder compaction and axial loading during sintering, a radial pressure is generated at the die/sample interface. Consequently, the ejection can...... of commercially pure titanium powder. The force was measured while ejecting the samples by using a speed-controlled press. The surface roughness parameter Sa was measured by using a laser confocal microscope....

  12. Contribution to the study of the sintering of ex-carbonyl iron in the α and γ phases using the micro-fractographic technique

    International Nuclear Information System (INIS)

    Oxley Gaborit de Montjou, M.Th.

    1966-01-01

    The micro-fractographic study of the sintering of ex-carbonyl iron has shown or confirmed a number of phenomena of which the principal are as followed: Sintering in the a phase: -) existence of two stages of sintering differentiated by the type of rupture (inter or trans-crystalline); -) marked influence of the content of oxygen in the atmosphere and in the initial compressed sample on the speed of sintering; -) formation of striations on the grain-boundary surfaces and on the inner surface of pores caused by the presence of oxygen. Sintering in the γ phase: -) a pronounced decrease in the speed of sintering: the grains in the initial powder remain in the granular state within the final α crystal in the iron sintered in the lower γ range even after several hours of sintering; -) this granular structure can be eliminated by intermediate compression thus enabling the sintering process to proceed. A considerable decrease in the speed of sintering if the A 3 point is passed one or more times in the α range sintering. A high speed sintering if the treatment in the γ range is carried out at or above 1300 C. The results of this study agree with micrographic investigation as well as with dilatometric measurements and known auto-diffusion coefficients. (author) [fr

  13. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    Schmitz, Andreas

    2013-01-01

    remain at a very high level, reaching a maximum figure of merit ZT around 1.2. In addition to the thermoelectric properties the mechanical properties of lanthanum doped lead telluride were studied for the first time within this work. Lanthanum significantly increases the hardness of PbTe. SEM analysis of sintered samples reveals vast amounts of lanthanum rich precipitates within the matrix. This is partly attributed to the chosen route for material synthesis. Furthermore, the doped material's thermoelectric properties are highly unstable. The reason for this still has to be investigated. Based on the process and material developments described in this work a prototype of a tubular thermoelectric generator was constructed. In the course of this construction a process for sintering rings and tubes of lead telluride was developed and successfully implemented.

  14. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamos National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO2. The critical field studies are complete for UO2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to

  15. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    Science.gov (United States)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  16. 3D Mapping Of Density And Crack Propagation Through Sintering Of Catalysis Tablets By X-Ray Tomography

    DEFF Research Database (Denmark)

    Jacobsen, Hjalte Sylvest; Puig-Molina, A.; Dalskov, N.

    2016-01-01

    sintering of the rejected tabletized support material are studied by 3D X-ray tomography. This is a powerful technique, which due to its nondestructive nature is suitable to study the development of internal cracks in the tablets during sintering. Cracks could be identified in the green tablet (before...... properly, cracks may arise and propagate during the sintering of the tablets. This can lead to weak sintered tablets that get rejected in the quality control. For this work, crack-containing samples of rejected tabletized support were provided. The formation, growth and closure of internal cracks during...

  17. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Zhou, Zhiwei; Liu, Binglong; Xie, Tengfei; Liu, Jing; Kou, Huamin; Shi, Yun; Pan, Yubai; Guo, Jingkun

    2015-12-01

    The sintering behavior of neodymium doped yttrium aluminum garnet (Nd:YAG) ceramics was investigated on the basis of densification trajectory, microstructure evolution and transmittance. Nd:YAG ceramics with in-line transmittance of 83.9% at 1064 nm and 82.5% at 400 nm were obtained by direct cold isostatic pressing (CIP) at 250 MPa and solid-state reactive sintering at 1790 °C for 30 h under vacuum. Compared with the porosity and the average pore diameter of the sample from uniaxial dry-pressing followed by CIP, those from direct CIP are much smaller. The samples pressed at 250 MPa were sintered from 1500 °C to 1750 °C for 0.5-20 h to study their sintering behavior. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. The relative density and the grain size increase with the increase of sintering time and temperature, and the sintering behavior is more sensitive to temperature than holding time. The mechanism controlling densification and grain growth at sintering temperature of 1550 °C is grain boundary diffusion.

  18. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  19. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  20. Conventional and two step sintering of PZT-PCN ceramics

    Science.gov (United States)

    Keshavarzi, Mostafa; Rahmani, Hooman; Nemati, Ali; Hashemi, Mahdieh

    2018-02-01

    In this study, PZT-PCN ceramic was made via sol-gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed successfully with TSS procedure and dielectric and piezoelectric properties were improved compared to the CS procedure. The best electrical properties obtained for the sample sintered by TSS in the initial temperature of T 1 = 1200 °C and secondary temperature of T 2 = 1000 °C for 12 h.

  1. Consolidation of copper and aluminium powders by spark plasma sintering

    Science.gov (United States)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  2. Sintering of YBaCu0, implications of the phase diagram

    International Nuclear Information System (INIS)

    Gervais, M.; Douy, A.; Dubois, B.; Coutures, J.P.; Odier, P.

    1989-01-01

    The motivations of this experimental work are to underline the implications between the phases diagram constitution and the sintering of YBaCu0 superconductors. This preliminary work is focussed on the solid → liquid transformations of this system, in the vicinity of the (123) phase. Two transformations are observed at 915 and 935 0 C depending of the composition of the compound. They both have an important role on the sintering process and the chemical homogeneity of the ceramic. No such transformations seems to occur in the domain (123)-(211)-BaCu0 2 , the sintered sample has therefore a better chemical homogeneity [fr

  3. Effect of sintering conditions on the magnetic disaccommodation in barium M-type hexaferrites

    International Nuclear Information System (INIS)

    Hernandez-Gomez, Pablo; Torres, Carlos; Francisco, Carlos de; Munoz, Jose Maria; Alejos, Oscar; Iniguez, Jose Ignacio; Raposo, Victor; Montero, Oscar

    2006-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline hexaferrites with nominal composition BaO.6Fe 2 O 3 (i.e. M-type). The samples have been sintered at different temperatures in CO 2 atmosphere and with different manufacturing conditions. In temperature range between 80 and 500 K, the magnetic disaccommodation shows presence of different relaxation processes, depending on both the sintering temperature and sintering time. The analogies and differences between the results obtained are discussed in terms of similar phase formation and different crystallite size

  4. Sintering of a class F fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Biernacki; Anil K. Vazrala; H. Wayne Leimer [Tennessee Technological University, Cookeville, TN (United States). Department of Chemical Engineering

    2008-05-15

    The sinterability of a class F fly ash was investigated as a function of processing conditions including sintering temperature (1050-1200{sup o}C) and sintering time (0-90 min). Density, shrinkage, splitting tensile strength, water absorption and residual loss on ignition (RLOI) were evaluated as measures of sintering efficiency. Scanning electron microscopy (SEM), X-ray microanalysis and X-ray diffraction was used to examine microstructure and phase development due to processing. The results show that premature densification can inhibit complete carbon removal and that carbon combustion is influenced by both internal and external mass transfer conditions. 18 refs., 10 figs., 1 tab.

  5. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  6. Liquid Phase Sintering of (Ti,Zr)C with WC-Co.

    Science.gov (United States)

    Ma, Taoran; Borrajo-Pelaez, Rafael; Hedström, Peter; Blomqvist, Andreas; Borgh, Ida; Norgren, Susanne; Odqvist, Joakim

    2017-01-11

    (Ti,Zr)C powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,Zr)C, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,Zr)C phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ₁) or Zr (γ₂). The γ₂ phase grains have a core-shell structure with a (Ti,Zr)C core following the full sintering cycle. The major differences observed in (Ti,Zr)C with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ₁, and γ₂) is about 10% smaller in WC-(Ti,Zr)C-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  7. Liquid Phase Sintering of (Ti,ZrC with WC-Co

    Directory of Open Access Journals (Sweden)

    Taoran Ma

    2017-01-01

    Full Text Available (Ti,ZrC powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,ZrC, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,ZrC phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ1 or Zr (γ2. The γ2 phase grains have a core-shell structure with a (Ti,ZrC core following the full sintering cycle. The major differences observed in (Ti,ZrC with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ1, and γ2 is about 10% smaller in WC-(Ti,ZrC-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  8. SnO2*CoO ceramic obtained by microwave sintering

    International Nuclear Information System (INIS)

    Bordignon, M.A.N; Moura, F.; Zaghete, M.A.; Varela, J.A.; Perazolli, L.

    2009-01-01

    This work consists in the sintering study of CoO doped SnO 2 using microwave sintering oven and silicon carbide as a susceptor. The powders were obtained by dry oxides mixture and conformed in cylindrical shapes with 6mmx8mm and green density to 60%. Then the compacts were sintering up to 1.050 deg C, using heating rate of 50 deg C/min and isotherm up to 30min. The densities obtained were above 95% for both techniques. It was observed that occurred a temperature reducing of 400 deg C and time reducing of 210min to obtain the same densities, when was used the microwave oven without the phenomena of thermal runaway. So the sintered compacts were accomplished using DRX and SEM. It was made the electrical characterization (current x voltage) and it was found to have great potential in the production of dense ceramic-based SnO 2 with low resistivity to obtain electro-ceramic devices. (author)

  9. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  10. A constitutive model and numerical simulation of sintering processes at macroscopic level

    Science.gov (United States)

    Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy

    2018-01-01

    This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.

  11. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  12. Defectoscopy of direct laser sintered metals by low transmission ultrasonic frequencies

    Directory of Open Access Journals (Sweden)

    Ebersold Zoran

    2012-01-01

    Full Text Available This paper focuses on the improvement of ultrasonic defectoscopy used for machine elements produced by direct laser metal sintering. The direct laser metal sintering process introduces the mixed metal powder and performs its subsequent laser consolidation in a single production step. Mechanical elements manufactured by laser sintering often contain many hollow cells due to weight reduction. The popular pulse echo defectoscopy method employing very high frequencies of several GHz is not successful on these samples. The aim of this paper is to present quadraphonic transmission ultrasound defectoscopy which uses low range frequencies of few tens of kHz. Therefore, the advantage of this method is that it enables defectoscopy for honeycombed materials manufactured by direct laser sintering. This paper presents the results of testing performed on AlSi12 sample. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057

  13. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  14. Effect of bioglass additions on the sintering of Y-TZP bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Habibe, A.F.; Maeda, L.D.; Souza, R.C.; Barboza, M.J.R.; Daguano, J.K.M.F. [USP-EEL, Universidade de Sao Paulo, Escola de Engenharia de Lorena, Polo Urbo-Industrial, Gleba AI6, s/n, P.O. Box 116, CEP 12600-970, Lorena-SP (Brazil); Rogero, S.O. [IPEN/CNEN-SP, Instituto de Pesquisas Energeticas e Nucleares, Av. Prof. Lineu Prestes, 2242, Sao Paulo-SP, CEP 05508-900 (Brazil); Santos, C., E-mail: claudinei@demar.eel.usp.br [USP-EEL, Universidade de Sao Paulo, Escola de Engenharia de Lorena, Polo Urbo-Industrial, Gleba AI6, s/n, P.O. Box 116, CEP 12600-970, Lorena-SP (Brazil)

    2009-08-01

    The objective of this work was to evaluate the influence of bioglass additions on the sintering and mechanical properties of yttria-stabilized zirconia ceramics, Y-TZP. Samples containing different bioglass additions, varying between 0 and 30 wt.%, were cold uniaxial pressed at 80 MPa and sintered in air at 1200 deg. C or 1300 deg. C for 120 min. Sintered samples were characterized by X-ray Diffractometry and Scanning Electron Microscopy. Hardness and fracture toughness were determined using Vickers indentation method. As a preliminary biological evaluation, in vitro cytotoxicity tests by Neutral Red Uptake method (using mouse connective tissue cells, NCTC clone L929 from ATCC bank) were realized to determine the cytotoxicity level of ZrO{sub 2}-bioglass ceramics. The increasing of bioglass amount leads to the decreasing of relative density due to martensitic (tetragonal-monoclinic) transformation during cooling of the sintered samples. Y-TZP samples sintered at 1300 deg. C containing 5 wt.% of bioglass presented the best results, with high relative density, hardness and fracture toughness of 11.3 GPa and 6.1 MPa m{sup 1/2}, respectively. Furthermore, the un-cytotoxic behavior was observed in all sintering conditions and bioglass amounts used in this study.

  15. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    bonding) between the salt beads at all the temperatures in which sintering was performed. .... and the sintering of some covalent solids and low- stability ceramics. The entire sintering process is gen- erally considered to occur in ...

  16. Microstructural Analysis of Sintered Gradient Materials Based on Distaloy SE Powder

    Directory of Open Access Journals (Sweden)

    Zarębski K.

    2016-06-01

    Full Text Available The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products

  17. Study of effect of sintering time on the 2223 phase growth Bi-Pb-Sr-Ca-Cu-O superconductor by Rietveld method

    International Nuclear Information System (INIS)

    Parikin; Prasuad, W; Gunawan

    1996-01-01

    It has been reported that the sintering time is as important for the preparation of superconductor as the sintering temperature and method. This paper reports on the finding of the optimum sintering time in the preparation of the 2223 phase bismuth (Bi) superconductor. The samples were synthesized with nominal composition 1.84 : 0.34 : 1.91 : 2.03 : 3.06 from raw materials by solid state reaction and sintered at 860 o C for five days. The resintering were done three times, i.e. 24, 48 and 96 hours. The Rietveld analysis shows that the 2223 phase grows continuously as a function of the sintering time. The highest percentage of the 2223 phase (80.64%) were obtained at 96 hours sintering time. The result suggests that the 2223 phase can be obtained effectively by sintering with sufficiently long time

  18. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered

  19. In-Situ Observation of Sintering Shrinkage of UO2 Compacts Derived from Different Powder Routes

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun

    2015-01-01

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO 2 might be attributed to the larger primary particle size of IDRUO 2 than those of ADU- and AUC- UO 2 powders. It would be important to understand the different sintering characteristics of UO 2 powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO 2 from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO 2 powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio

  20. Effects of sintering atmosphere on the physical and mechanical properties of modified BOF slag glass

    Science.gov (United States)

    Dai, Wen-bin; Li, Yu; Cang, Da-qiang; Zhou, Yuan-yuan; Fan, Yong

    2014-05-01

    This study proposes an efficient way to utilize all the chemical components of the basic oxygen furnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000°C in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.

  1. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    International Nuclear Information System (INIS)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-01-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively

  2. Influence of sintering temperature on screen printed Cu2ZnSnS4 (CZTS) films

    International Nuclear Information System (INIS)

    Wang Yu; Huang Yanhua; Lee, Alex Y.S.; Wang Chiou Fu; Gong Hao

    2012-01-01

    Highlights: ► The influences of sintering temperature on structure and properties of screen printed Cu 2 ZnSnS 4 (CZTS) were investigated. ► It was found that the direct optical band gap increased with increasing the sintering temperature. ► The screen printed CZTS film after sintering at 450 °C had a high photosensitivity (G i − G d )/G d of 14%. ► The hexagonal CuS phase aggregated after sintering at 500 °C and higher temperature. - Abstract: Screen printing is a useful and simple method for coating layers of several solar materials, but care must be taken in preparing stoichiometric CZTS film due to its instability at a high processing temperature and a small chemical potential domain. This paper reports screen printing prepared CZTS films and the influence of sintering temperature on CZTS properties. The thermostability, structural, electronic and optical properties are studied. The direct optical band gap energies of the films vary from 1.39 to 1.60 eV, while the resistivities change from 830 to 6 Ω cm after sintering at different temperatures up to 550 °C. A high photosensitivity of 14% is achieved for the sample sintered at 450 °C. The phenomena observed are also discussed.

  3. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  4. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    density of the pellets based on the green density and the theoretical density of each of the compositions. The Master Sintering Curve (MSC) model is then utilized to generate data that can be utilized to predict the final density of the respective powder over a range of heating rates. The Elton Master Sintering Curve Extension (EMSCE) is developed to extend the functionality of the MSC tool. The parameters generated from the original MSC are used in tandem with the solution to the closed integral, theta ≡ 1cTo T1Texp -QRT dT, over a set range of temperatures. The EMSCE is used to generate a set of sintering curves having both constant heating rate and isothermal hold portions. The EMSCE extends the usefulness of the MSC by allowing this generation of a complete sintering schedule rather than just being able to predict the final relative density of a given material. The EMSCE is verified by generating a set of curves having both constant heating rate and an isothermal hold for the heat-treatment. The modeled curves are verified experimentally and a comparison of the model and experimental results are given for a selected composition. Porosity within the final product can hinder the product from sintering to full density. It is shown that some of the compositions studied did not sinter to full density because of the presence of large porosity that could not be eliminated in a reasonable amount of time. A statistical analysis of the volume fraction of porosity is completed to show the significance of the presence in the final product. The reason this is relevant to the MSC is that the model does not take into account the presence of porosity and assumes that the samples sinter to full density. When this does not happen, the model actually under-predicts the final density of the material.

  5. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  6. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  7. Qualitative mineralogical characterization of the sinter by X-ray diffraction

    International Nuclear Information System (INIS)

    Greca, M.C.; Pietroluongo, L.R.V.; Baliza, S.V.; Costa Pereira, E.A. da

    1987-01-01

    This paper aims the qualitative mineralogical characterization of sinters and raw materials employed on its fabrication, via X-ray diffraction technique. Thus, sample with constant coke breeze content and variable contents of sand, limestone, dunite and dolomite were prepared to obtain current sinter compositions, with variable basicity. The tests were performed at the research of the following institutions: Companhia Siderurgica Nacional, Centro de Tecnologia Mineral and Instituto Nacional de Tecnologia. (author) [pt

  8. The mechanism of Tc performance for Zn doped MgB2 sintered in magnetic field

    International Nuclear Information System (INIS)

    Li, W.X.; Li, Y.; Chen, R.H.; Zeng, R.; Dou, S.X.

