WorldWideScience

Sample records for sintered alpha sic

  1. Comparative optical investigations of sintered and monocrystalline black and green silicon carbide (SiC)

    International Nuclear Information System (INIS)

    Werheit, H.; Schwetz, K.A.

    2004-01-01

    Crystalline SiC appears in many different polytypes of cubic, hexagonal, and rhombohedral structures. These polytypes are colorless transparent or exhibit various colors evoked by doping with different elements. Dense sintered S-SiC (solid-state sintered) and LPS-SiC (liquid-phase sintered) were known in black color only, but recently a new liquid-phase sintering process was developed to achieve green LPS-SiC as well. Whereas in S-SiC the polycrystalline grains are homogeneously doped with 0.2 wt% boron, in the LPS-types the SiC grains contain up to 1.2 wt% Al, 0.3 wt% N and 0.1% O having a structure comprising a SiC(Al,N,O) mixed crystal shell and a pure SiC core. The difference in color of polycrystalline SiC bodies seems to result from small amounts of carbon in the sintered specimens (0.2-0.5 wt% C). Green sintered LPS-SiC is obtained, after free carbon has largely been removed by a suitable oxidation process prior to sintering. To get information on the various types of sintered SiC, the optical extinction and absorption spectra of black and green sintered SiC and green Acheson-SiC single crystals were quantitatively measured in the spectral range between about 1.4 and 4.1 eV. While the absorption coefficients of the single crystals vary between about 50 and 200 cm -1 , the extinction coefficients of the sintered materials are between 2000 and 7000 cm -1 . Nevertheless the absorption bands in the more or less transparent region of the green and black materials can easily be attributed to one another. Hence, the reason for these absorption processes must be assumed to be the same. In the same way, position and slope of the absorption edges are correlated amongst green or black SiC, irrespective of, whether the material is single crystal or sintered

  2. Microstructure and Properties of Spark Plasma Sintered Aluminum Containing 1 wt.% SiC Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ismaila Kayode Aliyu

    2015-01-01

    Full Text Available The low hardness and strength of aluminum, which limits its use in many industrial applications, could be increased through the addition of nanoparticles. However, the appropriate processing method and parameters should be carefully selected in order to achieve the desired improvement in properties. In this work, aluminum was reinforced with low weight fraction (1 wt.% of SiC nanoparticles and consolidated through spark plasma sintering. The effect of processing parameters on the densification, microstructure, and properties of the processed material was investigated. Field Emission Scanning Electron Microscope (FE-SEM equipped with Energy Dispersive X-ray Spectroscopy (EDS facility was used to characterize the microstructure and analyze the reinforcement’s distribution in sintered samples. Phases present were characterized through X-ray diffraction (XRD. A densimeter and a digital microhardness tester were used to measure the density and hardness, respectively. Compressive tests were performed using universal testing machine. A fully dense Al-1 wt.% SiC sample was obtained. Analysis of density and hardness values showed that the influence of applied pressure was more pronounced than heating rate while the influence of sintering temperature was more significant than sintering time. Within the range of parameters used, the highest values of the characterized properties were obtained at a sintering temperature of 600 °C, sintering time of 10 min, pressure of 50 MPa, and heating rate of 200 °C/min.

  3. Porous SiC ceramics fabricated by quick freeze casting and solid state sintering

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available Porous SiC ceramics with uniform microstructure were fabricated by quick freezing in liquid nitrogen and solid state sintering. Poly (vinyl alcohol (PVA was added as binder and pore morphology controller in this work. The microstructure and mechanical properties of porous SiC ceramics could be controlled by the composition of the aqueous slurries. Both solid content of the slurries and PVA content impacted on the pore structures and mechanical properties of the porous SiC ceramics. The solid content of slurries and PVA content varied from 60 to 67.5 wt% and 2–6 wt%, respectively. Besides, the grain morphology of ceramics was also tailored by changing the sintering temperature from 2050 to 2150 °C. Porous SiC ceramics with an average porosity of 42.72%, flexural strength of 59.28 MPa were obtained at 2150 °C from 67.5 wt% slurries with 2 wt% PVA.

  4. High-temperature effect of hydrogen on sintered alpha-silicon carbide

    Science.gov (United States)

    Hallum, G. W.; Herbell, T. P.

    1986-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  5. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  6. Evaluation of alpha-SiC sintering using statistical methods

    Science.gov (United States)

    Hurst, J. B.; Millard, M. L.

    1985-01-01

    The effect of time and temperature on the density and strength of alpha-SiC was studied and mathematically modeled using a central composite experimental design. A sintering temperature of 2150 C for 1.7 h maximized the flexural strength and densification values. However, temperatures above 2200 C promoted abnormal grain growth, with resulting appreciable decreases in strength. Flexural strength increased exponentially with increasing density for specimens with densities less than or equal to 92 percent of theoretical.

  7. Sintering, structure, and mechanical properties of nanophase SiC: A molecular-dynamics and neutron scattering study

    International Nuclear Information System (INIS)

    Chatterjee, Alok; Kalia, Rajiv K.; Nakano, Aiichiro; Omeltchenko, Andrey; Tsuruta, Kenji; Vashishta, Priya; Loong, Chun-Keung; Winterer, Markus; Klein, Sylke

    2000-01-01

    Structure, mechanical properties, and sintering of nanostructured SiC (n-SiC) are investigated with neutron scattering and molecular-dynamics (MD) techniques. Both MD and the experiment indicate the onset of sintering around 1500 K. During sintering, the pores shrink while maintaining their morphology: the fractal dimension is ∼2 and the surface roughness exponent is ∼0.45. Structural analyses reveal that interfacial regions in n-SiC are disordered with nearly the same number of three- and fourfold coordinated Si atoms. The elastic moduli scale with the density as ∼ρ μ , where μ=3.4±0.1. (c) 2000 American Institute of Physics

  8. Sintering by hot isostatic pressing (HIP) and spark plasma sintering (SPS) of silicon carbide (SiC) nano-particles synthesized by laser pyrolysis pilot scale; Frittage par compression isostatique a chaud (CIC) et spark plasma sintering (SPS) de nanoparticules en carbure de silicum (SiC) synthetisees a echelle pilote par pyrolyse laser

    Energy Technology Data Exchange (ETDEWEB)

    Mengeot, C.; Guizard, B.; Tenegal, F. [CEA Saclay (DRT/DTNM/LTMEx), 91 - Gif-sur-Yvette (France); Poissonnet, S.; Boulanger, L. [CEA Saclay (DEN/DMN/SRMP), 91 - Gif-sur-Yvette (France); Le Flem, M. [CEA Saclay (DEN/DMN/SRMA/LA2M), 91 - Gif-sur-Yvette (France); Guillard, F. [Centre National de la Recherche Scientifique (CNRS/CEMES), 31 - Toulouse (France)

    2007-07-01

    Pure or with sintering additives (Al{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) SiC nano-particles (20 nm) synthesised by laser pyrolysis at pilot scale were first cold pressed under 1 GPa and then sintered by Hot Isostatic Pressing (HIP) and Spark Plasma Sintering (SPS). Pure SiC samples densified by HIP have a higher density (95%) than SPS ones (80%). With help of sintering additives, both HIP and SPS samples are near theoretical density. Smaller grain size were observed for HIP pellets (pure {approx}35 nm and with additives {approx}100 to 200 nm). Whereas SPS samples grain size were between 100 nm and 1 m. A primary mechanical properties study demonstrates a hardness (28 GPa) and a toughness (6.5 MPa m{sup 1/2}) optimum when crystallite size is around 200 nm. (authors)

  9. Effect of SiC Nanowhisker on the Microstructure and Mechanical Properties of WC-Ni Cemented Carbide Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Xiaoyong Ren

    2014-01-01

    Full Text Available Ultrafine tungsten carbide-nickel (WC-Ni cemented carbides with varied fractions of silicon carbide (SiC nanowhisker (0–3.75 wt.% were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC and tantalum carbide (TaC as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker.

  10. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic; Elaboration de ceramiques nanostructurees en carbure de silicium (SiC): de la synthese de poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA), 91 - Gif-sur-Yvette (France)

    2008-07-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC{sub f}/SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC{sub f}/SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  11. SiC Armor Tiles via Magnetic Compaction and Pressureless Sintering

    National Research Council Canada - National Science Library

    Chelluri, Bhanu; Knoth, Ed A; Franks, L. P

    2008-01-01

    The purpose of the SBIR, entitled "Continuous Dynamic Processing of Ceramic Tiles for Ground Vehicle Protection", was to create a high rate, cost effective manufacturing method for producing silicon carbide (SiC...

  12. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques

    Directory of Open Access Journals (Sweden)

    M. Penchal Reddy

    2017-10-01

    Full Text Available In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol% reinforced aluminum (Al metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM, mechanical (nanoindentation, compression, tensile and thermal properties (co-efficient of thermal expansion-CTE of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites. Keywords: Al-SiC nanocomposites, Microwave sintering, Hot extrusion, Mechanical properties, Thermal expansion

  13. Microstructure evolution of SiC sintered bodies activated by boron and carbon

    International Nuclear Information System (INIS)

    Gubernat, A.; Stobierski, L.

    2003-01-01

    Investigation on the role of sintering aids on densification of silicon carbide indicate that boron and carbon modify mass transport mechanisms. It leads to changes of microstructure of polycrystalline silicon carbide. In the present work the influence of varying proportions of sintering aids on the material microstructure was studied. The microstructural changes were related to the changes of the selected properties of the resulting materials. (author)

  14. Effect of different sintering aids on thermo-mechanical properties and oxidation of SiC fibers - Reinforced ZrB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Sciti, D., E-mail: diletta.sciti@istec.cnr.it [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Silvestroni, L. [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Saccone, G.; Alfano, D. [CIRA, Italian Aerospace Research Center, 81043 Capua (Italy)

    2013-01-15

    Reinforced zirconium diboride composites containing 15 vol% of Hi Nicalon SiC chopped fibers were hot pressed with addition of various sintering additives, Si{sub 3}N{sub 4}, ZrSi{sub 2} or MoSi{sub 2}. Depending on the sintering aid, different densification temperatures were set in the range 1650-1750 Degree-Sign C. Temperature and additive strongly influenced the matrix/fiber interface, which in turn had a strong impact on the mechanical properties and the oxidation behavior at 1650 Degree-Sign C. Even the workability, performed either by conventional machining or electro discharge machining, varied depending on the sintering additive and the secondary phases formed in the system. The system containing Si{sub 3}N{sub 4} turned out to have the highest mechanical properties, but intermediate oxidation resistance; the composite containing ZrSi{sub 2} had the lowest sintering temperature, but displayed the worst oxidation resistance, and finally the composite containing MoSi{sub 2} showed intermediate mechanical properties, but the highest oxidation resistance and lowest degree of damage upon machining. Preliminary measurements of thermal shock resistance by the water quenching method were also carried out. -- Highlights: Black-Right-Pointing-Pointer We produced SiC fibers reinforced ZrB{sub 2} using different sintering aids. Black-Right-Pointing-Pointer The sintering additives affected properties, oxidation and machinability. Black-Right-Pointing-Pointer The system containing Si{sub 3}N{sub 4} had the highest mechanical properties. Black-Right-Pointing-Pointer The composite containing MoSi{sub 2} had the highest oxidation resistance. Black-Right-Pointing-Pointer ZrB{sub 2}-SiC fibers have higher thermal shock resistance than ZrB{sub 2}-SiC particles.

  15. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2016-02-01

    Solid-state reduction has occurred during mechanical alloying of a mixture of Fe2O3 and Mg powders at room temperature. It is found that magnetic nanocomposite in which MgO is dispersed in alpha-Fe matrix with nano-sized grains is obtained by mechanical alloying of Fe2O3 with Mg for 30 min. Consolidation of the ball-milled powders was performed in a spark plasma sintering (SPS) machine up to 800-1000 degrees C. X-ray diffraction result shows that the average grain size of alpha-Fe in a-Fe/MgO nanocomposite sintered at 800 degrees C is in the range of 110 nm. It can be also seen that the coercivity of SPS sample sintered at 800 degrees C is still high value of 88 Oe, suggesting that the grain growth of magnetic alpha-Fe phase during SPS process tends to be suppressed.

  16. Evaluation of liquid-phase sintering SiC using as additive the system Al2O3/DyO3

    International Nuclear Information System (INIS)

    Oliveira, M.R.; Atilio, I.; Garcia, G.C.R.; Ribeiro, S.

    2012-01-01

    The objective of this work was to study the liquid-phase sintering SiC with additives that has not been studied yet, Al 2 O 3 /Dy 2 O 3 , with 10% in volume. The powders were mixed, dried, and pressed in uniaxial and isostatic pressing. It was studied the melting temperature of the additives and bars were sintered at temperatures of 1900, 1950 e 2000 deg C, with averaged linear shrinkage of 17%, phase transformations of β-SiC into α-SiC and formation of Dy 3 Al 5 O 12 at all temperatures. The results showed that for further densification, the temperature of 1950 deg C is enough for a higher densification, with a low wetting angle, transformations of SiC and formation of Dy 3 Al 5 O 12 . (author)

  17. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  18. Development of reaction-sintered SiC mirror for space-borne optics

    Science.gov (United States)

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  19. Sinterable powders

    International Nuclear Information System (INIS)

    Zanghi, J.S.; Kasprzyk, M.R.

    1979-01-01

    A description is given of sinterable powders and methods of producing sintered products using such powders. The powders consist of (a) a particulate ceramic material, e.g. SiC, having specified particle size and surface area; (b) a carbon source material, e.g. sugar or a phenol-formaldehyde resin; and (c) a residue from a solution of H 3 BO 3 , B 2 O 3 , or mixtures of these as sintering aid. (U.K.)

  20. Synthesis, microstructure and mechanical properties of Ti3SiC2-TiC composites pulse discharge sintered from Ti/Si/TiC powder mixture

    International Nuclear Information System (INIS)

    Tian Wubian; Sun Zhengming; Hashimoto, Hitoshi; Du Yulei

    2009-01-01

    Ti 3 SiC 2 -TiC composites with the volume fractions of TiC from 0 to 90% were fabricated by pulse discharge sintering (PDS) technique using Ti-Si-TiC as starting powders in the sintering temperature range of 1250-1400 deg. C. Phase content and microstructure of the synthesized samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The samples sintered at 1400 deg. C are almost fully dense for all compositions with relative density higher than 98%. The phase distribution in the synthesized samples is non-uniform. The Vickers hardness increases almost linearly with the volume fraction of TiC up to a value of 20.1 ± 1.4 GPa at 90 vol.% TiC. The flexural strength increases with the volume fraction of TiC to a maximum value of 655 ± 10 MPa at 50 vol.% TiC. The relationship between microstructure and mechanical properties is discussed.

  1. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang Jianfeng; Wang Lianjun; Jiang Wan; Chen Lidong

    2008-01-01

    Spark plasma sintering technique was used to in situ fabricate high dense Ti 3 SiC 2 -TiC composites. The calculated TiC volume content from X-ray diffraction (XRD) is close to the theoretical one. It is found from fracture surface observation that TiC is about 1 μm, and Ti 3 SiC 2 is about 2-10 μm in grain size. The fracture modes consist of intergranular mainly for Ti 3 SiC 2 and transgranular fracture mainly for TiC. With the increasing of TiC volume content, Vickers hardness increases to the maximum value of 13 GPa for Ti 3 SiC 2 -40 vol.%TiC. Fracture toughness and flexural strength of the composites are also improved compared with those of monolithic Ti 3 SiC 2 except for Ti 3 SiC 2 -40 vol.%TiC composite. The main reasons for the sudden decrease of fracture toughness and flexural strength of Ti 3 SiC 2 -40 vol.%TiC composite can be attributed to the relatively lower density, some clusters of TiC in the composite and the transition of fracture mode from intergranular to transgranular. The thermal conductivities decreased with the addition of TiC. The minimum thermal conductivity is 22 W m deg. C -1 for Ti 3 SiC 2 -40 vol.%TiC composite

  2. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  3. Liquid phase sintered SiC ceramics from starting materials of different grade Cerâmicas à base de SiC sinterizadas via fase líquida a partir de matérias-primas de diferentes purezas

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2004-09-01

    Full Text Available Possibility of high performance ceramics manufactured from commercial SiC powder of technical grade has been shown. Sintering behavior and microstructure formation under conditions of liquid phase sintering (LPS with oxynitride sintering aids (AlN-Y2O3 of three SiC-based compositions have been investigated. Two of the compositions were based on Alcoa 1000 SiC powder of technical grade, and the third one, which was used as a reference, was based on H.C. Starck UF-15 fine grade commercial powder. Milling process used for Alcoa 1000 SiC powder granulometry improvement has been investigated in detail, while chemical treatment of milled SiC powders has been used for pick-up impurities removal. Dilatometric experiments showed that SiC powder of technical grade after appropriate treatment exhibits sinterability comparable with the fine grade SiC. Microstructural investigations performed on sintered samples showed that the final microstructure of the Alcoa 1000 SiC based materials was practically identical with the H.C. Starck SiC based reference ones. Preliminary investigations of hardness and fracture toughness were carried out revealing excellent results for the materials produced from cheaper, nationally produced starting powder.Neste trabalho é apresentada a possibilidade de obtenção de cerâmicas de SiC de alto desempenho a partir de matéria-prima comercial de grau técnico. Foi realizado o estudo de sinterização via fase líquida e desenvolvimento microestrutural de três composições à base de SiC tendo como aditivos de sinterização AlN e Y2O3 . Duas destas composições são à base de SiC-1000 da Alcoa, grau técnico, e a terceira, utilizada como referência, à base do UF-15 da H.C. Starck - Alemanha, pó comercial de granulometria fina. O processo de moagem do pó SiC-1000 da Alcoa foi acompanhado por medidas de distribuição granulométrica e posterior ataque químico, para remoção de impurezas. Os pós de grau técnico, ap

  4. Sintering of Si C by hot-pressing with addition of Al{sub 2}O{sub 3} and concentrate of rare earths; Sinterizacao por prensagem a quente com SiC com adicao de Al{sub 2}O{sub 3} e concentrado de terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, M.K.; Silva, C.R.M. [Centro Tecnico Aeroespacial (CTA-IAE), Sao Jose dos Campos, SP (Brazil). Inst. de Atividades Espaciais]. E-mail: miriamk@iae.cta.br; Nono, M.C.A.; Vieira, R.A. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2004-07-01

    Silicon carbide (SiC) has essentially covalent bonds ({approx}88%). The high covalency bond is responsible for the good mechanical properties, although it induces a low self diffusion coefficient, making densification more difficult. For a successful densification is necessary to apply pressure on the samples, and/or the addition of sintering additives, which improves the densification. In this SiC samples with alumina (Al2O3) and concentrate of rare earth (CRE) addition were sintered by hot pressing in argon atmospheric at 20 MPa of pressure, heating rate of 20 deg C/min up to 1800 deg C and a dwell time of 1 h. Initially the CRE was calcined at 1000 deg C during 1 h. After that, three mixtures were prepared with distinct concentrations in high energy mill and the samples were sintered. The aim of this work is to improve SiC densification by the liquid phase formation during sintering owing to the additives reactions between itself. The pressure intensify the driving force for densification, taking the liquid phase to drain easier through the grain boundaries, making possible best accommodation and rearrangement of the grains. The application of the pressure on the samples during sintering contributes to improve densification and becomes possible sintering in lower temperature than conventional one. The phases of the sintered samples were analyzed by X-ray diffraction and the morphology were verified by scanning electron microscopy. (author)

  5. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  6. Effect of hot isostatic pressing on the properties of sintered alpha silicon carbide

    Science.gov (United States)

    Watson, G. K.; Moore, T. J.; Millard, M. L.

    1985-01-01

    Two lots of alpha silicon carbide were isostatically hot-pressed under 138 MPa for 2 h in Ar at temperatures up to 2200 C. Nearly theoretically dense specimens resulted. Hot isostatic pressing increased both room-temperature strength and 1200 C strength, and resulted in improved reliability. One lot of material which was pressed at 2200 C showed increases of about 20 percent in room-temperature strength and about 50 percent in 1200 C flexural strength; the Weibull modulus improved about 100 percent.

  7. Mechanical properties of simultaneously synthesized and consolidated carbon nanofiber (CNF)-dispersed SiC composites by pulsed electric-current pressure sintering

    International Nuclear Information System (INIS)

    Hirota, Ken; Hara, Hiroaki; Kato, Masaki

    2007-01-01

    Carbon nanofiber (CNF) dispersed β-SiC composites with the addition of 0.2 mass% boron and 2.0 mass% carbon as sintering aids have been synthesized and consolidated simultaneously from mixtures of Si, amorphous C and B powders and CNF by pulsed electric-current pressure sintering (PECPS). Synthesis and consolidation process, which were observed from their expansion and shrinkage curves during PECPS, have been examined using X-ray diffraction and scanning electron microscopy for the powder compacts. CNF/SiC composites sintered at 1800 deg. C for 10 min under 40 MPa in a vacuum have ∼96.0% of theoretical density and homogeneous structures consisting of ∼4.0 μm grains. A 10 vol% CNF/SiC composite exhibited excellent mechanical properties: a bending strength of ∼720 MPa, a Vickers hardness of ∼26.0 GPa, and a fracture toughness of ∼5.5 MPa m 1/2 . High-temperature bending strength of ∼890 MPa at 1200 deg. C in air was attained with the same nanocomposites

  8. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  9. Effect of {alpha}-Si{sub 3}N{sub 4} Addition on Sintering of {alpha}-Sialon Powder via Carbonthermal Reduction Nitridation of Boron-rich Slag-based Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wu Junbin; Jiang Tao; Xue Xiangxin, E-mail: komsae@163.com [School of Materials and Metallurgy, Northeastern University, Shenyang (China)

    2011-10-29

    With boron-rich slag, silica fume, bauxite chalmette, carbon black and {alpha}-Si{sub 3}N{sub 4} as starting materials, {alpha}-Sialon powders were prepared by carbothermal reduction-nitridation(CRN). Different contents of {alpha}-Si{sub 3}N{sub 4} addition were added to investigate the {alpha}-Sialon formation as a function of {alpha}-Si{sub 3}N{sub 4} addition from boron rich slag based mixture fired at 1480 deg. C for 8 h under N{sub 2} flowing of 0.4 L/min. Phase assembly, microstructure of reaction products were determined by X-ray Diffraction and Scanning Electron Microscope. The results showed that the main phases of the samples were a-Sialon, h-BN, AlN and small quantity of SiC. With the increasing amount of the {alpha}-Si{sub 3}N{sub 4} addition, the h-BN content remained in a constant and AlN content was running down steadily, while the {alpha}-Sialon content increased gradually. The aspect ratio and the amount of elongated {alpha}-Sialon grains could be tailored by using different amounts of the {alpha}-Si{sub 3}N{sub 4} addition.

  10. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  11. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Windl, Wolfgang [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States)

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  12. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  13. Hot isostatic compression sintering and spark plasma sintering of silicon carbides nano-particles synthesized at the pilot scale by laser pyrolysis; Frittage par compression isostatique a chaud (CIC) et spark plasma sintering (SPS) de nanoparticules en carbure de silicium (SiC) synthetisees a echelle pilote par pyrolyse laser

    Energy Technology Data Exchange (ETDEWEB)

    Mengeot, C.; Guizard, B.; Tenegal, F. [CEA-Saclay, DRT/ DTNM/LTMEx, batiment 460, 91191 Gif sur Yvette cedex (France); Poissonnet, S.; Boulanger, L. [CEA-Saclay, DEN/DMN/SRMP, batiment 520, 91191 Gif sur Yvette cedex (France); Le Flem, M. [CEA-Saclay, DEN/DMN/SRMA/LA2M, batiment 453, 91191 Gif sur Yvette cedex (France); Guillard, F. [CNRS/CEMES - 29, avenue Jeanne Marvig P 4347, 055 Toulouse cedex 4 (France)

    2006-07-01

    Silicon carbide particles (20 nm) synthesized by pilot scale laser pyrolysis and previously compacted at more than 1 GPa with or without sintering additions (Al{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) have been sintered by hot isostatic compression and spark plasma. For the sintered samples without additions, densification rates of about 95% have been obtained by hot isostatic compression whereas by spark plasma sintering, these densification rates are inferior to 80%. In presence of additions, with the two methods it has been possible to densify the materials at values near of 100%. The weaker grain size after sintering have been observed for samples sintered by hot isostatic compression (without additions: about 35 nm and with additions: about 100-200 nm) whereas by spark plasma the grain sizes are typically between 100 nm and 1 {mu}m. An estimation of the basic mechanical properties has revealed an optimum of hardness (25 GPa) for sizes of monocrystalline areas of 200 nm corresponding too to an optimum of fracture toughness (6.5 MPa m{sup 1/2}). (O.M.)

  14. The effect of sintering time on synthesis of in situ submicron {alpha}-Al{sub 2}O{sub 3} particles by the exothermic reactions of CuO particles in molten pure Al

    Energy Technology Data Exchange (ETDEWEB)

    Dikici, Burak, E-mail: burakdikici@yyu.edu.tr [Yuzuncu Yil University, Department of Mechanical Engineering, 65080 Van (Turkey); Gavgali, Mehmet [Ataturk University, Department of Mechanical Engineering, 25240 Erzurum (Turkey)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Al-Cu/Al{sub 2}O{sub 3} composites were prepared successfully by means of hot pressing method. Black-Right-Pointing-Pointer Sintering time of the Al-CuO system effect the reaction rate and formation of Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Increase in sintering time accelerates formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} phase. Black-Right-Pointing-Pointer Hardness of the sintered composite for 30 min at 1000 Degree-Sign C increased from 60 to 174 HV. - Abstract: In this study, in situ {alpha}-Al{sub 2}O{sub 3} reinforcing particles have been successfully synthesised in an Al-Cu matrix alloy by means of the conventional Hot Pressing (HP) method. The effect of sintering time on the forming of the {alpha}-Al{sub 2}O{sub 3} phase at 1000 Degree-Sign C was investigated using Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and a Scanning Electron Microscope (SEM). The sintered composites contained thermodynamically stable {alpha}-Al{sub 2}O{sub 3} particles and {theta}-Al{sub 2}Cu eutectic phases, which were embedded in the Al-Cu matrix. The in situ {alpha}-Al{sub 2}O{sub 3} particles were generally spherical and their mean size was observed to be less than 0.5 {mu}m. The results showed that sintering time influences not only the reaction rate of copper and the formation of Al{sub 2}O{sub 3}. Also, an increase in the sintering time accelerates the formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} particles and decreases the quantity of {theta}-Al{sub 2}Cu intermetallic phase in the liquid aluminium. Additionally, sintering of composite for 30 min at 1000 Degree-Sign C increased the hardness from 60 to 174 HV.

  15. The sintering of nitrogen ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hampshire, S.

    1986-01-01

    The mechanism of densification with oxide additives and the role of the ..cap alpha..-BETA phase transformation is investigated in a detailed kinetic study. Selected compositions in the Si-Al-O-N system are detailed, with and without additives. Although the work is mainly concerned with the identification of the mechanisms of sintering, some property measurements on a sintered BETA-sialon are reported and the feasibility of preparing pure ..cap alpha..-sialon phases is explored.

  16. Influence of point defects on dosimetric properties and sintering capability of aluminia {alpha}; Influence des defauts ponctuels sur les proprietes dosimetriques et sur l'aptitude au frittage de l'alumine {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Papin, Eric [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    1997-12-11

    This work was devoted to the study of the influence of synthesis conditions on the thermoluminescence of aluminia {alpha} for use in ionizing radiation dosimetry. Powders are synthesized by heat treatment of pure aluminia {gamma} or doped by impregnation technique. The studied parameters are the thermal cycle, the gas atmosphere of the furnace and the nature of the dopants (Mg{sup 2+}, Cr{sup 3+}, Th{sup 4+}, Fe{sup 3+}/Fe{sup 2+}). The thermoluminescence (TL) is connected with the presence of point defects. This technique consists in measuring the intensity of light emitted by a previously irradiated solid. Three TL peaks were observed. A peak around - 40 deg. C allows making evident the magnesium impurities and the oxygen vacations. The evolution of the intensity of the two peaks at 190 deg. C and 360 deg. C, is studied as a function of the oxygen partial pressure of the heat treatment and of the Mg{sup 2+}, Cr{sup 3+} and Th{sup 4+} dopant concentrations. These investigations have permitted identifying the defects implied in the luminescence process of these two peaks, i.e. the aluminium vacations and the Cr{sup 3+} ions substituted to Al{sup 3+}. Thus aluminia powders having a high sensitivity to ionizing radiations (X rays, UV and {gamma} radiations) have been synthesized. Utilization in dosimetry of the peaks at 190 deg. C and 360 deg. C is suggested. The reactivity of non-doped powders containing different types of point defects was analyzed by dilatometry. Thus, the influence of the atmosphere of powder preparation upon the sintering behaviour was made evident. The differences between the removal velocities are correlated with the variations in the aluminium vacancy concentrations. These results suppose that the limiting stage in sintering these powders is the Al{sup 3+} ion diffusion.

  17. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    tions ranging from kiln furniture to membrane material. Keywords. Microwave sintering; biaxial flexure; silicon carbide. 1. Introduction. Silicon carbide (SiC) ceramics is a very well known candidate material for a structural application. However, due to (i) poor densification due to highly directional bonding, (ii) susceptibility of ...

  18. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  19. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  20. Effects of SiC on Properties of Cu-SiC Metal Matrix Composites

    Science.gov (United States)

    Efe, G. Celebi; Altinsoy, I.; Ipek, M.; Zeytin, S.; Bindal, C.

