WorldWideScience

Sample records for sink rate sensor

  1. Efficient Information Dissemination in Wireless Sensor Networks using Mobile Sinks

    National Research Council Canada - National Science Library

    Vincze, Zoltan; Vidacs, Attila; Vida, Rolland

    2006-01-01

    ...; therefore, relaying information between sensors and a sink node, possibly over multiple wireless hops, in an energy-efficient manner is a challenging task that preoccupies the research community for some time now...

  2. Maximizing Lifetime of Wireless Sensor Networks with Mobile Sink Nodes

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2014-01-01

    Full Text Available In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.

  3. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    Energy Technology Data Exchange (ETDEWEB)

    Petrioli, Chiara (Universita di Roma); Carosi, Alessio (Universita di Roma); Basagni, Stefano (Northeastern University); Phillips, Cynthia Ann

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of the network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them

  4. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    Science.gov (United States)

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  5. Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2015-01-01

    Full Text Available The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.

  6. Data dissemination of emergency messages in mobile multi-sink wireless sensor networks

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Havinga, Paul J.M.

    In wireless sensor networks (WSNs), data dissemination is generally performed from sensor nodes to a static sink. If the data under consideration is an emergency message such as a fire alarm, it must be transmitted as fast and reliably as possible towards the sink of WSN. In such mission critical

  7. Sinking towards destiny: High throughput measurement of phytoplankton sinking rates through time-resolved fluorescence plate spectroscopy.

    Science.gov (United States)

    Bannon, Catherine C; Campbell, Douglas A

    2017-01-01

    Diatoms are marine primary producers that sink in part due to the density of their silica frustules. Sinking of these phytoplankters is crucial for both the biological pump that sequesters carbon to the deep ocean and for the life strategy of the organism. Sinking rates have been previously measured through settling columns, or with fluorimeters or video microscopy arranged perpendicularly to the direction of sinking. These side-view techniques require large volumes of culture, specialized equipment and are difficult to scale up to multiple simultaneous measures for screening. We established a method for parallel, large scale analysis of multiple phytoplankton sinking rates through top-view monitoring of chlorophyll a fluorescence in microtitre well plates. We verified the method through experimental analysis of known factors that influence sinking rates, including exponential versus stationary growth phase in species of different cell sizes; Thalassiosira pseudonana CCMP1335, chain-forming Skeletonema marinoi RO5A and Coscinodiscus radiatus CCMP312. We fit decay curves to an algebraic transform of the decrease in fluorescence signal as cells sank away from the fluorometer detector, and then used minimal mechanistic assumptions to extract a sinking rate (m d-1) using an RStudio script, SinkWORX. We thereby detected significant differences in sinking rates as larger diatom cells sank faster than smaller cells, and cultures in stationary phase sank faster than those in exponential phase. Our sinking rate estimates accord well with literature values from previously established methods. This well plate-based method can operate as a high throughput integrative phenotypic screen for factors that influence sinking rates including macromolecular allocations, nutrient availability or uptake rates, chain-length or cell size, degree of silification and progression through growth stages. Alternately the approach can be used to phenomically screen libraries of mutants.

  8. SCODE: A Secure Coordination-Based Data Dissemination to Mobile Sinks in Sensor Networks

    Science.gov (United States)

    Hung, Lexuan; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    For many sensor network applications such as military, homeland security, it is necessary for users (sinks) to access sensor networks while they are moving. However, sink mobility brings new challenges to secure routing in large-scale sensor networks. Mobile sinks have to constantly propagate their current location to all nodes, and these nodes need to exchange messages with each other so that the sensor network can establish and maintain a secure multi-hop path between a source node and a mobile sink. This causes significant computation and communication overhead for sensor nodes. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. In this paper, we propose a secure and energy-efficient data dissemination protocol — Secure COodination-based Data dissEmination (SCODE) — for mobile sinks in sensor networks. We take advantages of coordination networks (grid structure) based on Geographical Adaptive Fidelity (GAF) protocol to construct a secure and efficient routing path between sources and sinks. Our security analysis demonstrates that the proposed protocol can defend against common attacks in sensor network routing such as replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Our performance evaluation both in mathematical analysis and simulation shows that the SCODE significantly reduces communication overhead and energy consumption while the latency is similar compared with the existing routing protocols, and it always delivers more than 90 percentage of packets successfully.

  9. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  10. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  11. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chuan Zhu

    2014-01-01

    Full Text Available This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  12. Mechanisms and rates of bacterial colonization of sinking aggregates

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Grossart, H.P.; Ploug, H.

    2002-01-01

    Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling...... (0 to 2 s(-1)). The rates at which these bacteria colonized artificial aggregates (stationary and sinking) largely agreed with model predictions. We report several findings. (i) Motile bacteria rapidly colonize aggregates, whereas nonmotile bacteria do not. 00 Flow enhances colonization rates. (iii......) Tumbling strains colonize aggregates enriched with organic substrates faster than unenriched aggregates, while a nontumbling strain did not. (iv) Once on the aggregates, the bacteria may detach and typical residence time is about 3 h. Thus, there is a rapid exchange between attached and free bacteria. (v...

  13. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Directory of Open Access Journals (Sweden)

    Malin Premaratne

    2009-01-01

    Full Text Available Measurement losses adversely affect the performance of target tracking. The sensor network’s life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node’s path. First, we assume that the mobile sink node’s position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods’ performance.

  14. Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks

    Science.gov (United States)

    Khan, Majid I.; Gansterer, Wilfried N.; Haring, Guenter

    2013-01-01

    Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax, the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar, the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar. The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy efficiency

  15. Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks.

    Science.gov (United States)

    Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter

    2013-05-15

    Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy

  16. Data Transmission Scheme Using Mobile Sink in Static Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2015-01-01

    Full Text Available Multihop communication in wireless sensor network (WSN brings new challenges in reliable data transmission. Recent work shows that data collection from sensor nodes using mobile sink minimizes multihop data transmission and improves energy efficiency. However, due to continuous movements, mobile sink has limited communication time to collect data from sensor nodes, which results in rapid depletion of node’s energy. Therefore, we propose a data transmission scheme that addresses the aforementioned constraints. The proposed scheme first finds out the group based region on the basis of localization information of the sensor nodes and predefined trajectory information of a mobile sink. After determining the group region in the network, selection of master nodes is made. The master nodes directly transmit their data to the mobile sink upon its arrival at their group region through restricted flooding scheme. In addition, the agent node concept is introduced for swapping of the role of the master nodes in each group region. The master node when consuming energy up to a certain threshold, neighboring node with second highest residual energy is selected as an agent node. The mathematical analysis shows that the selection of agent node maximizes the throughput while minimizing transmission delay in the network.

  17. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink

    Science.gov (United States)

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-01-01

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434

  18. A Type of Low-Latency Data Gathering Method with Multi-Sink for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chao Sha

    2016-06-01

    Full Text Available To balance energy consumption and reduce latency on data transmission in Wireless Sensor Networks (WSNs, a type of low-latency data gathering method with multi-Sink (LDGM for short is proposed in this paper. The network is divided into several virtual regions consisting of three or less data gathering units and the leader of each region is selected according to its residual energy as well as distance to all of the other nodes. Only the leaders in each region need to communicate with the mobile Sinks which have effectively reduced energy consumption and the end-to-end delay. Moreover, with the help of the sleep scheduling and the sensing radius adjustment strategies, redundancy in network coverage could also be effectively reduced. Simulation results show that LDGM is energy efficient in comparison with MST as well as MWST and its time efficiency on data collection is higher than one Sink based data gathering methods.

  19. Sensors for rate responsive pacing

    Directory of Open Access Journals (Sweden)

    Simonetta Dell’Orto

    2004-07-01

    Full Text Available Advances in pacemaker technology in the 1980s have generated a wide variety of complex multiprogrammable pacemakers and pacing modes. The aim of the present review is to address the different rate responsive pacing modalities presently available in respect to physiological situations and pathological conditions. Rate adaptive pacing has been shown to improve exercise capacity in patients with chronotropic incompetence. A number of activity and metabolic sensors have been proposed and used for rate control. However, all sensors used to optimize pacing rate metabolic demands show typical limitations. To overcome these weaknesses the use of two sensors has been proposed. Indeed an unspecific but fast reacting sensor is combined with a more specific but slower metabolic one. Clinical studies have demonstrated that this methodology is suitable to reproduce normal sinus behavior during different types and loads of exercise. Sensor combinations require adequate sensor blending and cross checking possibly controlled by automatic algorithms for sensors optimization and simplicity of programming. Assessment and possibly deactivation of some automatic functions should be also possible to maximize benefits from the dual sensor system in particular conditions. This is of special relevance in patient whose myocardial contractility is limited such as in subjects with implantable defibrillators and biventricular pacemakers. The concept of closed loop pacing, implementing a negative feedback relating pacing rate and the control signal, will provide new opportunities to optimize dual-sensors system and deserves further investigation. The integration of rate adaptive pacing into defibrillators is the natural consequence of technical evolution.

  20. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-01-01

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971

  1. Dynamic sink assignment for efficient energy consumption in wireless sensor networks

    KAUST Repository

    Oikonomou, Konstantinos N.

    2012-04-01

    Efficient energy consumption is a challenging problem in wireless sensor networks (WSNs) and closely related to extending network lifetime. The usual way of tackling this issue for topologies with fixed link weight and fixed sink location, has been shown to be severely affected by the energy hole problem. In this paper, the energy consumption problem is initially studied for WSNs with fixed sink assignment and it is analytically shown that energy consumption is minimized when the sink is assigned to the node that is the solution of a suitably formulated 1-median problem. This motivates the introduction of a dynamic environment where link weights change based on the energy level and the aggregate traffic load of the adjacent nodes. Then, the sink is adaptively allowed to move among neighbor nodes, according to a scalable sink migration strategy. Simulation results support the analytical claims demonstrating energy consumption reduction and an additional network lifetime increment when migration is employed in the dynamic environment. © 2012 IEEE.

  2. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  3. Data Collection Method for Mobile Control Sink Node in Wireless Sensor Network Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yongfa

    2016-01-01

    Full Text Available The paper proposes a mobile control sink node data collection method in the wireless sensor network based on compressive sensing. This method, with regular track, selects the optimal data collection points in the monitoring area via the disc method, calcu-lates the shortest path by using the quantum genetic algorithm, and hence determines the data collection route. Simulation results show that this method has higher network throughput and better energy efficiency, capable of collecting a huge amount of data with balanced energy consumption in the network.

  4. Leaky Sinks: Should (Paleo)erosion Rates and Floodplain Sedimentation Rates Covary?

    Science.gov (United States)

    Willenbring, J. K.; Brocard, G. Y.

    2016-12-01

    Sediments in floodplain are the only available terrestrial record of past environmental conditions in some settings. The information gleaned from these floodplain sediments - specifically rates of sedimentation - are often used as indirect indicators of past erosion rates. Ultimately, erosion and the deposition rates must match to satisfy mass balance. However, over short-timescales storage creates unsteadiness in this balance, and over long-timescales floodplains act as `leaky sinks.' A global compilation of Holocene floodplain accumulation rates suggests rates measured over the last 100 years are faster than those averaged over 1000 years, which in turn are faster than those for the last 10000 years. The apparent acceleration in sedimentation rates appears globally synchronous, despite diachronous human and land use histories and can pre-date significant human land use. The pattern of rate increase in sedimentation over time (inverse power law) and rates of erosion that match over short and long timescales point to the rate increase indicating infilling behavior of all floodplains and not specifically tied to the supply of (anthropogenic) sediment. The apparent synchrony of accelerating floodplain accumulation is consistent with a model that could include but does not require increased anthropogenic erosion or more, recent flooding episodes. In this presentation, we will present our progress and prospects of developing a new technique to quantify paleoerosion rates in floodplain sediments along the Rio Fajardo in eastern Puerto Rico. We use meteoric cosmogenic 10Be concentrations to observe changed in erosion rate at multiple radiocarbon-dated intervals. Due to sea level rise providing accommodation space, this floodplain sedimentation record spans the last 20,000 years. During this time, sedimentation rates and potentially El Nino hurricane-forced erosion have fluctuated in concert with meteoric 10Be concentrations. This work was supported by the U.S. National

  5. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors.