    2010-01-01

    The mechanism of magnetic field sintering on the critical transition temperature, T c , for the Zn doped MgB 2 superconductor was investigated with the observation of Raman scattering measurement and the Raman spectra fit analysis. The broadened E 2g mode in Raman spectra shows the strengthening of the electron-phonon coupling (EPC) for the sample sintered in magnetic field. A synchronous fluctuation is observed between the Raman characters of the E 2g mode and the T c .

  9. Diffusion from cylindrical waste forms

    International Nuclear Information System (INIS)

    Thomas, G.F.

    1985-05-01

    The diffusion of a single component material from a finite cylindrical waste form, initially containing a uniform concentration of the material, is investigated. Under the condition that the cylinder is maintained in a well-stirred bath, expressions for the fractional inventory leached and the leach rate are derived with allowance for the possible permanent immobilization of the diffusant through its decay to a stable product and/or its irreversible reaction with the waste form matrix. The usefulness of the reported results in nuclear waste disposal applications is emphasized. The results reported herein are related to those previously derived at Oak Ridge National Laboratory by Bell and Nestor. A numerical scheme involving the partial decoupling of nested infinite summations and the use of rapidly converging rational approximants is recommended for the efficient implementation of the expressions derived to obtain reliable estimates of the bulk diffusion constant and the rate constant describing the diffusant-waste form interaction from laboratory data

  10. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  11. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  12. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  13. Thermally stable sintered porous metal articles

    International Nuclear Information System (INIS)

    Gombach, A.L.; Thellmann, E.L.

    1980-01-01

    A sintered porous metal article is provided which is essentially thermally stable at elevated temperatures. In addition, a method for producing such an article is also provided which method comprises preparing a blend of base metal particles and active dispersoid particles, forming the mixture into an article of the desired shape, and heating the so-formed article at sintering temperatures

  14. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  15. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  16. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  17. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  18. Sintering nanodisperse zirconium powders with various stabilizing additives

    Directory of Open Access Journals (Sweden)

    Antsiferov V.N.

    2011-01-01

    Full Text Available Effect of various stabilizing additives on sintering kinetics of nanodisperse powders was studied by thermomechanical analysis. Temperature ranges of the most intense shrinking, characteristic points of shrinking rate changes were established. Peaks characterizing the most intense shrinking of nanodisperse zirconium powder samples were shown to allow to arrange the stabilizing additives as follows: Y2O3→CeO2→TiO2.

  19. Chemical erosion of sintered boron carbide due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.

    1990-06-01

    The production of hydrocarbons and boron hydrides due to H + bombardment of sintered B 4 C has been investigated as a function of sample temperature and incident ion energy. While hydrocarbon production was observed, the yields were approximately two orders of magnitude smaller than observed for graphite. There was no evidence to indicate the production of any volatile boron-containing compounds. (3 figs., 11 refs.)

  20. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  1. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  2. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  3. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  4. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  5. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  6. A Clustering Method for Data in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Kazuhisa Fujita

    2017-01-01

    Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.

  7. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  8. Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering

    International Nuclear Information System (INIS)

    Alvaredo, P.; Gordo, E.; Van der Biest, O.; Vanmeensel, K.

    2012-01-01

    Highlights: ► Processing of Fe-based cermets by pressureless sintering and spark plasma sintering. ► Influence of carbon content on the sintering mechanism and hardness. ► The cermet phase diagram was calculated and permits to explain the microstructure. ► SPS provides ferritic matrix and different carbide distribution than CPS samples. ► Pressureless sintered samples contain retained austenite at room temperature. - Abstract: Iron-based cermets are an interesting class of metal-ceramic composites in which properties and the factors influencing them are to be explored. In this work the metal matrix contains Cr, W, Mo and V as alloying elements, and the hard phase is constituted by 50 vol% of titanium carbonitride (TiCN) particles. The work studies the influence of the C content and the processing method on the sinterability, microstructure and hardness of the developed cermet materials. For that purpose, cermet samples with different C content in the matrix (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%) were prepared by conventional pressureless sintering (CPS) and, in order to achieve finer microstructures and to reduce the sintering time, by spark plasma sintering (SPS). The density and hardness (HV30) of the processed materials was evaluated, while their phase composition and microstructure was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The equilibrium phase diagram of the composite material was calculated by ThermoCalc software in order to elucidate the influence of the carbon content on the obtained phases and developed microstructures.

  9. tribological study of a bronze obtained by sintering proceeds

    African Journals Online (AJOL)

    F. Keraghel, K. Loucif, M. P. Delplanck

    2017-01-01

    Jan 1, 2017 ... animated by a movement of rotation. The cylindrical sample is held by an arm on the blank of steel cylinder with perpendicular axes so as to ensure line contact. The contact force sample – cylinder is provided by a weight at the end of the arm (Fig.1). Fig.1. wear device. In this study, we followed the loss of ...

  10. Sintering of Si C by hot-pressing with addition of Al2O3 and concentrate of rare earths

    International Nuclear Information System (INIS)

    Hwang, M.K.; Silva, C.R.M.

    2004-01-01

    Silicon carbide (SiC) has essentially covalent bonds (∼88%). The high covalency bond is responsible for the good mechanical properties, although it induces a low self diffusion coefficient, making densification more difficult. For a successful densification is necessary to apply pressure on the samples, and/or the addition of sintering additives, which improves the densification. In this SiC samples with alumina (Al2O3) and concentrate of rare earth (CRE) addition were sintered by hot pressing in argon atmospheric at 20 MPa of pressure, heating rate of 20 deg C/min up to 1800 deg C and a dwell time of 1 h. Initially the CRE was calcined at 1000 deg C during 1 h. After that, three mixtures were prepared with distinct concentrations in high energy mill and the samples were sintered. The aim of this work is to improve SiC densification by the liquid phase formation during sintering owing to the additives reactions between itself. The pressure intensify the driving force for densification, taking the liquid phase to drain easier through the grain boundaries, making possible best accommodation and rearrangement of the grains. The application of the pressure on the samples during sintering contributes to improve densification and becomes possible sintering in lower temperature than conventional one. The phases of the sintered samples were analyzed by X-ray diffraction and the morphology were verified by scanning electron microscopy. (author)

  11. Effects of inclusions on the sintering behavior of YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Stearns, L.C.; Harmer, M.P.; Chan, H.M.

    1990-01-01

    The sintering behavior of two types of heterogeneous compacts of YBa 2 Cu 3 O 6+x was studied: Soft agglomerates present in the starting powder were used to study the effect of rapidly densifying inclusions on the overall sample densification. In this case, the induced stresses caused severe cracklike damage in the sintered microstructure. On the other hand, when nondensifying inclusions (same composition) were incorporated into the starting powder, no sintering damage was observed. Further, there was no retardation of densification or coarsening due to the presence of these dense inclusions, over a wide range of inclusion size. Several possibilities for this behavior are discussed, based on the distribution of stresses induced by differential sintering rates

  12. Microstructure and properties of gravity sintered 316l stainless steel powder with nickel boride addition

    Directory of Open Access Journals (Sweden)

    Božić Dušan

    2016-01-01

    Full Text Available The present work demonstrates a procedure for synthesis of stainless steel powder by gravity sintering method. As an additive to the basic powder, NiB powder was added in the amount of 0.2 - 1.0 wt.%. Gravity sintering was done in vacuum, at the temperatures of 1100°C-1250°C, in the course of 3 - 60 min, using ceramic mould. Structural characterization was conducted by XRD, and microstructural analysis by optical and scanning electron microscope (SEM. Mechanical properties were investigated by tensile tests with steel rings. Density and permeability were determined by standard techniques for porous samples. Gravity sintered stainless steel with NiB addition had more superior mechanical and physico-chemical properties compared to stainless steel obtained by standard powder metallurgy procedures - pressing and sintering. [Projekat Ministarstva nauke Republike Srbije, br. 172005

  13. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  14. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  15. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  16. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuaki, E-mail: ytakeda@g.ecc.u-tokyo.ac.jp [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimoyama, Jun-ichi; Motoki, Takanori [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Kishio, Kohji [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko [Sumitomo Electric Industries, Ltd. 1-1-3 Shimaya, Konohana-ku, Osaka 554-0024 (Japan)

    2017-03-15

    Highlights: • Fabrication conditions of Bi2223 bulks was reconsidered in terms of high J{sub c}. • Pressure of uniaxial pressing and heat treatment conditions were investigated. • The best sample showed higher J{sub c} than that of practically used Bi2223 bulks. - Abstract: Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain J{sub c} properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain J{sub c}. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain J{sub c} of 2.0 kA cm{sup −2} at 77 K and 8.2 kA cm{sup −2} at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  17. Microstructural evaluation of the NbC-20Ni cemented carbides during sintering

    International Nuclear Information System (INIS)

    Rodrigues, D.; Cannizza, E.

    2016-01-01

    Full text: Fine carbides in a metallic matrix (binder) form the microstructure of the cemented carbides. Grain size and binder content are the main variables to adjust hardness and toughness. These products are produced by Powder Metallurgy, and traditional route involves mixing carbides with binder by high energy milling, pressing and sintering. During sintering, a liquid phase promotes densification, and a final relative density higher than 99% is expected. Sintering is carried out at high temperatures, and dissolution of the carbides changes the chemical composition of the binder. To control grain growth of the main carbide, which reduces hardness, small quantities of secondary carbides are used. These additives limit dissolution and precipitation of the main carbides reducing the final grain size. This paper focused the structural and chemical evolution during sintering using NbC-20Ni cermets. Mixtures of very fine NbC carbides and carbonyl Ni powders were produce by intense milling. These mixtures were pressed using uniaxial pressures from 50 to 200MPa. Shrinkage was evaluated using dilatometric measurements under an atmosphere of dynamic argon. Samples were also sintered under vacuum in high temperature industrial furnace. The sintered samples were characterized in terms of density hardness, toughness and microstructure. DRX was the main tool used to evaluate the structural evolution of the binder. In situ chemical analysis helped to understand the dissolution mechanisms. (author)

  18. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  19. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  20. Rapid immobilization of simulated radioactive soil waste by microwave sintering.

    Science.gov (United States)

    Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui

    2017-09-05

    A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd 2 O 3 -containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10 -4 -10 -6 g/(m 2 day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Glass phase expelling during liquid phase sintering of YSZ

    International Nuclear Information System (INIS)

    Souza, Milton Ferreira de; Souza, Dulcina Pinatti Ferreira de

    1998-01-01

    Expelling of the liquid phase during sintering of Zr O 2 -6.5 mol % Y 2 O 3 - 0.5 mol % Pr 2 O 3 ceramic was observed as a result of grain coarsening. ZrO 2 - 7.0 mol % Y 2 O 3 samples, without Pr 2 O 3 addition, do not show this effect under the same sintering conditions. The expelling process is caused by surface tension forces and attracting van der Waals forces between the grains, coupled with the existence of two glass phases on the grain boundaries. The amount of expelled glass phase increases with grain growth, but saturates above 16 μm average grain size. (author)

  2. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    International Nuclear Information System (INIS)

    Bianco, Alessandra; Cacciotti, Ilaria; Lombardi, Mariangela; Montanaro, Laura

    2009-01-01

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO 3 ) 2 .4H 2 O and (b) titration of Ca(OH) 2 . The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N 2 adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m 2 /g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO 3 ) 2 .4H 2 O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH) 2 were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH) 2

  3. Spark plasma sintering and porosity studies of uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle D., E-mail: kylej@kth.se; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-15

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD – corresponding to an absolute density of 14.25 g/cm{sup 3} out of a theoretical density of 14.28 g/cm{sup 3} – have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density. - Highlights: • UN pellets are fabricated over a wide array of densities using the SPS method. • The sintereing parameters necessary to produce pellets over a wide array of density space are charted. • Pellets of extremely high density (99.9% of TD, absolute density of 14.25 g/cm{sup 3}) are fabricated. • Full-closure of the porosity in this material is obtained at around 2.5% of total porosity.

  4. Sintering mechanism of blast furnace slag-kaolin ceramics

    International Nuclear Information System (INIS)

    Mostafa, Nasser Y.; Shaltout, Abdallah A.; Abdel-Aal, Mohamed S.; El-maghraby, A.

    2010-01-01

    A general ceramics processing scheme by cold uniaxial pressing and conventional sintering process have been used to prepare ceramics from mixtures of blast furnace slag (BFS) and kaolin (10%, 30% and 50% kaolin). The properties of the ceramics were studied by measuring linear shrinkage, bulk density, apparent porosity and mechanical properties of samples heated at temperatures from 800 o C to 1100 o C. The formed crystalline phases were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Slag melt formed at relatively low temperatures (800-900 o C) modified the sintering process to liquid phase sintering mechanism. Combination of BFS with 10% kaolin gave the highest mechanical properties, densification and shrinkage at relatively low firing temperatures. The crystalline phases were identified as gehlenite (Ca 2 Al 2 SiO 7 ) in both BFS and BFS with 10% kaolin samples. Anorthite (CaAl 2 Si 2 O 8 ) phase increased with increasing kaolin contents. In the case of kaolin-rich mixtures (30% and 50% kaolin), increased expansion took place during firing at temperatures in the range 800-1000 o C. This effect could be attributed to the entrapment of released gases.

  5. Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering

    International Nuclear Information System (INIS)

    Qu Xiurong; Lue Shuchen; Hu Jianmin; Meng Qingyu

    2011-01-01

    Highlights: → With increasing hot-pressing (HP) temperature, the thermoelectric figure of merit of β-FeSi 2 ceramics is improved slightly. → The grain size of the sample sintered by the spark plasma sintering (SPS) process is smaller than that by the HP process. → The SPS sample shows excellent thermoelectric performance attributed to low thermal conductivity. - Abstract: The microstructure and thermoelectric properties of β-FeSi 2 ceramics by hot pressing (HP) and spark plasma sintering (SPS) are investigated. With increasing hot-pressing temperature, the density, electronic conductivity and thermal conductivity of the samples increase significantly, the thermoelectric figure of merit is improved slightly. The microstructure study indicates that the sizes of the β-FeSi 2 and ε-FeSi phases in the sample sintered by the SPS process are smaller than that by the HP process. The SPS sample shows excellent thermoelectric performance due to the low thermal conductivity.

  6. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  7. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  8. Intrinsic cylindrical and spherical waves

    International Nuclear Information System (INIS)

    Ludlow, I K

    2008-01-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed

  9. Diffusion in a cylindrical plasma

    International Nuclear Information System (INIS)

    Reid, J.

    1977-04-01

    Modern plasma containment devices, such as the Tokamak, employ magnetic fields which are toroidal in shape. They are able to contain a plasma for times approaching a second. Magnetohydrodynamics (M.H.D.) is one of the most attractive theoretical methods for understanding their behaviour, but the equations involved are complex non-linear partial differential equations, and analytic methods are not available for their solution. Numerical methods must be used. A model system of equations representing a cylindrical plasma with no axial variation is considered. It is convenient to introduce a flux function psi for the component of the magnetic field directed around the axis of the cylinder, called the poloidal field, and the M.H.D. equations are rewritten in terms of psi. This produces a set of highly coupled equations describing the evolution of the flux function, the axial field and the plasma pressure. Various steps are taken to gain a better understanding of the properties of these equations. (author)

  10. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  11. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  12. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  13. Effect of rigid inclusions on sintering

    International Nuclear Information System (INIS)

    Rahaman, M.N.; De Jonghe, L.C.

    1988-01-01

    The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed

  14. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  15. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  16. Sintering study and properties of alumina matrix composites reinforced with NbC, TiC and TaC

    International Nuclear Information System (INIS)

    Tonello, K.P.S.; Trombini, V.; Bressiani, A.H.A.; Bressiani, J.C.

    2011-01-01

    Al_2O_3 based composite materials are very promising due to their good mechanical properties, and have been studied as an alternative for the production of materials with high wear resistance. In alumina based composites the addition of carbides can change and improve the sintering and mechanical properties of materials. The objective was to study the effect of adding small concentrations of NbC, TaC and TiC in the sintering, microstructure and mechanical properties of alumina composites. The sintering study was conducted in dilatometer, with heating rate of 20 ° C / min. up to 1800 ° C, and the study of microstructure and properties of the composites was performed in hot pressed samples, sintered at 1500°C/30min with constant pressure of 20MPa. The results indicated that the addition of carbides modified the sintering behavior and also indicated that the hardness and fracture toughness were improved by the presence of carbide particles. (author)

  17. Development of a Sinter/HIP process for the superalloy Udimet 700 with investigations of the influence of the sinteratmosphere

    International Nuclear Information System (INIS)

    Wenning, L.