    2011-12-01

    This paper was focused on the effects of particle size and distribution on some properties of the SiC particle reinforced Cu composites. Copper powder produced by cementation method was reinforced with SiC particles having 1 and 30 μm particle size and sintered at 700 °C. SEM studies showed that SiC particles dispersed in copper matrix homogenously. The presence of Cu and SiC components in composites were verified by XRD analysis technique. The relative densities of Cu-SiC composites determined by Archimedes' principle are ranged from 96.2% to 90.9% for SiC with 1 μm particle size, 97.0 to 95.0 for SiC with 30 μm particle size. Measured hardness of sintered compacts varied from 130 to 155 HVN for SiC having 1 μm particle size, 188 to 229 HVN for SiC having 1 μm particle size. Maximum electrical conductivity of test materials was obtained as 80.0% IACS (International annealed copper standard) for SiC with 1 μm particle size and 83.0% IACS for SiC with 30 μm particle size.

  1. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers

    International Nuclear Information System (INIS)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-01-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [es

  2. Injection molding of silicon carbide capable of being sintered without pressure

    Science.gov (United States)

    Muller-Zell, A.; Schwarzmeier, R.

    1984-01-01

    The most suitable SiC mass for injection molding of SiC articles (for subsequent pressureless sintering) consisted of beta SiC 84, a wax mixture 8, and polyethylene or polystyrene 8 parts. The most effective method for adding the binders was by dissolving them in a solvent and subsequent evaporation. The sequence of component addition was significant, and all parameters were optimized together rather than individually.

  3. Non-pressurized sintered silicon carbide with titanium carbide reinforcement

    International Nuclear Information System (INIS)

    Adler, J.

    1992-01-01

    A non-pressurized compression of SiC-TiC composite materials can be achieved via liquid phase sintering by the application of oxidic additives. Materials with TiC proportions up to 40% by volume of TiC and densities of 97 to 98% TD were produced at sintering temperatures around 1875 C. With SiC sintered in the liquid phase an increase of toughness at fracture of 80% compared with conventionally non-pressurized sintered SiC was achieved with B/C additive. No further increase could be achieved by the addition of TiC particles. However, the oxidation resistance at 1200 C was worsened. (orig.) [de

  4. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  5. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    sintering of various Al-based composites. Microwave heat- ing of metallic powders (Al–Cu–Fe) to single phase was first reported by Vauchera et al (2008). To the best of our know- ... insulation also consisted of graphite coated SiC rods. Tem- perature ... Figure 3 compares thermal profile for 7775 aluminum alloy compacts ...

  6. In-situ neutron powder diffraction study of Ti3SiC2 synthesis

    International Nuclear Information System (INIS)

    Wu, E.; Kisi, E.H.; Kennedy, S.J.; Studer, A.J.

    2000-01-01

    Full text: The synthesis of Ti 3 SiC 2 by pressureless reactive sintering Ti/SiC/C mixtures under an Ar atmosphere has been studied by in-situ neutron diffraction. The intermediate phases TiC x and Ti 5 Si 5 C x (x ≤ 1) form first at ∼ 800 - 1400 deg C. These phases are consumed in the formation of Ti 3 SiC 2 , at ∼ 1500 deg C. An amount of TiC x remains in the sample after sintering, primarily as a surface layer. The studies appear to support a suggestion that these intermediate phases react to form Ti 3 SiC 2 through a diffusion controlled process. Prolonged step-wise heating under argon in some experiments results in decomposition of Ti 3 SiC 2 above ∼ 1400 deg C and significant disproportionation of the sample

  7. The role of interfacial microstructure in the mechanical properties of SiC whisker reinforced Si3N4

    International Nuclear Information System (INIS)

    Swan, A.H.; Dunlop, G.L.

    1991-01-01

    SiC whisker reinforced Si 3 N 4 can be produced using a number of different methods. These include hot pressing (HP), hot isostatic pressing (HIP), reaction bonding (RB), nitrided pressureless sintering (NPS) and various combinations of these methods. This paper is concerned with the microstructure of SiC whisker reinforced Si 3 N 4 materials fabricated by both nitrided pressureless sintering and hot pressing. Attention has been given to the microstructure of as-sintered materials, crack paths within the microstructure and also microstructural changes that occur during high temperature deformation

  8. Microstructural optimization of solid-state sintered silicon carbide

    Science.gov (United States)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  9. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    International Nuclear Information System (INIS)

    Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju

    2017-01-01

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al 2 O 3 and Y 2 O 3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  10. Nuclear tracks in sinterized gemstones

    International Nuclear Information System (INIS)

    Espinosa, G.; Rodriguez, L.V.; Golzarri, J.I.; Castano, V.M.

    1993-01-01

    The responses of sinterized gemstones to alpha particles attempt analyzed with the objective of finding new materials for SSNTD, and also to understand their interaction with radiation and the formation of tracks. In this work we present the results of the characterization of these materials as SSNTD. The micro structural changes observed by electron microscopy. The preparation, etching solution concentration, etching time and effects of temperature are discussed. (Author)

  11. Properties of Carbide Ceramics from Gelcasting and Pressure-less Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Dongliang; Zhang Jingxian, E-mail: dljiang@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050 (China)

    2011-10-29

    In this paper, the properties of carbide ceramics (SiC, and B{sub 4}C) from aqueous gelcasting and pressure-less sintering were studied systematically. The optimized sintering process was achieved via a series of experiments with effective control of grain size and microstructure for developing high performance ceramics. SiC samples can be pressure-less sintered to 98% TD with B{sub 4}C and C as the sintering additives. The samples showed excellent mechanical properties, homogeneous microstructure and improved reliability. B{sub 4}C samples can also be pressure-less sintered with the relative density around 96%. Results showed that gelcasting is a reliable process for the manufacturing of carbide ceramics with satisfied properties.

  12. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  13. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2017-12-01

    Full Text Available This study discusses the potentials of spark plasma sintering (SPS integrated with high temperature process that can enable sintering of SiC/Cf composites without any sintering aids. The random distribution of carbon fibers was obtained through mixing composite components in ethanol by using a shaker mill for 10 min. The corresponding sintering process was carried out at 1900 and 2200 °C with 50 MPa pressure applied at maximum temperature. The results showed that 89 ± 0.9 and 97 ± 0.8% of the theoretical density can be obtained for sintering temperatures of 1900 and 2200 °C, respectively. The densification curves were plotted to monitor sintering behavior with punch displacement changes. The appropriate bonding between SiC particles and carbon fibers was detected using FE-SEM for sample which was sintered at 2200 °C. The clear maximum in hardness (2992 ± 33 Vickers, bending strength (427 ± 26 MPa and fracture toughness (4.2 ± 0.3 MPa m1/2 were identified for sample sintered at 2200 °C. XRD investigations supposed that SiC and carbon were the only crystalline phases in both sintered samples.

  14. Preparation of Al-based metal matrix composites reinforced by Cu coated SiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hailong; Zhang Rui; Xu Hongliang; Lu Hongxia; Guan Shaokang [Coll. of Materials Engineering, Zhengzhou Univ., HEN (China)

    2005-07-01

    In order to improve the interfacial behavior between SiC and Al, a surface layer of Cu was coated on SiC particles. The influence of pH value on the coating process was analyzed. A powder metallurgy method was used to prepare the Al-based metal matrix composites (MMCs). SEM, XRD techniques were used to characterize the sintered compacts. It was found that the optimized pH value during the coating process was 1{proportional_to}2. The specimen showed the maximum density when sintered at 750 C. Inter-metallic compound of Al{sub 3.21}Si{sub 0.47} was detected which contributed to the enhancement at the interface between SiC and Al. The hardness of the composites is improved to 90 MPa. (orig.)

  15. Sintering techniques for microstructure control in ceramics

    Science.gov (United States)

    Rosenberger, Andrew T.

    Sintering techniques can be manipulated to enhance densification in difficult to sinter materials and to produce property enhancing microstructures. However, the interplay between materials, sintering techniques, and end properties is not fully understood in many material systems, and some fundamental aspects of sintering such as the nature of the effects of electric fields remains unknown. The processing property relationships were examined in two classes of materials; zirconium diboride ultra high temperature ceramic composites, and all solid lithium-ion battery phosphate materials. Investigation of zirconium diboride ceramics focused on the effects of zirconium carbide as a secondary or tertiary phase in ZrB2 and ZrB2 -- SiC. Addition of zirconium carbide was observed to increase flexural strength of composites up to 590MPa at 50wt% ZrC, significantly higher than the flexural strength of 380MPa observed in similarly prepared ZrB2 -- SiC. This difference was attributed to the absence of CTE mismatch induced residual stresses in the ZrB2 -- ZrC composites. A high temperature reaction between ZrB2 and TiC producing Zr1-xTixB2 -- ZrC composites was discovered and found to enhance densification while reducing the average grain size to as small as 1.4mum, lower than the starting powder size of 1.8mum. While a high flexural strength of 670MPa was observed, a strength dependence on the ZrC grain size indicative of CTE mismatch residual stresses was also seen. Finally, the oxidation and ablation resistance of ZrB2 -- ZrC -- SiC composites as a function of ZrC fraction and ZrC:SiC ratio was investigated. Above 5vol% ZrC, the oxidation and ablation resistance of the composites was significantly reduced due to ZrC oxidation, regardless of SiC content. While ZrC can significantly enhance the mechanical properties of the composite, the volume fraction must be kept low to avoid an undesirable reduction in the oxidation resistance. The influence of applied electrical fields

  16. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered

  17. Sintering Behavior, Microstructure, and Mechanical Properties: A Comparison among Pressureless Sintered Ultra-Refractory Carbides

    Directory of Open Access Journals (Sweden)

    Laura Silvestroni

    2010-01-01

    Full Text Available Nearly fully dense carbides of zirconium, hafnium, and tantalum were obtained by pressureless sintering at 1950°C with the addition of 5–20 vol% of MoSi2. Increasing the amount of sintering aid, the final density increased too, thanks to the formation of small amounts of liquid phase constituted by M-Mo-Si-O-C, where M is either Zr, Hf, or Ta. The matrices of the composites obtained with the standard procedure showed faceted squared grains; when an ultrasonication step was introduced in the powder treatment, the grains were more rounded and no exaggerated grains growth occurred. Other secondary phases observed in the microstructure were SiC and mixed silicides of the transition metals. Among the three carbides prepared by pressurless sintering, TaC-based composites had the highest mechanical properties at room temperature (strength 590 MPa, Young's modulus 480 GPa, toughness 3.8 MPa·m1/2. HfC-based materials showed the highest sinterability (in terms of final density versus amount of sintering aid and the highest high-temperature strength (300 MPa at 1500  °C.

  18. Large area SiC coating technology of RBSC for semiconductor processing component

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described

  19. Scanning Electron Microscopic Studies of Microwave Sintered Al-SiC Nanocomposites and Their Properties

    Directory of Open Access Journals (Sweden)

    M. A. Himyan

    2018-01-01

    Full Text Available Al-metal matrix composites (AMMCs reinforced with diverse volume fraction of SiC nanoparticles were synthesized using microwave sintering process. The effects of the reinforcing SiC particles on physical, microstructure, mechanical, and electrical properties were studied. The phase, microstructural, and surface analyses of the composites were systematically conducted using X-ray diffraction (XRD, scanning electron microscope (SEM, and surface profilometer techniques, respectively. The microstructural examination revealed the homogeneous distribution of SiC particles in the Al matrix. Microhardness and compressive strength of nanocomposites were found to be increasing with the increasing volume fraction of SiC particles. Electrical conductivity of the nanocomposites decreases with increasing the SiC content.

  20. Improvement of Strength and Oxidation Resistance for SiC/graphite Composites by SiC coating

    Science.gov (United States)

    Yang, Wanli; Shi, Zhongqi; Li, Hongwei; Li, Zhen; Jin, Zhihao; Qiao, Guanjun

    2011-03-01

    SiC/graphite composites with exelent machinable properties and thermal shock behaviour were successfully fabricated by pressureless sintering at 1700°C in nitrogen atmosphere. A dipping infiltration process was applied to improve the strength and oxidation resistance of the composites. Dense SiC coating was covered on the composites' surface by heat-treating at 1400°C in nitrogen atmosphere with dipping infiltration of silica sol and phenolic resin solutions. The flexural strength of the SiC coated composites were improved from 60 MPa to 140 MPa obviously, and the weight loss of the SiC coated composites was reduced more than 20 % comparing with the uncoated composites by oxidation resistance testing at 1000 °C for 24 h in air. SEM micrographs shows that SiC coating was surrounded the surface of pores and XRD pattern revealed that the new layer was SiC.

  1. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Directory of Open Access Journals (Sweden)

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  2. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  3. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  4. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  5. A method for sintering

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides a method for sintering, comprising in the following order the steps of: providing a body in the green state or in the pre-sintered state on a support; providing a load on at least one spacer on the support such that the load is located above said body in the green...

  6. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  7. Creep of SiC Hot-Pressed with Al, B, and C

    Energy Technology Data Exchange (ETDEWEB)

    Sixta, Mark Eldon [Univ. of California, Berkeley, CA (United States)

    2000-03-31

    The creep of a high strength, high toughness SiC, sintered with Al, B, and C was investigated. For elevated temperature applications, the time-dependent deformation, creep response, must be fully characterized for candidate materials. The mechanisms responsible for high temperature deformation in ABC-SiC were evaluated. The creep response was compared to materials that have glassy grain boundary phases but do not have interlocked grains. The creep mechanisms were assessed.

  8. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  9. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers; Las tensiones residuales y las propiedades mecánicas de compuestos multicapa de Si3N4/SiC con diferentes capas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-11-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [Spanish] Se ha investigado el efecto de las tensiones residuales en la resistencia, dureza y trabajo de fractura de los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC. Puede ser una manera eficaz de diseñar y optimizar las propiedades mecánicas de los compuestos multicapa de Si3N4/SiC mediante el control de las propiedades de las capas de SiC. Los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC se fabricaron por medio de colado en cinta en medio acuoso y sinterización sin presión. Las tensiones residuales se calcularon mediante el uso de la simulación ANSYS, los valores máximos de las fuerzas de tracción y compresión fueron 553,2 MPa y −552,1 MPa, respectivamente. Se observó una fractura escalonada a partir de las superficies de fractura. La fracción de capas de deslaminación aumenta con la tensión residual, lo que puede mejorar la fiabilidad de los materiales. La fuerza de tracción residual era beneficiosa para la mejora de la dureza y el trabajo de fractura, pero la resistencia de los compuestos disminuyó.

  10. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  11. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    second part of the project. Alumina sol was synthesized by the hydrolysis of Aluminum isopropoxide using the Yoldas method. Alumina sol was homogenous and had a needle-like shape with a thickness of 2--3 nm. Crystalline changes during the heating process of alumina sol were studied using XRD. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to identify the functional groups on the alumina sol surface as a function of temperature. In the third part of the project, the feasibility of the in-situ polymerization technique was investigated to fabricate porous SiC ceramics. In this part, the mixture of SiC and calcined alumina powders were coated by polyethylene via in-situ polymerizing referred to as the polymerization compounding process in a slurry phase. The polymerization was conducted under very moderate operational conditions using the Ziegler-Natta catalyst system. Differential scanning calorimetry (DSC) and TGA analysis and morphological studies (SEM and TEM) revealed the presence of a high density of polyethylene on the surface of SiC and alumina powders. The amount of polymer was controlled by the polymerization reaction time. Most parts of particles were coated by a thin layer of polyethylene and polymer. The porous SiC ceramics, which were fabricated by these treated particles showed higher mechanical and physical properties compared to the samples made without any treatment. The relative intensity of mullite was higher compared to the samples prepared by the traditional process. The effects of the sintering temperature, forming pressure and polymer content were also studied on the physical and mechanical properties of the final product. In the last phase of this research work, the focus of the investigation was to take advantage of both the sol-gel processing and in-situ polymerization method to develop a new process to manufacture mullite-bonded porous SiC ceramic with enhanced mechanical and physical properties. Therefore, first the SiC

  12. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  13. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  14. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  15. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  16. Processing, Microstructure, and Mechanical Properties of Si3N4/SiC Nanocomposites from Precursor Derived Ceramics

    Science.gov (United States)

    Strong, Kevin Thomas, Jr.

    Polymer-derived ceramics (PDCs) provides a unique processing route to create Si3N4/SiC composites. Silazane precursor polyureasilazane (Ceraset PURS20) produce's an amorphous SiCN ceramic at temperatures of ~800 -- 1200 °C and crystallizes to a Si3N4/SiC nanocomposite at temperatures >1500 °C. A novel processing technique was developed where crosslinked polymers were heat-treated in a reactive NH3 atmosphere to control the stoichiometry of the pyrolyzed SiCN ceramic. Using this technique processing parameters were established to produce SiCN powders that resulted in nanocomposites with approximately 0, 5, 10, 20 and 30 vol. % SiC. Lu2O3 was added to these powders as a sintering aid and were densified using Hot Pressing and Field Assisted Sintering. The sintered nanocomposites resulted in microstructures with multiple-length scales. These length-scales included Si3N4 (0.1 -- 5 microm), SiC (10 -- 100 nm) and the intergranular grain boundary phase (<1 nm). Using a combination of SEM and TEM it was possible to quantify some of these microstructural features such as the size and location of the SiC. Hardness and fracture toughness testing was conducted to compared the room temperature mechanical properties of these resultant microstructures. This research was intended to develop robust processing approaches that can be used to control the nanostructures of Si3N4/SiC composites with significant structural features at multiple length scales. The control of their features and the investigation of their affect on the properties of composites can be used to simulate the affect of the structure on properties. These models can then be used to design optimal microstructures for specific applications.

  17. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  18. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  19. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  20. Comparison of the Contact stress and friction behavior of SiC and ZrO2 materials

    International Nuclear Information System (INIS)

    Lindberg, L.J.; Richerson, D.W.

    1985-01-01

    Studies were performed to further elucidate the friction and contact- stress characteristics of structural ceramic materials. New data for fully stabilized and partially stabilized zirconia ceramics are compared with prior test results for sintered SiC. The comparison provides further evidence that the high temperature friction characteristics of sinstered SiC are strongly influenced by the presence of a viscous surface layer. The results also show that a ceramic material with lower coefficient of friction and higher fracture toughness has increased resistance to strength-reducing surface damage due to contact stress

  1. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  2. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  3. SinterHab

    Science.gov (United States)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover

  4. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  5. Reaction sintering process of tyranno SA/SiC composites and their characterization

    International Nuclear Information System (INIS)

    Lee, S.P.; Yoon, H.K.; Park, J.S.; Katoh, Y.; Kohyama, A.; Kim, D.H.; Lee, J.K.

    2002-01-01

    This paper deals with the efficiency of fiber preform preparation route for the fabrication of reaction sintering (RS) SiC f /SiC composites and their characterization, including density, microstructure and mechanical property. The applicability of carbon interfacial layer has been investigated in the RS process. The fiber preform was prepared by the consecutive slurry infiltration process, which associated with the combination of constant gas impregnation pressure and different magnitudes of cold pressure. The consecutive slurry infiltration process used for the preparation of fiber preform can be regarded as a promising technique for high density RS-SiC f /SiC composites, even if their mechanical properties depend on the magnitudes of cold pressure used. RS-SiC f /SiC composites entirely showed the morphology of near stoichiometric SiC phase in the intra-fiber bundle matrix, compared to that in the inter-fiber bundle matrix. The carbon interfacial layer was insufficient for the pseudo-ductile failure of RS-SiC f /SiC composites, even if some amount of fiber pull-out and interfacial delamination was observed in the tensile surface of bending test sample

  6. Spark Plasma Sintering of Low Alloy Steel Modified with Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Hebda M.

    2016-06-01

    Full Text Available The influence of adding different amounts of silicon carbide on the properties (density, transverse rupture strength, microhardness and corrosion resistance and microstructure of low alloy steel was investigated. Samples were prepared by mechanical alloying (MA process and sintered by spark plasma sintering (SPS technique. After the SPS process, half of each of obtained samples was heat-treated in a vacuum furnace. The results show that the high-density materials have been achieved. Homogeneous and fine microstructure was obtained. The heat treatment that followed the SPS process resulted in an increase in the mechanical and plastic properties of samples with the addition 1wt. % of silicon carbide. The investigated compositions containing 1 wt.% of SiC had better corrosion resistance than samples with 3 wt.% of silicon carbide addition. Moreover, corrosion resistance of the samples with 1 wt.% of SiC can further be improved by applying heat treatment.

  7. Effect of organic additives on mechanical properties of SiC ceramics prepared by a modified gelcasting method

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2016-12-01

    Full Text Available A novel and simple gel system of isobutylene and maleic anhydride (PIBM was used to prepare SiC ceramics. The rheological behaviour of the SiC slurries was investigated as function of organic additives. The SiC slurries with 0.2 wt.% PIBM and 0.2 wt.% tetramethylammonium hydroxide (TMAH showed low viscosity, which was favourable for casting SiC green bodies. In order to obtain homogeneous green bodies, polyvinyl alcohol (PVA was used to assist the dispersion of carbon black in the slurries, and polyethylene glycol (PEG was added to inhibit the surface exfoliation of green bodies. The content of PVA was controlled carefully to avoid the warpage of green bodies during the drying process. Finally, homogeneous defect-free SiC green bodies were successfully fabricated via aqueous gelcasting. The SiC ceramics sintered at 2100 °C (prepared from slurries with solid content of 60 wt.% showed an average flexural strength of 305.7 MPa with porosity of 19.92%.

  8. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  9. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  10. EFFECT OF THE Si POWDER ADDITIONS ON THE PROPERTIES OF SiC COMPOSITES

    Directory of Open Access Journals (Sweden)

    GUOGANG XU

    2012-09-01

    Full Text Available By means of transient plastic phase process, the SiC silicon carbide kiln furniture materials were produced through adding Si powder to SiC materials. At the condition of the same additions of SiO2 powder, the effect of the Si powder additions on properties of silicon carbide materials after sintered at 1450°C for 3 h in air atmosphere was studied by means of SEM and other analysis methods. The results showed that silicon powder contributes to both sintering by liquid state and plastic phase combination to improve the strength of samples. When the Si powder additions is lower than 3.5 %, the density and strength of samples increase and porosity decrease with increasing Si powder additions. However when the Si powder additions is higher than 3.5 %, the density and strength of samples decrease and porosity increase with increasing Si powder additions. With increasing of Si additions, the residual strength of sample after thermal shocked increased and linear change rate decreased, and get to boundary value when Si additions is 4.5 %. The results also indicated that at the same sintering temperature, the sample with 3.5 % silicon powder has maximum strength.

  11. Development of Cu Reinforced SiC Particulate Composites

    Science.gov (United States)

    Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed

    2015-02-01

    This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.

  12. Polycrystalline SiC as source material for the growth of fluorescent SiC layers

    DEFF Research Database (Denmark)

    Kaiser, M.; Hupfer, T.; Jokubavicus, V.

    2013-01-01

    Polycrystalline doped SiC act as source for fluorescent SiC. We have studied the growth of individual grains with different polytypes in the source material. We show an evolution and orientation of grains of different polytypes in polycrystalline SiC ingots grown by the Physical Vapor Transport...... method. The grain influence on the growth rate of fluorescent SiC layers grown by a sublimation epitaxial process is discussed in respect of surface kinetics....

  13. Sintering of B4C by pressureless liquid phase sintering

    International Nuclear Information System (INIS)

    Rocha, Rosa Maria da; Melo, Francisco Cristovao Lourenco de

    2009-01-01

    The effect of three different sintering additive systems on densification of boron carbide powder was investigated. The sintering additives were Al 2 O 3 :Y 2 O 3 , AlN:Y 2 O 3 and BN:Y 2 O 3 compositions. Powder mixtures were prepared with 10 vol% of sintering aids following conventional powder technology processes. Samples were sintered by pressureless sintering at 2050 deg C/30min in argon atmosphere. Sintered samples were compared to a sintered B 4 C without sintering additive. Samples were characterized by XRD to analyze the crystalline phases after sintering and SEM to observe the microstructure and the second phase distribution. YB 4 and YB 2 C 2 were identified in all samples, indicating a reaction between Y 2 O 3 , B 4 C and B 2 O 3 present at the B 4 C particle surface. The best densification result was achieved with Al 2 O 3 :Y 2 O 3 additive system, showing 92.0 % of theoretical density, low porosity and 15.2 % of linear shrinkage. But this sample showed the highest weight loss. (author)

  14. SiC MEMS For Harsh Environments

    National Research Council Canada - National Science Library

    Bradley, Kenneth

    2003-01-01

    This document is the final technical report for the SiC MEMS for Harsh Environments in-house research program jointly coordinated between AFRL/MNMF and AFRL/MLPS, and addresses the benefits of silicon carbide (SiC...

  15. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  16. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  17. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    % was studied on the sinter- ing and microstructural developments of the chemically pure magnesia using the pressureless sintering technique between 1500 and 1600◦C. Sintering was evaluated by per cent densification and microstructural ...

  18. A Comparative Study on SiC-B4C-Si Cermet Prepared by Pressureless Sintering and Spark Plasma Sintering Methods

    Science.gov (United States)

    Sahani, P.; Karak, S. K.; Mishra, B.; Chakravarty, D.; Chaira, D.

    2016-06-01

    Silicon carbide (SiC)-boron carbide (B4C) based cermets were doped with 5, 10, and 20 wt pct Silicon (Si) and their sinterability and properties were investigated for conventional sintering at 2223 K (1950 °C) and spark plasma sintering (SPS) at 1623 K (1350 °C). An average particle size of ~3 µm was obtained after 10 hours of milling. There is an enhancement of Vickers microhardness in the 10 wt pct Si sample from 18.10 in conventional sintering to 27.80 GPa for SPS. The relative density, microhardness, and indentation fracture toughness of the composition SiC60(B4C)30Si10 fabricated by SPS are 98 pct, 27.80 GPa, and 3.8 MPa m1/2, respectively. The novelty of the present study is to tailor the wettability and ductility of the cermet by addition of Si into the SiC-B4C matrix. Better densification with improved properties is achieved for cermets consolidated by SPS at lower temperatures than conventional sintering.

  19. A study on the high densification process of CVI SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Son, Ji Hye; Jun, Jin O. [Yonsei University, Seoul (Korea)

    2002-03-01

    A novel process called in-situ whisker growing and matrix filling was designed to overcome the problem of conventional ICVI process which make composites porous. Fiber reinforced SiC matrix composites were successfully fabricated by the process in the present study. Methyltrichlorosilane(CH{sub 3}SiCl{sub 3},MTS) was chosen as a source precursor of SiC. Hydrogen was used as a dilute gas for the in-situ whisker growing process and nitrogen was used as a dilute gas for the SiC matrix filling process. In order to increase the fracture toughness of the composites, the fibers were coated with a thin pyrolytic carbon layer at 1000 .deg. C before ICVI process. In case of the monolithic SiC-SiC composites, SiC whisker was grown at the temperature of 1100 .deg. C with the input gas ratio of 15. SiC-SiC composites obtained by the suggested process were denser than the composites obtained by conventional ICVI process. Also, in case of the stacked SiC-SiC composites, SiC whisker was grown at the temperature of 1100 .deg. C with the input gas ratio of 20 and 30. In addition, the SiC whisker was also grown at 1150 .deg.C with the input gas ratio of 20. The optimum condition of the in-situ whisker growing for the following matrix filling process is 1100 .deg. C, {alpha}=20, and 2hr. The designed process, in-situ whisker growing and matrix filling, was confirmed as a novel process which can fabricate high density fiber reinforced SiC matrix composites. 40 refs., 24 figs., 7 tabs. (Author)

  20. CAD/CAM machining Vs pre-sintering in-lab fabrication techniques of Y-TZP ceramic specimens: Effects on their mechanical fatigue behavior.

    Science.gov (United States)

    Zucuni, C P; Guilardi, L F; Fraga, S; May, L G; Pereira, G K R; Valandro, L F

    2017-07-01

    This study evaluated the effects of different pre-sintering fabrication processing techniques of Y-TZP ceramic (CAD/CAM Vs. in-lab), considering surface characteristics and mechanical performance outcomes. Pre-sintered discs of Y-TZP ceramic (IPS e.max ZirCAD, Ivoclar Vivadent) were produced using different pre-sintering fabrication processing techniques: Machined- milling with a CAD/CAM system; Polished- fabrication using a cutting device followed by polishing (600 and 1200 SiC papers); Xfine- fabrication using a cutting machine followed by grinding with extra-fine diamond bur (grit size 30 μm); Fine- fabrication using a cutting machine followed by grinding with fine diamond bur (grit size 46 μm); SiC- fabrication using a cutting machine followed by grinding with 220 SiC paper. Afterwards, the discs were sintered and submitted to roughness (n=35), surface topography (n=2), phase transformation (n=2), biaxial flexural strength (n=20), and biaxial flexural fatigue strength (fatigue limit) (n=15) analyses. No monoclinic-phase content was observed in all processing techniques. It can be observed that obtaining a surface with similar characteristics to CAD/CAM milling is essential for the observation of similar mechanical performance. On this sense, grinding with fine diamond bur before sintering (Fine group) was the best mimic protocol in comparison to the CAD/CAM milling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  2. From SICs and MUBs to Eddington

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Ingemar, E-mail: ingemar@physto.se [Fysikum, Stockholms Universitet, S-106 91 Stockholm (Sweden)

    2010-11-01

    This is a survey of some very old knowledge about Mutually Unbiased Bases (MUB) and Symmetric Informationally Complete POVMs (SIC). In prime dimensions the former are closely tied to an elliptic normal curve symmetric under the Heisenberg group, while the latter are believed to be orbits under the Heisenberg group in all dimensions. In dimensions 3 and 4 the SICs are understandable in terms of elliptic curves, but a general statement escapes us. The geometry of the SICs in 3 and 4 dimensions is discussed in some detail.