    Science.gov (United States)

    Kowalski, Nicole; Reichardt, Aurelia M; Waniek, Joanna J

    2016-08-15

    To follow the pathways of microplastics in aquatic environments, profound knowledge about the behaviour of microplastics is necessary. Therefore, sinking experiments were conducted with diverse polymer particles using fluids with different salinity. Particles ranged from 0.3 and 3.6mm with sinking rates between 6 and 91×10(-3)ms(-1). The sinking velocity was not solely related to particle density, size and fluid density but also to the particles shape leading to considerable deviation from calculated theoretical values. Thus, experimental studies are indispensable to get basic knowledge about the sinking behaviour and to gain representative datasets for model approaches estimating the distribution of microplastics in aquatic systems. The sinking behaviour may be altered considerably by weathering and biofouling demanding further studies with aged and fouled plastic particles. Furthermore, assumptions are made about the influence of sinking fouled microplastics on the marine carbon pump by transferring organic carbon to deeper water depths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-01-01

    Full Text Available In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  7. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  8. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  9. Balanced Transmissions Based Trajectories of Mobile Sink in Homogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mariam Akbar

    2017-01-01

    Full Text Available Mobile Sink (MS based routing strategies have been widely investigated to prolong the lifetime of Wireless Sensor Networks (WSNs. In this paper, we propose two schemes for data gathering in WSNs: (i MS moves on random paths in the network (RMS and (ii the trajectory of MS is defined (DMS. In both the schemes, the network field is logically divided into small squares. The center point of each partitioned area is the sojourn location of the MS. We present three linear programming based models: (i to maximize network lifetime, (ii to minimize path loss, and (iii to minimize end to end delay. Moreover, a geometric model is proposed to avoid redundancy while collecting information from the network nodes. Simulation results show that our proposed schemes perform better than the selected existing schemes in terms of the selected performance metrics.

  10. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge

    Directory of Open Access Journals (Sweden)

    Le Xuan Hung

    2008-12-01

    Full Text Available For many sensor network applications such as military or homeland security, it is essential for users (sinks to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1 Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2 The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3 The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4 Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5 No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.

  11. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge.

    Science.gov (United States)

    Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    2008-12-03

    For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODE plus . It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODE plus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.

  12. Integrated optical rate sensor development

    Science.gov (United States)

    Bernard, W.; Schlaak, H.

    A single-chip passive ring resonator (PARR) excited externally by a tunable diode laser is described. The key elements of the PARR sensor include dielectric waveguides, a waveguide resonator, directional couplers, and modulators, all integrated on a common chip by using photolithography, thin-film-deposition techniques, and ionic-diffusion processes. The sensor's stabilization and control minimum requirements for the optical and electronic setup are compared with state-of-the-art integrated optics; the loss mechanisms in waveguides are discussed; and the tailoring of low-loss waveguide resonators and coupler matrices is shown. Special consideration is given to specific design problems associated with the fabrication of masks for the waveguide topography. Results of the technological and cost analyses indicate that a gyro on a single chip is achievable, and that its batch production is sufficiently cost-effective to allow replacement of the conventional low-accuracy rate-stabilization aircraft sensors and to open new sales markets in the robotics and automobile industry. Design diagrams of PARR components and flow diagrams of fabrication techniques are included.

  13. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  14. A Lifetime Optimization Algorithm Limited by Data Transmission Delay and Hops for Mobile Sink-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2017-01-01

    Full Text Available To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.

  15. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    Science.gov (United States)

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  16. Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets.

    Science.gov (United States)

    Cole, Matthew; Lindeque, Penelope K; Fileman, Elaine; Clark, James; Lewis, Ceri; Halsband, Claudia; Galloway, Tamara S

    2016-03-15

    Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL(-1)) and natural prey (∼1650 algae mL(-1)) the copepod Calanus helgolandicus egested faecal pellets with significantly (P microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.

  17. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  18. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong Loo

    2011-05-01

    Full Text Available The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  19. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  20. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  1. Measuring heart rate with optical sensor

    NARCIS (Netherlands)

    Barachi, M. (Mitra)

    2014-01-01

    The problem addressed in this report is to verify the possibility of using an optical sensor in the SaxShirt in order to extract the heart rate. There are specifically three questions that we try to address. 1) How is it possible to extract heart rate (BPM) from the optical sensor? 2) Is it

  2. Achieving sink node anonymity in tactical wireless sensor networks using a reactive routing protocol

    Science.gov (United States)

    2017-06-01

    Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing ...instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...demonstrate the effectiveness of our protocol and also show some of the performance tradeoffs that come with this method . 14. SUBJECT TERMS Sink

  3. An Energy Scaled and Expanded Vector-Based Forwarding Scheme for Industrial Underwater Acoustic Sensor Networks with Sink Mobility.

    Science.gov (United States)

    Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-09-30

    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.

  4. Multi-sink mobile wireless sensor networks: dissemination protocols, design and evaluation

    NARCIS (Netherlands)

    Erman-Tüysüz, A.

    2011-01-01

    In pervasive systems, as they are getting smaller and smaller, computers can be found just about everywhere, but their presence is not noticed because the technologies are often embedded within items. One of the smallest and well known embedded computers is a wireless sensor node, which is a passive

  5. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets

    Science.gov (United States)

    Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.

    2012-01-01

    The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter

  6. Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean

    Science.gov (United States)

    Fischer, G.; Karakaş, G.

    2009-01-01

    The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling

  7. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.

    2017-11-02

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality, and the observation accuracy at the sensor level. In particular, the aim is to reconstruct the estimation parameter with minimum error at a fusion center under a system budget constraint. To achieve this goal, a subset of sensing locations is selected from a large pool of candidate sensing locations. Furthermore, the type of sensor to be placed at those locations is selected from a given set of sensor types (e.g., sensors with different power ratings). We further investigate whether it is better to install a large number of cheap sensors, a few expensive sensors or a combination of different sensor types at the optimal locations.

  8. Determining the capacity and rate of advance of tunneling scoops during the sinking of shafts

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1979-03-01

    Methods for calculating parameters and selecting tunneling rigs for deepening mine shafts and for determining their rate of advance are outlined. The output according to type of rig, scoop capacity and range of rate of advance in the shaft are determined firstly and then a graph of output in relation to the change of maximum rates of advance is constructed. The desired productivity is determined on the basis of output per working shift in loose soil. Having determined scoop capacity and rate of advance, the remaining parameters of the excavation may be determined.

  9. Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton

    International Nuclear Information System (INIS)

    Chavez, F.P.; Buck, K.R.; Coale, K.H.; Martin, J.H.; DiTullio, G.R.; Welschmeyer, N.A.; Barber, R.T.; Jacobson, A.C.

    1991-01-01

    Concentrations of phytoplankton and NO 3 are consistently low and high in surface waters of the oceanic eastern and central equatorial Pacific, and phytoplankton populations are dominated by small solitary phytoplankton. Growth rates of natural phytoplankton populations, needed to assess the relative importance of many of the processes considered in the equatorial Pacific, were estimated by several methods. The growth rates of natural phytoplankton populations were found to be ∼0.7 d -1 or 1 biomass doubling d -1 and were similar for all methods. To keep this system in its observed balance requires that loss rates approximate observed growth rates. Grazing rates, measured with a dilution grazing experiment, were high, accounting for a large fraction of the daily production. Additions of various forms of Fe to 5-7-d incubations utilizing ultraclean techniques resulted in significant shifts in autotrophic and heterotrophic assemblages between initial samples, controls, and Fe enrichments, which were presumably due to Fe, grazing by both protistan and metazoan components, and incubation artifacts. Estimated growth rates of small pennate diatoms showed increases in Fe enrichments with respect to controls. The growth rates of the pennate diatoms were similar to those estimated for the larger size fraction of the natural populations

  10. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  11. Design and Implementation of a Digital Angular Rate Sensor

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2010-10-01

    Full Text Available With the aim of detecting the attitude of a rotating carrier, the paper presents a novel, digital angular rate sensor. The sensor consists of micro-sensing elements (gyroscope and accelerometer, signal processing circuit and micro-processor (DSP2812. The sensor has the feature of detecting three angular rates of a rotating carrier at the same time. The key techniques of the sensor, including sensing construction, sensing principles, and signal processing circuit design are presented. The test results show that the sensor can sense rolling, pitch and yaw angular rate at the same time and the measurement error of yaw (or pitch angular rate and rolling rate of the rotating carrier is less than 0.5%.

  12. Effect of type and concentration of ballasting particles on sinking rate of marine snow produced by the Appendicularian Oikopleura dioica

    DEFF Research Database (Denmark)

    Lombard, Fabien; Guidi, L.; Kiørboe, Thomas

    2013-01-01

    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed by the...

  13. An EM Induction Hi-Speed Rotation Angular Rate Sensor.

    Science.gov (United States)

    Li, Kai; Li, Yuan; Han, Yan

    2017-03-17

    A hi-speed rotation angular rate sensor based on an electromagnetic induction signal is proposed to provide a possibility of wide range measurement of high angular rates. An angular rate sensor is designed that works on the principle of electromagnetism (EM) induction. In addition to a zero-phase detection technique, this sensor uses the feedback principle of magnetic induction coils in response to a rotating magnetic field. It solves the challenge of designing an angular rate sensor that is suitable for both low and high rotating rates. The sensor was examined for angular rate measurement accuracy in simulation tests using a rotary table. The results show that it is capable of measuring angular rates ranging from 1 rps to 100 rps, with an error within 1.8‰ of the full scale (FS). The proposed sensor is suitable to measurement applications where the rotation angular rate is widely varied, and it contributes to design technology advancements of real-time sensors measuring angular acceleration, angular rate, and angular displacement of hi-speed rotary objects.

  14. An EM Induction Hi-Speed Rotation Angular Rate Sensor

    Directory of Open Access Journals (Sweden)

    Kai Li

    2017-03-01

    Full Text Available A hi-speed rotation angular rate sensor based on an electromagnetic induction signal is proposed to provide a possibility of wide range measurement of high angular rates. An angular rate sensor is designed that works on the principle of electromagnetism (EM induction. In addition to a zero-phase detection technique, this sensor uses the feedback principle of magnetic induction coils in response to a rotating magnetic field. It solves the challenge of designing an angular rate sensor that is suitable for both low and high rotating rates. The sensor was examined for angular rate measurement accuracy in simulation tests using a rotary table. The results show that it is capable of measuring angular rates ranging from 1 rps to 100 rps, with an error within 1.8‰ of the full scale (FS. The proposed sensor is suitable to measurement applications where the rotation angular rate is widely varied, and it contributes to design technology advancements of real-time sensors measuring angular acceleration, angular rate, and angular displacement of hi-speed rotary objects.

  15. Land plants drive photorespiration as higher electron-sink: comparative study of post-illumination transient O2 -uptake rates from liverworts to angiosperms through ferns and gymnosperms.

    Science.gov (United States)

    Hanawa, Hitomi; Ishizaki, Kimitsune; Nohira, Kana; Takagi, Daisuke; Shimakawa, Ginga; Sejima, Takehiro; Shaku, Keiichiro; Makino, Amane; Miyake, Chikahiro

    2017-09-01

    In higher plants, the electron-sink capacity of photorespiration contributes to alleviation of photoinhibition by dissipating excess energy under conditions when photosynthesis is limited. We addressed the question at which point in the evolution of photosynthetic organisms photorespiration began to function as electron sink and replaced the flavodiiron proteins which catalyze the reduction of O 2 at photosystem I in cyanobacteria. Algae do not have a higher activity of photorespiration when CO 2 assimilation is limited, and it can therefore not act as an electron sink. Using land plants (liverworts, ferns, gymnosperms, and angiosperms) we compared photorespiration activity and estimated the electron flux driven by photorespiration to evaluate its electron-sink capacity at CO 2 -compensation point. In vivo photorespiration activity was estimated by the simultaneous measurement of O 2 -exchange rate and chlorophyll fluorescence yield. All C3-plants leaves showed transient O 2 -uptake after actinic light illumination (post-illumination transient O 2 -uptake), which reflects photorespiration activity. Post-illumination transient O 2 -uptake rates increased in the order from liverworts to angiosperms through ferns and gymnosperms. Furthermore, photorespiration-dependent electron flux in photosynthetic linear electron flow was estimated from post-illumination transient O 2 -uptake rate and compared with the electron flux in photosynthetic linear electron flow in order to evaluate the electron-sink capacity of photorespiration. The electron-sink capacity at the CO 2 -compensation point also increased in the above order. In gymnosperms photorespiration was determined to be the main electron-sink. C3-C4 intermediate species of Flaveria plants showed photorespiration activity, which intermediate between that of C3- and C4-flaveria species. These results indicate that in the first land plants, liverworts, photorespiration started to function as electron sink. According to

  16. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    Science.gov (United States)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  17. Sink Status and Photosynthetic Rate of the Leaflet Galls Induced by Bystracoccus mataybae (Eriococcidae on Matayba guianensis (Sapindaceae

    Directory of Open Access Journals (Sweden)

    Denis C. Oliveira

    2017-07-01

    Full Text Available The galling insect Bystracoccus mataybae (Eriococcidae induces green and intralaminar galls on leaflets of Matayba guianensis (Sapindaceae, and promotes a high oxidative stress in host plant tissues. This biotic stress is assumed by the histochemical detection of hydrogen peroxide, a reactive oxygen species (ROS, whose production alters gall physiology. Thus, we hypothesize that high levels of nutrients are accumulated during gall development in response to a local maintenance of photosynthesis and to the galling insect activity. Moreover, the maintenance of low levels of photosynthesis may guarantee O2 production and CO2 consumption, as well as may avoid hypoxia and hypercarbia in gall tissues. To access the photosynthesis performance, the distribution of chlorophyllous tissues and the photochemical and carboxylation rates in gall tissues were analyzed. In addition, histochemical tests for hydrogen peroxide and phenolic derivatives were performed to confirm the biotic stress, and set the possible sites where stress dissipation occurs. The contents of sugars and nitrogen were evaluated to quantify the gall sink. Currently, we assume that the homeostasis in gall tissues is ruptured by the oxidative stress promoted by the galling insect activity. Thus, to supply the demands of gall metabolism, the levels of water-soluble polysaccharides and starch increase in gall tissues. The low values of maximum quantum efficiency of PSII (Fv/Fm indicate a low photosynthetic performance in gall tissues. In addition, the decrease of PSII operating efficiency, (F’m–F’/F’m, and Rfd (instantaneous fluorescence decline ratio in light, to measure tissue vitality demonstrate that the tissues of B. mataybae galls are more susceptible to damage caused by stressors than the non-galled tissues. Thus, the high oxidative stress in gall developmental sites is dissipated not only by the accumulation of phenolic derivatives in the protoplast, but also of lignins in the

  18. Material Removal Rate, Electrode Wear Rate, and Surface Roughness Evaluation in Die Sinking EDM with Hollow Tool through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Teepu Sultan

    2014-01-01

    Full Text Available Electrical discharge machining is one of the earliest nontraditional machining, extensively used in industry for processing of parts having unusual profiles with reasonable precision. In the present work, an attempt has been made to model material removal rate, electrode wear rate, and surface roughness through response surface methodology in a die sinking EDM process. The optimization was performed in two steps using one factor at a time for preliminary evaluation and a Box-Behnken design involving three variables with three levels for determination of the critical experimental conditions. Pulse on time, pulse off time, and peak current were changed during the tests, while a copper electrode having tubular cross section was employed to machine through holes on EN 353 steel alloy workpiece. The results of analysis of variance indicated that the proposed mathematical models obtained can adequately describe the performances within the limits of factors being studied. The experimental and predicted values were in a good agreement. Surface topography is revealed with the help of scanning electron microscope micrographs.