    1991-03-01

    The oxidation free treatment of reactive metalpowders like the nickel base alloy Udimet 700 demands sufficient oxygen free sinteratmospheres in nowadays sinter-HIP plants are not reachable. The reported work deals with the development of a sinter-HIP process which enables a sufficient low partial pressure of oxygen by scavenging the Udimet 700 powder packings with argon during vacuum sintering. By this the sinter hindering oxidation is avoided. Intensive investigations of the sinteratmosphere with a mass spectrometer and a zirconium oxide probe verify the reduction of the oxygen content of the residual gas atmosphere reached with different processes. In a second part the applicability of the scavenging gas process during the capsule free sinter-HIP treatment of metall injection moulded (MIM) samples is shown. (orig.) [de

  18. Effect of 10Ce-TZP/Al2O3 nanocomposite particle amount and sintering temperature on the microstructure and mechanical properties of Al/(10Ce-TZP/Al2O3) nanocomposites

    International Nuclear Information System (INIS)

    Soltani, N.; Pech-Canul, M.I.; Bahrami, A.

    2013-01-01

    Highlights: • Increasing the 10Ce-TZP/Al 2 O 3 content up to 7 wt.%, enhanced composites’ hardness. • Significant enhancement in compressive strength is obtained with 7% 10Ce-TZP/Al 2 O 3 . • Sintering at 450 °C, hardness and compressive strength are higher than at 400 °C. - Abstract: A zirconia/alumina nanocomposite stabilized with cerium oxide (Ce-TZP/Al 2 O 3 nanocomposite) can be a good substitute as reinforcement in metal matrix composites. In the present study, the effect of the amount of 10Ce-TZP/Al 2 O 3 particles on the microstructure and properties of Al/(10Ce-TZP/Al 2 O 3 ) nanocomposites was investigated. For this purpose, aluminum powders with average size of 30 μm were ball-milled with 10Ce-TZP/Al 2 O 3 nanocomposite powders (synthesized by aqueous combustion) in varying amounts of 1, 3, 5, 7, and 10 wt.%. Cylindrical-shape samples were prepared by pressing the powders at 600 MPa for 60 min while heating at 400–450 °C. The specimens were then characterized by scanning and transmission electron microscopy (SEM and TEM) in addition to different physical and mechanical testing methods in order to establish the optimal processing conditions. The highest compression strength was obtained in the composite with 7 wt.% (10Ce-TZP/Al 2 O 3 ) sintered at 450 °C

  19. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  20. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

    Science.gov (United States)

    Zhang, Ce; Lu, Boxin; Wang, Haiying; Guo, Zhimeng; Paley, Vladislav; Volinsky, Alex A.

    2018-01-01

    Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures ( D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

  1. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial

    International Nuclear Information System (INIS)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Nie, Hemin; Willumeit, Regine; Pyczak, Florian

    2015-01-01

    Highlights: • The sintering of the MIM Ti–Nb alloy consists of three steps. • The Nb particles act as diffusion barriers during sintering. • The TiC x only precipitate in the cooling step during sintering. • The TiC x hardly influence the sintering process of MIM Ti–Nb alloy. • The MIM Ti–Nb alloy exhibits high strength, low Young’s modulus but poor ductility. - Abstract: Sintering behavior, microstructure and mechanical properties of a Ti–16Nb alloy processed by metal injection molding (MIM) technology using elemental powders were investigated in this work by optical microscopy, X-ray diffraction (XRD), dilatometer, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). It was found that from 700 °C to 1500 °C the homogenization and densification process of MIM Ti–16Nb alloy consisted of three steps, i.e., Ti-diffusion-controlled step, Ti–Nb-diffusion step and matrix-diffusion step. Titanium carbide formation was observed in the samples sintered at 1300 °C and 1500 °C, but not in the ones sintered at 900 °C and 1100 °C. The MIM Ti–16Nb specimens sintered at 1500 °C exhibited a good combination of high tensile strength and low Young’s modulus. However, the titanium carbide particles led to poor ductility

  2. A comparative study of structural and mechanical properties of Al–Cu composites prepared by vacuum and microwave sintering techniques

    Directory of Open Access Journals (Sweden)

    Penchal Reddy Matli

    2018-04-01

    Full Text Available In this paper, the aluminum metal matrix composite reinforced with copper particulates (3, 6 and 9 vol.% were fabricated by high energy ball milling, followed by vacuum sintering (VS and microwave sintering techniques (MS separately. The effects of Cu content and preparation methods on the microstructure and compression mechanical behavior of Al–Cu matrix composites were investigated. The microstructural characterizations revealed a homogeneous distribution of Cu particles in the Al matrix and also fine microstructures of microwave sintered samples. The microwave sintered specimen exhibited the highest hardness and better mechanical properties compared to vacuum sintered specimens. Furthermore, the hardness and compressive strength increased 137.2% and 30.3% for the microwave sintered Al–9 vol.% Cu composite, respectively. The increase in mechanical properties with the increasing volume fraction of Cu particulates can be ascribed to the presence of harder Cu particles reinforcement. The developed materials of the microwave sintered Al–Cu composite in this investigation could be successfully used for industrial applications due to improved mechanical properties. Keywords: Al matrix composites, Microwave sintering, Microstructure, Mechanical behavior

  3. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    Directory of Open Access Journals (Sweden)

    Gerda Vaitkūnaitė

    2015-03-01

    Full Text Available The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treated and untreated areas of the material has been made.

  4. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  5. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  6. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  7. Pressureless sintering of whisker-toughened ceramic composites

    Science.gov (United States)

    Tiegs, T.N.

    1993-05-04

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  8. Effect of sintering on structure and mechanical properties of alumina-15 vol% zirconia nanocomposite compacts

    International Nuclear Information System (INIS)

    Maneshian, Mohammad H.; Banerjee, Malay K.

    2010-01-01

    The sintering and densification behavior of high energy ball milled (HEBM-ed) alumina-15 vol% zirconia nanocomposite were carried out and the probable tetragonal to monoclinic phase transformation of ZrO 2 during sintering was investigated. Evolution of microstructure resulting from sintering was followed up by means of scanning electron microscopy (SEM) on polished samples, and the degree of phase transformation was determined by quantitative X-ray analysis (XRD). Moreover, synergetic effect of milling time and dopant composition on properties such as relative density, hardness, and fracture toughness was studied. The results have shown that mechanical properties of the composites were strongly dependent on the dopant content, structure and the fraction of tetragonal to monoclinic induced by HEBM and subsequent sintering. The extent of retention of t-ZrO 2 depends on the balance of magnitude of the strain energy arising from HEBM and releasing from sintering. In fact, compacts with aggressive HEBM history showed improved fracture toughness. Also it is shown the homogeneous microstructure obtained by HEBM and subsequent sintering promotes better densification.

  9. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials.

    Science.gov (United States)

    Dong, Yingchao; Zhou, Jian-Er; Lin, Bin; Wang, Yongqing; Wang, Songlin; Miao, Lifeng; Lang, Ying; Liu, Xingqin; Meng, Guangyao

    2009-12-15

    Bulk porous mullite supports for ceramic membranes were prepared directly using a mixture of industrial waste fly ash and bauxite by dry-pressing, followed by sintering between 1200 and 1550 degrees C. The effects of sintering temperature on the phase composition and shrinkage percent of porous mullite were studied. The XRD results indicate that secondary mullitization reaction took place above 1200 degrees C, and completed at 1450 degrees C. During sintering, the mixture samples first shrunk, then expanded abnormally between 1326 and 1477 degrees C, and finally shrunk again above 1477 degrees C. This unique volume self-expansion is ascribed to the secondary mullitization reaction between bauxite and fly ash. More especially, the micro-structural variations induced by this self-expansion sintering were verified by SEM, porosity, pore size distribution and nitrogen gas permeation flux. During self-expansion sintering, with increasing temperature, an abnormal increase in both open porosity and pore size is observed, which also results in the increase of nitrogen gas flux. The mineral-based mullite supports with increased open porosity were obtained. Furthermore, the sintered porous mullite membrane supports were characterized in terms of thermal expansion co-efficient and mechanical strength.

  10. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  11. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-04-01

    Full Text Available This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2 by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase with the presence of other minor phases. It is found that dehydrogenation of TiH2 significantly affects the sintering behavior and resultant microstructure. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH2 compact leads to less densification, yet higher chemical homogenization, after high temperature sintering but not in the case of low temperature sintering. Moreover, there is a direct evidence of the eutectoid decomposition of NiTi at ca. 847 and 823 K for Ni/Ti and Ni/TiH2, respectively, during furnace cooling. The static and cyclic stress-strain behaviors of the porous NiTi alloys made from the Ni/Ti and Ni/TiH2 compacts were also investigated. As compared with the Ni/Ti sintered samples, the samplessintered from the Ni/TiH2 compact exhibited a much higher porosity, a higher close-to-total porosity, a larger pore size and lower tensile and compressive fracture strength.

  12. The investigation of the microstructure and mechanical properties of ordered alominide-iron (boron) nanostructures produced by mechanical alloying and sintering

    Science.gov (United States)

    Izadi, S.; Akbari, Gh.; Janghorban, K.; Ghaffari, M.

    In this study, mechanical alloying (MA) of Fe-50Al, Fe-49.5Al-1B, and Fe-47.5Al-5B (at.%) alloy powders and mechanical properties of sintered products of the as-milled powders were investigated. X-ray diffraction (XRD) results showed the addition of B caused more crystallite refinement compared to the B-free powders. To consider the sintering and ordering behaviors of the parts produced from cold compaction of the powders milled for 80 h, sintering was conducted at various temperatures. It was found that the sintering temperature has no meaningful effect on the long-range order parameter. The transformation of the disordered solid solution developed by MA to ordered Fe-Al- (B) intermetallics was a consequence of sintering. Also, the nano-scale structure of the samples was retained even after sintering. The microhardness of pore-free zones of the nanostructured specimens decreased by increasing the sintering temperature. Moreover, the sintering temperature has no effect on the compressive yield stress. However, the fracture strain increased by increasing the sintering temperature. The samples containing 1 at.% B showed more strain to fracture compared with the B-free and 5 at.% B samples.

  13. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  14. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  15. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  16. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.; Chubykalo-Fesenko, O.

    2015-01-01

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain

  17. Plasma waves in an inhomogeneous cylindrical plasma

    International Nuclear Information System (INIS)

    Pesic, S.S.

    1976-01-01

    The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied

  18. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.

  19. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  20. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  1. Highly textured KNN-based piezoelectric ceramics by conventional sintering

    International Nuclear Information System (INIS)

    Zapata, Angelica Maria Mazuera; Silva Junior, Paulo Sergio da; Zambrano, Michel Venet

    2016-01-01

    Full text: Texturing in ferroelectric ceramics has played an important role in the enhancement of their piezoelectric properties. Common methods for ceramic texturing are hot pressing and template grain ground; nevertheless, the needed facilities to apply hot pressing and the processing of single crystal make the texture of ceramics expensive and very difficult. In this study, a novel method was investigated to obtain highly textured lead-free ceramics. A (K 0.5 Na 0.5 ) 0.97 Li 0. 0 3 Nb 0.8 Ta 0. 2 matrix (KNLNT), with CuO excess was sintered between 1070 and 1110 °C following a solid state reaction procedure. The CuO excess promotes liquid phase formation and a partial melting of the material. XRD patterns showed the intensity of (100) family peaks became much stronger with the increasing of sintering temperature and CuO. In addition, Lotgering factor was calculated and exhibited a texture degree between 40 % and 70 % for sintered samples having 13 and 16 wt. % CuO, respectively. These, highly textured ceramics, with adequate cut, can be used as substitutes single crystals for texturing of KNN-based lead-free ceramics. (author)

  2. Dynamics of cylindrical domain walls in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Wigham, E J

    2009-01-01

    An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal

  3. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  4. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  5. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  6. Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Le, G.M.; Godfrey, A.; Hansen, Niels

    2013-01-01

    A spark plasma sintering (SPS) technique has been applied to prepare fully dense Al samples from Al powder. By applying a sintering temperature of 600°C and a loading pressure of 50MPa, fully recrystallized samples of nearly 100% density with average grain sizes of 5.2μm, 1.3μm and 0.8μm have bee...... strengthening. © 2013 Elsevier Ltd....

  7. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  8. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    Science.gov (United States)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  9. Damage Behavior of Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2015-04-01

    Full Text Available The reduction of aircraft noise is important due to a rising number of flights and the growth of urban centers close to airports. During landing, a significant part of the noise is generated by flow around the airframe. To reduce that noise porous trailing edges are investigated. Ideally, the porous materials should to be structural materials as well. Therefore, the mechanical properties and damage behavior are of major interest. The aim of this study is to show the change of structure and the damage behavior of sintered fiber felts, which are promising materials for porous trailing edges, under tensile loading using a combination of tensile tests and three dimensional computed tomography scans. By stopping the tensile test after a defined stress or strain and scanning the sample, it is possible to correlate structural changes and the development of damage to certain features in the stress-strain curve and follow the damage process with a high spatial resolution. Finally, the correlation between material structure and mechanical behavior is demonstrated.

  10. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  11. Influence of the amount containing spodumene or albite on the sintering of a triaxial ceramic

    International Nuclear Information System (INIS)

    Oliveira, Camila Felippe de; Strecker, Kurt

    2012-01-01

    In this study, we investigated the properties of porcelain stoneware, made with albite or spodumene. The amount of the feldspar in the compositions ranged from 15 to 30% by weight. Specimens were pressed and sintered at 1000, 1100, 1200 and 1280 °C with an isotherm of 1 hour at the maximum temperature. The samples were characterized by analysis of the fracture surface using scanning electron microscopy and the vitrification curves, showing both the linear shrinkage and porosity in relation to the sintering temperature. The best results were obtained for samples containing 30% spodumene sintered at 1280 °C, with a linear shrinkage of 9.97% and porosity of 13.28%, while the corresponding results of samples containing 30% albite were 10.13% and 12.17%, respectively. It is concluded that the use of spodumene in the production of porcelain stoneware is viable, resulting in comparable properties. (author)

  12. The influence of the milling environment on the sintered structure of a W-Cu composite

    International Nuclear Information System (INIS)

    Costa, F.A.; Gomes, U.U.; Acchar, W.; Ambrozio Filho, F.; Silva, A.G.P.; Lima, S.J.G.

    2009-01-01

    This work reports an investigation about the influence of the environment of milling on the characteristics of the powders and on the structure and density of sintered samples made of these powders. Mixtures of composition W-30wt%Cu were milled for 51 hours in a high energy planetary mill in dry and wet (cyclohexane) conditions. The milled powders have composite particles. The powders were pressed and sintered at 1050 deg, 1150 deg and 1200 deg C under flowing hydrogen. The isothermal times were 0 minutes for the first two temperatures and 60 minutes for the latter. The samples reached around 95% of relative density. The powders were characterized by means of XRD and SEM. The sintered samples were characterized by means of SEM, optical microscopy and density measurement. (author)

  13. Spark Plasma Sintering of Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Curtis W. [CK Technologies, Camirillo, CA (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tucker, Dennis [NASA Johnson Space Center, Houston, TX (United States); Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Zhongyang [Auburn Univ., AL (United States)

    2016-01-01

    A solid-state ultracapacitor module to replace standard electrochemical batteries would achieve major performance gains and mass/volume reduction. This report summarizes a project to evaluate an alternative sintering process to produce a solid-state ultracapacitor to overcome the limitations of both the electrochemical batteries presently in use on spacecraft and of currently available electrochemical ultracapacitors. It will provide a robust energy storage device with higher reliability, wider working temperature range, longer lifetime, and less weight and volume than electrochemical batteries. As modern electronics decrease in size, more efficient and robust remote power is needed. Current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. Solid-state ultracapacitors are recyclable energy storage devices that offer the promise of higher power and a greater number of charge/discharge cycles than current rechargeable batteries. In addition, the theoretical energy density when compared to current electrochemical batteries indicates that a significant weight savings is possible. This is a project to develop a very high density solid-state ultracapacitor with giant permittivity and acceptable dielectric loss to overcome the energy-density barrier such that it will be a suitable replacement for batteries.

  14. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  15. Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel engines

    DEFF Research Database (Denmark)

    He, Zeming; Andersen, Kjeld Bøhm; Keel, Li

    2010-01-01

    In the present work, 12-layered electrochemical reactors (comprising five cells) with a novel configuration including supporting layer lanthanum strontium manganate (LSM)-yttria stabilised zirconia (YSZ), electrode layer LSM-gadolinia-doped cerium oxide (CGO) and electrolyte layer CGO were...... fabricated via the processes of slurry preparation, tape casting and lamination and sintering. The parameters of porosity, pore size, pore size distribution, shrinkage, flow rate of the sintered reactors and the electrical conductivities of the supporting layer and the electrode in the sintered reactors were...... characterised. The effect of sintering temperature on microstructures and properties of the sintered samples was discussed, and 1,250 °C was determined as the appropriate sintering temperature for reactor production based on the performance requirements for applications. Using the present ceramic processing...

  16. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Guy-Daniel Dutel

    2017-04-01

    Full Text Available Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  17. The Properties of Sintered Calcium Phosphate with [Ca]/[P] = 1.50

    Directory of Open Access Journals (Sweden)

    Moo-Chin Wang

    2012-10-01

    Full Text Available In order to obtain the properties of the sintered as-dried calcium phosphate with [Ca]/[P] = 1.50, the characteristics of sintered pellets have been investigated using X-ray diffraction (XRD, inductively coupled plasma-mass spectrometry (ICP-MS, Fourier-transform infrared (FT-IR spectra, Vickers hardness indentation and scanning electron microscopy (SEM. When the pellet samples were sintered between 700 °C and 1200 °C for 4 h, the hydroxyapatite (Ca10(PO46(OH2, HA still maintained the major phase, accompanied with the rhenanite (NaCaPO4 as the secondary phase and β-tricalcium phosphate (β-Ca3(PO42, β-TCP as the minor phases. In addition, the HA partially transformed to α-tricalcium phosphate (α-Ca3(PO42, α-TCP and tetracalcium phosphate (Ca4(PO42O, TTCP, when the pellet samples were sintered at 1300 °C and 1400 °C, respectively, for 4 h. The maximum density and Vickers Hardness (HV of sintered pellet samples were 2.85 g/cm3 (90.18% theoretical density (T.D. and 407, which appeared at 1200 °C and 900 °C, respectively.

