WorldWideScience

Sample records for sinter forging bi-2223

  1. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuaki, E-mail: ytakeda@g.ecc.u-tokyo.ac.jp [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimoyama, Jun-ichi; Motoki, Takanori [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Kishio, Kohji [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko [Sumitomo Electric Industries, Ltd. 1-1-3 Shimaya, Konohana-ku, Osaka 554-0024 (Japan)

    2017-03-15

    Highlights: • Fabrication conditions of Bi2223 bulks was reconsidered in terms of high J{sub c}. • Pressure of uniaxial pressing and heat treatment conditions were investigated. • The best sample showed higher J{sub c} than that of practically used Bi2223 bulks. - Abstract: Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain J{sub c} properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain J{sub c}. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain J{sub c} of 2.0 kA cm{sup −2} at 77 K and 8.2 kA cm{sup −2} at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  2. The effect of sintering temperature on the intergranular properties and weak link behavior of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    P. Kameli

    2006-03-01

    Full Text Available  A systematic study of the intergranular properties of (Bi,Pb2 Sr2 Ca2 Cu3 Oy (Bi2223 polycrystalline samples has been done using the electrical resistivity and AC susceptibility techniques. In this study, we have prepared a series of Bi2223 samples with different sintering temperatures. The XRD results show that by increasing the sintering temperature up to 865° c , the Bi2212 phase fraction decreases. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of the weak links and consequently reduces the intergranular critical current densities.

  3. Microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process

    International Nuclear Information System (INIS)

    Lu, X.Y.; Nagata, A.; Sugawara, K.

    2008-01-01

    The microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process were investigated. The tapes were then subjected to two heat treatments with an intermediate rolling. All the tapes were sintered at 835 deg. C for 24 h at initial sintering stage. A two-step sintering procedure was then used in the final sintering stage. In the first step, the tapes are sintered at 840-865 deg. C for 1 h. In the second step, they were sintered at 835 deg. C for 120 h. The results show that the first step sintering temperature has significant influence on the microstructure and the critical current density J c . The observed microstructures are consistent well with the different J c performances of the tapes first-step-sintered at different temperatures. The tape first-step-sintered at 850 deg. C, which has small secondary phases, stronger c-axis grain alignment, higher proportion of Bi-2223 phase, and no cracks, exhibits the highest J c value

  4. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  5. Engineering Critical Current Density Improvement in Ag- Bi-2223 Tapes

    DEFF Research Database (Denmark)

    Wang, W. G.; Seifi, Behrouz; Eriksen, Morten

    2000-01-01

    Ag alloy sheathed Bi-2223 multifilament tapes were produced by the powder-in-tube method. Engineering critical current density improvement has been achieved through both enhancement of critical current density by control of the thermal behavior of oxide powder and by an increase of the filling...... factor of the tapes. Phase evolution at initial sintering stage has been studied by a quench experiment in Ag-Bi-2223 tapes. The content, texture, and microstructure of various phases were determined by XRD and SEM. A novel process approach has been invented in which square wire was chosen rather than...

  6. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  7. (Bi, Pb).sub.2, Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x superconductor and method of making same utilizing sinter-forging

    Science.gov (United States)

    Chen, Nan; Goretta, Kenneth C.; Lanagan, Michael T.

    1998-01-01

    A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.

  8. (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor and method of making same utilizing sinter-forging

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Lanagan, M.T.

    1998-10-13

    A (BiPb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x}(Bi223) superconductor with high J{sub c}, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi{sub 2}O{sub 3}, PbO, SrCO{sub 3}, CaCo{sub 3} and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840 C. The partially synthesized powder is then milled for 1--4 hours before calcining further for another 50 hours at 855 C to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties. 5 figs.

  9. Effect of Ag in structural, electrical and magnetic properties of Ag-sheated Bi-2223 wires

    Directory of Open Access Journals (Sweden)

    D Sohrabi

    2009-08-01

    Full Text Available  In this study, the superconducting properties of Bi-2223/Ag wires, made by the PIT method have been studied. Powder samples were prepared using conventional solid state reaction method. After calcination, samples with different Ag percent (0, 5, 10, 15, 20, and 25 prepared and sintered at 830 °C. It was shown that Ag addition has not only affected the formation of the desired Bi-2223 phase and the microstructure of these wires, but also influenced on the critical current density (JC and critical temperature.

  10. Higher critical current density achieved in Bi-2223 High-Tc superconductors

    Directory of Open Access Journals (Sweden)

    M.S. Shalaby

    2016-07-01

    Full Text Available Bi2Sr2Ca2Cu3Ox (Bi-2223 were prepared using a solid state reaction method at different sintering times and temperatures. Structural phase identifications have been done using X-Ray analysis and refinement by Reitveld method which proves the coexistence of Bi-2223 and Bi-2212 phases. The critical transition temperature Tc and critical current density Jc values were measured using superconducting quantum interference device magnetometer (SQUID and by the magneto-optics technique. A remarkable rapid decrease to the diamagnetic signal in the magnetization versus temperature M(T at 110 K and Jc around 1.2 × 107 A/m2 at 5 K are confirmed for the Bi-2223 compound.

  11. Gd-substituted Bi-2223 superconductor

    Indian Academy of Sciences (India)

    The effects of gadolinium doping at calcium site on the normal and super- conducting properties of Bi-2223 system were ... quantities of the metal oxides and the carbonates were taken and thoroughly mixed. The calcination of the mixture after .... Therefore, Gd has higher solubility in (BiPb)-2223 as compared to Pr, and is, ...

  12. Applied rolling and sensitivity of Bi(2223)/Ag tapes on Ic degradation by mechanical stress

    International Nuclear Information System (INIS)

    Kovac, P.; Bukva, P.; Husek, I.; Richens, P.E.; Jones, H.

    1999-01-01

    An experimental study of multicore Bi(2223)/Ag tapes, roll-sintered by different methods and subjected to bending and tension stresses has been performed. The tapes, of various technological histories, were bent and tensioned and subsequently the transport current was measured at each stressed state. Comparison of I c degradation curves shows that applied rolling may influence the sensitivity of Bi-2223 filaments against the mechanical stress. The existence of transverse microcracks caused by intermediate rolling leads to a higher sensitivity of the tape to bending. A lowering of critical current degradation was observed for two-axially rolled tapes having a higher filament density and better homogeneity prior to sintering treatment. (author)

  13. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    by measuring the electrical resistance during the sintering process [5], since low electrical resistance corresponds to high density. It is, however, necessary to be aware that increased temperature, on the other hand, increases the resistance. SEM micrographs and Computed Tomography (CT) are carried out......Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current......, up to 10 kA, and the low voltage, 1-2 V, resulting in heat generation in the powder. Figure 1 shows the experimental setup. The punches were made of a conductive material; namely a copper alloy. The die, which has to be electrically insulating, was made of alumina. The ESF process takes 3-4s...

  14. Uranium doping and neutron irradiation of Bi-2223 superconduction tapes for improved critical current density

    International Nuclear Information System (INIS)

    Moss, S.D.; Wang, W.G.; Dou, S.X.; Weinstein, R.

    1998-01-01

    It is demonstrated that a combination of neutron irradiation with uranium doping introduce fission tracks through a Bi-2223 tape which act as effective pinning centres, leading to a substantial increase in critical current. Preliminary data suggests that the combination of uranium doping and neutron irradiation produces improved flux pinning in Bi-2223 tapes over neutron irradiation alone. Before irradiation, SEM, DTA and XRD analyses were performed on the tapes. Both before and after irradiation the trapped maximum magnetic flux was measured at 77K. Before neutron irradiation, uranium doping has no effect on critical current. Preliminary SEM data suggested that the uranium is homogeneously distributed throughout the oxide core of the tape. The presence of 2212 and other secondary phases in the doped tapes suggest further refinement of the sintering procedure is necessary. (authors)

  15. Preparation and characterization of Bi-2223 tapes

    International Nuclear Information System (INIS)

    Hense, K.; Kirchmayr, H.; Kovac, P.; Lackner, R.; Mueller, M.; Pachla, W.; Pitel, J.; Polak, M.; Usak, P.

    2003-01-01

    In a concerted action between Austrian, Slovakian and Polish research institutes Bi-2223 tapes have been prepared and characterized by different physical methods. Metallographic studies by optical as well as electron microscopy, measurements of critical current (angle dependent) and losses have been performed. Properties of individual filaments extracted from multifilamentary tapes were also studied. Uniformity of local I C of these filaments were considerably lower than that of the whole tape. This indicates that improvement of filament homogeneity could improve the over all J C in tapes. The application of these tapes for optimized magnet coils will also be discussed. From these investigations a better understanding of the mechanisms, limiting the critical current could be achieved and more optimized preparation methods can be envisioned

  16. Transmission electron microscopy investigation of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Andersen, L.G.; Bals, S.; Tendeloo, G. Van

    2001-01-01

    during the tape processing, (3) a study of the grain boundaries on an atomic scale, including intergrowth investigations. Tapes with different process parameters have been compared with respect to the microstructure. A fully processed tape has on the average 50% thicker Bi-2223 grains than a tape after......The microstructure of (Bi,Pb)(2)Sr2Ca2CuOx (Bi-2223) tapes has been investigated by means of transmission electron microscopy (TEM) and high-resolution TEM. The emphasis has been placed on: (1) an examination of the grain morphology and size, (2) grain and colony boundary angles, which are formed...

  17. Forging loads, deformation modes and fracture in axi-symmetrric closed die cold forging of sintered aluminium powder compacts

    International Nuclear Information System (INIS)

    Butt, M.A.; Ali, L.

    2003-01-01

    An experimental investigation into closed-die cold forging of sintered aluminium powder rod- shaped compacts was carried out. Axi-symmetric components were forged from sintered powder preforms with different initial diameter to height ratios. Different compaction pressures, sintering and lubrication conditions were used as variables during the investigations. Detailed observations were made on green/sintered density, compaction defects, forging loads, deformation modes and on the onset of fracture during progressive forging of sintered powder compacts. Experimental results obtained during the investigations have been presented and discussed in detail. (author)

  18. Fabrication and properties of Ag-Bi2223 tapes with resistive barriers for filament decoupling

    International Nuclear Information System (INIS)

    Inada, Ryoji; Fukumoto, Yohei; Yasunami, Taeko; Nakamura, Yuichi; Oota, Akio; Li Chengshang; Zhang Pingxiang

    2007-01-01

    In this paper, we prepared the Bi2223 multifilamentary tapes with Ca 2 CuO 3 + Bi2212 as interfilamentary resistive barriers to suppress the electromagnetic coupling among the filaments under AC external magnetic field. The tapes with thin barrier layers of Ca 2 CuO 3 + 30 wt% Bi2212 around the filaments were prepared by using a standard powder-in-tube (PIT) method. The outside surface of monocore Ag-sheathed rods was coated by barrier materials. Then, the several coated monocore wires were stacked and packed into another Ag or Ag-Mg alloy tube. The packed tube was drawn and rolled into tape shape. The tape was subsequently sintered to form Bi2223 phase inside filaments. For the characterization of tapes, X-ray diffraction measurements were performed to investigate the phase formation inside the filaments. The uniformity of transport properties (J c ) for barrier tapes were evaluated on the order of several metre lengths and compared with the result for the tapes without barriers. Finally, AC loss characteristics under AC parallel transverse magnetic field were investigated to examine the effect of introducing the barriers on the filament decoupling

  19. AC losses in Ag-sheathed Bi2223 tapes with Ca2CuO3 as interfilamentary resistive barriers

    International Nuclear Information System (INIS)

    Inada, R.; Iwata, Y.; Tateyama, K.; Nakamura, Y.; Oota, A.; Zhang, P.X.

    2006-01-01

    In this study, we prepared the Bi2223 multifilamentary tapes with Ca 2 CuO 3 as interfilamentary resistive barriers and evaluated their AC magnetization loss properties at 77 K. The Bi2223 tapes with thin barrier layers of Ca 2 CuO 3 around the filaments were prepared by using a standard powder-in-tube (PIT) method. To fabricate the Ca 2 CuO 3 layers around each filament, the outside surface of monocore Ag-sheathed wires was coated by Ca 2 CuO 3 with the slurry. After the heat treatment to decompose and evaporate the organic binder in the slurry, the several coated monocore wires were stacked and packed into another Ag-tube. Then, the packed tube was drawn and rolled into tape shape. The tape was subsequently sintered to form Bi2223 phase inside filaments. The AC magnetization losses in an AC transverse magnetic field were measured by a pick-up coil method. The loss properties in the barrier tape were compared with those in the tape without barriers. The results indicated that introducing Ca 2 CuO 3 barriers is very effective to suppress the electromagnetic coupling among the filaments and also to reduce the magnetization losses under parallel transverse field

  20. Thermal Analysis of Cryocooler-Cooled Bi2223 Pulsed Coil

    International Nuclear Information System (INIS)

    Miyazaki, H; Chigusa, S; Tanaka, I; Iwakuma, M; Funaki, K; Hayashi, H; Tomioka, A

    2006-01-01

    We fabricated a cryocooler-cooled Bi2223 superconducting pulsed coil and experimentally studied thermal runaway in dc or ac operation. We carried out numerical simulation of thermal properties of the coil in order to explain thermal runaway of the coil. Firstly, we analyzed the total heat generation of flux-flow loss and ac loss inside the winding from the experimental results of the external field losses and the E-J characteristics for the Bi2223 strands. Secondly, we numerically simulated the thermal properties by using 2- dimensional heat conduction equation with axial symmetry. The numerical simulation shows the relation between the initiation of thermal runaway and the temperature distribution with highly concentrated heat source in the winding. We have a semi-quantitative agreement between the numerical results and the experimental ones for the condition of the thermal runaway

  1. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    ) process, the main requirement is the electrical current passing through the electrical conducting powder. To obtain this, a closed-die setup with electrical insulating properties was used. Furthermore, the alignment between the compacting punch and die needed to be ensured by pre-aligning or alternatively...... by using an alignment system. The present work is focused on the designing phase of a tool for the electro sinter forging of a disc, made from titanium powder. By applying a pre-alignment system, the setup resulted suitable for this application. A tool design for sintering rings is also showed....

  2. Structural properties of superconducting Bi-2223/Ag tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalck Andersen, L.

    2001-05-01

    The structural properties of silver clad high-T{sub c} superconducting ceramic tapes of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) have been investigated by means of synchrotron X-ray diffraction (including the 3DXRD microscope setup), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS). By synchrotron X-ray diffraction in situ studies of the phase development during the transformation of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} (Bi-2212) into Bi-2223, the stoichiometry changes and the texture have been performed during annealing in 8% O{sub 2} and in air. Furthermore, an annealing with two high temperature cycles has been performed to study the equilibrium phenomena. During heating (Ca,Sr){sub 2}PbO{sub 4} decomposes at temperatures between 700 deg. C and 840 deg.C. Simultaneously, the Bi-2212 lattice contracts, indicating an incorporation of Pb. Moreover, the grain mis-alignment decreases significantly. In air we have observed that Bi-2212 partly dissociates into (Ca,Sr){sub 2}CuO{sub 3} and a liquid at temperatures above 812 deg. C. At the annealing temperature Bi-2212 and (Ca,Sr){sub 2}CuO{sub 3} react with the liquid to form Bi-2223. The transformation mechanism is discussed. During cooling below {approx}750 deg.C (Ca,Sr){sub 2}CuO{sub 3} and the liquid mainly transform into Bi-2201. Below {approx}780 deg. C Bi-2223 decomposes to 3221. In addition, a two-step cooling experiment and a decomposition study have been performed in 8% O{sub 2}. By TEM the grain and colony size in the c-axis direction, the angles of c-axis tilt grain boundaries and the intergrowth content are investigated. A fully processed tape has on average 50% thicker grains than a tape after the 1st annealing. The angles of c-axis tilt grain boundaries are on average 14 deg. and 26 deg. for the fully processed tape and the tape after the 1st annealing, respectively. The intergrowth content (15%) and

  3. Spatial variations in composition in high-critical-current-density Bi-2223 tapes

    International Nuclear Information System (INIS)

    Holesinger, T. G.; Bingert, J. F.; Teplitsky, M.; Li, Q.; Parrella, R.; Rupich, M. P.; Riley, G. N. Jr.

    2000-01-01

    A detailed compositional analysis of high-critical-current-density (J c ) (55 and 65 kA/cm2 at 77 K) (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) tapes was undertaken by energy dispersive spectroscopy in the transmission electron microscope. Structural features were coupled with characteristic compositions of the Bi-2223 phase. The average of all compositional measurements of the Bi-2223 phase was determined to be Bi 1.88 Pb 0.23 Sr 1.96 Ca 1.95 Cu 2.98 O y . However, spatial variations in the Bi-2223 composition and differing phase equilibria were found throughout the filament structure. In particular, a considerable range of Bi-2223 compositions can be found within a single tape, and the lead content of the Bi-2223 phase is significantly depressed in the vicinity of lead-rich phases. The depletion of lead in the Bi-2223 phase around the 3221 phases may be a current-limiting microstructure in these tapes. (c) 2000 Materials Research Society

  4. Bi-2223 HTS winding in toroidal configuration for SMES coil

    International Nuclear Information System (INIS)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  5. Improvement of mechanical properties of zirconia-toughened alumina by sinter forging

    NARCIS (Netherlands)

    He, Y.; Winnubst, Aloysius J.A.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1994-01-01

    ZTA powder with a composition of 85 wt% alumina/15 wt% zirconia was prepared by a gel precipitation method. Sinter forging was performed with this powder to enhance the mechanical properties of ZTA materials. The influence of processing flaws on mechanical properties of sinter forged materials and

  6. Analysis of stress-strain behavior in Bi2223 composite tapes

    International Nuclear Information System (INIS)

    Sugano, M.; Osamura, K.; Nyilas, A.

    2004-01-01

    Tensile test was carried out for Bi2223/Ag/Ag alloy composite tapes at RT, 77 and 7 K. Two yielding points are observed in the stress-strain curves. From the stress-strain behavior of the components and critical current (I c ) as a function of tensile strain, it was found that the microscopic reason for these yieldings is attributed to yielding of Ag alloy and fracture of Bi2223, respectively. The strain at the second yielding has temperature dependence and it becomes larger with decreasing measured temperature. From the thermo-mechanical analysis, it can be explained by temperature dependence of compressive residual strain of Bi2223. Reversible recovery of I c was found during loading-unloading test. The relationship between the reversible strain limit and the intrinsic strain of Bi2223 was discussed

  7. The effect of precursor powder size on the microstructure and integranular properties of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    I. Abdolhosseini

    2006-09-01

    Full Text Available  We have studied the effect of precursor powder size on the microstructure and intergranular behavior of polycrystalline Bi2223 superconductors using the XRD, SEM, electrical resistivity and AC susceptibility techniques. Polycrystalline Bi2223 superconductors were prepared from the powders with different milling times. The XRD results show that by decreasing the precursor powder size the Bi2223 phase fraction increases. It was found that the grain size and grain connectivity improved by decreasing the precursor powder size. Analysis of the temperature dependence of the AC susceptibility near the transition temperature (Tc has been done employing Beans critical state model. The observed variation of intergranular critical current densities (Jc with temperature indicates that the decreasing of precursor powder size in the Bi2223 system cases an increase in the intergranular critical current density.

  8. Surface morphology and physical properties of partially melt textured Mn doped Bi-2223

    Directory of Open Access Journals (Sweden)

    Indu Verma

    2011-09-01

    Full Text Available The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30 were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM & AFM results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223 samples.

  9. Self-field AC losses in Bi-2223 superconducting tapes

    International Nuclear Information System (INIS)

    Mueller, K. H.; Leslie, K.E.

    1996-01-01

    Full text: The self-field AC loss in Bi-2223 silver sheathed tapes for AC currents of up to 100 A was measured at 77 K and frequencies of 60 Hz and 600 Hz using a lock-in amplifier. The frequency dependence indicated a purely hysteretic loss which can be well described in terms of the critical state model for a flat superconducting strip. The only parameter needed to predict the self-field AC loss is the critical current of the critical state. Because the loss voltage is extremely small compared with the inductive voltage, a very high accuracy of the lock-in amplifier phase setting is required. Unlike in loss measurements on cylindrical superconducting samples, in the case of the tape the measuring circuit leads have to be brought out from the surface forming a loop where the changing magnetic field induces an additional voltage. Only if the loop formed by the leads at the voltage tabs is large enough will the apparent power dissipation approach the real AC loss associated with the length of the sample probed

  10. Phase development and kinetics of high temperature Bi-2223 phase

    International Nuclear Information System (INIS)

    Yavuz, M.; Maeda, H.; Hua, K.L.; Shi, X.D.

    1998-01-01

    The two-dimensional nucleation (random)-growth mechanism were observed as a support for the related previous works, which is attributable to the growth of the Bi-2223 grain in the a-b plane direction of the Bi-2212 matrix is being much faster than in the c-direction, or that the early-formed plate-like 2212 phase confines the 2223 product. At the beginning of the reaction, the additional phases are partially melted. Because of the structure, composition and thermal fluctuation, the 2223 nucleates and grows in the phase boundary between the liquid phase and Bi-2212. It was shown here that the nucleation and the growth rate were relatively fast between 0 and 36 h. At the final stage, between 36 and 60 h, because of the impingement of the growth fronts of different nuclei, the high formation rate of 2223 is suppressed. The major reactant 2212 remains as a solid and its plate-like configuration determines the two dimensional nature of the reaction. The amount of liquid forms during reaction is small. (orig.)

  11. AC power losses in Bi-2223/Ag HTS tapes

    International Nuclear Information System (INIS)

    Savvides, N.; Reilly, D.; Mueller, K.-H.; Herrmann, J.

    1998-01-01

    Full text: We report measurements at 77 K of the transport ac losses of Bi-2223/Ag composite tapes. The investigated tapes vary from single filament to multifilament construction and include both conventional tapes and other conductor shapes with twisted filaments. The self-field ac losses were determined at 77 K and 60 Hz as a function of ac current amplitude (0 - 100 A). We observe different behaviour among tapes depending on their quality and strain history. For 'good' virgin tapes the experimental data are well described by the Norris equations for the dependence of power loss P on the amplitude I m of the transport current. The data of good monofilament tapes are fitted to the Norris equation P ∼ I m n for an elliptical cross section (ie. n = 3) and the data of good multifilament tapes are fitted to the Norris equation for a rectangular strip (ie. n = 4). Many specimens, however, show a range of behaviour with lower values of n. Based on our work on the effect of strain on the dc transport properties of tapes, we carried out detailed investigations of the effect of controlled applied bend strain on the ac loss. Our results show that irreversible damage to superconducting filaments (ie. cracks) cause the ac loss to rise and n to decrease with increasing strain. In addition, applied strains much greater than the irreversible strain limit cause the ac loss to increase by several orders of magnitude and become ohmic in character with n = 2. Theoretical work is in progress to model the observed behaviour

  12. Influence of microscopic inhomogeneity on macroscopic transport current of Ag/Bi2223 tapes

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Osamura, Kozo

    2004-01-01

    In Ag/Bi2223 tapes, inhomogeneities such as spatially distributed weak links or non-superconducting oxides are inevitably introduced because of the complicated manufacturing process and thermodynamic instability. In order to clarify the effect of the difference in such microscopic inhomogeneites on the macroscopic current transport properties, we carried out a numerical analysis. By changing volume fraction (V f ) of the Bi2223 phase and the shape of local distribution of critical current at each weak link, it is revealed that I-V characteristics are largely affected by the breadth of local distributions with different dependence on V f of Bi2223 and calculated results can be analyzed by Weibull distribution function with some parameters including the information of two-dimensional distribution

  13. Effect of cooling rates on bare bulk and silver wrapped pellets of Bi-2223 superconductor

    International Nuclear Information System (INIS)

    Terzioglu, C.; Oztuerk, O.; Kilic, A.; Gencer, A.; Belenli, I.

    2006-01-01

    We have examined the effect of cooling rates on oxygen content of Bi-2223 phase samples with and without silver sheating. Two sets of samples with and without silver sheating were annealed under identical conditions and cooled with rates of 10 deg. C/h, 25 deg. C/h, 50 deg. C/h, 75 deg. C/h, and 100 deg. C/h. XRD examination of the samples showed that a high percentage of Bi-2223 was obtained. Microstructure examinations were performed by scanning electron microscopy. Resistive and magnetic transitions of the samples were studied. All the reported data were discussed and related

  14. Development and fabrication of a Bi-2223 racetrack coil for generator applications

    International Nuclear Information System (INIS)

    Herd, K.G.; Salasoo, L.; Laskaris, E.T.; Ranze, R.A.; King, C.G.

    1996-01-01

    The development and fabrication of a layer-wound, epoxy-impregnated Bi-2223 high-temperature superconducting (HTS) racetrack coil which generates 40,000 ampere-turns of magnetomotive force (MMF) at 25 K is described. The coil was wound using Ag-sheathed Bi-2223 tape conductor laminated with copper foils for strength enhancement and insulated using a paper-wrap method. After epoxy impregnation, the coil was tested over a range of 16--25 K in a vacuum dewar using a closed-cycle helium refrigeration system. Descriptions of the tape lamination and insulation processing, the coil winding and impregnation, and the experimental test setup are given

  15. A Monte Carlo-shear lag simulation of tensile fracture behaviour of Bi2223 filament

    International Nuclear Information System (INIS)

    Ochiai, S; Ishida, T; Doko, D; Morishita, K; Okuda, H; Oh, S S; Ha, D W; Hojo, M; Tanaka, M; Sugano, M; Osamura, K

    2005-01-01

    The damage evolution in Bi2223 filaments and its influence on critical current was described by a Monte Carlo-shear lag simulation method. The experimentally observed zigzag crack propagation across aligned Bi2223 grains under tensile strain was effectively modelled by including transverse and longitudinal failure modes for individual grains. From the simulated stress-strain curve, the survival parameter (slope of the stress-strain curve normalized with respect to the original Young's modulus) was estimated with increasing applied strain. With this parameter combined with the strain sensitivity of the critical current, the measured change of critical current of the composite tape with applied strain could be described well

  16. The current distribution in Bi-2223/Ag HTS conductors: comparing Hall probe and magnetic knife

    NARCIS (Netherlands)

    Demencik, E.; Dhalle, Marc M.J.; ten Kate, Herman H.J.; Polak, M.

    2006-01-01

    We analyzed the current distribution in three Bi-2223/Ag tapes with different filament lay-out, comparing the results of magnetic knife and Hall probe experiments. Detailed knowledge of the current distribution can be useful for the diagnostics of HTS conductors. The lateral current distribution was

  17. Positron lifetime studies of 100-MeV oxygen irradiated Pb-doped Bi-2223 superconductors

    NARCIS (Netherlands)

    Banerjee, T.; Viswanath, R.N.; Kanjilal, D.; Kumar, R.; Ramasamy, S.

    2000-01-01

    Positron lifetime studies have been carried out for unirradiated and 100-MeV oxygen ion irradiated Pb-doped Bi-2223 superconductors. The analysis of positron lifetime spectra revealed three lifetime components: a short lifetime, τ1 = 153–196 ps; an intermediate lifetime, τ2 = 269–339 ps; and a long

  18. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is a sintering process based on the resistance heating principle, which makes it faster than conventional sintering. The process is investigated as a function of the main process parameters, namely compacting pressure, electrical current density and sintering time....... The present work is focused on analysing the influence of these process parameters on the final density of a disc sample made from commercially pure titanium powder. Applying the design of experiments (DoE) approach, the electrical current was seen to be of largest influence. The maximum obtained density...

  19. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is an innovative sintering process based on the principle of electrical Joule heating. The electrical current is flowing through the powder compact, which is under mechanical pressure. As compared to conventional sintering [1] and spark plasma sintering [2], the main...... advantages are the decreased sintering time and high relative density [3]. Near net-shape components can be manufactured and post-removal processing is limited to surface polishing. The present work is focused on analysing the influence of the main process parameters, namely compacting pressure, sintering...... time and electrical current density, on the final density of a disc sample made from commercially pure titanium powder. The maximum achieved relative density was 94% of the bulk density of pure titanium. The density estimation was carried out by using both Archimedes’ and 3D scanning....

  20. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  1. Transport ac losses in Bi-2223 multifilamentary tapes - conductor materials aspect

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge BC2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Institute of Electrical Engineering, SAS, Bratislava (Slovakia)

    2000-05-01

    Transport ac losses in technical superconductors based on Bi-2223 tape material are influenced by many parameters. The major factors that define the ac performance of such conductors are the following: the size and number of filaments, their geometrical arrangement in the cross-section of the conductor, the twist pitch length, the resistivity of the matrix, the presence of oxide barriers around the filaments and deformation procedures such as sequential pressing or rolling followed by appropriate thermal treatment. In the present paper the above aspects are addressed from the viewpoint of the materials science of technical conductor design. Transport ac losses at power frequencies in different types of Bi-2223 conductor are presented and analysed. The results of conductor design analysis with respect to the coexistence of the superconductor with other materials in the conductor structure are presented. New concepts for minimization of the transport ac losses are discussed in detail. (author)

  2. Simulation of transport critical current of Bi2223/Ag tape with ferromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)], E-mail: guchen@tsinghua.edu.cn; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 75-9 Tokiwadai, Hodogaya, ku, Yokohama (Japan); Qu, T.M. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2008-09-15

    Ferromagnetic shielding (FS) was coated onto the surface of the Bi2223/Ag multi-filamentary tape. Transport critical current of the Bi2223/Ag multi-filamentary tape with a FS was systematically studied by numerical simulation. In the help of a finite element analysis (FEA) tool, we are able to understand how the FS alters the flux inside the superconductor region and thus increases and decreases the critical current density locally. The results show the open FS function both positively and negatively to the performance of the tape. An optimization process was proposed, aiming to reach a tradeoff between I{sub c} increasing and less usage of the ferromagnetic material. Three important shielding parameters, shielding width, shielding thickness, and shielding material were taken into account.

  3. Simulation of transport critical current of Bi2223/Ag tape with ferromagnetic shielding

    International Nuclear Information System (INIS)

    Gu, C.; Alamgir, A.K.M.; Qu, T.M.; Han, Z.

    2008-01-01

    Ferromagnetic shielding (FS) was coated onto the surface of the Bi2223/Ag multi-filamentary tape. Transport critical current of the Bi2223/Ag multi-filamentary tape with a FS was systematically studied by numerical simulation. In the help of a finite element analysis (FEA) tool, we are able to understand how the FS alters the flux inside the superconductor region and thus increases and decreases the critical current density locally. The results show the open FS function both positively and negatively to the performance of the tape. An optimization process was proposed, aiming to reach a tradeoff between I c increasing and less usage of the ferromagnetic material. Three important shielding parameters, shielding width, shielding thickness, and shielding material were taken into account

  4. Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles

    International Nuclear Information System (INIS)

    Yildirim, G.

    2013-01-01

    Highlights: •Standard measurements such as bulk density, ρ-T, J ct , XRD, SEM and EDX examinations for characterization of the samples. •Role of Eu inclusions on the microstructural, electrical and superconducting properties of Bi-2223 phase. •Determination of metal to insulator transition due to Eu impurities in the Bi-2223 superconducting matrix. •From the Eu content level of x = 0.5 onwards, destruction of the superconducting phases. •Constant retrogression of the microstructural and superconducting properties with the Eu individuals. -- Abstract: This comprehensive study examines the change of the microstructural, electrical and superconducting properties of the Eu doped Bi 1.8 Pb 0.4 Eu x Sr 2 Ca 2.2 Cu 3.0 O y ceramic cuprates (with x ⩽ 0.7) produced by the conventional solid state reaction method at the constant annealing temperature of 840 °C for 24 h with the aid of the standard characterization measurements such as bulk density, dc resistivity (ρ-T), transport critical current density (J c ), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) examinations. For the full characterization of the pure and Eu doped Bi-2223 samples, the degree of granularity (from the bulk density and porosity measurements); the room temperature resistivity, onset–offset critical transition temperature, variation of transition temperature, hole carrier concentration, spin-gap opening temperature and thermodynamic fluctuations (from the dc resistivity experiments); the texturing, crystal structure, crystallite size, phase purity and cell parameters (from the XRD investigations); the variation of the flux pinning centers and the boundary weak-links between the superconducting grains (from the critical current density values); the crystallinity, specimen surface morphology, grain connectivity between the superconducting grains and grain size distribution (from the SEM examinations), the elemental compositions and

  5. The inhomogeneities of (Pb,Bi)2223 superconducting tapes and their detection

    International Nuclear Information System (INIS)

    Leeuwen, S. van

    1999-05-01

    This thesis consists of two parts: first, the inhomogeneities that were observed in high temperature superconducting (Pb,Bi)2223 tapes were studied followed by the design of two rigs which were built to detect them. These investigations concentrated on (Pb,Bi)2223 phase high temperature superconducting tapes. Superconductors and their applications were briefly evaluated. It was found that high temperature superconductors have unique properties which cannot be duplicated by their counterparts. However, it was noted that there are significant improvements to be made before they can be commercially viable. An investigation was carried out into the variation of core density within cross sections and along lengths of (Pb,Bi)2223 tapes during fabrication. It was observed that rolling and thermal treatment brought about a non-uniform core density in both these aspects of tile tape. This was followed by an investigation into the effect of core density on the formation of the (Pb,Bi)2223 phase. It was shown that a high core density formed the (Pb,Bi)2223 phase at a slower rate than a lower core density under the thermal treatment. A high core density and a slow heating rate produced smaller 2212 grains at the end of the incubation period. Smaller 2212 grains were thought to be linked to the faster formation of the (Pb,B1)2223 phase. The highest Jc was from a high core density tape which had the smaller 2212 grains at the end of incubation period. Smaller 2212 grains were thought to aid a more homogeneous conversion to the (Pb,Bi)2223 phase. Alloy-sheathed (Pb,Bi)2223 superconducting tapes were produced in order to fabricate a more homogeneous core density. It was found that the alloy sheath (with an addition of 15% wt Ag in the precursor powder) changed the characteristics of the core in several ways: the formation of the (Pb,Bi)2223 phase was homogeneous across the thickness of the core, a smaller 2212 grain size was formed at the end of the incubation period and a higher

  6. Microstructural dynamics of Bi-2223/Ag tapes annealed in 8% O2

    DEFF Research Database (Denmark)

    Andersen, L.G.; Poulsen, H.F.; Abrahamsen, A.B.