  19. Response of bean (Vicia faba L.) plants to low sink demand by measuring the gas exchange rates and chlorophyll a fluorescence kinetics.

    Science.gov (United States)

    Yan, Bo-Fang; Duan, Wei; Liu, Guo-Tian; Xu, Hong-Guo; Wang, Li-Jun; Li, Shao-Hua

    2013-01-01

    The decline of photosynthesis in plants under low sink demand is well known. Previous studies focused on the relationship between stomatal conductance (gs) and net photosynthetic rate (Pn). These studies investigated the effect of changes in Photosystem II (PSII) function on the Pn decline under low sink demand. However, little is known about its effects on different limiting steps of electron transport chain in PSII under this condition. Two-month-old bean plants were processed by removing pods and flowers (low sink demand). On the 1(st) day after low sink demand treatment, a decline of Pn was accompanied by a decrease in gs and internal-to-ambient CO2 concentration ratio (Ci/Ca). From the 3(rd) to 9(th) day, Pn and gs declined continuously while Ci/Ca ratio remained stable in the treatment. Moreover, these values were lower than that of control. Wk (a parameter reflecting the damage to oxygen evolving complex of the donor side of PSII) values in the treatment were significantly higher than their corresponding control values. However, RCQA (a parameter reflecting the number of active RCs per excited cross-section of PSII) values in the treatment were significantly lower than control from the 5(th) day. From the 11(th) to 21(st) day, Pn and gs of the treatment continued to decline and were lower than control. This was accompanied by a decrease of RCQA, and an increase of Wk. Furthermore, the quantum yield parameters φPo, φEo and ψEo in the treatment were lower than in control; however, Ci/Ca values in the treatment gradually increased and were significantly higher than control on the 21(st) day. Stomatal limitation during the early stage, whereas a combination of stomatal and non-stomatal limitation during the middle stage might be responsible for the reduction of Pn under low sink demand. Non-stomatal limitation during the late stages after the removal of the sink of roots and pods may also cause Pn reduction. The non-stomatal limitation was associated with the

  20. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Directory of Open Access Journals (Sweden)

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  1. Wink Sink

    Energy Technology Data Exchange (ETDEWEB)

    Baumgardner, R.W. Jr.

    1988-01-01

    The Wink Sink formed on June 3, l980. Inferred precursor of the sinkhole was a solution cavity in the Permian Salado Formation formed either by natural dissolution or by water flow in an abandoned oil well. Correlation of well logs in the area indicates that the Salado Formation contains several dissolution zones. Dissolution in the middle of the Salado evaporite sequence may have resulted from ground-water flow along fractured anhydrite interbeds. The Wink Sink lies directly above the Permian Capitan reef on the margin of a natural salt dissolution trough. Other natural collapse features overlie the reef to the north. Hydraulic head of water in the reef is higher than the elevation of the Salado Formation but lower than the head in the Triassic Santa Rosa Sandstone, a near-surface freshwater aquifer. Fracture or cavernous permeability occurs above, within, and below the Salado Formation. Consequently, a brine-density flow may be operating: relatively fresh water moves upward through fractures under artesian pressure and dissolves salt; the denser brine moves downward under gravity flow. Alternatively, downward flow of water from freshwater aquifers above the salt may have caused dissolution. An oil well drilled into the Permian Yates Formation (with the aid of nitroglycerine) in 1928 was located within the sinkhole. The well initially produced about 80% saline water from the Permian Tansill Formation, which directly underlies the Salado. About 600 ft of casing was removed from the well when it was plugged and abandoned in 1964.

  2. Pen harvester for powering a pulse rate sensor

    International Nuclear Information System (INIS)

    Bedekar, Vishwas; Oliver, Josiah; Priya, Shashank

    2009-01-01

    Rapid developments in the area of micro-sensors for various applications such as structural health monitoring, bio-chemical sensors and pressure sensors have increased the demand for portable, low cost, high efficiency energy harvesting devices. In this paper, we describe the scheme for powering a pulse rate sensor with a vibration energy harvester integrated inside a pen commonly carried by humans in the pocket close to the heart. Electromagnetic energy harvesting was selected in order to achieve high power at lower frequencies. The prototype pen harvester was found to generate 3 mW at 5 Hz and 1 mW at 3.5 Hz operating under displacement amplitude of 16 mm (corresponding to an acceleration of approximately 1.14 g rms at 5 Hz and 0.56 g rms at 3.5 Hz, respectively). A comprehensive mathematical modelling and simulations were performed in order to optimize the performance of the vibration energy harvester. The integrated pen harvester prototype was found to generate continuous power of 0.46-0.66 mW under normal human actions such as jogging and jumping which is enough for a small scale pulse rate sensor.

  3. Moderate topsoil erosion rates constrain the magnitude of the erosion-induced carbon sink and agricultural productivity losses on the Chinese Loess Plateau

    Science.gov (United States)

    Zhao, J.; Van Oost, K.; Chen, L.; Govers, G.

    2015-09-01

    Despite a multitude of studies, erosion rates as well as the contribution of different processes on Chinese Loess Plateau (CLP) remain uncertain. This makes it impossible to correctly assess the impact of conservation programs and the magnitude of the erosion-induced carbon sink. We used a novel approach, based on field evidence, to reassess erosion rates on the CLP before and after conservation measures were implemented. Our results show that the current average topsoil erosion rate is 3-9 times lower than earlier estimates suggested: most sediments are mobilised by gully erosion and/or landsliding. Under 2005 conditions, the combination of topsoil erosion, gully erosion and landslides mobilised 0.81 ± 0.23 Gt yr-1 of sediments and 4.77 ± 1.96 Tg yr-1 of soil organic carbon (SOC): the latter number sets the maximum magnitude of the erosion-induced carbon sink, which is ca. 4 times lower than other recent estimates suggest. The sediment fluxes we calculate are consistent with sediment yields measured in the Yellow River. The conservation programs implemented from the 1950s onwards reduced topsoil erosion from 0.51 ± 0.13 to 0.30 ± 0.08 Gt yr-1 while SOC mobilisation was reduced from 7.63 ± 3.52 to 4.77 ± 1.96 Tg C. Prior to 1950, a geomorphological equilibrium existed whereby the amount of sediment and carbon exported to the Bohai sea was similar to the amount of sediment eroded on the CLP, so that the erosion-induced carbon sink nearly equalled the amount of mobilised SOC. Conservation efforts and reservoir construction have disrupted this equilibrium and most eroded sediments and carbon are now stored on land where part of the SOC may decompose, thereby potentially lowering the strength of the erosion-induced carbon sink. Despite the fact that average topsoil losses on the CLP are still relatively high, the current level of topsoil erosion on the CLP is no major threat to the agricultural productivity of the area, mainly because fertilizer application has

  4. Rate-based structural health monitoring using permanently installed sensors

    Science.gov (United States)

    Corcoran, Joseph

    2017-09-01

    Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of `trends' in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are `self-accelerating' with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine.

  5. Reduced rate of intensive care unit acquired gram-negative bacilli after removal of sinks and introduction of ‘water-free’ patient care

    Directory of Open Access Journals (Sweden)

    Joost Hopman

    2017-06-01

    Full Text Available Abstract Background Sinks in patient rooms are associated with hospital-acquired infections. The aim of this study was to evaluate the effect of removal of sinks from the Intensive Care Unit (ICU patient rooms and the introduction of ‘water-free’ patient care on gram-negative bacilli colonization rates. Methods We conducted a 2-year pre/post quasi-experimental study that compared monthly gram-negative bacilli colonization rates pre- and post-intervention using segmented regression analysis of interrupted time series data. Five ICUs of a tertiary care medical center were included. Participants were all patients of 18 years and older admitted to our ICUs for at least 48 h who also received selective digestive tract decontamination during the twelve month pre-intervention or the twelve month post-intervention period. The effect of sink removal and the introduction of ‘water-free’ patient care on colonization rates with gram-negative bacilli was evaluated. The main outcome of this study was the monthly colonization rate with gram-negative bacilli (GNB. Yeast colonization rates were used as a ‘negative control’. In addition, colonization rates were calculated for first positive culture results from cultures taken ≥3, ≥5, ≥7, ≥10 and ≥14 days after ICU-admission, rate ratios (RR were calculated and differences tested with chi-squared tests. Results In the pre-intervention period, 1496 patients (9153 admission days and in the post-intervention period 1444 patients (9044 admission days were included. Segmented regression analysis showed that the intervention was followed by a statistically significant immediate reduction in GNB colonization in absence of a pre or post intervention trend in GNB colonization. The overall GNB colonization rate dropped from 26.3 to 21.6 GNB/1000 ICU admission days (colonization rate ratio 0.82; 95%CI 0.67–0.99; P = 0.02. The reduction in GNB colonization rate became more pronounced in patients

  6. Design and characterization of in-plane MEMS yaw rate sensor

    Indian Academy of Sciences (India)

    In this paper, we present the design and characterization of a vibratory yaw rate MEMS sensor that uses in-plane motion for both actuation and sensing. The design criterion for the rate sensor is based on a high sensitivity and low bandwidth. The required sensitivity of the yaw rate sensor is attained by using the inplane ...

  7. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    Science.gov (United States)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  8. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach

    Directory of Open Access Journals (Sweden)

    Hyunseung Choo

    2009-03-01

    Full Text Available Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs. They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR that efficiently forwards (or relays data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  9. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    Science.gov (United States)

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  10. Mascon ages and sinking rates

    International Nuclear Information System (INIS)

    Heard, H.C.

    1976-01-01

    The long-term mechanical stability of strongly positive gravity anomalies (mascons) on the moon is evaluated from relevant physical characteristics of these bodies, from paleoselenotherms, and from the flow behavior of the lunar mantle

  11. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    DEFF Research Database (Denmark)

    Helle, K.B.; Müller, T.O.; Astrup, Poul

    2014-01-01

    Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often...... of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64...

  12. Joint sensor location/power rating optimization for temporally-correlated source estimation

    KAUST Repository

    Bushnaq, Osama M.

    2017-12-22

    The optimal sensor selection for scalar state parameter estimation in wireless sensor networks is studied in the paper. A subset of N candidate sensing locations is selected to measure a state parameter and send the observation to a fusion center via wireless AWGN channel. In addition to selecting the optimal sensing location, the sensor type to be placed in these locations is selected from a pool of T sensor types such that different sensor types have different power ratings and costs. The sensor transmission power is limited based on the amount of energy harvested at the sensing location and the type of the sensor. The Kalman filter is used to efficiently obtain the MMSE estimator at the fusion center. Sensors are selected such that the MMSE estimator error is minimized subject to a prescribed system budget. This goal is achieved using convex relaxation and greedy algorithm approaches.

  13. High Sensitivity Carbon Nanotubes Flow-Rate Sensors and Their Performance Improvement by Coating

    Science.gov (United States)

    Yang, Xing; Zhou, Zhaoying; Wang, Dingqu; Liu, Xiaoli

    2010-01-01

    A new type of hot-wire flow-rate sensor (HWFS) with a sensing element made of a macro-sized carbon nanotube (CNT) strand is presented in this study. An effective way to improve repeatability of the CNT flow-rate sensor by coating a layer of Al2O3 on the CNT surface is proposed. Experimental results show that due to the large surface-to-volume ratio and thin coated Al2O3 layer, the CNT flow-rate sensor has higher sensitivity and faster response than a conventional platinum (Pt) HWFS. It is also demonstrated that the covered CNT flow-rate sensor has better repeatability than its bare counterpart due to insulation from the surrounding environment. The proposed CNT flow-rate sensor shows application potential for high-sensitivity measurement of flow rate. PMID:22399913

  14. TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks

    Science.gov (United States)

    Song, W.-Z.; Huang, R.; Shirazi, B.; Husent, R.L.