  18. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  19. Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites

    Science.gov (United States)

    Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.

    2018-03-01

    Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow

  20. Investigation of the sinterability of ZrO_2 (Y_2O3_)-bioglass dental ceramics by dilatometry

    International Nuclear Information System (INIS)

    Bicalho, Luiz de Araujo; Barboza, Miguel Ribeiro Justino; Santos, Claudinei dos; Habibe, Alexandre Fernandes; Magnago, Roberto de Oliveira

    2013-01-01

    The objective of this work is to study by dilatometry, the liquid phase sintering of ZrO_2 ceramics using bioglass as sintering additive. Y_2 O_3 - stabilized ZrO_2 powders were mixed with 3, 5 and 10 wt% of bioglass with the composition based on 3CaOP_2 O_5 -MgO-SiO_2 system. Specimens were prepared by cold uniaxial pressing under 80MPa and the green relative density was determined. The sintering behavior was studied by measuring the linear shrinkage of samples in a dilatometer in relation to the temperature. The heating and cooling rates used in this study were 10 deg C/min and the maximum sintering temperatures was 1300 deg C with a 120 min isothermal holding time. The results of the shrinkage and shrinkage rates in regard of the sintering temperature and time were related to the amount of bioglass added. The sintered samples were characterized by X-ray diffraction analysis and their relative density. SEM micrographs indicates similar microstructure, and an increase of bioglass content leads to increasing of monoclinic ZrO_2 phase content. The dilatometry results indicate a reduction of the temperature where a maximum shrinkage rate occurs, as function of bioglass increasing. Furthermore, the use of liquid phase reduces the maximum sintering temperature of 1447 deg C to 1250-1280 deg C. (author)

  1. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.

    Science.gov (United States)

    Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser

    2014-09-19

    Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.

  2. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  3. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  4. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  5. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  6. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  7. Uranium migration in spark plasma sintered W/UO2 CERMETS

    Science.gov (United States)

    Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn

    2018-03-01

    W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.

  8. Preparing Magnetocaloric LaFeSi Uniform Microstructures by Spark Plasma Sintering

    DEFF Research Database (Denmark)

    Vicente, N.; Ocanã, J.; Neves Bez, Henrique

    2014-01-01

    Spark Plasma Sintering (SPS) of LaFeSi alloy powders was conducted to prepare magnetocaloric La-Fe-Si-based uniform microstructures. Two electrically insulating discs made of alumina were interposed between the punches and powder sample inhibiting the flow of electric current across the powder...... from hydrogenated and decrypted casting ingot. The characterizations of sintered samples were performed by Scanning Electron Microscopy (SEM), Archimedes principle, Vicker’s hardness and microhardness. The uniformity of the microstructure was evaluated by checking the evidence of position on the Vicker...

  9. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  10. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  11. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  12. Effect of grain size on the hardness and reactivity of plasma-sintered beryllium

    International Nuclear Information System (INIS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2014-01-01

    Beryllium and its intermetallic compounds have attracted great attention as promising neutron multipliers in fusion reactors. In this study, mechanical and chemical properties of fabricated plasma-sintered beryllium (PS-Be) with different grain-sizes are investigated. Density and hardness analysis results of the fabricated PS-Be samples infer that a smaller grain size in the sintered Be indicates higher porosity and hardness. Sintered Be with a large grain size exhibits better resistance toward oxidation at 1273 K in dry air and at 1073 K in Ar/1% H 2 O, since oxidation at the grain boundaries of the determines the rate. In contrast, at 1273 K in Ar/1% H 2 O, a catastrophic oxidation is indicated by the increase of weight of the samples and the generation of H 2 from the bulk Be

  13. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  14. Fracture Toughness and Micro-Strain of Y-TZP Nanoceramics at Different Sintering Temperature

    Directory of Open Access Journals (Sweden)

    Rabiha S. Yaseen

    2017-11-01

    Full Text Available The objective of this research is to study the effect of sintering temperature on the mechanical properties and micro-strain of yttria tetragonal zirconia polycrystalls (Y-TZP nanostructure.   Where green disk formed by uniaxially press, sintered at (1500 – 1550 – 1600⁰C in air for 2hr then polished to mirror shape for fracture toughness and micro-hardness measurement by Vickers indenter at (60 kg to 100gm loads. Atomic force microscopy (AFM technique was use to measure the change in grain size and shape of the samples, X-ray diffraction (XRD evaluated to identify the phases and to measure the micro-strain of the samples.          The Results show that increasing sintering temperature will increase the grain size with increasing the average of micro-strain. Tetragonal  phase is the prevailing phase with small amount of cubic phase and the amount of monoclinic phase was under detection limite after sintering but there is increas in lattice dimension according to micro-strain calculation and grinding process produce micro-strain. With increasing the sintering temperature micro-hardness and fracture toughness will increas.

  15. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  16. Instrumentation for thermal diffusivity determination of sintered materials

    International Nuclear Information System (INIS)

    Turquetti Filho, R.

    1990-01-01

    A new procedure to measure the sinterized materials thermal diffusivity, using the heat pulse method was developed in this work. The experimental data were performed at room temperature with UO sub(2), ThO sub(2), and Al sub(2)O sub(3) samples with 94%, 95%, and 96% of theoretical densities, respectively. Nondimensional root mean square deviation for theoretical function fitting was found to be on the order, of 10 sup(-3). The total error associated with the measurements for thermal diffusivity was ± 5%. (author)

  17. Thermal diffusivity of alumina-zirconia sintered with niobium additions

    International Nuclear Information System (INIS)

    Santos, W.N. dos; Paulin Filho, P.I.; Taylor, R.

    1994-01-01

    The effect of niobium oxide addition on the alumina-zirconia thermal diffusivity was investigated from 100 0 C to 1000 0 C by the laser flash method. It was observed that 4 to 6% addition of niobium oxide increases the thermal diffusivity when samples were sintered at 1450 0 C. This effect was due to elimination of porosity by formation of liquid please above 1420 0 C in the Al 2 O 3 - Nb 2 O 5 system. (author). 7 refs., 3 figs

  18. Comparative study on sintered alumina for ballistic shielding application

    International Nuclear Information System (INIS)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira

    1997-01-01

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull's modulii and other mechanical properties are able to improve ballistic penetration resistance. (author)

  19. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh A.

    2014-01-01

    Full Text Available An investigation has been made to use response surface methodology and central composite rotatable design for modeling and optimizing the effect of sintering variables on densification of prealloyed Cu28Zn brass powder during supersolidus liquid phase sintering. The mathematical equations were derived to predict sintered density, densification parameter, porosity percentage and volumetric change of samples using second order regression analysis. As well as the adequacy of models was evaluated by analysis of variance technique at 95% confidence level. Finally, the influence and interaction of sintering variables, on achieving any desired properties was demonstrated graphically in contour and three dimensional plots. In order to better analyze the samples, microstructure evaluation was carried out. It was concluded that response surface methodology based on central composite rotatable design, is an economical way to obtain arbitrary information with performing the fewest number of experiments in a short period of time.

  20. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  1. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    Science.gov (United States)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  2. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  3. In-Situ Observation of Sintering Shrinkage of UO{sub 2} Compacts Derived from Different Powder Routes

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO{sub 2} might be attributed to the larger primary particle size of IDRUO{sub 2} than those of ADU- and AUC- UO{sub 2} powders. It would be important to understand the different sintering characteristics of UO{sub 2} powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO{sub 2} from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO{sub 2} powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio.

  4. Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mondiu Olayinka DUROWOJU

    2017-06-01

    Full Text Available The densification behaviour, microstructural changes and hardness characteristics during spark plasma sintering of CP-Ti reinforced with TiC, TiN, TiCN and TiB2 were investigated. Commercially pure Ti powders were dry mixed with varied amounts (2.5 and 5 wt. % of the ceramic additives using a T2F Turbula mixer for 5 h and at a speed of 49 rpm. The blended composite powders were then sintered using spark plasma sintering system (model HHPD-25 from FCT Germany at a heating rate of 100oC min-1, dwell time of 5 min and sintering temperature of 950ºC. The sintering of CP-Ti was used as a base study to select the proper spark plasma sintering temperature for full density. Densification was monitored through analysis of the recorded punch displacement and the measured density of the sintered samples using Archimedes method. High densities ranging from 97.8% for 5% TiB2 addition to 99.6% for 5% TiCN addition were achieved at a relatively low temperature of 950°C. Microstructural analyses show a uniform distribution of the additives and finer structure showing their inhibitive effect on grain growth. An improved hardness was observed in all the cases with highest values obtained with TiCN as a result of the combined effect of TiC and TiN. A change in the fracture mode from trans granular to intergranular was also observed.

  5. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  6. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    by measuring the electrical resistance during the sintering process [5], since low electrical resistance corresponds to high density. It is, however, necessary to be aware that increased temperature, on the other hand, increases the resistance. SEM micrographs and Computed Tomography (CT) are carried out......Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current......, up to 10 kA, and the low voltage, 1-2 V, resulting in heat generation in the powder. Figure 1 shows the experimental setup. The punches were made of a conductive material; namely a copper alloy. The die, which has to be electrically insulating, was made of alumina. The ESF process takes 3-4s...

  7. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  8. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  9. Effect of sintering time on the orthorhombic structure and positron lifetime in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Chen Zhenping; Zhang Jincang; Li Xigui

    2002-01-01

    The effects of sintering time on the orthorhombic structure and positron lifetime parameter in YBa 2 Cu 3 O 7-δ have been studied by XRD, SEM and the positron experiments. It is found that on the condition of 950 degree C/12-72 h, the positron experiment has good stability and reliability. This experiment indicates that the longer sintering time is needed to prepare Y-123 samples

  10. Behaviour of Ca2Fe2O5 with Nb substitution and sintering temperatures seen by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Duhalde, S.; Saragovi, C.; Moraes, I.J.; Terrile, M.C.; Francisco, R.H.P.

    1991-01-01

    Moessbauer spectroscopy of samples of Ca 2 Fe 2-x Nb x O 5+x with x values ranging from 0 to 0.8 and sintering temperatures of 1200degC and 1300degC shows the presence of two magnetic fields and a paramagnetic signal. The behaviour of the parameters as a function of x and of the sintering temperatures are discussed and compared with XRD results. (orig.)

  11. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  12. Tearing instability in cylindrical plasma configuration

    International Nuclear Information System (INIS)

    Zelenyj, L.M.

    1979-01-01

    The effect of the neutral-layer cylindrical geometry on the development of the tearing instability has been investigated in detail. The increments of the instability for all the regimes have been found. The influence of cylindrical effects becomes manifesting itself at small, as compared to the layer characteristic thickness, distances from the axis, and, finally, the electron regime of the instability development transforms into an ion one. The results obtained are of interest for studying the plasma stability in the devices of the ''Astron'' type and in magnetospheres of cosmic objects

  13. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  14. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  15. Cylindrical concave body of composite fibrous material

    International Nuclear Information System (INIS)

    1979-01-01

    The invention is concerned with a cylindrical concave body of compound fibrous material which is intended to be exposed to high rotation speeds around its own longitudinal axis. The concave body in question has at least one layer of fibrils that are interwoven and enclose an identical angle with the longitudinal axis of the concave body in both directions. The concave body in question also has at least a second layer of fibrils that run in the direction of the circumference and are fitted radially to the outside. The cylindrical concave body of the invention is particularly well suited for application as a rotor tube in a gas ultra-centrifuge

  16. Cylindrical pressure vessel constructed of several layers

    International Nuclear Information System (INIS)

    Yamauchi, Takeshi.

    1976-01-01

    For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de

  17. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  18. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  19. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    Science.gov (United States)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  20. Self shielding in cylindrical fissile sources in the APNea system

    International Nuclear Information System (INIS)

    Hensley, D.

    1997-01-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results

  1. Profile of yttrium segregation in BaCe0,9Y0,1O3-δ as function of sintering temperature

    International Nuclear Information System (INIS)

    Hosken, C.M.; Souza, D.P.F. de

    2010-01-01

    Researches on solid oxide fuel cells indicate barium cerate perovskite as a very attractive material for using as electrolyte due to its high protonic conductivity. The objective of this work is investigate the yttrium segregation during sintering of BaCe 0,9 Y 0,1 O 3-δ doped with Zn O as a sintering aid. The powders were prepared by citrate process. Powders were isostatic pressed into pellets and sintered in air at 1200, 1275, 1325 and 1400 deg C. The samples were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy. Secondary phase containing Yttrium and Cerium was detected as sintering temperature increased. Increase of the lattice parameter and activation energy for electrical conductivity were also detected on samples sintered at 1400 deg C. (author)

  2. Attenuation correction factors for cylindrical, disc and box geometry

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Poi, Sanhita; Mhatre, Amol; Goswami, A.; Gathibandhe, M.

    2009-01-01

    In the present study, attenuation correction factors have been experimentally determined for samples having cylindrical, disc and box geometry and compared with the attenuation correction factors calculated by Hybrid Monte Carlo (HMC) method [ C. Agarwal, S. Poi, A. Goswami, M. Gathibandhe, R.A. Agrawal, Nucl. Instr. and. Meth. A 597 (2008) 198] and with the near-field and far-field formulations available in literature. It has been observed that the near-field formulae, although said to be applicable at close sample-detector geometry, does not work at very close sample-detector configuration. The advantage of the HMC method is that it is found to be valid for all sample-detector geometries.

  3. Current state of the Uranium dioxide sintering theory

    International Nuclear Information System (INIS)

    Baranov, V.; Devyatko, Y.; Tenishev, A.; Khlunov, A.; Khomyakov, O.

    2011-01-01

    The basic approaches to the description of the ceramics sintering phenomenon are considered. It is established that diffusive sintering models incorrectly describe an intermediate stage of this process. The physical model of sintering, considering the substance plastic flow of pressing under the influence of internal stress forces and capillary forces, as the basic mechanism defining the shrinkage of sintering oxide nuclear fuel, is offered. (authors)

  4. Peculiarities of formation and sintering of fine dispersed molybdenum powders

    International Nuclear Information System (INIS)

    Kalamazov, R.U.; Pak, V.I.; Tsvetkov, Yu.V.; Lem, I.N.

    1989-01-01

    Pressing of fine dispersed Mo powders sintering of compacts in H 2 and vacuum is studied. It is shown that powder preannealing at 600 deg C in H 2 for 2 hours is necessary for formation of dense sintered compacts. Qualitatively choice of pressing conditions is possible when using electron-positron annihilation method. Peculiarities of compacting and sintering of fine- and coarse-dispersed powder mixtures are considered. The obtained results are discussed from the view point of sintering recrystallization mechanism

  5. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite

    International Nuclear Information System (INIS)

    Kusrini, Eny; Sontang, Muhammad

    2012-01-01

    The physical and chemical properties of a hydroxyapatite produced by the sintering of bovine bone were investigated by powder x-ray diffraction (PXRD), electron spin resonance (ESR), energy dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential thermal analysis (DTA). A bovine bone powder was sintered at different temperatures ranging from 500 to 1400 °C. The influences of post-irradiation storage on the radiation ESR response of the bovine bone powder before and after sintering were also studied. The results indicate that the sintered bovine bone powder contained hydroxyapatite. Diffraction patterns were sharp and clear based on the (211), (300), and (202) reflections corresponding to bovine hydroxyapatite (BHA), which confirmed the phase purity and high crystalline grade of the BHA produced. The PXRD profile of BHA was dependent on sintering temperatures and times. The molecular formula of BHA was determined by Rietveld analysis showed a similar structure and composition to calcium hydroxyapatite in hexagonal P6 3 /m space group a=b=9.435 Å and c=6.895 Å. ESR data showed that the sintering process can decrease the number of free radicals in BHA; it also revealed that the number of free radicals is constant during long storage periods (75 days). The sintering technique described in this study may be used to extract hydroxyapatite from biowaste bovine bone, leading to its application as a bone filler. - Highlights: ► Natural hydroxyapatite was produced from the bio-wasting bovine bones by sintering method. ► PXRD profile of BHA is dependent on the different temperatures and times in sintering process. ► ESR data is useful to study the typical of free radicals formed in the samples after irradiation. ► Stability and physicochemical properties of BHA is dependent on the different storage times. ► Technique is able to be used to find the natural hydroxyapatite applicable for bone filler.

  6. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  7. Effect of Alloying Type and Lean Sintering Atmosphere on the Performance of PM Components

    Science.gov (United States)

    Sundaram, M. Vattur; Shvab, R.; Millot, S.; Hryha, E.; Nyborg, L.

    2017-12-01

    In order to be cost effective and to meet increasing performance demands, powder metallurgy steel components require continuous improvement in terms of materials and process development. This study demonstrates the feasibility of manufacturing structural components using two different alloys systems, i.e. lean Cr-prealloyed and diffusion bonded water atomised powders with different processing conditions. The components were sintered at two different temperatures, i.e. 1120 and 1250 °C for 30 minutes in three different atmospheres: vacuum, N2- 10%H2 atmosphere as well as lean N2-5%H2-0.5%CO-(0.1-0.4)%CH4 sintering atmosphere. Components after sintering were further processed by either low pressure carburizing, sinterhardening or case hardening. All trials were performed in the industrial furnaces to simulate the actual production of the components. Microstructure, fractography, apparent and micro hardness analyses were performed close to the surface and in the middle of the sample to characterize the degree of sintering (temperature and atmosphere) and the effect of heat treatment. In all cases, components possess mostly martensitic microstructure with a few bainitic regions. The fracture surface shows well developed sinter necks. Inter- and trans-granular ductile and cleavage fracture modes are dominant and their fraction is determined by the alloy and processing route.