    2002-01-01

    The microstructural dynamics of Bi-2223 tapes are investigated in situ during annealing in 8% O-2 by means of 100 keV x-ray diffraction. A green mono- and a green multi-filamentary tape are annealed at 829.5 degreesC. During ramp-up (Ca,Sr)(2)PbO4 decomposes above 750 degreesC, resulting in an in......The microstructural dynamics of Bi-2223 tapes are investigated in situ during annealing in 8% O-2 by means of 100 keV x-ray diffraction. A green mono- and a green multi-filamentary tape are annealed at 829.5 degreesC. During ramp-up (Ca,Sr)(2)PbO4 decomposes above 750 degreesC, resulting...... in an incorporation of Pb in Bi-2212. The associated grain growth of Bi-2212 is the main cause of the strain relief and the c-axis grain alignment of the Bi containing phases. Above 825 degreesC the Bi-2212 partly dissociates into (Ca,Sr)(14)Cu24Ox and a liquid phase. The linewidth of Bi-2212 is constant during...... the transformation to Bi-2223, indicating no strain or finite-size broadening. The most probable transformation mechanism is found to be nucleation and growth with a fast decomposition of the individual Bi-2212 grain, followed by a growth of Bi-2223 from the Bi-2212 melt reacting with (Ca,Sr)(14)Cu24Ox. The multi...

  7. Current Capacity of Ag/Bi-2223 Wires for Rotating Electric Machinery

    International Nuclear Information System (INIS)

    Hussennether, Volker; Leghissa, Martino; Neumueller, Heinz-Werner

    2006-01-01

    With focus on the application in rotating electric machines we measured the dependence of current capacity of Ag/Bi-2223 wires on temperature and magnetic field. Even for wires stemming from a single manufacturer we observe a significant spread of wire properties. We study different temperature and magnetic field dependence by a parallel path model which allows for a quantitative analysis. The implications of experiments and modelling are discussed with regard to the further wire development and for application within windings

  8. Experiment of enhancing critical current in Bi-2223/Ag tape by means of ferromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Gu, C. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2005-11-15

    Critical current in multifilamentary Ag-sheath Bi-2223 tape is enhanced to some extent by means of thin and narrow coating of pure nickel. The concept of enhancing critical current is based on the magnetic shielding effect resulting in redirection of self-field flux lines. The Ni coating was introduced at the edge regime of the tape in order to redirect the perpendicular component of self-field lines which is severe at the edges. Critical current in a typical Ag-sheath Bi-2223 tape was enhanced up to {approx}11% by 50 {mu}m thick and 0.4 mm long Ni coating without any change of self-field loss. This fact reveals that additional ferromagnetic loss could be compensated by the shielding effect and increased critical current of the tape. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the length and thickness of ferromagnetic coating introduced. Therefore, it is very important to control the geometry of ferromagnetic coating in order to balance the critical current and ac loss for optimum superconductor performance. Introduction of ferromagnetic coating and its effect on electromagnetic properties in multifilamentary Bi-2223/Ag tape will be reported in this article.

  9. Experiment of enhancing critical current in Bi-2223/Ag tape by means of ferromagnetic shielding

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Gu, C.; Han, Z.

    2005-01-01

    Critical current in multifilamentary Ag-sheath Bi-2223 tape is enhanced to some extent by means of thin and narrow coating of pure nickel. The concept of enhancing critical current is based on the magnetic shielding effect resulting in redirection of self-field flux lines. The Ni coating was introduced at the edge regime of the tape in order to redirect the perpendicular component of self-field lines which is severe at the edges. Critical current in a typical Ag-sheath Bi-2223 tape was enhanced up to ∼11% by 50 μm thick and 0.4 mm long Ni coating without any change of self-field loss. This fact reveals that additional ferromagnetic loss could be compensated by the shielding effect and increased critical current of the tape. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the length and thickness of ferromagnetic coating introduced. Therefore, it is very important to control the geometry of ferromagnetic coating in order to balance the critical current and ac loss for optimum superconductor performance. Introduction of ferromagnetic coating and its effect on electromagnetic properties in multifilamentary Bi-2223/Ag tape will be reported in this article

  10. Progress in Jc and magnetic field performance of Bi-2223/Ag composite tapes

    International Nuclear Information System (INIS)

    Savvides, N.; Katsaros, A.; Reilly, D.; Thorley, A.; Herrmann, J.

    1998-01-01

    Full text: The application of high-temperature superconductors to electric power systems is actively pursued by several commercial teams around the world. A promising candidate is the Bi-2223/Ag composite superconductor. For large scale commercial applications the conductor must meet certain engineering specifications including high current capacity in the presence of a self-generated magnetic field ranging from a few hundred mT in transmission cables to 1-2 T in transformers and current limiters, and to much higher fields in the case of superconducting coils for energy storage and magnets. In the last two years, a commercial consortium consisting of Metal Manufactures Ltd, University of Wollongong and CSIRO has focused on the development of Bi-2223/Ag composite tape suitable for use in electric power applications. The powder-in-tube process is used to produce conventional single filament and multifilament tapes and twisted conductors. An appropriate measure of 'process capability' is routine running of the process and evaluation of tape performance. In this paper we report on the electrical properties of Bi-2223/Ag composite tapes produced as part of the long-length product development. The transport critical current density of tapes is measured in magnetic fields up to 9 T (H parallel and H perpendicular tape-plane) and as a function of temperature (4 - 80 K). Transport ac losses are determined at 77 K and 60 Hz, and the bend strain performance is determined at 77 K for strains up to 1.5 %

  11. Magneto-optical investigations of Ag-sheathed Bi-2223 tapes with ferromagnetic shielding

    International Nuclear Information System (INIS)

    Yurchenko, V.V.; Shantsev, D.V.; Galperin, Y.M.; Alamgir, A.K.M.; Han, Z.; Johansen, T.H.

    2007-01-01

    An increase in the critical current and suppression of AC losses in superconducting wires and tapes with soft magnetic sheath have been predicted theoretically and confirmed experimentally. In this work we present the results of magneto-optical investigations on a series of Ag-sheathed Bi-2223 tapes with Ni coating. We visualize distributions of magnetic field at increasing external field and different temperatures, demonstrating a difference between the flux propagation in the superconductor with Ni rims and a reference sample without Ni coating

  12. Magneto-optical investigations of Ag-sheathed Bi-2223 tapes with ferromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, V.V.; Shantsev, D.V.; Galperin, Y.M. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, 0316 Oslo (Norway); Alamgir, A.K.M.; Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Johansen, T.H. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, 0316 Oslo (Norway)], E-mail: tomhj@fys.uio.no

    2007-09-01

    An increase in the critical current and suppression of AC losses in superconducting wires and tapes with soft magnetic sheath have been predicted theoretically and confirmed experimentally. In this work we present the results of magneto-optical investigations on a series of Ag-sheathed Bi-2223 tapes with Ni coating. We visualize distributions of magnetic field at increasing external field and different temperatures, demonstrating a difference between the flux propagation in the superconductor with Ni rims and a reference sample without Ni coating.

  13. Current distribution and enhancement of the engineering critical current density in multifilament Bi-2223 tapes

    DEFF Research Database (Denmark)

    Wang, W.G.; Jensen, M.B.; Kindl, B.

    2000-01-01

    The spatial distribution of the critical current density (Jc) and engineering critical current density (Je) along the tape width direction was studied by a cutting technique on Bi-2223 multifilamentary tapes. In general, an increase of Jc towards the centre of the tape was measured. We attribute...... microstructure with a great amount of secondary phases. Local variation of Jc was measured within the centre segment of the tape. This indicates the influence of other factors on Jc, such as filament shape, connectivity of the filaments, and sausaging. Enhancement of Je has been pursued in which average Je of 12...

  14. Acid-base equilibrium. A thermodynamic study of formation and stability of the Bi-2223 phase

    International Nuclear Information System (INIS)

    Xi, Z.; Zhou, L.

    1993-01-01

    A general acid-base equilibrium theory was proposed to explain the formation and stability of the Bi-2223 phase based on the Lewis acid base theory and principle of metallurgical physical chemistry. The acid-base nature of oxide was defined according to the electrostatic force between cation and oxygen anion. A series of experimental facts were systematically explained based on the theory: substitution of Bi for Ca in the Pb-free 2223 phase, and the effect of substitution of the high-valent cation for Bi 3+ ; oxygen-pressure atmosphere, and the heat-schocking technique on the formation and stability of the 2223 phase. 14 refs., 2 tabs

  15. Microstructural evolution at the initial stages of annealing in a Bi-2223 multifilament tape

    DEFF Research Database (Denmark)

    Liu, Y.L.; Grivel, J.-C.; Wang, W.G.

    2001-01-01

    The microstructural evolution at the initial stage of annealing in a multifilament Bi-2223 (2223) tape is studied in quenched samples using XRD, SEM and EDS. The annealing was carried out at 830 degreesC under reduced oxygen partial pressure. Samples were quenched in air upon reaching 830 degrees...... and the size (measured in tape plane) is comparable with the particle spacing indicating a liquid activity on an overall scale and sufficient feeding of Cu and Ca. Consequently, the 2223 develops at a fast rate. After 10 li the liquid amount is decreased, the particle spacing is far larger than the liquid size...

  16. Test results for a Bi-2223 HTS racetrack coil for generator applications

    International Nuclear Information System (INIS)

    Salasoo, L.; Herd, K.G.; Laskaris, E.T.; Hart, H.R. Jr.; Chari, M.V.K.

    1996-01-01

    Testing, results and analysis of a Bi-2223 model superconducting generator coil produced under the DOE Superconductivity Partnership Initiative are presented. The test arrangement enables coil energization with dc and transient currents over a range of operating temperatures to explore coil performance under conditions analogous to those that would be experienced by a superconducting generator field coil. Analytical calculations of coil ac and ohmic losses and temperature rise compare well with experimental measurements. Good performance is predicted for a typical 3-phase fault condition. Coil steady state and transient performance can be predicted with confidence for full scale superconductor application

  17. Measuring the homogeneity of Bi(2223)/Ag tapes by four-probe method and a Hall probe array

    International Nuclear Information System (INIS)

    Kovac, P.

    1999-01-01

    The nature of the BSCCO compound and application of the powder-in-tube technique usually lead to non-uniform quality across and/or along the ceramic fibres and finally to variations in the critical current and its irregular distribution in the Bi(2223)/Ag tape. Therefore, the gliding four-probe method and contactless field monitoring measurements have been used for homogeneity studies. The gliding potential contacts moved along the tape surface and a sensitive system based on an integrated Hall probe array containing 16 or 19 in-line probes supported by PC-compatible electronics with software allowed us to make a comparison of contact and contactless measurements at any elements of Bi(2223)/Ag sample. The results of both methods show very good correlation and the possibility of using a sensitive Hall probe array for monitoring the final quality of Bi(2223)/Ag tapes. (author)

  18. Induced critical current density limit of Ag sheathed Bi-2223 tape conductor

    International Nuclear Information System (INIS)

    Ogiwara, H.; Satou, M.; Yamada, Y.; Kitamura, T.; Hasegawa, T.

    1994-01-01

    The authors have already reported the best critical current density of 66,000 A/cm 2 with an Ag sheathed Bi-2223 tape conductor. The Brick-wall model is for explaining the current transport mechanism of this conductor. The model has its roots in the fact that the Bi-2223 tape core is a complicated stack of crystals which have a mica-flake structure. The orientation of the crystals which have a mica-flake structure. The orientation of the crystals seriously affects the current transport capability. Moreover, the contacts between the stacking crystals are very important. The transport current flows dividing into many branch paths. Under high magnetic field, the different paths experienced different electromagnetic forces. Differences between the electromagnetic forces on the different crystals can affect the contacts so as to increase resistivity and decrease overall critical current density of the tape. This effect can foretell the limit of the critical current density obtainable with these kinds of conductors

  19. Bending strain study of Bi-2223/Ag tapes using Hall sensor magnetometry

    International Nuclear Information System (INIS)

    Lahtinen, M.; Paasi, J.; Sarkaniemi, J.; Han, Z.; Freltoft, T.

    1996-01-01

    The influence of room temperature bending on critical current (I c ) of Bi-2223/Ag tapes is studied by Hall sensor magnetometry, four-point method and scanning electron microscopy. Hall sensor magnetometry allows one to assess tape homogeneity and the amount of mechanical damage caused by bending. The microstructure of the Bi-2223 ceramic is found to strongly affect the tape behavior under bending strain. In a tape with moderate I c = 6.1 A at 77 K and a porous ceramic core, crack propagation took place normal to the Ag-ceramic interface, whereas in tapes with dense core, I c above 10 A at 77 K, cracks propagated in the tape plane. In monofilamentary tapes core homogeneity correlated with good bending strain performance. In multifilamentary tapes crack propagation between filaments was prohibited by the Ag matrix, thus leading to enhanced strain tolerance. In the high I c tapes studied, bending to 25 mm radius resulted in 1%--2% I c degradation

  20. Influence of transverse compressive stress on Ic degradation of Ag alloy sheathed Bi-2223 tapes

    International Nuclear Information System (INIS)

    Oh, S S; Ha, D W; Ha, H S; Park, C; Kwon, Y K; Ryu, K S; Shin, H S

    2004-01-01

    In order to investigate the degradation of critical current (I c ) in the Ag alloy sheathed Bi-2223 tapes due to a transverse compressive stress introduced during manufacturing and operation of the HTS systems, a sample holder consisting of the upper block made of Ti alloy and the lower support plate made of glass fibre reinforced plastic was prepared. A shorter spacing of voltage taps caused large degradation of critical current with respect to compressive stress. It was found that the extent of the I c degradation is proportional to the initial critical current density of the tapes. Through the experiment optimizing the shape of voltage terminals and the pressing load for the continuous contact type 4-probe I c measurement system, it was found that the conical shape tip with large curvature radius was effective in suppressing the I c degradation in Bi-2223 tapes during the I c measurement. A hard alloy sheath of Ag-0.6wt%Mn was found to be quite tolerant to the I c degradation against the pressing load of voltage terminals

  1. Investigation on the phase transformation of Bi-2223/Ag superconducting tapes during heating

    International Nuclear Information System (INIS)

    Huang, K.-T.; Qu, T.-M.; Xie, P.; Han, Z.

    2013-01-01

    Highlights: • In situ resistance measurement was carried out on Bi-2223/Ag superconducting tapes. • The oxygen partial pressure of the outlet gas in the heating process was monitored continuously. • The samples quenched in the heating process were studied by XRD and T c measurements. • The heating process contains three procedures: oxygen diffusion, Pb-rich phase evolution and liquid phase formation. -- Abstract: The phase transformation of Bi-2223/Ag superconducting tapes during heating was investigated. The resistance of the ceramic core as a function of the heating temperature was measured in situ. The pO 2 of the outlet gas in the heating process was also monitored continuously. By comparing the heating process with the X-ray diffraction and T c measurements taken from samples quenched at different temperatures, we have identified that the heating process could be divided into the following regions: (1) the oxygen diffusion (OD) region, which is mainly influenced by OD; (2) the Pb-rich phase evolution (PbE) region, in which the formation and decomposition of the Pb-rich phases occur; (3) the liquid phase formation (LF) region, in which resistance increased rapidly with increasing temperature

  2. Fluctuation Induced Conductivity Studies of 100 MeV Oxygen Ion Irradiated Pb Doped Bi-2223 Superconductors

    NARCIS (Netherlands)

    Banerjee, Tamalika; Kumar, Ravi; Kanjilal, D.; Ramasamy, S.

    2000-01-01

    We report on 100 MeV oxygen ion irradiation in Pb doped Bi-2223 superconductors. Resistivity measurements reveal that both grains as well as the grain boundaries are affected by such irradiation. An analysis of the excess conductivity has been made within the framework of Aslamazov-Larkin (AL) and

  3. The Effect of Temperature Dependence of AC Losses in a Bi-2223/Ag Insert of an 8-T Superconducting Magnet

    DEFF Research Database (Denmark)

    Wang, Lei; Wang, Qiuliang; Wang, Hui

    2016-01-01

    A conduction-cooled split-gap superconducting magnet system with a center field of 8 T has been designed and fabricated in the Institute of Electrical Engineering, Chinese Academy of Sciences. The system consists of two Bi-2223/Ag coils and six NbTi coils. Due to a large aspect ratio of the high-...... in the second case. Hence, it is a good way to reduce the ac losses by changing the charging sequences of the Bi-2223/Ag and NbTi cols. Afterward, the calculated results are compared with the experimental data, and they show a good agreement.......A conduction-cooled split-gap superconducting magnet system with a center field of 8 T has been designed and fabricated in the Institute of Electrical Engineering, Chinese Academy of Sciences. The system consists of two Bi-2223/Ag coils and six NbTi coils. Due to a large aspect ratio of the high......-temperature superconducting tape, there will be large ac losses when the magnet is ramped up and down. An accurate estimation of the total ac losses in the high-temperature superconducting coils is essential for the cryogenic system design. In the Bi-2223/Ag coils, the total ac losses mainly originate from two parts: One...

  4. Development of high J c Bi2223/Ag thick film materials prepared by heat treatment under low P O2

    Science.gov (United States)

    Takeda, Y.; Shimoyama, J.; Motoki, T.; Nakamura, S.; Nakashima, T.; Kobayashi, S.; Kato, T.

    2018-07-01

    In general, a dense and c-axis grain-oriented microstructure is desirable in order to achieve the high critical current properties of Bi2223 polycrystalline materials. On the other hand, our recent studies have shown that precise control of the chemical compositions of Bi2223 is also effective for the enhancement of intergrain J c. In this study, the development of Bi2223 thick film materials with high critical current properties was attempted by controlling both the microstructure and the chemical compositions. A high intergrain J c of ∼8 kA cm‑2 at 77 K of a film with ∼40 μm t was achieved by increasing the Pb substitution level for the Bi site and controlling the nonstoichiometric chemical compositions. Furthermore, it was revealed that an increase in the thickness enabled us to obtain high I c films suitable for practical applications. In contrast, there are still issues, especially in controlling the grain alignment at the inner part of the film, which suggests that the J c properties of thick film materials could be further improved by forming a more ideal microstructure, as realized in the Bi2223 filaments of multi-filamentary Ag-sheathed tapes.

  5. Tensile damage and its influence on the critical current of Bi2223/Ag superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Nagai, T; Okuda, H; Oh, S S; Hojo, M; Tanaka, M; Sugano, M; Osamura, K

    2003-01-01

    We have studied the tensile behaviour of Bi2223 superconducting composite tapes at room temperature, and the influence of the tensile damages introduced at room temperature on the critical current I c and the n values at 77 K. In the measurement of the I c and n values, the overall composite with a gauge length 60 mm was divided into six elements with a gauge length of 10 mm in order to find the correlation of the I c and n values of the overall composite to those of the local elements which constitute the composite. From the measured stress-strain curve of the composite and the calculated residual strain of the Bi2223 filaments, the intrinsic fracture strain of Bi2223 filaments was estimated to be 0.09-0.12%. When the applied strain was lower than the onset strain of the filament damage, the original I c and n values were retained both in the overall composite and the elements. In this situation, while the overall voltage at the transition from superconductivity to normal conductivity of the composite was the sum of the voltages of the constituent elements, among all elements the overall voltage was affected more by the element with the lower I c (higher voltage). The damage of the filaments arose first locally, resulting in a reduction of the I c and n values in the corresponding local element, even though the other elements retained the original I c and n values. In this situation, the voltage of the overall composite stemmed dominantly from that of the firstly damaged weakest element, and the overall I c and n values were almost determined by the values of such an element. After the local element was fully damaged, the damage arose also in other elements, resulting in segmentation of the filaments. Thus, the I c and n values were reduced in all elements. The correlation of I c between the overall composite and the elements could be described comprehensively for non-damaged and damaged states from the voltage-current relation

  6. Comparison of bending strain effect on the critical current degradation of Bi-2223 tapes through different measurement techniques

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Dizon, John R.C.; Katagiri, Kazumune; Kuroda, Tsuneo

    2006-01-01

    Unlike in the tests under tension, transverse compression and torsion, the bending test of HTS tapes requires lots of time and effort since the sample should be bent or mounted successively onto sample holders having different bending radius at room temperature, and then cooled down to measure the critical current, I c , up to 77 K at each step. In this process, the effect of repeated thermal cycle on the I c degradation can not be ignored. The establishment of a practical and effective measurement method of the critical current as a function of bending strain for HTS tapes should be considered. A ρ-shaped sample holder which provides a series of bending strains to HTS tapes was newly devised. In this case, the connection of Bi-2223 tapes to current terminal blocks was done mechanically. Using this sample holder, the bending strain effect on the I c degradation behavior in Bi-2223 tapes in the easy bending mode was investigated, and discussed them comparing with other data obtained by different testing methods, namely, the conventional bending method using FRP sample holders and the Goldacker-type continuous bending test rig. Commercially available Bi-2223 tapes which have different reinforcing structures were supplied for this study. By using the newly devised ρ-shaped sample holder, it was possible to obtain a bending strain characteristic of I c in Bi-2223 tapes at one time cooling which lessened the testing time significantly when compared with other testing methods and supply good reproducible data. The I c degradation behavior in Bi-2223 tapes was similar to the cases using FRP sample holders although it showed slightly higher I c values

  7. Comparison of self-field effects between Bi-2223/Ag tapes and pancake coils

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Gu, C.; Han, Z.

    2005-01-01

    Knowledge on self-field behavior in HTS tape and coil becomes important for the design of HTS devices. We report on the comparative nature and influence of self-field in Bi-2223/Ag tape and pancake coils in terms of critical current and ac loss. Measured dc and ac properties of short tape and pancake coils are verified based on the self-field. It is proved that perpendicular component of self-field acting in opposite direction at the two halves of tape-width determines critical current in short tape and single-turn coil. On the other hand, perpendicular component of self-field pointed in the same direction at the two halves of tape-width determines critical current in multi-turn coils. Influence of magnitude and orientation of self-field on ac loss is also investigated for a series of pancake coils based on the measured self-field ac loss in short sample

  8. Comparison of self-field effects between Bi-2223/Ag tapes and pancake coils

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Building Li Zhai, Room 209, Beijing 100084 (China)]. E-mail: alam643@yahoo.com; Gu, C. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Building Li Zhai, Room 209, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Building Li Zhai, Room 209, Beijing 100084 (China)

    2005-08-15

    Knowledge on self-field behavior in HTS tape and coil becomes important for the design of HTS devices. We report on the comparative nature and influence of self-field in Bi-2223/Ag tape and pancake coils in terms of critical current and ac loss. Measured dc and ac properties of short tape and pancake coils are verified based on the self-field. It is proved that perpendicular component of self-field acting in opposite direction at the two halves of tape-width determines critical current in short tape and single-turn coil. On the other hand, perpendicular component of self-field pointed in the same direction at the two halves of tape-width determines critical current in multi-turn coils. Influence of magnitude and orientation of self-field on ac loss is also investigated for a series of pancake coils based on the measured self-field ac loss in short sample.

  9. Simulation of ferromagnetic shielding to the critical current of Bi2223/Ag tape under external fields

    Energy Technology Data Exchange (ETDEWEB)

    Gu Chen [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Alamgir, A K M [Faculty of Engineering, Yokohama National University, 75-9 Tokiwadai, Hodogaya-ku, Yokohama (Japan); Qu Timing [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Han, Z [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)

    2007-03-15

    Ferromagnetic material was electroplated onto the surface of the Bi2223/Ag multi-filamentary tape and as a result changed the I{sub c}(B) characteristic of the tape correspondingly. A numerical simulation was used to investigate the influence of ferromagnetic shielding (FS) on the performance of the tape, in particular the I{sub c} behaviour under perpendicular external fields. Using finite element analysis, we are able to understand how FS alters the flux distribution within the superconductor region under any arbitrary shielding structure. The shielding width, thickness and nonlinear property of the ferromagnetic material were taken into account for the simulation. Finally, optimized shielding parameters in association with different operating fields were suggested and these values could be considered for the next run of experimental work.

  10. Simulation of ferromagnetic shielding to the critical current of Bi2223/Ag tape under external fields

    International Nuclear Information System (INIS)

    Gu Chen; Alamgir, A K M; Qu Timing; Han, Z

    2007-01-01

    Ferromagnetic material was electroplated onto the surface of the Bi2223/Ag multi-filamentary tape and as a result changed the I c (B) characteristic of the tape correspondingly. A numerical simulation was used to investigate the influence of ferromagnetic shielding (FS) on the performance of the tape, in particular the I c behaviour under perpendicular external fields. Using finite element analysis, we are able to understand how FS alters the flux distribution within the superconductor region under any arbitrary shielding structure. The shielding width, thickness and nonlinear property of the ferromagnetic material were taken into account for the simulation. Finally, optimized shielding parameters in association with different operating fields were suggested and these values could be considered for the next run of experimental work

  11. AC magnetic losses in Bi-2223/Ag tapes with different aspect ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.; Luo, X.M.; Chen, D.X.; Collings, E.W.; Lee, E.; Sumption, M.D.; Alamgir, A.K.M.; Yi, H.P.; Fang, J.G.; Gu, C.; Guo, S.Q.; Liu, M.L.; Xin, Y.; Han, Z

    2004-10-01

    AC losses in multi-filamentary tapes depend on various parameters. Among them, the overall tape width and thickness are expected to have an important influence. In order to study this geometrical effect, five Bi-2223/Ag tapes with different aspect ratios from 5 to 26 have been prepared. AC losses have been measured at 77 K when a perpendicular AC magnetic field is applied. It has been found that at any frequencies the magnetic loss per cycle increases as the aspect ratio increases. For AC magnetic loss, with increasing frequency from 3 to 9000 Hz the losses as a function of frequency show a maximum if the field amplitude is much less than the full penetration field or increase continuously if the field amplitude is larger.

  12. AC magnetic losses in Bi-2223/Ag tapes with different aspect ratios

    International Nuclear Information System (INIS)

    Fang, J.; Luo, X.M.; Chen, D.X.; Collings, E.W.; Lee, E.; Sumption, M.D.; Alamgir, A.K.M.; Yi, H.P.; Fang, J.G.; Gu, C.; Guo, S.Q.; Liu, M.L.; Xin, Y.; Han, Z.

    2004-01-01

    AC losses in multi-filamentary tapes depend on various parameters. Among them, the overall tape width and thickness are expected to have an important influence. In order to study this geometrical effect, five Bi-2223/Ag tapes with different aspect ratios from 5 to 26 have been prepared. AC losses have been measured at 77 K when a perpendicular AC magnetic field is applied. It has been found that at any frequencies the magnetic loss per cycle increases as the aspect ratio increases. For AC magnetic loss, with increasing frequency from 3 to 9000 Hz the losses as a function of frequency show a maximum if the field amplitude is much less than the full penetration field or increase continuously if the field amplitude is larger

  13. Effect of epoxy impregnation on strain distribution of materials in Bi2223 superconducting coils by using synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinzhe, E-mail: xinzhe.jin@riken.jp [Center for Life Science Technologies, RIKEN, Yokohama-shi, Kanagawa 230-0045 (Japan); Osamura, Kozo [Research Institute for Applied Sciences, Sakyo-ku, Kyoto 606-8202 (Japan); Machiya, Shutaro [Daido University, Minami-ku, Nagoya 457-8530 (Japan); Kajiwara, Kentaro [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Shobu, Takahisa [Japan Atomic Energy Agency, Sayo, Hyogo 679-5148 (Japan); Maeda, Hideaki [Center for Life Science Technologies, RIKEN, Yokohama-shi, Kanagawa 230-0045 (Japan)

    2015-11-25

    Synchrotron X-rays have been used to observe strain distributions in composite materials such as superconducting wires with a thickness of less than about 2 mm. In applications that employ wound coils of superconducting wire, it is necessary to understand the strain distribution within the coiled wire. Superconducting wires such as Bi2223 and REBCO wires approximately 4–5 mm wide are commercially available. Coiled wires of this width are too thick to easily measure using conventional X-ray techniques, especially the inner strain, because the penetration depth tends to be around 2 mm. Therefore, the beam penetration must be improved, and it is known that the penetration depth of an X-ray beam depends upon the beam energy, beam intensity, measurement material, and measurement method. In this study, we used a white X-ray diffractometer at SPring-8 to develop a method of observing the strain distribution in Bi2223 superconducting coils winded by a 4.5 mm wide Bi2223 wire. We successfully observed a clear (400) peak of the Bi2223 phase by an appropriate measurement condition, and then observed the strains of each material in the Bi2223 coils with and without epoxy impregnation. This is the first time that we have obtained the strain of a Bi2223 phase in coiled wire using synchrotron X-ray diffraction. Further synchrotron-based study of superconducting coils will be useful in the development of advanced high-field magnets. The appropriate measurement method and the obtained measurement results are presented in this paper. - Highlights: • We successfully obtained clear peaks of Bi2223 phase in 4.5 mm thick coils. • The strain behaviors of materials in the coil correspond to a three turn cycle model. • A uniform strain distribution of the Bi2223 phase was obtained by epoxy impregnation.

  14. Mechanical and physical properties of Bi-2223 and Nb3Sn superconducting materials between 300 K and 7 K

    International Nuclear Information System (INIS)

    Nyilas, Arman; Osamura, Kozo; Sugano, Michinaka

    2003-01-01

    Within the framework of IEC/TC90-WG5 and VAMAS/TWA16, superconducting (SC) materials are investigated with respect to their mechanical properties between 300 K and 7 K. Besides the mechanical tests, physical and electrical properties are also determined for high T c SC-tapes. The mechanical tests comprised the characterization of tensile properties at ambient temperature as well as at 7 K of Nb 3 Sn-reacted strands, Bi2223 tapes, pure silver tapes, silver bars, silver alloy tapes and bare filaments extracted from Bi-2223 tapes. All these investigations are carried out using a variable temperature helium gas flow cryostat equipped with a servo hydraulic tensile machine (MTS, model 810). For the load measurements specially developed, highly sensitive cryogenic proof in situ working load cells are used. For the strain determination of the wires, a high resolution ultra-light double extensometer system with a specially developed low noise signal conditioner is used. The engineering parameters such as yield strength and elastic modulus are evaluated using the obtained data with newly developed software. For the tiny and brittle filaments load versus displacement data are obtained. A determined master line (Young's modulus versus machine compliance) established by thin 0.125 mm O wires of different pure metals is used for the Young's modulus estimation of filaments. For the 4 K electrical voltage-current measurements under magnetic fields of up to 13 T, an existing test facility is used for the high T c tapes. No dependency between applied strain up to 0.3% and the critical current under magnetic field could be observed for the selected specific Bi-2223 tapes. In addition, thermal expansion curves of Bi-2223 tapes along with pure silver and silver alloy (AgMg) are determined between 290 K and 7 K using in situ working extensometers. The coefficient of thermal expansion is evaluated by the determined thermal expansion versus temperature curve

  15. Effect of lead content on phase evolution and microstructural development in Ag-clad Bi-2223 composite conductors

    International Nuclear Information System (INIS)

    Merchant, N.N.; Maroni, V.A.; Fischer, A.K.; Dorris, S.E.; Zhong, W.; Ashcom, N.