  3. One-step deposition of ultrafiltration SiC membranes on macroporous SiC supports

    DEFF Research Database (Denmark)

    König, Katja; Boffa, Vittorio; Buchbjerg, Bjarke

    2014-01-01

    We fabricated nearly defect-free SiC membranes for potential ultrafiltration applications by conducting pyrolysis of allylhydrido polycarbosilane in the presence of submicron α-SiC particles. The SiC membranes were developed on commercial macroporous SiC supports by a low-temperature-process in w......We fabricated nearly defect-free SiC membranes for potential ultrafiltration applications by conducting pyrolysis of allylhydrido polycarbosilane in the presence of submicron α-SiC particles. The SiC membranes were developed on commercial macroporous SiC supports by a low......-temperature-process in which allylhydrido polycarbosilane acted to bond together crystalline α-SiC particles to form a porous layer. The suspensions of α-SiC powder and allylhydrido polycarbosilane in hexane or hexane/tetradecane were used for membrane fabrication by dip-coating. By using optimized hexane suspension with 5% w...

  4. Models of current sintering

    Science.gov (United States)

    Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.

    2017-06-01

    Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.

  5. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  6. Preparation of biomorphic SiC ceramics

    Directory of Open Access Journals (Sweden)

    Egelja A.

    2008-01-01

    Full Text Available This paper deals with a new method for producing non-oxide ceramic using wood as a template. SiC with a woodlike microstructure has been prepared by carbothermal reduction reactions of Tilia wood/TEOS composite at 1873K. The porous carbon preform was infiltrated with TEOS (Si(OC2H54, as a source of silica, without pressure at 298K. The morphology of resulting porous SiC ceramics, as well as the conversion mechanism of wood to SiC ceramics, have been investigated by scanning electron microscopy (SEM/EDS and X-ray diffraction analysis (XRD. Obtained SiC ceramics consists of β-SiC with traces of α-SiC.

  7. SiC MEMS For Harsh Environments

    National Research Council Canada - National Science Library

    Bradley, Kenneth

    2003-01-01

    ... (specifically high temperature) material for both structural and electronic devices. Although shock testing of SiC MEMS devices under this program was not accomplished, subsequent work allowed for this testing to occur, with positive results...

  8. Infiltration of porous samples of SiC with Cu-Ti alloys

    International Nuclear Information System (INIS)

    Sanchez, R; Iturriza, I; Ordonez, S; Martinez, V

    2004-01-01

    The necessity of generating new materials with certain properties has led to research on a wide range of ceramic-metal systems, in order to obtain compound materials that combine the attractive properties of ceramics (hardness, rigidity, resistance to wear and corrosion and low density) with the characteristic toughness and ductility of metals. An attractive system is that formed by silicon carbide and copper-based alloys. The copper at 1373 K does not wet the SiC, presenting a wet angle of 140 o and generating a weak union. Additions of Ti to the Cu have been shown to improve the wettability and characteristics of the union. This work studies the infiltration of samples of SiC that contain about 35% porosity. These samples were pre-sinterized at 1650 o C and later infiltrated, at 1400 o C, with Cu-Ti alloys containing 1% to 3% in weight of Ti. An important factor in this process is the decomposition of the SiC resulting from a reaction with the Cu, producing precipitation of C which then reacts with the Ti to form TiC and increase the concentration of Si in the Cu-based alloy (CW)

  9. Neutron diffraction multiphase analysis on functional heat-resistant ceramics SiC

    International Nuclear Information System (INIS)

    Li Jizhou; Yang Jilian; Kang Jian; Ye Chuntang; Cui Hongtao

    1995-01-01

    Functional heat-resistant ceramics silicon carbide SiC is a highly feasible material for high temperature engineering applications. The SiC investigated is sintered into powder sample by using industrial SiC as semifinished materials. The neutron diffraction is performed on the powder neutron diffractometer at 15 MW heavy water research reactor of the China Institute of Atomic Energy. The least-squares crystal structure and profile refinements are undertaken with the multiphase Rietveld analysis program Fullprof, which was from ILL, Grenoble, France. The results fitted for neutron data show that besides the main phase of 2H (space group of P6 3 mc), there are 4H(C6mc), 6H(C6mc) and α-SiO 2 (Fd3m) of residual impurity. The abundance of 4 phases are 2H(73.1+-2.0)%, 4H(12.8+-1.7)%, 6H(14.0+-1.1)% and α-SiO 2 <0.1%. The result shows that neutron powder diffraction is becoming more and more powerful on materials science, while the new multiphase Rietveld profile program is used. The neutron diffraction analysis can be used not only to determine the structure of materials and but also to obtain the abundance of mixture phases

  10. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  11. Sintering behavior, microstructure and mechanical properties of vacuum sintered SiC/spinel nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoqiang, E-mail: lguoqi1@lsu.edu [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Mechanical Engineering, Southern University, Baton Rouge, LA 70813 (United States); Tavangarian, Fariborz [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2014-12-05

    Highlights: • Bulk SiC/spinel nanocomposite was synthesized from talc, aluminum and graphite powders. • Sintering behavior and mechanical properties of SiC/spinel nanocomposite was studied. • The obtained bulk SiC/spinel nanocomposite had a mean crystallite size of about 34 nm. - Abstract: A mixture of SiC and spinel (MgAl{sub 2}O{sub 4}) nanopowder was prepared through the ball milling of talc, aluminum and graphite powder. The powder was uniaxially pressed into the form of pellets and the prepared specimens were annealed at various temperatures for different holding times. The prepared samples were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), nanoindentation test, cold crushing strength (CCS) test and Archimedes principle test. The obtained results showed that the hardness, CCS and bulk density did not follow the same trend at different temperatures due to the interaction among various parameters. The detailed investigation of microstructure, phase changes and experimental conditions revealed the mechanisms behind these behaviors. The best sample obtained after annealing at 1200 °C for 1 h in vacuum had the mean hardness of 1.6 GPa and the mean CCS of 118 MPa.

  12. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  13. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Directory of Open Access Journals (Sweden)

    Román-Manso, B.

    2014-04-01

    Full Text Available Concentrated ceramic inks based on β-SiC powders, with different amounts of Y2O3 and Al2O3 as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densifi cation of the as-produced 3D structures, previously heat treated in air at 600 ºC for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS furnace. The effects of the amount of sintering additives (7 - 20 wt. % and the size of the SiC powders (50 nm and 0.5 μm on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized β-SiC powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink, involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics.Se han fabricado andamiajes de carburo de silicio (SiC usando la técnica de “Robocasting”, a partir de tintas cerámicas conteniendo β-SiC y distintas cantidades de Y2O3 and Al2O3, como aditivos de sinterización. La densificación de las estructuras tridimensionales, previamente calcinadas a 600 ºC para eliminar los aditivos orgánicos, se realizó en un horno de “Spark Plasma Sintering” (SPS. Se analizó el efecto de la cantidad de aditivos de sinterización (7-20 % en peso y del tamaño de partícula inicial del polvo de SiC (50 nm y 0.5 μm en el procesado de las tintas, en la microestructura, la dureza y el módulo elástico de las estructuras sinterizadas. El uso de polvo

  14. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  15. Microstructural evolution and mechanical properties of Ti3SiC2-TiC composites

    International Nuclear Information System (INIS)

    Tian, WuBian; Sun, ZhengMing; Hashimoto, Hitoshi; Du, YuLei

    2010-01-01

    Ti 3 SiC 2 -TiC composites were fabricated by pulse discharge sintering technique using three different sets of powder mixtures, i.e. Ti/Si/TiC (TC30), Ti/Si/C/TiC (SI30) and Ti/Si/C (TSC30). Based on X-ray diffraction (XRD) analysis and microstructural observations, starting powder reactants were found to have little effect on phase content but strong influence on the microstructure in terms of phase distribution. The phase distribution mainly relies on the heat released from reaction and the liquid phase content formed during sintering. The mechanical properties of the fabricated dense samples demonstrate that more homogeneous phase distribution, available by choosing the starting reactants of SI30, results in higher flexural strength, whereas the Vickers hardness is almost independent of the microstructure. The enhanced flexural strength in sample SI30 sintered at 1400 o C is mainly attributed to the homogeneous TiC distribution in the microstructure.

  16. Microstructural Characterization and Influence of Ceramography Method on the Microhardness of Sintering Agents Added Silicon Carbide

    OpenAIRE

    Gonçalves, Danilo Corrêa; Saleiro, Gisele Teixeira; Matias, Philipe Cardoso; Gomes, Alaelson Vieira; Ramos, Vitor; Campos, José Brant Brant de; Melo, Francisco Cristovão Lourenço de; Lima, Eduardo Sousa

    2017-01-01

    This study carried out the microstructural characterization, by light microscopy, of sintered SiC in the presence of liquid phase at temperatures of 1800, 1850 and 1900 ºC, added with Al2O3 and Y2O3 as well with Al2O3-YAG composite in the proportions of 5, 10 and 15% by weight. It was possible to observe the formation of microstructural patterns resulting from the heterogeneous segregation of the additives, such observation is associated to the pulling of additives during the initial stage of...

  17. Dynamic Fracture Toughness of TaC/CNTs/SiC CMCs Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Qiaoyun Xie

    2015-01-01

    Full Text Available This study focuses on the fracture toughness of TaC and carbon nanotubes (CNTs reinforced SiC ceramic matrix composites (CMCs, prepared by spark plasma sintering (SPS technique. A high densification of 98.4% was achieved under the sintering parameter of 133°C/min, 1800°C, and 90 MPa pressure. Vickers indentation was employed to measure the indentation toughness on the polished surface of ceramic samples, SEM was applied to directly observe the crack propagation after indentation, and split Hopkinson pressure bar (SHPB was developed to determine the dynamic fracture toughness within the ceramic samples subjected to an impact in a three-point bending configuration.

  18. New High-Performance SiC Fiber Developed for Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.; Yun, Hee Mann

    2002-01-01

    Sylramic-iBN fiber is a new type of small-diameter (10-mm) SiC fiber that was developed at the NASA Glenn Research Center and was recently given an R&D 100 Award for 2001. It is produced by subjecting commercially available Sylramic (Dow Corning, Midland, MI) SiC fibers, fabrics, or preforms to a specially designed high-temperature treatment in a controlled nitrogen environment for a specific time. It can be used in a variety of applications, but it currently has the greatest advantage as a reinforcement for SiC/SiC ceramic composites that are targeted for long-term structural applications at temperatures higher than the capability of metallic superalloys. The commercial Sylramic SiC fiber, which is the precursor for the Sylramic-iBN fiber, is produced by Dow Corning, Midland, Michigan. It is derived from polymers at low temperatures and then pyrolyzed and sintered at high temperatures using boron-containing sintering aids (ref. 1). The sintering process results in very strong fibers (>3 GPa) that are dense, oxygen-free, and nearly stoichiometric. They also display an optimum grain size that is beneficial for high tensile strength, good creep resistance, and good thermal conductivity (ref. 2). The NASA-developed treatment allows the excess boron in the bulk to diffuse to the fiber surface where it reacts with nitrogen to form an in situ boron nitride (BN) coating on the fiber surface (thus the product name of Sylramic-iBN fiber). The removal of boron from the fiber bulk allows the retention of high tensile strength while significantly improving creep resistance and electrical conductivity, and probably thermal conductivity since the grains are slightly larger and the grain boundaries cleaner (ref. 2). Also, as shown in the graph, these improvements allow the fiber to display the best rupture strength at high temperatures in air for any available SiC fiber. In addition, for CMC applications under oxidizing conditions, the formation of an in situ BN surface layer

  19. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  20. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  1. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation; proton ; stopping and range of

  2. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  3. A Grande Reportagem no contexto informativo SIC

    OpenAIRE

    Colaço, Vanessa Alexandra Francisco

    2014-01-01

    Os telespectadores querem ver grandes reportagens? Como evoluíram as audiências da Grande Reportagem SIC? É este o produto premium da estação? Terá este formato um investimento e continuidade garantidas? Estas são algumas das questões formuladas e às quais se procurou dar resposta neste Relatório de Estágio. Neste trabalho traça-se o perfil do programa Grande Reportagem SIC, clarificando a linha editorial que lhe serviu de base, procurando perceber as suas dinâmicas e passando em revista mome...

  4. Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint

    Science.gov (United States)

    Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.

    2017-07-01

    There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.

  5. Microstructure and mechanical properties of pressureless sintered B4C- C composite using phenolic resin

    Science.gov (United States)

    Nikravan, A.; Baharvandi, H. R.; Jebelli, F. B.; Abdizadeh, H.; Ehsani, N.

    2007-10-01

    Boron carbide is an extremely promising material for a variety of applications that require high hardness and good wear resistance. However, due to the very high sintering temperatures which are required for B4C densification, wide spread use of that is limited. Various solutions have been studied to modifying densification behavior of B4C. Pressureless sintering in the presence of different additives has been tried by researchers. The effect of additives such as TiB2, SiC, Al, B, ZrO2, talc and Si have been evaluated. It was shown that the densification and mechanical properties may be improved with sintering aids. The Effects of phenolic resin additive on the microstructure and mechanical properties of B4C were explained in this study. Experimental composition was batched corresponding from 0 to 10 wt% of the additive. All samples were sintered for 60 minutes at 2150°C. The heating and cooling rates were 10°C/min for all samples. It was found that below 7.5 wt% of phenolic resin additive, the density increased with additive increasing and above that, decreased by phenolic resin addition. Mechanical properties such as fracture toughness, strength and hardness increased as a result of densification enhancement.

  6. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    ... involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  7. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  8. Effect of Y2O3 addition on the properties of mullite bonded porous SiC ceramics prepared by an infiltration technique

    Directory of Open Access Journals (Sweden)

    Kayal, N.

    2013-10-01

    Full Text Available Mullite bonded porous SiC ceramics were synthesized by infiltrating a powder compact of SiC and Y2O3 with a liquid precursor of mullite which on subsequent heat treatment at 1300-1500 ºC produced mullite bonded porous SiC ceramics. The effect of Y2O3 content and sintering temperature on phase composition, microstructure, oxidation degree of SiC, flexural strength, porosity and pore size distribution were studied. Due to enhance oxidation and well developed neck formation by the addition of Y2O3 a high strength 49 MPa was achieved for the porous mullite bonded SiC ceramics with porosity 28 vol %.Se han sintetizado materiales porosos de SiC-Mullita mediante la infiltración de polvo prensado de SiC y Y2O3 con un precursor líquido de mullita, el cual con un tratamiento térmico posterior a 1300-1500 °C da lugar a los materiales porosos de SiC-Mullita. Se estudió el efecto del contenido de Y2O3 y la temperatura de sinterización en la constitución mineralógica, en la microestructura, en el grado de oxidación del SiC, la resistencia a la flexión, la porosidad total y su distribución de tamaño. Debido a la oxidación y a la mejora en la formación de los cuellos por la adición de Y2O3, se alcanzan altos valores de resistencia, 49 MPa, para estos materiales porosos de SiC-Mullita con porosidad 28 % en volumen.

  9. Sintering additives for zirconia ceramics

    International Nuclear Information System (INIS)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification

  10. Sintering additives for zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  11. About SIC POVMs and discrete Wigner distributions

    International Nuclear Information System (INIS)

    Colin, Samuel; Corbett, John; Durt, Thomas; Gross, David

    2005-01-01

    A set of d 2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is distinguished by its high degree of symmetry. Measures of this kind are called symmetric informationally complete, or SIC POVMs for short, and could be applied for quantum state tomography. Despite its simple geometrical description, the problem of constructing SIC POVMs or even proving their existence seems to be very hard. It is our purpose to introduce two applications of discrete Wigner functions to the analysis of the problem at hand. First, we will present a method for identifying symmetries of SIC POVMs under Clifford operations. This constitutes an alternative approach to a structure described before by Zauner and Appleby. Further, a simple and geometrically motivated construction for an SIC POVM in dimensions two and three is given (which, unfortunately, allows no generalization). Even though no new structures are found, we hope that the re-formulation of the problem may prove useful for future inquiries

  12. Universal Converter Using SiC

    Energy Technology Data Exchange (ETDEWEB)

    Dallas Marckx; Brian Ratliff; Amit Jain; Matthew Jones

    2007-01-01

    The grantee designed a high power (over 1MW) inverter for use in renewable and distributed energy systems, such as PV cells, fuel cells, variable speed wind turbines, micro turbines, variable speed gensets and various energy storage methods. The inverter uses 10,000V SiC power devices which enable the use of a straight-forward topology for medium voltage (4,160VAC) without the need to cascade devices or topologies as is done in all commercial, 4,160VAC inverters today. The use of medium voltage reduces the current by nearly an order of magnitude in all current carrying components of the energy system, thus reducing size and cost. The use of SiC not only enables medium voltage, but also the use of higher temperatures and switching frequencies, further reducing size and cost. In this project, the grantee addressed several technical issues that stand in the way of success. The two primary issues addressed are the determination of real heat losses in candidate SiC devices at elevated temperature and the development of high temperature packaging for SiC devices.

  13. Contribution to the densification study of silicon and zirconium carbides by an innovating process: the Spark Plasma Sintering; Contribution a l'etude de la densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allemand, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DMN/SRMA/LTMEx), 91 - Gif-sur-Yvette (France); Guillard, F.; Galy, J. [Centre d' Elaboration de Materiaux et d' Etudes Structurales (CEMES-CNRS), 31 - Toulouse (France)

    2007-07-01

    In the framework of the CPR ISMIR, the works presented here take up the results of the thesis of F. Guillard defended on december 2006. This thesis has dealt with the Spark Plasma Sintering (SPS) technique and more particularly have been studied: 1)the {beta}SiC and ZrC sintering 2)the modelling of ZrC sintering by the SPS technique and 3)the studies of the carbides/oxides interfaces carried out by SPS. Concerning the {beta}SiC and ZrC sintering: the two carbides have been sintered between 1450 and 1950 C with times periods of 10 minutes and pressures between 50 and 150 MPa. These experiments have shown that the way to apply the pressure is of major importance. Moreover, 92% of densification can be reached after 5 minutes in 1850 C for SiC. For ZrC, 95% of densification is reached as soon as 5 minutes in 1750 C. Different correlations between grains size, density and the way to apply pressure are presented. For the SPS modelling of ZrC, two existing models, taking into account the diffusion laws, are used to try to model the SPS. The results are presented and discussed. At last, the SPS allows to make interfaces starting from powders or materials previously sintered. The SiC/ZrC and ZrO{sub 2}/SiC interfaces have been studied. A microstructural study is presented as well as a technique which allows the assembling with no cracks of SiC and ZrC. (O.M.)

  14. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Young -Jin [GE Global Research Center, Schenectady, NY (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-28

    Nano-infiltration and transient eutectic phase (NITE) sintering was developed for fabrication of nuclear grade SiC composites. We produced monolithic SiC ceramics using NITE sintering, as candidates for accident-tolerant fuels in light-water reactors (LWRs). In this work, we exposed three different NITE chemistries (yttria-alumina [YA], ceria-zirconia-alumina [CZA], and yttria-zirconia-alumina [YZA]) to autoclave conditions simulating LWR coolant loops. The YZA was most corrosion resistant, followed by CZA, with YA being worst. High-resolution elemental analysis using scanning transmission electron microscopy (STEM) X-ray mapping combined with multivariate statistical analysis (MVSA) datamining helped explain the differences in corrosion. YA-NITE lost all Al from the corroded region and the ytttria reformed into blocky precipitates. The CZA material lost all Al from the corroded area, and the YZA – which suffered the least corrosion –retained some Al in the corroded region. Lastly, the results indicate that the YZA-NITE SiC is most resistant to hydrothermal corrosion in the LWR environment.

  15. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  16. Phase and Microstructural Correlation of Spark Plasma Sintered HfB2-ZrB2 Based Ultra-High Temperature Ceramic Composites

    Directory of Open Access Journals (Sweden)

    Ambreen Nisar

    2017-07-01

    Full Text Available The refractory diborides (HfB2 and ZrB2 are considered as promising ultra-high temperature ceramic (UHTCs where low damage tolerance limits their application for the thermal protection system in re-entry vehicles. In this regard, SiC and CNT have been synergistically added as the sintering aids and toughening agents in the spark plasma sintered (SPS HfB2-ZrB2 system. Herein, a novel equimolar composition of HfB2 and ZrB2 has shown to form a solid-solution which then allows compositional tailoring of mechanical properties (such as hardness, elastic modulus, and fracture toughness. The hardness of the processed composite is higher than the individual phase hardness up to 1.5 times, insinuating the synergy of SiC and CNT reinforcement in HfB2-ZrB2 composites. The enhanced fracture toughness of CNT reinforced composite (up to a 196% increment surpassing that of the parent materials (ZrB2/HfB2-SiC is attributed to the synergy of solid solution formation and enhanced densification (~99.5%. In addition, the reduction in the analytically quantified interfacial residual tensile stress with SiC and CNT reinforcements contribute to the enhancement in the fracture toughness of HfB2-ZrB2-SiC-CNT composites, mandatory for aerospace applications.

  17. Production of Al2O3–SiC nano-composites by spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mansour Razavi

    2017-07-01

    Full Text Available In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600 °C for 10 min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5 h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329 MPa, respectively, in Al2O3–20 wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale.

  18. Sintered wire cesium dispenser photocathode

    Science.gov (United States)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  19. Mechanical and corrosion performance of SiC multilayer containing porous layers

    Energy Technology Data Exchange (ETDEWEB)

    Vega Bolivar, C M; Biamino, S; Pavese, M; Fino, P; Badini, C [Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Haehner, P, E-mail: claudia.vegabolivar@polito.it [JRC-Institute for Energy European Commission NL-1755 ZG Petten (Netherlands)

    2011-10-29

    Presently, one of the most interesting approaches to the generation of H{sub 2} is based on sulphur-based cycles, that however require structural components able to work in a corrosive environment at high temperature. Silicon carbide (SiC) is one of the most promising materials for this application, and to increase its limited toughness multilayered structures can be envisaged, since crack deviation and delamination increase energy adsorption during fracture. In this work tape casting and pressureless sintering were used to produce SiC samples consisting in alternating dense and porous layers, the porosity being realised by the insertion of pore forming agents during the preparation of the green ceramic. The mechanical properties of these materials were studied both at room temperature and at 1550 deg. C. The effect of corrosion at 850 deg. C by a mixture of H{sub 2}O, O{sub 2} and SO{sub 2} was studied by comparing microstructure and mechanical behaviour before and after long-term (1000 h) corrosion treatments. Corrosion resistance was very good, and flexural strength was strongly increased due to a combined effect of crack tip blunting and compressive residual stress formation. Concerning the architecture instead, the insertion of porous layers brings to a reduction of flexural strength, while Young's modulus remains almost constant.

  20. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    A.K. Costa

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  1. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  2. Psychometric properties of the spanish language version of the stress in children questionnaire (SiC

    Directory of Open Access Journals (Sweden)

    Alejandra Caqueo-Urízar

    2014-03-01

    Full Text Available This study describes an analysis of the psychometric properties of a Spanish language version of the Stress in Children (SiC questionnaire. A group of Chilean school children was evaluated. The results show a tested version of the mentioned questionnaire which consists of 16 items distributed across two factors (emotional well-being and sources of distress. Internal consistency indices (Cronbach's alpha-coefficients were high. It is concluded there are appropriate psychometric properties for the Stress in Children questionnaire for this group of Chilean children. It is, therefore, a brief and easy to understand instrument of child assessment.

  3. 3Y-TZP/Si2N2O composite obtained by pressureless sintering

    International Nuclear Information System (INIS)

    Santos, Carlos Augusto Xavier

    2006-01-01

    Zirconia 3YTZP presents excellent properties at room temperature. These properties decrease as the temperature increases because high temperature acts negatively over the stress induced transformation toughening in the matrix. The addition of Si 3 N 4 and SiC in a Y-TZP matrix is very interesting because leads to formation of silicon oxynitride and it increases the mechanical properties like toughness and hardness. Certainly the mechanical properties increment is limited by several difficulties which have appeared during processing and heating of these materials. This paper studies the Y-TZP/Si 2 N 2 0 pressureless sintered composite, under different temperatures, showing the behavior of 20 vol %Si 3 N 4 -SiC when added in YTZP matrix and heated under no pressure system. Al 2 O 3 and Y 2 O 3 were used as sintering aids. The mixture was milled and molded by cold isostatic pressure. Samples were heated at 1500 deg, 1600 deg and 17000 deg C x 2h without pressure under atmospheric conditions using Si 3 N 4 bed-powder. Samples were characterized by XRD and density, hardness, toughness, bending strength were measured. The structure of the material was observed in SEMITEM/EPMA to verify the distribution and composition of the materials in the composite and the contact between filler surface and the matrix. The formation of SiON 2 was observed in the sintered material due to reaction between both nitride and carbide with Y - TZP matrix. Furthermore the material showed an increment of both hardness and toughness as temperature increases. The samples presented considerable resistance to oxidation below 1000 deg C. (author)

  4. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    OpenAIRE

    Changzhou Yu; Peng Cao; Mark Ian Jones

    2017-01-01

    Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P.) titanium in a graphite furnace backfilled with argon and stu...

  5. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  6. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  7. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process.

    Science.gov (United States)

    Guo, Hanzheng; Baker, Amanda; Guo, Jing; Randall, Clive A

    2016-11-22

    The sintering process is an essential step in taking particulate materials into dense ceramic materials. Although a number of sintering techniques have emerged over the past few years, the sintering process is still performed at high temperatures. Here we establish a protocol to achieve dense ceramic solids at extremely low temperatures (sustainable manufacturing practices.

  8. Comparative Evaluations and Microstructure: Mechanical Property Relations of Sintered Silicon Carbide Consolidated by Various Techniques

    Science.gov (United States)

    Barick, Prasenjit; Chatterjee, Arya; Majumdar, Bhaskar; Saha, Bhaskar Prasad; Mitra, Rahul

    2018-04-01

    A comparative evaluation between pressureless or self-sintered silicon carbide (SSiC), hot-pressed silicon carbide (HP-SiC), and spark plasma-sintered silicon carbide (SPS-SiC) has been carried out with emphasis on examination of their microstructures and mechanical properties. The effect of sample dimensions on density and properties of SPS-SiC has been also examined. Elastic modulus, flexural strength, and fracture toughness measured by indentation or testing of single-edge notched beam specimens have been found to follow the following trend, HP-SiC > SSiC > SPS-SiC. The SPS-SiC samples have shown size-dependent densification and mechanical properties, with the smaller sample exhibiting superior properties. The mechanical properties of sintered SiC samples appear to be influenced by relative density, grain size, and morphology, as well as the existence of intergranular glassy phase. Studies of fracture surface morphologies have revealed the mechanism of failure to be transgranular in SSiC or HP-SiC, and intergranular in case of SPS-SiC, indicating the dominating influence of grain size and α-SiC formation with high aspect ratio.

  9. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Spencer, Michael G. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Chandrashekhar, Chandra M.V. S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  10. Aplicación del método de Rietveld al análisis cuantitativo SiC sinterizado en fase líquida

    Directory of Open Access Journals (Sweden)

    Ortiz, A. L.

    2000-06-01

    Full Text Available Accurate X-ray quantitative analysis in SiC-based ceramics is a difficult task owing to the strong overlap among the Bragg reflections of the different polytypes. In relation to this point, the Rietveld method can be used as a powerful tool in order to solve this problem. In this study we have applied this procedure to determine the weight fractions of the phases in a liquid– phase-sintered SiC sample. It is shown that the consideration of preferred orientation effects is also indispensable to obtain the accurate proportion of the phases.

    La determinación de las fracciones en peso de las fases mediante difracción de rayos X es enormemente complicada en cerámicos a base de SiC debido al intenso solapamiento entre las reflexiones Bragg de los diferentes politipos. No obstante, el método de Rietveld constituye una herramienta poderosa para resolver este problema. En este trabajo se utiliza el método de Rietveld al objeto de determinar las fracciones en peso de las diferentes fases para una muestra de SiC sinterizado en fase líquida (LPS SiC. Nuestros resultados ponen también de manifiesto la necesidad de incorporar correcciones debidas a orientación preferencial para efectuar un análisis cuantitativo preciso.

  11. 500?C SiC JFET Driver Circuits and Packaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed development, SiC JFET control circuitry and normally-off SiC JFET power switch will be integrated in a single SiC chip that will provide digital...

  12. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  13. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  14. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  15. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current,...

  16. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  17. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  18. Sintering of zirconia in high-pressure

    International Nuclear Information System (INIS)

    Kunrath, A.O.; Strohaecker, T.R.; Pereira, A.S.; Jornada, J.A.H. da; Piermarini, G.J.

    1989-01-01

    A systematic study about the sintering of zirconia hyperfines powders in high-pressure is presented. The differents conditions effect of sintering in microstructure and in hardness and tenacity properties of zirconia samples with a very fine grain is also studied. (C.G.C.) [pt

  19. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural respon...

  20. Modeling the Microstructural Evolution During Constrained Sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini

    2015-01-01

    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as ...

  1. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The present work deals with the sintering of ... recently become an attractive area of research and deve- lopment. The major advantages of ... without the usage of sintering aids (Lee and Case 1999;. Goldstein et al 1999). Several studies have ...

  2. THE POLARIZING EFFECTS IN SINTERED KAOLIN

    African Journals Online (AJOL)

    compacted and sintered density of the ceramic have been studied, and a density — pressure relationship for before- and after-sintering conditions obtained. INTRODUCTION. Ceramics have been known to mankind for thousands of years, and have been used in construction materials. In many applications, ceramics have.