    2009-01-01

    Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and frame into slots. Parent determines children's frame assigmnent based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. Firstly, given any node, at any time slot, there is at most one active sender in its neighborhood (includ ing itself). Secondly, the packet scheduling with TreelMAC is bufferless, which therefore minimizes the probability of network congestion. Thirdly, the data throughput to gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24 node test bed demonstrate that TreeMAC protocol significantly improves network throughput and energy efficiency, by comparing to the TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC[8]. ?? 2009 IEEE.

  15. Design and characterization of in-plane MEMS yaw rate sensor

    Indian Academy of Sciences (India)

    CranesSci MEMS Laboratory, Department of Mechanical Engineering,. Indian Institute of ... In this paper, we discuss the design and characterization of a vibratory yaw rate MEMS sensor that uses ..... Patil N 2006 Design and analysis of angular rate sensors, Master's thesis, Indian Institute of Science. Polytec reference ...

  16. Wearable technologies for sweat rate and conductivity sensors

    CERN Document Server

    Salvo, Pietro

    2012-01-01

    Hauptbeschreibung Wearable sensors present a new frontier in the development of monitoring techniques. They are of great importance in sectors such as sports and healthcare, as they permit the continuous monitoring of physiological and biological elements, such as ECG and human sweat. Until recently, this could only be carried out in specialized laboratories in the presence of cumbersome, and usually, expensive devices. Sweat monitoring sensors integrated onto textile substrates are not only part of a new field of work but, they also represent the first attempt to implement such an

  17. Design and characterization of in-plane MEMS yaw rate sensor

    Indian Academy of Sciences (India)

    matching the drive and the sense mode frequencies. Based on these factors, the yaw rate sensor is designed and finally realized using surface micromachining. The in- plane motion of the sensor is experimentally characterized to determine the sense and the drive mode frequencies, and corresponding damping ratios.

  18. Hopfield neural network and optical fiber sensor as intelligent heart rate monitor

    Science.gov (United States)

    Mutter, Kussay Nugamesh

    2018-01-01

    This paper presents a design and fabrication of an intelligent fiber-optic sensor used for examining and monitoring heart rate activity. It is found in the literature that the use of fiber sensors as heart rate sensor is widely studied. However, the use of smart sensors based on Hopfield neural networks is very low. In this work, the sensor is a three fibers without cladding of about 1 cm, fed by laser light of 1550 nm of wavelength. The sensing portions are mounted with a micro sensitive diaphragm to transfer the pulse pressure on the left radial wrist. The influenced light intensity will be detected by a three photodetectors as inputs into the Hopfield neural network algorithm. The latter is a singlelayer auto-associative memory structure with a same input and output layers. The prior training weights are stored in the net memory for the standard recorded normal heart rate signals. The sensors' heads work on the reflection intensity basis. The novelty here is that the sensor uses a pulse pressure and Hopfield neural network in an integrity approach. The results showed a significant output measurements of heart rate and counting with a plausible error rate.

  19. Investigation of Bicycle Travel Time Estimation Using Bluetooth Sensors for Low Sampling Rates

    OpenAIRE

    Mei, Zhenyu; Wang, Dianhai; Chen, Jun; Wang, Wei

    2014-01-01

    Filtering the data for bicycle travel time using Bluetooth sensors is crucial to the estimation of link travel times on a corridor. The current paper describes an adaptive filtering algorithm for estimating bicycle travel times using Bluetooth data, with consideration of low sampling rates. The data for bicycle travel time using Bluetooth sensors has two characteristics. First, the bicycle flow contains stable and unstable conditions. Second, the collected data have low sampling rates (less t...

  20. Estimation of heart rate variability using a compact radiofrequency motion sensor.

    Science.gov (United States)

    Sugita, Norihiro; Matsuoka, Narumi; Yoshizawa, Makoto; Abe, Makoto; Homma, Noriyasu; Otake, Hideharu; Kim, Junghyun; Ohtaki, Yukio

    2015-12-01

    Physiological indices that reflect autonomic nervous activity are considered useful for monitoring peoples' health on a daily basis. A number of such indices are derived from heart rate variability, which is obtained by a radiofrequency (RF) motion sensor without making physical contact with the user's body. However, the bulkiness of RF motion sensors used in previous studies makes them unsuitable for home use. In this study, a new method to measure heart rate variability using a compact RF motion sensor that is sufficiently small to fit in a user's shirt pocket is proposed. To extract a heart rate related component from the sensor signal, an algorithm that optimizes a digital filter based on the power spectral density of the signal is proposed. The signals of the RF motion sensor were measured for 29 subjects during the resting state and their heart rate variability was estimated from the measured signals using the proposed method and a conventional method. A correlation coefficient between true heart rate and heart rate estimated from the proposed method was 0.69. Further, the experimental results showed the viability of the RF sensor for monitoring autonomic nervous activity. However, some improvements such as controlling the direction of sensing were necessary for stable measurement. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. A Smart Soft Sensor Predicting Feedwater Flow Rate

    International Nuclear Information System (INIS)

    Yang, Heon Young; Na, Man Gyun

    2009-01-01

    Since we evaluate thermal nuclear reactor power with secondary system calorimetric calculations based on feedwater flow rate measurements, we need to measure the feedwater flow rate accurately. The Venturi flow meters that are being used to measure the feedwater flow rate in most pressurized water reactors (PWRs) measure the flow rate by developing a differential pressure across a physical flow restriction. The differential pressure is then multiplied by a calibration factor that depends on various flow conditions in order to calculate the feedwater flow rate. The calibration factor is determined by the feedwater temperature and pressure. However, Venturi meters cause a buildup of corrosion products near the orifice of the meter. This fouling increases the measured pressure drop across the meter, thereby causing an overestimation of the feedwater flow rate

  2. The effect of textile-based inductive coil sensor positions for heart rate monitoring.

    Science.gov (United States)

    Koo, Hye Ran; Lee, Young-Jae; Gi, Sunok; Khang, Seonah; Lee, Joo Hyeon; Lee, Jae-Ho; Lim, Min-Gyu; Park, Hee-Jung; Lee, Jeong-Whan

    2014-02-01

    In the research related to heart rate measurement, few studies have been done using magnetic-induced conductivity sensing methods to measure the heart rate. The aim of this study was to analyze the effect of the position of a textile-based inductive coil sensor on the measurement of the heart rate. In order to assess the capability of the textile-based inductive coil sensor and the repeatability of measured cardiac muscle contractions, we proposed a new quality index based on the morphology of measured signals using a textile-based inductive coil sensor. We initially explored eight potential positions of the inductive sensor in a pilot experiment, followed by three sensor positions in the main experiment. A simultaneously measured electrocardiography (ECG) signal (Lead II) which was used as a reference signal for a comparison of the R-peak location with signals obtained from selected positions of the textile-based inductive coil sensor. The result of the main experiment indicated that the total quality index obtained from the sensor position 'P3', which was located 3 cm away from the left side from the center front line on the chest circumference line, was the highest (QI value = 1.30) among the three positions across all the subjects. This finding led us to conclude that (1) the position of the textile-based inductive coil sensor significantly affected the quality of the measurement results, and that (2) P3 would be the most appropriate position for the textile-based inductive coil sensor for heart rate measurements based on the magnetic-induced conductivity sensing principle.

  3. Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer.

    Science.gov (United States)

    Sekine, Tomohito; Sugano, Ryo; Tashiro, Tomoya; Sato, Jun; Takeda, Yasunori; Matsui, Hiroyuki; Kumaki, Daisuke; Domingues Dos Santos, Fabrice; Miyabo, Atsushi; Tokito, Shizuo

    2018-03-13

    The ability to monitor subtle changes in vital and arterial signals using flexible devices attached to the human skin can be valuable for the detection of various health conditions such as cardiovascular disease. Conventional Si device technologies are being utilised in traditional clinical systems; however, its fabrication is not easy owing to the difficulties in adapting to conventional processes. Here, we present the development of a fully printed, wearable, ferroelectric-polymer vital sensor for monitoring the human pulse wave/rate on the skin. This vital sensor is compact, thin, sufficiently flexible, and conforms to the skin while providing high pressure sensitivity, fast response time, superior operational stability, and excellent mechanical fatigue properties. Moreover, the vital sensor is connected to a communication amplifier circuit for monitoring the pulse waves with a wireless sensing system. This sensor system can realise the development of new healthcare devices for wearable sensor applications.

  4. Contact-free measurement of respiratory rate using infrared and vibration sensors

    Science.gov (United States)

    Erden, Fatih; Alkar, Ali Ziya; Cetin, Ahmet Enis

    2015-11-01

    Respiratory rate is an essential parameter in many practical applications such as apnea detection, patient monitoring, and elderly people monitoring. In this paper, we describe a novel method and a contact-free multi-modal system which is capable of detecting human breathing activity. The multimodal system, which uses both differential pyro-electric infrared (PIR) and vibration sensors, can also estimate the respiratory rate. Vibration sensors pick up small vibrations due to the breathing activity. Similarly, PIR sensors pick up the thoracic movements. Sensor signals are sampled using a microprocessor board and analyzed on a laptop computer. Sensor signals are processed using wavelet analysis and empirical mode decomposition (EMD). Since breathing is almost periodic, a new multi-modal average magnitude difference function (AMDF) is used to detect the periodicity and the period in the processed signals. By fusing the data of two different types of sensors we achieve a more robust and reliable contact-free human breathing activity detection system compared to systems using only one specific type of sensors.

  5. Recursive Estimation for Dynamical Systems with Different Delay Rates Sensor Network and Autocorrelated Process Noises

    Directory of Open Access Journals (Sweden)

    Jianxin Feng

    2014-01-01

    Full Text Available The recursive estimation problem is studied for a class of uncertain dynamical systems with different delay rates sensor network and autocorrelated process noises. The process noises are assumed to be autocorrelated across time and the autocorrelation property is described by the covariances between different time instants. The system model under consideration is subject to multiplicative noises or stochastic uncertainties. The sensor delay phenomenon occurs in a random way and each sensor in the sensor network has an individual delay rate which is characterized by a binary switching sequence obeying a conditional probability distribution. By using the orthogonal projection theorem and an innovation analysis approach, the desired recursive robust estimators including recursive robust filter, predictor, and smoother are obtained. Simulation results are provided to demonstrate the effectiveness of the proposed approaches.

  6. Design and Implementation of a Smart Sensor for Respiratory Rate Monitoring

    Directory of Open Access Journals (Sweden)

    Juan Aponte Luis

    2014-02-01

    Full Text Available This work presents the design, development and implementation of a smart sensor to monitor the respiratory rate. This sensor is aimed at overcoming the drawbacks of other systems currently available in market, namely, devices that are costly, uncomfortable, difficult-to-install, provide low detection sensitivity, and little-to-null patient-to-patient calibration. The device is based on capacitive sensing by means of an LC oscillator. Experimental results show that the sensor meets the necessary requirements, making feasible the proposed monitoring system with the technology used.

  7. Design and Implementation of a Smart Sensor for Respiratory Rate Monitoring

    Science.gov (United States)

    Luis, Juan Aponte; Roa Romero, Laura M.; Gómez-Galán, Juan Antonio; Hernández, David Naranjo; Estudillo-Valderrama, Miguel Ángel; Barbarov-Rostán, Gerardo; Rubia-Marcos, Carlos

    2014-01-01

    This work presents the design, development and implementation of a smart sensor to monitor the respiratory rate. This sensor is aimed at overcoming the drawbacks of other systems currently available in market, namely, devices that are costly, uncomfortable, difficult-to-install, provide low detection sensitivity, and little-to-null patient-to-patient calibration. The device is based on capacitive sensing by means of an LC oscillator. Experimental results show that the sensor meets the necessary requirements, making feasible the proposed monitoring system with the technology used. PMID:24534921

  8. Application of time-hopping UWB range-bit rate performance in the UWB sensor networks

    NARCIS (Netherlands)

    Nascimento, J.R.V. do; Nikookar, H.

    2008-01-01

    In this paper, the achievable range-bit rate performance is evaluated for Time-Hopping (TH) UWB networks complying with the FCC outdoor emission limits in the presence of Multiple Access Interference (MAI). Application of TH-UWB range-bit rate performance is presented for UWB sensor networks.