  8. Effect of post-sintering treatment on properties of Bi-based high Tc superconductors

    International Nuclear Information System (INIS)

    Nagai, Masayuki; Kozuka, Akira; Morishita, Ken; Nishino, Tadashi; Hattori, Takeo; Takata, Masasuke

    1989-01-01

    A new method to obtain the pure 110K phase in the system Bi-Sr-Ca-Cu-O was examined employing post-sintering treatment. The mixture of Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO with the basic composition of Bi/Sr/Ca/Cu=2/2/1/2 was calcined. The resulting powder was soaked in ethanol containing copper acetate and calcium acetate, the amounts of which were determined to give the composition of Bi/Sr/Ca/Cu=2/2/2/3 after sintering. The resistivity was measured by the d.c. four probe method in a cryostat. The current level was maintained at 50 mA and the voltage drop was determined by averaging the values in the forward and reverse directions. The zero T c ranged from 65 to 69K for the samples after sintering, while that ranged from 69 to 71K for those with post-sintering treatment. The effect of the treatment was not drastic but significant. Modified post-sintering treatment is being examined and the results are reported in the symposium

  9. Experimental investigations on the synthesis of W–Cu nanocomposite through spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Ayman, E-mail: aymanhamada@cmrdi.sci.eg [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Li, Wei [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States); El Kady, Omayma A. [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Daoush, Walid M. [Helwan University, Faculty of Industrial Education, Department of Production Technology, Cairo (Egypt); Olevsky, Eugene A.; German, Randall M. [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States)

    2015-08-05

    Highlights: • Tungsten–copper composites have been synthesized using SPS of nano powders. • Various preparation methods, namely mixing, milling and coating have been used. • Conventional compaction and sintering has also been used for comparison. • The composites by SPS have shown finer microstructure and better hardness. • Mixing has proven best preparation method with best physical/mechanical properties. - Abstract: Elemental powders of nanosized tungsten and chemically deposited nanosized copper were used for preparing tungsten/copper composites, which are used as electric contact components. A composite of 70 wt.%W/30 wt.%Cu (52 vol%W/48 vol%Cu) composition was prepared by three powder metallurgy techniques. Elemental mixing, mechanical milling and electroless Cu coating on tungsten particles were used for the synthesis. The obtained powder blends underwent consolidation by rapid hot pressing using the spark plasma sintering (SPS) route at 950 °C under vacuum and by conventional vacuum pressureless sintering for comparison. The elemental powders and the sintered composites were investigated by optical microscopy and SEM. Electrical conductivity, hardness, transverse rupture strength, and wear properties were measured. Results show that the synthesis of the composite by the investigated route yields good performance. Samples prepared by SPS have shown better mechanical properties than those prepared by compaction and sintering due to their fine microstructure.

  10. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  11. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  12. Routine instrumental procedures to characterise the mineralogy of modern and ancient silica sinters

    Energy Technology Data Exchange (ETDEWEB)

    Herdianita, N. Rina [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Institute of Technology, Dept. of Geology, Bandung (Indonesia); Rodgers, Kerry A. [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Australian Museum, Sydney, NSW (Australia); Browne, Patrick R.L. [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Auckland Univ., Geothermal Inst., Auckland (New Zealand)

    2000-02-01

    Tightly constrained determinative methods can be used to characterise the silica minerals (opal-A, opal-CT, opal-C, quartz, moganite) and physical properties of silica sinters. Optimal X-ray powder diffraction operating parameters indicate silica lattice order/disorder using untreated, dry, <106 {mu}m powders scanned at 0.6deg 2{theta}/min with a step size of 0.01deg from 10-40deg 2{theta} and an internal Si standard. Simultaneous differential thermal and thermogravimetric analysis of 15.0 {+-}0.1 mg sinter samples of <106 {mu}m grain size, at a heating rate of 20degC/min in dry air, identify thermal events associated with dehydration, organic combustion, and changes of state. Where abundant organic matter is present, nitrogen is the preferred atmosphere for thermal analysis. Thermogravimetric-determined water contents of sinters differ from Penfield determinations reflecting the differing nature of the two techniques. Laser Raman microprobe techniques can be used to explore the mineralogy of particular sinter morphologies and habits down to 10 {mu}m diameter. The nature of the silica species present can assist in characterising individual sinter deposits and, combined with textural, density and/or porosity determinations, can lead to a better understanding of the hydrology and palaeohydrology of a geothermal prospect. (Author)

  13. Development of microstructure during sintering and aluminium exposure of titanium diboride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Gunnar

    1997-12-31

    In the production of aluminium, much less energy need be consumed if an inert, wetted cathode is present in the electrolysis cell. Titanium diboride, TiB{sub 2}, is easily wetted and does not readily dissolve in liquid aluminium, but it degrades, probably because aluminium penetrates into it during electrolysis. This degradation is linked to impurities present in the TiB{sub 2} after sintering. This thesis studies the sintering process and how aluminium penetrates into the material. High-purity, high-density TiB{sub 2} compacts were made by hot pressing at 50 MPa in an argon atmosphere at 1790-1960 {sup o}C. Samples were made with different impurity additions. These samples were exposed to liquid aluminium at 980 {sup o}C for 24 hours. All samples were penetrated, but the amount and appearance depended on the sintering aid used. Unlike the other samples, pure TiB{sub 2} was easily penetrated by metallic aluminium because of the open porosity and microcracks of this material. Grain boundary penetration was common among the samples. Differences in penetration behaviour between grain boundaries are probably due to differences in grain boundary energy. But no relation to segregants or boundary misorientation was found. The orientation of grain boundary planes and de-wetting of thin films upon cooling may explain the observed microstructure development. The samples sintered with Ti addition suffered extensive penetration despite their high densities. The grain boundaries of these samples became faceted and contained thicker films of metallic aluminium, presumably because of increased solubility due to iron segregations. All secondary phases present in the grain junctions after sintering, except from the B{sub 4}C phase, reacted with the penetrated aluminium. This did not cause swelling and cracking, as has been suggested by other authors. 101 refs., 48 figs., 7 tabs.

  14. Fluorophotometric determination of uranium: an automated sintering furnace and factors affecting precision

    International Nuclear Information System (INIS)

    Strain, J.E.

    1978-07-01

    The fusion furnace consists of four individually controlled, slotted-tube furnaces that automatically dry, sinter and anneal the fluoride or carbonate pellet used in the fluorometric determination of uranium. The furnace operates in air and prepares approximately 90 pellets per hour for fluorometric measurement. The factors that were thought to affect the precision of the method were investigated. The two factors that seem to be the most influential are (1) the manner in which the sample is loaded onto the pellet; and (2) the surface characteristics of the platinum dish in which the pellet is sintered and measured fluorometrically

  15. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  16. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  17. An investigation on cylindrical imploding turbulent mixing

    International Nuclear Information System (INIS)

    Liao Haidong; Yang Libin; Zhang Xilin; Ouyang Kai; Li Jun

    2001-01-01

    The interfacial instability experiments in cylindrically convergent geometry are performed by imploding jelly liner with high pressure gases; and instability growth were observed with high-speed framing camera. The relevant 2D numerical simulation programs were developed and their results are in good agreement with those of experiments

  18. Wellposedness of a cylindrical shell model

    International Nuclear Information System (INIS)

    McMillan, C.

    1994-01-01

    We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space

  19. Exact relativistic cylindrical solution of disordered radiation

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da; Wolk, I.; Som, M.M.

    1976-05-01

    A source free disordered distribution of electromagnetic radiation is considered in Einstein' theory, and a time independent exact solution with cylindrical symmetry is obtained. The gravitation and pressure effects of the radiation alone are sufficient to give the distribution an equilibrium. A finite maximum concentration is found on the axis of symmetry, and decreases monotonically to zero outwards. Timelike and null geodesics are discussed

  20. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  1. Shear stresses around circular cylindrical openings

    NARCIS (Netherlands)

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.

    2010-01-01

    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the

  2. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  3. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  4. Cylindrical Induction Melter Modicon Control System

    International Nuclear Information System (INIS)

    Weeks, G.E.

    1998-04-01

    In the last several years an extensive R ampersand D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM)

  5. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  6. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  7. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  8. Thermal stress in UO2 during sintering as a possible cause of cracking

    International Nuclear Information System (INIS)

    Aragones, M.A.; Tobias, E.; Tulli, I.; Naquid, C.

    1980-01-01

    Thermal stresses arising during sintering of UO 2 pellets are evaluated numerically by the solution of coupled equations for heat transfer through the sample. Results are compared with those of a semiempirical approach reported in the literature. Better insight into the heat transfer process is obtained from the solution of the coupled equations rather than from the empirical approach. The two approaches give different results for the thermal stresses arising during sintering. The use of heating and cooling rates of approximately 0.5 0 Cs -1 is found to prevent the possibility of cracking in UO 2 pellets of radii varying from 0.6 cm to 1 cm during sintering in hydrogen or argon-hydrogen atmospheres. (author)

  9. Origin of unusual sintering phenomena in compacts of chloride-derived 3Y-TZP nanopowders

    Directory of Open Access Journals (Sweden)

    Sweeney Sean M.

    2014-01-01

    Full Text Available After evaluating three alternative possibilities, the present study shows that seemingly minor amounts (at least as low as 0.06 wt% of chlorine impurities are responsible for the poor sintering behavior observed in chloride-derived 3 mol% yttria stabilized zirconia (3Y-TZP nanopowders. Models and quantitative estimates are used to explain the role of evolved HCl and ZrCl4 gases in such anomalous behaviors as reduced sintered densities for higher green densities, de-densification, improved sintering in nitrogen over oxygen, and formation of a dense shell microstructure. Two solutions to problematic residual chlorides are compared: 1 a thermal treatment composed of an extended hold at 1000°C to allow HCl gas removal before the onset of closed porosity, and 2 a chemical treatment performed by washing bisque-fired samples at room temperature using a concentrated ammonium hydroxide solution to remove chlorides. The thermal treatment was found to be superior.

  10. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  11. Evaluation of thermal properties of sintered beryllium oxide produced from Indian beryl ore

    International Nuclear Information System (INIS)

    Nair, Sathi R.; Ghanwat, S.J.; Patro, P.K.; Syambabu, M.; Mawal, N.E.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Beryllium oxide (BeO) ceramics possess many interesting properties such as good thermal conductivity, high electrical resistivity, high chemical and thermal stability, low dielectric constant, low dielectric loss and low neutron absorption coefficient. These properties lead to its wide use in vacuum electronics technology, nuclear technology, microelectronics and photoelectron technology. The above properties depend on the purity of the material as well as density and microstructure of the sintered body. For high temperature application thermal conductivity and thermal expansion are two important parameters. In the present study, high purity fine BeO powder has been prepared by beryllate route starting with crude beryllium hydroxide. The powder has been sintered at 1550℃ and sintered samples have been evaluated for its thermal properties

  12. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  13. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  14. High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature

    International Nuclear Information System (INIS)

    Kumar, Devender; Singh, K.

    2016-01-01

    WC-Co nanocomposites with variable VC content are synthesized by liquid phase sintering at two different temperatures. The as synthesized samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and optical microscope. The mechanical properties are obtained by Vickers indentation method. The high content of VC, lead to high porosity when sintering temperature is increased from 1350 to 1400 °C. The relative density of all the samples is more than 95%. Microstructure reveals that agglomeration of W-Co-C and V-W-C increases at 1400 °C, which generates layered interfaces in radial direction and hence the material inhomogeneity. XRD pattern shows that the formation of η phase increases at 1400 °C, which is responsible to decrease the fracture toughness of the present samples. The average particle size of 102 nm, highest hardness of 1870.6 kgf/mm"2 with fracture toughness of 14.4 MN/mm"3"/"2 is observed in sample having 7.5 wt% VC, sintered at 1350 °C for one minute. This combination shows the highest hardness and reasonably high toughness as compared to conventionally sintered materials reported so far.

  15. Metallographic preparation of sintered oxides, carbides and nitrides of uranium and plutonium

    International Nuclear Information System (INIS)

    Martin, A.; Arles, L.

    1967-12-01

    We describe the methods of polishing, attack and coloring used at the section of plutonium base ceramics studies. These methods have stood the test of experience on the uranium and plutonium carbides, nitrides and carbonitrides as well on the mixed uranium and plutonium oxides. These methods have been particularly adapted to fit to the low dense and sintered samples [fr

  16. Effect of hot densification on tribotechnical properties of sintered (Al-12Si)-40Sn alloy

    Science.gov (United States)

    Rusin, N. M.; Skorentsev, A. L.; Kolubaev, E. A.

    2017-12-01

    The paper describes the effect of hot densification on mechanical and tribotechnical properties of sintered samples of (Al-12Si)-40Sn composition. It proves that such treatment increases the strength and ductility of the studied materials and makes higher their wear resistant under dry friction against a steel counterbody.

  17. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  18. Blast furnace sinter performance improvement; Melhoria do rendimento de sinter de alto forno

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ricardo Baeta; Ferreira, Antonio Marcos M.; Perez, Jose Antonio; Nobrega, Carlos A.; Madeira Filho, Nelson Santos; Silva, Jose Coutinho da; Sampaio, Silvio; Larcher, Marcos A.; Silva Filho, Jose Maximo da; Nogueira, Carlos Alberto; Ramalho Filho, Wilson; Costa, Jose Luiz Lage da; Silva, Mauro Correa da [Companhia Siderurgica de Tubarao (CST), Serra, ES (Brazil)

    1995-07-01

    The article discusses the following issues of methodology maid and the accomplished actions aiming at the blast furnace sinter performance improvement: performance concept; performance historical evolution; problem boarding; influence factors; interpretation of the results; actions implementation; and economic benefit.

  19. Characterization and sintering of ATR aluminia from niobium

    International Nuclear Information System (INIS)

    Shibuya, N.H.

    1987-01-01

    The characterization of resultante slag from Aluminothermic Reduction (ATR) process to obtain metallic niobium is presented. The slag was characterized for concentration and phases of aluminia by X-ray diffractometry. The results show that 70% of the slag is constituted by α aluminia. The lixiviation and calcination of the slag increased the α aluminia concentration to 95%, the slag was used for producing samples to be burning in three furnaces: electrical resistance furnace in the air, and two furnaces in the vacuum. The burned samples were characterized by microscopy, ultrasonic analysis, density measurements and X-ray diffractometry. The sintering in the vacuum is possible because the samples burned in vacuum presented major density. The formation of NbO 2 and mullite was observed, by X-ray diffractometry. The data from optical microscopy, density measurements and X-ray diffractometry show high porosity. (M.C.K.) [pt

  20. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  1. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  2. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  3. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  4. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    Effect of different additives, namely Cr2O3, Fe2O3 and TiO2, up to 2 wt% was studied on the sinter- ing and .... mental distribution of the components is shown in figure 7. It shows ... Chiang Y M, Birniand D and Kingery W 1996 Physical ceram-.

  5. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  6. Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering

    International Nuclear Information System (INIS)

    Jiang Jun; Chen Lidong; Bai Shengqiang; Yao Qin; Wang Qun

    2005-01-01

    The n-type Bi 2 (Te,Se) 3 thermoelectric materials with preferred grain orientation have been fabricated through the spark plasma sintering (SPS) technique. The c-axis of the grains in the sintered samples were preferentially oriented parallel to the pressing direction, the orientation factor of the (0 0 l) planes changed from 0.4 to 0.85 with the sintering conditions. The anisotropy was investigated by measuring the electrical conductivities in the two directions perpendicular and parallel to the pressing direction. The optimal figure of merit ZT (ZT = α 2 σT/κ) of the sintered materials in the direction perpendicular to the pressing direction was comparative to that of the zone-melted materials in the same crystallographic direction, while the bending strength reached about 80 MPa, which is 7-8 times of that of the zone-melted materials

  7. Sinterability studies on K0.5Na0.5NbO3 using laser as energy source

    International Nuclear Information System (INIS)

    Tian Xiaoyong; Dittmar, Anne; Melcher, Joerg; Heinrich, Juergen G.

    2010-01-01

    The sinterability of K 0.5 Na 0.5 NbO 3 (KNN) ceramics by a laser beam has been investigated in the present research. A 100 W CO 2 laser with a beam diameter of 0.6 mm has been used to sinter the KNN specimens prepared on a uniaxial pressing machine. The relations between laser power and thickness of densified layer, crystallographic structures and phase compositions have been studied. A comparison has been made between laser and furnace sintered KNN samples according to the SEM, XRD and XRF results. The possibility of KNN used for the layer-wise laser direct sintering 3D components has been confirmed in this paper.

  8. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  9. Influence of Sintering Temperature on Hardness and Wear Properties of TiN Nano Reinforced SAF 2205

    Science.gov (United States)

    Oke, S. R.; Ige, O. O.; E Falodun, O.; Obadele, B. A.; Mphalele, M. R.; Olubambi, P. A.