  3. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  4. Evaluations of thermal shock resistance and fracture toughness of SiC as a gas turbine blade at high temperatures. Gas turbine yo SiC yokuzai no koon ni okeru tainetsu shogekisei no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S.; Kurumada, A.; Kudo, Y.; Chikahata, H.; Shibano, M.; Miyata, H. (Ibaraki Univ., Ibaraki (Japan). Faculty of Engineering Hitachi Ltd., Tokyo (Japan))

    1989-12-20

    This paper shows the results of the experiments on the thermal shock resistance and the thermal shock fracture toughness of ceramic blade used for high quality high temperature gas turbines. Using disk specimens of alpha SiC blade, the thermal shock resistance and the thermal shock fracture toughness are determined by means of Joule {prime} s heating at a central area of disk specimens at 1000 {degree} C (4.3 sec.) and at 1200 {degree} C, 1300 {degree} C, and 1600 {degree} C (4.5 sec.) . Both of the thermal shock resistance and fracture toughness decreases as the temperature increases until 1300 {degree} C, and then increases from 1300 to 1600 {degree} C. Both show maximum values at 1600 {degree} C. The writers consider that this is due to the stress release by the increase of ductility at high temperature. The experiments were also performed for SC-101 which is used for semiconductor base as reference material. The thermal shock resistance and fracture toughness of SC-101 at 1200 {degree} C is three times and 1.4 times larger respectively than SiC. The writers considered that it is caused by the high thermal conductivity three times larger than alpha SiC. 11 refs., 12 figs.

  5. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  6. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  7. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanism...

  8. Tema 8. Principis físics dels semiconductors (Resum)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2011-01-01

    Resum del "Tema 8. Principis físics dels semiconductors" de l'assignatura "Fonaments Físics de l'Enginyeria I" de "Grau en Enginyeria en So i Imatge" impartit a l'Escola Politècnica Superior de la Universitat d'Alacant.

  9. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  10. Effect of Bottom Ash and Fly Ash as a Susceptor Material on The Properties of Aluminium Based Composites Prepared by Microwave Sintering

    Directory of Open Access Journals (Sweden)

    Wan Muhammad Wan Nur Azrina Binti

    2017-01-01

    Full Text Available The use of aluminium as a single material in automotive applications is not suitable without a mixture with reinforcement materials that can support the properties at high temperature. In this study, aluminium based composite were prepared with weight percentage of SiC reinforcement, varying from 5 to 20 wt%. Aluminium powder and reinforcement materials were mixed using ball milling machine with speed of 100 rpm for 2 hours. The powder mixture were then compressed at pressure 4 tonnes with 5 minutes holding time. The compact samples were sintered using microwave sintering technique. Microwave sintering techniques in this study using two different types of susceptor materials that are bottom ash and fly ash. Sintered aluminium based composites using bottom ash susceptor material involving the sintering temperature of 526 °C for 30 minutes whereas for the samples sintered using fly ash susceptor material, involving a temperature of 523 °C for 15 minutes. From the result, the sintered samples using fly ash susceptor material, showed higher density with a value of 2.1933 g/cm3 compared to bottom ash 2.0002 g/cm3 and having the higher hardness value 72.1315 HV compared to bottom ash 50.0511HV. The using of fly ash could affect the heating rate during the sintering process which could influence the properties of aluminium based composites. In conclusion, the type of susceptor could affect the physical and mechanical properties of aluminum-based composite reinforced with silicon carbide.

  11. New constructions of approximately SIC-POVMs via difference sets

    Science.gov (United States)

    Luo, Gaojun; Cao, Xiwang

    2018-04-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are related to quantum state tomography (Caves et al., 2004), quantum cryptography (Fuchs and Sasaki, 2003) [1], and foundational studies (Fuchs, 2002) [2]. However, constructing SIC-POVMs is notoriously hard. Although some SIC-POVMs have been constructed numerically, there does not exist an infinite class of them. In this paper, we propose two constructions of approximately SIC-POVMs, where a small deviation from uniformity of the inner products is allowed. We employ difference sets to present the first construction and the dimension of the approximately SIC-POVMs is q + 1, where q is a prime power. Notably, the dimension of this framework is new. The second construction is based on partial geometric difference sets and works whenever the dimension of the framework is a prime power.

  12. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  13. Pulsed Capacitance Measurement of Silicon Carbide (SiC) Schottky Diode and SiC Metal Oxide Semiconductor

    National Research Council Canada - National Science Library

    Griffin, Timothy E

    2006-01-01

    The incremental capacitance C was measured for a silicon carbide (SiC) Schottky diode during a reverse-biasing pulse and for two SiC n-MOS transistors during a negative pulse to their source with the drain grounded...

  14. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  15. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    , the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co......-firing, the model only had a qualitative agreement with the measured ash deposit formation rates.Sintering measurements were carried out by means of compression strength testing of ash pellets. This method showed to not be applicable for the salt rich fly ash derived from straw combustion. For the fly ashes...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  16. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  17. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  18. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  19. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    Microwave sintering was performed in 2.45 GHz multimode microwave furnace at temperatures ranging from 570–630 °C. Microwave sintering at a heating rate of as high as 22°C/min resulted in ∼55% reduction of processing time as compared to conventional sintering. A lower sintered density observed in the case of ...

  20. The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's

    Science.gov (United States)

    Morscher, Gregory N.

    2005-01-01

    Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.

  1. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  2. Fabrication of large aperture SiC brazing mirror

    Science.gov (United States)

    Li, Ang; Wang, Peipei; Dong, Huiwen; Wang, Peng

    2016-10-01

    The SiC brazing mirror is the mirror whose blank is made by assembling together smaller SiC pieces with brazing technique. Using such kinds of joining techniques, people can manufacture large and complex SiC assemblies. The key technologies of fabricating and testing SiC brazing flat mirror especially for large aperture were studied. The SiC brazing flat mirror was ground by smart ultrasonic-milling machine, and then it was lapped by the lapping smart robot and measured by Coordinate Measuring Machine (CMM). After the PV of the surface below 4um, we did classic coarse polishing to the surface and studied the shape of the polishing tool which directly effects removal amount distribution. Finally, it was figured by the polishing smart robot and measured by Fizeau interferometer. We also studied the influence of machining path and removal functions of smart robots on the manufacturing results and discussed the use of abrasive in this process. At last, an example for fabricating and measuring a similar SiC brazing flat mirror with the aperture of 600 mm made by Shanghai Institute of Ceramics was given. The mirror blank consists of 6 SiC sectors and the surface was finally processed to a result of the Peak-to-Valley (PV) 150nm and Root Mean Square (RMS) 12nm.

  3. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  4. Compatibility of SiC and SiC Composites with Molten Lead

    Energy Technology Data Exchange (ETDEWEB)

    H Tunison

    2006-03-07

    The choice of structural material candidates to contain Lead at 1000 C are limited in number. Silicon carbide composites comprise one choice of possible containment materials. Short term screening studies (120 hours) were undertaken to study the behavior of Silicon Carbide, Silicon Nitride, elemental Silicon and various Silicon Carbide fiber composites focusing mainly on melt infiltrated composites. Isothermal experiments at 1000 C utilized graphite fixtures to contain the Lead and material specimens under a low oxygen partial pressure environment. The corrosion weight loss values (grams/cm{sup 2} Hr) obtained for each of the pure materials showed SiC (monolithic CVD or Hexoloy) to have the best materials compatibility with Lead at this temperature. Increased weight loss values were observed for pure Silicon Nitride and elemental Silicon. For the SiC fiber composite samples those prepared using a SiC matrix material performed better than Si{sub 3}N{sub 4} as a matrix material. Composites prepared using a silicon melt infiltration process showed larger corrosion weight loss values due to the solubility of silicon in lead at these temperatures. When excess silicon was removed from these composite samples the corrosion performance for these material improved. These screening studies were used to guide future long term exposure (both isothermal and non-isothermal) experiments and Silicon Carbide composite fabrication work.

  5. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  6. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  7. Modeling the stress-strain state of the V95/SiC aluminum alloy matrix composite under uniaxial loading

    Science.gov (United States)

    Smirnov, S. V.; Konovalov, A. V.; Myasnikova, M. V.; Khalevitsky, Yu. V.; Smirnov, A. S.; Igumnov, A. S.

    2017-12-01

    In the paper we develop a computational model of plastic deformation of an aluminum matrix composite. The composite is produced by sintering, and it has a cellular microstructure. SiC reinforcement particles form a stratum along the pellet boundaries of the V95 (analogous to 7075) aluminum alloy. The effective properties of the plastic flow of the stratum material are obtained by the rule of mixtures, depending on the volume fractions of the aluminum alloy and the reinforcement particles in the composite material. The feasibility of the model is demonstrated on the example of numerical simulation of the micro- and macroscopic stress-strain state of the composite under uniaxial tensile and compressive loading conditions.

  8. Polymer precursors for SiC ceramic materials

    Science.gov (United States)

    Litt, Morton H.

    1986-01-01

    Work on precursor polymers to SiC was performed, concentrating on polymers made from decamethyl cyclohexasilyene units. The initial approach was to synthesize mixed diphenyl decamethyl cyclohexasilane, dephenylate, and polymerize. This produced polymers which had yields of up to 50 percent SiC. (Theoretical yield is 75 percent). The present approach is to make the polymer through the intermediate trans-1,4-diphenyl decamethyl cyclohexasilane. This should produce a crystalline polymer and high strength fibers. These will be thermally decomposed to SiC fibers. This requires new chemistry which is currently being studied.

  9. Thermal barrier coating resistant to sintering

    Science.gov (United States)

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  10. Characteristics of Commercial SiC and Synthetic SiC as an Aggregate in Geopolymer Composites

    Science.gov (United States)

    Irfanita, R.; Afifah, K. N.; Asrianti; Subaer

    2017-03-01

    This main objective of this study is to investigate the effect silicon carbide (SiC) as an aggregate on the mechanical strength and microstructure of the geopolymer composites. The geopolymers binder were produced by using alkaline activation method of metakaolin and cured at 70oC for 2 hours. In this study commercial and synthetic SiC were used as aggregate to produce composite structure. Synthetic SiC was produced from rice husk ash and coconut shell carbon calcined at 750oC for 2 hours. The addition of SiC in geopolymers paste was varied from 0.25g, 0.50g to 0.75g to form geopolymers composites. The chemical compositions and crystallinity level of SiC and the resulting composites were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC and the composites were examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The physical and mechanical properties of the samples were determined based on apparent porosity, bulk density, and three bending flexural strength measurements. The results showed that the commercial and synthetic SiC were effectively produced geopolymers composites with different microstructure, physical and mechanical strength.

  11. Sintering of new SiC-Phosphate composite materials for grinding wheels fabrication

    Directory of Open Access Journals (Sweden)

    Silva, R. F.

    2004-04-01

    Full Text Available The effect of several variables such as molar ratio P2O5/B2O3 (X, temperature and heating cycle on the strength of chemically bonded SiC materials for grinding wheels fabrication was studied. It was shown that the highest compressive strength (52.4 MPa could be obtained using an optimal molar ratio X = 4.5 and a multiple step heating cycle up to a sintering temperature of 800oC. DTA, XRD, SEM and dilatometrical analysis were performed to follow the different stages of the structural development.

    Se estudia el efecto de diferentes variables tales como la razón molar P2O5/B2O3(X, temperatura y ciclo de calentamieno sobre la resistencia de materiales de SiC aglomerados quimicamente para la fabricación de muelas arasivas. Se ha comprobado que la más alta resistencia a la compresión (52,4MPa pueda obtenerse usando una razón molar òptima x= 4,5 y un ciclo de calentamiento en múltiples etapas hasta la temperatura de 800º C. Estudios mediante ATD, DRX, MEB y análisis dilatométricos fueron llevados a cabo para seguir las diferentes etapas del desarrollo microestructura.

  12. Fabrication of laminated ZrC-SiC composite by vacuum hot-pressing sintering

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2015-03-01

    Full Text Available Laminated ZrC-SiC ceramic was prepared through tape casting and hot pressing. The green tapes of ZrC and SiC were prepared at room temperature. In order to improve the density of composite, the binder of green tapes were removed at 550 °C for 1 h. The laminated structure and the cracks propagation path, which is not a straight line, are observed by optical metalloscope. The compact laminated ZrC-SiC composite sintered by vacuum hot-pressing at 1650 °C for 90 min under pressure of 20 MPa was researched by X-ray diffraction and scanning electron microscopy (SEM equipped with energy dispersive X-ray analysis. The results showed that interlayer bonding is tight, and no disordered phase has formed in the interlayers of ZrC or SiC, and the combination mode is physical mechanism.

  13. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  14. Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Pereira dos Santos Tonello, Karolina, E-mail: karolina.pereira@polito.it; Padovano, Elisa; Badini, Claudio; Biamino, Sara; Pavese, Matteo; Fino, Paolo

    2016-04-06

    Nanosized allotropes of carbon have been attracting a lot of attention recently, but despite the steady growth of the number of scientific works on materials based on graphene family, there is still much to be explored. These two-dimensional carbon materials, such as graphene nanoplatelets, multilayer graphene or few layer graphene have emerged as a possible second phase for reinforcing ceramics, resulting in remarkable properties of these composites. Typically, graphene ceramic matrix composites are prepared by a colloidal or a powder route followed by pressure assisted sintering. Recently other traditional ceramic processes, such as tape casting, were also successfully studied. The aim of this research is to fabricate α-SiC multi-layer composites containing 2, 4 and 8 vol% of graphene nanoplatelets (GNP) by tape casting and study the effect of these additions on the mechanical behavior of the composites. In order to achieve this purpose, samples were pressureless sintered and tested for density and mechanical properties. The elastic modulus was measured by the impulse excitation of vibration method, the hardness by Vickers indentation and fracture toughness using micro Vickers indentation and by three-point bending applying the pre-cracked beam approach. Results showed that up to 4 vol%, the density and mechanical properties were directly proportional to the amount of GNP added but showed a dramatic decrease for 8 vol% of GNP. Composites with 4 vol% of GNP had a 23% increment elastic modulus, while the fracture toughness had a 34% increment compared to SiC tapes fabricated under the same conditions. Higher amounts of GNP induces porosity in the samples, thus decreasing the mechanical properties. This study, therefore, indicates that 4% is an optimal amount of GNP and suggests that excessive amounts of GNP are rather detrimental to the mechanical properties of silicon carbide ceramic materials prepared by tape casting.

  15. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  16. SiC flame sensors for gas turbine control systems

    Science.gov (United States)

    Brown, Dale M.; Downey, Evan; Kretchmer, Jim; Michon, Gerald; Emily Shu; Schneider, Don

    1998-05-01

    The research and development activities carried out to develop a SiC flame sensor for gas turbines utilized for power generation are discussed. These activities included the fabrication and characterization of SiC UV photodiodes and small SiC signal diodes as well as the designing and testing of production flame detector assemblies. The characteristics that make this solid state flame detector particularly useful for dry low NO x (DLN) premixed oil and natural gas fuels will be described. Since this device provides both analog dc and ac output signals, turbine combustor mode tracking, combustion flame dynamics and flame intensity tracking have been demonstrated. Sensors designed for production have been built, qualified and field tested. These sensors are now being installed in gas turbine power plants and are a component part of the turbine control system. This development has resulted in the first commercialized turbine control application to use SiC electronic devices.

  17. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  18. Visible Blind SiC Array with Low Noise Readout

    Data.gov (United States)

    National Aeronautics and Space Administration — We have designed and fabricated a Focal Plane Array (FPA) and low noise preamp board. We wish to complete the development of the SiC array test assembly and perform...

  19. Broadband antireflection nanodome structures on SiC substrate

    DEFF Research Database (Denmark)

    Ou, Yiyu; Zhu, Xiaolong; Møller, Uffe Visbech

    2013-01-01

    Nanodome structures are demonstrated on the SiC substrate by using nanosphere lithography and dry etching. Significant surface antireflection has been observed over a broad spectral range from 400 nm to 1600 nm.......Nanodome structures are demonstrated on the SiC substrate by using nanosphere lithography and dry etching. Significant surface antireflection has been observed over a broad spectral range from 400 nm to 1600 nm....

  20. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  1. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  2. Fabrication of large-sized TaC-coated carbon crucibles for the low-cost sublimation growth of large-diameter bulk SiC crystals

    Science.gov (United States)

    Nakamura, Daisuke; Shigetoh, Keisuke

    2017-08-01

    Low-cost TaC-coated graphite components (SinTaC) fabricated via wet powder forming and sintering has been proposed to reduce the production cost and improve the crystal quality of SiC wafers. However, the sizes of the SinTaC components are limited by the available sizes of graphite materials with coefficients of thermal expansion (CTEs) that match that of the TaC layer, hindering their application in the production of large-diameter SiC wafers. Here we demonstrate the scaling up of the sizes of SinTaC components through the reselection of new graphite materials based on available maximum size and CTE. The large-sized SinTaC components fabricated from the optimal reselected graphite material were tested in the growth of SiC via sublimation. The results confirm the enhanced durability of the large-sized SinTaC components compared to the graphite ones. Furthermore, the SinTaC components are reusable in multiple growth cycles.

  3. Buffett's Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting-Against-Beta...... in publicly traded stocks versus wholly-owned private companies, we find that the former performs the best, suggesting that Buffett's returns are more due to stock selection than to his effect on management. These results have broad implications for market efficiency and the implementability of academic...

  4. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  5. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  6. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  7. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  8. Calcium Hex aluminate reaction sintering by Spark Plasma Sintering; Sinterizacion reactiva de Hexaluminato de Calcio mediante Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, P. G. de la; Garcia-Moreno, O.; Torrecillas, R.; Menendez, J. L.

    2012-11-01

    Calcium hex aluminate (CaAl{sub 1}2O{sub 1}9) is the most alumina-rich intermediate compound of the CaO-Al{sub 2}O{sub 3} system. The formation of this aluminate is produced by the reaction between calcium oxide and alumina with the consequent formation of intermediates compounds with lower alumina content with increasing temperature (CaAl{sub 2}O{sub 4}, CaAl4O{sub 7}). In this study we studied the variation of sintering parameters for obtaining dense and pure calcium hex aluminate by reaction sintering by Spark Plasma Sintering (SPS). A mixing of Al{sub 2}O{sub 3} and CaCO{sub 3} were used as reactive. Final densities close to the theoretical and phase transformation over 93% were achieved by this method. (Author) 22 refs.

  9. Research on SiC Whisker Prepared by H-PSO

    Directory of Open Access Journals (Sweden)

    WANG Yao

    2017-10-01

    Full Text Available SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid growth mechanism.

  10. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  11. Rare-earth doped (alpha'/beta')-sialon ceramics

    CERN Document Server

    Gajum, N R

    2001-01-01

    combination of light and heavy rare-earth (Yb-Nd and Gd-Nd), and then pressureless sintered and compared with the single cation materials. Materials in the as sintered state were composed of a high alpha' sialon content with a minor amount of beta' sialon and 12H A1N polytype indicating that the heavy rare-earth (which is the principal alpha' stabilizer) has a dominant effect although EDAX analysis confirmed the presence of both cations (light and heavy) within the alpha' structure. The research also compared, and developed an understanding of, the thermal stability of alpha'-sialon using single Yb or mixed cations. The Yb single cation alpha'/beta' materials exhibited excellent stability over a range of temperature (1200 - 1600 deg C) and for different periods of time up to 168 hrs. The heat treatments result in the crystallisation of the residual phase as a Yb garnet phase which formed at approx 1300 deg C. The mixed cation alpha'/beta' materials showed some alpha'-beta' transformation. The transformation w...

  12. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints

    Science.gov (United States)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2018-02-01

    The microcracking mechanisms responsible for Ti3SiC2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments are investigated in detail. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti3SiC2 and SiC phases. The behaviors of SiC and Ti3SiC2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504-515. This CDM model describes microcracking damage in brittle ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti3SiC2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti3SiC2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti3SiC2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. These predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.

  13. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  14. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  15. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    The lifetimes of heterogeneous catalysts in many widely used industrial processes are determined by the loss of active surface area. In this context, the underlying physical sintering mechanism and quantitative information about the rate of sintering at industrial conditions are relevant....... In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  16. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    the crystalline framework of a zeolite creates a steric hindrance against agglomeration into larger clusters. In the present study, experimental protocols for encapsulation of metal nanoparticles inside zeolites were developed. Two different methodologies were proposed to encapsulate gold, palladium and platinum......One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  17. Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering

    Science.gov (United States)

    Tomida, T.; Sumiyoshi, A.; Nie, G.; Ochi, T.; Suzuki, S.; Kikuchi, M.; Mukaiyama, K.; Guo, J. Q.

    2017-05-01

    Filled skutterudite is a promising material for thermoelectric power generation because its ZT value is relatively high. However, mass production of high-performance thermoelectric materials remains a challenge. This study focused on the sintering process of thermoelectric materials. Large-diameter n-type (Yb or La, Ca, Al, Ga, In)0.8(Co, Fe)4Sb12 skutterudite sintering bodies with a small thickness were successfully produced by the spark plasma sintering (SPS) method. When direct current flows through the thermoelectric sintering body during the SPS pulse, the Peltier effect causes a temperature difference within the sintering body. To eliminate the Peltier effect, an electrical insulating material was inserted between the punch (electrode) and the sintering body. In this way, an n-type La-filled skutterudite sample with a diameter of 200 mm, thickness of 21 mm, and weight of 5 kg was successfully produced. The thermoelectric properties and microstructures of the sample were almost the same throughout the whole sintering body, and the dimensionless figure of merit reached 1.0 at 773 K.

  18. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. YE. Kapustyan

    2014-04-01

    Full Text Available Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original substance. Forming of blanks, whose chemical composition corresponded to BT1-0 alloy, was carried out using the powder metallurgy method. Compounds were obtained by flash welding without preheating. Microstructural investigations and mechanical tests were carried out. To compare the results investigations of BT1-0 cast alloy were conducted. Findings. Samples of welded joints of sintered titanium blanks from VT1-0 alloy using the flash butt welding method were obtained. During welding the microstructure of basic metal consisting of grains of an a-phase, with sizes 40...70 mkm, is transformed for the seam weld and HAZ into the lamellar structure of an a-phase. The remaining pores in seam weld were practically absent; in the HAZ their size was up to 2 mkm, with 30 mkm in the basic metal. Attainable level of mechanical properties of the welded joint in sintered titanium alloys is comparable to the basic metal. Originality. Structure qualitative changes and attainable property complex of compounds of sintered titanium alloys, formed as a result of flash butt welding were found out. Practical value. The principal possibility of high-quality compounds obtaining of sintered titanium alloys by flash welding is shown. This gives a basis for wider application of sintered titanium alloys due to long-length blanks production that are correspond to deformable strand semi finished product.

  19. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available The conclusions drawn from this presentation are that Spark Plasma Sintering (SPS) of equiatomic BE TiPt powder produces fully sintered specimens, with incomplete homogenisation. There is a need for improved furnace atmosphere control so...

  20. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain.

    Science.gov (United States)

    Akova, Tolga; Ucar, Yurdanur; Tukay, Alper; Balkaya, Mehmet Cudi; Brantley, William A

    2008-10-01

    The purpose of this study was to compare shear bond strengths of cast Ni-Cr and Co-Cr alloys and the laser-sintered Co-Cr alloy to dental porcelain. Dental porcelain was applied on two cast and one laser-sintered base metal alloy. Ten specimens were prepared for each group for bond strength comparison. ANOVA followed by Tukey HSD multiple comparison test (alpha=0.05) was used for statistical analysis. Fractured specimens were observed with a stereomicroscope to classify the type of failure after shear bond testing. While the mean shear bond strength was highest for the cast Ni-Cr metal-ceramic specimens (81.6+/-14.6 MPa), the bond strength was not significantly different (P>0.05) from that for the cast Co-Cr metal-ceramic specimens (72.9+/-14.3 MPa) and the laser-sintered Co-Cr metal-ceramic specimens (67.0+/-14.9 MPa). All metal-ceramic specimens prepared from cast Ni-Cr and Co-Cr alloys exhibit a mixed mode of cohesive and adhesive failure, whereas five of the metal-ceramic specimens prepared from the laser-sintered Co-Cr alloy exhibited the mixed failure mode and five specimens exhibited adhesive failure in the porcelain. The new laser-sintering technique for Co-Cr alloy appears promising for dental applications, but additional studies of properties of the laser-sintered alloy and fit of castings prepared by this new technique are needed before its acceptance into dental laboratory practice. Laser sintering of Co-Cr alloy seems to be an alternative technique to conventional casting of dental alloys for porcelain fused to metal restorations.

  1. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  2. Fusibility and sintering characteristics of ash

    International Nuclear Information System (INIS)

    Ots, A. A.

    2012-01-01

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R B/A of their alkaline and acid components between 0.03 and 4. Acritical value of R B/A is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  3. Mechanical behaviour of AlSiC nano composites produced by ball milling and spark plasma sintering =

    Science.gov (United States)

    Buchheim, Claudia Sofia de Andrade Redondo Murilhas

    Neste trabalho foram produzidos nanocompositos de AlSiC misturando aluminio puro com nano particulas de SiC com diâmetro de 45 - 55 nm, usando, de forma sequencial, a tecnica da metalurgia do po e a compactacao por "Spark Plasma Sintering". O composito obtido apresentava graos com 100 nm de diâmetro, encontrandose as particulas de SiC localizadas, principalmente, nas fronteiras de grao. O nanocomposito sob a forma de provetes cilindricos foi submetido a testes de compressao uniaxial e a testes de nanoindentacao para analisar a influencia das nanoparticulas de SiC, da fracao volumica de acido estearico e do tempo de moagem, nas propriedades mecânicas do material. Para efeitos de comparacao, utilizouse o comportamento mecânico do Al puro processado em condicoes similares e da liga de aluminio AA1050O. A tensao limite de elasticidade do nanocomposito com 1% Vol./Vol. de SiC e dez vezes superior a do AA1050. O refinamento de grao a escala nano constitui o principal mecanismo de aumento de resistencia mecânica. Na realidade, o Al nanocristalino sem reforco de particulas de SiC, apresenta uma tensao limite de elasticidade sete vezes superior a da liga AA1050O. A adicao de 0,5 % Vol./Vol. e de 1 % Vol./Vol. de SiC conduzem, respetivamente, ao aumento da tensao limite de elasticidade em 47 % e 50%. O aumento do tempo de moagem e a adicao de acido estearico ao po durante a moagem conduzem apenas a um pequeno aumento da tensao de escoamento. A dureza do material medida atraves de testes de nanoindentacao confirmaram os dados anteriores. A estabilidade das microestruturas do aluminio puro e do nanocomposito AlSiC, foi testada atraves de recozimento de restauracao realizado as temperaturas de 150 °C e 250 °C durante 2 horas. Aparentemente, o tratamento termico nao influenciou as propriedades mecânicas dos materiais, excepto do nanocomposito com 1 % Vol./Vol. de SiC restaurado a temperatura de 250 °C, para o qual se observou uma reducao da tensao limite de elasticidade

  4. Hysteresis in the Active Oxidation of SiC

    Science.gov (United States)

    Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.

    2011-01-01

    Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.

  5. X-ray fluorescence microtomography of SiC shells

    Energy Technology Data Exchange (ETDEWEB)

    Ice, G.E.; Chung, J.S. [Oak Ridge National Lab., TN (United States); Nagedolfeizi, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-04-01

    TRISCO coated fuel particles contain a small kernel of nuclear fuel encapsulated by alternating layers of C and SiC. The TRISCO coated fuel particle is used in an advanced fuel designed for passive containment of the radioactive isotopes. The SiC layer provides the primary barrier for radioactive elements in the kernel. The effectiveness of this barrier layer under adverse conditions is critical to containment. The authors have begun the study of SiC shells from TRISCO fuel. They are using the fluorescent microprobe beamline 10.3.1. The shells under evaluation include some which have been cycled through a simulated core melt-down. The C buffer layers and nuclear kernels of the coated fuel have been removed by laser drilling through the SiC and then exposing the particle to acid. Elements of interest include Ru, Sb, Cs, Ce and Eu. The radial distribution of these elements in the SiC shells can be attributed to diffusion of elements in the kernel during the melt-down. Other elements in the shells originate during the fabrication of the TRISCO particles.

  6. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  7. Effect of increasing lanthanum substitution and the sintering ...

    Indian Academy of Sciences (India)

    Administrator

    Young's modulus of the microwave sintered samples (8.8–12.5 and 160–180 GPa) are higher than that for conventional sintered (8–10 and 135–155 GPa) samples. Keywords. Microwave sintering; La-substituted SBTi ceramics; mechanical properties. 1. Introduction. In recent years, bismuth layer-structured ferroelectrics.

  8. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  9. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  10. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  11. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  12. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  13. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  14. Air-sintering mechanisms of chromites

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bates, J.L.; Maupin, G.D.

    1991-07-01

    The sintering behaviors of La{sub 1-x}Sr{sub x}CrO{sub 3} and Y{sub 1-x}Ca{sub x}CrO{sub 3} in air at 1550{degrees}C are described as functions of alkaline earth concentration and chromium enrichment or depletion. Vapor-, liquid-, and solid-phase mass transport mechanisms appear to be operative in both systems. Liquid-phase sintering appears dominant an Y{sub 1-x}Ca{sub x}CrO{sub 3} with x = 0.15 to 0.40, especially with Cr enrichment. Either vapor- or solid-phase transport may dominate in the La{sub 1-x}Sr{sub x}CrO{sub 3} system. Slight depletion or enrichment of Cr in both systems has dramatic effects on air-sintered density and microstructure, probably due to modulation of vapor-phase transport and liquid-phase formation. Substantial Cr depletion enhances sintering. 10 refs., 9 figs.