  9. State of the art in thin film thickness and deposition rate monitoring sensors

    International Nuclear Information System (INIS)

    Buzea, Cristina; Robbie, Kevin

    2005-01-01

    In situ monitoring parameters are indispensable for thin film fabrication. Among them, thickness and deposition rate control are often the most important in achieving the reproducibility necessary for technological exploitation of physical phenomena dependent on film microstructure. This review describes the types of thickness and deposition rate sensors and their theoretical and phenomenological background, underlining their performances, as well as advantages and disadvantages

  10. Optimal Power Allocation of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose

    2011-07-01

    Wireless sensor networks consist of the placement of sensors over a broad area in order to acquire data. Depending on the application, different design criteria should be considered in the construction of the sensors but among all of them, the battery life-cycle is of crucial interest. Power minimization is a problem that has been addressed from different approaches which include an analysis from an architectural perspective and with bit error rate and/or discrete instantaneous transmission rate constraints, among others. In this work, the optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now with an average transmission rate constraint. The optimal solution for a class of fading channels, in terms of system parameters, is presented and a suboptimal solution is also proposed for an easier, yet efficient, implementation. Insightful asymptotical analysis for both schemes, considering a Rayleigh fading channel, are shown. Furthermore, the optimal power allocation for a sensor node in a cognitive radio environment is analyzed where an optimum solution for a class of fading channels is again derived. In all cases, numerical results are provided for either Rayleigh or Nakagami-m fading channels. The results obtained are extended to scenarios where we have either one transmitter-multiple receivers or multiple transmitters-one receiver.

  11. Nanoimprinted distributed feedback dye laser sensors for high frame rate refractometric imaging of dissolution and fluid flow

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Sørensen, Kristian Tølbøl; Gade, Carsten

    2015-01-01

    High frame rate refractometric dissolution and fluid flow monitoring in one and two dimensions of space with distributed feedback dye laser sensors is presented. The sensors provide both low detection limits and high spatial resolution. © 2015 OSA.......High frame rate refractometric dissolution and fluid flow monitoring in one and two dimensions of space with distributed feedback dye laser sensors is presented. The sensors provide both low detection limits and high spatial resolution. © 2015 OSA....

  12. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    Science.gov (United States)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  13. Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    Science.gov (United States)

    Park, Thomas; Oliver, Emerson; Smith, Austin

    2018-01-01

    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GN&C software from the set of healthy measurements. This paper provides an overview of the algorithms used for both fault-detection and measurement down selection.

  14. Assessing metabolic rate and indoor air quality with passive environmental sensors.

    Science.gov (United States)

    Ruiz, Iván; Sprowls, Mark; Deng, Yue; Kulick, Doina; Destaillats, Hugo; Forzani, Erica S

    2018-02-13

    The present work introduces the use of environmental sensors to assess indoor air quality (IAQ) in combination with human biometrics. The sensor array included temperature, relative humidity, carbon dioxide, and noise sensors. The array was used in a classroom as well as in a vehicle cabin to assess the indoor air quality and carbon dioxide production rate of individuals in a closed ventilation environment. Analysis of carbon dioxide production allowed for the quantification of the average metabolic rate of the group of individuals in the classroom, and for one individual in the vehicle cabin. These results yielded a mere 5% difference from the values assessed using commercial metabolic rate instruments, and averaged values from epidemiological studies. The results presented in this work verify the feasibility of determining an individual's metabolic rate using passive environmental sensors; these same sensors are able to provide a metric of indoor air quality that helps characterize the safety of the environment in which the individual is present. © 2018 IOP Publishing Ltd.

  15. Use efficiency of variable rate of nitrogen prescribed by optical sensor in corn

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2016-02-01

    Full Text Available ABSTRACT The efficiency of nitrogen fertilizer in corn is usually low, negatively affecting plant nutrition, the economic return, and the environment. In this context, a variable rate of nitrogen, prescribed by crop sensors, has been proposed as an alternative to the uniform rate of nitrogen traditionally used by farmers. This study tested the hypothesis that variable rate of nitrogen, prescribed by optical sensor, increases the nitrogen use efficiency and grain yield as compared to uniform rate of nitrogen. The following treatments were evaluated: 0; 70; 140; and 210 kg ha-1 under uniform rate of nitrogen, and 140 kg ha -1 under variable rate of nitrogen. The nitrogen source was urea applied on the soil surface using a distributor equipped with the crop sensor. In this study, the grain yield ranged from 10.2 to 15.5 Mg ha-1, with linear response to nitrogen rates. The variable rate of nitrogen increased by 11.8 and 32.6% the nitrogen uptake and nitrogen use efficiency, respectively, compared to the uniform rate of nitrogen. However, no significant increase in grain yield was observed, indicating that the major benefit of the variable rate of nitrogen was reducing the risk of environmental impact of fertilizer.

  16. Cooling characteristics of a strip fin heat sink

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Park, Cheol Woo; Jang, Chung Sun; Kim, Hyun Woo

    2005-01-01

    Air-cooled heat sinks are employed in many electronic cooling applications since they provide significant heat transfer enhancement and operational flexibility. Strip-shaped fin heat sink is of interest and needs to be investigated as general cooling products for more applicability. The purposes of this study are to evaluate heat sink performance without bypass flow condition and to determine optimal heat sink geometries. The results show that the decreasing rate of thermal resistance of a heat sink decreases with increasing inlet air velocity, and the increasing rate of pressure drop increases with increasing inlet air velocity, but is not affected by input power. The increasing rate of optimal longitudinal fin spacing is larger than that of transverse fin spacing. The strip fin heat sink tested in this study showed better cooling performance compared to that of other plate fin type

  17. Empirical formula for rates of hot pixel defects based on pixel size, sensor area, and ISO

    Science.gov (United States)

    Chapman, Glenn H.; Thomas, Rohit; Koren, Zahava; Koren, Israel

    2013-02-01

    Experimentally, image sensors measurements show a continuous development of in-field permanent hot pixel defects increasing in numbers over time. In our tests we accumulated data on defects in cameras ranging from large area (cell phone cameras. The results show that the rate of defects depends on the technology (APS or CCD), and on design parameters like imager area, pixel size (from 1.5 to 7 um), and gain (from ISO100 to 1600). Comparing different sensor sizes with similar pixel sizes has shown that defect rates scale linearly with sensor area, suggesting the metric of defects/year/sq mm, which we call defect density. A search was made to model this defect density as a function of the two parameters pixel size and ISO. The best empirical fit was obtained by a power law curve. For CCD imagers, the defect densities are proportional to the pixel size to the power of -2.25 times the ISO to the power of 0.69. For APS (CMOS) sensors the power law had the defect densities proportional to the pixel size to the power of -3.07 times the ISO raised to the power of 0.5. Extending our empirical formula to include ISO allows us to predict the expected defect development rate for a wide set of sensor parameters.

  18. Sinking coastal cities

    Science.gov (United States)

    Erkens, Gilles; Bucx, Tom; Dam, Rien; De Lange, Ger; Lambert, John

    2014-05-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs. This effects roads and transportation networks, hydraulic infrastructure - such as river embankments, sluice gates, flood barriers and pumping stations -, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. Excessive groundwater extraction after rapid urbanization and population growth is the main cause of severe land subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. Because of ongoing urbanization and population growth in delta areas, in particular in coastal megacities, there is, and will be, more economic development in subsidence-prone areas. The impacts of subsidence are further exacerbated by extreme weather events (short term) and rising sea levels (long term).Consequently, detrimental impacts will increase in the near future, making it necessary to address subsidence related problems now. Subsidence is an issue that involves many policy fields, complex technical aspects and governance embedment. There is a need for an integrated approach in order to manage subsidence and to develop appropriate strategies and measures that are effective and efficient on both the short and long term. Urban (ground)water management, adaptive flood risk management and related spatial planning strategies are just examples of the options available. A major rethink is needed to deal with the 'hidden' but urgent

  19. Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise.

    Science.gov (United States)

    Jarchi, Delaram; Casson, Alexander J

    2016-08-01

    This paper presents a new method for estimating the average heart rate from a foot/ankle worn photoplethysmography (PPG) sensor during fast bike activity. Placing the PPG sensor on the lower half of the body allows more energy to be collected from energy harvesting in order to give a power autonomous sensor node, but comes at the cost of introducing significant motion interference into the PPG trace. We present a normalised least mean square adaptive filter and short-time Fourier transform based algorithm for estimating heart rate in the presence of this motion contamination. Results from 8 subjects show the new algorithm has an average error of 9 beats-per-minute when compared to an ECG gold standard.

  20. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis

    Directory of Open Access Journals (Sweden)

    Aleš Procházka

    2016-06-01

    Full Text Available This paper is devoted to a new method of using Microsoft (MS Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com. The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human–machine interaction.

  1. Characterizing source-sink dynamics with genetic parentage assignments

    NARCIS (Netherlands)

    Peery, M. Zachariah; Beissinger, Steven R.; House, Roger F.; Berube, Martine; Hall, Laurie A.; Sellas, Anna; Palsboll, Per J.

    2008-01-01

    Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly

  2. Enhancing the Data Collection Rate of Tree-Based Aggregation in Wireless Sensor Networks

    NARCIS (Netherlands)

    Durmaz, O.; Krishnamachari, B.

    2008-01-01

    What is the fastest rate at which we can collect a stream of aggregated data from a set of wireless sensors organized as a tree? We explore a hierarchy of techniques using realistic simulation models to address this question. We begin by considering TDMA scheduling on a single channel, reducing the

  3. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    Science.gov (United States)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  4. Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    Science.gov (United States)

    Park, Thomas; Smith, Austin; Oliver, T. Emerson

    2018-01-01

    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing.

  5. Sink Potential of Canadian Agricultural Soils

    International Nuclear Information System (INIS)

    Boehm, M.; Junkins, B.; Desjardins, R.; Lindwall, W.; Kulshreshtha, S.

    2004-01-01

    Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2-Eq yr-1 in 1990 to 52 Tg CO2-Eq yr-1 in 2008. Adoption of the sink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2-Eq yr-1 (L), 42 Tg CO2-Eq yr-1 (M) or 36 Tg CO2-Eq yr-1 (H). Among the sink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation and manure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992)

  6. Optimal power allocation of a sensor node under different rate constraints

    KAUST Repository

    Ayala Solares, Jose Roberto

    2012-06-01

    The optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now with an average transmission rate constraint. The optimal solution for a class of fading channels, in terms of system parameters, is presented and a suboptimal solution is also proposed for an easier, yet efficient, implementation. Insightful asymptotical analysis for both schemes, considering a Rayleigh fading channel, are shown. Finally, the optimal power allocation for a sensor node in a cognitive radio environment is analyzed where an optimum solution for a class of fading channels is again derived. In all cases, numerical results are provided for either Rayleigh or Nakagami-m fading channels. © 2012 IEEE.

  7. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  8. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  9. Energies and carbon sinks

    International Nuclear Information System (INIS)

    Riedacker, A.

    2002-01-01

    The Kyoto Protocol puts a lot of emphasis on carbon sinks. This emphasis almost obliterates the other potential contributions of biomass in the fight against climatic changes and toward sustainable development. Biomass represents an infinite supply of renewable energy sources which do not increase the levels of carbon in the atmosphere, contribute to energy savings resulting from the use of wood rather than other materials, the sustainable management of soils, the fight against drought, agroforestry from which the production of foods depends, the mitigating of certain extreme climatic occurrences and the protection of dams from increased silting. The industrial revolution contributed to the increase in greenhouse gas emissions. When discussing some of the finer points of the Kyoto Protocol, the focus was placed on carbon sinks. The author indicates that the biomass cycle had to be considered, both in situ and ex situ. Details to this effect are provided, and a section dealing with greenhouse gases other than carbon must be taken into account. The rural environment must be considered globally. The author indicates that in the future, the emissions resulting from the transportation of agricultural products will have to be considered. Within the realm of the policies on sustainable development, the fight against climatic change represents only one aspect. In arid and semi-arid regions, one must take into account meeting the energy needs of the populations, the fight against drought and the preservation of biodiversity. The planting of trees offers multiple advantages apart from being a carbon sink: roughage, wood for burning, protection of soils, etc. A few examples are provided. 8 refs., 3 figs

  10. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  11. Extracting breathing rate information from a wearable reflectance pulse oximeter sensor.

    Science.gov (United States)

    Johnston, W S; Mendelson, Y

    2004-01-01

    The integration of multiple vital physiological measurements could help combat medics and field commanders to better predict a soldier's health condition and enhance their ability to perform remote triage procedures. In this paper we demonstrate the feasibility of extracting accurate breathing rate information from a photoplethysmographic signal that was recorded by a reflectance pulse oximeter sensor mounted on the forehead and subsequently processed by a simple time domain filtering and frequency domain Fourier analysis.

  12. Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls.

    Science.gov (United States)

    Chan, Alexander M; Selvaraj, Nandakumar; Ferdosi, Nima; Narasimhan, Ravi

    2013-01-01

    Unobtrusive continuous monitoring of important vital signs and activity metrics has the potential to provide remote health monitoring, at-home screening, and rapid notification of critical events such as heart attacks, falls, or respiratory distress. This paper contains validation results of a wireless Bluetooth Low Energy (BLE) patch sensor consisting of two electrocardiography (ECG) electrodes, a microcontroller, a tri-axial accelerometer, and a BLE transceiver. The sensor measures heart rate, heart rate variability (HRV), respiratory rate, posture, steps, and falls and was evaluated on a total of 25 adult participants who performed breathing exercises, activities of daily living (ADLs), various stretches, stationary cycling, walking/running, and simulated falls. Compared to reference devices, the heart rate measurement had a mean absolute error (MAE) of less than 2 bpm, time-domain HRV measurements had an RMS error of less than 15 ms, respiratory rate had an MAE of 1.1 breaths per minute during metronome breathing, posture detection had an accuracy of over 95% in two of the three patch locations, steps were counted with an absolute error of less than 5%, and falls were detected with a sensitivity of 95.2% and specificity of 100%.