    1997-02-01

    A two powder process was used to prepare silver-sheathed monofilamentary Bi 1.8 Pb x Sr 1.98 Ca 1.97 Cu 3.08 O y (Bi-2223) tapes with varying lead contents, x, from 0.2 to 0.5. The resulting tapes were subjected to thermomechanical processing and then characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray analysis (EDX). Layered phase texture was accessed using image analysis software on scanned SEM micrographs. Transport currents were measured at 77 K and zero field by the four-probe method. It was found that tapes with low lead content (X = 0.2 and 0.25) showed incomplete conversion to Bi-2223, had small grain size and poor c-axis texture. Tapes having higher lead content (x = 0.4 and 0.5) also showed incomplete conversion and the presence of lead-rich secondary phases. Tapes with lead content x = 0.3 and 0.35 showed complete conversion to Bi-2223, and had the least amount of secondary phases, the best c-axis texture, and the highest transport current (j c ). The carbon content of the precursor powder also had a strong influence on secondary-phase chemistry

  16. Lubricant influence on the ejection and roughness of in-die electro sinter forged Ti-discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    2018-01-01

    Electro Sinter Forging (ESF) is a new sintering process based on Joule heating by high electrical current flowing through compacted metal powder under mechanical pressure. The whole process takes about three seconds and is based on a closed-die setup, where the sample is sintered inside a die....... A near-net shape component is therefore manufactured. One of the challenges associated with this process is the ejection of the sample after sintering. Due to powder compaction and axial loading during sintering, a radial pressure is generated at the die/sample interface. Consequently, the ejection can...... of commercially pure titanium powder. The force was measured while ejecting the samples by using a speed-controlled press. The surface roughness parameter Sa was measured by using a laser confocal microscope....

  17. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  18. Effect of dc field on ac-loss peak in a commercial Bi:2223/Ag tape

    Science.gov (United States)

    Öztürk, Ali; Düzgün, İbrahim; Çelebi, Selahattin

    2017-12-01

    Measurements of the ac susceptibility in a commercial Bi:2223/Ag tape for some different ac magnetic field amplitudes, Hac, in the presence of bias magnetic field Hdc directed along Hac are reported. It is found that the peak values of the imaginary component of ac susceptibility χ″max versus Hac trace a valley for the orientation where applied field Ha perpendicular to wide face of the tape total. We note that the observation of the valley depends on various parameters such as field dependence parameter n in the critical current density, in the simple power law expression jc = α(T)/Bn, choice of the bias field Hdc together with selected ac field amplitudes Hac, and dimension and geometry of sample studied. Our calculations based on critical state model with jc = α(1 - T/Tcm)p/Bn using the fitting parameters of n = 0.25, p = 2.2, Tcm = 108 K gives quite good results to compare the experimental and calculated curves.

  19. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2004-09-01

    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  20. Strain reduced critical current in Bi-2223/Ag superconductors under axial tension and compression

    International Nuclear Information System (INIS)

    Haken, B. ten; Godeke, A.; Kate, H.H.J. ten

    1997-01-01

    The critical current of Ag sheathed Bi(Pb)SrCaCuO-2223 tape conductors is investigated as a function of various strain components. A reduction of the critical current occurs due to both tensile or a compressive strain. The critical current reduction is qualitatively similar with the results as observed in Bi-2212 conductors. An axial compression leads to an immediate critical current reduction. The critical current in an axially elongated sample remains nearly constant up to a certain limit typically close to 0.3% strain. For a larger elongation the critical current reduces rapidly. A transverse pressure acting on the tape surface leads also to an irreversible critical current reduction. This behavior is compared with the influence of an axial compression with an effective Young's modulus. The deformation induced critical current reductions in Bi-2223 conductors can be described by a model that is already proposed for Bi-2212 conductors. This model is based on the irreversible nature of the critical current reduction due to a certain deformation

  1. Ac susceptibility of a Bi-2223/Ag tape in a perpendicular field

    International Nuclear Information System (INIS)

    Savvides, N.; Mueller, K.-H.

    1999-01-01

    Full text: We report experimental measurements and theoretical calculations of the real ( X ') and imaginary or loss ( X '') parts of the ac susceptibility as a function of temperature T = 4 - 130 K, frequency ω/2π = 5 Hz - 5 kHz and ac magnetic field amplitude μ 0 H m = 0.02 - 7 mT for of a monofilament silver-sheathed Bi-2223 tape. The susceptibilities consist of a hysteretic component due to ac loss ( Xsc '') in the superconductor core and an eddy current component due to eddy current loss ( Xed '') in the silver sheath. At high temperatures the low frequency limit is used to calculate the hysteretic and eddy current susceptibilities while at low temperatures the susceptibility is found to be due to eddy currents flowing along the edges of the tape. The measured loss at low frequencies (< 50 Hz) and high temperatures is dominated by the hysteresis loss which varies with amplitude but is essentially independent of frequency. At higher frequencies the eddy current loss of the silver sheath becomes dominant and it increases dramatically with frequency at both low and high temperatures

  2. Electrical and mechanical properties of Bi-2223/Ag/barrier/Ag composite tapes

    International Nuclear Information System (INIS)

    Kovac, P.; Husek, I.; Goemoery, F.; Oduleye, O.O.; Alford, N.McN.; Pachla, W.; Diduszko, R.

    2000-01-01

    Bi-2223/Ag/barrier/Ag single-core tapes with various oxide barrier materials (BaZrO 3 , SrCO 3 , ZrO 2 and Al 2 O 3 ) have been prepared by PIT. The I-V curves and ac susceptibility measurements have been performed for tapes with identical heat treatment history. Young's moduli of these tape samples have been evaluated by three-point bending and the structure of barrier powders and BSCCO cores was analysed by SEM and XRD, respectively. It was found that the shape of I-V curves, the current transfer lengths and the mechanical properties of tapes are all affected by the oxide barrier type and the barrier thickness, as well as by its porosity and uniformity. This is because the oxide barrier controls the oxygen diffusion during the tape heat treatment and simultaneously the HTS phase formation kinetics, its purity and content within the superconducting core. On the base of the results obtained for single-core tapes, two kinds of multifilamentary composite were made and tested. (author)

  3. The influence of tensile strain to critical current of Bi2223 composite tape

    International Nuclear Information System (INIS)

    Mukai, Y.; Shin, J.K.; Ochiai, S.; Okuda, H.; Sugano, M.; Osamura, K.

    2008-01-01

    As the stress-induced damage evolution is different from position to position in the sample, the local critical current is scattered in a sample, affecting on the overall current. The present work aimed to describe the distribution of local critical current and its relation to overall critical current under tensile stress for Bi2223/Ag superconducting composite tape. In the experiment, seven voltage probes were attached in a step of 10 mm. The local critical current and n-value at 77 K under various applied stress levels were measured for a voltage probe distance 10 mm and the overall ones for a probe distance 60 mm. Main results are summarized as follows. The overall critical current and n-value were described well by using the voltage summation model in which the sample was regarded as a one dimensional series circuit. For the low applied stress, the distribution of local critical current was described with the three parameter Weibull distribution function. Using the measured distribution of the local critical current, an experimental relation of critical current to n-value and the voltage summation model, and applying the Monte Carlo method, the overall critical current was predicted, which was in good agreement with the experimental results. Based on these results, the sample length dependence of critical current of the sample damaged by tensile stress was discussed

  4. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    Science.gov (United States)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  5. Hot Deformation Behavior and Pulse Current Auxiliary Isothermal Forging of Hot Pressing Sintering TiAl Based Alloys.

    Science.gov (United States)

    Shi, Chengcheng; Jiang, Shaosong; Zhang, Kaifeng

    2017-12-16

    This paper focuses on the fabrication of as-forged Ti46.5Al2Cr1.8Nb-(W, B) alloy via pulse current auxiliary isothermal forging (PCIF). The starting material composed of near gamma (NG) microstructure was fabricated by adopting pre-alloyed powders via hot pressing sintering (HPS) at 1300 °C. Isothermal compression tests were conducted at a strain rate range of 0.001-0.1 s -1 and a temperature range of 1125-1275 °C to establish the constitutive model and processing map. The optimal hot deformation parameters were successfully determined (in a strain rate range of 10 -3 -2.5 × 10 -3 s -1 and temperature range of 1130-1180 °C) based on the hot processing map and microstructure observation. Accordingly, an as-forged TiAl based alloy without cracks was successfully fabricated by PCIF processing at 1175 °C with a nominal strain rate of 10 -3 s -1 . Microstructure observation indicated that complete dynamic recrystallization (DRX) and phase transformation of γ→α₂ occurred during the PCIF process. The elongation of as-forged alloy was 136%, possessing a good secondary hot workability, while the sintered alloy was only 66% when tested at 900 °C with a strain rate of 2 × 10 -4 s -1 .

  6. Comparative study on the critical current performance of Bi-2223/Ag and YBCO wires in low magnetic fields at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Feng, F.; Qu, T.-M.; Gu, C.; Xin, Y.; Gong, W.-Z.; Wu, W.; Han, Z.

    2011-01-01

    Highlights: → The I c values of Bi-2223/Ag and YBCO wires in low fields at 77 K were compared. → The performance of Bi-2223/Ag in low parallel fields was better than that of YBCO. → The phenomenon mentioned above can be verified by the published literature datum. → A new aspect was brought to understand the transport properties of HTS wires. - Abstract: A comparative study on the critical current performance of Bi-2223/Ag and YBCO coated conductor wires in low magnetic fields at liquid nitrogen temperature was carried out in this work. Five commercial high temperature superconductor wires from different manufacturers were collected. Their critical currents were measured in magnetic fields, ranging from 0 to 0.4 T. On contrary to the common conception, the Bi-2223/Ag samples had better performance than YBCO coated conductor samples in the magnetic fields parallel to the wide surface of superconducting wires within the experimental scope. We also found similar results by collecting the concerned datum from the published literatures to confirm our measurement results. At the present stage, this fact made that the Bi-2223/Ag wires might be the preferred choice for the applications with mainly low parallel fields involved, unless other considerations were prioritized.

  7. Geometry dependence of magnetic and transport AC losses in Bi-2223/Ag tapes with different aspect ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Luo, X M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Chen, D X [ICREA and Grup Electromagnetisme, Departament de Fisica, Universitat Autonoma Barcelona, 08193 Bellaterra (Spain); Alamgir, A K M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Collings, E W [MSE, Ohio State University, Columbus, OH 43210 (United States); Lee, E [MSE, Ohio State University, Columbus, OH 43210 (United States); Sumption, M D [MSE, Ohio State University, Columbus, OH 43210 (United States); Fang, J G [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Yi, H P [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Song, X H [Innova Superconductor Technology Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Guo, S Q [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Liu, M L [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Xin, Y [Innopower Superconductor Cable Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Han, Z [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)

    2004-10-01

    On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field.

  8. Geometry dependence of magnetic and transport AC losses in Bi-2223/Ag tapes with different aspect ratios

    International Nuclear Information System (INIS)

    Fang, J; Luo, X M; Chen, D X; Alamgir, A K M; Collings, E W; Lee, E; Sumption, M D; Fang, J G; Yi, H P; Song, X H; Guo, S Q; Liu, M L; Xin, Y; Han, Z

    2004-01-01

    On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field

  9. A Monte Carlo simulation on critical current distribution of bent-damaged multifilamentary Bi2223 composite tape

    International Nuclear Information System (INIS)

    Ochiai, S.; Okuda, H.; Fujimoto, M.; Shin, J.K.; Oh, S.S.; Ha, D.W.

    2011-01-01

    We simulate critical current distribution of bent-damaged Bi2223 composite tape. We use a Monte Carlo method and a damage evolution model for simulation. With the present simulation approach, experimental results are described well. Critical current distribution stems mainly from difference in damage evolution. It was attempted to reproduce the measured critical current (I c ) distributions of the Bi2223 composite tape bent by 0-0.833% by simulation. Simulation was carried out with a Monte Carlo method in combination with a model that correlates the critical current to damage evolution. Two variables that differ from specimen to specimen were input in the simulation. One was the damage strain parameter, with which the difference in extent of damage among specimens was expressed. Another was the original critical current (I c0 ) values at zero bending strain. With the present simulation approach, the measured distributions of critical current at various bending strains, and the measured variations of average and coefficient of variation of critical current values with increasing bending strain were reproduced well.

  10. Properties of Ni-Mo steel prepared from premixed and prealloyed powder in sintered, forged and annealed state

    International Nuclear Information System (INIS)

    Salak, A.; Hrubjak, M.

    Investigated were 2Ni-0.5Mo steel specimens made of premixed powder on the base of Hametag iron and of ATST-A prealloyed powder with graphite additives of 0.3% and 0.8%. In the sintered and forged state, specimens prepared from premixed powder exhibit better strength properties compared with those made of prealloyed ATST-A powder. After annealing, the carbon content has a different bearing on both systems. With premixed powder steel of 0.6% carbon content the tensile strength amounts to 1,800 MPa whilst that of prealloyed steel specimens with 0.2% carbon content is about 1,240 MPa. (author)

  11. AC loss characteristics of Bi2223/Ag sheathed tape wires subjected to mechanical strains and stresses

    International Nuclear Information System (INIS)

    Tsukamoto, Osami; Li, Z

    2007-01-01

    The influence of uniaxial tensile stress-strain on the AC loss characteristics of multifilamentary Bi2223/Ag sheathed tape wires was investigated. The uniaxial tensile stress-strain was applied to the sample wire in liquid nitrogen at atmospheric pressure, and the AC losses (transport, magnetization and total losses) were measured by an electric method. Two kinds of wire, oxide-dispersion strengthened Ag-alloy sheathed and Ag-alloy sheathed wires, were tested. The stress-strain curves of the tested wires were divided in three regions, i.e. elastic deformation, continuous plastic deformation and serrated-like plastic deformation regions, though the ranges of those regions were different for different kinds of wire. In the elastic and continuous plastic regions, the stress-strain curve was smooth and continuous, and in the serrated-like plastic region, the curve was rough. In the serrated-like plastic region, the wires kept elongating, while increase of the tensile stress was suspended. Dependences of the critical currents on the stress-strain were generally as follows. While decreases of the wire critical currents were in the range of less than 4% of the original values of the no-stress condition, the critical currents of the wires were reversible, that is, the critical currents recovered the original values at zero stress when the stress were released, regardless of whether the wires were in the elastic or continuous plastic region. In the continuous plastic region, the critical currents decreased up to 10%-15% of the original values and the critical currents were irreversible when the degradations of the critical currents exceeded about 4%. In the serrated-like plastic regions, the critical currents were more severely degraded. The AC loss characteristics of the wires are different in those regions. In the elastic and continuous plastic regions, the absolute values of AC losses were dependent on the stress-strain. However, the dependences of those normalized

  12. Self-field AC losses and critical currents in multi-tube Ag-Bi-2223 conductors

    Energy Technology Data Exchange (ETDEWEB)

    Ciszek, M; Ashworth, S P; Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); James, M P; Glowacki, B A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Garre, R; Conti, S [Centro Ricerche Europa Metalli, Fornaci di Barga, LU (Italy)

    1996-05-01

    The purpose of this work was to investigate the influence of different technological treatments of silver sheathed Bi-2223 tapes on the critical current density and the AC transport losses. The tapes were produced using the 'tube-in-tube' technique, by including a silver rod in the centre of the superconducting powder during packing of the silver tube. The aim of the process is to increase the silver to superconductor surface area and thus also the alignment at the centre of the conductor ceramic core. AC transport losses were measured by means of an electrical method using sinusoidally varying currents in the frequency range 30-180 Hz. In this range the power losses are hysteretic. The measured variation in losses from those predicted by a critical state model is attributed to the complex geometry of superconducting regions existing in these tapes. (author)

  13. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    Science.gov (United States)

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  14. Variation of local critical current and its influence on overall current of bent multifilamentary Bi2223/Ag tape

    International Nuclear Information System (INIS)

    Ochiai, S.; Doko, D.; Rokkaku, H.; Fujimoto, M.; Okuda, H.; Hojo, M.; Tanaka, M.; Sugano, M.; Osamura, K.; Mimura, M.

    2006-01-01

    The correlation between the local and overall currents in a multifilamentary Bi2223/Ag/Ag alloy composite tape under bending strain was studied. The correlation of the measured distributed local critical current and n-value to overall critical current was described comprehensively with a voltage summation model that regards the overall sample to be composed of a series circuit. The analysis of the measured critical current and n-value revealed that the distribution of local critical current could be described with the Weibull distribution function and the n-value could be expressed as a function of critical current as a first approximation. By combining the Weibull distribution function of the local critical current, the empirical formula of the n-value as a function of critical current, voltage summation model and Monte Carlo method, the overall current and n-value could be predicted fairly well from those of local elements

  15. Sample-length dependence of the critical current of slightly and significantly bent-damaged Bi2223 superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Fujimoto, M; Okuda, H; Oh, S S; Ha, D W

    2007-01-01

    The local critical current along a sample length is different from position to position in a long sample, especially when the sample is damaged by externally applied strain. In the present work, we attempted to reveal the relation of the distribution of the local critical current to overall critical current and the sample-length dependence of critical current for slightly and significantly damaged Bi2223 composite tape samples. In the experiment, 48 cm long Bi2223 composite tape samples, composed of 48 local elements with a length of 1 cm and 8 parts with a length 6 cm, were bent by 0.37 and 1.0% to cause slight and significant damage, respectively. The V-I curve, critical current (1 μV cm -1 criterion) and n value were measured for the overall sample as well as for the local elements and parts. It was found that the critical current distributions of the 1 cm elements at 0.37 and 1.0% bending strains are described by the three-parameter- and bimodal Weibull distribution functions, respectively. The critical current of a long sample at both bending strains could be described well by substituting the distributed critical current and n value of the short elements into the series circuit model for voltage generation. Also the measured relation of average critical current to sample length could be reproduced well in the computer by a Monte Carlo simulation method. It was shown that the critical current and n value decrease with increasing sample length at both bending strains. The extent of the decrease in critical current with sample length is dependent on the criterion of the critical current; the critical current decreases only slightly under the 1 μV cm -1 criterion which is not damage-sensitive, while it decreases greatly with increasing sample length under damage-sensitive criteria such as the 1 μV one

  16. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.; Hull, J.R.

    1994-01-01

    High-temperature superconductors (HTSs), consisting of Bi-2223 HTS tapes sheathed with Ag alloys are proposed for a 20-kA current lead for the planned stellarator WENDELSTEIN 7-X. Forced-flow He cooling is used, and 4-K He cooling of the whole lead as well as 60-K He cooling of the copper part of the lead, is discussed. Power consumption and behavior in case of loss of He flow are given

  17. Fabrication, properties, and microstructures of high Tc tapes and coils made from Ag-clad Bi-2223 superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Iyer, A.N.; Youngdahl, C.A.; Motowidlo, L.R.; Hoehn, J.G.; Haldar, P.

    1993-07-01

    Bi-2223 precursor powders were prepared via a solid-state reaction using carbonates and oxides of Bi, Pb, Sr, Ca, and Cu. Results indicate that an in-situ reaction between constituent phases with tho formation of a transient liquid that is consumed during final heat treatment, is essential to obtain increased density with greater connectivity between the 2223 grains. Relative amounts of the constituent phases were adjusted in the powder by varying the calcination conditions, and the powder was then used to fabricate Ag-clad tapes by a powder-in-tube technique. By improving process conditions, transport critical current density (J c ) values greater than 4 x 10 4 A/cm 2 at 77 K and 2 x 10 5 A/cm 2 at 4.2 and 27 K have been obtained in short tape samples. Long tapes were cut into lengths upto 10 m long and used in parallel to fabricate small superconducting pancake coils. The coils were characterized at 77, 27 and 4.2 K and results are discussed

  18. Mathematical model of voltage-current characteristics of Bi(2223)/Ag magnets under an external magnetic field

    CERN Document Server

    Pitel, J; Lehtonen, J; Kovács, P

    2002-01-01

    We have developed a mathematical model, which enables us to predict the voltage-current V(I) characteristics of a solenoidal high-temperature superconductor (HTS) magnet subjected to an external magnetic field parallel to the magnet axis. The model takes into account the anisotropy in the critical current-magnetic field (I sub c (B)) characteristic and the n-value of Bi(2223)Ag multifilamentary tape at 20 K. From the power law between the electric field and the ratio of the operating and critical currents, the voltage on the magnet terminals is calculated by integrating the contributions of individual turns. The critical current of each turn, at given values of operating current and external magnetic field, is obtained by simple linear interpolation between the two suitable points of the I sub c (B) characteristic, which corresponds to the angle alpha between the vector of the resulting magnetic flux density and the broad tape face. In fact, the model is valid for any value and orientation of external magneti...

  19. Transport current ac losses and current-voltage curves of multifilamentary Bi-2223/Ag tape with artificial defects

    International Nuclear Information System (INIS)

    Polak, M.; Jansak, L.

    2000-01-01

    We experimentally studied the effects of a single artificial defect and a linear array of artificial defects on I-V curves, critical currents and transport current ac losses of 55 filament untwisted Bi-2223/Ag tapes. The artificial defect was a small hole drilled into the tape. The reduction in the critical current measured on a 1 cm long section due to one hole of diameter 0.9 mm was 33% and that due to a linear array of seven similar holes was 62%. The slopes of the I-V curves, n, measured in this section were 33, 16 and 5.8 in the original sample, in the sample with one defect and the sample with seven defects, respectively. Both I c and the slope reduction were smaller if the distance between the potential taps was increased. The transport current ac losses at 50 Hz and I rms = 10 A in the sample with one defect measured in a 1 cm long section were practically the same as those in the original sample (4.1x10 -4 W m -1 ), but they increased by 83% in the sample with a linear array of seven defects. The measured increase in losses per unit length was the smaller, the larger the distance between the potential taps. A comparison between the measured and calculated losses revealed that a formal application of the Norris equations for loss calculations in samples with local defects leads to an overestimation of the ac losses. A procedure for the calculation of transport current losses in samples with local defects based on the Norris model is proposed and verified. (author)

  20. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    OpenAIRE

    Kametani, F.; Jiang, J.; Matras, M.; Abraimov, D.; Hellstrom, E. E.; Larbalestier, D. C.

    2015-01-01

    Why Bi2Sr2CaCu2Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)2Sr2Ca2Cu3O10), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM

  1. Shielded high-T{sub c} (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Lelovic, M.; Eror, N.G. [Department of Materials Science, University of Pittsburgh, Pittsburgh, PA (United States); Balachandran, U.; Prorok, B. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Selvamanickam, V.; Haldar, P. [Intermagnetics General Corporations, Latham, NY (United States); Talvacchio, J.; Young, R. [Science and Technology Center, Northrop Grumman, Pittsburgh, PA (United States)

    1998-11-01

    A new composite tape was fabricated in which the primary function of the central Ag-sheathed (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) filaments was to conduct transport current. A YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (Y-123) thin film was deposited on the top of the Ag-sheathed Bi-2223 tape to shield the applied magnetic field and to protect the central Bi-2223 filaments. The critical current densities of the Y-123-coated, Ag-sheathed Bi-2223 tapes were better than those of an uncoated tape. However, the Y-123 thin film exhibited T{sub c} approx.= 72 K and a broad transition region that shifted the effect to lower temperatures. Furthermore, pole figure measurements showed widely spread a,b planes along the rolling direction, indicating high-angle grain boundaries that diminished the magnitude of the effect. Microstructural observations showed platelike grains of Y-123 with fine growth ledges in the thin film that was heat treated, in contrast with the microstructure of an as-coated thin film that showed large twinned grains. From the processing point of view, the results showed that heat treating Y-123 thin film according to the Bi-2223 tape schedule was compatible with and beneficial for Y-123. These preliminary results may provide a basis for further improvements in processing of long-length Bi-2223 tapes for high-field applications. (author)

  2. Large and high-quality single-crystal growth of cuprate superconductor Bi-2223 using the traveling-solvent floating-zone (TSFZ) method

    Science.gov (United States)

    Adachi, Shintaro; Usui, Tomohiro; Kosugi, Kenta; Sasaki, Nae; Sato, Kentaro; Fujita, Masaki; Yamada, Kazuyoshi; Fujii, Takenori; Watanabe, Takao

    In high superconducting transition temperature (high-Tc) cuprates, it is empirically known that Tc increases on increasing the number of CuO2 planes in a unit cell n from 1 to 3. Bi-family cuprates are ideal for investigating the microscopic mechanism involved. However, it is difficult to grow tri-layered Bi-2223, probably owing to its narrow crystallization field. Here, we report improved crystal growth of this compound using the TSFZ method under conditions slightly different from those in an earlier report [J. Cryst. Growth 223, 175 (2001)]. A Bi-rich feed-rod composition of Bi2.2Sr1.9Ca2Cu3Oy and a slightly oxygen-reduced atmosphere (mixed gas flow of O2 (10%) and Ar (90%)) were adopted for the crystal growth. In addition, to increase the supersaturation of the melts, we applied a large temperature gradient along the solid-liquid interface by shielding a high-angle light beam using Al foil around the quartz tube. In this way, we succeeded in preparing large (2 × 2 × 0 . 05 mm3) and high-quality (almost 100% pure) Bi-2223 single crystals. Hirosaki University Grant for Exploratory Research by Young Scientists and Newly-appointed Scientists.

  3. Statistical analysis of the distribution of critical current and the correlation of n value to the critical current of bent Bi2223 composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Matsubayashi, H; Okuda, H; Osamura, K; Otto, A; Malozemoff, A

    2009-01-01

    Distributions of local and overall critical currents and correlation of n value to the critical current of bent Bi2223 composite tape were studied from the statistical viewpoint. The data of the local and overall transport critical currents and n values of the Bi2223 composite tape specimens were collected experimentally for a wide range of bending strain (0-1.1%) by using the specimens, designed so as to characterize the local and overall critical currents and n values. The measured local and overall critical currents were analyzed with various types of Weibull distribution function. Which of the Weibull distribution functions is suitable for the description of the distribution of local and overall critical currents at each bending strain, and also how much the Weibull parameter values characterizing the distribution vary with bending strain, were revealed. Then we attempted to reproduce the overall critical current distribution and correlation of the overall n value to the overall critical current from the distribution of local critical currents and the correlation of the local n value to the local critical current by a Monte Carlo simulation. The measured average values of critical current and n value at each bending strain and the correlation of n value to critical current were reproduced well by the present simulation, while the distribution of critical current values was reproduced fairly well but not fully. The reason for this is discussed.

  4. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    Science.gov (United States)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  5. Distribution of local critical current along sample length and its relation to overall current in a long Bi2223/Ag superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Doko, D; Okuda, H; Oh, S S; Ha, D W

    2006-01-01

    The distribution of the local critical current and the n-value along the sample length and its relation to the overall critical current were studied experimentally and analytically for the bent multifilamentary Bi2223/Ag/Ag-Mg alloy superconducting composite tape. Then, based on the results, it was attempted to simulate on a computer the dependence of the critical current on the sample length. The main results are summarized as follows. The experimentally observed relation of the distributed local critical current and n-value to the overall critical current was described comprehensively with a simple voltage summation model, in which the sample was regarded as a one-dimensional series circuit. The sample length dependence of the critical current was reproduced on the computer by a Monte Carlo simulation incorporating the voltage summation model and the regression analysis results for the local critical current distribution and the relation of the n-value to the critical current

  6. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

    Science.gov (United States)

    Zhang, Ce; Lu, Boxin; Wang, Haiying; Guo, Zhimeng; Paley, Vladislav; Volinsky, Alex A.

    2018-01-01

    Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures ( D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

  7. Recent technological developments in forging; Recentes avancos tecnologicos no forjamento

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, Lirio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica e dos Materiais

    1987-12-31

    Recent advances in the area of open and closed die forging are summarized and discussed. The use of computer and alternatives such as incremental forging, sinter forging, liquid forging and precision forging are the main items reviewed 11 refs., 10 figs.

  8. Influence of powder pre-annealing on the phase formation and critical current of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Chen, X.P.; Grivel, Jean-Claude; Li, M.Y.

    2004-01-01

    . The effects of different precursors were investigated by XRD, SEM/EDS and critical current measurements. It has been found that both the microstructure and phase formation depended strongly on the different lead-rich phases, which determined the reactivity of the precursor. Tapes fabricated using...... the precursor with Ca2PbO4 phase (tape T1) had lower transformation rate of 2223 phase than tapes fabricated using the precursor with 3321 phase (tape T2). SEM results show that a large fraction of secondary phases with big particle size was formed in the tape T1 during the subsequent sintering, which might...

  9. Experiment of enhancing critical current and reducing ac loss in pancake coil comprised of Ni-coated Bi-2223/Ag tape

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Gu, C.; Han, Z.

    2006-01-01

    An approach of realizing high performance HTS coil comprised of ferromagnetic material-coated BSCCO tape is proposed. The concept of influencing critical current and ac loss is based on the magnetic shielding effect resulting in redirection of self-field flux-lines. In the previous article, ac performance of Ni-coated tape was demonstrated where the Ni-coating was introduced at the edge-regime of the finished tape in order to redirect the perpendicular component of self-field lines. In order to investigate the shielding effect on ac performance in HTS coil, a two-turn pancake coil comprised of Ni-coated Bi-2223/Ag tape is demonstrated in the present article. About 6.4% of critical current was enhanced and 30% of transport current ac loss was reduced by means of 40 μm thick and 0.3 mm long (from the edge toward center of the tape) Ni-coating. This result suggests that additional ferromagnetic loss could be compensated well by the shielding effect of the partial Ni-coating. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the volume and geometry of ferromagnetic coating introduced. Therefore, it is very important to control the parameter of ferromagnetic coating of the tape in order to balance the critical current and ac loss for optimum coil performance

  10. Experiment of enhancing critical current and reducing ac loss in pancake coil comprised of Ni-coated Bi-2223/Ag tape

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Department of Physics, Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Gu, C. [Department of Physics, Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Han, Z. [Department of Physics, Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)

    2006-07-01

    An approach of realizing high performance HTS coil comprised of ferromagnetic material-coated BSCCO tape is proposed. The concept of influencing critical current and ac loss is based on the magnetic shielding effect resulting in redirection of self-field flux-lines. In the previous article, ac performance of Ni-coated tape was demonstrated where the Ni-coating was introduced at the edge-regime of the finished tape in order to redirect the perpendicular component of self-field lines. In order to investigate the shielding effect on ac performance in HTS coil, a two-turn pancake coil comprised of Ni-coated Bi-2223/Ag tape is demonstrated in the present article. About 6.4% of critical current was enhanced and 30% of transport current ac loss was reduced by means of 40 {mu}m thick and 0.3 mm long (from the edge toward center of the tape) Ni-coating. This result suggests that additional ferromagnetic loss could be compensated well by the shielding effect of the partial Ni-coating. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the volume and geometry of ferromagnetic coating introduced. Therefore, it is very important to control the parameter of ferromagnetic coating of the tape in order to balance the critical current and ac loss for optimum coil performance.

  11. Conceptual design of a forced-flow-cooled 20-kA current lead using Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.

    1994-11-01

    The use of high-temperature superconductors in current leads to reduce refrigeration power has been investigated by many groups in the past. Most used YBCO and Bi-2212 bulk superconductors, although their critical current density is not very high. In this paper, BI-2223 HTSC tapes sheathed with Ag alloys are used in the design of a 20-kA current lead because of their higher critical current in medium magnetic fields. The lead current of 20 kA is related to the coil current of the planned stellarator WENDELSTEIN 7-X. Forced-now helium cooling has been used in the design, allowing position-independent and well-controlled operation. The design characteristics of the lead are presented and 4-K helium cooling of the whole lead, as well as 60-K helium cooling of the copper part of the lead, is discussed. The power consumption at zero current, and the lead's behaviour in case of loss of coolant flow, are given, The results of the design allow extrapolation to current leads of the 50-kA range

  12. Quench characteristics of Ag/AuBi2223 HTS-stainless steel stack used for the hybrid current leads of the large hadron collider

    CERN Document Server

    Al-Mosawi, M K; Beduz, C; Yang, Y; Ballarino, A

    2008-01-01

    The quench characteristics of Ag/Au sheathed Bi2223 tapes have been investigated in an adiabatic condition and in a configuration similar to that used in hybrid high temperature superconducting current leads, namely the 13000A leads used for the Large Hadron Collider at CERN. A specialised rig was designed and constructed to provide a carefully controlled environment. The samples were prepared from HTS tape soldered onto a stainless steel substrate with a number of temperature sensors at various positions along the length of tape. One end of the lead (cold end) was maintained at 6K using G-M cryo-cooler whereas the temperature of the other end (warm end) can be varied and maintained at temperatures up to 100K. The thermal runaway currents (quench currents) at various warm end temperatures (in the range of 40-100K) were determined. The temperature evolutions at various locations along the tape were recorded at different top end temperatures and currents. The effect of the stainless steel mechanical reinforceme...

  13. Effect of ion-irradiation on the microstructure and microhardness of the W-2Y2O3 composite materials fabricated by sintering and hot forging

    International Nuclear Information System (INIS)

    Battabyal, M.; Spätig, P.; Baluc, N.