  15. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Zinc oxide; microwave sintering; microhardness. 1. Introduction. The application of microwave energy for the processing of ceramics has become an attractive area of research and innovation recently. The major advantages of the micro- wave processing of ceramic materials are accelerated densification rate as a ...

  16. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  17. Sintering of silicon nitride ceramics with magnesium silicon nitride and yttrium oxide as sintering aids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J; Xu, J Y [Shanghai Institute of Technology, Shanghai 200235 (China); Peng, G H [Guangxi Normal University, Guilin 541004, Guangxi (China); Zhuang, H R; Li, W L; Xu, S Y [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Mao, Y J, E-mail: guojianjiang@sit.edu.cn [Shanghai University, Shanghai 200444 (China)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramics had been produced through pressureless sintering and hot-pressing sintering with MgSiN{sub 2}-Y{sub 2}O{sub 3} or only MgSiN{sub 2} as sintering aids. The influences of the amount of MgSiN{sub 2} and Y{sub 2}O{sub 3} and sintering methods on the properties of Si{sub 3}N{sub 4} ceramics were investigated. The results show that the bend strength of Si{sub 3}N{sub 4} ceramic fabricated through pressureless sintering at 1820 deg. C for 4 h with 5.6 wt.% MgSiN{sub 2}-15.8 wt.% Y{sub 2}O{sub 3} as sintering additive could achieve 839 MPa. However, the bend strength of Si{sub 3}N{sub 4} ceramic produced by hot-pressing sintering at 1750 deg. C for 1 h under uniaxial pressure of 20 MPa with 4.76 wt.% MgSiN{sub 2} was 1149 MPa. The thermal conductivity of the Si{sub 3}N{sub 4} ceramic 2 3 4 could reach to 129 W{center_dot}m{sup -1{center_dot}}K{sup 1}. The present work demonstrated that MgSiN{sub 2} aids and hot-pressing sintering were effective to improve the thermal conductivity of Si{sub 3}N{sub 4} ceramic.

  18. Formation of SiC thin films by chemical vapor deposition with vinylsilane precursor

    Science.gov (United States)

    Doi, Takuma; Takeuchi, Wakana; Jin, Yong; Kokubun, Hiroshi; Yasuhara, Shigeo; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have examined the formation of SiC thin films by chemical vapor deposition (CVD) using vinylsilane and investigated the chemical bonding state and crystallinity of the prepared SiC thin films. We achieved the formation of a Si–H–less SiC film at growth temperatures as low as 600 °C. Also, we investigated the in situ doping effect of N by the incorporation of NH3 gas in the SiC growth and demonstrated that the chemical composition of N in SiC thin films was controlled by adjusting the NH3 flow rate. In addition, we examined the growth of SiC thin films on a Cu substrate and achieved the formation of a SiC thin film while avoiding any significant reaction between SiC and Cu at a growth temperature of 700 °C.

  19. Synthesis and properties of porous SiC ceramics

    Science.gov (United States)

    Kiselov, V. S.; Lytvyn, P. M.; Yukhymchuk, V. O.; Belyaev, A. E.; Vitusevich, S. A.

    2010-05-01

    Porous silicon carbide (SiC) ceramics are produced using carbon matrices derived from natural wood. Such material is especially promising as it is environmentally friendly with attractive physical properties, including a high level of biocompatibility, chemical inertness, and mechanical strength. We have developed a forced impregnation process with further synthesis of SiC using natural wood as well as a variety of industrial carbon materials and compared the properties of these ceramics. The structure and composition of the materials obtained were investigated by Raman scattering spectroscopy. The hardness of the samples was estimated using the Vickers technique. It was shown that the phase composition and mechanical properties of synthesized SiC ceramics can be effectively controlled by the initial Si contents and temperature of the synthesis process. A large variety of options are demonstrated for materials development taking into account an optimal porosity selection for various practical applications.

  20. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  1. Laser composite surfacing of stainless steel with SiC

    Science.gov (United States)

    Dutta Majumdar, J.; Chandra, B. Ramesh; Nath, A. K.; Manna, I.

    2006-07-01

    In the present study, an attempt has been made to improve wear resistance of AISI 304 stainless steel by laser composite surfacing with SiC. Laser processing has been carried out by pre-deposition of Fe + SiC powders (in the ratio of 85:15 and thickness of 100 m) on AISI 304 stainless steel substrate and subsequently, melting it using a 2 kW continuous wave CO2 laser. Following laser processing, a detailed characterization and evaluation of mechanical/electrochemical properties of the composite layer were undertaken to study the influence of laser processing on the characteristics and properties of the composite layer. Microstructure of the composite layer consisted of uniformly dispersed SiC particles in grain refined -Fe dendrites. Laser composite surfacing led to a significant improvement in microhardness and wear resistance as compared to as-received substrate. However, pitting corrosion property was marginally deteriorated due to laser composite surfacing.

  2. Yttrium oxide transparent ceramics by low-temperature microwave sintering

    International Nuclear Information System (INIS)

    Luo, Junming; Zhong, Zhenchen; Xu, Jilin

    2012-01-01

    Graphical abstract: The figure shows the SEM photos of the surfaces of the Y 2 O 3 transparent ceramic samples obtained by microwave sintering and vacuum sintering. It is clearly demonstrated that the grain distribution of the vacuum sintering sample is not uniform with the smallest and the largest particle size at about 2 μm and 15 μm respectively, while the grain distribution of microwave sintering sample is uniform with the average diameter at about 2–4 μm (the smallest reported so far) and with no abnormal growth-up or coarsening phenomenon. We have further found out that the smaller the grain size, the higher the mechanical and optical properties. Display Omitted Highlights: ► The microwave sintering temperature of the sample is lower compared with vacuum. ► The microwave sintering time of the sample is shorter compared with vacuum. ► The mechanical properties of the microwave sintering sample is improved greatly. ► The Y 2 O 3 grain of microwave sintering sample is the smallest reported so far. -- Abstract: Yttrium oxide (Y 2 O 3 ) transparent ceramics samples have been successfully fabricated by microwave sintering processing at relatively low temperatures. In comparison with the vacuum sintering processing, Y 2 O 3 transparent ceramics can be obtained by microwave sintering at lower sintering temperature and shorter sintering time, and they possess higher transmittances and mechanical properties. The technologies of low-temperature microwave sintering and the relationships of the microstructures and properties of the specified samples have been investigated in detail. We have found out that the low-temperature microwave sintering technique has its obvious advantages over the conventional methods in manufacturing yttrium oxide transparent ceramics.

  3. TiO2 doped UO2 fuels sintered by spark plasma sintering

    Science.gov (United States)

    Yao, Tiankai; Scott, Spencer M.; Xin, Guoqing; Lian, Jie

    2016-02-01

    UO2 fuels doped with oxide additives Cr2O3 and TiO2 display larger grain size, improving fission product retention capability and thus accident tolerance. Spark plasma sintering (SPS) was applied to consolidate TiO2-doped UO2 fuel pellets with 0.5 wt % dopant concentration, above its solubility, in order to induce eutectic phase formation and promote sintering kinetics. The grain size can reach 80 μm by sintering at 1700 °C for 20 min, and liquid U-Ti-O eutectic phase occurs at the triple junction of grain boundaries and significantly improves grain growth during sintering. The oxide additive also impedes the reduction of the initial hyperstoichiometric fuel powders to more stoichiometric fuel pellets upon SPS process. Thermal-mechanical properties of the sintered doped fuel pellets including thermal conductivity and hardness are measured and compared with undoped fuel pellets. The enlarged grain size (80 μm) and densification within short sintering duration highlight the immense possibility of SPS in fabricating large grained UO2 fuel pellets to improve fuel performance.

  4. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  5. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  6. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  7. High Temperature Memories in SiC Technology

    OpenAIRE

    Ekström, Mattias

    2014-01-01

    This thesis is part of the Working On Venus (WOV) project. The aim of the project is to design electronics in silicon carbide (SiC) that can withstand the extreme surface environmen  of Venus. This thesis investigates some possible computer memory technologies that could survive on the surface of Venus. A memory must be able to function at 460 °C and after a total radiation dose of at least 200 Gy (SiC). This thesis is a literature survey. The thesis covers several Random-Access Memory (RAM) ...

  8. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  9. Phase transformation of NiTi alloys during vacuum sintering

    Science.gov (United States)

    Wang, Jun; Hu, Kuang

    2017-05-01

    The aim of this study is to ascertain the Phase transformation of NiTi alloys during vacuum sintering. NiTi shape memory alloys (SMA) of atomic ratio 1:1 were prepared through press forming and vacuum sintering with the mixture of Ni and Ti powders. Different samples were prepared by changing the sintering time and the sintering temperature. Phase and porosity of the samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that in the process of sintering NiTi2 and Ni3Ti phases are formed firstly and then transform into NiTi phase. The quantity of NiTi2 and Ni3Ti phases gradually decreased but not eliminate completely with increase of sintering time. The porosity of specimen sintering at 900°C decreases slightly with increase of sintering time. With increase of sintering time the porosity of specimen sintering at 1050°C decreased firstly and then increased because of generation rich titanium liquid in the process of sintering.

  10. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  11. Numerical simulation of electric field assisted sintering

    Science.gov (United States)

    McWilliams, Brandon A.

    A fully coupled thermal-electric-sintering finite element model was developed and implemented to explore electric field assisted sintering techniques (FAST). FAST is a single step processing operation for producing bulk materials from powders, in which the powder is heated by the application of electric current under pressure. This process differs from other powder processing techniques such as hot isostatic pressing (HIP) and traditional press and sinter operations where the powder or compact is heated externally, in that the powder is heated directly as a result of internal Joule heating (for conductive powders) and/or by direct conduction from the die and punches. The overall result is much more efficient heating which allows heating rates of >1000°C/min to be achieved which is desirable for sintering bulk nanocrystalline and other novel high performance materials. Previous modeling efforts on FAST have only considered the thermal-electric aspect of the problem and have neglected densification. In addition to the introduction of a sintering model, a detailed thermal-electric study of process parameters was carried out in order to identify key system variables and quantify their effect on the overall system response and subsequent thermal history of a consolidated sample. This analysis was compared to empirical data from a parallel experimental study and shown to satisfactorily predict the observed trends. This model was then integrated with a phenomenologically based sintering model to capture the densification of the sample. This fully coupled model was used to predict densification kinetics under FAST like conditions and examine the evolution of material properties as the sample transitions from a loose powder to a fully dense compact and the resulting effect on the electrical and thermal fields within the compact. This model was also used to explore the effect of non-uniform thermal, electrical, stress and density fields on the final geometry and local

  12. Calcination, Reduction and Sintering of ADU Spheres for HTGR Fuel

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Kim, Woong Ki; Kim, Young Min; Lee, Young Woo; Kim, Ju Hee; Cho, Hyo Jin; Cho, Moon Seoung

    2011-01-01

    The international oil market is again in turmoil in accordance with the increasing of human needs and energy consumption. Soaring oil prices, fears of supply security, and climate change are concerned becoming more concrete make for an uncertain energy future. In this view point, nuclear energy is an important, yet controversial option for energy supply. High Temperature Gas Reactor will play a dominant role in the worldwide fleet of nuclear reactors of the next decade for electricity production and high temperature heat. HTGR have two reactor types which use the basic fuel concept based on the dispersion of TRISO coated particles in graphite in shown Fig.1. The TRISO coated particle for these purposes is prepared with pyro-carbon and silicone carbide coatings on a spherical UO 2 kernel surface as fissile material. The TRISO fuel particle consists of a microsphere (i.e., UO 2 kernel) of nuclear material: encapsulated by multiple layers of pyro-carbon and a SiC layer. This multiple coating layers system has been engineered to retain the fission products generated by fission of the nuclear material in the kernel during normal operation and all licensing basis events over the design lifetime of the fuel. UO 2 kernels are produced by using the modified sol-gel process, a wet process, generally known as the GSP method. Wet chemical processes are flexible in producing kernels of different size and chemical composition with high throughout and yield, good spherical shape, and narrow size distribution. This chemical processing route is well-known to the potential kernel fabrication processes. The principle, as set out in Fig.2, involves first of all preparing a pseudo-sol(also known as a 'broth') from an initial uranyl nitrate solution . This broth solution is obtained through addition of a number of additives, as determined by process know-how, including a soluble organic polymer, that are subsequently gels into droplets and are dispersed for ADU precipitation. The

  13. Fe Isotopic Composition of Presolar SiC Mainstream Grains

    Science.gov (United States)

    Tripa, C. E.; Pellin, M. J.; Savina, M. R.; Davis, A. M.; Lewis, R. S.; Clayton, R. N.

    2002-01-01

    Iron isotopic distribution was measured in SiC mainstream grains from the Murchison meteorite by time-of-flight resonance ionization mass spectrometry. All grains exhibit 54Fe depletions of 50 to 200, lower than what are predicted by calculations of s-process nucleosynthesis in AGB stars. Additional information is contained in the original extended abstract.

  14. Emanation thermal analysis of SiC based materials

    Czech Academy of Sciences Publication Activity Database

    Bálek, V.; Zeleňák, V.; Mitsuhashi, T.; Bakardjieva, Snejana; Šubrt, Jan; Haneda, H.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 83-89 ISSN 1418-2874 R&D Projects: GA MŠk ME 180 Grant - others:EFDA(XE) TTMA-001 Institutional research plan: CEZ:AV0Z4032918 Keywords : emanation thermal analysis * SEM * SiC nanocomposites Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  15. High temperature flow behaviour of SiC reinforced lithium

    Indian Academy of Sciences (India)

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline ...

  16. Investigation of thermoelectric SiC ceramics for energy harvesting ...

    Indian Academy of Sciences (India)

    Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges. XIAO-YI HANa, b,∗. , JUN WANGa and HAI-FENG CHENGa. aScience and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and. Engineering ...

  17. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and ...

  18. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    Science.gov (United States)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  19. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to β spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of.

  20. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  1. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    Unknown

    Verdier (1996) explored the effect of SiC particulate rein- forcements in oxynitride glasses. Like in silicate compo- sites, non-Newtonian behaviour was observed in oxynitride glasses but instead of shear thinning they observed shear thickening. This was attributed to change in composition of grain boundary glass coupled ...

  2. Reheating of zinc-titanate sintered specimens

    Directory of Open Access Journals (Sweden)

    Labus N.

    2015-01-01

    Full Text Available The scope of this work was observing dimensional and heat transfer changes in ZnTiO3 samples during heating in nitrogen and air atmosphere. Interactions of bulk specimens with gaseous surrounding induce microstructure changes during heating. Sintered ZnTiO3 nanopowder samples were submitted to subsequent heating. Dilatation curves and thermogravimetric with simultaneous differential thermal analysis TGA/DTA curves were recorded. Reheating was performed in air and nitrogen atmospheres. Reheated samples obtained at different characteristic temperatures in air were analyzed by X-ray diffraction (XRD. Microstructures obtained by scanning electron microscopy (SEM of reheated sintered samples are presented and compared. Reheating in a different atmosphere induced different microstructures. The goal was indicating possible causes leading to the microstructure changes. [Projekat Ministarstva nauke Republike Srbije, br. OI172057 i br. III45014

  3. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...

  4. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  5. Fabrication of Sintered Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2010-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for uprating the power density of a Pressurized Water Reactor fuel assembly. An annular fuel has a geometrically inherent advantage such as an increased heat transfer area and a thin pellet thickness. It results in a lot of advantages from the point of a fuel safety and its economy. In order to actualize the dual cooled fuel, an essential element is the annular pellet with precisely controlled diametric tolerance. However, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance specification. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional doubleacting press. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a centerless grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications for the inner diameter in an as-fabricated pellet. In the present study, we are trying to find a way to minimize the diametric tolerance of the sintered annular pellet without inner surface grinding. This paper deals with a new approach that we have tried to reduce the diametric tolerance of the sintered annular pellet

  6. PhySIC: a veto supertree method with desirable properties.

    Science.gov (United States)

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.

  7. Construction Progress of S-IC Test Stand Towers

    Science.gov (United States)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.

  8. Construction Progress of the S-IC Test Stand Tower

    Science.gov (United States)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.

  9. Construction Progress of the S-IC Test Stand

    Science.gov (United States)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of November 20, 1963.

  10. Construction Progress of the S-IC Test Stand Towers

    Science.gov (United States)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken April 4, 1963, gives a close up look at the ever-growing four towers of the S-IC Test Stand.

  11. Sintering of titanium alloy by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Cosme, C.R.M. [Universidade de Brasilia (UnB), DF (Brazil); Henriques, V.A.R.; Cairo, C.A.A.; Taddei, E.B. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    Full text: Titanium alloys are suitable for biomaterial applications, considering its biocompatibility and low elastic modulus compared to steel. Bone resorption in this case can be reduced by load sharing between the implant and natural bone.Starting powders were obtained by hydride method, carried out under positive hydrogen pressure at 500 deg C for titanium and 800 deg C for Nb, Zr and Ta powders. After reaching the nominal temperature, the material was held for 3h, with subsequent cooling to room temperature and milling of the friable hydride. Samples were produce by mixing of initial metallic powders followed by and cold isostatic pressing. Subsequent densification by sintering was performed at temperature range between 900 and 1700 deg C. Characterization was carried out with scanning electron microscopy, X-ray diffractometry and microhardness measurements. Microstructural examinations revealed higher amount of &⧣946;-phase for higher sintering temperature and dissolution of Ta and NB particles. In vitro tests revealed low cytotoxicity of sintered samples. (author)

  12. Sintering and deformation of nanocrystalline ceramics

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hofler, H.J.; Logas, J.

    1991-01-01

    Nanocrystalline ceramics have been produced by the method of inert gas condensation of ultra-small particles and in situ consolidation. Sintering characteristics and microstructural parameter such as grain size, porosity and pore size distributions have been investigated by a variety of techniques, including: X-ray diffraction, gravimetry, nitrogen adsorption, scanning electron microscopy and small angle neutron scattering. In pure TiO 2 , the sintering temperatures are drastically lowered compared to conventional ceramics, however, extensive grain growth occurs before full densification is achieved. High density, nanocrystalline ceramics can be prepared by pressure assisted sintering, doping and additions of second phases. High temperature microhardness and creep deformation in compression were measured and it was found that creep processes occur at lower temperatures than in ceramics with larger grain sizes. Nanocrystalline TiO 2 with densities >99% can be deformed plastically without fracture at temperatures below half the melting point. The total strains exceed 0.6 at strain rates as high as 10 -3 s -l . The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is G -q with q in the range of 1-1.5. In this paper it is concluded that the creep deformation occurs by an interface reaction controlled mechanism

  13. {alpha}-Man monolayer formation via Si-C bond formation and protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Funato, Koji [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Shirahata, Naoto [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Yoshiko, E-mail: miuray@jaist.ac.j [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2009-11-30

    An acetylenyl-terminated saccharide was synthesized and the thin layer formation on the hydrogen-terminated silicon was investigated. The acetylenyl-terminated saccharide was synthesized by the condensation reaction of hexynoic acid and p-aminophenyl saccharide. This was reacted with hydrogen-terminated silicon (Si-H) by a photochemical reaction. The resulting saccharide modified substrate was analyzed by ellipsometry and X-ray photoelectron spectroscopy, which showed the formation of a uniform monolayer. The surface's ability to recognize proteins was analyzed by fluorescent microscopy, and showed specific interactions with sugar recognition proteins.

  14. A comparative study on electrical characteristics of 1-kV pnp and npn SiC bipolar junction transistors

    Science.gov (United States)

    Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2018-04-01

    We investigate the electrical characteristics of 1-kV pnp SiC bipolar junction transistors (BJTs) and compare them with those of npn SiC BJTs. The base resistance, current gain, and blocking capability are characterized. It is found that the base resistance of pnp SiC BJTs is two orders of magnitude lower than that of npn SiC BJTs. However, the obtained current gains are low below unity in pnp SiC BJTs, whereas npn SiC BJTs exhibit a current gain of 14 without surface passivation. The reason for the poor current gain of pnp SiC BJTs is discussed.

  15. Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process

    Science.gov (United States)

    Liu, Dong-hui; Liu, Hao; Zhang, Jian-liang; Liu, Zheng-jian; Xue, Xun; Wang, Guang-wei; Kang, Qing-feng

    2017-09-01

    The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Δ T) and the softening start temperature ( T 10%) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO·SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.

  16. Coulomb correction to elastic. alpha. -. alpha. scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bera, P.K.; Jana, A.K.; Haque, N.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731235, West Bengal, India (IN))

    1991-02-01

    The elastic {alpha}-{alpha} scattering is treated within the framework of a generalized phase-function method (GPFM). This generalization consists in absorbing the effect of Coulomb interaction in the comparison functions for developing the phase equation. Based on values of scattering phase shifts computed by the present method, it is concluded that the GPFM provides an uncomplicated approach to rigorous Coulomb correction in the {alpha}-{alpha} scattering.

  17. Co-Sintering behaviour of zirconia-ferritic steel composites

    Directory of Open Access Journals (Sweden)

    Alexander Michaelis

    2016-08-01

    Full Text Available The combination of metallic and ceramic materials allows the combination of positive properties of both and can be applied in various industrial fields. At the moment, the deployment of these composites faces difficult and complex manufacturing. One attempt, which offers a short process route and a high degree of flexibility regarding design is a combined shaping (co-shaping with a combined sintering (co-sintering. The article will show co-sintering results of different metal-ceramic symmetric and asymmetric multi-layered tapes, consisting of yttria stabilized zirconia combined with a ferritic iron chromium steel. Focus is on the densification and co-sintering behaviour of ceramic layers depending on the sintering behaviour of metallic layers. Co-sintered composites were characterized by field emission scanning electron microscopy, x-ray diffraction measurements and in terms of adhesive tensile strength.

  18. Intrahepatic expression of interferon alpha & interferon alpha ...

    African Journals Online (AJOL)

    kemrilib

    Alpha m-RNA while 30% only expressed Interferon Alpha Receptor m-RNA. Responders and non-responders to Interferon therapy ... expression of IFN Alpha Receptor mRNA. Regardless of the response to interferon, histological .... generation reverse hybridisation, line probe assay. (Inno-LiPA HCV II; Innogenetics, Ghent,.

  19. Reactive Sintering of Bimodal WC-Co Hardmetals

    OpenAIRE

    Marek Tarraste; Kristjan Juhani; Jüri Pirso; Mart Viljus

    2015-01-01

    Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal har...

  20. The physics of epitaxial graphene on SiC(0001)

    International Nuclear Information System (INIS)

    Kageshima, H; Hibino, H; Tanabe, S

    2012-01-01

    Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to

  1. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Directory of Open Access Journals (Sweden)

    Barbara Malič

    2015-12-01

    Full Text Available The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions and different atmospheres (i.e., defect chemistry on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT.

  2. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Science.gov (United States)

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  3. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  4. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  5. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  6. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  7. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  8. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  9. Tensile Properties and Fracture Characteristics of Nanostructured Copper and Cu-SiC Nanocomposite Produced by Mechanical Milling and Spark Plasma Sintering Process

    Science.gov (United States)

    Akbarpour, M. R.

    2018-03-01

    The presence of large grains within nanometric and ultrafine grain matrix is an effective method in order to enhance strength while keeping the high ductility of metals. For this purpose, in this research, spark plasma sintering (SPS) was used to consolidate milled Cu and Cu-SiC powders. In SPS process, local sparks with high temperature between particles take place and locally lead to intense grain growth, and therefore, this method has the ability to produce bimodal grain structures in copper and copper-based composites. Microstructural and mechanical studies showed ≈ 185 and ≈ 437 nm matrix grain sizes, high tensile yield strength values of ≈ 188.4 and ≈ 296.9 MPa, and fracture strain values of 15.1 and 6.7% for sintered Cu and Cu-4 vol.% SiC nanocomposite materials, respectively. The presence of nanoparticles promoted the occurrence of static recrystallization and decreased the fraction of coarse grains in microstructure. The high tensile properties of the produced materials are attributed to fine grain size, homogenous dispersion of nanoparticles and retarded grain boundary migration during sintering.

  10. Production of Al2O3–SiC nano-composites by spark plasma sintering; Producción de nano-composites – SiC–Al2O3 por spark plasma sinterizado

    Energy Technology Data Exchange (ETDEWEB)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-11-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [Spanish] En este trabajo se muestran compuestos de Al2O3-SiC producidos por SPS, en vacío, a 1.600 °C durante 10 min. Para la preparación de muestras, se molieron polvos de Al2O3 durante 5 h con la segunda fase de micro-y-nano polvo de SiC. Posteriormente, estos polvos molidos se sinterizaron mediante SPS. Después del proceso de sinterización, se realizaron estudios de fase, densificación y propiedades mecánicas de los compuestos de Al2O3-SiC obtenidos. Los resultados mostraron que micro-SiC en las muestras tiene un efecto importante en su densidad aparente, dureza y resistencia. La mayor densidad relativa, dureza y resistencia fueron respectivamente del 99,7%, 324,6 HV y 2.329 MPa para Al2O3 con un 20% en peso micro-SiC. Debido al corto tiempo de sinterización, el crecimiento los granos fue limitado y se mantuvieron en escala nanométrica.

  11. Deposition of SiC thin films by PECVD

    CERN Document Server

    Cho, N I; Kim, C K

    1999-01-01

    The SiC films were deposited on Si substrate by the decomposition of CH sub 3 SiCl sub 3 (methylthrichlorosilane) molecules in a high frequency discharge field. From the Raman spectra, it is conjectured that the deposited film are formed into the polycrystalline structure. The photon absorption measurement reveal that the band gap of the electron energy state are to be 2.4 eV for SiC, and 2.6 eV for Si sub 0 sub . sub 4 C sub 0 sub . sub 6 , respectively. In the high power density regime, methyl-radicals decompose easily and increases the carbon concentration in plasma and result in the growing films.

  12. Surface functionalization and biomedical applications based on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yakimova, R; Petoral, R M Jr; Yazdi, G R; Vahlberg, C; Spetz, A Lloyd; Uvdal, K [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden)

    2007-10-21

    The search for materials and systems, capable of operating long term under physiological conditions, has been a strategy for many research groups during the past years. Silicon carbide (SiC) is a material, which can meet the demands due to its high biocompatibility, high inertness to biological tissues and to aggressive environment, and the possibility to make all types of electronic devices. This paper reviews progress in biomedical and biosensor related research on SiC. For example, less biofouling and platelet aggregation when exposed to blood is taken advantage of in a variety of medical implantable materials while the robust semiconducting properties can be explored in surface functionalized bioelectronic devices. (review article)

  13. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  14. SiC Particle Reinforced Al Matrix Composite by SIMA

    Science.gov (United States)

    Aydın, Emirhan; Yuksel, Caglar; Erzi, Eray; Dispinar, Derya

    Strain Induced Melt Activated (SIMA) method is one of the most commonly used techniques for producing near-net-shape parts. The alloy is heated to liquid+solid region and then forged into the die cavity. In this way, homogeneously distributed spherical structure can be obtained. There are no works in the literature on the use of SIMA to produce p/MMC. A cast alloy (A380) and a wrought alloy (A6063) was selected. There different SiC particle size were sieved to be in the range of 50-120 μm. The highest wettability was obtained in 6063 however there was almost no binding in A380. Impact and wear tests were carried to characterise the properties of SiC p/MMC.

  15. Residual stresses in a co-sintered SOC half-cell during post-sintering cooling

    DEFF Research Database (Denmark)

    Charlas, Benoit; Chatzichristodoulou, Christodoulos; Brodersen, Karen

    2014-01-01

    Due to the thermal expansion mismatch between the layers of a Solid Oxide Cell, residual stresses (thermal stresses) develop during the cooling after sintering. Residual stresses can induce cell curvature for asymmetric cells but more importantly they also result in more fragile cells. Depending...

  16. Modelling of ion implantation in SiC crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chakarov, Ivan [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)]. E-mail: ivan.chakarov@silvaco.com; Temkin, Misha [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)

    2006-01-15

    An advanced electronic stopping model for ion implantation in SiC has been implemented within the binary collision approximation. The model has been thoroughly tested and validated for Al implantation into 4H-, 6H-SiC under different initial implant conditions. A very good agreement between calculated and experimental profiles has been achieved. The model has been integrated in an industrial technology CAD process simulator.

  17. Modelling of ion implantation in SiC crystals

    International Nuclear Information System (INIS)

    Chakarov, Ivan; Temkin, Misha

    2006-01-01

    An advanced electronic stopping model for ion implantation in SiC has been implemented within the binary collision approximation. The model has been thoroughly tested and validated for Al implantation into 4H-, 6H-SiC under different initial implant conditions. A very good agreement between calculated and experimental profiles has been achieved. The model has been integrated in an industrial technology CAD process simulator

  18. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    International Nuclear Information System (INIS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-01-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180°C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380 to 790°C was estimated to be ∼1 × 10 -5 [MPa -1 dpa -1 ] at ∼0.1 dpa and 1 × 10 -7 to 1 × 10 -6 [MPa -1 dpa -1 ] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380–790°C to 0.01–0.11 dpa. (author)

  19. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  1. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  2. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  3. Behaviors of SiC fibers at high temperature

    International Nuclear Information System (INIS)

    Colin, C.; Falanga, V.; Gelebart, L.