  13. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  14. Multi-Functional Sensor System for Heart Rate, Body Position and Movement Intensity Analysis

    Directory of Open Access Journals (Sweden)

    Michael MAO

    2008-12-01

    Full Text Available A novel multi-functional wearable sensor has been developed with multi-axis accelerometer, disposable hydro-gel electrodes, and analog filtering components. This novel sensor implementation can be used for detecting common body positions, movement intensity, and measures bio-potential signals for ECG and heart rate analysis. Based on the novel sensor principle, a prototype combines position detection, heart rate detection, and motion intensity level detection together in a handheld device that records the physiological information and wirelessly transmits the signals through Bluetooth to a mobile phone. Static body positions such as standing/sitting, lying supine, prone, and on the sides have been detected with high accuracy (97.7 % during the subject tests. Further, an algorithm that detects body movement intensity that can potentially be applied in real-time monitoring physical activity level is proposed based on average variance values. Motion intensity results show variance values increase and exercise intensity increases for almost all of the cases. A clear relation between movement intensity level shown by an increase in frequency and/or speed of exercise increases the variance values detected in all three spatial axes.

  15. Sink strength simulations using the Monte Carlo method: Applied to spherical traps

    Science.gov (United States)

    Ahlgren, T.; Bukonte, L.

    2017-12-01

    The sink strength is an important parameter for the mean-field rate equations to simulate temporal changes in the micro-structure of materials. However, there are noteworthy discrepancies between sink strengths obtained by the Monte Carlo and analytical methods. In this study, we show the reasons for these differences. We present the equations to estimate the statistical error for sink strength calculations and show the way to determine the sink strengths for multiple traps. We develop a novel, very fast Monte Carlo method to obtain sink strengths. The results show that, in addition to the well-known sink strength dependence of the trap concentration, trap radius and the total sink strength, the sink strength also depends on the defect diffusion jump length and the total trap volume fraction. Taking these factors into account, allows us to obtain a very accurate analytic expression for the sink strength of spherical traps.

  16. Concordance of Motion Sensor and Clinician-Rated Fall Risk Scores in Older Adults.

    Science.gov (United States)

    Elledge, Julie

    2017-12-01

    As the older adult population in the United States continues to grow, developing reliable, valid, and practical methods for identifying fall risk is a high priority. Falls are prevalent in older adults and contribute significantly to morbidity and mortality rates and rising health costs. Identifying at-risk older adults and intervening in a timely manner can reduce falls. Conventional fall risk assessment tools require a health professional trained in the use of each tool for administration and interpretation. Motion sensor technology, which uses three-dimensional cameras to measure patient movements, is promising for assessing older adults' fall risk because it could eliminate or reduce the need for provider oversight. The purpose of this study was to assess the concordance of fall risk scores as measured by a motion sensor device, the OmniVR Virtual Rehabilitation System, with clinician-rated fall risk scores in older adult outpatients undergoing physical rehabilitation. Three standardized fall risk assessments were administered by the OmniVR and by a clinician. Validity of the OmniVR was assessed by measuring the concordance between the two assessment methods. Stability of the OmniVR fall risk ratings was assessed by measuring test-retest reliability. The OmniVR scores showed high concordance with the clinician-rated scores and high stability over time, demonstrating comparability with provider measurements.

  17. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2015-06-01

    Full Text Available Body Sensor Network (BSN is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG, Photoplethysmography (PPG, Electrocardiogram (ECG, etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA, Data Encryption Standard (DES and Rivest Shamir Adleman (RSA. Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  18. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks.

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-06-26

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  19. An Application of Path Sharing To Routing For Mobile Sinks In ...

    African Journals Online (AJOL)

    CODEXT protocol for optimizing routing to multiple sinks through reinforcement learning. Such a routing situation arises in WSNs with multiple, possibly mobile sinks, such as WSNs with actuators deployed in parallel to sensors. This protocol is based on GAF protocol and grid structure to reduce energy consumed.

  20. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    Science.gov (United States)

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  1. Anonymity Preserving Routing In Location Privacy Schemes In Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    R Regin

    2015-12-01

    Full Text Available Location privacy measures need to be developed to prevent the opponent from determining the physical locations of source sensors and sinks. An opponent can easily intercept network traffic due to the use of a broadcast medium for routing packets and get detailed information such as packet transmission time and frequency to perform traffic analysis and infer the locations of monitored objects and data sinks. On the other hand, sensors usually have limited processing speed and energy supplies. It is very expensive to apply traditional anonymous communication techniques for hiding the communication between sensor nodes and sinks. The existing source-location privacy protects the location of monitored objects to increase the number of messages sent by the source before the object is located by the attacker. The flooding technique has the source node send each packet through numerous paths to a sink making it difficult for an opponent to trace the source. The locations of sinks can be protected from a local eavesdropper by hashing the ID field in the packet header. But opponent can track sinks by carrying out time correlation and rate monitoring attacks. Besides protection some source nodes are transferring relatively large amounts of data in existing system. As a result, these nodes run out of battery faster due to improper position of nodes and sinks. Thus in the proposed system the sinks should be located as optimally as possible to reduce traffic flow and energy consumption for sensor nodes. Hence Sink placement problem is resolved for minimizing the delay as well as maximizing the lifetime of a WSN. Thus proposed system is efficient in terms of overhead and functionality when compared to existing system.

  2. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  3. Design of heart rate monitor based on piezoelectric sensor using an Arduino

    Science.gov (United States)

    Setyowati, Veni; Muninggar, Jodelin; Shanti. N. A, Made R. S.

    2017-01-01

    Reading of result heart rate using an acoustic stethoscope needs a particular skill, quiet environment, and hearing sensitivity. This project had the purpose design of a user-friendly automatic heart rate monitor and especially in a noisy area which to eliminate problems and incorrect reading of result. The liquid crystal display shows a heart rate as a result of measurements. The design of the heart rate monitor has two main parts; the signal recorder that a piezoelectric sensor, a filter, and an amplifier as recorder. The second parts was Arduino microcontroller with reinforced. Besides, three supporting buttons provided as the manual switches, the ‘on’, the ‘start’, and ‘reset’ buttons. The values acquired from the heart rate monitor indicate that those were on the Vernier BPS-BTA value range. The measurement error factor of the heart rate monitor then compared to the Vernier BPS-BTA test device was 3.15%. Besides, the value of statistical independent-test indicates that there is no significant difference (P = 0.971) between the heart rate monitor device and the Vernier BPS-BTA. In conclusion, this device was ready to be used because it has almost the same accuracy with the standart device.

  4. Multi-Output Power Converter, Operated from a Regulated Input Bus, for the Sireus Rate Sensor

    Directory of Open Access Journals (Sweden)

    Torrecilla Marcos Compadre

    2017-01-01

    Full Text Available This paper describes a DC to DC converter designed to meet the power supply requirements of the SiREUS Coarse Rate Sensor (CRS which is a 3-axis MEMS Rate Sensor (MRS that uses a resonating ring gyro and will be used in different ESA missions. The converter supplies +5V, −5V, 3.3V, 1.8V and 40V and it has been designed and prototyped by Clyde Space Ltd with the EQM and FM units being manufactured by Selex ES. The first model was designed for a 28V un-regulated bus and the second model presented here has been designed for a 50V regulated bus. PWM voltage regulation was not used because of the noise requirements and the regulated input bus allowed an unregulated power stage approach. There are also stringent volume and interface constraints, which also affected the design. For such reasons, a fixed dutycycle, quasi-resonant single-ended topology with output linear regulators has been implemented; having the advantages of providing low switching losses, low radiated and conducted noise and no over-voltage failure mode. This paper highlights the techniques used to satisfy stringent noise and protection requirements of the load.

  5. Power Minimization of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose

    2016-03-31

    Future wireless networks are expected to handle a huge number of devices, including sensors, within a low energy consumption. In this scope, we present, in this paper, performance of wireless sensor networks (WSN). Specifically, we aim at finding the optimal transmit power of a node communicating with multiple receivers in a cognitive radio (CR) spectrum sharing framework, i.e., existence of an active primary user. We first present the optimal power with single secondary receiver, under instantaneous or average transmission rate constraints. Then, we propose a suboptimal solution for an easier, yet efficient, implementation and perform insightful asymptotical analysis for both schemes with Rayleigh fading. Afterwards, we extend our results to a multiple secondary receives CR scenario and present the corresponding optimal and suboptimal transmit power while satisfying independent peak/average and sum of peak/average transmission rate constraints. The corresponding numerical results are provided for Rayleigh and Nakagami-m fading channels. We characterize some transmission outage events depending on system parameters.

  6. Investigation of Bicycle Travel Time Estimation Using Bluetooth Sensors for Low Sampling Rates

    Directory of Open Access Journals (Sweden)

    Zhenyu Mei

    2014-10-01

    Full Text Available Filtering the data for bicycle travel time using Bluetooth sensors is crucial to the estimation of link travel times on a corridor. The current paper describes an adaptive filtering algorithm for estimating bicycle travel times using Bluetooth data, with consideration of low sampling rates. The data for bicycle travel time using Bluetooth sensors has two characteristics. First, the bicycle flow contains stable and unstable conditions. Second, the collected data have low sampling rates (less than 1%. To avoid erroneous inference, filters are introduced to “purify” multiple time series. The valid data are identified within a dynamically varying validity window with the use of a robust data-filtering procedure. The size of the validity window varies based on the number of preceding sampling intervals without a Bluetooth record. Applications of the proposed algorithm to the dataset from Genshan East Road and Moganshan Road in Hangzhou demonstrate its ability to track typical variations in bicycle travel time efficiently, while suppressing high frequency noise signals.

  7. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    Science.gov (United States)

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  8. The role of plantation sinks

    International Nuclear Information System (INIS)

    Read, Peter

    2001-01-01

    In this paper it is argued that in the long term biofuel should play a significant role in global climate policy. Recent technological developments, as well as sustainable development criteria, would favour growing biofuel in community- scale plantations in developing countries. It is also pointed out that the lead times involved in growing biofuels are so great that the inclusion of biofuel plantation sinks in the CDM for the first commitment period would be desirable. It is suggested that to meet opposition to the inclusion of plantation sinks in the first commitment period plantation, sinks should be linked to biofuels technology development and production, and a biofuels obligation for plantation sink projects in the CDM should be established. (Author)

  9. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates.

    Science.gov (United States)

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-02-08

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field.

  10. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates

    Directory of Open Access Journals (Sweden)

    Congzheng Wang

    2018-02-01

    Full Text Available In this work, we irradiated a high-definition (HD industrial camera based on a commercial-off-the-shelf (COTS CMOS image sensor (CIS with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB. The work is valuable and can provide suggestion for camera users in the radiation field.

  11. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  12. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor

    Directory of Open Access Journals (Sweden)

    Jang-Ho Park

    2015-09-01

    Full Text Available In this study, we developed a novel heart rate (HR monitoring approach in which we measure the pressure variance of the surface of the ear canal. A scissor-shaped apparatus equipped with a piezoelectric film sensor and a hardware circuit module was designed for high wearability and to obtain stable measurement. In the proposed device, the film sensor converts in-ear pulse waves (EPW into electrical current, and the circuit module enhances the EPW and suppresses noise. A real-time algorithm embedded in the circuit module performs morphological conversions to make the EPW more distinct and knowledge-based rules are used to detect EPW peaks. In a clinical experiment conducted using a reference electrocardiogram (ECG device, EPW and ECG were concurrently recorded from 58 healthy subjects. The EPW intervals between successive peaks and their corresponding ECG intervals were then compared to each other. Promising results were obtained from the samples, specifically, a sensitivity of 97.25%, positive predictive value of 97.17%, and mean absolute difference of 0.62. Thus, highly accurate HR was obtained from in-ear pressure variance. Consequently, we believe that our proposed approach could be used to monitor vital signs and also utilized in diverse applications in the near future.

  13. A simple method to convert sink particles into stars

    Science.gov (United States)

    Sormani, Mattia C.; Treß, Robin G.; Klessen, Ralf S.; Glover, Simon C. O.

    2017-04-01

    Hydrodynamical simulations of star formation often do not possess the dynamic range needed to fully resolve the build-up of individual stars and star clusters, and thus have to resort to sub-grid models. A popular way to do this is by introducing Lagrangian sink particles, which replace contracting high-density regions at the point where the resolution limit is reached. A common problem then is how to assign fundamental stellar properties to sink particles, such as the distribution of stellar masses. We present a new and simple statistical method to assign stellar contents to sink particles. Once the stellar content is specified, it can be used to determine a sink particle's radiative output, supernovae rate or other feedback parameters that may be required in the calculations. Advantages of our method are: (I) it is simple to implement; (II) it guarantees that the obtained stellar populations are good samples of the initial mass function; (III) it can easily deal with infalling mass accreted at later times; and (IV) it does not put restrictions on the sink particles' masses in order to be used. The method works very well for sink particles that represent large star clusters and for which the stellar mass function is well sampled, but can also handle the transition to sink particles that represent a small number of stars.