    2013-01-01

    Highlights: • W-2Y 2 O 3 material is fabricated using sintering and hot forging method with 99.3 vol.% density. • Microstructure and microhardness of the material after heavy ion irradiation are almost similar irrespective of the sample holder heating temperatures. • Dislocation loops are found on the W grains of irradiated sample where as radiation induced fine voids are observed on yttria particles. • We also observe few radiation loops on yttria particles. • No surface crack at the grain boundary is observed and significant difference in radiation hardening is confirmed. -- Abstract: A W-2Y 2 O 3 material was developed in collaboration with the Plansee Company (Austria). An ingot of the material having approximate dimension of 95 mm × 20 mm was fabricated by mixing the elemental powders followed by pressing, sintering and hot forging. The microstructure of the W-2Y 2 O 3 composite was investigated using transmission electron microscopy (TEM). The microhardness was studied using nano-indentation technique. We observed that the W-grains having a mean size of about 1 μm already formed and these grains contain very low density of dislocations. The size of the yttria particles was between 300 nm and 1 μm and the Berkovich hardness was about 4.8 GPa. The specimens were irradiated/implanted with Fe and He ions at JANNuS facility located at Orsay/Saclay, France. The TEM disks kept were irradiated/implanted at 300 and 700 °C using Fe and He ions with an energy of 24 and 2 MeV, respectively. The calculated radiation dose was about 5 dpa produced by Fe ions and total He content is 75 appm at both 300 and 700 °C. From the TEM investigation of irradiated samples, few radiation loops are present on the W grains, whereas on yttria particles, the radiation induced damages appear as voids. Berkovich hardness of the irradiated sample is higher than that of the non-irradiated sample. Results on the microstructure and microhardness of the ion-irradiated W-2Y 2 O 3

  14. Coupled-analysis of current transport performance and thermal behaviour of conduction-cooled Bi-2223/Ag double-pancake coil for magnetic sail spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Y., E-mail: nagasaki@rish.kyoto-u.ac.jp [Research Institute of Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Nakamura, T. [Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo, Kyoto 615-8530 (Japan); Funaki, I. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Ashida, Y.; Yamakawa, H. [Research Institute of Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2013-09-15

    Highlights: • We model current transport and thermal performances of conduction-cooled HTS coil. • We investigate the effect of the longitudinal inhomogeneity of the HTS tape. • The analysis can precisely estimate performances of the conduction-cooled coil. • The longitudinal inhomogeneity of the HTS tape deteriorates coil performances. • Quench currents of the HTS coil are not consistent with the critical currents. -- Abstract: This paper investigated the quantitative current transport performance and thermal behaviour of a high temperature superconducting (HTS) coil, and the effect of the critical current inhomogeneity along the longitudinal direction of HTS tapes on the coil performances. We fabricated a double-pancake coil using a Bi-2223/Ag tape with a length of 200 m as a scale-down model for a magnetic sail spacecraft. We measured the current transport property and temperature rises during current applications of the HTS coil in a conduction-cooled system, and analytically reproduced the results on the basis of the percolation depinning model and three-dimensional heat balance equation. The percolation depinning model can describe the electric field versus current density of HTS tapes as a function of temperature and magnetic field vector, and we also introduced the longitudinal distribution of the local critical current of the HTS tape into this model. As a result, we can estimate the critical currents of the HTS coil within 10% error for a wide range of the operational temperatures from 45 to 80 K, and temperature rises on the coil during current applications. These results showed that our analysis and conduction-cooled system were successfully realized. The analysis also suggested that the critical current inhomogeneity along the length of the HTS tape deteriorated the current transport performance and thermal stability of the HTS coil. The present study contributes to the characterization of HTS coils and design of a coil system for the

  15. Coupled-analysis of current transport performance and thermal behaviour of conduction-cooled Bi-2223/Ag double-pancake coil for magnetic sail spacecraft

    International Nuclear Information System (INIS)

    Nagasaki, Y.; Nakamura, T.; Funaki, I.; Ashida, Y.; Yamakawa, H.

    2013-01-01

    Highlights: • We model current transport and thermal performances of conduction-cooled HTS coil. • We investigate the effect of the longitudinal inhomogeneity of the HTS tape. • The analysis can precisely estimate performances of the conduction-cooled coil. • The longitudinal inhomogeneity of the HTS tape deteriorates coil performances. • Quench currents of the HTS coil are not consistent with the critical currents. -- Abstract: This paper investigated the quantitative current transport performance and thermal behaviour of a high temperature superconducting (HTS) coil, and the effect of the critical current inhomogeneity along the longitudinal direction of HTS tapes on the coil performances. We fabricated a double-pancake coil using a Bi-2223/Ag tape with a length of 200 m as a scale-down model for a magnetic sail spacecraft. We measured the current transport property and temperature rises during current applications of the HTS coil in a conduction-cooled system, and analytically reproduced the results on the basis of the percolation depinning model and three-dimensional heat balance equation. The percolation depinning model can describe the electric field versus current density of HTS tapes as a function of temperature and magnetic field vector, and we also introduced the longitudinal distribution of the local critical current of the HTS tape into this model. As a result, we can estimate the critical currents of the HTS coil within 10% error for a wide range of the operational temperatures from 45 to 80 K, and temperature rises on the coil during current applications. These results showed that our analysis and conduction-cooled system were successfully realized. The analysis also suggested that the critical current inhomogeneity along the length of the HTS tape deteriorated the current transport performance and thermal stability of the HTS coil. The present study contributes to the characterization of HTS coils and design of a coil system for the

  16. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    International Nuclear Information System (INIS)

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.; Youngdahl, C.A.; Lanagan, M.T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A rms for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used

  17. A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

    CERN Multimedia

    2004-01-01

    A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

  18. Properties of powder metallurgy steel forgings

    International Nuclear Information System (INIS)

    Crowson, A.; Anderson, F.E.

    1977-01-01

    The effects of processing variables on the mechanical properties of heat-treated powder metallurgy (P/M) steel forgings were determined. Prealloyed 4600 steel powder blended with graphite to yield 4640 was compacted into preforms and hot forged in a warm, closed die. Variables studied were preform density, method of lubrication, preform sintering (time, temperature and atmosphere), forging pressure (20 and 40 tsi) and temperature (1850 0 F, 2000 0 F and 2200 0 F), and forging ratio (0.75 and 0.95). Relationships between interconnected porosity and total porosity for the various preform densities were determined. High density compacts required higher sintering temperatures due to the restricted mobility of the reducing gases in the pores. Die wall lubrication was comparable to admixed lubrication, and it simplified powder mixing and preform sintering operations. Forgings with densities from 99 to 99.8 percent of theoretical density were attained with a forging pressure of 20 to 40 tsi and preform temperatures of 2000 0 F and above. At forging conditions which resulted in forgings with acceptable mechanical properties, complete die fill was accomplished at a forging ratio of 0.95, whereas incomplete die fill resulted at a forging ratio of 0.75. The response of P/M forgings to heat treatment was comparable to that for wrought materials, and the resultant tensile and yield strengths were equivalent to the strength values described for wrought 4640 steel in AMS specification 6317B. In addition, ductility and impact properties of P/M forgings with near theoretical density (99.5+ percent) were comparable to bar stock forgings

  19. Preparation of (Bi, Pb)-2223/Ag tapes by high temperature sintering and post-annealing process

    DEFF Research Database (Denmark)

    Hua, L.; Grivel, Jean-Claude; Andersen, L.G.

    2002-01-01

    A novel heat treatment process was developed to fabricate (Bi, Pb)-2223/Ag tapes with high critical current density (J(c)). The process can be divided into two parts: reformation and post-annealing. Tapes were first heated to the maximum temperature (830-860 degreesC) followed by slow cooling...... (reformation). Then, tape, were annealed between 760 and 820 degreesC (post-annealing). Reformation is expected to produce a large amount of liquid phase which may heat microcracks, decrease porosity, and improve grain growth. However, since the sintering temperature is beyond the Bi-2223 single-phase region......-energy synchrotron XRD and SEM/EDX. Some process parameters e.g. sintering temperature. cooling rate. and post-annealing time were optimised. (C) 2002 Elsevier Science B.V. All rights reserved....

  20. Methods of forging steel

    OpenAIRE

    Pečoler, Primož

    2014-01-01

    The following work presents processes of steel forming, challenges when forging steel, forming machines suitable for forging and which choice of machine is most suitable for forging. We can separate steel forming to free forging and drop forging. Free forging can be divided to hand forging and machine forging. The correct choice of furnaces is also very important. We must reach correct temperature in the furnace for raw steel to melt with less scalings. In diploma I mentioned some machine...

  1. Composites comprising silicon carbide fibers dispersed in magnesia-aluminate matrix and fabrication thereof and of other composites by sinter forging

    Science.gov (United States)

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1989-10-03

    A novel ceramic-ceramic composite of a uniform dispersion of silicon carbide fibers in a matrix of MgO.multidot.nAl.sub.2 O.sub.3 wherein n ranges from about 1 to about 4.5, said composite comprising by volume from 1 to 50% silicon carbide fibers and from 99 to 50% MgO.multidot.nAl.sub.2 O.sub.3. The composite is readily fabricated by forming a powder comprising a uniform dispersion of silicon carbide fibers in poorly crystalline phase comprising MgO and Al.sub.2 O.sub.3 in a mole ratio of n and either (a) hot pressing or preferably (b) cold pressing to form a preform and then forging utilizing a temperature in the range of 1100.degree. C. to 1900.degree. C. and a strain rate ranging from about 10.sup.-5 seconds .sup.-1 to about 1 seconds .sup.-1 so that surfaces cracks do not appear to obtain a shear deformation greater than 30%.

  2. The spatial distribution of temperature and oxygen deficiency in spark-plasma sintered superconducting Bi-based materials

    International Nuclear Information System (INIS)

    Govea-Alcaide, E.; Pérez-Fernández, J.E.; Machado, I.F.; Jardim, R.F.

    2014-01-01

    Pre-reacted powders of (Bi–Pb) 2 Sr 2 Ca 2 Cu 3 O 10+δ (Bi-2223) were consolidated by using the spark plasma sintering (SPS) technique under vacuum and at different consolidate temperatures T D . X-ray diffraction patterns revealed that the dominant phase in all SPS samples is the Bi-2223 phase, but traces of the Bi 2 Sr 2 CaCu 2 O 10+x (Bi-2212) phase were identified. We have found that the transport properties of SPS samples depend on their oxygen content because the SPS process is performed under vacuum. Simulations by using the finite element method (FEM) were performed for determining the actual temperature in which powders are consolidated. From these results we have inferred that SPS samples are oxygen deficient and such a deficiency is more marked near the grain boundaries, suggesting the occurrence of grains with core–shell morphology. We also argued that the width of the shell depends on the consolidation temperature, a feature corroborated by the FEM simulations

  3. Role of vanadium in Bi-2223 ceramics

    Indian Academy of Sciences (India)

    Previous reports ([1–7] and also, [9]) on V-substituted samples of Bi2Sr2Ca2Cu3Os have mostly pointed out that V ... Two series of V-substituted samples were prepared by partial replacement of V at two different sites; viz. the ..... also evaluated the phase composition on the basis of our susceptibility plots. This has also.

  4. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  5. Manufacturing of Precision Forgings by Radial Forging

    International Nuclear Information System (INIS)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  6. Sintering of composite

    International Nuclear Information System (INIS)

    Bordia, R.K.; Scherer, G.W.

    1988-01-01

    Several constitutive laws have been used in the literature to predict the response of sintering bodies under external and internal stress fields. These analyses are based on the assumptions of linear and isotropic behavior. The authors provide a critical examination of these equations and show that some of the available constitutive laws predict a negative Poisson's ratio. These laws have been used to analyze sintering of ceramic matrix composites with rigid inclusions and predict large values of the internal stresses and significant retardation of the densification of composites. Since a negative value of Poisson's ratio has never been observed in sinter - forging experiments, the authors conclude that either the stresses are small (as predicted by the constitutive laws with positive Poisson's ratio) or the basic assumption of linearity and isotropy used in all the analyses is incorrect. Finally, the authors discuss some phenomena that could be important in understanding the densification of ceramic matrix composites

  7. Forging Long Shafts On Disks

    Science.gov (United States)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  8. Fabrication and properties of Y-Ba-Cu-O high Tc superconductor by upset-forging method

    International Nuclear Information System (INIS)

    Chang, Ho Jung; Kang, Kae Myung; Song, Jin Tae

    1990-01-01

    YBa 2 Cu 3 O 7-x oxide superconductors was fabricated by sintering process and upset-forging method, respectively, and microstructures and conduction properties were compared. There was no difference in crystal structure the (001) x-ray reflection presumably due to preferred crystal orientation of the YBa 2 Cu 3 O 7-x superconductor. Furthermore, the grain size of the 123-phase increased as the reduction ratio became larger during the upset-forging. The critical temperature for zero resistivity of both samples was almost the same, i.e., about 90K. These results have demonstrated the potential of producing YBa 2 Cu 3 O 7-x superconducting wire or tape effectively using a upset-forging method. The critical current density of the upset-forged sample, however, was lower than that of the sintered one, which fact might be ascribed to microcrack formation during fast upset-forging. (Author)

  9. Grain-growth law during Stage 1 sintering of materials

    International Nuclear Information System (INIS)

    He Zeming; Ma, J.

    2002-01-01

    This work investigates the grain-growth behaviour of powder compact during Stage 1 sintering (<90{%} theoretical density). It is widely accepted that grain size is an important state variable in the constitutive modelling in material sintering. However, it is noted that all the existing grain-growth laws proposed in the literature do not incorporate the effect of externally applied stress independently. In this work, a grain-growth law with externally applied stress as a variable was proposed. Alumina powders were forge-sintered at different applied stresses to examine the proposed grain-growth relationship. The proposed grain-growth law was then applied to model the grain-growth process on the sinter forging of tool steel. It is shown that the present proposed grain-growth law provides a good description on the experimental results. (author)

  10. Improvement of critical currents in Bi-2223 bulk superconductors

    International Nuclear Information System (INIS)

    Eujen, R.; Brauer, D.J.; Huedepohl, J.

    1991-01-01

    Potential applications of the high-Tc superconductors for energy transport or high-field magnets require high critical current densities. A limiting factor in polycrystalline oxidic materials is the quality of the grain boundaries. Weak links have been made responsible for the steep decrease in the critical current density j c upon application of even weak magnetic fields of YBa CuO whereas flux creep seems to dominate the obtainable j c values for the Bi-Sr-Ca-Cu-O system (BSCCO) at 77 K. In the lead containing material (BPSCCO) the formation of a porous microstructure is enhanced by the platelike shape of the crystals. Special techniques such as powder-in-tube, hot isostatic pressing, zone melting or application of fluxes have been used in order to improve the grain contacts. A positive influence of fluxes on j c , e.g. by addition of Ca 2 CuO 3 or Ag 2 O, has been reported. In this study we have investigated the influence of various compositions and conditions on the formation of the BSCCO-2223 phase (T c ca. 107 K), the critical current density j c , and the magnet field dependence of the a.c. susceptibility. (orig.)

  11. New Trends in Forging Technologies

    Science.gov (United States)

    Behrens, B.-A.; Hagen, T.; Knigge, J.; Elgaly, I.; Hadifi, T.; Bouguecha, A.

    2011-05-01

    Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means

  12. Forging evaluaion of 304L stainless steel

    International Nuclear Information System (INIS)

    Packard, C.L.; Edstrom, C.M.

    1979-01-01

    The objective of this project was to evaluate and characterize the effects of various forging parameters on the metallographic structure and mechanical properties of 304L stainless steel forgings. Upset and die forgings were produced by hammer and Dynapak forging with forging temperatures ranging from 760 to 1145 0 C, upset reductions ranging from 20 to 60%, and annealing times ranging from 0 to 25 minutes at 843 0 C. The carbide precipitation behavior observed was found to be a function of forging temperature and annealing time. Higher forging temperatures were beneficial in avoiding continuous carbide precipitation and annealing at 843 0 C promoted increased carbide precipitation. The yield strength of the unannealed forgings decreased with increasing forging temperature and, with the exception of the 1145 0 C upset forgings, was significantly lowered by annealing

  13. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  14. Large forging manufacturing process

    Science.gov (United States)

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  15. Reparation of damaged forging dies

    Directory of Open Access Journals (Sweden)

    Vukić Lazić

    2015-03-01

    Full Text Available The forging dies are in exploitation exposed to elevated temperatures and variable impact loads, both compressive and shear. Steels for manufacturing of these tools must endure those loads while maintaining mechanical properties and being resistant to wear and thermal fatigue. For those reasons, the alloyed steels are used for making the forging dies, though they have less weldability, because alloying increases proneness to hardening. Any reparatory hard facing (HF of the damaged dies would require the specially adjusted technology to the particular piece. In this paper reparatory hard facing of dies used for forging pieces in the automobile industry is considered. Prior to reparatory hard facing of the real tools, numerous experimental hard facings on models were performed. All the model hard facings were done on the same steels which were used for production of the real forging dies. To define the optimal hard facing technology one needs to derive the optimal combination of the adequate heat treatment(s, to select the proper filler metals and the welding procedure. The established optimal HF technology was applied to real forging dies whose service life was further monitored in conditions of exploitation

  16. 48 CFR 225.7102 - Forgings.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Forgings. 225.7102 Section 225.7102 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Forgings. ...

  17. Heavy forgings for reactor pressure vessels

    International Nuclear Information System (INIS)

    Cerjak, H.; Papouschek, F.

    1979-01-01

    The importance of forgings for an optimal design of nuclear components is described. Problems concerning the correlation of requirements, material behavior, fabrication and testing of forgings are discussed. (orig.) [de

  18. Quality assurance for hammer forgings

    International Nuclear Information System (INIS)

    Potthast, E.

    1984-01-01

    The quality assurance program introduced by Arbed Saarstahl and laid down in a quality assurance manual is described. A particular attention is attached thereby both to quality practice proper and to a reliable flow of information amongst all the persons involved. The production and test sequence schedules of the hammer forging plant are illustrated by the example of a forged valve housing for nuclear power plants. These schedules specify not only the forging process in the individual production stages but also the workpiece contour after each working operation, the heat treatment, the furnace charging, and the inspection of finished parts. The formalization of the tests is designed both to promote the customer's trust towards the supplier and to prevent the formal operations involved from hindering further technical development. (orig.) [de

  19. Instant forgedUI starter

    CERN Document Server

    Luiz, Joseandro

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.The book is a Starter guide to learning ForgedUI. This book will start by unfolding the installation and creating a simple application using Titanium and ForgedUI, followed by taking you through the features to model an engaging UI and generate multi-platform code with Titanium, while covering the best design practice for Apple and Android application development. Last but not least, you will also come across the available resources where you can

  20. Precision forging technology for aluminum alloy

    Science.gov (United States)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  1. 29 CFR 1910.218 - Forging machines.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Forging machines. 1910.218 Section 1910.218 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a... other identifier, for the forging machine which was inspected. (ii) Scheduling and recording the...

  2. Comparison study of multistep forging and injection forging of automobile fasteners

    OpenAIRE

    Chen Senyong; Qin Yi

    2015-01-01

    In order to improve production efficiency, injection forging as a feasible approach was introduced to automobile fasteners production. In the study reported in this paper, two forging approaches, traditional multistep forging and injection forging, were analysed by using a finite element method. Using ABAQUS and DEFORM, some significant factors, namely, forging force, energy consumption, component accuracy and stress distribution in the die, were compared to explore the potential and challeng...

  3. Modelling of defects in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter

    The present report presents an investigation of the ingot forging process with special emphasis on modelling the influence of die geometry on the soundness of the ingot after hot forging. An investigation on how to model damage is also performed. The influence of the lower die angle is quantified...... angle of 130o-140o giving rise to the largest centreline porosity closure regardless of material hardening behaviour applied. Friction was found only to have minor influence on the optimum. Multi stroke forging operations have also been modelled since the ingot forging process consists of many forging...... damage. It is found that when evaluating damage only by relative density; feed size and lower die angle does not influence whether the hot forging process is successful or not. This is in disagreement with the general understanding of the ingot forging process. When evaluating ductile damage...

  4. Forging Industry Leadtimes: An Analysis of Causes for and Solutions to Long Leadtimes for Aerospace Forgings

    Science.gov (United States)

    1986-09-01

    Pamplet . Forging Industry Association, Cleveland-MT, uncatea. 20. Forging Industry Association, and American Society for Metals. Forging Handbook, edited... Pamplet . The Harris-Thomas Drop Forge Compnyayto--n R, undated. 43. Theeck, Michael F., TECH MOD Program Mana.er. Personal interview. Industrial Base... Brochure . Worcester MA, 3, . 125 "’ VITA Captain Stephen F. O’Neill was born on 19 June 1957 in Pittsfield, Massachusetts. He graduated from high school

  5. The influence of main parameters of the process of forging on the initial quality of forging for steel 35HM

    International Nuclear Information System (INIS)

    Banaszek, G.; Dyja, H.; Berski, S.

    2001-01-01

    The article discuss the effect of the main forging parameters and the selection of tools on improving the internal quality of forgings and closing up discontinuities of metallurgical origin during forging. As a result of investigations, the optimal values of the main technological parameters of forging have been determined and the application of an appropriate group of tools have been proposed for the flat die forging of forgings. (author)

  6. Forging of Advanced Disk Alloy LSHR

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, John; Falsey, John

    2005-01-01

    The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.

  7. Role of forgings in powder metallurgy industry

    International Nuclear Information System (INIS)

    Hayes, A.F.; DeRidder, A.J.

    1975-01-01

    Forging of powder metallurgy materials is discussed. Information and data are included on forging powder metallurgy W, Mo, In 100, Rene 95, Astroloy, Be, and Ti. It is noted that the combination of powder metallurgy and forging work provides the best product from standpoints of reproducibility, freedom from segregation, low scrap rate, and uniform mechanical properties. Experience is being used to develop contour forging from hot isostatic pressed billets or preforms. The quality of this product is under evaluation. Results show steady improvement and it is anticipated that continued effort will soon produce a reliable, less costly product. Forging can continue to be relied upon to correct subtle defects present in powder metallurgy material

  8. Effect of Sintering Time on Superconducting Wire Bi-Pb-Sr-Ca-Cu-O With Dopant MgO Sheated Ag Using Powder in Tube Method

    Directory of Open Access Journals (Sweden)

    Hariyati Lubis

    2018-01-01

      DAFTAR PUSTAKA Abbas M.M., Abass L.K and Salman U., (2012, Influences of Sintering Time on the Tc of Bi2-xCuxPb0.3Sr2Ca2Cu3010+ High Temperature Superconductors, Energy Procedia 18, 215-224  Abbas, M.M., Abbas, L.K., Bahedh, H.S. 2015. Superconducting Properties of Bi2-SbxPb0,3Sr1,9Ba0,1Ca2Cu3O10+δ Compounds. Journal of Applied Science Research. 11. 22: 164-172 Darsono, N., Imaduddin, A., Raju, K., Yoon, D.H., (2015, Synthesis and Characterization of Bi1.6Pb0.4Sr2Ca2Cu3O7 Superconducting Oxide by High-Energy Milling, J Supercond Nov Magn. E. Chew,. (2010, Superconducting Transformer Design And Construction, University of Canterbury, Christchurch, New Zealand. March Hamadneh, I., Halim, S. A., dan Lee, C. K., (2006,  Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy Ceramic Superconductor Prepared Via Coprecipitation Method at Different Sintering Time, J. Mater. Sci, 41: 5526-5530. Hermiz G.Y., Aljurani B.A., Beayaty M.A., (2014, Effect of Mn Substitution on the Superconducting Properties of Bi1.7Pb0,3Sr2Ca2-xMnxCu3O10+, International Journal Of Engineering and Advanced Technology (IJEAT. 3. 4: 213-217 John R Hull, (2003, Applications of high-temperature superconductors in power technology, Reports on Progress in Physics, Volume 66, Number 11 Lu, X.Y., Yi, D., Chen, H., Nagata, A. 2016. Effect of Sn, MgO and Ag2O mix-doping on the formation and superconducting properties of Bi-2223 Ag/tapes. Physics Procedia. 81: 129-132 Meretliev Sh., Sadykov K.B., Berkeliev A., (2000, Doping of High Temperature Superconductors, Turk J Phy.24: 39-48 Mohammed, N. H., Ramadhan A., Ali I. A., Ibrahim, I. H., dan Hassan, M. S, (2012, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, 3: 224-233. Roumie, M., Marhaba, S., Awad R., Kork M., Hassan I., Mawassi R., (2014, Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb-2223 Phase, Journal of Supercond Nov Magn, 27: 143-153 Serkan

  9. Optimization of the Hot Forging Processing Parameters for Powder Metallurgy Fe-Cu-C Connecting Rods Based on Finite Element Simulation

    Science.gov (United States)

    Li, Fengxian; Yi, Jianhong; Eckert, Jürgen

    2017-12-01

    Powder forged connecting rods have the problem of non-uniform density distributions because of their complex geometric shape. The densification behaviors of powder metallurgy (PM) connecting rod preforms during hot forging processes play a significant role in optimizing the connecting rod quality. The deformation behaviors of a connecting rod preform, a Fe-3Cu-0.5C (wt pct) alloy compacted and sintered by the powder metallurgy route (PM Fe-Cu-C), were investigated using the finite element method, while damage and friction behaviors of the material were considered in the complicated forging process. The calculated results agree well with the experimental results. The relationship between the processing parameters of hot forging and the relative density of the connecting rod was revealed. The results showed that the relative density of the hot forged connecting rod at the central shank changed significantly compared with the relative density at the big end and at the small end. Moreover, the relative density of the connecting rod was sensitive to the processing parameters such as the forging velocity and the initial density of the preform. The optimum forging processing parameters were determined and presented by using an orthogonal design method. This work suggests that the processing parameters can be optimized to prepare a connecting rod with uniform density distribution and can help to better meet the requirements of the connecting rod industry.

  10. Forging process design for risk reduction

    Science.gov (United States)

    Mao, Yongning

    In this dissertation, forging process design has been investigated with the primary concern on risk reduction. Different forged components have been studied, especially those ones that could cause catastrophic loss if failure occurs. As an effective modeling methodology, finite element analysis is applied extensively in this work. Three examples, titanium compressor disk, superalloy turbine disk, and titanium hip prosthesis, have been discussed to demonstrate this approach. Discrete defects such as hard alpha anomalies are known to cause disastrous failure if they are present in those stress critical components. In this research, hard-alpha inclusion movement during forging of titanium compressor disk is studied by finite element analysis. By combining the results from Finite Element Method (FEM), regression modeling and Monte Carlo simulation, it is shown that changing the forging path is able to mitigate the failure risk of the components during the service. The second example goes with a turbine disk made of superalloy IN 718. The effect of forging on microstructure is the main consideration in this study. Microstructure defines the as-forged disk properties. Considering specific forging conditions, preform has its own effect on the microstructure. Through a sensitivity study it is found that forging temperature and speed have significant influence on the microstructure. In order to choose the processing parameters to optimize the microstructure, the dependence of microstructure on die speed and temperature is thoroughly studied using design of numerical experiments. For various desired goals, optimal solutions are determined. The narrow processing window of titanium alloy makes the isothermal forging a preferred way to produce forged parts without forging defects. However, the cost of isothermal forging (dies at the same temperature as the workpiece) limits its wide application. In this research, it has been demonstrated that with proper process design, the die

  11. Phased Array Ultrasonic Inspection of Titanium Forgings

    International Nuclear Information System (INIS)

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-01-01

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed

  12. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  13. International cooperation in cold forging technology

    DEFF Research Database (Denmark)

    Bay, Niels; Lange, K

    1992-01-01

    International cooperation in the field of cold forging technology started in 1961 by formation of the OECD Group of Experts on Metal Forming. In 1967 this group was transformed into the International Cold Forging Group, ICFG, an independent body which has now been operative for 25 years. Members...... of the ICFG are personally elected by the Plenary as experts within the field, often representing national groups within cold forging. The main work within the ICFG is carried out in its subgroups which are established by the Plenary to collect, compile and evaluate data and eventually also produce data...... by cooperative activities or by instigating national research. These subgroups have produced 9 data sheets and 7 guidelines on subjects such as materials, tool design and construction, calculation methods for cold forging tools, manufacture of slugs, lubrication aspects and small quantity production. Plenary...

  14. Managing Tensions And Forging Creative Synergies Between ...

    African Journals Online (AJOL)

    Managing Tensions And Forging Creative Synergies Between Indigenous And Modern Settlement Planning Concepts And Practices: Lessons For The Design And Planning For Sustainable Settlements And Built-Forms In Southern Africa.

  15. Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C

    Science.gov (United States)

    Archana Barla, Nikki

    2018-03-01

    Fe-Cu-C system is very popular in P/M industry for its good compressibility and dimensional stability with high strength. Fe-Cu-C is a structural material and is used where high strength with high hardness is required. The composition of powder metallurgy steel plays a vital role in the microstructure and physical properties of the sintered component. Fe-2Cu-0.7C-Ni alloy with varying nickel composition (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%) wt. % was prepared by powder metallurgy (P/M) sinter forging process. The present work discuss the effect of varying nickel content on microstructure and mechanical properties.

  16. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  17. Microstructural and mechanical evolutions during the forging step of the COBAPRESS, a casting/forging process

    Science.gov (United States)

    Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique

    Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.

  18. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  19. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  20. Kinetics of UO2 sintering

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    Detailed conclusions related to the UO 2 sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO 2 sintering process

  1. Sintering Theory and Practice

    Science.gov (United States)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal

  2. Near-Net Forging Technology Demonstration Program

    Science.gov (United States)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  3. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles on the U.S. Munitions Import List include articles in a partially completed state (such as forgings...

  4. Co-Operative Training in the Sheffield Forging Industry

    Science.gov (United States)

    Duncan, R.

    2008-01-01

    Purpose: The purpose of this paper is to give details of an operation carried out in Sheffield to increase the recruitment of young men into the steel forging industry. Design/methodology/approach: The Sheffield Forges Co-operative Training Scheme was designed to encourage boys to enter the forging industry and to provide them with training and…

  5. 22 CFR 121.10 - Forgings, castings and machined bodies.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings...

  6. Die forging of the alloys Az80 and Zk60

    NARCIS (Netherlands)

    Kurz, G.; Clauw, B.; Sillekens, W.H.; Letzig, D.

    2009-01-01

    Overall goal of the MagForge project is to provide tailored and cost-effective technologies for the industrial manufacturing of magnesium forged components. Scientific and technological aspects are new alloys/feedstock materials with improved performance, forging process modeling and design tools

  7. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  8. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  9. Modelling and Testing of Friction in Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2007-01-01

    Knowledge about friction is still limited in forging. The theoretical models applied presently for process analysis are not satisfactory compared to the advanced and detailed studies possible to carry out by plastic FEM analyses and more refined models have to be based on experimental testing...

  10. Forging a unique nursing partnership with China.

    Science.gov (United States)

    Munn, Flavia

    2017-07-12

    When members of a London nursing faculty forged a learning partnership with a Chinese counterpart they likely did not expect to be discussing the benefits of using Florence Nightingale lamps to decorate hospital walls. But there is nothing ordinary about the collaboration between King's College London and Nanjing Health School.

  11. Forging Inclusive Solutions: Experiential Earth Charter Education

    Science.gov (United States)

    Hill, Linda D.

    2010-01-01

    Forging Inclusive Solutions describes the aims, methodology and outcomes of Inclusive Leadership Adventures, an experiential education curriculum for exploring the Earth Charter. Experiential education builds meaningful relationships, skills, awareness and an inclusive community based on the Earth Charter principles. When we meet people where they…

  12. Stainless steel forgings for nuclear chemical plants

    International Nuclear Information System (INIS)

    1982-02-01

    This Specification covers detailed requirements for the supply of austenitic stainless steel forgings used in radioactive and corrosive areas within the Nuclear Industry. With the exception of 316S51 the materials specified are all suitable for contact with nitric acid, 316S51 being included as suitable for use in contact with sodium and other alkali metals at elevated temperatures. (author)

  13. Progress in development of tapes and magnets made from Bi-2223 superconductors

    Science.gov (United States)

    Balachandran, U.; Iyer, A. N.; Haldar, P.; Hoehn, J. G., Jr.; Motowidlo, L. R.

    1995-01-01

    Long lengths of (Bi,Pb)2Sr2Ca2Cu3O(x) tapes made by powder-in-tube processing have been wound into coils. Performance of the coils has been measured at temperatures of 4.2 to 77 K, and microstructures have been examined by x-ray diffraction and electron microscopy and then related to superconducting properties. A summary of recent results and an overview of future goals are presented.

  14. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))

    Science.gov (United States)

    Schwartzkopf, Louis A.

    1991-10-01

    Fibers of Bi(2212) have been produce by pendant drop melt extraction. This technique involves the end of a rod of Bi(2212) melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 15 cm in length with the usual lateral dimensions, ranging from 20 um to 30 um. The fibers require a heat treatment to make them superconducting.