    2010-01-01

    On the one hand, considering the improvements of mechanical and thermal behaviours of the last generation of SiC fibers (Hi-Nicalon S, Tyranno SA3); on the other hand, regarding physical and chemical properties and stability under irradiation, SiC/SiC composites are potential candidates for nuclear applications in advanced fission and fusion reactors. CEA must characterize and optimize these composites before their uses in reactors. In order to study this material, CEA is developing a multi-scale approach by modelling from fibers to bulk composite specimen: fibres behaviours must be well known in first. Thus, CEA developed a specific tensile test device on single fibers at high temperature, named MecaSiC. Using this device, we have already characterized the thermoelastic and thermoelectric behaviours of SiC fibers. Additional results about the plastic properties at high temperatures were also obtained. Indeed, we performed tensile tests between 1200 degrees C up to 1700 degrees C to characterize this plastic behaviour. Some thermal annealing, up to 3 hours at 1700 degrees C, had been also performed. Furthermore, we compare the mechanical behaviours with the thermal evolution of the electric resistivity of these SiC fibers. Soon, MecaSiC will be coupled to a new charged particle accelerator. Thus, in this configuration, we will be able to study in-situ irradiation effects on fibre behaviours, as swelling or creep for example

  4. Surface engineering of SiC via sublimation etching

    International Nuclear Information System (INIS)

    Jokubavicius, Valdas; Yazdi, Gholam R.; Ivanov, Ivan G.; Niu, Yuran; Zakharov, Alexei; Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa

    2016-01-01

    Highlights: • Comparison of 6H-, 4H- and 3C-SiC sublimation etching. • Effects of Si-C and Si-C-Ta chemical systems on etching mechanisms. • Effect of etching ambient on surface reconstruction. • Application of etched 4H-SiC surface for the growth of graphene nanoribbons is illustrated. - Abstract: We present a technique for etching of SiC which is based on sublimation and can be used to modify the morphology and reconstruction of silicon carbide surface for subsequent epitaxial growth of various materials, for example graphene. The sublimation etching of 6H-, 4H- and 3C-SiC was explored in vacuum (10 −5 mbar) and Ar (700 mbar) ambient using two different etching arrangements which can be considered as Si-C and Si-C-Ta chemical systems exhibiting different vapor phase stoichiometry at a given temperature. The surfaces of different polytypes etched under similar conditions are compared and the etching mechanism is discussed with an emphasis on the role of tantalum as a carbon getter. To demonstrate applicability of such etching process graphene nanoribbons were grown on a 4H-SiC surface that was pre-patterned using the thermal etching technique presented in this study.

  5. Surface engineering of SiC via sublimation etching

    Energy Technology Data Exchange (ETDEWEB)

    Jokubavicius, Valdas, E-mail: valjo@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping (Sweden); Yazdi, Gholam R.; Ivanov, Ivan G. [Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping (Sweden); Niu, Yuran; Zakharov, Alexei [Max Lab, Lund University, S-22100 Lund (Sweden); Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa [Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping (Sweden)

    2016-12-30

    Highlights: • Comparison of 6H-, 4H- and 3C-SiC sublimation etching. • Effects of Si-C and Si-C-Ta chemical systems on etching mechanisms. • Effect of etching ambient on surface reconstruction. • Application of etched 4H-SiC surface for the growth of graphene nanoribbons is illustrated. - Abstract: We present a technique for etching of SiC which is based on sublimation and can be used to modify the morphology and reconstruction of silicon carbide surface for subsequent epitaxial growth of various materials, for example graphene. The sublimation etching of 6H-, 4H- and 3C-SiC was explored in vacuum (10{sup −5} mbar) and Ar (700 mbar) ambient using two different etching arrangements which can be considered as Si-C and Si-C-Ta chemical systems exhibiting different vapor phase stoichiometry at a given temperature. The surfaces of different polytypes etched under similar conditions are compared and the etching mechanism is discussed with an emphasis on the role of tantalum as a carbon getter. To demonstrate applicability of such etching process graphene nanoribbons were grown on a 4H-SiC surface that was pre-patterned using the thermal etching technique presented in this study.

  6. A study of SiC decomposition under laser irradiation

    Science.gov (United States)

    Adelmann, B.; Hellmann, R.

    2017-06-01

    In this experimental study we investigate the laser induced thermal decomposition of 4H-Sic under ambient conditions using fiber laser. Using a unique two-color pyrometer setup, we measure the temporal evolution of the temperature in the irradiated zone and determine the decomposition rate for various laser power levels. We find that the temporal evolution of the temperature in the irradiated area exhibits an initial heating phase up to about 1300 K, being characterized by an unaffected SiC surface. Upon an expeditious temperature increase, a decomposition phase follows with temperatures above 1700 K, being accompanied by carbonization of the SiC surface. The decomposed volume depends linearly on the duration of the decomposition phase and increases linearly with laser power. The temperature evaluation of the decomposition speed reveals an Arrhenius-type behavior allowing the calculation of the activation energy for the decomposition under ambient conditions to 613 kJ/mol in the temperature range between 2140 and 2420 K.

  7. Modeling SiC swelling under irradiation: Influence of amorphization

    CERN Document Server

    Romano, A; Defranceschi, M; Yip, S

    2003-01-01

    Irradiation-induced swelling of SiC is investigated using a molecular dynamics simulation-based methodology. To mimic the effect of heavy ion irradiation extended amorphous areas of various sizes are introduced in a crystalline SiC sample, and the resulting configurations are relaxed using molecular dynamics at constant pressure. Simulation results compare very well with data from existing ion implantation experiments. Analysis of the relaxed configurations shows very clearly that SiC swelling does not scale linearly with the amorphous fraction introduced. Two swelling regimes are observed depending on the size of the initial amorphous area: for small amorphous zones swelling scales like the amorphous fraction to the power 2/3, while for larger areas it scales like the amorphous fraction to the powers 2/3 and 4/3. Similar dependences on the amorphous fraction are obtained for the number of homonuclear bonds present in the initial amorphous volume and for the number of short bonds created at the interface betw...

  8. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libao [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Xie Xiaohua [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang Baofeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Ke [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie Jingying [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) and Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: jyxie@mail.sim.ac.cn

    2006-07-15

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g{sup -1} and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly.

  9. Protein SIC Secreted fromForms Complexes with Extracellular Histones That Boost Cytokine Production

    DEFF Research Database (Denmark)

    Westman, Johannes; Chakrakodi, Bhavya; Snäll, Johanna

    2018-01-01

    determine the amplitude of such responses and influence the outcome of the disease. Here, we report that protein SIC, Streptococcal Inhibitor of Complement, an abundant secreted protein fromStreptococcus pyogenes, binds to extracellular histones, a group of danger signals released during necrotizing tissue...... damage. This interaction leads to the formation of large aggregatesin vitro. Extracellular histones and SIC are abundantly expressed and seen colocalized in biopsies from patients with necrotizing soft-tissue infections caused byS. pyogenes. In addition, binding of SIC to histones neutralized...... their antimicrobial activity. Likewise, the ability of histones to induce hemolysis was inhibited in the presence of SIC. However, when added to whole blood, SIC was not able to block the pro-inflammatory effect of histones. Instead SIC boosted the histone-triggered release of a broad range of cytokines...

  10. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  11. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  12. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  13. Monitoring sintering burn-through point using infrared thermography.

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-08-09

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  14. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    A near net-shape forming process represents a suitable solution to obtain the final product by avoiding secondary machining processes. In this field, electro sinter forging is capable of accomplishing the advantages of sintering in a reduced amount of time. Classified as a high field mode (HFM...

  15. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  16. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  17. Effect of sintering temperature on structural and electrical properties ...

    Indian Academy of Sciences (India)

    TECS

    vity measurement. The crystallinity and surface morphology of the samples improved with sintering tempera- ture. Further, the electrical conductivity measurement indicated that the conduction mechanism is mainly ionic. The conductivity of samples sintered at 1673 K and 1773 K at 800°C are of the order of 0⋅1 S-cm. –1.

  18. The sintering behavior of close-packed spheres

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2012-01-01

    The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...

  19. Field assisted hot pressing of sintering Inconel 718 MIM samples

    Science.gov (United States)

    Dugauguez, Olivier; Torralba, Jose Manuel; Barriere, Thierry; Gelin, Jean-Claude

    2016-10-01

    In this investigation on samples obtained by Metal Injection Molding (MIM), the conventional way of sintering in a furnace will be compared to Field Assisted Hot pressing (FAHP) sintering. The difficulty of this method is to be able to control the shrinkage of the sample and so its shape. It has yet not been investigated with a super alloy powder and so, the effects of a high sintering rate. By accelerating the sintering kinetics, the thermal behavior may be modified. Hence, the behavior of the Inconel 718 sintered by FAHP has been investigated. The sintered samples were all injected from a feedstock composed of a fine particle Inconel powder and a binder principally composed of Cellulose Acetate Butyrate CAB and Poly-Ethylene Glycol PEG. The effects of the two methods on the microstructure and the mechanical properties are then compared. There was no difference in distribution of pores between the conventional sintering and the FAHP sintering but a finer grain size showed better hardness.

  20. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  1. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    Dense mullite aggregates with 72% Al2O3 have been synthesized by reaction sintering of two varieties of Indian bauxite and silica sol. The bauxites used are of inferior grade with different levels of accessory impurities such as Fe2O3, TiO2, CaO. The phase and microstructure development of sintered samples were ...

  2. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    NiZnCu hexagonal ferrite (abbreviated as ZT/NZC) composite samples were prepared successfully by using restricted shrinkage sintering process (RSS) (Liu et al 2009a, b). But the electromagnetic performance degra- dation of co-sintered layer ...

  3. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites.

    Science.gov (United States)

    Yao, Yimin; Zhu, Xiaodong; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-21

    Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, previously reported polymer composites exhibit limited enhancement of thermal conductivity, even when highly loaded with thermally conductive fillers, because of the lack of efficient heat transfer pathways. Herein, we report vertically aligned and interconnected SiC nanowire (SiCNW) networks as efficient fillers for polymer composites, achieving significantly enhanced thermal conductivity. The SiCNW networks are produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to consolidate the nanowire junctions, exhibiting a hierarchical architecture in which honeycomb-like SiCNW layers are aligned. The composite obtained by infiltrating SiCNW networks with epoxy resin, at a relatively low SiCNW loading of 2.17 vol %, represents a high through-plane thermal conductivity (1.67 W m -1 K -1 ) compared to the pure matrix, which is equivalent to a significant enhancement of 406.6% per 1 vol % loading. The orderly SiCNW network which can act as a macroscopic expressway for phonon transport is believed to be the main contributor for the excellent thermal performance. This strategy provides insights for the design of high-performance composites with potential to be used in advanced thermal management materials.

  4. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  5. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  6. The Emergence of Quantitative Sintering Theory from 1945 to 1955

    Science.gov (United States)

    German, Randall M.

    2017-04-01

    Particles flow and pack under stress, allowing shaping of the particles into target engineering geometries. Subsequently, in a process termed sintering, the particles are heated to induce bonding that results in a strong solid. Although first practiced 26,000 years ago, sintering was largely unexplained until recent times. Sintering science moved from an empirical and largely qualitative notion into a quantitative theory over a relatively short time period following World War II. That conceptual transition took place just as commercial applications for sintered materials underwent significant growth. This article highlights the key changes in sintering concepts that occurred in the 1945-1955 time period. This time span starts with the first quantitative neck growth model from Frenkel and ends with the quantitative shrinkage model from Kingery and Berg that includes several transport mechanisms.

  7. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  8. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  9. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  10. Intense pulsed light sintering of copper nanoink for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak-Sung; Dhage, Sanjay R.; Shim, Dong-Eun [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Hahn, H.T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); University of California, Material Science and Engineering Department, California NanoSystems Institute, Los Angeles, CA (United States)

    2009-12-15

    An intense pulsed light (IPL) from a xenon flash lamp was used to sinter copper nanoink printed on low-temperature polymer substrates at room temperature in ambient condition. The IPL can sinter the copper nanoink without damaging the polymer substrates in extremely short time (2 ms). The microstructure of the sintered copper film was investigated using X-ray powder diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray micro tomography, and atomic force microscopy (AFM). The sintered copper film has a grainy structure with neck-like junctions. The resulting resistivity was 5{mu}{omega} cm of electrical resistivity which is only 3 times as high as that of bulk copper. The IPL sintering technique allows copper nanoparticles to be used in inkjet printing on low-temperature substrates such as polymers in ambient conditions. (orig.)

  11. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  12. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J.; Backman, R.; Lauren, T.; Uusikartano, T.; Malm, H.; Stenstroem, P.; Vesterkvist, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). During 1996 the work has focused on identifying bed agglomeration mechanisms and analysing bed agglomerates in both full scale and lab scale FB reactors, as well as comparing how well the compression strength based sintering test can predict bed agglomeration in an FB furnace. (orig.)

  13. Study on selective laser sintering of glass fiber reinforced polystyrene

    Science.gov (United States)

    Yang, Laixia; Wang, Bo; Zhou, Wenming

    2017-12-01

    In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.

  14. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  15. Immobilazation of aerobic microorganisms on glassy sintered material, illustrated by the example of the production of L leucine using Corynebacterium glutamicum. Immobilisierung von aeroben Mikroorganismen an Glassintermaterial am Beispiel der L-Leucin-Produktion mit Corynebacterium glutamicum

    Energy Technology Data Exchange (ETDEWEB)

    Buechs, J.

    1988-12-01

    The aim of this study was to develop the carrier fixation of aerobic microorganisms on open-pore sintered glass material. The fermentative production of L-leucine from {alpha} cetonic isocaproic acid with Corynebacterium glutamicum was chosen as an example of a microbial process with a high demand of oxygen. (orig.).

  16. Characterization of femtosecond-laser-induced periodic structures on SiC substrates

    Science.gov (United States)

    Miyagawa, Reina; Ohno, Yutaka; Deura, Momoko; Yonenaga, Ichiro; Eryu, Osamu

    2018-02-01

    We investigated the crystalline state of femtosecond-laser-induced periodic structures using a transmission electron microscope (TEM). The core of the 200-nm-pitch periodic nanostructures on SiC retained a high crystalline quality continued from the SiC substrate, where the crystal orientation was aligned with that of the SiC substrate. These results suggest that the periodic nanostructures were formed by periodic etching and not by rearrangement. At high laser power, microstructures with sizes larger than 2 µm were formed on the periodic nanostructures. The microstructures were amorphous and extended from the amorphous SiC layer that covered the periodic nanostructures.

  17. Formation and characterization of porous SiC by anodic oxidation using potassium persulfate solution

    Science.gov (United States)

    Iwasa, Y.; Kamiyama, S.; Iwaya, M.; Takeuchi, T.; Akasaki, I.

    2018-01-01

    The formation process of porous SiC by anodic oxidation was investigated, aiming at the generation of pure white light with a high color rendering index (CRI) and high luminous efficiency. The efficiency of white light emission from porous SiC and its wavelength are strongly dependent on the porous structure such as the average pore size and porosity. In this study, we examined the structure and optical properties of porous SiC by adding potassium persulfate (K2S2O8) as an oxidant in HF solution to control the porosity of porous SiC formed by anodic oxidation. By increasing the amount of the oxidant, we enhanced the integrated light emission intensity of porous SiC to 81 times that of bulk SiC. Through the study of porous SiC we demonstrated that the peak wavelength of the porous SiC could be controlled from 370 to 500 nm. Porous SiC created by anodic oxidation was thus proven to have great potential for realizing high-CRI white light generation using LEDs.

  18. New Possibilities of Power Electronic Structures Using SiC Technology

    Directory of Open Access Journals (Sweden)

    Robert Sul

    2006-01-01

    Full Text Available This paper is dedicated to the recent unprecedented boom of SiC electronic technology. The contribution deals with brief survey of those properties. In particular, the differences (both good and bad between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are given for several large-scale applications on the end of the contribution. The basic properties of SiC material have been discussed already on the beginning of 80’s, also at our university.

  19. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  20. Small Incision Cataract Surgery (SICS with Clear Corneal Incision and SICS with Scleral Incision – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Md Shafiqul Alam

    2014-01-01

    Full Text Available Background: Age related cataract is the leading cause of blindness and visual impairment throughout the world. With the advent of microsurgical facilities simple cataract extraction surgery has been replaced by small incision cataract surgery (SICS with posterior chamber intra ocular lens implant, which can be done either with clear corneal incision or scleral incision. Objective: To compare the post operative visual outcome in these two procedures of cataract surgery. Materials and method: This comparative study was carried out in the department of Ophthalmology, Delta Medical College & Hospital, Dhaka, Bangladesh, during the period of January 2010 to December 2012. Total 60 subjects indicated for age related cataract surgery irrespective of sex with the age range of 40-80 years with predefined inclusion and exclusion criteria were enrolled in the study. Subjects were randomly and equally distributed in 2 groups; Group A for SICS with clear corneal incision and group B for SICS with scleral incision. Post operative visual out come was evaluated by determining visual acuity and astigmatism in different occasions and was compared between groups. Statistical analysis was done by SPSS for windows version12. Results: The highest age incidence (43.3% was found between 61 to 70 years of age group. Among study subjects 40 were male and 20 were female. Preoperative visual acuity and astigmatism were evenly distributed between groups. Regarding postoperative unaided visual outcome, 6/12 or better visual acuity was found in 19.98% cases in group A and 39.6% cases in group B at 1st week. At 6th week 6/6 vision was found in 36.3% in Group A and 56.1% in Group B and 46.2% in group A and 66% in group B without and with correction respectively. With refractive correction, 6/6 vision was attained in 60% subjects of group A and 86.67% of group B at 8th week. Post operative visual acuity was statistically significant in all occasions. Postoperative astigmatism of

  1. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.; Ferraris, M.; Katoh, Yutai

    2017-03-31

    This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiation temperatures: 800oC, 500oC, and 400oC.

  2. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  3. Sintering and microstructure evolution in columnar thermal barrier coatings

    International Nuclear Information System (INIS)

    Krishnamurthy, Ramanathan; Srolovitz, David J.

    2009-01-01

    Sintering of thermal barrier coatings changes their key properties, such as thermal conductivity and thermal shock resistance, thus adversely impacting their reliability. We present a novel modeling approach to study the evolution of coating structure during sintering. We model the sintering of individual columns using a thermodynamic principle, and incorporate the center-to-center approach rates for the columns calculated using this principle in a larger scale discrete dynamics model for the evolution of a large number of columns. Surface energies, grain boundary energies and strain energies associated with the deformation of the columns are all included in this framework, while sintering is assumed to occur by the concerted action of surface and grain boundary diffusion. Two sets of initial conditions corresponding to different extents of pre-sintering among neighboring columns are considered. When the extent of pre-sintering is small, we observe that small clusters containing 5-20 columns are formed. In contrast, where a larger amount of pre-sintering exists, we observe, especially at large column densities, that clusters containing 50-100 columns separated by large inter-cluster pores/channels that appear to organize themselves into a network are formed. These observations are in good agreement with recently published experimental observations. We also explain how these results can explain the development of a 'mud-crack'-like pattern

  4. Embrittling Components in Sintered Steels: Comparison of Phosphorus and Boron

    Science.gov (United States)

    Danninger, Herbert; Vassileva, Vassilka; Gierl-Mayer, Christian

    2017-12-01

    In ferrous powder metallurgy, both boron and phosphorus have been known to be sintering activators for a long time. However, the use has been widely different: while P is a standard additive to sintered iron and steels, boron has been frequently studied, but its use in practice is very limited. Both additives are also known to be potentially embrittling, though in a different way. In the present study the differences between the effects of both elements are shown: while P activates sintering up to a certain threshold, in part by stabilizing ferrite, in part by forming a transient liquid phase, boron is the classical additive enhancing persistent liquid phase, being virtually insoluble in the iron matrix. The consequence is that sintered steels can tolerate quite a proportion of phosphorus, depending on composition and sintering process; boron however is strongly embrittling in particular in combination with carbon, which requires establishing a precisely defined content that enhances sintering but is not yet embrittling. The fracture mode of embrittled materials is also different: while with Fe-P the classical intergranular fracture is observed, with boron a much more rugged fracture surface appears, indicating some failure through the eutectic interparticle network but mostly transgranular cleavage. If carbon is added, in both cases transgranular cleavage dominates even in the severely embrittled specimens, indicating that no more the grain boundaries and sintering necks are the weakest links in the systems.

  5. Neutron displacement damage cross sections for SiC

    International Nuclear Information System (INIS)

    Huang Hanchen; Ghoniem, N.

    1993-01-01

    Calculations of neutron displacement damage cross sections for SiC are presented. We use Biersack and Haggmark's empirical formula in constructing the electronic stopping power, which combines Lindhard's model at low PKA energies and Bethe-Bloch's model at high PKA energies. The electronic stopping power for polyatomic materials is computed on the basis of Bragg's Additivity Rule. A continuous form of the inverse power law potential is used for nuclear scattering. Coupled integro-differential equations for the number of displaced atoms j, caused by PKA i, are then derived. The procedure outlined above gives partial displacement cross sections, displacement cross sections for each specie of the lattice, and for each PKA type. The corresponding damage rates for several fusion and fission neutron spectra are calculated. The stoichiometry of the irradiated material is investigated by finding the ratio of displacements among various atomic species. The role of each specie in displacing atoms is also investigated by calculating the fraction of displacements caused by each PKA type. The study shows that neutron displacement damage rates of SiC in typical magnetic fusion reactor first walls will be ∝10-15 dpa MW -1 m 2 ; in typical lead-protected inertial confinement fusion reactor first walls they will be ∝15-20 dpa MW -1 m 2 . For fission spectra, we find that the neutron displacement damage rate of SiC is ∝74 dpa per 10 27 n/m 2 in FFTF, ∝39 dpa per 10 27 n/m 2 in HFIR, and 25 dpa per 10 27 n/m 2 in NRU. Approximately 80% of displacement atoms are shown to be of the carbon-type. (orig.)

  6. SiC synthesis using natural Mg-silicates

    Directory of Open Access Journals (Sweden)

    Devečerski A.

    2012-01-01

    Full Text Available The silicon carbide powders are prepared by carbothermal reduction of domestic mineral resources (white and brown sepiolite, at relatively low temperatures (1200 - 1600oC. Carbothermal reduction process is greatly influenced by chemical composition of sepiolites and type of carbon used. Obtained SiC powders consist of fine β-SiC particles and did not retain the fibrous morphology of sepiolites. Catalytical influence of Fe is attributed to formation of iron-silicide and its potentionaly important role in removal of Mg-species, i.e. reduction of Mg2SiO4 and MgO into Mg(g.

  7. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2014-01-01

    output. The double pulse test shows the devices' current during commutation process and the reduced switching losses of SiC MOSFETs compared to that of the traditional half bridge. The efficiency comparison is presented with experimental results of half bridge power inverter with split output...... and traditional half bridge inverter, from switching frequency 10 kHz to 100 kHz. The experimental results comparison shows that the half bridge with split output has an efficiency improvement of more than 0.5% at 100 kHz switching frequency....

  8. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    Science.gov (United States)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT SiC

  9. SiC epitaxy growth using chloride-based CVD

    International Nuclear Information System (INIS)

    Henry, Anne; Leone, Stefano; Beyer, Franziska C.; Pedersen, Henrik; Kordina, Olof; Andersson, Sven; Janzén, Erik

    2012-01-01

    The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: addition of hydrogen chloride to the standard precursors or using methyltrichlorosilane, a molecule that contains silicon, carbon and chlorine. Optical and electrical techniques are used to characterize the layers.

  10. Construction Progress S-IC Test Stand Block House Interior

    Science.gov (United States)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph, taken August 12, 1963, offers a view of the Block House interior.

  11. Construction Progress of S-IC Test Stand Pump House

    Science.gov (United States)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph of the Pump House area was taken August 13, 1963. The massive round water storage tanks can be seen to the left of

  12. Effects of various additives on sintering of aluminum nitride

    Science.gov (United States)

    Komeya, K.; Inoue, H.; Tsuge, A.

    1982-01-01

    Effects of thirty additives on sintering A/N were investigated. The addition of alkali earth oxides and rare earth oxides gave fully densified aluminum nitride. This is due to the formation of nitrogen-containing aluminate liquid in the system aluminum nitride-alkali earth oxides or rare earth oxides. Microstructural studies of the sintered specimens with the above two types of additives suggested that the densification was due to the liquid phase sintering. Additions of silicon compounds resulted in poor densification by the formation of highly refractory compounds such as A/N polytypes.

  13. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  14. Phenomenological theory of sintering and its application to swelling

    Directory of Open Access Journals (Sweden)

    Kornyushin Y.

    2004-01-01

    Full Text Available The general phenomenological theory of sintering, formulated by the author in 1998 is applied to the problem of swelling. Driving forces, caused by the presence of the evolution of heat in the volume of a sample (electric contact, hf, inductive heating or penetrating radiation, e.g., neutrons could be the sources of the heat in the bulk of a sample are considered. The influence of these driving forces on sintering, structure and properties is discussed. The role of mobile and immobile dislocations, grain boundaries, and pores is considered. Cycling and pulsing regimes of sintering are investigated.

  15. Microwave sintering of nanophase ceramics without concomitant grain growth

    Science.gov (United States)

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  16. Manufacturing of metal supported BSCF membranes by spark plasma sintering

    OpenAIRE

    Laptev, Alexander; Bram, Martin; Zivcec, Maria; Baumann, Stefan; Jarligo, Maria Ophelia; Sebold, Doris; Pfaff, Ewald; Broeckmann, Christoph

    2013-01-01

    Spark plasma sintering (SPS), also known as field assisted sintering technique (FAST), is a relatively new method for rapid consolidation of metallic or ceramic powders. In the present work, its suitability for the manufacturing of metal supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) based membrane by co-sintering of functional ceramic BSCF layer and porous metallic support has been investigated. The BSCF based membranes are highly attractive for oxygen separation from air due to mixed ionic and e...

  17. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  18. Low temperature spark plasma sintering of YIG powders

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-07-16

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 {sup o}C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 {sup o}C leads to dense samples with minimal formation of YFeO{sub 3}, opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  19. Study of indentation induced cracks in MoSi2-reaction bonded SiC ...

    Indian Academy of Sciences (India)

    Mo melt into a preform of commercial SiC and petroleum coke powder. The infiltrated sample had a density > 92% of the theoretical density (TD) and microstructurally contained SiC, MoSi2, residual Si and unreacted C. The material was tested for indentation fracture toughness at room temperature with a Vicker's indenter ...

  20. Synthesis of SiC from rice husk in a plasma reactor

    Indian Academy of Sciences (India)

    Abstract. A new route for production of SiC from rice husk is reported by employing thermal plasma technique. The formation of -SiC is observed in a short time of 5 min. The samples are characterized by XRD and SEM.

  1. A DfT architecture for 3D-SICs based on a standardizable die wrapper

    NARCIS (Netherlands)

    Marinissen, E.J.; Chi, C.C.; Konijnenburg, M.; Verbree, J.

    2011-01-01

    Process technology developments enable the creation of three-dimensional stacked ICs (3D-SICs) interconnected by means of Through-Silicon Vias (TSVs). This paper presents a 3D Design-for-Test (DfT) architecture for such 3D-SICs that allows prebond die testing as well as mid-bond and post-bond stack

  2. Development of Simulink-Based SiC MOSFET Modeling Platform for Series Connected Devices

    DEFF Research Database (Denmark)

    Tsolaridis, Georgios; Ilves, Kalle; Reigosa, Paula Diaz

    2016-01-01

    A new MATLAB/Simulink-based modeling platform has been developed for SiC MOSFET power modules. The modeling platform describes the electrical behavior f a single 1.2 kV/ 350 A SiC MOSFET power module, as well as the series connection of two of them. A fast parameter initialization is followed...

  3. Tema 8. Principis físics dels semiconductors (Guia del tema)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2011-01-01

    Guia del "Tema 8. Principis físics dels semiconductors" de l'assignatura "Fonaments Físics de l'Enginyeria I" de "Grau en Enginyeria en So i Imatge" impartit a l'Escola Politècnica Superior de la Universitat d'Alacant.

  4. [Application of Raman spectroscopy to investigation of CVD-SIC fiber].

    Science.gov (United States)

    Liu, Bin; Yang, Yan-Qing; Luo, Xian; Huang, Bin

    2011-11-01

    The CVD-SiC fiber was studied by using laser Raman spectra. It was found that the sharp TO peak exists in the first SiC deposit layer, indicating the larger SiC grains. But the second SiC deposit layer is with small grains. Raman peak of carbon and silicon was detected respectively in the first and second layer. Compared with that of the single SiC fiber, the TO peaks move to the high wave number for the SiC fiber in SiC(f)/Ti-6Al-4V composite. It indicates that the compressive thermal residual stress is present in the SiC fiber during the fabrication of the composite because of the mismatched coefficient of thermal expansion between Ti-6Al-4V matrix and SiC fiber. The average thermal residual stress of the SiC fiber in SiC(f)/Ti-6Al-4V composite was calculated to be 318 MPa and the residual stress in first deposit layer is 436 MPa which is much higher than that in the second layer.

  5. Reliability Concerns for Flying SiC Power MOSFETs in Space

    Science.gov (United States)

    Galloway, K. F.; Witulski, A. F.; Schrimpf, R. D.; Sternberg, A. L.; Ball, D. R.; Javanainen, A.; Reed, R. A.; Sierawski, B. D.; Lauenstein, J-M

    2018-01-01

    SiC power MOSFETs are space-ready in terms of typical reliability measures. However, single event burnout (SEB) often occurs at voltages 50% or lower than specified breakdown. Data illustrating burnout for 1200 V devices is reviewed and the space reliability of SiC MOSFETs is discussed.

  6. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching

    Science.gov (United States)

    Choi, J. H.; Latu-Romain, L.; Bano, E.; Dhalluin, F.; Chevolleau, T.; Baron, T.