    2017-12-01

    Conventional duplex stainless steel degrade in wear and mechanical properties at high temperature. Attempts have been made by researchers to solve this problems leading to the dispersion of second phase particles into duplex matrix. Powder metallurgy methods have been used to fabricate dispersion strengthened steels with a challenge of obtaining fully dense composite and grain growth. This could be resolved by appropriate selection of sintering parameters especially temperature. In this research, spark plasma sintering was utilized to fabricate nanostructured duplex stainless steel grade SAF 2205 with 5 wt.% nano TiN addition at different temperatures ranging from 1000 °C to 1200 °C. The effect of sintering temperature on the microstructure, density, hardness and wear of the samples was investigated. The results showed that the densities and grain sizes of the sintered nanocomposites increased with increasing the sintering temperature. The microstructures reveal ferrite and austenite grains with fine precipitates within the ferrite grains. The study of the hardness and wear behaviors, of the samples indicated that the optimum properties were obtained for the sintering temperature of 1150 °C.

  10. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  11. The quantitative characterization of sintering of urania powders

    International Nuclear Information System (INIS)

    Das, P.; Kulkarni, U.D.

    1981-01-01

    This paper presents a unified approach towards characterization of the sintering behaviour of UO 2 powders in terms of their extrinsic properties. Empirical equations connecting the sintering index with various powder parameters have been set up. The influence of various powder parameters, either individually or as dimensionless/dimensional groups, on the sintering behaviour has been studied. The relative importance of these factors has also been analysed. A good polynomial fit has been obtained for variation of sintering index with some of the powder parameters and dimensionless/dimensional groups. The equations are expected to provide a good basis for assessing the sinterability of UO 2 powders. (Auth.)

  12. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  13. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  14. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  15. Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering

    International Nuclear Information System (INIS)

    Mussi, A.; Granger, G. Bernard; Addad, A.; Benameur, N.; Beclin, F.; Bataille, A.

    2009-01-01

    The distribution of inversion defects of Al was investigated in dense magnesium-aluminate spinel elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering. This study was conducted by energy electron loss spectroscopy analyses and more particularly by energy loss near edge structure investigations of the Al-L 2,3 edge. Several aspects are discussed with the purpose of understanding why charged defects dispersal reveals a special configuration.

  16. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  17. Microstructural evaluation and magnetic Ni-Zn ferrite sintered by microwave energy

    International Nuclear Information System (INIS)

    Diniz, Veronica Cristhina S.; Vieira, Debora A.; Costa, Ana Cristina F.M.; Kiminami, R.H.G.A.; Cornejo, Daniel Reinaldo

    2011-01-01

    The present Ni-Zn ferrite magnetic properties sensitive to microstructure and obtain a ferrite with a uniform microstructure is the biggest challenge in the advancement of new technologies. This study proposes to evaluate the microstructure and magnetic properties of Ni-Zn ferrite sintered by microwave energy. The samples were previously synthesized by combustion reaction using urea and glycine, with 1200 deg C/2h sintered at a heating rate of 5 deg C/min, and characterized by density, XRD, SEM and magnetic measurements. The results show that the sample synthesized with glycine showed the formation of ferrite phase and traces of secondary phase hematite, grains with undefined format, and a high porosity and inter intragranular. The sample synthesized with urea gave only the ferrite phase, with hexagonal grains, and low intergranular porosity. The sample synthesized with urea showed better magnetic characteristics when compared with the samples synthesized with glycine. (author)

  18. Cylindrical continuous martingales and stochastic integration in infinite dimensions

    NARCIS (Netherlands)

    Veraar, M.C.; Yaroslavtsev, I.S.

    2016-01-01

    In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local

  19. Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering

    Science.gov (United States)

    Tyrman, Muriel; Ahmim, Smail; Pasko, Alexandre; Etgens, Victor; Mazaleyrat, Frédéric; Quetel-Weben, Simon; Perrière, Loïc; Guillot, Ivan

    2018-05-01

    The metastable τ-phase of MnAl equi-atomic compound belongs to a family of ferromagnetic alloys with L10 crystal structure. Stabilization of the phase by adding 2 at. % using manganese carbide (Mn23C6) enhances the magnetization in relation with the increase in lattice volume. It is thus a promising candidate for rare-earth-free permanent magnets. Coercivity of Mn-Al-C alloys being still weak, there is an interest to see to which extend sintering/transformation of the ɛ-phase by Spark Plasma Sintering (SPS) can increase the coercivity and the anisotropy. The structural and the magnetic properties were studied for samples sintered at 550 °C under uniaxial pressure of 100, 200, 300 and 400 MPa. Coercivity, remanence and anistotropy appears with the sintering pressure. The high pressure applied while sintering produces preferential orientation of the flake-shaped grains which influences the remanence.

  20. Effect of the quantity of carbonate components and sintering parameters on the quality of hydrothermally synthesized carbonate hydroxyapatite

    Science.gov (United States)

    Ruddyard, A. A.; Soejoko, D. S.; Nurlely

    2017-07-01

    Carbonated hydroxyapatite is a biomaterial with high biocompatibility with human bone, moreso than regular hydroxyapatite, making it an acceptable synthetic bone graft material. The purpose of this research is to study the effect of sintering temperature and time on carbonated hydroxyapatite samples synthesized using a hydrothermal method with CaCO3 as one of its components. The samples are then characterized using Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscope. Infrared (IR) spectra showed that the CO3 content in each sample is proportional to the amount of CaCO3 used during synthesis. X-Ray Diffraction (XRD) patterns showed an increase in apatite content and a decrease in calcite content as sintering temperature and time increases, with temperature increases having a stronger effect on the samples than time increases. Calcite disappears completely after sintering at 900 °C for 2 hours.

  1. Investigation on Surface Roughness in Cylindrical Grinding

    Science.gov (United States)

    Rudrapati, Ramesh; Bandyopadhyay, Asish; Pal, Pradip Kumar

    2011-01-01

    Cylindrical grinding is a complex machining process. And surface roughness is often a key factor in any machining process while considering the machine tool or machining performance. Further, surface roughness is one of the measures of the technological quality of the product and is a factor that greatly influences cost and quality. The present work is related to some aspects of surface finish in the context of traverse-cut cylindrical grinding. The parameters considered have been: infeed, longitudinal feed and work speed. Taguchi quality design is used to design the experiments and to identify the significantly import parameter(s) affecting the surface roughness. By utilization of Response Surface Methodology (RSM), second order differential equation has been developed and attempts have also been made for optimization of the process in the context of surface roughness by using C- programming.

  2. Method of dismantling cylindrical structure by cutting

    International Nuclear Information System (INIS)

    Harada, Minoru; Mitsuo, Kohei; Yokota, Isoya; Nakamura, Kenjiro.

    1989-01-01

    This invention concerns a method of cutting and removing cylindrical structures, for example, iron-reinforced concrete materials such as thermal shielding walls in BWR type power plants into block-like form. That is, in a method of cutting and removing the cylindrical structure from the side of the outer wall, the structural material is cut from above to below successively in the axial direction and the circumferential direction by means abrasive jet by remote operation and cut into blocks each of a predetermined size. The cut out blocks are successively taken out. Cutting of the material from above to below by remote operation and taking out of small blocks causes no hazards to human body. Upon practicing the present invention, it is preferred to use a processing device for slurry and exhaust gases for preventing scattering of activated dismantled pieces or powdery dusts. (K.M.)

  3. Cylindrically converging blast waves in air

    Science.gov (United States)

    Matsuo, H.; Nakamura, Y.

    1981-07-01

    Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.

  4. Evaluation of aluminosilicate glass sintering during differential scanning calorimetry

    International Nuclear Information System (INIS)

    Souza, Juliana Pereira de

    2015-01-01

    In this work a difference in the baseline in differential scanning calorimetry analyses, observed in a work where aluminosilicate glasses microspheres containing Ho were studied for application in selective internal radiotherapy as hepatocellular carcinoma treatment, was studied. The glasses with nominal composition 53,7 SiO 2 .10,5 Al 2 O 3 . 35,8 MgO in %mol were produced from traditional melting. The first obtained were milled and sieved in the range of 45 a 63 μm. The material was used to produce glass microspheres by the gravitational fall method. The glass powder and the microspheres were characterized by X ray fluorescence spectrometry, laser diffraction, X ray diffraction, differential scanning calorimetry, differential thermal analysis, thermogravimetry, mass spectrometry, and scanning electron microscopy. After the thermal analyses, pellets were formed in the crucibles and were analyzed by scanning electron microscopy, X ray diffraction, and He pycnometry. The difference in the baseline was associated to the viscous flow sintering process and happens because of the decrease in the detected heat flow due to the sample shrinkage. Other events as concurrent crystallization with the sintering process were also studied. (author)

  5. Magnetic losses versus sintering treatment in Mn-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Beatrice, Cinzia, E-mail: c.beatrice@inrim.it [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy); Tsakaloudi, Vasiliki [Laboratory of Inorganic Materials, CERTH, Thermi-Thessaloniki (Greece); Dobák, Samuel [Institute of Physics, P.J. Šafárik University, Košice (Slovakia); Zaspalis, Vassilios [Department of Chemical Engineering Aristotle University of Thessaloniki, Thessaloniki (Greece); Fiorillo, Fausto [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy)

    2017-05-01

    Mn-Zn ferrites prepared by different sintering schedules at 1325 °C, 1340 °C, and 1360 °C, have been characterized from the structural, electrical, and magnetic viewpoint. Magnetic losses and complex permeability have been, in particular, measured and analyzed from quasi-static excitation up to 1 GHz. It is observed that lower sintering temperatures and shorter treatment times lead to more homogeneous grain structure and better soft magnetic response at all frequencies. It is shown, however, that, once the contribution by eddy currents is singled out, the energy losses tend to coincide beyond a few MHz in the differently treated samples. The interpretative approach consists in separating the contributions by the domain wall displacements and the magnetization rotations to complex permeability and losses as a function of frequency. This can be accomplished in a relatively simple way in the low induction region described by the Rayleigh law, where these quantities can be quantitatively related and the linear Landau-Lifshitz-Gilbert equation applies, account being taken of the distribution in amplitude and orientation of the local anisotropy fields. - Highlights: • DC-1 GHz magnetic losses and complex permeability of Mn-Zn ferrites are analyzed. • Contributions by domain wall displacements and rotations are separately obtained. • Energy losses caused by eddy currents and spin damping are separately identified. • Microstructure is shown to chiefly affect the domain wall processes. • Rotational permeability and loss are predicted through Landau-Lifshitz equation.

  6. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  7. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    Science.gov (United States)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  8. Hexagonal OsB{sub 2}: Sintering, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Institute for Problems of Materials Science, 3 Krzhizhanivskii Str., Kyiv 03142 (Ukraine); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Graule, Thomas; Kuebler, Jakob [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, CH-8600 Dubendorf (Switzerland); Mueller, Martin [Laboratory of Mechanical Metallurgy, EPFL, CH-1015 Lausanne (Switzerland); Gao, Huili [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Radovic, Miladin [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Cullen, David A. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-15

    Highlights: • ReB{sub 2}-type hexagonal OsB{sub 2} powder has been densified by spark plasma sintering. • The sintered OsB{sub 2} contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB{sub 2} sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB{sub 2}-type hexagonal OsB{sub 2} bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB{sub 2} were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB{sub 2} bulk ceramics.

  9. Escape and transmission probabilities in cylindrical geometry

    International Nuclear Information System (INIS)

    Bjerke, M.A.

    1980-01-01

    An improved technique for the generation of escape and transmission probabilities in cylindrical geometry was applied to the existing resonance cross section processing code ROLAIDS. The algorithm of Hwang and Toppel, [ANL-FRA-TM-118] (with modifications) was employed. The probabilities generated were found to be as accurate as those given by the method previously applied in ROLAIDS, while requiring much less computer core storage and CPU time

  10. The large cylindrical drift chamber of TASSO

    International Nuclear Information System (INIS)

    Boerner, H.; Fischer, H.M.; Hartmann, H.; Loehr, B.; Wollstadt, M.; Fohrmann, R.; Schmueser, P.; Cassel, D.G.; Koetz, U.; Kowalski, H.

    1980-03-01

    We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 μm has been achieved for tracks of normal incidence on the drift cells. (orig.)

  11. Magnetic guns with cylindrical permanent magnets

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Beleggia, M.; Heller, Luděk

    2012-01-01

    Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnetic gun * magnetostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997

  12. Transmission of infrared radiation through cylindrical waveguides

    International Nuclear Information System (INIS)

    Nucara, A.; Dore, P.; Calvani, P.; Cannavo', D.; Marcelli, A.

    1998-01-01

    Measurement of the transmittance of infrared radiation (v -1 ) through cylindrical waveguides are presented and discussed. The experimental results are compared with numerical simulations, obtained through conventional ray tracing programs. Finally, it' estimated the transmittance of a waveguide in the case of an infrared synchrotron radiation source. Are applied the results to the case of the DAΦNE collider, where a synchrotron radiation beamline for the far infrared is under construction

  13. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  14. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  15. The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites

    International Nuclear Information System (INIS)

    Lee, Dongju; Umer, Malik Adeel; Shin, Yoochul; Jeon, Seokwoo; Hong, Soonhyung

    2012-01-01

    Highlights: ► Effect of sintering conditions on properties of W composites was investigated. ► Effect of ZrN volume fraction on properties of W composites was investigated. ► The grain size and relative density increased with increasing sintering temperature. ► ZrN particles led to an increase in strength of W and a decrease in grain size. ► Highest flexural strength was obtained for 10 vol.% W/ZrN with lowest agglomeration. - Abstract: In an effort to improve the room temperature mechanical properties of tungsten, W/ZrN composites were fabricated by high energy ball milling followed by spark plasma sintering at temperatures in a range of 1200–1700 °C under a pressure of 50 MPa. The effects of sintering conditions and ZrN volume fraction on the mechanical properties of the W/ZrN composites were studied and the results were compared to the properties of monolithic tungsten. The grain size of monolith tungsten and W/ZrN composites was found to increase with an increase in sintering temperature and time. In the case of the W/ZrN composites, ZrN particles led to an increase in the compressive strength of tungsten and a decrease in grain size. The increase in compressive strength of the composites was attributed to a reinforcement effect of ZrN particles as well as grain size refinement according to the Hall–Petch relation. Compressive strength of the composites increased with increasing ZrN content while the flexural strength decreased for samples with ZrN content exceeding 10 vol.%. This was attributed to the effects of ZrN agglomeration within the tungsten matrix.

  16. Thermal Conductivity and High-Frequency Dielectric Properties of Pressureless Sintered SiC-AlN Multiphase Ceramics

    Directory of Open Access Journals (Sweden)

    Jialin Gu

    2018-06-01

    Full Text Available SiC-AlN multiphase ceramics with 10 wt. %Y2O3-BaO-SiO2 additives were fabricated by pressureless sintering in a nitrogen atmosphere. The effects of SiC contents and sintering temperatures on the sinterability, microstructure, thermal conductivity and high-frequency dielectric properties were characterized. In addition to 6H-SiC and AlN, the samples also contained Y3Al5O12 and Y4Al2O9. SiC-AlN ceramics sintered with 50 wt. % SiC at 2173 K exhibited the best thermal diffusivity and thermal conductivity (26.21 mm2·s−1 and 61.02 W·m−1·K−1, respectively. The dielectric constant and dielectric loss of the sample sintered with 50 wt. % SiC and 2123 K were 33–37 and 0.4–0.5 at 12.4–18 GHz. The dielectric constant and dielectric loss of the samples decreased as the frequency of electromagnetic waves increased from 12.4–18 GHz. The dielectric thermal conductivity properties of the SiC-AlN samples are discussed.

  17. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  18. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  19. The dimensional accuracy of the sintered billets

    Directory of Open Access Journals (Sweden)

    Чингиз Ариф оглы Алиев

    2016-01-01

    Full Text Available The article presents the results of assessing the impact of the behaviour stability of the components included in the compositions and process parameters of their production, on the dimensional accuracy of workpieces. It was found that by increasing the amount of oxide in the composition is greater compaction of the sintered billet in the process of heat treatment. This also increases the density of all components of the composition

  20. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  1. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  2. Sintered stabilized zirconia microstructure and conductivity

    International Nuclear Information System (INIS)

    Bernard, Herve.

    1981-04-01

    The elaboration of a stabilized zirconia powder which sinters at 1300 0 C and the influence of the sintered polycristal microstructure on its ionic conductivity have been studied. Among three investigated powder preparation processes, coprecipitation in an ammoniacal solution was chosen. After sintering at 1300 0 C, the pellet density was higher than 93% of the theoretical density. It even approached up to 98% TD with addition of less than 0,5 mole % Al 2 O 3 to the initial powder. The overall electrolyte conductivity and the inter and intragranular contributions have been determined by complex impedance spectroscopy. ZrO 2 -Y 2 O 3 solid solution conductivity was scarcely improved by Y 2 O 3 exchange with Yb 2 O 3 or Gd 2 O 3 . This conductivity greatly increases with grain size, its improvement with decreasing porosity, which has been quantified, is less sensible. Moreover, two original properties were noticed: small amounts of Al 2 O 3 and quenching greatly enhanced the overall conductivity. At temperatures below 500 0 C, grain boundaries only insured a partial migration of conductive ions. A parallel type electrical equivalent circuit suited well with this blocking effect [fr

  3. Magnetic viscosity, susceptibility and fluctuation fields in sintered NdFeB

    International Nuclear Information System (INIS)

    Tomka, G.J.; Bissell, P.R.; O'Grady, K.; Chantrell, R.W.