  15. In situ observations of crack formation in multi-filament Bi-2223 HTS tapes

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Horsewell, Andy; Skov-Hansen, P.

    2002-01-01

    High temperature superconducting tapes (BSCCO filaments embedded in Ag) were subjected to Uniaxial tension in an environmental scanning electron microscope, allowing in situ observation of cracking of the ceramic filaments. The first cracks were found to appear in the ceramic filaments at a strain...... around 0.15%, More cracks formed with increasing strain. The cracks covered the entire thickness of the filament. but did not Continue into the surrounding (ductile) Ag matrix. These 'tunnel cracks' appeared somewhat zigzag, indicating intergranular cracking mode. At low strains, crack blunting occurred...... at the ceramic/Ag interfaces of the tunnel cracks, At higher strain 'split cracks' formed at the tunnel cracks. The split cracks ran parallel with the ceramic/Ag interface just inside the ceramic layer....

  16. Magnetic and structural properties of Bi(2223doped by pb and Sb

    Directory of Open Access Journals (Sweden)

    H. Salamati

    1998-04-01

    Full Text Available   In a systematic approach, we have investigated the effect of the presence of Pb and Sb in the Bi site in a BSCCO (2223 phase superconductor. There are some contradictory reports in substitution of Sb in the Bi site. Some researchers report an increase in the Tc of these materials. So, we have made an accurate stoichiometry of these superconductors and selected extra pure starting materials with appropriate ratios of Pb+Sb.   The susceptility of these samples have been measured and the structures of the systems have been studied by SEM and XRD. The results of this investigation show that, Although the presence of Pb is essential for formation of (2223 phase, but addition of small amount of Sb helps to stabilize and enhance the ratio of higher phase. Our results show that, presence of Sb would raise the critical current density, but would not affect the Tc of these superconductors.

  17. High critical current Ag and Ag alloy sheathed multifilament Bi-2223 tapes

    DEFF Research Database (Denmark)

    Wang, W.G.; Han, Z.; Skov-Hansen, P.

    1999-01-01

    of 0.16x2.8 mm(2) and silver/superconductor ratios of 4.4:1. By reducing the silver ratio, a J(e) of 14 kA/cm(2) with an I, of 38 A has been obtained in 55 filament tapes and an I-c of 84 A has been obtained in a tape with dimensions of 4x0.23 mm(2). A record J(c) of more than 30 kA/cm(2) with an I...

  18. Grain dynamics in Bi-2223 tapes measured by the 3DXRD microscope

    DEFF Research Database (Denmark)

    Poulsen, H.F.; Andersen, N.H.; Andersen, L.G.

    2002-01-01

    It is demonstrated how a novel X-ray diffraction method can provide information on the structural dynamics of the individual grains inside a Bi-222-3/Ag tape. A microfocused beam of 80 keV X-rays provides both the necessary spatial resolution and penetration power for in situ studies. In a feasib...

  19. Comparative study of Bi-2223/Ag superconductors derived from particles size of starting materials

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, D.; Smrčková, O.; Rubešová, K.; Vašek, Petr

    2007-01-01

    Roč. 21, 18/19 (2007), s. 3246-3249 ISSN 0217-9792 R&D Projects: GA ČR GA203/05/0114 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ag-addition * sol-gel method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.647, year: 2007

  20. Temperature dependence of filament-coupling in Bi-2223 tapes: magneto-optical study

    International Nuclear Information System (INIS)

    Bobyl, A.V.; Shantsev, D.V.; Galperin, Y.M.; Johansen, T.H.; Baziljevich, M.; Gaevski, M.E.

    2000-01-01

    Coupling through random superconducting bridges between filaments in a multifilamentary Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ tape has been investigated by magneto-optical imaging at temperatures from 20 K up to T c . Magnetic flux distributions have been measured on the surface of an intact tape in the remanent state on applying a strong perpendicular magnetic field. The flux distributions observed at low temperatures reflect the arrangement of individual filaments. At high temperatures, the distribution becomes more similar to that for a uniform monocore tape, indicating that superconducting connections appear between the filaments. To discuss the relative contributions of the intra- and inter-filament currents, a simple model based on the Bean critical state was proposed and applied to analyse the temperature dependent behaviour. The inter-filament coupling, increasing with temperature, reaches at 77 K a point where the currents flowing in large inter-filament loops are roughly equal to the intra-filament currents. (author)

  1. Ba2ErNbO6: A new perovskite ceramic substrate for Bi(2223 ...

    Indian Academy of Sciences (India)

    Unknown

    318 ... production of high quality superconducting films of these compounds for suitable electronic applications. Substrates ... for high temperature superconducting films is the chemi- ... pared by dip-coating technique and the structure of the dip.

  2. Gel stabilization in chelate sol-gel preparation of Bi-2223 superconductors

    Czech Academy of Sciences Publication Activity Database

    Rubešová, K.; Jakeš, V.; Hlásek, T.; Vašek, Petr; Matějka, P.

    2012-01-01

    Roč. 73, č. 3 (2012), s. 448-453 ISSN 0022-3697 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductors * sol-gel growth * infrared spectroscopy * thermogravimetric analysis (TGA) * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.527, year: 2012

  3. Progress in development of tapes and magnets made from Bi-2223 superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Iyer, A.N.; Motowidlo, L.R.

    1994-05-01

    Long lengths of (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O x tapes made by powder-in-tube processing have been wound into coils. The performance of these coils has been measured at temperatures of 4.2 to 77 K. Microstructures have been examined by X-ray diffraction and electron microscopy and have been related to superconducting properties. A summary of recent results and an overview of future goals are presented

  4. Influence of self-field on the critical current of Bi-2223/Ag tapes

    International Nuclear Information System (INIS)

    Lehtonen, Jorma; Korpela, Aki; Nah, Wansoo; Kang, Joonsun; Kovac, Pavol; Melisek, Tibor

    2004-01-01

    The knowledge of critical current density in a superconducting wire is essential in order to compute AC losses. In HTS tapes the critical current density is difficult to estimate from the measured critical current because self-field tends to reduce the current carrying capacity. In this paper the critical current is measured with a single sample and with two similar samples connected in antiparallel in order to compensate the self-field. Both types of measurement are simulated with finite element method. The simulations help to understand the relation between the measured critical current and material properties. The results suggest that in a high quality tape the self-field effect reduced the measured critical current ∼25% if compared to the real critical current at the zero external field

  5. Evaluation of anisotropy of J c in silver-sheathed Bi-2223 tape

    International Nuclear Information System (INIS)

    Himeda, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.

    2005-01-01

    The magnetic field angle dependence of J c was measured by four probe method and DC magnetization method. The latter measurement was used for the specimen before and after bending to break the intergrain current in order to investigate only the intragrain current. It was found that the intragrain critical current density could be increased by a factor 2.7 in a parallel magnetic field when the c-axis misorientation could be improved. From the field angle dependence of the intragrain critical current density, the anisotropy parameter was estimated as 20.4

  6. Microstructure Evolution and Surface Cracking Behavior of Superheavy Forgings during Hot Forging

    Directory of Open Access Journals (Sweden)

    Zhenhua Wang

    2018-01-01

    Full Text Available In recent years, superheavy forgings that are manufactured from 600 t grade ingots have been applied in the latest generation of nuclear power plants to provide good safety. However, component production is pushing the limits of the current free-forging industry. Large initial grain sizes and a low strain rate are the main factors that contribute to the deformation of superheavy forgings during forging. In this study, 18Mn18Cr0.6N steel with a coarse grain structure was selected as a model material. Hot compression and hot tension tests were conducted at a strain rate of 10−4·s−1. The essential nucleation mechanism of the dynamic recrystallization involved low-angle grain boundary formation and subgrain rotation, which was independent of the original high-angle grain boundary bulging and the presence of twins. Twins were formed during the growth of dynamic recrystallization grains. The grain refinement was not obvious at 1150°C. A lowering of the deformation temperature to 1050°C resulted in a fine grain structure; however, the stress increased significantly. Crack-propagation paths included high-angle grain boundaries, twin boundaries, and the insides of grains, in that order. For superheavy forging, the ingot should have a larger height and a smaller diameter.

  7. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    International Nuclear Information System (INIS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-01-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (I c ) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum I c was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO)

  8. Influence of sintering atmospheres on the aluminium sintering characteristics

    International Nuclear Information System (INIS)

    Mintzer, S.; Bermudez Belkys, S.

    1993-01-01

    This paper describes the aluminium powder (Al) cool compacted (at 95% from theoretical density) which was sintered at 903 K during 4 hours at different atmospheres; oxidizing (air), inert Argon (Ar), Nitrogen (N) and high vacuum. The results obtained show: a) porosity measurements; greater porosity when sintering in Ar and air. b) Metallographic and Scanning observations: many fine pores (< 1 μm) and pore lines distributed at random, at air sintering and greater pores distributed preferentially near the surface, in Ar and N atmospheres. c) Dimensional changes: tendency to contraction of the samples at N and vacuum sintering and expansion in Ar or air. d) Mechanical properties: greater strength and fluence stresses at air and N sintering. The analysis of the results is performed considering sintering modes in presence of an oxide layer and dropped inert gases. (Author)

  9. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  10. Wear Analysis of Die Inserts in the Hot Forging Process of a Forked Type Forging Using Reverse Scanning Techniques

    Directory of Open Access Journals (Sweden)

    Łukasz Dworzak

    2017-12-01

    Full Text Available This article presents a wear analysis of die inserts used in the hot forging process of a forked forging (yoke, an element applied in steering systems of passenger vehicles. Studies involved the application of an original reverse scanning method intended for rapid and reliable wear analysis of forging tools (with complicated shape affording easy assessment without the need to dismount tools from the forging unit. The developed method involves analysis of progressive wear of forging tools based on measurements (scanning of forgings periodically collected from the process and constitutes a useful tool for measurement and testing. As the authors’ earlier works have demonstrated, the proposed new approach to analysis of tool wear with the application of reverse 3D scanning has proven successful in multiple instances in the case of axially symmetrical objects. The presented results of studies indicate that it is possible to utilize the expanded method to analyze the lifetime of forging tools, including tools with complex geometry. Application of the reverse scanning method allows for continuous and practical monitoring of the condition of forging tools over the course of the forging process and should have a positive impact on improving production output and reducing production costs.

  11. Sinter aluminium as cladding material for fuel elements

    International Nuclear Information System (INIS)

    Mann, K.E.; Boudouresques, M.B.

    1961-01-01

    1. Survey of the production process of sinter aluminium. 2. Description of the forming processes (extrusion, forging and rolling), whereby the production of tubing for atom piles will be explained in detail. 3. Production of ribbed tubes and tubes with close tolerances of sizes. 4. The different SAP-qualities and their properties under special consideration of the properties at elevated temperatures and the creep properties. 5. Diffusion behaviour of SAP with Be, Mg, Al, U and UO 2 . 6. Corrosion behaviour in CO 2 atmosphere at high temperature and in water. 7. Weldability. 8. Effect of irradiation on the mechanical properties. 9. Superiority of SAP compared with normal wrought alloys of the same composition. (author) [fr

  12. Adapted diffusion processes for effective forging dies

    Science.gov (United States)

    Paschke, H.; Nienhaus, A.; Brunotte, K.; Petersen, T.; Siegmund, M.; Lippold, L.; Weber, M.; Mejauschek, M.; Landgraf, P.; Braeuer, G.; Behrens, B.-A.; Lampke, T.

    2018-05-01

    Hot forging is an effective production method producing safety relevant parts with excellent mechanical properties. The economic efficiency directly depends on the occurring wear of the tools, which limits service lifetime. Several approaches of the presenting research group aim at minimizing the wear caused by interacting mechanical and thermal loads by using enhanced nitriding technology. Thus, by modifying the surface zone layer it is possible to create a resistance against thermal softening provoking plastic deformation and pronounced abrasive wear. As a disadvantage, intensely nitrided surfaces may possibly include the risk of increased crack sensitivity and therefore feature the chipping of material at the treated surface. Recent projects (evaluated in several industrial applications) show the high technological potential of adapted treatments: A first approach evaluated localized treatments by preventing areas from nitrogen diffusion with applied pastes or other coverages. Now, further ideas are to use this principle to structure the surface with differently designed patterns generating smaller ductile zones beneath nitrided ones. The selection of suitable designs is subject to certain geo-metrical requirements though. The intention of this approach is to prevent the formation and propagation of cracks under thermal shock conditions. Analytical characterization methods for crack sensitivity of surface zone layers and an accurate system of testing rigs for thermal shock conditions verified the treatment concepts. Additionally, serial forging tests using adapted testing geometries and finally, tests in the industrial production field were performed. Besides stabilizing the service lifetime and decreasing specific wear mechanisms caused by thermal influences, the crack behavior was influenced positively. This leads to a higher efficiency of the industrial production process and enables higher output in forging campaigns of industrial partners.

  13. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  14. Forging Oxide-Dispersion-Strengthened Superalloys

    Science.gov (United States)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  15. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  16. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  17. Processing and properties of mechanically alloyed sintered steels with hard inclusions

    International Nuclear Information System (INIS)

    Gutsfeld, C.

    1991-10-01

    The aim of this work was the development of mechanically alloyed sintered steels with inert hard inclusions and their characterisation concerning the mechanical properties and the sliding wear behaviour. For this material concept the hard materials NbC, TiC, TiN and Al 2 O 3 were chosen with volume contents upto 20%. Mechanical alloying of the raw powders is a necessary prerequisit for an extreme fine and homogeneous microstructure and good mechanical and wear properties. Through a connecting powder annealing a conventional powder metallurgical processing with cold pressing and sintering is possible. For the consolidation pressureless liquid phase sintering initiated through phosphorus contents of 0,6% is suitable. Because of the strong hampering of grain growth through the included hard particles sintering densities upto 99% TD are possible with extreme fine microstructures. The mechanical properties can be varied in wide ranges. So tensile strengths of 1150 MPa, elongations at fracture of 17%, hardness of over 800 HV and fatigue strengths of 370 MPa have been reached. Throughout HIP or sinter forging the mechanical properties can be improved furthermore. (orig.) [de

  18. Development and efficiency assessment of process lubrication for hot forging

    Science.gov (United States)

    Kargin, S.; Artyukh, Viktor; Ignatovich, I.; Dikareva, Varvara

    2017-10-01

    The article considers innovative technologies in testing and production of process lubricants for hot bulk forging. There were developed new compositions of eco-friendly water-graphite process lubricants for hot extrusion and forging. New approaches to efficiency assessment of process lubricants are developed and described in the following article. Laboratory and field results are presented.

  19. Forging technology for large nuclear pressure vessel parts

    International Nuclear Information System (INIS)

    Kakimoto, Hideki; Ikegami, Tomonori

    2014-01-01

    The increasing output of nuclear power generation calls for larger vessels for next-generation nuclear power plants. A vessel with an increased diameter requires increased load for its forging, which can make it difficult to use a conventional solid die. In order to reduce the forging load, a rotary incremental forging method has been applied to hot forging. This method includes pressing and rotating a material in an incremental manner such that a target shape is obtained. This study aimed at improving the accuracy of numerical simulation for the rotary incremental forging to reduce the load when forging large vessels. This has enabled the temperature of the material and flow stress to be precisely predicted; an example of this is reported in the paper. Specifically, the heat transfer coefficient to be used for the numerical simulation had been determined experimentally from a small-scale hot-forging. The reduction of the flow stress associated with incremental forging, had been deduced from a compression test, and the value was applied to the numerical simulation. A preform was designed on the basis of the above simulation to perform a 1/1 size scale experiment. A precision of better than 5% has been confirmed for the shape prediction. (author)

  20. Medium carbon vanadium steels for closed die forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-01-01

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported

  1. Kinematics at the Main Mechanism of a Railbound Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2015-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Heavy payload forging manipulators are mainly characterized by large load output and large capacitive load input. The relationship between outputs and inputs will greatly influence the control and the reliability. Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we analyze the general kinematics of the main mechanism from a such manipulator. Kinematic scheme shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the tong and buffering. The lifting mechanism consists of several parts including linkages, hydraulic drives and motion pairs. The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed. An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed. These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators.

  2. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken ...... from automotive industry but in a few cases also from other industrial sectors to show the possibilities....

  3. Mechanisms of sintering

    International Nuclear Information System (INIS)

    Mohan, Ashok; Soni, N.C.; Moorthy, V.K.

    1980-01-01

    The basic mechanisms by which the material moves during sintering have not only held a strange fascination but are also very important in determining the properties of the end product. Kuczynski's exponent method has been subsequently refined by several schools to make it increasingly reliable. There is now a fairly good understanding of mechanisms in some of the materials. However in others the issue is complicated by their basic nature. The problems of ambiguity in criterion and that of more than one mechanism being simultaneously operative have been tackled with dexterity by Ashby for drawing sintering mechanism diagrams. The method has been modified to give Relative Contribution Diagrams (RCD). These yield additional information and have been used for analysis. The main criticism against this is that it uses a very large number of rate equations and material properties, which can communicate their inaccuracies to the diagram. A case study of UO 2 was undertaken and it has been shown quantitatively that inaccuracies in a smaller number of properties only affect the diagrams to any significant extent. (auth.)

  4. The State of the Art in Cold Forging Lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    1994-01-01

    The manufature of components in steel, aluminium and copper alloys by cold forging production has increased ever since the 1950's. Typical processes are forward rod extrusion and backward can extrusion, upsetting, ironing, tube extrusion and radial extrusion. The tribological conditions in cold...... forging are extremely severe due to large surface expansion and normal pressure in the tool/workpiece interface combined with elevated tool temperatures. Except for the more simple cold forging operations successful production therefore requires advanced lubrication systems. The present paper gives...... a detailed description of the state of art for lubricant systems for cold forging of C-steels and low alloy steels as well as aluminium alloys including all the basic operations such as cleaning of the slugs, application of eventual conversion coating and lubrication. As regards cold forging of steel...

  5. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  6. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  7. Press forging of single crystal calcium fluoride

    International Nuclear Information System (INIS)

    Turk, R.R.

    1975-01-01

    Single crystals of high-purity calcium fluoride have been deformed uniaxially in an attempt to improve strength and resistance to cleavage, without impairing infrared transmission. Order of magnitude increases in strength, such as those found in forged KCl, have not been attained, but fine-grained polycrystalling material has been produced which is resistant to crystalline cleavage. Deformation rates of 10 -2 min -1 , reductions of 10 to 73 percent in height, and deformation temperatures of 550 to 1000 0 C have been used. Flexural strengths over 13,000 psi and grain sizes down to 5 μm have been obtained. Reduction of residual stress through heat treatment has been studied, and resultant techniques applied before, during, and after deformation. No increase in infrared absorption has been noted at the CO laser wavelength of 5.3 μm

  8. Stress corrosion of low alloy steel forgings

    International Nuclear Information System (INIS)

    Thornton, D.V.; Mould, P.B.; Patrick, E.C.

    1976-01-01

    The catastrophic failure of a steam turbine rotor disc at Hinkley Point 'A' Power station was shown to have been caused by the growth of a stress corrosion crack to critical dimensions. This failure has promoted great interest in the stress corrosion susceptibility of medium strength low alloy steel forgings in steam environments. Consequently, initiation and growth of stress corrosion cracks of typical disc steels have been investigated in steam and also in water at 95 0 C. Cracking has been shown to occur, predominantly in an intergranular manner, with growth rates of between 10 -9 and 10 -7 mm sec. -1 . It is observed that corrosion pitting and oxide penetration prior to the establishment of a stress corrosion crack in the plain samples. (author)

  9. Study on the isothermal forging process of MB26 magnesium alloy adaptor

    Directory of Open Access Journals (Sweden)

    Xu Wenchen

    2015-01-01

    Full Text Available The isothermal forging process is an effective method to manufacture complex-shaped components of hard-to-work materials, such as magnesium alloys. This study investigates the isothermal forging process of an MB26 magnesium alloy adaptor with three branches. The results show that two-step forging process is appropriate to form the adaptor forging, which not only improves the filling quality but also reduces the forging load compared with one-step forging process. Moreover, the flow line is distributed along the contour of the complex-shaped adaptor forging.

  10. Optical Forging of Graphene into Three-Dimensional Shapes.

    Science.gov (United States)

    Johansson, Andreas; Myllyperkiö, Pasi; Koskinen, Pekka; Aumanen, Jukka; Koivistoinen, Juha; Tsai, Hung-Chieh; Chen, Chia-Hao; Chang, Lo-Yueh; Hiltunen, Vesa-Matti; Manninen, Jyrki J; Woon, Wei Yen; Pettersson, Mika

    2017-10-11

    Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.

  11. Medium carbon vanadium micro alloyed steels for drop forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-01-01

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author)

  12. The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powders

    DEFF Research Database (Denmark)

    Glasscock, Julie; Esposito, Vincenzo; Foghmoes, Søren Preben Vagn

    2013-01-01

    good sinterability when there is a favourable particle packing. The effect of the applied stresses during forming (which produce different particle packing arrangements) was investigated by forging green bodies by different shaping techniques, including casting, and cold isostatic pressing. Samples...... formed with techniques that apply low levels of stress had a particle arrangement which significantly enhanced sintering at low temperature, compared to those prepared by high stress techniques. The sample geometry, heat treatment for organic removal and the initial density of the green body had...

  13. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  14. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  15. Modelling of Damage During Hot Forging of Ingots

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2013-01-01

    Ductile damage modelling in the ingot forging process is discussed. Advantages and disadvantages of both coupled and uncoupled ductile damage models are presented. Some uncoupled damage models are examined in greater detail regarding their applicability to different processes, where hydrostatic...

  16. Optimising mechanical properties of hot forged nickel superalloy 625 components

    Science.gov (United States)

    Singo, Nthambe; Coles, John; Rosochowska, Malgorzata; Lalvani, Himanshu; Hernandez, Jose; Ion, William

    2018-05-01

    Hot forging and subsequent heat treatment were resulting in substandard mechanical properties of nickel superalloy, Alloy 625, components. The low strength was found to be due to inadequate deformation during forging, excessive grain growth and precipitation of carbides during subsequent heat treatment. Experimentation in a drop forging company and heat treatment facility led to the establishment of optimal parameters to minimise grain size and mitigate the adverse effects of carbide precipitation, leading to successful fulfilment of mechanical property specifications. This was achieved by reducing the number of operations, maximising the extent of deformation by changing the slug dimensions and its orientation in the die, and minimising the time of exposure to elevated temperatures in both the forging and subsequent heat treatment processes to avoid grain growth.

  17. strength and ductility of forged 1200 aluminum alloy reinforced

    African Journals Online (AJOL)

    eobe

    duced cylindrical shape samples, which were homogenized at 420 ... and properties of deformed materials depend on other factors ... after the surfaces were ground with emery paper of ... Figure 2: Maximum elongation of forged and annealed.

  18. Manufacture of large monoblock LP rotor forgings and their quality

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Kohno, Masayoshi; Miyakawa, Mutsuhiro; Kikuchi, Hideo

    1986-01-01

    This paper describes the manufacturing and the quality of large monoblock low pressure rotors forged from 360 ton and 420 ton ingots. To obtain good and homogenous mechanical properties throughout a rotor, a computer was used to determine the heat treatment conditions. It was found that the technique was very effective at predicting mechanical properties of a monoblock rotor. Mechanical properties including the fracture toughness and fatigue crack propagation characteristics of monoblock rotor forgings proved satisfactory. (author)

  19. Numerical modelling of damage evolution in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf

    2015-01-01

    The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of feed...... (400mm and 800mm) are analysed. Comparison of the simulation results with recommendations in literature on ingot forging, indicates the normalized Cockcroft & Latham damage criterion to be the most realistic of the two....

  20. Press forging and optical properties of lithium fluoride

    Science.gov (United States)

    Ready, J. F.; Vora, H.

    1980-07-01

    Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.

  1. Press forging and optical properties of lithium fluoride

    International Nuclear Information System (INIS)

    Ready, J.F.; Vora, H.

    1979-01-01

    Lithium fluoride is an important candidate material for windows on high-power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals have been press forged in one step over the temperature range 300 to 600 0 c to obtain fine-grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40% at 400 0 C to 65% at 600 0 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 0 C, to total deformations of 69-76%, with intermediate annealing at 700 0 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one-step forging. The results of characterization of various optical and mechanical properties of single-crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described

  2. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  3. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  4. Kinetics of sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Soni, N.C.; Moorthy, V.K.

    1978-01-01

    The kinetics of sintering of UO 2 powders derived from ADU route and calcined at different temperatures was studied. The activation energy for sintering was found to depend on the calcination temperature, the density chosen and the sintering temperature range. The motive force for sintering is the excess free energy in the particle system. This exists in the powder compact in the form of surface energy and the excess lattice energy due to defects. The defects which can be eliminated at the operating temperature are responsible for the mobility and hence sintering. This concept of the motive force for sintering has been used to explain the difference in the activation energies observed in the present study. This would also explain phenomena such as attainment of limiting density, presence of optimum sintering temperature and the influence of calcination treatments on the sintering behaviour of powders. (author)

  5. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  6. Mannes of Forging and Perspectives of Knuckle Joint Presses Modernization

    Directory of Open Access Journals (Sweden)

    A. A. Antsifirov

    2014-01-01

    Full Text Available The article raises an issue to enhance technological forging capabilities on the known knuckle joint presses. It provides an illustrated overview of main design types of presses with crank-knuckle, toggle-knuckle, and knuckle joint mechanisms. The article also shows the advantages of the modernization way and improvement just of the active press equipment in terms of quality-to-price ratio, for example, as compared to the similar new foreign press equipment.It gives an overview of features, which provide forging processes owing to kinetic energy accumulated with the moving parts of the known designs of the knuckle joint presses depending on the drive actuating mechanism. Focused attention is drawn to forging on the knuckle joint presses for a time of contact with a work piece to be comparable with the duration of the work piece deformation process on hydraulic forging hammers. This allows us to forge thin-wall products with process automation compared to the forging hammers.Analysis of accumulating processes of kinetic energy by the moving parts of the knuckle joint presses has shown that presses driven by hydraulic cylinders or two screw hydraulic cylinder are the most optimal for technological operations as evidenced by references to domestic and foreign invention certificates and patents. The article presents disadvantages of forging on presses with hydraulic or pneumatic drive. It is a dependence of the deformation force, caused, mainly, by a force of the drive cylinder. The article gives linear movement rate quantities of press moving members depending on the drives of the actuating mechanism. Based on the above analysis of the features to manufacture work pieces on the knuckle joint presses, the article gives the rationale for the relevance of forging in a short period of time, provided that the moving parts of the press accumulate the required kinetic energy. This can be achieved only through modernization and improvement of forging

  7. Development of high purity large forgings for nuclear power plants

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-01-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  8. A-508 class 3 forgings for pressure vessels

    International Nuclear Information System (INIS)

    Comon, J.

    1977-01-01

    The manufacture of the forged parts of the first PWR nuclear pressure vessel installed in France started in the Creusot-Loire's Forge Plant in 1961. Since this date, more than 300 forgings of this type were delivered (flanges, rings, zones, and nozzles). The major part of these forgings were made of Mn, Ni, Mo steel (SA 508 class 3). They represent a population large and homogeneous enough to attempt a statistical analysis of chemical and mechanical test results. The aim of this analysis was double: (1) a better knowledge of the scattering of the results and a better estimate of what can be introduced or accepted in a specification, and (2) the setting up of correlations existing between these results, particularly between chemical analysis and mechanical test results. In addition to this statistical analysis concerning industrial results, several laboratory studies are presented, giving a more complete characterization of SA 508 class 3. All these results form a very complete documentation showing that SA 508 class 3 steel is suitable for the manufacture of large forged vessels requiring a high degree of reliability

  9. Development of high purity large forgings for nuclear power plants

    Science.gov (United States)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  10. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  11. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  12. SINTERING OF NASCENT CALCIUM OXIDE

    Science.gov (United States)

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  13. On the domestically-made heavy forging for reactor pressure vessels of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Pan Xiren; Zhang Chen.

    1988-01-01

    The present situation of the foreign heavy forgings for nuclear reactor pressure vessels and the heavy forgings condition which is used for the Qinshan 300MWe nuclear power plant are described. Some opinions of domestic products is proposed

  14. Analysis of reforming process of large distorted ring in final enlarging forging

    International Nuclear Information System (INIS)

    Miyazawa, Takeshi; Murai, Etsuo

    2002-01-01

    In the construction of reactors or pressure vessels for oil chemical plants and nuclear power stations, mono block open-die forging rings are often utilized. Generally, a large forged ring is manufactured by means of enlarging forging with reductions of the wall thickness. During the enlarging process the circular ring is often distorted and becomes an ellipse in shape. However the shape control of the ring is a complicated work. This phenomenon makes the matter still worse in forging of larger rings. In order to make precision forging of large rings, we have developed the forging method using a v-shape anvil. The v-shape anvil is geometrically adjusted to fit the distorted ring in the final circle and reform automatically the shape of the ring during enlarging forging. This paper has analyzed the reforming process of distorted ring by computer program based on F.E.M. and examined the effect on the precision of ring forging. (author)

  15. Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures

    International Nuclear Information System (INIS)

    Deng, K.K.; Wu, K.; Wang, X.J.; Wu, Y.W.; Hu, X.S.; Zheng, M.Y.; Gan, W.M.; Brokmeier, H.G.

    2010-01-01

    SiCp/AZ91 magnesium matrix composite was fabricated by stir casting. The as-cast ingots were cut into cylindrical billets, and then forged at different temperatures (320, 370, 420, 470 and 520 deg. C) at a constant RAM speed of 15 mm/s with 50% reduction. The microstructure evolution of the composites during forging was investigated by optical microscope, scanning electron microscope, and transmission electron microscope. The texture of the forged composites was measured by neutron diffraction. Mechanical properties of the composite at different forging temperatures were tested by tensile tests at room temperature. It was found that a strong basal plane texture formed during forging, and the intensity of basal plane texture weakened as forging temperatures increased. The particle distribution in the composite was significantly improved by hot forging. Typical microstructures were obtained after forging at different temperatures and the composite with different microstructures offered different mechanical properties during tensile test.

  16. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  17. Fractography analysis of tool samples used for cold forging

    DEFF Research Database (Denmark)

    Dahl, K.V.

    2002-01-01

    Three fractured tool dies used for industrial cold forging have been investigated using light optical microscopy and scanning electron microscopy. Two of the specimens were produced using the traditional Böhler P/M steel grade s790, while the lastspecimen was a third generation P/M steel produced...... using new technology developed by Böhler. All three steels have the same nominal composition of alloying elements. The failure in both types of material occurs as a crack formation at a notch inside ofthe tool. Generally the cold forging dies constructed in third generation steels have a longer lifetime...

  18. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...... the number of forming cycles is calculated first to crack initiation and then during crack growth to fatal failure. An investigation of a critical die insert in an industrial cold-forging tool as regards the influence of notch radius, the amount and method of pre-stressing and the selected tool material...

  19. 48 CFR 252.225-7025 - Restriction on acquisition of forgings.

    Science.gov (United States)

    2010-10-01

    ... of forgings. 252.225-7025 Section 252.225-7025 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7025 Restriction on acquisition of forgings. As prescribed in 225.7102-4, use the following clause: Restriction on Acquisition of Forgings (DEC 2009) (a...

  20. Development of integral type forgings for steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Suzuki, Komei; Sato, Ikuo; Murai, Etsuo

    1992-01-01

    The use of integral type steel forgings for the construction of pressure vessel enhances the structural integrity of components and makes the fabrication of components and the execution of in-service inspection (ISI) easier than those fabrication from plate and casting materials. Such steel forgings have been realized for steam generator (SG) for nuclear power plant as follows : (1) Forged shell ring : change from welding fabrication of formed plates to forging ; (2) Forged conical shell ring : ditto ; (3) Forged head integral with nozzles (s) : (i) Primary head : change from casting to forging ; (ii) Secondary head : change from welding fabrication of formed plates to forging. These steel forgings have been realized by recent development in manufacturing technologies, such as steel making, forging processes and heat treatment which are vital to the quality of steel forgings. Some examples of recent typical high quality steel forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced, and the main points of the manufacturing technique and the quality attained are also described. (author)

  1. 40 CFR 467.40 - Applicability; description of the forging subcategory.

    Science.gov (United States)

    2010-07-01

    ... forging subcategory. 467.40 Section 467.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Forging Subcategory § 467.40 Applicability; description of the forging subcategory. This subpart applies to discharges of...

  2. 76 FR 30200 - Forging Machines; Extension of the Office of Management and Budget's (OMB) Approval of...

    Science.gov (United States)

    2011-05-24

    ...] Forging Machines; Extension of the Office of Management and Budget's (OMB) Approval of Information... extend OMB approval of the information collection requirements contained in the Forging Machines Standard... to reduce employees' risk of death or serious injury by ensuring that forging machines used by them...