  14. Ocean carbon sinks and international climate policy

    NARCIS (Netherlands)

    Rehdanz, K.; Tol, R.S.J.; Wetzel, P.

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely

  15. Optimum noise figure and data rate for energy efficient wireless sensor network transceivers

    NARCIS (Netherlands)

    Dutta, R.; van der Zee, Ronan A.R.; Bentum, Marinus Jan; Kokkeler, Andre B.J.

    2011-01-01

    Most applications of wireless sensor networks desire an ultra-low power radio to extend the battery life of a sensor node. With power reducation of processors and semiconductor memories due to advanced CMOS scaling, radio transceiver in the bottleneck to extend battery lifetime of sensor nodes.

  16. DEADS: Depth and Energy Aware Dominating Set Based Algorithm for Cooperative Routing along with Sink Mobility in Underwater WSNs

    Directory of Open Access Journals (Sweden)

    Amara Umar

    2015-06-01

    Full Text Available Performance enhancement of Underwater Wireless Sensor Networks (UWSNs in terms of throughput maximization, energy conservation and Bit Error Rate (BER minimization is a potential research area. However, limited available bandwidth, high propagation delay, highly dynamic network topology, and high error probability leads to performance degradation in these networks. In this regard, many cooperative communication protocols have been developed that either investigate the physical layer or the Medium Access Control (MAC layer, however, the network layer is still unexplored. More specifically, cooperative routing has not yet been jointly considered with sink mobility. Therefore, this paper aims to enhance the network reliability and efficiency via dominating set based cooperative routing and sink mobility. The proposed work is validated via simulations which show relatively improved performance of our proposed work in terms the selected performance metrics.

  17. Source-sink relationships in radish plant

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available The problem of source-sink relationships in di- and tetraploidal radish plants grown in. hydroponic cultures was investigated in two stages of their development: with intensively growing swollen hypocotyl and in the period of actively accumulating nutrients in the storage organ. It was found, that the proportion, between the mass of organs, their RGR and NAR was very similar in di- and tetraploidal populations, probably owing to a similar rate of photosynthesis and pattern of assimilates distribution. The high variability of swollen hypocotyls size is slightly correlated with the size of the whole aerial part and is not correlated with the rate of photosynthesis in leaves. Partial defoliation of radish plants did not affect the rate of photosynthesis of the remaining leaves. Only in the cotyledones the oldest donors of 14C-assimilates, a slight compensation of photosynthesis was reported. It may suggest, that the rate of photosynthesis in radish plants is not under the control of sink activity. The size of the storage organ have determined in some extent its attractive force and influenced the amount of 14C-assimilates exported from their donors. Translocation of photosynthates from the young, still growing leaves was conditioned mainly by their retention power. Therefore, in young radish plants cotyledons were the main donor of 14C-assimilates.

  18. How Low Can You Sink?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. How Low Can You Sink? In Search of Global Minima. Vivek S Borkar. General Article Volume 2 ... Author Affiliations. Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  19. Efficient Data Collection by Mobile Sink to Detect Phenomena in Internet of Things

    Directory of Open Access Journals (Sweden)

    Amany Abu Safia

    2017-10-01

    Full Text Available With the rapid development of Internet of Things (IoT, more and more static and mobile sensors are being deployed for sensing and tracking environmental phenomena, such as fire, oil spills and air pollution. As these sensors are usually battery-powered, energy-efficient algorithms are required to extend the sensors’ lifetime. Moreover, forwarding sensed data towards a static sink causes quick battery depletion of the sinks’ nearby sensors. Therefore, in this paper, we propose a distributed energy-efficient algorithm, called the Hilbert-order Collection Strategy (HCS, which uses a mobile sink (e.g., drone to collect data from a mobile wireless sensor network (mWSN and detect environmental phenomena. The mWSN consists of mobile sensors that sense environmental data. These mobile sensors self-organize themselves into groups. The sensors of each group elect a group head (GH, which collects data from the mobile sensors in its group. Periodically, a mobile sink passes by the locations of the GHs (data collection path to collect their data. The collected data are aggregated to discover a global phenomenon. To shorten the data collection path, which results in reducing the energy cost, the mobile sink establishes the path based on the order of Hilbert values of the GHs’ locations. Furthermore, the paper proposes two optimization techniques for data collection to further reduce the energy cost of mWSN and reduce the data loss.

  20. Noise activated bistable sensor based on chaotic system with output defined by temporal coding and firing rate

    Science.gov (United States)

    Korneta, Wojciech; Gomes, Iacyel

    2017-11-01

    Traditional bistable sensors use external bias signal to drive its response between states and their detection strategy is based on the output power spectral density or the residence time difference (RTD) in two sensor states. Recently, the noise activated nonlinear dynamic sensors driven only by noise based on RTD technique have been proposed. Here, we present experimental results of dc voltage measurements by noise-driven bistable sensor based on electronic Chua's circuit operating in a chaotic regime where two single scroll attractors coexist. The output of the sensor is quantified by the proportion of the time the sensor stays in one state to the total observation time and by the spike-count rate with spikes defined by crossings between attractors. The relationship between the stimuli and particular observable for different noise intensities is obtained, the usefulness of each coding scheme is discussed, and the optimal noise intensity for detection is indicated. It is shown that the obtained relationship is the same for any observation time when population coding is used. The optimal time window for both detection and the number of units in population coding is found. Our results may be useful for analyses and understanding of the neural activity and in designing bistable storage elements at length scales where thermal fluctuations drastically increase and the effect of noise must be taken into consideration.

  1. Noise activated bistable sensor based on chaotic system with output defined by temporal coding and firing rate.

    Science.gov (United States)

    Korneta, Wojciech; Gomes, Iacyel

    2017-11-01

    Traditional bistable sensors use external bias signal to drive its response between states and their detection strategy is based on the output power spectral density or the residence time difference (RTD) in two sensor states. Recently, the noise activated nonlinear dynamic sensors driven only by noise based on RTD technique have been proposed. Here, we present experimental results of dc voltage measurements by noise-driven bistable sensor based on electronic Chua's circuit operating in a chaotic regime where two single scroll attractors coexist. The output of the sensor is quantified by the proportion of the time the sensor stays in one state to the total observation time and by the spike-count rate with spikes defined by crossings between attractors. The relationship between the stimuli and particular observable for different noise intensities is obtained, the usefulness of each coding scheme is discussed, and the optimal noise intensity for detection is indicated. It is shown that the obtained relationship is the same for any observation time when population coding is used. The optimal time window for both detection and the number of units in population coding is found. Our results may be useful for analyses and understanding of the neural activity and in designing bistable storage elements at length scales where thermal fluctuations drastically increase and the effect of noise must be taken into consideration.

  2. Integrating soil information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Science.gov (United States)

    Crop canopy sensors have proven effective at determining site-specific nitrogen (N) needs, but several Midwest states use different algorithms to predict site-specific N need. The objective of this research was to determine if soil information can be used to improve the Missouri canopy sensor algori...

  3. Energy efficiency of MAC protocols in low data rate wireless multimedia sensor networks: A comparative study

    NARCIS (Netherlands)

    Alskaif, T.A.|info:eu-repo/dai/nl/411176455; Bellalta, Boris; Guerreo Zapata, Manel; Barcelo Ordinas, Jose M.

    2017-01-01

    Some new application scenarios for Wireless Sensor Networks (WSNs) such as urban resilience, smart house/building, smart agriculture and animal farming, among others, can be enhanced by adding multimedia sensors able to capture and transmit small multimedia samples such as still images or audio

  4. Strategies for a better performance of RPL under mobility in wireless sensor networks

    Science.gov (United States)

    Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.

    2017-09-01

    A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.

  5. Sink-source and sink-sink relations during reproductive development in Lolium perenne L.

    NARCIS (Netherlands)

    Warringa, J.W.; Marinissen, M.J.

    1997-01-01

    In greenhouse pot trials, L. perenne cv. Barlet plants were labelled with 13C at regular intervals from main spike emergence onwards in order to identify and measure the activity of source and sink organs during seed formation. The source activity of the various tiller groups within the plant

  6. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    Science.gov (United States)

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  7. Multi-lead heat sink

    Science.gov (United States)

    Roose, L.D.

    1982-08-25

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  8. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  9. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  10. Using high frame rate CMOS sensors for three-dimensional eye tracking.

    Science.gov (United States)

    Clarke, A H; Ditterich, J; Drüen, K; Schönfeld, U; Steineke, C

    2002-11-01

    A novel three-dimensional eye tracker is described and its performance evaluated. In contrast to previous devices based on conventional video standards, the present eye tracker is based on programmable CMOS image sensors, interfaced directly to digital processing circuitry to permit real-time image acquisition and processing. This architecture provides a number of important advantages, including image sampling rates of up to 400/sec measurement, direct pixel addressing for preprocessing and acquisition,and hard-disk storage of relevant image data. The reconfigurable digital processing circuitry also facilitates inline optmization of the front-end, time-critical processes. The primary acquisition algorithm for tracking the pupil and other eye features is designed around the generalized Hough transform. The tracker permits comprehensive measurement of eye movement (three degrees of freedom) and head movement (six degrees of freedom), and thus provides the basis for many types of vestibulo-oculomotor and visual research. The device has been qualified by the German Space Agency (DLR) and NASA for deployment on the International Space Station. It is foreseen that the device will be used together with appropriate stimulus generators as a general purpose facility for visual and vestibular experiments. Initial verification studies with an artificial eye demonstrate a measurement resolution of better than 0.1 degrees in all three components (i.e.,system noise for each of the components measured as 0.006 degrees H, 0.005 degrees V, and 0.016 degrees T. Over a range of +/-20 degrees eye rotation, linearity was found to be <0.5% (H), <0.5% (V), and <2.0% (T). A comparison with the scleral search coil technique yielded near equivalent values for the system noise and the thickness of Listing's plane.

  11. Long-term decline of the Amazon carbon sink.

    Science.gov (United States)

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  12. Verification of Carbon Sink Assessment. Can We Exclude Natural Sinks?

    International Nuclear Information System (INIS)

    Alexandrov, G.; Yamagata, Y

    2004-01-01

    Any human-induced terrestrial sink is susceptible to the effects of elevated atmospheric CO2 concentration, nitrogen deposition, climate variability and other natural or indirect human-induced factors. It has been suggested in climate negotiations that the effects of these factors should be excluded from estimates of carbon sequestration used to meet the emission reduction commitments under the Kyoto Protocol. This paper focuses on the methodologies for factoring out the effects of atmospheric and climate variability/change. We estimate the relative magnitude of the non-human induced effects by using two biosphere models and discuss possibilities for narrowing estimate uncertainty

  13. BHCDA: Bandwidth Efficient Heterogeneity aware Cluster based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2013-01-01

    The fundamental challenge in the design of Wireless sensor Network (WSNs) is proper utilization of resources which are scare. One of the critical challenges is to maximize the bandwidth utilization in data gathering from sensor nodes and forward to sink. The main design objective of this paper...... is to utilize the available bandwidth efficiently with reduced packet delivery ratio and throughput. BHCDA presents the solution for effective data gathering with in-network aggregation. It considers the network with heterogeneous nodes in terms of energy and mobile sink to aggregate the data packets....... It embodies the optimal approach by Intra and inter-cluster aggregation on the randomly distributed nodes with variable data generation rate while routing data to sink. It uses the correlation of data within the packet for applying the aggregation function on data generated by nodes. BHCDA shows significant...

  14. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  15. Effects of low sink demand on leaf photosynthesis under potassium deficiency.