    1990-01-01

    Magnetic viscosity and irreversible susceptibility of a sample of anisotropic sintered NdFeB have been measured using a vibrating sample magnetometer. The fluctuation field as a function of local field is found to decrease with increasing demagnetizing field with a dip at the coercivity. This behavior is compared with an existing computer model based on a non-interacting system of fine, uniaxial, randomly oriented particles

  4. Effects of sintering temperature on structural and electrical transport properties of zinc ferrites prepared by sol-gel route

    International Nuclear Information System (INIS)

    Anis-ur-Rehman, M.; Malik, M.A.; Ahmad, I.; Nasir, S.; Mubeen, M.; Abdullah, A.

    2011-01-01

    The effects of sintering temperature on the structural and electrical transport properties of nanocrystalline zinc ferrites are reported. The zinc ferrites were prepared by WOWS sol-gel synthesis route. The prepared sample was sintered at temperatures 500 deg. C, 700 deg. C and 900 deg. C respectively for 2 h. X-ray Diffraction (XRD) technique was used to describe the structural properties. The crystallite size, lattice parameters and porosity of samples were measured from the analysis of XRD data. The average crystallite size for each sample was measured using the Scherrer formula by considering the most intense (3 1 1) peak. The dielectric constant (e), dielectric loss tangent (tan theta ) and AC electrical conductivity of nanocrystalline Zn ferrites are investigated as a function of frequency and sintering temperature. All the electrical properties are explained in accordance with MaxwellWagner model and Koops phenomenological theory. (author)

  5. Influence of the sintering temperature on the structural and electronic properties of LaCrO3 doped with barium

    International Nuclear Information System (INIS)

    Silva, A.L.A. da; Souza, M.V.M.M.; Rocco, A.M.

    2010-01-01

    Ba-doped lanthanum chromites were synthesized by combustion method, utilizing urea and glycine as fuel agents. The powders were calcined (800 deg C/6 h), pelletized, sintered in various temperatures and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), density/porosity and electrical conductivity. The diffractograms of the sintered samples presented a well-defined structure, with presence of secondary phases which increase with the sintering temperature. The samples presented low densities and a high porosities (40 - 50%), which was also observed in SEM analysis. The urea-synthesized sample presented a higher conductivity (10.4 S/cm at 1000 deg C), which is related to the influence of the fuel agent in the material properties. (author)

  6. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.; Ramadhan, M. R. [Department of Physics, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Nanto, D. [Department of Physics Education, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Saptari, S. A. [Faculty of Science and Technology, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Imaduddin, A. [Research Center of Metallurgy and Material, Indonesian Institute of Science,s Gd 470 Kawasan Puspitek, Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown at a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.

  7. Effects of varied porosity on the physic-mechanical properties of sintered ceramic from Ifon clay

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of saw dust admixture on the physic-mechanical properties of sintered clay bonded carbonized palm kernel shell ceramic was investigated. Composite mixtures of powdered carbonized palm kernel shell and clay from Ifon deposit were produced using equal amount of clay and carbonized palm kernel shell. These were then mixed with varied amount of saw dust (0%, 5% and 10% in a ball mill for 6 hours. From this standard sample specimens were produced using uniaxial compression after mixing each mixture with 10% moisture of clay contents. The compressed samples were sintered at 9500C and soaked for one hour. The sintered samples were characterized for various physic-mechanical properties using state of the art equipment’s. The fired samples were also characterized using ultra-high-resolution field emission scanning electron microscope (UHR-FEGSEM equipped with energy dispersive spectroscopy (EDX. It was observed that the apparent porosity and water absorption of the clay bonded carbonized palm kernel shell ceramic increased with increased amount of saw dust admixture, cold crushing strength, Young’ modulus of elasticity and absorbed energy of the sample reduced with increased amount of saw dust admixture. It was concluded that the sample with 0% saw dust admixture is judged to possess optimum physic-mechanical properties.

  8. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    Science.gov (United States)

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  9. Analysis of a cylindrical shell vibrating in a cylindrical fluid region

    International Nuclear Information System (INIS)

    Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.

    1976-08-01

    Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed

  10. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Energy Technology Data Exchange (ETDEWEB)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F., E-mail: Zaiou_21@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: semouni84@gmail.com, E-mail: guechia@yahoo.fr, E-mail: kanour17@yahoo.fr, E-mail: mtb25dz@gmail.com, E-mail: zouaisouheila@yahoo.fr, E-mail: guerfatiha@gmail.com [Ceramics Lab., Faculty of Exact Science, Physics Department, Mentouri University of Constantine (Algeria)

    2016-10-15

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO{sub 3} is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm{sup 3} ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  11. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Directory of Open Access Journals (Sweden)

    S. Zaiou

    Full Text Available Abstract In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type and 20 wt% calcium oxide extracted from CaCO3 is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm3. Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  12. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    International Nuclear Information System (INIS)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F.

    2016-01-01

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO 3 is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm 3 ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  13. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    International Nuclear Information System (INIS)

    Savic, S.M.; Aleksic, O.S.; Nikolic, M.V.; Lukovic, D.T.; Pejovic, V.Z.; Nikolic, P.M.

    2006-01-01

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe 2 O 3 were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed

  14. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Aleksic, O.S. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Lukovic, D.T. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Pejovic, V.Z. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, P.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu

    2006-07-15

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe{sub 2}O{sub 3} were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed.

  15. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1980-06-01

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO 2 gels and UO 2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO 2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author) [pt

  16. Density determination of sintered ceramic nuclear fuel materials

    International Nuclear Information System (INIS)

    Landspersky, H.; Medek, J.

    1980-01-01

    The feasibility was tested of using solids for pycnometric determination of the density of uranium dioxide-based sintered ceramic fuel materials manufactured by the sol-gel method in the shape of spherical particles of 0.7 to 1.0 mm in size and of particles smaller than 200 μm. For fine particles, this is the only usable method of determining their density which is a very important parameter of the fine fraction when it is employed for the manufacture of fuel elements by vibration compacting. The method consists in compacting a mixture of pycnometric material and dispersed particles of uranium dioxide, determining the size and weight of the compact, and in calculating the density of the material measured from the weight of the oxide sample in the mixture. (author)

  17. Effects of Synthesis and Spark Plasma Sintering Conditions on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    2013-01-01

    Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density, and therm......Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density...

  18. The effect of sintering temperature on the intergranular properties and weak link behavior of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    P. Kameli

    2006-03-01

    Full Text Available  A systematic study of the intergranular properties of (Bi,Pb2 Sr2 Ca2 Cu3 Oy (Bi2223 polycrystalline samples has been done using the electrical resistivity and AC susceptibility techniques. In this study, we have prepared a series of Bi2223 samples with different sintering temperatures. The XRD results show that by increasing the sintering temperature up to 865° c , the Bi2212 phase fraction decreases. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of the weak links and consequently reduces the intergranular critical current densities.

  19. Fast, inexpensive, diffraction limited cylindrical microlenses

    International Nuclear Information System (INIS)

    Synder, J.J.; Reichert, P.

    1991-01-01

    We have developed a technique for fabricating fast, well corrected cylindrical microlenses. With this technique we have made a number of different microlenses with dimensions and focal lengths in the range of few hundred μm, and diffraction limited numerical apertures as high as 0.9. The microlenses are specifically designed for applications where they can increase the radiance or otherwise enhance the optical characteristics of laser diode light. The fabrication method we use is very versatile, and the microlenses produced this way would be very inexpensive in production quantities. 6 refs., 4 figs

  20. History of the small cylindrical melter

    International Nuclear Information System (INIS)

    Allen, T.L.; Iverson, D.C.; Plodinec, M.J.

    1985-08-01

    The small cylindrical melter (SCM) was designed to provide engineering data useful for operation and design of full-scale glass melters for vitrification of high-level radioactive waste. This melter was part of the research and development program for the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Extensive corrosion testing of melter materials of construction (Monofrax K3, Inconel 690), simulated radioactive waste glass characterization, and melter component development were conducted in support of the DWPF full-scale melter design. 66 figs., 14 tabs

  1. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  2. Cylindrical ionization chamber with compressed krypton

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskii, A.A.; Pritychenko, B.V.; Viyar, J.; Garcia, E.; Morales, A.; Morales, J.; Nunes-Lagos, R.; Puimedon, J.; Saens, K.; Salinas, A.; Sarsa, M.

    1993-01-01

    A cylindrical ionization chamber with a grid is used to search for double positron decay and atomic electron conversion to a positron in 78 Kr. Krypton is the working gas material of the chamber. The spectrometric characteristics of the chamber filled with krypton and xenon are presented. The energy resolution is 2.1% for an energy of 1.84 MeV (the source of γ-quanta is 88 Y) when the chamber is filled with a mixture of Kr+0.2% H 2 under a pressure of 25 atm

  3. Cullet Manufacture Using the Cylindrical Induction Melter

    International Nuclear Information System (INIS)

    Miller, D. H.

    2000-01-01

    The base process for vitrification of the Am/Cm solution stored in F-canyon uses 25SrABS cullet as the glass former. A small portion of the cullet used in the SRTC development work was purchased from Corning while the majority was made in the 5 inch Cylindrical Induction Melter (CIM5). Task 1.01 of TTR-NMSS/SE-006, Additional Am-Cm Process Development Studies, requested that a process for the glass former (cullet) fabrication be specified. This report provides the process details for 25SrAB cullet production thereby satisfying Task 1.01

  4. Stability analysis of cylindrical Vlasov equilibria

    International Nuclear Information System (INIS)

    Short, R.W.

    1979-01-01

    A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma

  5. Enhanced Performance of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2007-01-01

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  6. Waves in inhomogeneous plasma of cylindrical geometry

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1966-01-01

    The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr

  7. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization

    International Nuclear Information System (INIS)

    Yar, M.A.; Wahlberg, Sverker; Bergqvist, Hans; Salem, H.G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    Nano-crystalline W-1%Y 2 O 3 (wt.%) powder was produced by a modified solution chemical reaction of ammonium paratungstate (APT) and yttrium nitrate. The precursor powder was found to consist of particles of bimodal morphology i.e. large APT-like particles up to 20 μm and rectangular yttrium containing ultrafine plates. After thermal processing tungsten crystals were evolved from W-O-Y plate like particles. spark plasma sintering (SPS) was used to consolidate the powder at 1100 and 1200 deg. C for different holding times in order to optimize the sintering conditions to yield high density but with reduced grain growth. Dispersion of yttrium oxide enhanced the sinterability of W powder with respect to lanthanum oxide. W-1%Y 2 O 3 composites with sub-micron grain size showed improved density and mechanical properties as compared to W-La 2 O 3 composites. Sample sintered in two steps showed improved density, due to longer holding time at lower temperature (900 deg. C) and less grain growth due to shorter holding time at higher temperature i.e. 1 min at 1100 deg. C.

  8. In situ observation and neutron diffraction of NiTi powder sintering

    International Nuclear Information System (INIS)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2014-01-01

    This study investigated NiTi powder sintering behaviour from elemental powder mixtures of Ni/Ti and Ni/TiH 2 using in situ neutron diffraction and in situ scanning electron microscopy. The sintered porous alloys have open porosities ranging from 2.7% to 36.0%. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH 2 compact leads to less densification yet higher chemical homogenization only after high-temperature sintering. For the first time, direct evidence of the eutectoid phase transformation of NiTi at 620 °C is reported by in situ neutron diffraction. A comparative study of cyclic stress–strain behaviours of the porous NiTi alloys made from Ni/Ti and Ni/TiH 2 compacts indicate that the samples sintered from the Ni/TiH 2 compact exhibited a much higher porosity, larger pore size, lower fracture strength, lower close-to-overall porosity ratio and lower Young’s modulus. Instead of enhanced densification by the use of TiH 2 as reported in the literature, this study shows an adverse effect of TiH 2 on powder densification in NiTi

  9. HAp physical investigation - the effect of sintering temperature

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Idris Besar; Rusnah Mustaffa; Cik Rohaida Che Hak

    2004-01-01

    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp). In this study, the HAp was prepared using polymeric sponge techniques with different binder concentration. The sintering process was carried out in air for temperature ranging from 1200 degree C to 1600 degree C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentration HAp showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut also be presented in this paper. (Author)

  10. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  11. Properties, structure and machnining capabilities sintered corundum abrasives

    Directory of Open Access Journals (Sweden)

    Cz.J. Niżankowski

    2010-07-01

    Full Text Available The diversity of sintered corundum abrasives used in both bonded and in the embankment of abrasive tools currently poses substantialproblems for their choice of technology to specific tasks. Therefore performed a comparative study of ownership structures and capacitiesof elected representatives machnining sintered corundum abrasives of different generations, and this is normal sintered alumina,submicrocrystalline alumina sintered and nanocrystalline alumina sintered. Were studied some properties of a set of abrasive particles,physicochemical properties and structural and mechanical and technological properties. The studies used the method of microscopicmeasurement to determine the shape of abrasive particles, the pycnometer to determine the density of abrasive, a spectrometer todetermine the chemical composition of the magnetic analyzer for determining the magnetic fraction, scanning electron microscope toanalysis of abrasive grains and a special position to designate the machining capacity abrasive grains. The results showed a significantincrease in machining capacity sintered corundum abrasives with increasing degree of fragmentation of the crystallites sintered corundum abrasives and distinctive bands in the emerging microchip. The originality of the development provides a comparative summary ofproperties of sintered corundum abrasives of different generations and functions obtained by the author making the change in value indexof machininhcapacity grit from cutting speeds for different generations of sintered corundum.

  12. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  13. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  14. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids

    Science.gov (United States)

    Dai, Jiawei; Pan, Yubai; Xie, Tengfei; Kou, Huamin; Li, Jiang

    2018-04-01

    Highly transparent terbium aluminum garnet (Tb3Al5O12, TAG) magneto-optical ceramics were fabricated from co-precipitated nanopowders with tetraethoxysilane (TEOS) as sintering aid by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment. The ball milled TAG powder shows better dispersity than the as-synthesized powder, and its average particle size is about 80 nm. For the ceramic sample pre-sintered at 1720 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the in-line transmittance exceeds 76% in the region of 400-1580nm (except the absorption band), reaching a maximum value of 81.8% at the wavelength of 1390 nm. The microstructure of the TAG ceramic is homogeneous and its average grain size is approximately 19.7 μm. The Verdet constant of the sample is calculated to be -182.7 rad·T-1·m-1 at room temperature.

  15. Performance comparison of plane and cylindrical forms of sintered uranium dioxide for use in pressurized water reactors

    International Nuclear Information System (INIS)

    Silva, J.E.R. da.

    1989-01-01

    A study on the UO sub(2) performance and utilization in PWR's as plate and rod type fuel element is made. A comparative evaluation covering aspects of neutronics, thermal-hydraulics, thermal-mechanics and fuel performance is presented. The results to the plate type fuel, when comparing to the rod type fuel, show the following characteristics: larger reactivities and power densities; smaller quantities of fuel material are needed; pressure drop along the fuel channels are lower; fuel densification, swelling and fission gas release are minimized as a result of lower fuel temperatures. The results obtained for both fuels confirm the potential good performance of UO sub(2) in PWR's. Burnups up to 30.000 MWD/tonU can be achieved. (author)

  16. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  17. Sintering of nanopowders of ZrO_2 (Y_2O_3): Effect of compaction pressure on densification

    International Nuclear Information System (INIS)

    Palmeira, Alexandre Alvarenga; Magnago, Roberto de Oliveira; Pereira, Glayce Cassaro; Bondioli, Marcelo Jose; Strecker, Kurt; Santos, Claudinei dos

    2014-01-01

    In this work studied the powders (nano) sintered of ZrO_2 (Y_2O_3) by dilatometry. Was identified the effect of compaction pressure variation in the final results of densification of materials. Powders were compacted at different compaction pressures. The compacts were subjected to temperatures of 1250°C to 1400°C with sintering levels ranging from 0 to 8 hours. Samples were characterized by X-ray diffraction and relative density using Archimedes method. The results were compared with powders (micro) of similar composition in order to compare the effect of particle size on densification parameters. The samples were further subjected to microstructural characterization in order to identify the average grain size of the sintering under each condition used in both materials. (author)

  18. Effects of AlN on the densification and mechanical properties of pressureless-sintered SiC ceramics

    Directory of Open Access Journals (Sweden)

    Qisong Li

    2016-02-01

    Full Text Available In the present work, SiC ceramics was fabricated with AlN using B4C and C as sintering aids by a solid-state pressureless-sintered method. The effects of AlN contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained SiC ceramics were thoroughly investigated. AlN was found to promote further densification of the SiC ceramics due to its evaporation over 1800 °C, transportation, and solidification in the pores resulted from SiC grain coarsening. The highest relative density of 99.65% was achieved for SiC sample with 15.0 wt% AlN by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for SiC ceramics containing AlN tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% AlN sintered at 1900 °C for 1 h in Ar. Also, SiC ceramics with 30.0 wt% AlN exhibited the highest fracture toughness of 5.23 MPa m1/2 when sintered at 1900 °C.

  19. Evaluation of sintering effects on SiC-incorporated UO2 kernels under Ar and Ar–4%H2 environments

    International Nuclear Information System (INIS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Hunt, Rodney D.; Collins, Jack L.; Terrani, Kurt A.; Snead, Lance L.