  3. 77 FR 14445 - Application for a License To Export Steel Forging

    Science.gov (United States)

    2012-03-09

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export Steel Forging Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... head steel February 7, 2012 forging. forging will be XR175 machined into the 11005983 finished vessel...

  4. 76 FR 66996 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Forging...

    Science.gov (United States)

    2011-10-28

    ... for OMB Review; Comment Request; Forging Machines ACTION: Notice. SUMMARY: The Department of Labor... collection request (ICR) titled, ``Forging Machines,'' to the Office of Management and Budget (OMB) for....218, it is mandatory for covered employers to conduct and to document periodic inspections of forging...

  5. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  6. Integral forged pump casing for the primary coolant circuit of a nuclear reactor: Development in design, forging technology, and material

    International Nuclear Information System (INIS)

    Austel, W.; Korbe, H.

    1986-01-01

    Developments in the forging of large casings for primary circuit coolant pumps for light water reactors in Germany are demonstrated beginning with the multiple forging fabricated version and ending with the integral forged type. This version is the result of the joint efforts of the pump manufacturer and the forgemaster after a cost-gain evaluation and represents an optimum solution in view of its functional and economical performance and also considering the high requirements for mechanical-technological properties, including homogeneity of the material. The development from 22 NiMoCr 3 7/A 508 Class 2 to 20 MnMoNi 5 5/A 508 Class 3 and their optimization will be demonstrated. This development is based mainly on minimizing the sulfur content and on vacuum carbon deoxidation (VCD), which results in a reduction of the A-segregations, in improving fracture toughness and isotropy, and in the desired fine-grain structure

  7. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  8. A new Friction and Lubrication Test for Cold Forging

    DEFF Research Database (Denmark)

    Bay, Niels; Wibom, Ole; Aalborg Nielsen, J

    1995-01-01

    This paper presents a new friction and lubrication test for cold forging. The test allows controlled variation of the surface expansion in the range 0-2000%, the tool temperature in the range 20-270°C and the sliding length between 0 and infinite. Friction is decreasing with increasing temperature...

  9. Manufacturing involving forging of multiple objects in contact

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, W.; Martins, P.A.F.

    and dissimilar materials. While being plastically deformed against each other under increasing forging load, the parts dynamically develop their mutual contact interfaces. Comparisons of the final geometry as well as force-displacement curves are evaluated. The potential of simulated applications are discussed...

  10. Forging Consensus for Implementing Youth Socialization Policy in Northwest China

    Science.gov (United States)

    Fairbrother, Gregory P.

    2011-01-01

    The goal of this article is to examine how the provincial education media in China play a role of forging consensus among local actors responsible for the implementation of new centrally-promulgated youth socialization policy. In doing so, it also explores the tension among three of the Chinese state's claims to legitimacy: economic development,…

  11. Near net shape forging of titanium alloy turbine blade

    International Nuclear Information System (INIS)

    Morita, Akiyasu; Hattori, Shigeo; Tani, Kazuhito; Takemura, Atsushi; Ashida, Yoshio

    1991-01-01

    The isothermal forging process has been developed to produce turbine blades made of near β Ti-alloy Ti-10V-2Fe-3Al. It is important to set the preform at the optimum position of the die in order to get a high precision product. The deformation analysis by using FEM is effective to determine the optimum position. And also it is necessary to avoid buckling induced by the restriction of axial elongation of the material. As a result, Ti-10V-2Fe-3Al blades could be formed precisely by using only one stage of forging, and machining was needed only at the root. The thickness of the oxide layer induced on the surface of the forged blade was only 70μm. The mechanical properties of Ti-10V-2Fe-3Al blades after forging and annealing were superior to those of Ti-6Al-4V blades and were nearly uniform across the length of the blades. (author)

  12. Environmentally Benign Lubricant Systems For Cold, Warm And Hot Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2010-01-01

    paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging. The paper is an extract of the keynote paper [3] written by the author together with eight co-authors referring to collected papers and other information from more than 30 different...

  13. Multi-objective optimization of die geometry in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels

    2014-01-01

    The soundness of an ingot after hot forging with different V-shaped lower dies is evaluated using finite element simulations.Two different modelling approaches that make use of uncoupled ductile damage and coupled ductile damage based on porousplasticity are employed. It is shown that the two...

  14. Numerical optimization of die geometry in open die forging

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2013-01-01

    This paper deals with numerical optimization of open die forging of large metallic ingots made by casting implying risk of defects, e.g. central pores. Different material hardening properties and die geometries are combined in order to investigate, which geometry gives rise to maximum closure...

  15. Forged Signature Distinction Using Convolutional Neural Network for Feature Extraction

    Directory of Open Access Journals (Sweden)

    Seungsoo Nam

    2018-01-01

    Full Text Available This paper proposes a dynamic verification scheme for finger-drawn signatures in smartphones. As a dynamic feature, the movement of a smartphone is recorded with accelerometer sensors in the smartphone, in addition to the moving coordinates of the signature. To extract high-level longitudinal and topological features, the proposed scheme uses a convolution neural network (CNN for feature extraction, and not as a conventional classifier. We assume that a CNN trained with forged signatures can extract effective features (called S-vector, which are common in forging activities such as hesitation and delay before drawing the complicated part. The proposed scheme also exploits an autoencoder (AE as a classifier, and the S-vector is used as the input vector to the AE. An AE has high accuracy for the one-class distinction problem such as signature verification, and is also greatly dependent on the accuracy of input data. S-vector is valuable as the input of AE, and, consequently, could lead to improved verification accuracy especially for distinguishing forged signatures. Compared to the previous work, i.e., the MLP-based finger-drawn signature verification scheme, the proposed scheme decreases the equal error rate by 13.7%, specifically, from 18.1% to 4.4%, for discriminating forged signatures.

  16. Highlight: Forging the new Indonesia-Canada partnership | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    15 avr. 2016 ... Canada's Centre for International Governance Innovation and Indonesia's Centre for Strategic and International Studies organized the Indonesia-Canada Bilateral Forum, Innovation and Change: Forging the New Indonesia-Canada Partnership. IDRC co-sponsored the meeting, held May 26-27, 2015.

  17. Developments of New Lubricants for Cold Forging of Stainless Steel

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Christensen, Erik; Olesen, P.

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect...

  18. Family Health and Financial Literacy--Forging the Connection

    Science.gov (United States)

    Braun, Bonnie; Kim, Jinhee; Anderson, Elaine A.

    2009-01-01

    Families are at-risk of or experiencing a diminished quality of living and life in current economic times and difficult decisions are required. Health and financial literacy are the basis for wise personal and public decision making. Family and consumer sciences (FCS) professionals can forge connections between health and financial literacy to…

  19. Standard specification for titanium and titanium alloy forgings

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Standards are given for the purchase, manufacture, product testing and certification, packaging, and marketing of annealed Ti and Ti-alloy forgings. The specifications apply to the following Ti alloys: 6Al-Ti-4V, 5Al-Ti-2.5 Sn, and Ti + Pd. Acceptable values for the chemical requirements, product analysis limits, and tensile requirements are tabulated

  20. Influence of performance improvement of AP1000 nuclear island main equipment forging on manufacturing

    International Nuclear Information System (INIS)

    Liu Zhiying

    2013-01-01

    In order to comply with the 60-year design life of an AP1000 nuclear power station, higher strength and ductility requirements have been made on AP1000 nuclear island SG forgings than on CPR1000 nuclear island main equipment. In addition, bigger size of AP1000 nuclear island SG forgings increases the difficulty of manufacturing them. Insufficient recognition of these changes may cause unstable quality of forgings and possible quality problems in follow-up welding procedure. On the basis of comparison and analysis of AP1000 nuclear island SG forgings and CPR1000 nuclear island forgings, this thesis suggests clear directions for the actions we need to take. (author)

  1. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  2. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  3. Development of microstructure and superconductivity of silver-clad Bi(2223) composite tapes in the process of heat treatment

    International Nuclear Information System (INIS)

    Guo, Y.C.; Liu, H.K.; Dou, S.X.

    1994-01-01

    A systematic study on the development of phase composition, microstructure and superconducting properties (critical temperature Tc and critical current density J c ) in silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 composite tapes during the process of heat treatment has been conducted using X-ray diffraction, scanning electron microscopy and electrical measurements. The correlation between the tape's high Tc phase purity, microstructure and superconducting properties at different heat treatment stages has been carefully analysed and explained. The results indicate that pure high Tc phase, high degree of grain alignment, high mass density and good connection between grains are all essential for superconducting tapes to carry a large current. With the optimized process parameters, a critical current density J c up to 32665 A cm -2 (corresponding critical current, 42.3 A) at 77 K and self-magnetic field for silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 superconducting composite tapes has been achieved. (orig.)

  4. The effect of the ceramic core initial phase composition on the Ag-sheathed Bi-2223 tapes critical properties

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Khlebova, N.E.; Antipova, E.V.; Dontsova, E.V.; Kazakov, E.G.; Medvedev, M.I.; Kozlenkova, N.I.; Shishov, V.N.; Akimov, I.I.

    1993-01-01

    Ag - sheathed superconducting tapes were fabricated using ''powder-in-tube'' method with powders of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O x chemical composition prepared by the ''freeze-drying'' tecnique and taken as a core materials. The effect of ceramic core initial phase composition: the mixture of oxide non-superconducting phases - OP (typeI) and 50% OP + 50% OP ''2212''- phase (type II) on the critical current density was investigated as well as the ''annealing - cold pressing'' parameters. Multifilamentary superconducting tapes and the pancake coils were fabricated. (orig.)

  5. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  6. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  7. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  8. Sintering of a class F fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Biernacki; Anil K. Vazrala; H. Wayne Leimer [Tennessee Technological University, Cookeville, TN (United States). Department of Chemical Engineering

    2008-05-15

    The sinterability of a class F fly ash was investigated as a function of processing conditions including sintering temperature (1050-1200{sup o}C) and sintering time (0-90 min). Density, shrinkage, splitting tensile strength, water absorption and residual loss on ignition (RLOI) were evaluated as measures of sintering efficiency. Scanning electron microscopy (SEM), X-ray microanalysis and X-ray diffraction was used to examine microstructure and phase development due to processing. The results show that premature densification can inhibit complete carbon removal and that carbon combustion is influenced by both internal and external mass transfer conditions. 18 refs., 10 figs., 1 tab.

  9. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  10. First Results of Energy Saving at Process Redesign of Die Forging Al-Alloys

    International Nuclear Information System (INIS)

    Pepelnjak, Tomaz; Kuzman, Karl; Kokol, Anton

    2011-01-01

    The contribution deals with eco-friendly solutions for shortened production chains of forging light alloys. During the die forging operations a remarkable amount of material goes into the flash and later on into chips during finish machining. These low value side products are rich with embedded energy therefore recycling or reprocessing could be very energy saving procedure.In cooperation with a die forging company a shortened reprocessing cycle has been studied starting from re-melting the forging flash and without additional heating to cast preforms for subsequent die forging. As such preforms have not as good formability characteristics as those done from extruded billets the isothermal forging process has been adopted. First results showed that without cracks and other defects the formability is sufficient for a broad spectrum of forgings.To improve the formability a homogenization process of cast preforms has been implemented. As the process started immediately after casting, amount of additional energy for heating was minimized. To reduce voids forging process was redesigned in a way to assure greater hydrostatic pressures in parts during forging. First results were promising therefore research is going towards improving processes without adding significantly more energy as it is needed for casting with homogenization and die forging.

  11. Hot forging of roll-cast high aluminum content magnesium alloys

    Science.gov (United States)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  12. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    bonding) between the salt beads at all the temperatures in which sintering was performed. .... and the sintering of some covalent solids and low- stability ceramics. The entire sintering process is gen- erally considered to occur in ...

  13. Plane strain forging of a niobium micro-alloyed steel

    International Nuclear Information System (INIS)

    Balancin, O.; Ferran L, G.; Rio de Janeiro Univ.

    1984-01-01

    Various termomechanical treatments were carried out on a niobium micro-alloyed steel and a low carbon steel as reference material, using an apparatus for hot phane strain forging. Control of processing variables and the presence of niobium strongly modify the austenite microstructure, which upon decomposition produces various phases such as polygonal and acicular ferrite and martensite, alone or together in variable proportions. Corresponding to this diversity of structures there is a wide variation in mechanical properties at room temperature: the initial yield point varies from 310 to 650 MPa and the reduction of area in uniaxial tension from 82 to 57% for the niobium steel. These results show that hot forging a niobium micro-alloyed steel may be a suitable manufacturing process for satisfying a wide range of specifications in a final product with low equivalent carbon. (Author) [pt

  14. Performance Assessment Method for a Forged Fingerprint Detection Algorithm

    Science.gov (United States)

    Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang

    The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.

  15. Forged hollows (alloy 617) for PNP-hot gas collectors

    International Nuclear Information System (INIS)

    Hofmann, F.

    1984-01-01

    When the partners in the PNP-Project decided to manufacture components, such as gas collectors, from material of type alloy 617, the problem arose that required semi-fabricated products, especially forged hollows weighing several tons each, were not available. As VDM (Vereinigte Deutsche Metallwerke AG) had already experience in production of other semi-fabricated products of this alloy, attempts were made based on this knowledge, to develop manufacturing methods for forged hollows. The aim was to produce hollows as long as possible, and to keep the welding cost minimum. Welded seams are always critical during fabrication, as well as during later inspection under actual operating conditions. The three stage plan used to perform the above task illustrates the development aims is described

  16. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  17. Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR): A Logic Model.

    Science.gov (United States)

    Gill, Simone V; Khetani, Mary A; Yinusa-Nyahkoon, Leanne; McManus, Beth; Gardiner, Paula M; Tickle-Degnen, Linda

    2017-07-01

    In a patient-centered care era, rehabilitation can benefit from researcher-clinician collaboration to effectively and efficiently produce the interdisciplinary science that is needed to improve patient-centered outcomes. The authors propose the use of the Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR) logic model to provide guidance to rehabilitation scientists and clinicians who are committed to growing their involvement in interdisciplinary rehabilitation research. We describe the importance and key characteristics of the FAIRR model for conducting interdisciplinary rehabilitation research.

  18. Forging C-C Bonds Through Decarbonylation of Aryl Ketones.

    Science.gov (United States)

    Somerville, Rosie J; Martin, Ruben

    2017-06-06

    The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Increasing of the lifetime of large forging dies by repairwelding

    Science.gov (United States)

    Duchek, M.; Koukolikova, M.; Kotous, J.; Majer, M.

    2018-02-01

    Repair welding is often used for rebuilding discarded or failed forging dies. It saves the cost of new tools. Increased useful life of repaired dies is another motivation for repair welding. This article focuses on the development of new filler materials for this purpose. The main goal was to prolong the life of tools of DIN 1.2714 material. Filler wires of two chemistries were made and several samples were experimentally welded. Metallographic and tribological analyses were carried out.

  20. A Probabilistic Analysis of the Nxt Forging Algorithm

    Directory of Open Access Journals (Sweden)

    Serguei Popov

    2016-12-01

    Full Text Available We discuss the forging algorithm of Nxt from a probabilistic point of view, and obtain explicit formulas and estimates for several important quantities, such as the probability that an account generates a block, the length of the longest sequence of consecutive blocks generated by one account, and the probability that one concurrent blockchain wins over an- other one. Also, we discuss some attack vectors related to splitting an account into many smaller ones.

  1. Phased array inspection of large size forged steel parts

    Science.gov (United States)

    Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre

    2018-04-01

    High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.

  2. Finite element analysis for temperature distributions in a cold forging

    International Nuclear Information System (INIS)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong; Kim, Sung Wook; Song, In Chul; Jeon, Byung Cheol

    2013-01-01

    In this research, the finite element method is utilized to predict the temperature distributions in a cold-forging process for a cambolt. The cambolt is mainly used as a part of a suspension system of a vehicle. The cambolt has an off-centered lobe that manipulates the vertical position of the knuckle and wheel to a slight degree. The cambolt requires certain mechanical properties, such as strength and endurance limits. Moreover, temperature is also an important factor to realize mass production and improve efficiency. However, direct measurement of temperature in a forging process is infeasible with existing technology; therefore, there is a critical need for a new technique. Accordingly, in this study, a thermo-coupled finite element method is developed for predicting the temperature distribution. The rate of energy conversion to heat for the workpiece material is determined, and the temperature distribution is analyzed throughout the forging process for a cambolt. The temperatures associated with different punch speeds are also studied, as well as the relationships between load, temperature, and punch speed. Experimental verification of the technique is presented.

  3. Finite element analysis for temperature distributions in a cold forging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Sung Wook [Yanbian National University, Yanbian (China); Song, In Chul; Jeon, Byung Cheol [Sunil dyfas, Jincheon (Korea, Republic of)

    2013-10-15

    In this research, the finite element method is utilized to predict the temperature distributions in a cold-forging process for a cambolt. The cambolt is mainly used as a part of a suspension system of a vehicle. The cambolt has an off-centered lobe that manipulates the vertical position of the knuckle and wheel to a slight degree. The cambolt requires certain mechanical properties, such as strength and endurance limits. Moreover, temperature is also an important factor to realize mass production and improve efficiency. However, direct measurement of temperature in a forging process is infeasible with existing technology; therefore, there is a critical need for a new technique. Accordingly, in this study, a thermo-coupled finite element method is developed for predicting the temperature distribution. The rate of energy conversion to heat for the workpiece material is determined, and the temperature distribution is analyzed throughout the forging process for a cambolt. The temperatures associated with different punch speeds are also studied, as well as the relationships between load, temperature, and punch speed. Experimental verification of the technique is presented.

  4. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  5. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  6. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  7. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  8. Thermally stable sintered porous metal articles

    International Nuclear Information System (INIS)

    Gombach, A.L.; Thellmann, E.L.

    1980-01-01

    A sintered porous metal article is provided which is essentially thermally stable at elevated temperatures. In addition, a method for producing such an article is also provided which method comprises preparing a blend of base metal particles and active dispersoid particles, forming the mixture into an article of the desired shape, and heating the so-formed article at sintering temperatures

  9. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  10. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  11. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  12. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  13. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  14. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  15. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  16. Finite element simulations and experimental investigations on ductile fracture in cold forging of aluminum alloy

    Science.gov (United States)

    Amiri, Amir; Nikpour, Amin; Saraeian, Payam

    2018-05-01

    Forging is one of the manufacturing processes of aluminium parts which has two major categories: called hot and cold forging. In the cold forging, the dimensional and geometrical accuracy of final part is high. However, fracture may occur in some aluminium alloys during the process because of less workability. Fracture in cold forging can be in the form of ductile, brittle or combination of both depending on the alloy type. There are several criteria for predicting fracture in cold forging. In this study, cold forging process of 6063 aluminium alloy for three different parts is simulated in order to predict fracture. The results of numerical simulations of Freudenthal criterion is in conformity with experimental tests.

  17. Effect of Laser Preheating AISI 4140 Specimens for Micro-Forging

    Directory of Open Access Journals (Sweden)

    Jung C.

    2017-06-01

    Full Text Available Many high performance and permanent service parts require suitable material characteristics-high fatigue strength is one of the most important characteristics. For this reason, surface treatment processes are essential to increase the material performance and avoid the use of costly ineffective material. There exist various surface treatment processes for various applications. Each process has advantages and disadvantages and hybridization can solve various problems. The micro-forging process delivers a controlled and uniform surface hardness, but the depth of the forged surface is limited. On the other hand, laser heat treatment can increase the hardness drastically, but the surface may become brittle, which reduces the fatigue life. Laser-assisted micro-forging is a novel hybrid process of laser heat treatment and micro-forging that has the potential to increase the forging depth and relax the stress caused by the high temperature of the forging process.

  18. Investigation of the influence of hybrid layers on the life time of hot forging dies

    Directory of Open Access Journals (Sweden)

    S. Legutko

    2013-04-01

    Full Text Available The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical loads, as well as intensive abrasion at raised temperature. The examination has been performed on a set of forging tools made of Unimax steel and intended for forging steel rings of gear box synchronizer in the factory FAS in Swarzedz (Poland.

  19. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  20. The FORGE (Fate Of Repository Gases) pan European project

    International Nuclear Information System (INIS)

    Shaw, Richard

    2010-01-01

    Document available in extended abstract form only. Full text of publication follows: The multiple barrier concept is the cornerstone of all proposed schemes for underground disposal of radioactive wastes. The concept invokes a series of barriers, both engineered and natural, between the waste and the surface. Achieving this concept is the primary objective of all disposal programmes, from site appraisal and characterisation to repository design and construction. However, the performance of the repository as a whole (waste, buffer, engineering disturbed zone, host rock), and in particular its gas transport properties, are still poorly understood. Issues still to be adequately examined that relate to understanding basic processes include: dilational versus visco-capillary flow mechanisms; long-term integrity of seals, in particular gas flow along contacts; role of the EDZ as a conduit for preferential flow; laboratory to field up-scaling. Understanding gas generation and migration is thus vital in the quantitative assessment of repositories and is the focus of the research in this proposal for an integrated, multidisciplinary project. The FORGE project is a pan-European project with links to international radioactive waste management organisations, regulators and academia, specifically designed to tackle the key research issues associated with the generation and movement of repository gasses with partners from 24 organisations in 12 European countries. It is supported by funding under the European Commission FP7 Euratom programme and runs from 2009 to 2013. Of particular importance are the long-term performance of bentonite buffers, plastic clays, indurated mud-rocks and crystalline formations. Further experimental data are required to reduce uncertainty relating to the quantitative treatment of gas in performance assessment. FORGE will address these issues through a series of laboratory and field-scale experiments, including the development of new methods for up

  1. Close toleranoe forging of chromium steel blades for powerful steam turbines

    International Nuclear Information System (INIS)

    Shastin, Eh.G.; Kositskij, Yu.N.; Lyubchits, G.A.

    1989-01-01

    Work on simulating technological process on die-forging hammer was performed in order to reduce the preparation period bringing technology of close tolerance forging of turbine blades to a commercial level. A special attention was paid to development of accurate forming of forgings of 20Kh13Sh, 12Kh13 and 15Kh11MFSh steels on screw presses with nominal effort equal to 80 and 144 MN

  2. Controlled austempering of hammer forgings aimed at pseudo normalized microstructure directly after deformation

    Directory of Open Access Journals (Sweden)

    P. Skubisz

    2017-01-01

    Full Text Available The study concerns cost-effective realization of controlled thermomechanical processing (CTMP of medium-carbon and HSLA steel aimed at producing microstructure and properties equivalent to normalized condition directly after forging. The results of theoretical and physical modeling of hot forging with subsequent heat treating adopted for industrial realization in continuous manner were verified in semi-industrial conditions of a forge plant.

  3. Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy

    International Nuclear Information System (INIS)

    Harandi, Shervin Eslami; Hasbullah Idris, Mohd; Jafari, Hassan

    2011-01-01

    Research highlights: → Forging temperature demonstrates more pronounced effect compared to forging speed. → Precipitation of Mg 2 Ca phase at grain boundaries accelerates corrosion rate. → Forging process doesn't provide the corrosion resistance required for bone healing. -- Abstract: The performance of Mg-1Ca alloy, a biodegradable metallic material, may be improved by hot working in order that it may be of use in bone implant applications. In this study, Mg-1Ca cast alloy was preheated to different temperatures before undergoing forging process with various forging speeds. Macro- and microstructure of the samples were examined by stereo and scanning electron microscopes (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), respectively. To determine the mechanical properties of the alloy, hardness value and plastic deformation ability of the samples were measured. To investigate the corrosion behaviour of the alloy, immersion and electrochemical tests were performed on the samples in simulated body fluid and the corrosion products were characterized by SEM/EDS. The results showed that increasing forging temperature decreased grain size led to improved hardness value and plastic deformation ability of the alloy, whereas no significant effect was observed by changing forging speed. Moreover, forging at higher temperatures led to an increase in the amount of Mg 2 Ca phase at grain boundaries resulted in higher corrosion rates. It can be concluded that although forging process improved the mechanical properties of the alloy, it does not satisfy the corrosion resistance criteria required for bone healing.

  4. Physical modeling and numerical simulation of V-die forging ingot with central void

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2014-01-01

    Numerical simulation and physical modeling performed on small-scale ingots made from pure lead, having a hole drilled through their centerline to mimic porosity, are utilized to characterize the deformation mechanics of a single open die forging compression stage and to identify the influence...... of the lower V-die angle on porosity closure and forging load requirements of large cast ingots. Results show that a lower V-die angle of 120 provides the best closure of centerline porosity without demanding the highest forging loads or developing unreasonably asymmetric shapes that may create difficulties...... in multi-stage open die forging procedures....

  5. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  6. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  7. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  8. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  9. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  10. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  11. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  12. Effect of rigid inclusions on sintering

    International Nuclear Information System (INIS)

    Rahaman, M.N.; De Jonghe, L.C.

    1988-01-01

    The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed

  13. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  14. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  15. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    Directory of Open Access Journals (Sweden)

    Emanuele Cannella

    2017-07-01

    Full Text Available The continuous improvements in micro-forging technologies generally involve process, material, and tool design. The field assisted sintering technique (FAST is a process that makes possible the manufacture of near-net-shape components in a closed-die setup. However, the final part quality is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP sintering process and different combinations of process parameters, the designed tool system was compared to a similar tool system designed without a pre-stressing strategy. The comparison between the two tool systems was based on the ejection force and part fidelity. The ejection force was measured during the tests, while the part fidelity was documented using an optical microscope and computed tomography in order to obtain a multi-scale characterization. The results showed that the use of pre-stress reduced the porosity in the gear by 40% and improved the dimensional fidelity by more than 75% compared to gears produced without pre-stress.

  16. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    Science.gov (United States)

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  17. Friction and wear in hot forging of steels

    International Nuclear Information System (INIS)

    Daouben, E.; Dubar, L.; Dubar, M.; Deltombe, R.; Dubois, A.; Truong-Dinh, N.; Lazzarotto, L.

    2007-01-01

    In the field of hot forging of steels, the mastering of wear phenomena enables to save cost production, especially concerning tools. Surfaces of tools are protected thanks to graphite. The existing lubrication processes are not very well known: amount and quality of lubricant, lubrication techniques have to be strongly optimized to delay wear phenomena occurrence. This optimization is linked with hot forging processes, the lubricant layers must be tested according to representative friction conditions. This paper presents the first part of a global study focused on wear phenomena encountered in hot forging of steels. The goal is the identification of reliable parameters, in order to bring knowledge and models of wear. A prototype testing stand developed in the authors' laboratory is involved in this experimental analysis. This test is called Warm and Hot Upsetting Sliding Test (WHUST). The stand is composed of a heating induction system and a servo-hydraulic system. Workpieces taken from production can be heated until 1200 deg. C. A nitrided contactor representing the tool is heated at 200 deg. C. The contactor is then coated with graphite and rubs against the workpiece, leaving a residual track on it. Friction coefficient and surface parameters on the contactor and the workpiece are the most representative test results. The surface parameters are mainly the sliding length before defects occurrence, and the amplitude of surface profile of the contactor. The developed methodology will be first presented followed by the different parts of the experimental prototype. The results of experiment show clearly different levels of performance according to different lubricants

  18. Modeling Cavitation in ICE Pistons Made with Isothermal Forging

    Directory of Open Access Journals (Sweden)

    V.V. Astanin

    2014-07-01

    Full Text Available Possible causes for cavitations in parts made with an Al-Si eutectic alloy AK12D (AlSi12 were explored with mathematical and physical modeling with involved acoustic emission. Pores were formed from micro-cracks, which appear during the early stages of a deformation process, with the help of micro-stresses appearing at phase boundaries (Al/Si interface due to thermal expansion. At the design stage of isothermal forgings of such products it is recommended to provide a scheme of the deformed shape, which is under uniform compression, to compensate for the inter-phase stresses.

  19. Experimental and numerical research on forging with torsion

    Science.gov (United States)

    Petrov, Mikhail A.; Subich, Vadim N.; Petrov, Pavel A.

    2017-10-01

    Increasing the efficiency of the technological operations of blank production is closely related to the computer-aided technologies (CAx). On the one hand, the practical result represents reality exactly. On the other hand, the development procedure of new process development demands unrestricted resources, which are limited on the SMEs. The tools of CAx were successfully applied for development of new process of forging with torsion and result analysis as well. It was shown, that the theoretical calculations find the confirmation both in praxis and during numerical simulation. The mostly used constructional materials were under study. The torque angles were stated. The simulated results were evaluated by experimental procedure.

  20. Automated ultrasonic shop inspection of reactor pressure vessel forgings

    International Nuclear Information System (INIS)

    Farley, J.M.; Dikstra, B.J.; Hanstock, D.J.; Pople, C.H.

    1986-01-01

    Automated ultrasonic shop inspection utilizing a computer-controlled system is being applied to each of the forgings for the reactor pressure vessel of the proposed Sizewell B PWR power station. Procedures which utilize a combination of high sensitivity shear wave pulse echo, 0 degrees and 70 degrees angled longitudinal waves, tandem and through-thickness arrays have been developed to provide comprehensive coverage and an overall reliability of inspection comparable to the best achieved in UKAEA defect detection trials and in PISC II. This paper describes the ultrasonic techniques, the automated system (its design, commissioning and testing), validation and the progress of the inspections

  1. Optimum back-pressure forging using servo die cushion

    OpenAIRE

    Kawamoto, Kiichiro; Yoneyama, Takeshi; Okada, Masato; Kitayama, Satoshi; Chikahisa, Junpei

    2014-01-01

    This study focused on utilizing a servo die cushion (in conjunction with a servo press) as a "back-pressure load generator," to determine its effect on shape accuracy of the formed part and total forming load in forward extrusion during cold forging. The effect of back-pressure load application was confirmed in experiments, and the optimum setting pattern of back-pressure load was considered to minimize both shape accuracy of the formed part and back-pressure energy, which was representative ...

  2. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  3. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  4. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  5. Pressureless sintering of whisker-toughened ceramic composites

    Science.gov (United States)

    Tiegs, T.N.

    1993-05-04

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  6. Ultra-large size austenitic stainless steel forgings for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Tsukada, Hisashi; Suzuki, Komei; Sato, Ikuo; Miura, Ritsu.

    1988-01-01

    The large SUS 304 austenitic stainless steel forgings for the reactor vessel of the prototype FBR 'Monju' of 280 MWe output were successfully manufactured. The reactor vessel contains the heart of the reactor and sodium coolant at 530 deg C, and its inside diameter is about 7 m, and height is about 18 m. It is composed of 12 large forgings, that is, very thick flanges and shalls made by ring forging and an end plate made by disk forging and hot forming, using a special press machine. The manufacture of these large forgings utilized the results of the basic test on the material properties in high temperature environment and the effect that the manufacturing factors exert on the material properties and the results of the development of manufacturing techniques for superlarge forgings. The problems were the manufacturing techniques for the large ingots of 250 t class of high purity, the hot working techniques for stainless steel of fine grain size, the forging techniques for superlarge rings and disks, and the machining techniques of high precision for particularly large diameter, thin wall rings. The manufacture of these large stainless steel forgings is reported. (Kako, I.)

  7. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered .... product, could be due to oxidation of SiC, e.g. 50% weight gain of a green SiC sample ... because, the charging current is 90° advanced in phase, ideally, with respect to the ...

  8. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  9. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    International Nuclear Information System (INIS)

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-01-01

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  10. Study on the microstructure of the different parts for new aluminum alloy forgings

    International Nuclear Information System (INIS)

    Gao Wei; Zheng Xiaojing; Wu Fu

    2014-01-01

    The mechanical properties of former aluminium alloy forgings cannot achieve technique demand. Because the component, dimension and preparation technology of new aluminum alloy have changed, the microstructure and mechanical properties of forgings are researched. It is concluded that the flowline of forgings has good continuity and uniformity, it does not have a prominent difference on microhardness of different parts. The results prove that the microstructure of forgings has good consistency. The matrix structure of forgings consists of fiber texture and equiaxed structure. The residual second phases, which are harmful to mechanical properties, are observed in the equiaxed structure. The center of equiaxed structure core zone, the edge of equiaxed structure transition zone and equiaxed structure edge zone should be focus on observing test, they are the sampling location of tensile property. (authors)

  11. Sensitivity analysis and optimization algorithms for 3D forging process design

    International Nuclear Information System (INIS)

    Do, T.T.; Fourment, L.; Laroussi, M.

    2004-01-01

    This paper presents several approaches for preform shape optimization in 3D forging. The process simulation is carried out using the FORGE3 registered finite element software, and the optimization problem regards the shape of initial axisymmetrical preforms. Several objective functions are considered, like the forging energy, the forging force or a surface defect criterion. Both deterministic and stochastic optimization algorithms are tested for 3D applications. The deterministic approach uses the sensitivity analysis that provides the gradient of the objective function. It is obtained by the adjoint-state method and semi-analytical differentiation. The study of stochastic approaches aims at comparing genetic algorithms and evolution strategies. Numerical results show the feasibility of such approaches, i.e. the achieving of satisfactory solutions within a limited number of 3D simulations, less than fifty. For a more industrial problem, the forging of a gear, encouraging optimization results are obtained

  12. Manufacturing of large and integral-type steel forgings for nuclear steam supply system components

    International Nuclear Information System (INIS)

    Kawaguchi, S.; Tsukada, H.; Suzuki, K.; Sato, I.; Onodera, S.