    2012-06-01

    In this paper, we demonstrate a top-down fabrication technique for nanometre scale silicon carbide (SiC) pillars using inductively coupled plasma etching. A set of experiments in SF6-based plasma was carried out in order to realize high aspect ratio SiC nanopillars. The etched SiC nanopillars using a small circular mask pattern (115 nm diameter) show high aspect ratio (7.4) with a height of 2.2 µm at an optimum bias voltage (300 V) and pressure (6 mTorr). Under the optimal etching conditions using a large circular mask pattern with 370 nm diameter, the obtained SiC nanopillars exhibit high anisotropy features (6.4) with a large etch depth (>7 µm). The etch characteristic of the SiC nanopillars under these conditions shows a high etch rate (550 nm min-1) and a high selectivity (over 60 for Ni). We also studied the etch profile of the SiC nanopillars and mask evolution over the etching time. As the mask pattern size shrinks in nanoscale, vertical and lateral mask erosion plays a crucial role in the etch profile of the SiC nanopillars. Long etching process makes the pillars appear with a hexagonal shape, coming from the crystallographic structure of α-SiC. It is found that the feature of pillars depends not only on the etching process parameters, but also on the crystallographic structure of the SiC phase.

  7. High Temperature Oxidation Property of SiC Coating Layer Fabricated by Aerosol Deposition Process

    Directory of Open Access Journals (Sweden)

    Ham G.-S.

    2017-06-01

    Full Text Available This study investigated the high temperature oxidation property of SiC coated layer fabricated by aerosol deposition process. SiC coated layer could be successfully manufactured by using pure SiC powders and aerosol deposition on the Zr based alloy in an optimal process condition. The thickness of manufactured SiC coated layer was measured about 5 μm, and coating layer represented high density structure. SiC coated layer consisted of α-SiC and β-SiC phases, the same as the initial powder. The initial powder was shown to have been crushed to the extent and was deposited in the form of extremely fine particles. To examine the high temperature oxidation properties, oxidized weight gain was obtained for one hour at 1000°C by using TGA. The SiC coated layer showed superior oxidation resistance property than that of Zr alloy (substrate. The high temperature oxidation mechanism of SiC coated layer on Zr alloy was suggested. And then, the application of aerosol deposited SiC coated layer was also discussed.

  8. Broadband Antireflection and Light Extraction Enhancement in Fluorescent SiC with Nanodome Structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Zhu, Xiaolong; Jokubavicius, Valdas

    2014-01-01

    We demonstrate a time-efficient and low-cost approach to fabricate Si3N4 coated nanodome structures in fluorescent SiC. Nanosphere lithography is used as the nanopatterning method and SiC nanodome structures with Si3N4 coating are formed via dry etching and thin film deposition process. By using...... in the future....

  9. Research Progress of Optical Fabrication and Surface-Microstructure Modification of SiC

    Directory of Open Access Journals (Sweden)

    Fang Jiang

    2012-01-01

    Full Text Available SiC has become the best candidate material for space mirror and optical devices due to a series of favorable physical and chemical properties. Fine surface optical quality with the surface roughness (RMS less than 1 nm is necessary for fine optical application. However, various defects are present in SiC ceramics, and it is very difficult to polish SiC ceramic matrix with the 1 nm RMS. Surface modification of SiC ceramics must be done on the SiC substrate. Four kinds of surface-modification routes including the hot pressed glass, the C/SiC clapping, SiC clapping, and Si clapping on SiC surface have been reported and reviewed here. The methods of surface modification, the mechanism of preparation, and the disadvantages and advantages are focused on in this paper. In our view, PVD Si is the best choice for surface modification of SiC mirror.

  10. A Short-Circuit Safe Operation Area Identification Criterion for SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Luo, Haoze

    2017-01-01

    -circuit-current-based criterion; and 2) the gate-voltage-based criterion. The applicability of these two criteria makes possible the SCSOA evaluation of SiC MOSFETs with some safety margins in order to avoid unnecessary failures during their SCSOA characterization. SiC MOSFET power modules from two different manufacturers...

  11. Study of indentation induced cracks in MoSi2-reaction bonded SiC ...

    Indian Academy of Sciences (India)

    Unknown

    SiC ceramics. O P CHAKRABARTI*, P K DAS and S MONDAL. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. MoSi2–RBSC composite samples were prepared by infiltration of Si–2 at.% Mo melt into a preform of commercial SiC and petroleum coke powder. The infiltrated sample had a ...

  12. Ultrasonic and mechanical behavior of green and partially sintered alumina: Effects of slurry consolidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, C.H.; Garcia, V.J.; Smith, R.M. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Roberts, R.A. [Iowa State Univ., Ames, IA (United States)

    1998-10-01

    Green and partially sintered compacts of {alpha}-Al{sub 2}O{sub 3} powder were made by filtration of aqueous suspensions under three conditions: (i) electrostatic stabilization without any organic additive, (ii) strong flocculation near the isoelectric point without any organic additive, and (iii) weak flocculation by the use of maltodextrin or oxalic acid additives. The authors evaluated relationships between the macroscopic and interparticle mechanical behavior of these compacts using model correlations with measurements of diametral compression, ultrasonic velocity, and ultrasonic attenuation. Although type iii green specimens were less dense than type i, type iii exhibited significant increases in velocity, macroscopic Young`s modulus, interparticle-contact stiffness, and diametral compressive strength, suggesting that the mechanism of stiffening/strengthening entailed interparticle bridging of maltodextrin or oxalic acid. These properties were significantly reduced upon heating type iii specimens to 500 C, suggesting that pyrolysis of surface-adsorbed maltodextrin and oxalic acid may have reduced the interparticle stiffness and strength. In contrast, negligible changes in these properties occurred upon heating type i specimens to the same temperature. Despite small increases in packing density, significant decreases in attenuation and significant increases in velocity, interparticle-contact stiffness, and Young`s modulus occurred upon heating all specimens to {ge}700 C, suggesting the formation of interparticle necks by solid-state sintering.

  13. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  14. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  15. Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications

    Science.gov (United States)

    Ko, Hyunseok

    Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding

  16. SiC Formation Through Interface Reaction between C60 and Si in Plasma Environment

    Science.gov (United States)

    Ding, Fang; Meng, Liang; Zhu, Xiaodong

    2007-02-01

    The formation of SiC through the interface reaction between C60 and Si in a plasma-assisted chemical vapour deposition system (PACVD) is investigated with a C60 film previously deposited on Si wafers. The composition and structure of the deposited samples were characterized by micro-Raman spectroscopy and X-ray diffraction (XRD). The results showed that SiC film was formed successfully in hydrogen plasma at a substrate temperature of 800°C. The hydrogen atoms in plasma were found to enhance the production of SiC. Furthermore, the effects of the added CH4 on the formation of film were studied. Introduction of CH4 simultaneously with H2 at the beginning would suppress the formation of the initial layer of SiC due to a carbon-rich environment on the substrate, which would be disadvantageous to the further growth of the SiC film.

  17. Influence of stirring speed on SiC particles distribution in A356 liquid

    Directory of Open Access Journals (Sweden)

    Yao Shasha

    2012-05-01

    Full Text Available A straight-blade mechanical stirrer was designed to stir A356-3.5vol%SiCp liquid in a cylindrical crucible with the capability of systematically investigating the influence of rotating speed of stirrer on the distribution of SiC particles in A356 liquid. The experimental results show that the vertical distribution of SiC particles in A356 liquid can be uniform when the rotating speed of stirrer is 200 rpm, but the radial distribution of SiC particles in A356 liquid is always nonhomogeneous regardless of the rotating speed of stirrer. The radial centrifugalization ratio of SiC particles in A356 liquid between the center and the periphery of crucible increases with the rotating speed of stirrer. The results were explained in the light of SiC particles motion subject to a combination of stirring and centrifugal effect.

  18. Infrared surface phonon polariton waveguides on SiC Substrate

    Science.gov (United States)

    Yang, Yuchen; Manene, Franklin M.; Lail, Brian A.

    2015-08-01

    Surface plasmon polariton (SPP) waveguides harbor many potential applications at visible and near-infrared (NIR) wavelengths. However, dispersive properties of the metal in the waveguide yields weakly coupled and lossy plasmonic modes in the mid and long wave infrared range. This is one of the major reasons for the rise in popularity of surface phonon polariton (SPhP) waveguides in recent research and micro-fabrication pursuit. Silicon carbide (SiC) is a good candidate in SPhP waveguides since it has negative dielectric permittivity in the long-wave infrared (LWIR) spectral region, indicative that coupling to surface phonon polaritons is realizable. Introducing surface phonon polaritons for waveguiding provides good modal confinement and enhanced propagation length. A hybrid waveguide structure at long-wave infrared (LWIR) is demonstrated in which an eigenmode solver approach in Ansys HFSS was applied. The effect of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, is presented.

  19. A Kochen–Specker inequality from a SIC

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Ingemar [Stockholms Universitet, Fysikum, S-10691 Stockholm (Sweden); Blanchfield, Kate, E-mail: kate@fysik.su.se [Stockholms Universitet, Fysikum, S-10691 Stockholm (Sweden); Cabello, Adán [Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Stockholms Universitet, Fysikum, S-10691 Stockholm (Sweden)

    2012-01-09

    Yu and Oh (eprint) have given a state-independent proof of the Kochen–Specker theorem in three dimensions using only 13 rays. The proof consists of showing that a non-contextual hidden variable theory necessarily leads to an inequality that is violated by quantum mechanics. We give a similar proof making use of 21 rays that constitute a SIC (symmetric informationally-complete positive operator-valued measure) and a complete set of MUB (mutually unbiased bases). A theory-independent inequality is also presented using the same 21 rays, as required for experimental tests of contextuality. -- Highlights: ► We find a state-independent Kochen–Specker inequality in dimension 3 with 21 rays. ► The rays constitute a SIC (9 rays) and a complete set of MUB (12 rays). ► Orthogonalities among the rays produce the Hesse configuration. ► The rays also give a state-independent non-contextual hidden variable inequality. ► We show that both inequalities are violated by quantum mechanics.

  20. Cohort profile: the Social Inequality in Cancer (SIC) cohort study.

    Science.gov (United States)

    Nordahl, Helene; Hvidtfeldt, Ulla Arthur; Diderichsen, Finn; Rod, Naja Hulvej; Osler, Merete; Frederiksen, Birgitte Lidegaard; Prescott, Eva; Tjønneland, Anne; Lange, Theis; Keiding, Niels; Andersen, Per Kragh; Andersen, Ingelise

    2014-12-01

    The Social Inequality in Cancer (SIC) cohort study was established to determine pathways through which socioeconomic position affects morbidity and mortality, in particular common subtypes of cancer. Data from seven well-established cohort studies from Denmark were pooled. Combining these cohorts provided a unique opportunity to generate a large study population with long follow-up and sufficient statistical power to develop and apply new methods for quantification of the two basic mechanisms underlying social inequalities in cancer-mediation and interaction. The SIC cohort included 83 006 participants aged 20-98 years at baseline. A wide range of behavioural and biological risk factors such as smoking, physical inactivity, alcohol intake, hormone replacement therapy, body mass index, blood pressure and serum cholesterol were assessed by self-administered questionnaires, physical examinations and blood samples. All participants were followed up in nationwide demographic and healthcare registries. For those interested in collaboration, further details can be obtained by contacting the Steering Committee at the Department of Public Health, University of Copenhagen, at inan@sund.ku.dk. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  1. Mechanical properties of SiC long fibre reinforced copper

    Energy Technology Data Exchange (ETDEWEB)

    Brendel, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)], E-mail: Annegret.Brendel@ipp.mpg.de; Paffenholz, V.; Koeck, Th.; Bolt, H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2009-04-30

    SiC fibre reinforced copper is a potential novel heat sink material for the divertor of future fusion reactors to reinforce the zone between plasma facing material (W) and heat sink material (CuCrZr). The metal matrix composite (MMC) should be able to withstand heat loads up to 15 MW/m{sup 2} at operating temperatures of up to 550 deg. C. SCS6 fibres were coated by magnetron sputtering with a titanium interlayer and the copper matrix was deposited by electroplating. The composite was consolidated by hot-isostatic pressing. The average ultimate tensile strength of composite samples with 20% fibre reinforcement is 640 MPa and for the Young's modulus 162 GPa was determined. The Young's modulus decreases with increasing temperature and reaches 113 GPa at 550 deg. C. Fracture area analysis after tensile tests show the failure of the SCS 6 fibres at the interface between the two outer carbon layers. Titanium as interlayer led to an improved bonding between the outer carbon coating of the SiC fibres and the copper matrix.

  2. Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method

    Directory of Open Access Journals (Sweden)

    Omid Yaghobizadeh

    2017-03-01

    Full Text Available The material Cf-C-SiC-Ti3SiC2 is promising for high temperature application. Due to the laminated structure and special properties, the Ti3SiC2 is one of the best reinforcements for Cf-C-SiC composites. In this paper, Cf-C-SiC-Ti3SiC2 composites were fabricated by liquid silicon infiltration (LSI method; the effect of the TiC amount on the various composites properties were studied. For samples with 0, 50 and 90 vol.% of TiC, the results show that bending strength are 168, 190, and 181 MPa; porosities are 3.2, 4.7, and 9%; the fracture toughness are 6.1, 8.9, and 7.8 MPa∙m1/2; interlaminar shear strength are 27, 36, and 30 MPa; the amount of the MAX phase are 0, 8.5, and 5.6 vol.%, respectively. These results show that amount of TiC is not the main effective parameter in synthesis of Ti3SiC2. The existence of carbon promotes the synthesis of Ti3SiC2 indicating that only sufficient carbon content can lead to the appearance of Ti3SiC2 in the LSI process.

  3. Improved thermoelectric performance of CdO by adding SiC fibers versus by adding SiC nanoparticles inclusions

    Science.gov (United States)

    Liang, S.; Li, Longjiang

    2018-03-01

    We report the improved thermoelectric (TE) performance of CdO by alloying with SiC fibers. In contrast to the lowered thermoelectric figure of merit (ZT) in a CdO matrix with SiC nanoparticle composites, an appreciable ZT value increment of about 36% (from 0.32 to 0.435) at 1000 K was obtained in the CdO matrix with SiC fiber composites. Both kinds of composites show substantially decreased thermal conductivity due to additional phonon scattering by the nano-inclusions. Compared to the very high electrical resistivity (ρ ˜ 140 μΩ m) for 5 at. % SiC nanoparticle composites, SiC fiber composites favorably maintained a very low ρ (˜30 μΩ m) even with 5 at. % SiC at 1000 K. We think the substantial difference of specific surface areas of these two nano-inclusions (30 m2/g for fibers vs 300 m2/g for nanoparticles) might play a crucial role to fine tune the TE performance. Larger interface could be inductive to diffusion and electron acceptor activation, which affect carrier mobility considerably. This work might hint at an alternative approach to improve TE materials' performance.

  4. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  5. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    1999-10-28

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product minerology. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process.

  6. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    International Nuclear Information System (INIS)

    Chandler, G.

    1999-01-01

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product mineralogy. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process

  7. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  8. Zone refining of sintered, microwave-derived YBCO superconductors

    International Nuclear Information System (INIS)

    Warrier, K.G.K.; Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Balachandran, U.

    1993-07-01

    Post-sintering treatments such as zone melting under thermal gradient has been conducted on sintered YBCO tape cast films. YBCO precursor powder was derived through decomposition of a mixture of nitrates of cations in a microwave oven for ∼4 min. The resulting powder was characterized and made into thin sheets by tape casting and then sintered at 945 C for 5 h. The sintered tapes were subjected to repeated zone refining operations at relatively high speeds of ∼30 mm/h. A microstructure having uniformly oriented grains in the a-b plane throughout the bulk of the sample was obtained by three repeated zone refining operations. Details of precursor preparation, microwave processing and its advantages, zone refining conditions, and microstructural features are presented in this paper

  9. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; de Florio, D. Z.

    2017-01-01

    Gadolinium, yttrium and samarium-doped barium cerate pressed pellets were submitted to flash sintering experiments isothermally in the temperature range 800-1300oC under 200 V cm-1 electric field. The pellets were positioned inside a dilatometer furnace with Pt-Ir electrodes connected either...... to a power supply or to an impedance analyzer to evaluate the bulk and the grain boundary contributions to the electrical resistivity. Near full density was achieved in the sintered samples. The combined results of dilatometry and impedance measurements in conventionally and flash sintered specimens show...... substantial improvement of the electrical conductivity. Joule heating is assumed to be the primary effect for sintering. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively, as the reasons for the decrease...

  10. Onset conditions for flash sintering of UO2

    Science.gov (United States)

    Raftery, Alicia M.; Pereira da Silva, João Gustavo; Byler, Darrin D.; Andersson, David A.; Uberuaga, Blas P.; Stanek, Christopher R.; McClellan, Kenneth J.

    2017-09-01

    In this work, flash sintering was demonstrated on stoichiometric and non-stoichiometric uranium dioxide pellets at temperatures ranging from room temperature (26 °C) up to 600 °C . The onset conditions for flash sintering were determined for three stoichiometries (UO2.00, UO2.08, and UO2.16) and analyzed against an established thermal runaway model. The presence of excess oxygen was found to enhance the flash sintering onset behavior of uranium dioxide, lowering the field required to flash and shortening the time required for a flash to occur. The results from this study highlight the effect of stoichiometry on the flash sintering behavior of uranium dioxide and will serve as the foundation for future studies on this material.

  11. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic......Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...

  12. Efficient Radiation Shielding Through Direct Metal Laser Sintering

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a method for efficient component-level radiation shielding that can be printed by direct metal laser sintering (DMLS) from files generated by the...

  13. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  14. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe...... the densification and stress developments during sintering of tubular bi-layered samples. The correspondence between linear elastic and linear viscous theories is used as a basis for derivation of the model. The developed model is first verified by finite element simulation for sintering of tubular bi-layer system....... Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  15. Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-16

    Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer products like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.

  16. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  17. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  19. Corrosion Properties of Sintered and Wrought Stainless Seel

    DEFF Research Database (Denmark)

    Mathiesen, Troels; Maahn, Ernst Emanuel

    1997-01-01

    The corrosion properties of a range of stainless steels produced by powder metallurgy (PM) are compared with wrought AISI304 and AISI316 Steel. Characterisation of the passivation properties in 0.5M H2SO4 and pittingresistance in 0.3% chloride solution by polarisation show properties...... of the sintered PM150 that are comparable or better than those of wrought 316 steel depending on the applied sintering technique....

  20. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  1. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  2. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  3. The determination of $\\alpha_s$ by the ALPHA collaboration

    CERN Document Server

    Bruno, Mattia

    2016-01-01

    We review the ALPHA collaboration strategy for obtaining the QCD coupling at high scale. In the three-flavor effective theory it avoids the use of perturbation theory at $\\alpha > 0.2$ and at the same time has the physical scales small compared to the cutoff $1/a$ in all stages of the computation. The result $\\Lambda_\\overline{MS}^{(3)}=332(14)$~MeV is translated to $\\alpha_\\overline{MS}(m_Z)=0.1179(10)(2)$ by use of (high order) perturbative relations between the effective theory couplings at the charm and beauty quark "thresholds". The error of this perturbative step is discussed and estimated as $0.0002$.

  4. Kinetics and mechanism of corrosion of SiC by molten salts

    Science.gov (United States)

    Jacobson, N. S.

    1986-01-01

    Corrosion of sintered alpha-SiC under thin films of Na2CO3/CO2, Na2SO4/O2, and Na2SO4/SO3 was investigated at 1000 C. Chemical analysis was used to follow silicate and silica evolution as a function of time. This information coupled with morphology observations leads to a detailed corrosion mechanism. In all cases the corrosion reactions occur primarily in the first few hours. In the Na2CO3/CO2 case, rapid oxidation and dissolution lead to a thick layer of silicate melt in about 0.25 h. After this, silica forms a protective layer on the carbide. In the Na2SO4/O2 case, a similar mechanism occurs. In the Na2SO4/SO3 case, a porous nonprotective layer of SiO2 grows directly on the carbide, and a silicate melt forms above this. In addition, SiO2 and regenerated Na2SO4 form at the melt/gas interface due to reaction of silicate with SO3 and SO2 + O2. The reaction slows when the lower silica layer becomes nonporous.

  5. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  6. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    Science.gov (United States)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  7. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    Science.gov (United States)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  8. Industrial Sintering of Uranium Oxide in a Continuous Furnace

    International Nuclear Information System (INIS)

    Hauser, R.; Porneuf, A.

    1963-01-01

    Under a USAEC-EURATOM research contract, CICAF (Compagnie industrielle de combustibles atomiques frittes) was asked by the French Atomic Energy Commission to design and construct a continuous furnace sintering under a reducing atmosphere at high temperature. The characteristic features of the furnace are automatic operation, rigorous control of presintering and sintering atmospheres, flexibility of temperature regulation so that the thermal cycle can be adjusted to the product to be sintered and high output (5 t of uranium oxide per month). It can operate continuously up to 1700 deg. C, the presintering taking place at a lower temperature (800 deg. C) in a preliminary furnace which forms an integral part of the whole. The sintering atmosphere is cracked ammonia or pure hydrogen; the presintering atmosphere is a mixture o f about 10% hydrogen and 90% nitrogen. The sintered pellets densify to above 97% of theoretical density, with a total dispersion of less than 1%. Structurally, they are equi-axed grains of about 10μm. It was established that the stoichiometric variation of the uranium oxide sintered in a continuous furnace was less than 0.005. (author) [fr

  9. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  10. Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging

    International Nuclear Information System (INIS)

    Chen, Gang; Yu, Lin; Mei, Yunhui; Li, Xin; Chen, Xu; Lu, Guo-Quan

    2014-01-01

    Uniaxial ratcheting behavior and the fatigue life of sintered nanosilver joint were investigated at room temperature. All tests were carried out under stress-controlled mode. Force–displacement data were recorded during the entire fatigue lifespan by a non-contact displacement detecting system. Effects of stress amplitude, mean stress, stress rate, and stress ratio on the uniaxial ratcheting behavior of the sintered nanosilver joint were discussed. Stress-life (S–N) curves of the sintered joints were also obtained. The Smith–Watson–Topper (SWT) model, the Gerber model and the modified Goodman model, all of which took effect of mean stress into consideration, were compared for predicting the fatigue life of the sintered joint. Both the ratcheting strain and its rate increased with increasing stress amplitude or mean stress. The increase in stress amplitude and mean stress both reduced the fatigue life of the sintered joint, while the fatigue life prolonged with the increase in stress rate and stress ratio. The modified Goodman model predicted the fatigue life of the sintered joints well

  11. Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Haibin Zhang, Byung-Nam Kim, Koji Morita, Hidehiro Yoshida Keijiro Hiraga and Yoshio Sakka

    2011-01-01

    Full Text Available Aiming to characterize the effect of sintering temperature on transparency of zirconia, we have evaluated the optical properties and microstructure of translucent cubic zirconia prepared by high-pressure spark plasma sintering (SPS at 1000–1200 circleC. Color centers (oxygen vacancies with trapped electrons and residual pores were primary defects in the samples. In SPS samples, the total forward transmittance and in-line transmittance are mainly affected by color centers with a limited contribution from residual pores; in contrast, the changes in reflectance are only related to the porosity. The amounts of color centers and residual pores increase with sintering temperature that reduces the total forward and in-line transmittance of the as-sintered zirconia. Annealing in oxidizing atmosphere improves the total forward and in-line transmittance. During the annealing, the concentration of color centers decreases but the porosity increases.

  12. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  13. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  14. Polymer powders for selective laser sintering (SLS)

    Science.gov (United States)

    Schmid, Manfred; Amado, Antonio; Wegener, Konrad

    2015-05-01

    Selective Laser Sintering (SLS) is close to be accepted as a production technique (Additive Manufacturing). However, one problem limiting employment of SLS for additive manufacturing in a wide-ranging industrial scope is the narrow variety of applicable polymers. The commonly applied SLS powder to date is polyamide 12 (PA 12). PA 12 or ccompounds of PA 12 (dry blends) are approximately 90 % of complete industrial consumption. The remaining small quantity is distributed on polyamide 11 (PA11) and some other `exotic' polymers (TPU, PEBA, P(E)EK). Industry is awaiting commodity polymers like polypropylene (PP) or polyethylene (PE) crucial to open new market segments. But several approaches launching those polymers failed. But what are the reasons for the difficulties in developing new SLS powders? The contribution is to answer this and highlights the combination of intrinsic and extrinsic polymer properties necessary to generate a polymer powder promising for SLS application. Particle shape, powder distribution, thermal, rheological and optical requirements must be considered and only a particularly controlled property combination leads to successful SLS implementation. Thermal behavior, particle shape and -distribution is discussed in detail, although the other properties can't be disregarded for providing new commercially successful SLS powder finally.

  15. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  16. Damage Behavior of Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2015-04-01

    Full Text Available The reduction of aircraft noise is important due to a rising number of flights and the growth of urban centers close to airports. During landing, a significant part of the noise is generated by flow around the airframe. To reduce that noise porous trailing edges are investigated. Ideally, the porous materials should to be structural materials as well. Therefore, the mechanical properties and damage behavior are of major interest. The aim of this study is to show the change of structure and the damage behavior of sintered fiber felts, which are promising materials for porous trailing edges, under tensile loading using a combination of tensile tests and three dimensional computed tomography scans. By stopping the tensile test after a defined stress or strain and scanning the sample, it is possible to correlate structural changes and the development of damage to certain features in the stress-strain curve and follow the damage process with a high spatial resolution. Finally, the correlation between material structure and mechanical behavior is demonstrated.

  17. Fabrication of SiC hardened bodies with geopolymer binders using a warm press method

    Science.gov (United States)

    Hashimoto, Shinobu; Kubota, Kosuke; Ando, Kotaro; Tsutani, Masaki; Diko, Yusuke; Honda, Sawao; Iwamoto, Yuji

    2017-09-01

    Novel SiC hardened bodies with geopolymer binders using a warm press method were fabricated. In this study, two methods were tried. The first method used a conventional powder mixture consisted of SiC and geopolymer particles as starting materials. In the second method, SiC particles was first immersed in hydrochloric acid solution with 2.5 mol/L and then heated at 1200 °C for 6 h to form a reactive aluminosilicate layer at the surface of SiC particles. Subsequently, the resultant SiC particles mixed with a fixed amount of sodium hydroxide solution with various concentrations were put into a steel mold which was set in the warm press device. This second method was defined as a chemical assist processing. As this warm press condition, heating temperature was 130 °C and pressed at 240 MPa for 30 min simultaneously. When a powder mixture consisted of geopolymer and SiC particles was used, the compressive strength of the hardened bodies decreased with the amount of SiC particles. On the contrary, when the chemical assist processing method was selected, the compressive strength of the hardened bodies increased with the concentration of the sodium hydroxide solution. When the sodium hydroxide solution was 4 mol/L was used, the compressive strength of the hardened body reached to 170 MPa which was the maximum value in this study.

  18. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  19. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  20. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  1. Fluorescent SiC as a New Platform for Visible and Infrared Emitting Applications as Well as Prospective Photovoltaics

    DEFF Research Database (Denmark)

    Syvaejaervi, Mikael; Sun, Jianwu; Wellmann, Peter

    of the polytypes covers a broad range of emission in the visible and infrared region, and the fluorescent SiC can act as a base material for SiC based light emitting materials having benefits of the SiC properties such as chemical stability, high thermal conduction and matching with nitride growth for LED......Fluorescent SiC is a novel materials system which may be a new platform for visible and infrared emitting applications. Although SiC is an indirect bandgap semiconductor, the donor acceptor pair emissions involving deep acceptors could become efficient if the acceptor envelope function...... are sufficiently localized. Nitrogen and boron co-doped SiC exhibits a high efficient donor acceptor pair emission at room temperature. Such donor acceptor pair emission exhibits a broad emission band in the wavelength ranging from visible to infrared region depending on the SiC polytypes. In 6H-SiC the emission...

  2. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  3. Localized Surface Plasmon on 6H SiC with Ag Nanoparticles

    DEFF Research Database (Denmark)

    Wei, Yi; Fadil, Ahmed; Ou, Haiyan

    2017-01-01

    Silver (Ag) nanoparticles (NPs) were deposited on the surface of bulk Nitrogen-Boron co-doped 6H silicon carbide (SiC), and the Ag NPs were observed to induce localized surface plasmons (LSP) resonances on the SiC substrate, which was expected to improve the internal quantum efficiency (IQE...... of an Ag nanoparticle on the SiC substrate, it is predicted that when the diameter of the cross section on the xy plane of the Ag nanoparticle is greater than 225 nm, the LSP starts to enhance the PL intensity. With implementation of a 3rd order exponential decay fitting model to the TRPL results...

  4. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2010-11-09

    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion, where doping levels between strongly n-doped and weakly p-doped can be achieved by altering the Au coverage. We predict that Au intercalation between the two C layers of bilayer graphenegrown on SiC{0001} makes it possible to achieve a strongly p-doped graphene state, where the p-doping level can be controlled by means of the Au coverage.

  5. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    In the present work, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to ascertain the grafting of an organic layer of polyvinyl alcohol (PVA) onto the surface...... of semiconducting SiC nanocrystals using a novel method. FTIR spectroscopy reveals the introduction of new peaks corresponding to various functional groups of PVA alongwith the presence of characteristic Si-C vibrational peak in the spectra of grafted SiC nanocrystals. Raman spectra depict the presence of changes...

  6. Conformers of hydrogenated SiC honeycomb structure: A first principles study

    Directory of Open Access Journals (Sweden)

    Seemita Banerjee

    2013-08-01

    Full Text Available The structural and electronic properties of fully hydrogenated SiC graphane-like nano-structures have been investigated. The objective of this study is to underscore the relative stability of different conformers of hydrogenated SiC sheet. All calculations are carried out using plane wave based pseudo-potential approach under the density functional theory. The results reveal that the fully hydrogenated SiC sheet forms five stable isomers, and the chair conformer is most stable. Further study through molecular dynamic simulation strategy demonstrates that even at room temperature the chair conformer remains stable.