    2013-01-01

    Silicon carbide (SiC) is suggested as an oxygen getter in UO 2 kernels used for tristructural isotropic (TRISO) particle fuels and to prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that an internal gelation process can be used to incorporate SiC in UO 2 fuel kernels. Even though the presence of UC in either argon (Ar) or Ar–4%H 2 sintered samples suggested a lowering of the SiC up to 3.5–1.4 mol%, respectively, the presence of other silicon-related chemical phases indicates the preservation of silicon in the kernels during sintering process. UC formation was presumed to occur by two reactions. The first was by the reaction of SiC with its protective SiO 2 oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO 2 to form UC. The second process was direct UO 2 reaction with SiC grains to form SiO, CO, and UC. A slightly higher density and UC content were observed in the sample sintered in Ar–4%H 2 , but both atmospheres produced kernels with ∼95% of theoretical density. It is suggested that incorporating CO in the sintering gas could prevent UC formation and preserve the initial SiC content

  20. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  1. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  2. Effect of CaCO_3 addition on ash sintering behaviour during K_2CO_3 catalysed steam gasification of a Chinese lignite

    International Nuclear Information System (INIS)

    Zhang, Jiguang; Li, Jianbo; Mao, Yandong; Bi, Jicheng; Zhu, Mingming; Zhang, Zhezi; Zhang, Li; Zhang, Dongke

    2017-01-01

    Highlights: • K_2CO_3 decreased ash sintering temperature and enhanced ash melting in gasification. • CaCO_3 addition enhanced ash melting and lowered ash sintering temperatures. • CaCO_3 reacted with SiO_2 to form fluxing phases and amorphous materials. • CaCO_3 addition inhibited the potassium aluminium silicate formation. • CaCO_3 addition preserved the catalytic activity of potassium. - Abstract: The ash sintering behaviour of a Chinese lignite (LLI) with different amounts of CaCO_3 addition during K_2CO_3-catalysed gasification was investigated. 0–10 wt% K_2CO_3 was doped into the lignite for catalytic gasification, and CaCO_3 was added into the K_2CO_3-doped samples, varying in the range of 0–20 wt% relative to the lignite, for understanding its impact on ash sintering and catalytic gasification activity. Ash samples were prepared by completely gasifying the lignite samples with steam in a fixed-bed catalytic gasification system operating at 1073 K and atmospheric pressure. Sintering temperature, mineralogy and morphology of the ash samples thus obtained were determined using a pressure-drop sintering device, XRD and SEM-EDS, respectively. The results showed that the ash sintering temperature decreased as the K_2CO_3 addition increased, indicating that K_2CO_3 as the catalyst for gasification would promote ash sintering. SEM imaging analysis showed that all the ash samples from LLI with K_2CO_3 addition were composed of agglomerated particles with smooth surfaces, indicating the ashes had incurred partial melting. The degree of melting became more apparent as the K_2CO_3 addition ratio increased. These molten phases were identified as K-bearing arcanite and kaliophilite, which contributed to the formation of liquid phases at lower temperatures, resulting in lowered ash sintering temperatures. It was also revealed that the addition of CaCO_3 decreased the sintering temperatures of ash samples, indicating that the ash sintering was further

  3. Spark Plasma Sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Alayli, N. [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Université de Versailles-Saint-Quentin-en-Yvelines, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre National de la Recherche Scientifique/INSU, Laboratoire Atmosphères Milieux Observations Spatiales-IPSL, Quartier des Garennes, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Schoenstein, F., E-mail: frederic.schoenstein@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Girard, A. [Office National d' Étude et de Recherches Aérospatiales, Laboratoire d' Étude des Microstructures, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 104, 29 avenue de la Division Leclerc, F-92322 Châtillon (France); and others

    2014-11-14

    Processing parameters of Spark Plasma Sintering (SPS) technique were constrained to process nano sized silver particles bound in a paste for interconnection in power electronic devices. A novel strategy combining debinding step and consolidation processes (SPS) in order to elaborate nano-structured silver bulk material is investigated. Optimum parameters were sought for industrial power electronics packaging from the microstructural and morphological properties of the sintered material. The latter was studied by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to determine the density and the grain size of crystallites. Two types of samples, termed S1 (bulk) and S2 (multilayer) were elaborated and characterized. They are homogeneous with a low degree of porosity and a good adhesion to the substrate and the process parameters are compatible with industrial constraints. As the experimental results show, the mean crystallite size is between 60 nm and 790 nm with a density between 50% and 92% resulting in mechanical and thermal properties that are better than that of lead free solder. The best SPS sintering parameters, the applied pressure, the temperature and the processing time were determined as being 3 MPa, 300 °C and 1 min respectively when the desizing time of the preprocessing step was kept below 5 min at 150 °C. Using these processing parameters, acceptable for automotive packaging industry, a semi-conductor power chip was successfully connected to a metalized substrate by sintered silver with thermal and electrical properties better than those of current solders and with thermomechanical properties allowing absorption of thermoplastic stresses. - Highlights: • The sintered silver joints have nanometric structure. • The grain growth was controlled by the SPS sintering parameters. • New connection material improve thermal and electrical properties of current solders. • Interconnection's plastic strain can absorb thermo

  4. Effects of V{sub 2}O{sub 5} addition on NiZn ferrite synthesized using two-step sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Shi Gang; Ni Zheming; Zheng Li [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Aimin, E-mail: hjzjut@zjut.edu.cn [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-06-15

    The combined influence of a two-step sintering (TSS) process and addition of V{sub 2}O{sub 5} on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V{sub 2}O{sub 5} additive, the sample sintered by the two-step sintering process at a high temperature of 1250 Degree-Sign C for 30 min and a lower temperature of 1180 Degree-Sign C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.

  5. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  6. Transport properties of microwave sintered pure and glass added MgCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, W., E-mail: madhuriw12@gmail.com [School of Advanced Sciences, VIT University, Vellore 632 014 (India); Penchal Reddy, M.; Kim, Il Gon [Department of Physics, Changwon National University, Changwon 641 773 (Korea, Republic of); Rama Manohar Reddy, N. [Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa 516 227 (India); Siva Kumar, K.V. [Ceramic Composites Materials Laboratory, Sri Krishnadevaraya University, Anantapur 515 055 (India); Murthy, V.R.K. [Microwave Laboratory, IIT Madras, Chennai 600 036 (India)

    2013-07-01

    Highlights: • MgCuZn ferrite was successfully prepared by novel microwave sintering (MS) method. • The sintering temperature was notably reduced from 1150 °C to 950 °C for MS. • Temperature dependence of DC conductivity and AC conductivity are studied. • 1 wt% PBS glass added MS MgCuZn ferrite samples are suitable for core materials in multilayer chip inductors (MLCI). -- Abstract: A series of pure stoichiometric and 1 wt% lead borosilicate (PBS) glass added MgCuZn ferrite with the general formula Mg{sub 0.5}Cu{sub x}Zn{sub 0.5−x}Fe{sub 2}O{sub 4} with x = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 were synthesized by microwave sintering technique. Single phase spinel structure is exhibited by the XRD patterns of these ferrites. DC and AC conductivity were investigated as a function of composition, temperature and frequency. DC conductivities were also estimated using the impedance spectroscopy analysis of Cole–Cole plots. The DC conductivities thus obtained are in good agreement with the experimental results. All the investigated samples exhibited two regions of conductivity one in the low temperature and the second in the high temperature region. It is observed that PBS glass added samples have lower conductivities than pure samples. Due to their lower conductivities and sintering temperatures the 1 wt% PBS glass added samples are suitable for multilayer chip inductor (MLCI) and high definition TV deflection yoke material application.

  7. The effect of spark plasma sintering on lithium disilicate glass-ceramics.

    Science.gov (United States)

    Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J

    2015-10-01

    To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (pglass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  9. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  10. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  11. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  12. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  13. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    International Nuclear Information System (INIS)

    Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di

    2015-01-01

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained

  14. Comparative Evaluations and Microstructure: Mechanical Property Relations of Sintered Silicon Carbide Consolidated by Various Techniques

    Science.gov (United States)

    Barick, Prasenjit; Chatterjee, Arya; Majumdar, Bhaskar; Saha, Bhaskar Prasad; Mitra, Rahul

    2018-04-01

    A comparative evaluation between pressureless or self-sintered silicon carbide (SSiC), hot-pressed silicon carbide (HP-SiC), and spark plasma-sintered silicon carbide (SPS-SiC) has been carried out with emphasis on examination of their microstructures and mechanical properties. The effect of sample dimensions on density and properties of SPS-SiC has been also examined. Elastic modulus, flexural strength, and fracture toughness measured by indentation or testing of single-edge notched beam specimens have been found to follow the following trend, HP-SiC > SSiC > SPS-SiC. The SPS-SiC samples have shown size-dependent densification and mechanical properties, with the smaller sample exhibiting superior properties. The mechanical properties of sintered SiC samples appear to be influenced by relative density, grain size, and morphology, as well as the existence of intergranular glassy phase. Studies of fracture surface morphologies have revealed the mechanism of failure to be transgranular in SSiC or HP-SiC, and intergranular in case of SPS-SiC, indicating the dominating influence of grain size and α-SiC formation with high aspect ratio.

  15. Magnetostatic interactions and forces between cylindrical permanent magnets

    International Nuclear Information System (INIS)

    Vokoun, David; Beleggia, Marco; Heller, Ludek; Sittner, Petr

    2009-01-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  16. Dynamic Fracture Toughness of TaC/CNTs/SiC CMCs Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Qiaoyun Xie

    2015-01-01

    Full Text Available This study focuses on the fracture toughness of TaC and carbon nanotubes (CNTs reinforced SiC ceramic matrix composites (CMCs, prepared by spark plasma sintering (SPS technique. A high densification of 98.4% was achieved under the sintering parameter of 133°C/min, 1800°C, and 90 MPa pressure. Vickers indentation was employed to measure the indentation toughness on the polished surface of ceramic samples, SEM was applied to directly observe the crack propagation after indentation, and split Hopkinson pressure bar (SHPB was developed to determine the dynamic fracture toughness within the ceramic samples subjected to an impact in a three-point bending configuration.

  17. Mechanical characterization of cemented carbide WC-6Co (%wt) manufactured by SPS (Spark Plasma Sintering

    International Nuclear Information System (INIS)

    Boidi, G.; Tertuliano, A.J.; Machado, I.F.

    2016-01-01

    This work aimed to manufacture cemented carbide (WC-6%wtCo) obtained by SPS (Spark Plasma Sintering) process and to carry out the mechanical characterization by hardness and fracture toughness. The material was consolidated at 1100 deg C for different holding times (1 min, 5 min, 10 min), in order to evaluate the densification. A reference sample was also used to be compared to SPS. Optical and scanning electron microscopy were carried out to characterize the microstructural features of the samples and mechanical properties were obtained by hardness measurements (micro and macro) and instrumented indentation. The fracture toughness was calculated with the method of Palmqvist. Best results were found in the material sintered by SPS for 10 minutes of holding time, in which 97% of relative density and about 1600 HV_1_0 was reached. (author)

  18. Boron Carbide: Stabilization of Highly-Loaded Aqueous Suspensions, Pressureless Sintering, and Room Temperature Injection Molding

    Science.gov (United States)

    Diaz-Cano, Andres

    Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.

  19. Cinética de sinterização para sistemas à base de SnO2 por taxa de aquecimento constante Sintering kinetics for SnO2-based systems by constant heating rate

    Directory of Open Access Journals (Sweden)

    S. M. Tebcheran

    2003-04-01

    in small concentrations as densifying aids for this oxide. In the present study the sintering kinetics of tin oxide was studied considering the effect of sintering atmosphere and of the MnO2 concentration. SnO2-MnO2 systems were prepared from the polymeric precursors method and the obtained powders were characterized by surface area by the BET method. SnO2 powders with varied MnO2 concentrations were pressed in cylindrical shape, and sintered in a dilatometer furnace with constant heating rate and controlled atmospheres. Sintered samples were characterized by scanning electron microscopy. The influence of atmosphere (argon, air or CO2 as well as of the MnO2 concentrations on the sintering kinetics was determined. The kinetics data of linear shrinkage were analyzed in terms of kinetic models for the initial stage of sintering (Woolfrey and Bannister as well as for the global sintering (Su e Johnson allowing the determination of the apparent activation energy. Following the determination of the master sintering curve the apparent activation energy of all sintering process were determined as well as its dependence with the atmosphere and manganese concentrations. Based on these values and on the n exponent, determined by the classical grain growth equation, it was concluded that the most probable sintering mechanism is grain boundary diffusion with surface redistribution controlling the kinetics.

  20. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  1. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  2. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  4. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  5. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  6. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  7. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  8. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  9. Sintering of uranium dioxide obtained by continuous precipitation of AUC

    International Nuclear Information System (INIS)

    Amaya, C.D.; Sterba, M.E.; Russo, D.O.

    1993-01-01

    The Nuclear Materials Division in Bariloche Atomic Center evaluates the ceramic behaviour of UO 2 powders obtained from continuously precipitated and reduced AUC (Ammonium Uranyl Tri Carbonate). An analysis is made of powder characteristics (particle morphology and size distribution and specific area) on behaviour of UO 2 during sintering (compaction, sintering, pore and grain microstructure, etc.). 1 ref

  10. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    Science.gov (United States)

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  11. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ratures ranging from 570–630 ◦C. Microwave sintering at a heating rate of as high as 22◦. C/min resulted in ... The effect of heating mode and sintering temperature are discussed .... the compacts. This is attributed to the Zn evaporated from the.

  12. Superhard MgB sub 2 bulk material prepared by high-pressure sintering

    CERN Document Server

    Ma, H A; Chen, L X; Zhu, P W; Ren, G Z; Guo, W L; Fu, X Q; Zou Guang Tian; Ren, Z A; Che, G C; Zhao, Z X

    2002-01-01

    Superhard MgB sub 2 bulk material with a golden metallic shine was synthesized by high-pressure sintering for 8 h at 5.5 GPa and different temperatures. Appropriate pressure and temperature conditions for synthesizing polycrystalline MgB sub 2 with high hardness were investigated. The samples were characterized by means of atomic force microscopy and x-ray diffraction. The Vickers hardness, bulk density, and electrical resistivity were measured at room temperature.

  13. Effects of forming temperature and sintering rate to the final properties of FeCuAl powder compacts formed through uniaxial die compaction process

    Science.gov (United States)

    Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

  14. Focusing properties of cylindrical vector vortex beams

    Science.gov (United States)

    Xiaoqiang, Zhang; Ruishan, Chen; Anting, Wang

    2018-05-01

    In this paper, following Richards and Wolf vectorial diffraction theory, the focusing properties of cylindrical vector vortex beams (CVVB) are investigated, and a diffractive optical element (DOE) is designed to spatially modulate the amplitude of the CVVB. Simulated results show that the CVVB focused by an objective also carry orbital angular momentum (OAM), and the optical fields near the focal region can be modulated by changing the topological charge of the CVVB. We numerically simulate the focus properties of radially and azimuthally polarized beams with topological charge equal to 0, 1, 2 and 10 respectively. As a result, a dark channel with a length about 20 λ can be obtained. These new properties have the potential applications such as particle acceleration, optical trapping and material processing.

  15. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  16. Confined detonations with cylindrical and spherical symmetry

    International Nuclear Information System (INIS)

    Linan, A.; Lecuona, A.

    1979-01-01

    An imploding spherical or cylindrical detonation, starting in the interface of the detonantion with an external inert media, used as a reflector, creates on it a strong shock wave moving outward from the interface. An initially weak shock wave appears in the detonated media that travels toward the center, and it could reach the detonation wave, enforcing it in its process of implosion. To describe the fluid field, the Euler s equations are solved by means of expansions valid for the early stages of the process. Isentropic of the type P/pγ-K for the detonated and compressed inert media are used. For liquid or solid reflectors a more appropriate equation is used. (Author) 8 refs

  17. Space charge emission in cylindrical diode

    International Nuclear Information System (INIS)

    Torres-Córdoba, Rafael; Martínez-García, Edgar

    2014-01-01

    In this paper, a mathematical model to describe cylindrical electron current emissions through a physics approximation method is presented. The proposed mathematical approximation consists of analyzing and solving the nonlinear Poisson's equation, with some determined mathematical restrictions. Our findings tackle the problem when charge-space creates potential barrier that disable the steady-state of the beam propagation. In this problem, the potential barrier effects of electron's speed with zero velocity emitted through the virtual cathode happens. The interaction between particles and the virtual cathode have been to find the inter-atomic potentials as boundary conditions from a quantum mechanics perspective. Furthermore, a non-stationary spatial solution of the electrical potential between anode and cathode is presented. The proposed solution is a 2D differential equation that was linearized from the generalized Poisson equation. A single condition was used solely, throughout the radial boundary conditions of the current density formation

  18. Analysis of a cylindrical imploding shock wave

    International Nuclear Information System (INIS)

    Mishkin, E.A.; Fujimoto, Y.

    1978-01-01

    the self-similar solution of the gasdynamic equations of a strong cylindrical shock wave moving through an ideal gas, with γ = csub(p)/csub(v), is considered. These equations are greatly simplified following the transformation of the reduced velocity U 1 (xi) → U 1 = 1/2(γ + 1 ) (U + xi). The requirement of a single maximum pressure, dsub(xi)P = 0, leads to an analytical determination of the self-similarity exponent α(γ). For gases with γ = 2 + 3sup(1/2), this maximum ensues right at the shock front and the pressure distribution then decreases monotonically. The postulate of analyticity by Gelfand and Butler is shown to concur with the requirement dsub(xi)P 0. The saturated density of the gas left in the wake of the shock is computed and - U is shown to be the reduced velocity of sound at P = P sub(m). (author)

  19. Cathode Effects in Cylindrical Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  20. Solar heat gain through vertical cylindrical glass

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F. [Cairo Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    1999-10-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)