    1986-01-01

    Forgings for the reactor pressure vessel (RPV) of the pressurized heavy water reactor (PHWR) 700 MWe, which is composed of seven major parts and nozzles totaling about 965 tons, were successfully developed. These forgings are: 1. Flanges: an outside diameter of 8440 mm and a weight of 238 tons max, requiring an ingot of 570 tons. 2. Shells and torus: an outside diameter of about 8000 mm with large height. 3. Cover dome: a diameter of 6800 mm and a thickness of 460 mm, requiring a blank forging before forming of 8000 mm in diameter and 550 m thick. The material designation is 20Mn-Mo-Ni 5 5 (equivalent to SA508, Class 3). In this paper, the manufacturing of and the properties of such large and integral forgings are discussed, including an overview of manufacturing processes for ultralarge-sized forgings over the last two decades

  13. Simulation and analysis of hot forging process for industrial locking gear elevators

    Science.gov (United States)

    Maarefdoust, M.; Kadkhodayan, M.

    2010-06-01

    In this paper hot forging process for industrial locking gear elevators is simulated and analyzed. An increase in demand of industrial locking gear elevators with better quality and lower price caused the machining process to be replaced by hot forging process. Production of industrial locking gear elevators by means of hot forging process is affected by many parameters such as billet temperature, geometry of die and geometry of pre-formatted billet. In this study the influences of billet temperature on effective plastic strain, radius of die corners on internal stress of billet and thickness of flash on required force of press are investigated by means of computer simulation. Three-dimensional modeling of initial material and die are performed by Solid Edge, while simulation and analysis of forging are performed by Super Forge. Based on the computer simulation the required dies are designed and the workpieces are formed. Comparison of simulation results with experimental data demonstrates great compatibility.

  14. Manufacturing and properties of closure head forging integrated with flange for PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tomoharu Sasaki; Iku Kurihara; Etsuo Murai; Yasuhiko Tanaka; Koumei Suzuki

    2003-01-01

    Closure head forging (SA508, Gr.3 Cl.1) integrated with flange for PWR reactor pressure vessel has been developed. This is intended to enhance structural integrity of closure head resulted in elimination of ISI, by eliminating weld joint between closure head and flange in the conventional design. Manufacturing procedures have been established so that homogeneity and isotropy of the material properties can be assured in the closure head forging integrated with flange. Acceptance tensile and impact test specimens are taken and tested regarding the closure head forging integrated with flange as very thick and complex forgings. This paper describes the manufacturing technologies and material properties of the closure head forging integrated with flange. (orig.)

  15. Preparation and characterization of a homemade Josephson junction prepared from a thin film sintered in a domestic microwave oven

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Gustavo Quereza; Moreto, Jeferson Aparecido [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano (IFGO), Rio Verde, GO (Brazil); Zadorosny, Rafael; Silveira, Joao Borsil; Carvalho, Claudio Luiz [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil); Cena, Cicero Rafael, E-mail: gustavoquereza@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Birigui, SP (Brazil)

    2016-03-15

    A homemade Josephson junction was successfully obtained using a superconductor thin film of the BSCCO system. The film was deposited on a lanthanum aluminate, produced from a commercial powder with a nominal composition Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}CaCu{sub 2}O{sub x}, was thermally treated by a domestic microwave oven. The XRD analysis of the film indicated the coexistence of Bi-2212 and Bi-2223 phases and SEM images revealed that a typical superconductor plate-like morphology was formed. From the electrical characterization, performed using DC four probes technique, it was observed an onset superconducting transition temperature measured around 81K. At the current-voltage characteristics curve, a step of electric current at zero-voltage could be observed, an indicative that the tunneling Josephson occurred. (author)

  16. Spark Plasma Sintering of Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Curtis W. [CK Technologies, Camirillo, CA (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tucker, Dennis [NASA Johnson Space Center, Houston, TX (United States); Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Zhongyang [Auburn Univ., AL (United States)

    2016-01-01

    A solid-state ultracapacitor module to replace standard electrochemical batteries would achieve major performance gains and mass/volume reduction. This report summarizes a project to evaluate an alternative sintering process to produce a solid-state ultracapacitor to overcome the limitations of both the electrochemical batteries presently in use on spacecraft and of currently available electrochemical ultracapacitors. It will provide a robust energy storage device with higher reliability, wider working temperature range, longer lifetime, and less weight and volume than electrochemical batteries. As modern electronics decrease in size, more efficient and robust remote power is needed. Current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. Solid-state ultracapacitors are recyclable energy storage devices that offer the promise of higher power and a greater number of charge/discharge cycles than current rechargeable batteries. In addition, the theoretical energy density when compared to current electrochemical batteries indicates that a significant weight savings is possible. This is a project to develop a very high density solid-state ultracapacitor with giant permittivity and acceptable dielectric loss to overcome the energy-density barrier such that it will be a suitable replacement for batteries.

  17. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  18. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  19. Ultrasonic phased arrays for nondestructive inspection of forgings

    International Nuclear Information System (INIS)

    Wuestenberg, H.; Rotter, B.; Klanke, H.P.; Harbecke, D.

    1993-01-01

    Ultrasonic examinations on large forgings like rotor shafts for turbines or components for nuclear reactors are carried out at various manufacturing stages and during in-service inspections. During the manufacture, most of the inspections are carried out manually. Special in-service conditions, such as those at nuclear pressure vessels, have resulted in the development of mechanized scanning equipment. Ultrasonic probes have improved, and well-adapted sound fields and pulse shapes and based on special imaging procedures for the representation of the reportable reflectors have been applied. Since the geometry of many forgings requires the use of a multitude of angles for the inspections in-service and during manufacture, phased-array probes can be used successfully. The main advantages of the phased-array concept, e.g. the generation of a multitude of angles with the typical increase of redundancy in detection and quantitative evaluation and the possibility to produce pictures of defect situations, will be described in this contribution

  20. Army Combat Medic Resilience: The Process of Forging Loyalty.

    Science.gov (United States)

    Abraham, Preetha A; Russell, Dale W; Huffman, Sarah; Deuster, Patricia; Gibbons, Susanne W

    2018-03-01

    This study presents a grounded theory analysis of in-depth interviews of United States Army Combat Medics (CMs) who had served in Iraq and/or Afghanistan. The study explores how 17 CMs nominated by their peers as resilient cope with military stressors in order to identify the factors that enable them to thrive amidst harsh conditions. Four distinct categories of characteristics unique to this group emerged: (1) social bonding, (2) readiness, (3) dual loyalty as performance, and (4) leader by example. Forging loyalty underpins these characteristics and represents the main process used by resilient CMs and comprised three behavior patterns: (1) commitment to the family, (2) commitment to the military mission, and (3) commitment to their guiding religious and spiritual beliefs. Prominent behavioral tendencies of forging loyalty likely developed during childhood and re-enforced by families, friends, and other role models. Based on the findings, new training and education efforts should focus on developing positive emotional, environmental, and social resources to enhance the health and well-being of service members and their families.

  1. Development of forging technology for PWR primary piping

    International Nuclear Information System (INIS)

    Morin, F.; Badeau, J.P.; Lambs, R.

    1996-01-01

    The purpose of this presentation is to give information on the changes in the design and manufacture of Primary Piping for electronuclear boilers of the Pressurized Water Reactor type (PWR) which has resulted in the making of one-piece forged lines including stub pipes and arcs. The optimization of these items is aimed at improving the life of the new power stations as well as guaranteeing their safety, while reducing inspection and maintenance requirements in service. The demonstration of the manufacturing feasibility has just been completed. It has taken material form in the installation, on the CIVAUX 1 section, of the first one-piece cold leg in the world. It will shortly be followed by the installation on the CIVAUX 2 section of a complete loop of bent forged pipes. Therefore, this new know-how is going to be incorporated in the French Rules (RCC-M) and can be directly taken into consideration both in the next work to be done and in the design and definition of a future nuclear reactor

  2. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  3. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  4. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  5. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  6. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  7. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  8. Computer Οptimization of Geometric Form of Tool and Preform for Closed-die Forging of Compressor Blade Simulator

    Directory of Open Access Journals (Sweden)

    A. V. Botkin

    2014-07-01

    Full Text Available Using the software package DEFORM 3D when developing technology of isothermal forging workpiece blades it is possible to reduce the pre-production time, to improve the quality of forgings and increase lifetime of forging dies. Computer modeling allows to predict the formation of such defects during forging as notches and wrinkles, underfilling of die impression, to estimate tool loads. Preform shape and angular position of the blade simulator were optimized in order to minimize the lateral forces generated during the forging operation.

  9. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  10. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  11. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  12. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  13. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  14. Optimum design of forging process parameters and preform shape under uncertainties

    International Nuclear Information System (INIS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-01-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness

  15. Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites

    Science.gov (United States)

    Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.

    2018-02-01

    The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.

  16. Research on Energy-Saving Production Scheduling Based on a Clustering Algorithm for a Forging Enterprise

    Directory of Open Access Journals (Sweden)

    Yifei Tong

    2016-02-01

    Full Text Available Energy efficiency is a buzzword of the 21st century. With the ever growing need for energy efficient and low-carbon production, it is a big challenge for high energy-consumption enterprises to reduce their energy consumption. To this aim, a forging enterprise, DVR (the abbreviation of a forging enterprise, is researched. Firstly, an investigation into the production processes of DVR is given as well as an analysis of forging production. Then, the energy-saving forging scheduling is decomposed into two sub-problems. One is for cutting and machining scheduling, which is similar to traditional machining scheduling. The other one is for forging and heat treatment scheduling. Thirdly, former forging production scheduling is presented and solved based on an improved genetic algorithm. Fourthly, the latter is discussed in detail, followed by proposed dynamic clustering and stacking combination optimization. The proposed stacking optimization requires making the gross weight of forgings as close to the maximum batch capacity as possible. The above research can help reduce the heating times, and increase furnace utilization with high energy efficiency and low carbon emissions.

  17. Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes

    International Nuclear Information System (INIS)

    Kim, Jun Hyoung; Kim, Cheol

    2010-01-01

    Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape (10 .deg. for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed

  18. Gear hot forging process robust design based on finite element method

    International Nuclear Information System (INIS)

    Xuewen, Chen; Won, Jung Dong

    2008-01-01

    During the hot forging process, the shaping property and forging quality will fluctuate because of die wear, manufacturing tolerance, dimensional variation caused by temperature and the different friction conditions, etc. In order to control this variation in performance and to optimize the process parameters, a robust design method is proposed in this paper, based on the finite element method for the hot forging process. During the robust design process, the Taguchi method is the basic robust theory. The finite element analysis is incorporated in order to simulate the hot forging process. In addition, in order to calculate the objective function value, an orthogonal design method is selected to arrange experiments and collect sample points. The ANOVA method is employed to analyze the relationships of the design parameters and design objectives and to find the best parameters. Finally, a case study for the gear hot forging process is conducted. With the objective to reduce the forging force and its variation, the robust design mathematical model is established. The optimal design parameters obtained from this study indicate that the forging force has been reduced and its variation has been controlled

  19. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  20. Using of material-technological modelling for designing production of closed die forgings

    Science.gov (United States)

    Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.

    2017-02-01

    Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.

  1. Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods

    Science.gov (United States)

    Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.

    2016-09-01

    This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.

  2. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  3. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    International Nuclear Information System (INIS)

    L-Cancelos, R.; Varas, F.; Viéitez, I.; Martín, E.

    2016-01-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved. (paper)

  4. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  5. Sinter aluminium as cladding material for fuel elements; Aluminium fritte comme materiau de gainage pour les elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Mann, K E; Boudouresques, M B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Otto Fuchs, Meinerzhagen, Westfalen (Germany)

    1961-07-01

    1. Survey of the production process of sinter aluminium. 2. Description of the forming processes (extrusion, forging and rolling), whereby the production of tubing for atom piles will be explained in detail. 3. Production of ribbed tubes and tubes with close tolerances of sizes. 4. The different SAP-qualities and their properties under special consideration of the properties at elevated temperatures and the creep properties. 5. Diffusion behaviour of SAP with Be, Mg, Al, U and UO{sub 2}. 6. Corrosion behaviour in CO{sub 2} atmosphere at high temperature and in water. 7. Weldability. 8. Effect of irradiation on the mechanical properties. 9. Superiority of SAP compared with normal wrought alloys of the same composition. (author) [French] 1. Apercu des processus de production de l'aluminium fritte. 2. Expose des operations de transformation (filageries, forgeage et laminage), avec explication detaillee de la fabrication de gaine pour reacteurs. 3. Fabrication de tubes canneles et de tubes avec de faibles tolerances. 4. Diverses proprietes de l'aluminium fritte SAP, notamment proprietes aux temperatures elevees et proprietes de fluage. 5. Diffusion de l'aluminium fritte SAP en presence de Be, Mg, Al, U et UO{sub 2}. 6. Resistance a la corrosion dans une atmosphere de CO{sub 2} a temperature elevee et dans l'eau. 7. Possibilites de soudage. 8. Effet de l'irradiation sur les proprietes mecaniques. 9. Superiorite de l'aluminium fritte SAP sur les alliages forges normaux de meme composition. (auteur)

  6. Optimizing noise control strategy in a forging workshop.

    Science.gov (United States)

    Razavi, Hamideh; Ramazanifar, Ehsan; Bagherzadeh, Jalal

    2014-01-01

    In this paper, a computer program based on a genetic algorithm is developed to find an economic solution for noise control in a forging workshop. Initially, input data, including characteristics of sound sources, human exposure, abatement techniques, and production plans are inserted into the model. Using sound pressure levels at working locations, the operators who are at higher risk are identified and picked out for the next step. The program is devised in MATLAB such that the parameters can be easily defined and changed for comparison. The final results are structured into 4 sections that specify an appropriate abatement method for each operator and machine, minimum allowance time for high-risk operators, required damping material for enclosures, and minimum total cost of these treatments. The validity of input data in addition to proper settings in the optimization model ensures the final solution is practical and economically reasonable.

  7. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  8. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  9. Follow-up of hearing thresholds among forge hammering workers

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, A.A.; Mikael, R.A.; Faris, R. (Ain Shams Univ., Abbasia, Cairo (Egypt))

    1989-01-01

    Hearing threshold was reexamined in a group of forge hammering workers investigated 8 years ago with consideration of the age effect and of auditory symptoms. Workers were exposed to impact noise that ranged from 112 to 139 dB(A)--at an irregular rate of 20 to 50 drop/minute--and a continuous background noise that ranged from 90 to 94 dB(A). Similar to what was observed 8 years ago, the present permanent threshold shift (PTS) showed a maximum notch at the frequency of 6 kHz and considerable elevations at the frequencies of 0.25-1 kHz. The age-corrected PTS and the postexposure hearing threshold were significantly higher than the corresponding previous values at the frequencies 0.25, 0.5, 1, and 8 kHz only. The rise was more evident at the low than at the high frequencies. Temporary threshold shift (TTS) values were significantly less than those 8 years ago. Contrary to the previous TTS, the present TTS were higher at low than at high frequencies. Although progression of PTS at the frequencies 0.25 and 0.5 kHz was continuous throughout the observed durations of exposure, progression at higher frequencies occurred essentially in the first 10 to 15 years of exposure. Thereafter, it followed a much slower rate. Tinnitus was significantly associated with difficulty in hearing the human voice and with elevation of PTS at all the tested frequencies, while acoustic after-image was significantly associated with increment of PTS at the frequencies 0.25-2 kHz. No relation between PTS and smoking was found. PTS at low frequencies may provide an indication of progression of hearing damage when the sensitivity at 6 and 4 kHz diminishes after prolonged years of exposure. Tinnitus and acoustic after-image are related to the auditory effect of forge hammering noise.

  10. Qualitative Research of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Method

    Directory of Open Access Journals (Sweden)

    Dziubińska A.

    2016-06-01

    Full Text Available The paper reports a selection of numerical and experimental results of a new closed-die forging method for producing AZ31 magnesium alloy aircraft brackets with one rib. The numerical modelling of the new forming process was performed by the finite element method.The distributions of stresses, strains, temperature and forces were examined. The numerical results confirmed that the forgings produced by the new forming method are correct. For this reason, the new forming process was verified experimentally. The experimental results showed good agreement with the numerical results. The produced forgings of AZ31 magnesium alloy aircraft brackets with one rib were then subjected to qualitative tests.

  11. Forge, Arquillian, Swarm and Spring Boot: All play and no effort makes Simon a productive boy

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    During this live coding session, Simon will shine some light on a range productivity tools that make software development a pleasure rather than a chore. Simon will live code 2 applications; a Java EE application, with JBoss Forge which uses JPA, Bean Validation, REST and Angular. We’ll test this application using Arquillian from within JBoss Forge. We’ll also show how a Java EE microservice can be developed in Forge and run using JBoss Swarm. The second application will be developed on Spring Boot and using JRebel we’ll rapidly develop and run a Spring application. Attendees will learn how to write code productively using tools designed for developers.

  12. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  13. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  14. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  15. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  16. Fusibility and sintering characteristics of ash

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  17. Current state of the Uranium dioxide sintering theory

    International Nuclear Information System (INIS)

    Baranov, V.; Devyatko, Y.; Tenishev, A.; Khlunov, A.; Khomyakov, O.

    2011-01-01

    The basic approaches to the description of the ceramics sintering phenomenon are considered. It is established that diffusive sintering models incorrectly describe an intermediate stage of this process. The physical model of sintering, considering the substance plastic flow of pressing under the influence of internal stress forces and capillary forces, as the basic mechanism defining the shrinkage of sintering oxide nuclear fuel, is offered. (authors)

  18. Peculiarities of formation and sintering of fine dispersed molybdenum powders

    International Nuclear Information System (INIS)

    Kalamazov, R.U.; Pak, V.I.; Tsvetkov, Yu.V.; Lem, I.N.

    1989-01-01

    Pressing of fine dispersed Mo powders sintering of compacts in H 2 and vacuum is studied. It is shown that powder preannealing at 600 deg C in H 2 for 2 hours is necessary for formation of dense sintered compacts. Qualitatively choice of pressing conditions is possible when using electron-positron annihilation method. Peculiarities of compacting and sintering of fine- and coarse-dispersed powder mixtures are considered. The obtained results are discussed from the view point of sintering recrystallization mechanism

  19. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  20. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  1. The structural and phase state formed in construction titanium alloy by radial forging

    Energy Technology Data Exchange (ETDEWEB)

    Shlyakhova, Galina V.; Danilov, Vladimir I.; Orlova, Dina V.; Zuev, Lev B. [Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russian Federation); Zavodchikov, Aleksandr S. [Perm State Technical University, Perm (Russian Federation)

    2011-07-01

    The feasibility of rod manufacture from construction titanium alloy using radial forging on a high duty machine SXK16 was investigated. The investigations were carried on for titanium rod samples using the methods of metallography, electron transmission microscophy and X-ray analysis. The results obtained are described herein. It is found that radial forging results in the formation of homogeneous fine-grained structure.Using radial forging process, high-quality items are produced. As-worked material has submicrocrystalline globular structure and an optimal α:β phase ratio. Besides, the technology is more cost-effective relative to conventional flow charts. Key words: forging, titanium alloy, fine-grain structure, substructure, pore size.

  2. Manufacturing and material properties of ultralarge size forgings for advanced BWRPV

    International Nuclear Information System (INIS)

    Suzuki, Komei; Sato, Ikuo; Tsukada, Hisashi

    1994-01-01

    Ultralarge size forgings for the advanced boiling water reactor (ABWR) pressure vessel as represented by the bottom petal made from a 600ton ingot have been developed. The bottom petal is a larger wall thickness ring with 10 integrated nozzles inside and outside the ring. The outer diameter is 7.8m, the height is 1.8m and the wall thickness if 1.1m in the as-forged condition. A very high purity level of P≤qslant0.003% and S≤qslant0.003% can be obtained by the application of double-refining processes to all the molten steel. The forging shows a homogeneous chemical distribution, sound internal qualities and adequate impact properties.This paper summarizes the manufacturing technique and material properties of large size forgings such as the bottom petal, the shell with integrated skirt and the bottom dome. ((orig.))

  3. Production of a 304 stainless steel nuclear reactor forging from a very large electroslag refined ingot

    International Nuclear Information System (INIS)

    Watkins, E.J.; Tihansky, E.L.

    1986-01-01

    A four-loop, upper barrel flange forging for a nuclear reactor was produced from what the authors believe to be the largest 304H grade stainless steel electroslag refined (ESR) ingot ever refined. The ingot was refined in a 1524-mm-diameter, ingot withdrawal-type ESR furnace using a lime-bearing slag, low-frequency a-c power, and dry air protection. Five electrodes were remelted in order to produce the desired ingot weight. The ingot was subsequently forged in a five-step operation on a 6800-metric-ton press to produce the desired barrel flange configuration. Testing of the finished machined forging revealed excellent tensile ductility, excellent ultrasonic penetrability, and good chemical uniformity with no macrosegregation. Overall quality was judged to be superior to previously produced, conventionally melted forgings

  4. Calculation of recovery plasticity in multistage hot forging under isothermal conditions.

    Science.gov (United States)

    Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I

    2016-01-01

    A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.

  5. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging

    International Nuclear Information System (INIS)

    Oliveira, Nathalia Rodrigues; Baldan, Renato; Gabriel, Sinara Borborema

    2014-01-01

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  6. Application of CAD/CAE/CAM in forging process: a review

    International Nuclear Information System (INIS)

    Ahmad Baharuddin Abdullah; Hamouda, A.M.S.

    2005-01-01

    Forging can be described as the process in which metal is plastically deformed with application of huge pressure. The process not only changes the shape but also improves the properties of the forged parts due to grain size refinement. Conventionally, the empirical trial and error method has been applied, but recently there are various tools are employed to improved product quality and economic of the process. For example, Computer Aided Design (CAD) is widely used in modeling of the process, while Computer Aided Engineering (CAE) tools have been utilized in analyzing the process. To physically demonstrate the process, Computer Aided Manufacturing (CAM) such as CNC machine has been exploited. In order to improve forging process efficiency, an integrated system that combines all advantages of CAD, CAM and CAE need to be developed. This paper presents an overview of computer aided simulation such as CAD, CAE and CAM application in forging process. (Author)

  7. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  8. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  9. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  10. Blast furnace sinter performance improvement; Melhoria do rendimento de sinter de alto forno

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ricardo Baeta; Ferreira, Antonio Marcos M.; Perez, Jose Antonio; Nobrega, Carlos A.; Madeira Filho, Nelson Santos; Silva, Jose Coutinho da; Sampaio, Silvio; Larcher, Marcos A.; Silva Filho, Jose Maximo da; Nogueira, Carlos Alberto; Ramalho Filho, Wilson; Costa, Jose Luiz Lage da; Silva, Mauro Correa da [Companhia Siderurgica de Tubarao (CST), Serra, ES (Brazil)

    1995-07-01

    The article discusses the following issues of methodology maid and the accomplished actions aiming at the blast furnace sinter performance improvement: performance concept; performance historical evolution; problem boarding; influence factors; interpretation of the results; actions implementation; and economic benefit.

  11. Development of strategies for saving energy by temperature reduction in warm forging processes

    Science.gov (United States)

    Varela, Sonia; Santos, Maite; Vadillo, Leire; Idoyaga, Zuriñe; Valbuena, Óscar

    2016-10-01

    This paper is associated to the European policy of increasing efficiency in raw material and energy usage. This policy becomes even more important in sectors consuming high amount of resources, like hot forging industry, where material costs sums up to 50% of component price and energy ones are continuously raising. The warm forging shows a clear potential of raw material reduction (near-net-shape components) and also of energy saving (forging temperature under 1000°C). However and due to the increment of the energy costs, new solutions are required by the forging sector in order to reduce the temperature below 900°C. The reported research is based on several approaches to reduce the forging temperature applied to a flanged shaft of the automotive sector as demonstration case. The developed investigations have included several aspects: raw material, process parameters, tools and dies behavior during forging process and also metallographic evaluation of the forged parts. This paper summarizes analysis of the ductility and the admissible forces of the flanged shaft material Ck45 in as-supplied state (as-rolled) and also in two additional heat treated states. Hot compression and tensile tests using a GLEEBLE 3800C Thermo mechanical simulator have been performed pursuing this target. In the same way, a coupled numerical model based on Finite Element Method (FEM) has been developed to predict the material flow, the forging loads and the stresses on the tools at lower temperature with the new heat treatments of the raw material. In order to validate the previous development, experimental trials at 850 °C and 750 °C were carried out in a mechanical press and the results were very promising.

  12. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  13. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  14. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  15. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  16. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    Effect of different additives, namely Cr2O3, Fe2O3 and TiO2, up to 2 wt% was studied on the sinter- ing and .... mental distribution of the components is shown in figure 7. It shows ... Chiang Y M, Birniand D and Kingery W 1996 Physical ceram-.

  17. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  18. Study on isothermal precision forging process of rare earth intensifying magnesium alloy

    International Nuclear Information System (INIS)

    Shan, Debin; Xu, Wenchen; Han, Xiuzhu; Huang, Xiaolei

    2012-01-01

    A three dimensional rigid-plastic finite element model is established to simulate the isothermal precision forging process of the magnesium alloy bracket based on DEFORM 3D in order to analyze the material flow rule and determine the forging process scheme. Some problems such as underfilling and too large forging pressure are predicted and resolved through optimizing the shapes of the billet successfully. Compared to the initial microstructure, the isothermal-forged microstructure of the alloy refines obviously and amounts of secondary phases precipitate on the matrix during isothermal forging process. In subsequent ageing process, large quantities of secondary phases precipitate from α-Mg matrix with increasing ageing time. The optimal comprehensive mechanical properties of the alloy have been obtained after aged at 473 K, 63 h with the ultimate tensile strength, tensile yield strength and elongation 380 MPa, 243 MPa and 4.07% respectively, which shows good potential for application of isothermal forging process of rare earth intensifying magnesium alloy.

  19. The relationship between UT reported size and actual size of the defects in rotor forgings

    International Nuclear Information System (INIS)

    Seong, Un Hak; Kim, Jeong Tae; Park, Yun Sik

    2003-01-01

    In order to evaluate the reliability of rotor forgings, it is very important to know the actual size of the defects in the rotor forgings. The determination of the defect size requires the accurate non-destructive measurement. However, there may be some differences between the reported size with the ultrasonic non-destructive testing method and the actual size of defects. These differences may be a severe cause of errors in evaluation of rotor forgings. So, the calculated size with 'Master Curve' considering safety factor, which is usually larger than the reported size, has been used in evaluation of rotor forgings. The relation between the EFBH (Equivalent Flat Bottom Hole) size measured by non-destructive method and the actual size by destructive method in many rotors manufactured at Doosan was investigated. In this investigation 'Master Curve' compensating the differences between UT reported size and actual size of defects in our rotor forgings was obtainable. The applicability of this 'Master Curve' as a way of calculating the actual defect size was also investigated. For the evaluation of rotor forgings, it is expected that this 'Master Curve' may be used to determine the accurate actual size of defects.

  20. The relationship between UT reported size and actual size of the defects in rotor forgings

    International Nuclear Information System (INIS)

    Seong, Un Hak; Kim, Jeong Tae; Park, Yun Sik

    2003-01-01

    In order to evaluate the reliability of rotor forgings, it is very important to know the actual size of the defects in the rotor forgings. The determination of the defect size requires the accurate non-destructive measurement. However, there may be some difference between the reported size with ultrasonic non-destructive testing method and the actual size of defects. These differences may be a severe cause of errors in evaluation of rotor forgings. So, the calculated size with 'Master Curve' considering safety factor, which is usually larger than the reported size, has been used in evaluation of rotor forgings. The relation between the EFBH (Equivalent Flat Bottom Hole) size measured by non-destructive method and the actual size by destructive method in many rotors manufactured at Doosan was investigated. In this investigation, 'Master Curve' compensating the differences between UT reported size and actual size of defects in our rotor forgings was obtainable. The applicability of this 'Master Curve' as a way of calculating the actual defect size was also investigated. For the evaluation of rotor forgings, it is expected that this 'Master Curve' may be used to determine the accurate actual size of defects.

  1. Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging

    Directory of Open Access Journals (Sweden)

    Wuhao Zhuang

    2014-11-01

    Full Text Available Cold rotary forging is a novel metal forming technology which is widely used to produce the high performance gears. Investigating the microstructure and mechanical property of cold rotary forged gears has a great significance in improving their service performance. In this study, the grain morphology in different regions of the spur bevel gear which is processed by cold rotary forging is presented. And the distribution regulars of the grain deformation and Vickers hardness in the transverse and axial sections of the gear tooth are studied experimentally. A three-dimensional rigid-plastic FE model is developed to simulate the cold rotary forging process of a spur bevel gear under the DEFORM-3D software environment. The variation of effective strain in the spur bevel gear has been investigated so as to explain the distribution regulars of the microstructure and Vickers hardness. The results of this research thoroughly reveal the inhomogeneous deformation mechanisms in cold rotary forging of spur bevel gears and provide valuable guidelines for improving the performance of cold rotary forged spur bevel gears.

  2. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  3. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  4. The quantitative characterization of sintering of urania powders

    International Nuclear Information System (INIS)

    Das, P.; Kulkarni, U.D.

    1981-01-01

    This paper presents a unified approach towards characterization of the sintering behaviour of UO 2 powders in terms of their extrinsic properties. Empirical equations connecting the sintering index with various powder parameters have been set up. The influence of various powder parameters, either individually or as dimensionless/dimensional groups, on the sintering behaviour has been studied. The relative importance of these factors has also been analysed. A good polynomial fit has been obtained for variation of sintering index with some of the powder parameters and dimensionless/dimensional groups. The equations are expected to provide a good basis for assessing the sinterability of UO 2 powders. (Auth.)

  5. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  6. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  7. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  8. Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering

    International Nuclear Information System (INIS)

    Mussi, A.; Granger, G. Bernard; Addad, A.; Benameur, N.; Beclin, F.; Bataille, A.

    2009-01-01

    The distribution of inversion defects of Al was investigated in dense magnesium-aluminate spinel elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering. This study was conducted by energy electron loss spectroscopy analyses and more particularly by energy loss near edge structure investigations of the Al-L 2,3 edge. Several aspects are discussed with the purpose of understanding why charged defects dispersal reveals a special configuration.

  9. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  10. Effects of LaB{sub 6} additions on the microstructure and mechanical properties of a sintered and hot worked P/M Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Jia; Gabbitas, Brian, E-mail: briang@waikato.ac.nz; Yang, Fei; Raynova, Stella; Lu, Huiyang

    2016-07-25

    A trace amount of LaB{sub 6} powder was added to P/M Ti and Ti–6Al–4V alloy to improve mechanical properties and refine the microstructure. After sintering, TiB whiskers and La{sub 2}O{sub 3} dispersoids had formed in the microstructure. In a CP Ti alloy, the generation of secondary phases leads to a much refined microstructure, but the alignment of TiB whiskers led to a variation in mechanical properties. Open die forging (ODF) or powder compact extrusion (PCE) was carried out on sintered Ti–6Al–4V alloy to further improve the mechanical properties. This caused severe deformation and re-alignment of the TiB whiskers. Comparing the properties of hot worked Ti–6Al–4V alloy and Ti–6Al–4V alloy with boron additions, an addition of LaB{sub 6} leads to slightly lower strength but gives significant better ductility. - Highlights: • LaB{sub 6} powder was added to sintered and hot worked Ti and Ti–6Al–4V alloy. • TiB whiskers and La{sub 2}O{sub 3} dispersoids formed in the microstructure. • Different alignments of TiB{sub w} led to a variation in mechanical properties. • Hot working caused severe deformation and re-alignment of TiB{sub w}. • An addition of LaB{sub 6} is better than pure boron additions.

  11. Movement Synchrony Forges Social Bonds Across Group Divides

    Directory of Open Access Journals (Sweden)

    Bahar eTuncgenc

    2016-05-01

    Full Text Available Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one’s in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs.

  12. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    International Nuclear Information System (INIS)

    Wojtaszek, Marek; Śleboda, Tomasz

    2014-01-01

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography

  13. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  14. Strain-induced grain growth of cryomilled nanocrystalline Al in trimodal composites during forging

    International Nuclear Information System (INIS)

    Yao, B.; Simkin, B.; Majumdar, B.; Smith, C.; Bergh, M. van den; Cho, K.; Sohn, Y.H.