  7. Pulsed laser deposition of SiC thin films at medium substrate temperatures

    International Nuclear Information System (INIS)

    Katharria, Y.S.; Kumar, Sandeep; Choudhary, R.J.; Prakash, Ram; Singh, F.; Lalla, N.P.; Phase, D.M.; Kanjilal, D.

    2008-01-01

    Systematic studies of thin silicon carbide (SiC) films deposited on Si (100) substrates using pulsed laser deposition technique at room temperature, 370 deg. C and 480 deg. C are carried out. X-ray photoelectron spectroscopy showed the formation of SiC bonds in the films at these temperatures along with some graphitic carbon clusters. Fourier transform infrared analysis also confirmed the formation of SiC nanocrystallites in the films. Transmission electron microscopy and electron diffraction were used to study the structural properties of nanocrystallites formed in the films. Surface morphological analysis using atomic force microscopy revealed the growth of smooth films

  8. Dry Sintered Metal Coating of Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    James C. Nicholson

    2016-09-01

    Full Text Available Halloysite nanotubes (HNTs are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste.

  9. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    Allen, Barry J; Clarke, Raymond; Huang Chenyu

    2013-01-01

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  10. Experimental determination of grain density function of AZ91/SiC composite with different mass fractions of SiC and undercoolings using heterogeneous nucleation model

    Directory of Open Access Journals (Sweden)

    J. Lelito

    2011-02-01

    Full Text Available The grain density, Nv, in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling, ΔT, of a liquid alloy. This type of function depends on the characteristics of heterogeneous nucleation sites and number of SiC present in the alloy. The aim of this paper was selection of parameters for the model describing the relationship between the grain density of primary phase and undercooling. This model in connection with model of crystallisation, which is based on chemical elements diffusion and grain interface kinetics, can be used to predict casting quality and its microstructure. Nucleation models have parameters, which exact values are usually not known and sometimes even their physical meaning is under discussion. Those parameters can be obtained after mathematical analysis of the experimental data. The composites with 0, 1, 2, 3 and 4wt.% of SiC particles were prepared. The AZ91 alloy was a matrix of the composite reinforcement SiC particles. This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple, to analyze the undercooling for different composites and thickness plates and its influence on the grain size. The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles, and undercooling with grain size. These values were used to approximate nucleation model adjustment parameters. Obtained model can be very useful in modelling composites microstructure.

  11. Development of high thermal conductive SiC fiber reinforced SiC matrix composites for fusion reactors (Thesis)

    International Nuclear Information System (INIS)

    Taguchi, Tomitsugu

    2006-07-01

    A 3 dimensional model (after cubic model) was developed to quantitatively predict the thermal conductivity of SiC fiber-reinforced SiC matrix (SiC/SiC) composites. The cubic model showed that thermal conductivity of the composites increased by decreasing the porosity and ensphering the shape of pore. The SiC/SiC composites were fabricated by chemical vapor infiltration (CVI) and reaction bonding (RB) processes. The thermal conductivity of the composites by RB process was higher than that by CVI process. The reason is that the porosity of the composites by RB process was lower than that by CVI process and the shape of pore in the composites by RB process was almost sphere. The thermal conductivity of the SiC/SiC composite by RB process was consistent with the estimated value by the cubic model. The cubic model also showed that the thermal conductivity of the composites increased by introducing a high thermal conductive new phase parallel to the direction of heat flow. To verify the prediction, a SiC/SiC composite with carbon nano-fiber (CNF) were fabricated by RB process. The thermal conductivity of the SiC/SiC composite with CNF was approximately 90 W/mK at room temperature. The thermal conductivity of the SiC/SiC composite was coincided with the estimated value by the cubic model. They concluded that the cubic model was useful for predicting the thermal conductivity of fiber-reinforced composites. (author)

  12. Cell response to hydroxyapatite surface topography modulated by sintering temperature.

    Science.gov (United States)

    Mealy, Jacob; O'Kelly, Kevin

    2015-11-01

    Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2)  = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response. © 2015 Wiley Periodicals, Inc.

  13. Consolidation of metallic hollow spheres by electric sintering

    Science.gov (United States)

    Mironov, V.; Tatarinov, A.; Lapkovsky, V.

    2017-07-01

    This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.

  14. Leaching of metals from fresh and sintered red mud.

    Science.gov (United States)

    Ghosh, Indrani; Guha, Saumyen; Balasubramaniam, R; Kumar, A V Ramesh

    2011-01-30

    The disposal of red mud, a solid waste generated during the extraction of alumina from bauxite, is one of the major problems faced by the aluminum industry. Proper disposal followed by its utilization, for example as bricks, can provide a satisfactory solution to this problem. Pollution potential of red mud and its finished product, due to metals leaching out from them under certain environmental conditions, need to be studied. Sintering of red mud was performed in a resistance type vertical tube furnace to simulate the brick-making conditions in lab-scale. Leachability of metals in red mud and the sintered product was evaluated by performing sequential extraction experiments on both. The metals studied were the 'macro metals' iron and aluminum and the 'trace metals' copper and chromium. The total extractabilities of all the metals estimated by the microwave digestion of red mud samples decreased due to sintering. The leachability in sequential extraction of the macro metals iron and aluminum, on the other hand, increased due to sintering in all phases of sequential extraction. However, the effect of sintering on the leachability of the trace metals by sequential extraction was different for copper and chromium in different fractions of sequential extraction. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  16. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    The Alpha One International Registry (AIR), a multinational research program focused on alpha1-antitrypsin (AAT) deficiency, was formed in response to a World Health Organization recommendation. Each of the nearly 20 participating countries maintains a national registry of patients with AAT defic...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  17. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  18. Precursor Selection for Property Optimization in Biomorphic SiC Ceramics

    Science.gov (United States)

    Varela-Feria, F. M.; Lopez-Robledo, M. J.; Martinez-Fernandez, J.; deArellano-Lopez, A. R.; Singh, M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Biomorphic SiC ceramics have been fabricated using different wood precursors. The evolution of volume, density and microstructure of the woods, carbon performs, and final SiC products are systematically studied in order to establish experimental guidelines that allow materials selection. The wood density is a critical characteristic, which results in a particular final SiC density, and the level of anisotropy in mechanical properties in directions parallel (axial) and perpendicular (radial) to the growth of the wood. The purpose of this work is to explore experimental laws that can help choose a type of wood as precursor for a final SiC product, with a given microstructure, density and level of anisotropy. Preliminary studies of physical properties suggest that not only mechanical properties are strongly anisotropic, but also electrical conductivity and gas permeability, which have great technological importance.

  19. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  20. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business of Innovation Research Phase I proposal seeks to investigate and prove the feasibility of developing highly efficient, ultra-lightweight SiC...

  1. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  2. Synthesis of One-Dimensional SiC Nanostructures from a Glassy Buckypaper

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mengning; Star, Alexander

    2013-02-21

    A simple and scalable synthetic strategy was developed for the fabrication of one-dimensional SiC nanostructures - nanorods and nanowires. Thin sheets of single-walled carbon nanotubes (SWNTs) were prepared by vacuum filtration and were washed repeatedly with sodium silicate (Na₂SiO₃) solution. The resulting “glassy buckypaper” was heated at 1300 - 1500 °C under Ar/H₂ to allow a solid state reaction between C and Si precursors to form a variety of SiC nanostructures. The morphology and crystal structures of SiC nanorods and nanowires were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive xray spectroscopy (EDX), electron diffraction (ED) and x-ray diffraction (XRD) techniques. Furthermore, electrical conductance measurements were performed on SiC nanorods, demonstrating their potential applications in high-temperature sensors and control systems.

  3. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  4. Promise and Challenges of High-Voltage SiC Bipolar Power Devices

    Directory of Open Access Journals (Sweden)

    Tsunenobu Kimoto

    2016-11-01

    Full Text Available Although various silicon carbide (SiC power devices with very high blocking voltages over 10 kV have been demonstrated, basic issues associated with the device operation are still not well understood. In this paper, the promise and limitations of high-voltage SiC bipolar devices are presented, taking account of the injection-level dependence of carrier lifetimes. It is shown that the major limitation of SiC bipolar devices originates from band-to-band recombination, which becomes significant at a high-injection level. A trial of unipolar/bipolar hybrid operation to reduce power loss is introduced, and an 11 kV SiC hybrid (merged pin-Schottky diodes is experimentally demonstrated. The fabricated diodes with an epitaxial anode exhibit much better forward characteristics than diodes with an implanted anode. The temperature dependence of forward characteristics is discussed.

  5. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of this project, APEI, Inc. proved the feasibility of creating ultra-lightweight power converters (utilizing now emerging silicon carbide [SiC] power...

  6. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business of Innovation Research Phase I proposal seeks to investigate and prove the feasibility of developing highly efficient, ultra-lightweight SiC...

  7. Breakthrough in Power Electronics from SiC: May 25, 2004 - May 31, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Marckx, D. A.

    2006-03-01

    This report explores the premise that silicon carbide (SiC) devices would reduce substantially the cost of energy of large wind turbines that need power electronics for variable speed generation systems.

  8. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  9. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow....... At a device level, the focus is on improving the light extraction efficiency due to the rather high refractive index of SiC by nanostructuring the surface of SiC. Both periodic nanostructures made by e-beam lithography and nanosphere lithography and random nanostructures made by self-assembled Au nanosphere...... mask and a thin layer of Al film have been investigated and all of them showed much enhanced extraction efficiency. All these good results pave the way to a very promising fluorescent SiC based white LED light source...

  10. Fluorescent SiC with pseudo-periodic moth-eye structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Ou, Haiyan

    2012-01-01

    to enhance the extraction efficiency, we present a simple method to fabricate the pseudo-periodic moth-eye structures on the surface of the fluorescent SiC. A thin gold layer is deposited on the fluorescent SiC first. Then the thin gold layer is treated by rapid thermal processing. After annealing, the thin......-eye structure as an effective and simple method to enhance the extraction efficiency of fluorescent SiC based white LEDs.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....... material much superior to the phosphors in terms of high color rendering index value and long lifetime. The light extraction efficiency of the fluorescent SiC based all semiconductor LED light sources is usually low due to the large refractive index difference between the semiconductor and air. In order...

  11. Decentralized Nonlinear Controller Based SiC Parallel DC-DC Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is aimed at demonstrating the feasibility of a Decentralized Control based SiC Parallel DC-DC Converter Unit (DDCU) with targeted application for...

  12. Synthesis of boron nitride nanotubes with SiC nanowire as template

    International Nuclear Information System (INIS)

    Zhong, B.; Song, L.; Huang, X.X.; Wen, G.W.; Xia, L.

    2011-01-01

    Highlights: → Boron nitride nanotubes (BNNTs) have been fabricated using SiC nanowires as template. → SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. → A template self-sacrificing mechanism is responsible for the formation of BNNTs. -- Abstract: A novel template method for the preparation of boron nitride nanotubes (BNNTs) using SiC nanowire as template and ammonia borane as precursor is reported. We find out that the SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. The as-prepared products are well characterized by means of complementary analytical techniques. A possible formation mechanism is disclosed. The method developed here paves the way for large scale production of BNNTs.

  13. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes

    DEFF Research Database (Denmark)

    Facciotti, Marco; Boffa, Vittorio; Magnacca, Giuliana

    2014-01-01

    Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04 m were used as carrier for depositing thin aluminium oxide....... After 5 times coating, a 5.6 µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35 kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin...... ultrafiltration membranes. This work also indicates that an improvement of the commercial SiC support surface smoothness may greatly enhance permeance and selectivity of Υ-Al2O3 ultrafiltration membranes by allowing the deposition of thinner defect-free layers....

  14. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    Science.gov (United States)

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

  15. Granulation of coke breeze fine for using in the sintering process

    Directory of Open Access Journals (Sweden)

    Mohamed F.M.

    2010-01-01

    Full Text Available Coke breeze is the main fuel used in the sintering process. The value of -3+1 mm. represents the most favorable particle size for coke breeze in the sintering process. About 20% of total coke fines (-0.5 mm are produced during different steps of preparation. Introducing these fines during the sintering process proves to be very harmful for different operating parameters. Thus ,this study aims at investigating the production of granules resulting from these fines using molasses as organic binder and its application in sintering of an iron ore. The results showed that the granules having the highest mechanical properties were obtained with 14.5 wt % molasses addition. The sintering experiments were performed by using coke breeze in different shapes (-3+1 mm in size, coke breeze without sieving and coke breeze granules -3+1 mm. The reduction experiments, microscopic structure and X-ray analysis for the produced sinter were carried out. The results revealed that, all sinter properties (such as shatter test, productivity of sinter machine and blast furnace, reduction time and chemical composition for produced sinter by using coke breeze with size -3+1 mm and coke breeze granules were almost the same. The iron ore sinter which was produced by using coke breeze without sieving yielded low productivity for both sinter machine and blast furnace. Furthermore, using coke breeze without sieving in sintering of an iron ore decreases the vertical velocity of sinter machine and increases the reduction time.

  16. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers

    Directory of Open Access Journals (Sweden)

    Li Zhong

    2013-01-01

    Full Text Available A novel wood flour/SiO2/phenolic composite was chosen to be converted into porous SiC ceramic containing SiC whiskers via carbothermal reduction. At 1550°C the composite is converted into porous SiC ceramic with pore diameters of 10~40μm, and consisting of β-SiC located at the position of former wood cell walls. β-SiC wire-like whiskers of less than 50 nm in diameter and several tens to over 100 μm in length form within the pores. The surface of the resulting ceramic is coated with β-SiC necklace-like whiskers with diameters of 1~2μm.

  17. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  18. Effect of dopants on the morphology of porous SiC

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    Porous SiC samples with different doping level were fabricated and investigated by using anodic oxidation method. The morphology of the porous structures was explained by space charge layer width, which was affected by the free carrier-dopants concentration.......Porous SiC samples with different doping level were fabricated and investigated by using anodic oxidation method. The morphology of the porous structures was explained by space charge layer width, which was affected by the free carrier-dopants concentration....

  19. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    A CVD system for the production of continuous SiC fibre was set up. The process of SiC coating on 19 m diameter tungsten substrate was studied. Methyl trichloro silane (CH3SiCl3) and hydrogen reactants were used. Effect of substrate temperature (1300–1500°C) and concentration of reactants on the formation of SiC ...

  20. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  1. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  2. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  3. High performance sinter-HIP for hard metals

    International Nuclear Information System (INIS)

    Hongxia Chen; Deming Zhang; Yang Li; Jingping Chen

    2001-01-01

    The horizontal sinter-HIP equipment with great charge capacity and high performance, developed and manufactured by Central Iron and Steel Research Institute(CISRI), is mainly used for sintering and condensation of hard metals. This equipment is characterized by large hot zone, high heating speed, good temperature uniformity and fast cooling system. The equipment can provide uniform hot zone with temperature difference less than 6 o C at 1500-1600 o C and 6-10 MPa by controlling temperature, pressure and circulation of gas precisely. Using large scale horizontal sinter-HIP equipment to produce hard matals have many advantages such as stable quality, high efficiency of production, high rate of finished products and low production cost, so this equipment is a good choice for manufacturer of hard metals. (author)

  4. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; Zanetti De Florio, Daniel

    2017-01-01

    -5 A the electric current pulse amplitude. The sintering experiments were carried out in ambient atmosphere with the pellets positioned inside a vertical dilatometer furnace with Pt-Ir electrodes connected either to a power supply for applying the electric field or to an impedance analyzer for collecting [-Z''(ω) x......Gadolinium, yttrium and samarium-doped barium cerate (BCGd, BCY and BCSm, respectively) polycrystalline green pellets were submitted to electric field-assisted pressureless sintering experiments isothermally in the temperature range 800-1200oC under 100-200 V cm-1 electric fields, limiting to 1...... of the electrical conductivity of flash sintered specimens. Joule heating is assumed to be the primary effect of the electric current pulse through the specimens. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively...

  5. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    Ceramic multi-layered composites are being used as components in various technologies ranging from electronics to energy conversion devices. Thus, different architectures of multi-layers involving ceramic materials are often required to be produced by powder processing, followed by sintering...... the camber development during co-firing. The effect of extrinsic factors (e.g. gravity, thickness ratio and friction) on the shape evolution of bi-layers during co-firing has been studied using the developed model and experiments. Furthermore, a new analytical model describing stresses during sintering...... of tubular bi-layer structures has been developed by using the direct correspondence between elasticity and linear viscous problems. The finite element model developed in this study and sintering experiments of tubular bi-layer sample have been used to verify and validate the developed analytical model...

  6. CdS sintered films: growth and characteristics

    International Nuclear Information System (INIS)

    Sharma, Monika; Kumar, Sushil; Sharma, L.M.; Sharma, T.P.; Husain, M.

    2004-01-01

    Cadmium sulphide finds extensive applications in a variety of optoelectronic devices. CdS, with a band gap of 2.43 eV, is a suitable window material in heterojunction solar cells that employ CdTe, Cu 2 S or CuInSe 2 as an absorber. Polycrystalline films of CdS, thickness ∼15 μm, were grown onto chemically clean and optically plane glass substrates by sintering process. A 10 min sintering time and 500 deg. C sintering temperature were found to be optimum. As deposited films were characterized through optical, structural and electrical transport properties using optical reflection spectroscopy, X-ray diffractometry and I-V characteristics techniques

  7. Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Lin C.

    2011-01-01

    Full Text Available Micron-spherical granules of hydroxyapatite (HAp nanoparticles were prepared by powder granulation methods. Through subsequent sintering, porous HAp microspheres with tailored pore and grain framework structures were obtained. Detailed microstructure investigation by SEM and TEM revealed the correlation of the pore structure and the necking strength with the sintering profiles that determine the coalescence features of the nanoparticles. The partially sintered porous HAp microspheres containing more than 50% porosity consisting of pores and grains both in nano-scale are active in inducing the precipitation of HAp in simulated body fluid. The nano-porous HAp microspheres with an extensive surface and interconnecting pores thus demonstrate the potential of stimulating the formation of collagen and bone and the integration with the newly formed bones during physiological bone remodeling.

  8. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  9. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for HEPA filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to assume trouble-free operation. Subsequent pilot-scale testing was performed with fly ash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 volume percent water vapor in the gas stream

  10. Evaluation of dilatometric techniques for studies of sintering kinetics

    International Nuclear Information System (INIS)

    El-Sayed Ali, M.; Toft Soerensen, O.

    1985-04-01

    The kinetics of the initial sintering stage of CeO 2 is evaluated by three different techniques: constant heating rate dilatometry, constant shrinkage rate dilatometry and a new technique recently introduced by the authors called Stepwise Isothermal Dilatometry (SID). Comparative measurements with these techniques showed that too high activation energies were obtained with the two first techniques, both of which can be termed as nonisothermal, whereas activation energies comparable to those reported for cation diffusion in other fluorite oxides were obtained with the latter technique. Of the three techniques SID is thus considered to be the most accurate for studies of the sintering kinetics. In contrast to the two nonisothermal techniques SID has the further advantage that both the controlling mechanism and its activation energy can be determined in a single experiment. From the SID-measurement it was concluded that the initial sintering stage of CeO 2 is controlled by grain-boundary diffusion. (author)

  11. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 vol % water vapor in the gas stream

  12. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  13. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    Directory of Open Access Journals (Sweden)

    Shuang-Tao Feng

    2016-07-01

    Full Text Available Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT. However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM. This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

  14. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Alpha thalassemia Alpha thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Alpha thalassemia is a blood disorder that reduces the production ...

  15. Temperature Dependence of Mechanical Properties of TRISO SiC Coatings

    International Nuclear Information System (INIS)

    Kim, Do Kyung; Park, Kwi Il; Lee, Hyeon Keun; Seong, Young Hoon; Lee, Seung Jun

    2009-04-01

    SiC coating layer has been introduced as protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to excellent mechanical stability at high temperature. It is important to study for high temperature stability in SiC coating layers, because TRISO fuel particles were operating at high temperature around 1000 .deg. C. In this study, the nanoindentation test and micro tensile test were conducted in order to measure the mechanical properties of SiC coating layers at elevated temperature. SiC coating film was fabricated on the carbon substrate using chemical vapor deposition process with different microstructures and thicknesses. Nanoindentation test was performed for the analysis of the hardness, modulus and creep properties up to 500 .deg. C. Impression creep method applied to nanoindentation and creep properties of SiC coating layers were characterized by nanoindentation creep test. The fracture strength of SiC coating layers was measured by the micro tensile method at room temperature and 500 .deg. C. From the results, we can conclude that the hardness and fracture strength are decreased with temperature and no significant change in the modulus is observed with increase in temperature. The deformation mechanism for indentation creep and creep rate changes as the testing temperature increased

  16. Development of evaluation method of high temperature mechanical properties of TRISO SiC coating layers

    International Nuclear Information System (INIS)

    Kim, Do Kyung; Lee, Hyeon Keun; Kim, Dong Seok; Lee, Ji Seok; Park, Kwi Il

    2010-05-01

    SiC coating layer has been introduced as protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to excellent mechanical stability at high temperature. It is important to study for high temperature stability in SiC coating layers, because TRISO fuel particles were operating at high temperature around 1000 .deg. C. In this study, the nanoindentation test and micro tensile test were conducted in order to measure the mechanical properties of SiC coating layers at elevated temperature. SiC coating film was fabricated on the carbon substrate using chemical vapor deposition process with different microstructures and thicknesses. Nanoindentation test was performed for the analysis of the hardness, modulus and creep properties up to 500 .deg. C. Impression creep method applied to nanoindentation and creep properties of SiC coating layers were characterized by nanoindentation creep test. The fracture strength of SiC coating layers was measured by the micro tensile method at room temperature and 500 .deg. C. From the results, we can conclude that the hardness and fracture strength are decreased with temperature and no significant change in the modulus is observed with increase in temperature. The deformation mechanism for indentation creep and creep rate changes as the testing temperature increased

  17. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  18. Packaging Technologies for 500C SiC Electronics and Sensors

    Science.gov (United States)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  19. Elaboration and characterization of luminescent porous SiC microparticles/poly vinyl alcohol thin films

    Science.gov (United States)

    Kaci, S.; Mansouri, H.; Bozetine, I.; Keffous, A.; Guerbous, L.; Siahmed, Y.; Aissiou, S.

    2017-02-01

    In this study, Morphological, optical and photoluminescence characterizations of nanostructured SiC micropowder embedded in PVA matrix and deposited as thin films on glass substrates are reported. we prepared the porous SiC microparticles/PVA thin films by spin coating method. The average size of SiC microparticles were 7 μm. An electroless method was used for producing porous silicon carbide powder under UV irradiation. Silver nanoparticles coated SiC powder was formed by polyol process. The etchant was composed of aqueous HF and different oxidants. Various porous morphologies were obtained and studied as a function of oxidant type, etching time, and wavelength of irradiation. We concluded that the chemical etching conditions of SiC powder seems to have a large impact on the resulting properties. We noticed that the best photoluminescence property was achieved when SiC powder was etched in HF/K2S2O8 at reaction temperature of 80 °C for t = 40min and under UV light of 254 nm.

  20. Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.

    Science.gov (United States)

    Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-04-19

    The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

  1. High temperature oxidation behavior of SiC coating in TRISO coated particles

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-01-01

    Highlights: • High temperature oxidation tests of SiC coating in TRISO particles were carried out. • The dynamic oxidation process was established. • Oxidation mechanisms were proposed. • The existence of silicon oxycarbides at the SiO 2 /SiC interface was demonstrated. • Carbon was detected at the interface at high temperatures and long oxidation time. - Abstract: High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiO x C y ) at the SiO 2 /SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200–1500 °C and 1550–1600 °C, respectively

  2. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  3. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  4. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  5. Pressure sintering and creep deformation: a joint modeling approach

    International Nuclear Information System (INIS)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials

  6. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...

  7. Pressure sintering and creep deformation: a joint modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials.

  8. Method and apparatus for radio frequency ceramic sintering

    Science.gov (United States)

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  9. Sintering of Kernel UO2 for High Temperature Reactor Fuel

    International Nuclear Information System (INIS)

    Sukarsono; Dwi-Heru-Sucahyo; Hidayati; Evi-Hertiviana; Bambang-Sugeng

    2000-01-01

    Sintering investigation of UO 2 gel has been done. The gel was preparedthrough two ways. The first, gel was produced using PVA as additive agent.The second gel was produced using HMTA and Urea as additive agent. From thepreparation of gel, the PVA method better than the urea - HMTA method,because was not necessary the cold temperature for sol preparation and alsowas not necessary the hot temperature for gelation process. After nextprocessing, the sintered gel of gel through PVA, also better than HMTAprocess. (author)

  10. Sintering and microstructure of ZnO varistor

    International Nuclear Information System (INIS)

    Leite, E.R.; Longo, E.; Varela, J.A.

    1987-01-01

    The sintering and microstructure of ZnO-Bi 2 O 3 (ZB) and ZuO-Sb 2 O 3 -CoO-Bi 2 O 3 (ZSCB) varistors in several temperatures, for one hour in dry air temperature were studied. The compounds were analyzed by scanning electron microscopy, X-ray diffraction, differential thermal analysis and the density and porosity were determined by mercury picnometry. The experimental results showed that the ZB and ZSCB system sinters by liquid means and that liquid will control the density and grain growth mechanisms. (E.G.) [pt

  11. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available on the basis of obtaining a defect-free part after sintering and also determining a sintering time that gives high sintering density. Thermal debinding was conducted after solvent debinding. The feedstock used to produce green compacts composed of Ti6Al4V... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  12. Model for the evaluation and prediction of production rate of sinter ...

    African Journals Online (AJOL)

    A model has been derived for evaluation and prediction of production rate of sinter machine operating on vertical mode. The quadratic model expressed as: P = 0.4395 V – 0.0526 V2 + 0.54, showed that the production rate of the sinter machine was dependent on the vertical sintering height. The maximum deviation of the ...

  13. Influence of various manufacturing parameters on some characteristics of UO2 powders and their sintering behaviour

    International Nuclear Information System (INIS)

    Mintz, M.H.; Vaknin, Sh.; Kremener, A.; Hadari, Z.

    1977-02-01

    Various parameters in the process of manufacturing uranium dioxide are examined and their influence on the characteristics and sintering behaviour of the powders obtained established. In addition some correlations between the powder aggregates microstructure and their adhesion properties and sintering behaviour are indicated. Shrinkage during the sintering process is also discussed

  14. Application of fine-grained coke breeze fractions in the process of iron ore sintering

    Directory of Open Access Journals (Sweden)

    M. Niesler

    2014-01-01

    Full Text Available The testing cycle, described in the paper, included fine-grained coke breeze granulation tests and iron concentrate sintering tests with the use of selected granulate samples. The use of granulated coke breeze in the sintering process results in a higher process efficiency, shorter sintering duration and fuel saving.

  15. Sintering of uranium dioxide pellets (UO2) in an oxidizing atmosphere (C O2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  16. Fabrication of High Strength and Ductile Stainless Steel Fiber Felts by Sintering

    Science.gov (United States)

    Wang, J. Z.; Tang, H. P.; Qian, M.; Li, A. J.; Ma, J.; Xu, Z. G.; Li, C. L.; Liu, Y.; Wang, Y.

    2016-03-01

    Stainless steel fiber felts are important porous stainless steel products for a variety of industry applications. A systematic study of the sintering of 28- µm stainless steel fibers has been conducted for the first time, assisted with synchrotron radiation experiments to understand the evolution of the sintered joints. The critical sintering conditions for the formation of bamboo-like grain structures in the fiber ligaments were identified. The evolution of the number density of the sintered joints and the average sintered neck radius during sintering was assessed based on synchrotron radiation experiments. The optimum sintering condition for the fabrication of high strength and ductile 28- µm-diameter stainless steel fiber felts was determined to be sintering at 1000°C for 900 s. Sintering under this optimum condition increased the tensile strength of the as-sintered stainless steel fiber felts by 50% compared to conventional sintering (1200°C for 7200 s), in addition to much reduced sintering cycle and energy consumption.

  17. Spark Plasma Sintered AlN-BN Composites and Its Thermal Conductivity

    NARCIS (Netherlands)

    Zhao Haiyang, [No Value; Wang Weimin, [No Value; Wang Hao, [No Value; Fu Zhengyi, [No Value

    2008-01-01

    A series of samples of hexagonal boron nitride-aluminum nitride ceramic composites with different amounts of CaF(2) as sintering aid were prepared by spark plasma sintered at 1700-1850 degrees C for 5 min. The addition of CaF(2) effectively lowered the sintering temperature and promoted the

  18. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  19. Crystal growth and characterization of fluorescent SiC

    DEFF Research Database (Denmark)

    Wellmann, P.; Kaiser, M.; Hupfer, T.

    Silicon carbide (SiC) is widely used as substrate for nitride based light emitting diodes (LEDs). For today’s white LEDs mainly a sandwich structure of a blue or ultra violet LED and a yellowish phosphorus is used. In the frame of European project we study a concept to implement the functionality......-SiC co-doped with nitrogen and boron has been achieved [1][2]. The source is the rate determining step, and is expected to be determining the fluorescent properties by introducing dopants to the layer from the source. The optimization process of the polycrystalline, co-doped SiC:B,N source material...... and its impact on the FSPG epitaxial process, in particular the influence on the brightness of the is presented. In particular, the doping properties of the poly-SiC source material influence on the brightness of the fluorescent 6H-SiC. In addition we have investigated how the grain orientation...

  20. Alpha Thalassemia (For Parents)

    Science.gov (United States)

    ... the body has a problem producing alpha globin Beta thalassemia : when the body has a problem producing beta ... Transfusion Blood Test: Hemoglobin Electrophoresis Sickle Cell Disease Beta Thalassemia Blood All About Genetics Prenatal Genetic Counseling Genetic ...