    2012-01-01

    Highlights: ► Grain growth of cryomilled nanocrystalline aluminum during hot forging. ► Use of hollow cone dark field imaging technique in TEM for grain size measurement. ► Grain growth model of strain, strain rate and temperature for forging optimization. - Abstract: Grain growth of nanocrystalline aluminum ( nc Al) in trimodal Al metal-matrix-composites (MMCs) during hot forging was investigated. The nc Al phase formed through cryomilling of inert gas-atomized powders in liquid nitrogen has an average grain size down to 21 nm, exhibits excellent thermal stability. However, substantial grain growth of nc Al up to 63 nm was observed when the Al MMCs were thermo-mechanically processed even at relatively low temperatures. Grain growth of the cryomilled nc Al phase in trimodal Al MMCs after hot forging was documented with respect to temperature ranging from 175 °C to 287 °C, true strain ranging from 0.4 to 1.35 and strain rate ranging from 0.1 to 0.5 s −1 . Hollow cone dark field imaging technique was employed to provide statistically confident measurements of nc Al grain size that ranged from 21 to 63 nm. An increase in forging temperature and an increase in true strain were correlated with an increase in grain size of nc Al. Results were correlated to devise a phenomenological grain growth model for forging that takes strain, strain rate and temperature into consideration. Activation energy for the grain growth during thermo-mechanical hot-forging was determined to be 35 kJ/mol, approximately a quarter of activation energy for bulk diffusion of Al and a half of activation energy for static recrystallization.

  15. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  16. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  17. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  18. The dimensional accuracy of the sintered billets

    Directory of Open Access Journals (Sweden)

    Чингиз Ариф оглы Алиев

    2016-01-01

    Full Text Available The article presents the results of assessing the impact of the behaviour stability of the components included in the compositions and process parameters of their production, on the dimensional accuracy of workpieces. It was found that by increasing the amount of oxide in the composition is greater compaction of the sintered billet in the process of heat treatment. This also increases the density of all components of the composition

  19. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  20. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  1. Sintered stabilized zirconia microstructure and conductivity

    International Nuclear Information System (INIS)

    Bernard, Herve.

    1981-04-01

    The elaboration of a stabilized zirconia powder which sinters at 1300 0 C and the influence of the sintered polycristal microstructure on its ionic conductivity have been studied. Among three investigated powder preparation processes, coprecipitation in an ammoniacal solution was chosen. After sintering at 1300 0 C, the pellet density was higher than 93% of the theoretical density. It even approached up to 98% TD with addition of less than 0,5 mole % Al 2 O 3 to the initial powder. The overall electrolyte conductivity and the inter and intragranular contributions have been determined by complex impedance spectroscopy. ZrO 2 -Y 2 O 3 solid solution conductivity was scarcely improved by Y 2 O 3 exchange with Yb 2 O 3 or Gd 2 O 3 . This conductivity greatly increases with grain size, its improvement with decreasing porosity, which has been quantified, is less sensible. Moreover, two original properties were noticed: small amounts of Al 2 O 3 and quenching greatly enhanced the overall conductivity. At temperatures below 500 0 C, grain boundaries only insured a partial migration of conductive ions. A parallel type electrical equivalent circuit suited well with this blocking effect [fr

  2. Microstructural heterogeneities and fatigue anisotropy of forged steels

    Energy Technology Data Exchange (ETDEWEB)

    Pessard, Etienne, E-mail: etienne.pessard@angers.ensam.fr [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Morel, Franck [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Verdu, Catherine [MATEIS, INSA-Lyon, Universite de Lyon, 25 Av Jean Capelle, 69621 Villeurbanne Cedex (France); Flaceliere, Laurent; Baudry, Gilles [CREAS - ASCOMETAL, BP 70045, 57301 Hagondange (France)

    2011-11-25

    Highlights: {yields} Tomography result: fibering is composed of non-metallic inclusions bands. {yields} Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. {yields} Cracks initiate from both inclusion clusters and from the bainitic matrix. {yields} The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0{sup o} relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45{sup o} and 90{sup o}, the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  3. Microstructural heterogeneities and fatigue anisotropy of forged steels

    International Nuclear Information System (INIS)

    Pessard, Etienne; Morel, Franck; Verdu, Catherine; Flaceliere, Laurent; Baudry, Gilles

    2011-01-01

    Highlights: → Tomography result: fibering is composed of non-metallic inclusions bands. → Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. → Cracks initiate from both inclusion clusters and from the bainitic matrix. → The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0 o relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45 o and 90 o , the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  4. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    International Nuclear Information System (INIS)

    Nematzadeh, Fardin; Akbarpour, Mohammad Reza; Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam

    2009-01-01

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  5. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Science.gov (United States)

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  6. Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature.

    Science.gov (United States)

    Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong

    2016-08-16

    Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti₂Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process.

  7. New design of process for cold forging to improve multi-stage gas fitting

    Directory of Open Access Journals (Sweden)

    Han-Sung Huang

    2016-04-01

    Full Text Available This work develops a process that solves the problem of the formation of cracks inside forged gas fittings in the cold forging process that arises from poor forging process design. DEFORM-3D forming software was utilized, and macroscopic experiments with optical microscopy and scanning electron microscopy were conducted to investigate the processed structures and the distribution therein of metal flow lines, and to find the internal micro-cracks to determine whether the cold forging process is reasonable. Analytical results herein demonstrate that the stress and strain inside the gas fitting can be elucidated using metal forming software. Together with experimental results, they demonstrate that a concentration of stress damages the workpiece in the forming process. Moreover, as metal flow lines become narrower, the workpiece becomes more easily damaged. Consequently, the improved cold forging process that is described in this work should be utilized to reduce the occurrence of fine cracks and defects. Planning for proper die design and production, increasing the quality of products, and reducing the number of defective products promote industrial competitiveness.

  8. Manufacturing of Nanostructured Rings from Previously ECAE-Processed AA5083 Alloy by Isothermal Forging

    Directory of Open Access Journals (Sweden)

    C. J. Luis

    2013-01-01

    Full Text Available The manufacturing of a functional hollow mechanical element or ring of the AA5083 alloy previously equal channel angular extrusion (ECAE processed, which presents a submicrometric microstructure, is dealt with. For this purpose, the design of two isothermal forging dies (preform and final shape is carried out using the design of experiments (DOE methodology. Moreover, after manufacturing the dies and carrying out tests so as to achieve real rings, the mechanical properties of these rings are analysed as well as their microstructure. Furthermore, a comparison between the different forged rings is made from ECAE-processed material subjected to different heat treatments, previous to the forging stage. On the other hand, the ring forging process is modelled through the use of finite element simulation in order to improve the die design and to study the force required for the isothermal forging, the damage value, and the strain the material predeformed by ECAE has undergone. With this present research work, it is intended to improve the knowledge about the mechanical properties of nanostructured material and the applicability of this material to industrial processes that allow the manufacturing of functional parts.

  9. Identification of Forged Bank of England 20 Gbp Banknotes Using IR Spectroscopy

    Science.gov (United States)

    Sonnex, Emily

    2014-06-01

    Bank of England notes of 20 GBP denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. A principal aim of this work was to develop a method so that a small, compact ATR FTIR instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 wn from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine 20 GBP notes were observed in the ν(OH) (ca. 3500 wn), ν(C-H) (ca. 2900 wn) and ν(C=O) (ca. 1750 wn) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Further to this, with an announcement by the Bank of England to produce polymer banknotes in the future, the work has been extended using Australian polymer banknotes to show that the method would be transferable.

  10. Identification of forged Bank of England £20 banknotes using IR spectroscopy.

    Science.gov (United States)

    Sonnex, Emily; Almond, Matthew J; Baum, John V; Bond, John W

    2014-01-24

    Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm(-1) arising from νasym (CO3(2-)) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm(-1)), ν(C-H) (ca. 2900 cm(-1)) and ν(C=O) (ca. 1750 cm(-1)) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Identification of forged Bank of England £20 banknotes using IR spectroscopy

    Science.gov (United States)

    Sonnex, Emily; Almond, Matthew J.; Baum, John V.; Bond, John W.

    2014-01-01

    Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm-1 arising from νasym (CO32-) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm-1), ν(Csbnd H) (ca. 2900 cm-1) and ν(Cdbnd O) (ca. 1750 cm-1) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper.

  12. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Directory of Open Access Journals (Sweden)

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  13. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1980-06-01

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO 2 gels and UO 2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO 2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author) [pt

  14. Numerical simulation of the dynamic recrystallization behaviour in hot precision forging helical gears

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-01-01

    Full Text Available In hot precision forging helical gears, the dynamic recrystallization phenomena will occur, which affect the microstructure of the formed part and in turn decide their mechanical properties. To investigate the effect of deformation temperature on the dynamic recrystallization in hot precision forging helical gears, a three dimensional (3D finite element (FE model was created by coupling the thermo-mechanical model with the microstructure evolution model developed based on the hot compressive experimental data of 20CrMnTiH steel. The hot precision forging process was simulated and the effect laws of the deformation temperature on the microstructure evolution the formed part were investigated. The results show that the dynamic recrystallization volume fraction and the average grain sizes increased with the increasing deformation temperature and the higher deformation temperature is beneficial to dynamic recrystallization and grain refinement.

  15. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  16. The effects of thermomechanical history on the microstructure of a nickel-base superalloy during forging

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S., E-mail: 485354@swansea.ac.uk [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom); Li, W. [Rolls-Royce plc, PO Box 31, Derby DE24 8BJ (United Kingdom); Coleman, M. [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom); Johnston, R., E-mail: r.johnston@swansea.ac.uk [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom)

    2016-06-21

    The effect of thermo-mechanical history on hot compression behaviour and resulting microstructures of a nickel base superalloy is presented. Hot compression tests were carried out on HAYNES® 282® specimens to varying strains from 0.1 to 0.8. Both single pass and multi-pass tests were completed. 60 min inter-pass times were utilized to accurately replicate industrial forging practices. The effect of dynamic, metadynamic and static recrystallization during inter-pass times on flow stress was investigated. The resulting microstructures were analysed using scanning electron, optical microscopy and EBSD to relate grain size and homogeneity with flow stress data. The study showed a negligible difference between multi-pass and single pass tests for strain increments above 0.2. Therefore, when modelling similar low strain and strain rate forging processes in HAYNES® 282®, previous forging steps can be ignored.

  17. Open die forging of large shafts with porosity defects – physical and numerical modelling

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2013-01-01

    The aim and scope of this paper is centered to analyze the influence of the geometry of V-shaped dies on the closure of internal centerline porosity defects in ingots during multistep open-die forging. The investigation is performed with small scale physical models made from lead using V-shaped d......The aim and scope of this paper is centered to analyze the influence of the geometry of V-shaped dies on the closure of internal centerline porosity defects in ingots during multistep open-die forging. The investigation is performed with small scale physical models made from lead using V......-shaped dies with 90o and 120o and a reference pair of flat parallel platens. Holes drilled through the center of these preforms are produced to mimic centerline porosity in full scale cast ingots and intermediate rotation of the preforms replicate a multi-stage forging sequence under laboratory testing...

  18. Effect of Friction on Barreling during cold Upset Forging of Aluminium 6082 Alloy Solid cylinders

    Science.gov (United States)

    Priyadarshini, Amrita; Kiran, C. P.; Suresh, K.

    2018-03-01

    Friction is one of the significant factors in forging operations since it affects metal flow in the die, forming load, strain distribution, tool and die life, surface quality of the product etc. In upset forging, the frictional forces at the die-workpiece interface oppose the outward flow of the material due to which the specimen develops a barrel shape. As a result, the deformation becomes non-uniform or inhomogeneous which is undesirable. Barreling can be reduced by applying effective lubricant on the surface of the platens. The objective of the present work is to study experimentally the effect of various frictional conditions (dry, grease, mineral oil) on barreling during upset forging of aluminum 6082 solid cylinders of different aspect ratio (length/diameter: 0.5, 0.75, 1). The friction coefficients are determined using the ring compression test. Curvature of barrel is determined based on the assumption that the curvature of the barrel follows the geometry of circular arc.

  19. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    International Nuclear Information System (INIS)

    Lim, H. K.; Kim, Y. S.

    2009-01-01

    When austenitic stainless steels are heat treated in the range of 500∼850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month

  20. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H. K.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of)

    2009-12-15

    When austenitic stainless steels are heat treated in the range of 500{approx}850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month.

  1. What history reveals about Forge River pollution on Long Island, New York's south shore.

    Science.gov (United States)

    Swanson, R Lawrence; Brownawell, B; Wilson, Robert E; O'Connell, Christine

    2010-06-01

    Fifty years ago, the Forge River and Moriches Bay, of Long Island's south shore lagoonal system, achieved notoriety when their polluted conditions were alluded to in a report of the US President's Science Advisory Committee (1965). The Woods Hole Oceanographic Institution investigated the bay throughout the 1950s, identifying duck farming as the cause of "objectionable", "highly contaminated" conditions of these waters. Much has changed: duck farming declined; the river was dredged to remove polluted sediments, improve navigation; and barrier island inlets stabilized. Yet, the river remains seasonally eutrophic. Why? This paper reviews what occurred in the Forge River watershed. While governments aggressively curtailed the impacts of duck pollution, they failed to manage development and sewage pollution. The Forge experience indicates that watershed management is a continuing governmental responsibility as development accelerates. Otherwise, we will always be looking for that instantaneous remediation that is usually not affordable and is socially contentious.

  2. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  3. High-Temperature Oxidation Behavior and Kinetics of Forged 12Cr-MoVW Steel

    Directory of Open Access Journals (Sweden)

    Kim Yong Hwan

    2017-06-01

    Full Text Available The oxidation kinetics of forged 12Cr-MoVW steel was investigated in an air (N2+O2 atmosphere at 873-1073 K (Δ50 K using thermogravimetric analysis. The oxidized samples were characterized using X-ray diffraction, and the surface and cross-sectional morphologies were examined using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The forged 12Cr-MoVW steel samples exhibited parabolic behavior and a low oxidation rate compared with their as-cast counterparts. A protective oxide layer was uniformly formed at relatively low temperature (≤973 K for the forged samples, which thus exhibited better oxidation resistance than the as-cast ones. These oxides are considered solid-solution compounds such as (Fe, Cr2O3.

  4. The effects of composition and thermal path on hot ductility of forging steels

    Science.gov (United States)

    Connolly, Brendan M.

    This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.

  5. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  6. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  7. HAp physical investigation - the effect of sintering temperature

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Idris Besar; Rusnah Mustaffa; Cik Rohaida Che Hak

    2004-01-01

    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp). In this study, the HAp was prepared using polymeric sponge techniques with different binder concentration. The sintering process was carried out in air for temperature ranging from 1200 degree C to 1600 degree C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentration HAp showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut also be presented in this paper. (Author)

  8. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  9. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  10. Properties, structure and machnining capabilities sintered corundum abrasives

    Directory of Open Access Journals (Sweden)

    Cz.J. Niżankowski

    2010-07-01

    Full Text Available The diversity of sintered corundum abrasives used in both bonded and in the embankment of abrasive tools currently poses substantialproblems for their choice of technology to specific tasks. Therefore performed a comparative study of ownership structures and capacitiesof elected representatives machnining sintered corundum abrasives of different generations, and this is normal sintered alumina,submicrocrystalline alumina sintered and nanocrystalline alumina sintered. Were studied some properties of a set of abrasive particles,physicochemical properties and structural and mechanical and technological properties. The studies used the method of microscopicmeasurement to determine the shape of abrasive particles, the pycnometer to determine the density of abrasive, a spectrometer todetermine the chemical composition of the magnetic analyzer for determining the magnetic fraction, scanning electron microscope toanalysis of abrasive grains and a special position to designate the machining capacity abrasive grains. The results showed a significantincrease in machining capacity sintered corundum abrasives with increasing degree of fragmentation of the crystallites sintered corundum abrasives and distinctive bands in the emerging microchip. The originality of the development provides a comparative summary ofproperties of sintered corundum abrasives of different generations and functions obtained by the author making the change in value indexof machininhcapacity grit from cutting speeds for different generations of sintered corundum.

  11. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  12. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  13. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming

    2017-12-01

    The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.

  14. The development of reactor vessel internal heavy forging for 1000 MW pressurized-water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Zhifeng; Chen Yongbo; Ding Xiuping; Zhang Lingfang

    2012-01-01

    This Paper introduced the development of Reactor Vessel Internal (RVI) heavy forgings for 1000 MW Pressurized Water Reactor (PWR) nuclear power plant, analyzed the manufacture difficulties and technical countermeasures. The testing result of the product indicated that the performance of RVI heavy forgings manufactured by Shanghai Heavy Machinery Plant Ld. (SHMP) is outstanding and entirely satisfy the technical requirements for RVI product. (authors)

  15. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  16. 31 CFR 370.40 - Can I be held accountable if my negligence contributes to a forged signature?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Can I be held accountable if my negligence contributes to a forged signature? 370.40 Section 370.40 Money and Finance: Treasury Regulations... if my negligence contributes to a forged signature? (a) General. If your failure to exercise ordinary...

  17. Medium carbon vanadium steels for closed die forging; Acos de medio carbono microligados ao vanadio para forjaria em matriz fechada

    Energy Technology Data Exchange (ETDEWEB)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1994-12-31

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported 16 refs., 21 figs.

  18. 76 FR 52313 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Science.gov (United States)

    2011-08-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools (i.e... Administration, Department of Commerce. SUMMARY: As a result of the determinations by the Department of Commerce... on heavy forged hand tools (i.e., [[Page 52314

  19. 77 FR 39997 - Heavy Forged Hand Tools, Finished or Unfinished, With or Without Handles From the People's...

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools...) (Diamond Sawblades), the Department is notifying the public that the final judgment in this case is not in... review on heavy forged hand tools, finished or unfinished, with or without handles from the People's...

  20. Application of directional solidification ingot (LSD) in forging of PWR reactor vessel heads

    International Nuclear Information System (INIS)

    Benhamou, C.; Poitrault, I.

    1985-09-01

    Creusot-Loire Industrie uses this type of ingot for manufacture of Framatome 1300 and 1450 MW 4-loop PWR reactor vessel heads. This type of ingot offers a number advantages: improved internal soundness; greater chemical, structural and mechanical homogeneity of the finished part; simplified forging process. After a brief description of the pouring and solidification processes, this paper presents an analysis of the results of examinations performed on the prototype forging, as well as review of results obtained during industrial fabrication of dished heads from LSD ingots. The advantages of the LSD ingot over conventional ingots are discussed in conclusion

  1. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    investigation, and the second stage is to design and manufacture a more practical tool system which can be used to forging some industrial components with larger capacity. The high performance and power piezoelectric actuator stack as the vibration source will be used for designing the vibration system in order...... to 50% with vibration being applied in forming process. Furthermore, by using finite element method, a series of the simulations of the cold forging process under die surface excitation have been implemented in order to further understand the influence of vibration on friction, especially the influence...

  2. A material based approach to creating wear resistant surfaces for hot forging

    Science.gov (United States)

    Babu, Sailesh

    Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate

  3. THE FORMING OF MAGNESIUM ALLOY FORGINGS FOR AIRCRAFT AND AUTOMOTIVE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Anna Dziubińska

    2016-09-01

    Full Text Available The paper presents the theoretical and technological aspects of forming magnesium alloy parts for aircraft and automotive applications. The main applications of magnesium alloys in the aircraft and automotive industries are discussed. In addition, the forging technology for magnesium alloys is generally described, with a particular emphasis on wrought alloys. A brief outline of the state of the art in the forging of magnesium alloys is given based on a survey of the specialist literature and the results of previous research by the authors.

  4. Study on antioxidant experiment on forged steel tube sheet and tube hole for steam generator

    International Nuclear Information System (INIS)

    Zong Hai; Wang Detai; Ding Yang

    2012-01-01

    Antioxidant experiment on forged steel tube sheet and tube hole for steam generator was studied and the influence of different simulated heat treatments on the antioxidant performance of tube sheet and tube hole was made. The influence of different antioxidant methods on the size of tube hole was drawn. Furthermore, the change of size and weight of 18MnD5 forged steel tube sheet on the condition of different simulated heat treatments was also studied. The analytical results have proved reference information for the use of 18MnD5 material and for key processes of processing tube hole and wearing and expanding U-style tube. (authors)

  5. Shape optimization of metal forming and forging products using the stress equivalent static loads calculated from a virtual model

    International Nuclear Information System (INIS)

    Jang, Hwan Hak; Jeong, Seong Beom; Park, Gyung Jin

    2012-01-01

    A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes

  6. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  7. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  8. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  9. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  10. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  11. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  12. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  13. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  14. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  15. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  16. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  17. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  18. Sintering of uranium dioxide obtained by continuous precipitation of AUC

    International Nuclear Information System (INIS)

    Amaya, C.D.; Sterba, M.E.; Russo, D.O.

    1993-01-01

    The Nuclear Materials Division in Bariloche Atomic Center evaluates the ceramic behaviour of UO 2 powders obtained from continuously precipitated and reduced AUC (Ammonium Uranyl Tri Carbonate). An analysis is made of powder characteristics (particle morphology and size distribution and specific area) on behaviour of UO 2 during sintering (compaction, sintering, pore and grain microstructure, etc.). 1 ref

  19. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    Science.gov (United States)

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  20. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ratures ranging from 570–630 ◦C. Microwave sintering at a heating rate of as high as 22◦. C/min resulted in ... The effect of heating mode and sintering temperature are discussed .... the compacts. This is attributed to the Zn evaporated from the.

  1. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  2. Design of a forging processing route for a gas turbine compressor disc in IMI 834

    International Nuclear Information System (INIS)

    Clark, G.S.

    1993-01-01

    The microstructure in all parts of a modern gas turbine compressor disc must be carefully controlled to give the optimum balance for resistance to creep and fatigue. This is particularly true for advanced titanium alloys such as IMI834. Dynamic recrystallisation during high temperature deformation and static recrystallisation and grain growth during heat treatment, all have a profound effect on the grain structure of the disc. These processes are affected by temperature, rate of deformation and various microstructural features. These may include the size and volume fraction of primary alpha particles and current beta grain size. The construction of a computer model to simulate the forging process must therefore take all these factors into account to fully simulate the mechanical and microstructural behaviour of the material during processing. This requires a complete characterisation of the material to formulate mechanical and microstructural constitutive equations for use in a visco-plastic finite element forging model. Similarly the forging equipment must be fully characterised so that forging processes can be accurately simulated. (orig.)

  3. Near-liquidus forging, partial remelting and thixoforging of an AZ91D + Y magnesium alloy

    International Nuclear Information System (INIS)

    Zhao Zude; Chen Qiang; Hu Chuankai; Huang Shuhai; Wang Yuanqing

    2009-01-01

    A new route, near-liquidus forging plus partial remelting, has been developed for obtaining globular microstructures. Firstly, a material is formed by near-liquidus forging for obtaining a fine dendritic microstructure. Globular microstructure can be produced by reheating the material into the semi-solid temperature range for a period of time. In this paper, an AZ91D alloy with the addition of yttrium was prepared by near-liquidus forging. Microstructure evolution during partial remelting was studied at temperatures and for times. Tensile mechanical properties of thixoforged components were also determined. It is shown that the fine dendritic structure firstly evolves into a blocky structure during partial remelting. With prolonged holding time, the blocky structure disintegrates into polygonal solid particles. Prolonging time and increasing temperature promote a faster spheroidization. Good mechanical properties are obtained for the thixoforged AZ91D alloy with the addition of yttrium prepared by near-liquidus forging, with a yield strength of 160.9 MPa and a ultimate tensile strength of 301.7 MPa and a elongation to fracture of 9.734%.

  4. A multi-scale approach for high cycle anisotropic fatigue resistance: Application to forged components

    International Nuclear Information System (INIS)

    Milesi, M.; Chastel, Y.; Hachem, E.; Bernacki, M.; Loge, R.E.; Bouchard, P.O.

    2010-01-01

    Forged components exhibit good mechanical strength, particularly in terms of high cycle fatigue properties. This is due to the specific microstructure resulting from large plastic deformation as in a forging process. The goal of this study is to account for critical phenomena such as the anisotropy of the fatigue resistance in order to perform high cycle fatigue simulations on industrial forged components. Standard high cycle fatigue criteria usually give good results for isotropic behaviors but are not suitable for components with anisotropic features. The aim is to represent explicitly this anisotropy at a lower scale compared to the process scale and determined local coefficients needed to simulate a real case. We developed a multi-scale approach by considering the statistical morphology and mechanical characteristics of the microstructure to represent explicitly each element. From stochastic experimental data, realistic microstructures were reconstructed in order to perform high cycle fatigue simulations on it with different orientations. The meshing was improved by a local refinement of each interface and simulations were performed on each representative elementary volume. The local mechanical anisotropy is taken into account through the distribution of particles. Fatigue parameters identified at the microscale can then be used at the macroscale on the forged component. The linkage of these data and the process scale is the fiber vector and the deformation state, used to calculate global mechanical anisotropy. Numerical results reveal an expected behavior compared to experimental tendencies. We proved numerically the dependence of the anisotropy direction and the deformation state on the endurance limit evolution.

  5. Use of Gleeble MAXStrain unit for study of damage development in hot forging

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Wang, Chao; Miroux, A.; Recina, V.; van den Boogaard, Antonius H.; Saanouni, K.

    2016-01-01

    The standard Gleeble MAXStrain unit has been modified to allow axial elongation. Analyses indicate that in this way both positive and negative hydrostatic stresses can be achieved during forging simulations, depending on the amount of strain per hit. This opens the way to the study of the effect of

  6. Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690

    Science.gov (United States)

    Bullens, Alexander L.; Bautista, Esteban; Jaye, Elizabeth H.; Vas, Nathaniel L.; Cain, Nathan B.; Mao, Keyou; Gandy, David W.; Wharry, Janelle P.

    2018-03-01

    This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400-800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall-Petch relationship for Ni-based superalloys predicts yield strength for 0-100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.

  7. eFORGE : A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data

    NARCIS (Netherlands)

    Breeze, Charles E.; Paul, Dirk S.; van Dongen, Jenny; Butcher, Lee M.; Ambrose, John C.; Barrett, James E.; Lowe, Robert; Rakyan, Vardhman K.; Iotchkova, Valentina; Frontini, Mattia; Downes, Kate; Ouwehand, Willem H.; Laperle, Jonathan; Jacques, Pierre-ETienne; Bourque, Guillaume; Bergmann, Anke K.; Siebert, Reiner; Vellenga, Edo; Saeed, Sadia; Matarese, Filomena; Martens, Joost H. A.; Stunnenberg, Hendrik G.; Teschendorff, Andrew E.; Herrero, Javier; Birney, Ewan; Dunham, Ian; Beck, Stephan

    2016-01-01

    Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new stand-alone and

  8. Effect of raw materials and hardening process on hardness of manually forged knife

    Science.gov (United States)

    Balkhaya, Suwarno

    2017-06-01

    Knives are normally made by forging process either using a machine or traditional method by means of hammering process. This present work was conducted to study the effects of steel raw materials and hardening process on the hardness of manually forged knives. The knife samples were made by traditional hammering (forging) process done by local blacksmith. Afterward, the samples were heat treated with two different hardening procedures, the first was based on the blacksmith procedure and the second was systematically done at the laboratory. The forging was done in the temperature ranged between 900-950°C, while the final temperature ranged between 650-675°C. The results showed that knives made of spring steel and heat treated in simulated condition at the laboratory obtained higher level of hardness, i.e. 62 HRC. In general, knives heat treated by local blacksmith had lower level of hardness that those obtained from simulated condition. Therefore, we concluded that the traditional knife quality in term of hardness can be improved by optimizing the heat treatment schedule.

  9. The Ties That Bind: How Social Capital Is Forged and Forfeited in Teacher Communities

    Science.gov (United States)

    Bridwell-Mitchell, E. N.; Cooc, North

    2016-01-01

    The effects of social capital on school improvement make it important to understand how teachers forge, maintain, or forfeit collegial relationships. Two common explanations focused on formal organizational features and individual characteristics do not address how social capital accrues from informal dynamics of teachers' interactions in…

  10. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  11. Developments of steel fabrication processes for castings and ingots for forgings

    International Nuclear Information System (INIS)

    Fernandez, S.

    1980-01-01

    This chapter deals with a series of technological developments in the manufacture of steels which have occurred during the last years, in particular reporting the results obtained in Reinosa with some of these methods in the fabrication of castings as well as forgings and rolled products. (author)

  12. Social Work and Engineering Collaboration: Forging Innovative Global Community Development Education

    Science.gov (United States)

    Gilbert, Dorie J.

    2014-01-01

    Interdisciplinary programs in schools of social work are growing in scope and number. This article reports on collaboration between a school of social work and a school of engineering, which is forging a new area of interdisciplinary education. The program engages social work students working alongside engineering students in a team approach to…

  13. Forgings made of austenitic chromium-nickel steels for the low temperature range

    International Nuclear Information System (INIS)

    Gruendler, O.; Schwarz, W.; Koren, M.

    1981-01-01

    The authors discuss the low temperature application of austenitic chromium-nickel steels for energy production and process techniques. Material requirements are presented, and the behaviour, mechanical and physical properties of such steels are discussed. The manufacture of forgings is considered and test results presented. (Auth.)

  14. Forgings made of austenitic chromium-nickel steels for the low temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Gruendler, O.; Schwarz, W.; Koren, M. (Vereinigte Edelstahlwerke A.G. (VEW), Kapfenberg (Austria))

    1981-09-01

    The authors discuss the low temperature application of austenitic chromium-nickel steels for energy production and process techniques. Material requirements are presented, and the behaviour, mechanical and physical properties of such steels are discussed. The manufacture of forgings is considered and test results presented.

  15. Current steel forgings and their properties for steam generator of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Tomoharu; Murai, Etsuo; Sato, Ikuo [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Suzuki, Kimiaki; Kusuhashi, Mikio; Tsukada, Hisashi [Japan Steel Works Ltd., Tokyo (Japan)

    2001-06-01

    On the steel forging (SF) elements for steam generator (SG) of the pressurized water type light water reactor (PWR), from a viewpoint of upgrading in their improvements of design and materials, here were described on three materials such as integrated steel forgings, high strength steel forgings, and vacuum carbon deoxidisation (VCD) steel forgings. On production of SG, by using the integrated SF, not only structural soundness of SG is upgraded, but also inspections containing inspections under production and usage become easier, to bring minimization of maintenance inspection and reduction of exposure under operation. And, in order to reduce weight of SG and upgrade seismic resistance, SA508, a Cl.3a high strength SF (620 MPa class in tensile strength) is used for some nuclear plants. Here were introduced material properties of this SF and described its chemical components and heat treatment condition. And, as a method to reduce macro- and micro-segregation of materials and to upgrade homogeneity of material property, a method combined deoxidisation of steel due to carbon monoxide reaction with crystal grain minimization due to addition of aluminum was investigated. In addition, properties of a low Si-SA508 Cl.3 steel using this method was compared with that of usual SA508 Cl.3 steel. (G.K.)

  16. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2010-11-01

    ... Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade Commission. ACTION... India and Taiwan. SUMMARY: The Commission hereby gives notice that it has instituted reviews pursuant to... the antidumping duty orders on forged stainless steel flanges from India and Taiwan would be likely to...

  17. 76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-639 and 640 (Third Review)] Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade Commission. ACTION... Taiwan would be likely to lead to continuation or recurrence of material injury. On January 31, 2011, the...

  18. Precipitation-hardening stainless steel bars, shapes, and forgings (ASME SA-564 with additional requirements)

    International Nuclear Information System (INIS)

    1975-05-01

    A standard prescribing requirements for precipitation-hardening stainless steel bars, shapes, and forgings (ASME SA-564 with additional requirements) for nuclear and associated applications is presented. This standard supersedes RDT M 7-6T, dated January 1974. (U.S.)

  19. Fabrication Improvement of Cold Forging Hexagonal Nuts by Computational Analysis and Experiment Verification

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-01-01

    Full Text Available Cold forging has played a critical role in fasteners and has been applied to the automobile industry, construction industry, aerospace industry, and living products so that cold forging presents the opportunities for manufacturing more products. By using computer simulation, this study attempts to analyze the process of creating machine parts, such as hexagonal nuts. The DEFORM-3D forming software is applied to analyze the process at various stages in the computer simulation, and the compression test is also used for the flow stress equation in order to compare the differences between the experimental results and the equation that is built into the computer simulation software. At the same time, the metallography and hardness of experiments are utilized to understand the cold forging characteristics of hexagonal nuts. The research results would benefit machinery businesses to realize the forging load and forming conditions at various stages before the fastener formation. In addition to planning proper die design and production, the quality of the produced hexagonal nuts would be more stable to promote industrial competitiveness.

  20. Influence of the hydrostatic stress component on critical surface expansion in forging compound products

    DEFF Research Database (Denmark)

    Vorm, T; Bay, Niels; Wanheim, Tarras

    1974-01-01

    of a superimposed hydrostatic pressure on the critical surface expansion during a forging process. The critical surface expansion appears to decrease with increasing hydrostatic pressure. This may be due to the fact that the close contact between the materials necessary to obtain bonding is created by a micro...