    Science.gov (United States)

    Pan, Yonghui; Lu, Zhifeng; Lu, Jianwei; Li, Xiaokun; Cong, Rihuan; Ren, Tao

    2017-04-01

    The interaction between low sink demand and potassium (K) deficiency in leaf photosynthesis was not intensively investigated, therefore this interaction was investigated in winter oilseed rape (Brassica napus L.). Plants subjected to sufficient (+K) or insufficient (-K) K supply treatments were maintained or removed their flowers and pods; these conditions were defined as high sink demand (HS) or low sink demand (LS), respectively. The low sink demand induced a lower photosynthetic rate (P n ), especially in the -K treatment during the first week. A negative relationship between P n and carbohydrate concentration was observed in the -K treatment but not in the +K treatment, suggesting that the decrease in P n in the -K treatment was the result of sink feedback regulation under low sink demand. Longer sink removal duration increased carbohydrate concentration, but the enhanced assimilate did not influence P n . On the contrary, low sink demand resulted in a high K concentration, slower chloroplast degradation rate and better PSII activity, inducing a higher P n compared with HS. Consequently, low sink demand decreased leaf photosynthesis over the short term due to sink feedback regulation, and potassium deficiency enhanced the photosynthetic decrease through carbohydrate accumulation and a lower carbohydrate concentration threshold for initiating photosynthesis depression. A longer duration of limited sink demand and sufficient potassium supply resulted in a higher photosynthesis rate because of delayed chloroplast degradation. This finding indicates that the nutritional status plays a role in leaf photosynthesis variations due to sink-source manipulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. An Energy-efficient Rate Adaptive Media Access Protocol (RA-MAC for Long-lived Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen Hu

    2010-06-01

    Full Text Available We introduce an energy-efficient Rate Adaptive Media Access Control (RA-MAC algorithm for long-lived Wireless Sensor Networks (WSNs. Previous research shows that the dynamic and lossy nature of wireless communications is one of the major challenges to reliable data delivery in WSNs. RA-MAC achieves high link reliability in such situations by dynamically trading off data rate for channel gain. The extra gain that can be achieved reduces the packet loss rate which contributes to reduced energy expenditure through a reduced numbers of retransmissions. We achieve this at the expense of raw bit rate which generally far exceeds the application’s link requirement. To minimize communication energy consumption, RA-MAC selects the optimal data rate based on the estimated link quality at each data rate and an analytical model of the energy consumption. Our model shows how the selected data rate depends on different channel conditions in order to minimize energy consumption. We have implemented RA-MAC in TinyOS for an off-the-shelf sensor platform (the TinyNode on top of a state-of-the-art WSN Media Access Control Protocol, SCP-MAC, and evaluated its performance by comparing our implementation with the original SCP-MAC using both simulation and experiment.

  17. A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor

    OpenAIRE

    Pancardo, Pablo; Hernández-Nolasco, J. A.; Acosta-Escalante, Francisco

    2018-01-01

    Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors represent an effective way to capture perceived exertion, ergonomic methods are generic and they do not consider the diffuse nature of the ranges that classify the efforts. Personalized monitoring is ne...

  18. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  19. Impact of sensor-controlled variable-rate fungicide application on yield, senescence and disease occurrence in winter wheat fields.

    Science.gov (United States)

    Tackenberg, Maria; Volkmar, Christa; Schirrmann, Michael; Giebel, Antje; Dammer, Karl-Heinz

    2017-12-28

    Field experiments examining target-oriented variable-rate fungicide spraying were performed in 2015 and 2016. The spray volume was adapted in real time to the local green coverage level of winter wheat (Triticum aestivum L.), which was detected using a camera sensor. Depending on the growth heterogeneity in the three strip trials in 2015, fungicide savings in the sensor-sprayed strip compared with the adjacent uniformly sprayed strip were 44%, 45% and 1%. In the 2016 field trial, the saving was 12%. There was no greater level of senescence or disease occurrence, and no higher yield losses in the camera-controlled variable-rate sprayed strips compared with the adjacent uniformly sprayed strips. From an ecological and economical point of view, sensor-controlled variable-rate spraying technology, which uses the level of green crop coverage as the plant parameter to adapt the spray volume locally, can be an alternative to the common practice of uniform spraying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat...... heat sink configurations reduces the coolant pumping power in the system....

  1. Integrating soil and weather information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Science.gov (United States)

    Corn production can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing ...

  2. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    International Nuclear Information System (INIS)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.; Pytel, K.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.; Jagielski, J.

    2015-01-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  3. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brun, J.; Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Tarchalski, M.; Pytel, K. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Jagielski, J. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland)

    2015-07-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  4. Review of tribological sinks in six major industries

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  5. Sink-to-Sink Coordination Framework Using RPL: Routing Protocol for Low Power and Lossy Networks

    Directory of Open Access Journals (Sweden)

    Meer M. Khan

    2016-01-01

    Full Text Available RPL (Routing Protocol for low power and Lossy networks is recommended by Internet Engineering Task Force (IETF for IPv6-based LLNs (Low Power and Lossy Networks. RPL uses a proactive routing approach and each node always maintains an active path to the sink node. Sink-to-sink coordination defines syntax and semantics for the exchange of any network defined parameters among sink nodes like network size, traffic load, mobility of a sink, and so forth. The coordination allows sink to learn about the network condition of neighboring sinks. As a result, sinks can make coordinated decision to increase/decrease their network size for optimizing over all network performance in terms of load sharing, increasing network lifetime, and lowering end-to-end latency of communication. Currently, RPL does not provide any coordination framework that can define message exchange between different sink nodes for enhancing the network performance. In this paper, a sink-to-sink coordination framework is proposed which utilizes the periodic route maintenance messages issued by RPL to exchange network status observed at a sink with its neighboring sinks. The proposed framework distributes network load among sink nodes for achieving higher throughputs and longer network’s life time.

  6. Optical crop sensor for variable-rate nitrogen fertilization in corn: II - indices of fertilizer efficiency and corn yield

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2013-10-01

    Full Text Available Generally, in tropical and subtropical agroecosystems, the efficiency of nitrogen (N fertilization is low, inducing a temporal variability of crop yield, economic losses, and environmental impacts. Variable-rate N fertilization (VRF, based on optical spectrometry crop sensors, could increase the N use efficiency (NUE. The objective of this study was to evaluate the corn grain yield and N fertilization efficiency under VRF determined by an optical sensor in comparison to the traditional single-application N fertilization (TSF. With this purpose, three experiments with no-tillage corn were carried out in the 2008/09 and 2010/11 growing seasons on a Hapludox in South Brazil, in a completely randomized design, at three different sites that were analyzed separately. The following crop properties were evaluated: aboveground dry matter production and quantity of N uptake at corn flowering, grain yield, and vegetation index determined by an N-Sensor® ALS optical sensor. Across the sites, the corn N fertilizer had a positive effect on corn N uptake, resulting in increased corn dry matter and grain yield. However, N fertilization induced lower increases of corn grain yield at site 2, where there was a severe drought during the growing period. The VRF defined by the optical crop sensor increased the apparent N recovery (NRE and agronomic efficiency of N (NAE compared to the traditional fertilizer strategy. In the average of sites 1 and 3, which were not affected by drought, VRF promoted an increase of 28.0 and 41.3 % in NAE and NRE, respectively. Despite these results, no increases in corn grain yield were observed by the use of VRF compared to TSF.

  7. MHz rate X-Ray imaging with GaAs:Cr sensors using the LPD detector system

    Science.gov (United States)

    Veale, M. C.; Booker, P.; Cline, B.; Coughlan, J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Lozinskaya, A. D.; Novikov, V. A.; Tolbanov, O. P.; Tyazhev, A.; Zarubin, A. N.

    2017-02-01

    The STFC Rutherford Appleton Laboratory (U.K.) and Tomsk State University (Russia) have been working together to develop and characterise detector systems based on chromium-compensated gallium arsenide (GaAs:Cr) semiconductor material for high frame rate X-ray imaging. Previous work has demonstrated the spectroscopic performance of the material and its resistance to damage induced by high fluxes of X-rays. In this paper, recent results from experiments at the Diamond Light Source Synchrotron have demonstrated X-ray imaging with GaAs:Cr sensors at a frame rate of 3.7 MHz using the Large Pixel Detector (LPD) ASIC, developed by STFC for the European XFEL. Measurements have been made using a monochromatic 20 keV X-ray beam delivered in a single hybrid pulse with an instantenous flux of up to ~ 1 × 1010 photons s-1 mm-2. The response of 500 μm GaAs:Cr sensors is compared to that of the standard 500 μm thick LPD Si sensors.

  8. Rotaphone, a mechanical seismic sensor system for field rotation rate measurements and its in situ calibration

    Czech Academy of Sciences Publication Activity Database

    Brokešová, J.; Málek, Jiří; Kolínský, Petr

    2012-01-01

    Roč. 16, č. 4 (2012), s. 603-621 ISSN 1383-4649 R&D Projects: GA ČR GAP210/10/0925 Grant - others:GA MŠk(CZ) LM2010008 Program:LM Institutional support: RVO:67985891 Keywords : rotation al seismology * sensor * six-degree-of-freedom Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.388, year: 2012

  9. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  10. Forced air heat sink apparatus

    Science.gov (United States)

    Rippel, Wally E. (Inventor)

    1989-01-01

    A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.

  11. Fracture as a material sink

    Science.gov (United States)

    Volokh, K. Y.

    2017-12-01

    Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

  12. Two decades of ocean CO2 sink and variability

    International Nuclear Information System (INIS)

    Quere, C. Le; Bopp, L.; Heimann, M.; Prentice, I.C.; Aumont, O.; Bousquet, P.; Ciais, P.; Francey, R.; Rayner, P.J.; Keeling, C.D.; Keeling, R.F.; Piper, S.C.; Kheshgi, H.; Peyliln, P.

    2003-01-01

    Atmospheric CO 2 has increased at a nearly identical average rate of 3.3 and 3.2 Pg C/yr for the decades of the 1980s and the 1990s, in spite of a large increase in fossil fuel emissions from 5.4 to 6.3 Pg C/yr. Thus, the sum of the ocean and land CO 2 sinks was 1 Pg C/yr larger in the 1990s than in to the 1980s. Here we quantify the ocean and land sinks for these two decades using recent atmospheric inversions and ocean models. The ocean and land sinks are estimated to be, respectively, 0.3 (0.1 to 0.6) and 0.7 (0.4 to 0.9) Pg C/yr larger in the 1990s than in the 1980s. When variability less than 5 yr is removed, all estimates show a global oceanic sink more or less steadily increasing with time, and a large anomaly in the land sink during 1990-1994. For year-to-year variability, all estimates show 1/3 to 1/2 less variability in the ocean than on land, but the amplitude and phase of the oceanic variability remain poorly determined. A mean oceanic sink of 1.9 Pg C/yr for the 1990s based on O 2 observations corrected for ocean outgassing is supported by these estimates, but an uncertainty on the mean value of the order of ±0.7 Pg C/yr remains. The difference between the two decades appears to be more robust than the absolute value of either of the two decades

  13. Application of X-Ray Sensors for In-line and Noninvasive Monitoring of Mass Flow Rate in Continuous Tablet Manufacturing.

    Science.gov (United States)

    Ganesh, Sudarshan; Troscinski, Rachel; Schmall, Nicholas; Lim, Jongmook; Nagy, Zoltan; Reklaitis, Gintaras

    2017-12-01

    The progress in continuous downstream manufacturing of oral solid doses demands effective real-time process management, with monitoring at its core. This study evaluates the feasibility of using a commercial sensor to measure the mass flow rate of the particulates, a critical process variable in continuous manufacturing. The sensor independently measures X-ray attenuation and cross-correlation velocimetry of particulate flow in real time. Steady-state flow rates of blends comprised primarily of acetaminophen and microcrystalline-cellulose are monitored using the sensor, with simultaneous weighing scale measurements, to calibrate the sensor and investigate the measurement accuracy. The free-fall flow measurement of the powder and granule blends in a conduit is linearly proportional to the X-ray attenuation. Relative standard deviations of ∼3%-7% for 1 s monitoring are observed and a measurement error of approximately 5% suggests the usability of the sensor for real-time monitoring. The sensor measurement is robust for operational variations in composition, addition of lubricant or glidant and reuse of material for PAT tool calibration. The measurement relative standard deviations depend on particulate flow dynamics at the sensor location. This requires experimental evaluation for a given material at the sensor location, to capture the flow dynamics of the particulate stream through the sensor. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    Science.gov (United States)

    Martínez, Enrique; Senninger, Oriane; Caro, Alfredo; Soisson, Frédéric; Nastar, Maylise; Uberuaga, Blas P.

    2018-03-01

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

  15. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    imaging refractometry without moving parts is presented. DFB dye lasers are low-cost and highly sensitive refractive index sensors. The unique multi-wavelength DFB laser structure presented here comprises several areas with different grating periods. Imaging in two dimensions of space is enabled...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...

  16. High Classification Rates for Continuous Cow Activity Recognition using Low-cost GPS Positioning Sensors and Standard Machine Learning Techniques

    DEFF Research Database (Denmark)

    Godsk, Torben; Kjærgaard, Mikkel Baun

    2011-01-01

    changes, affects the behavior of the individual animal, e.g., changes in time spend on activities like standing, lying, eating or walking. Low-cost and infrastructure-less GPS positioning sensors attached to the animals’ collars give the opportunity to monitor the movements of cows and recognize cow...... and their activities manually logged to serve as ground truth. For our dataset we managed to obtain an average classification success rate of 86.2% of the four activities: eating/seeking (90.0%), walking (100%), lying (76.5%), and standing (75.8%) by optimizing both the preprocessing of the raw GPS data...

  17. Impact Localization Method for Composite Plate Based on Low Sampling Rate Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zhuo Pang

    2017-01-01

    Full Text Available Fiber Bragg Grating (FBG sensors have been increasingly used in the field of Structural Health Monitoring (SHM in recent years. In this paper, we proposed an impact localization algorithm based on the Empirical Mode Decomposition (EMD and Particle Swarm Optimization-Support Vector Machine (PSO-SVM to achieve better localization accuracy for the FBG-embedded plate. In our method, EMD is used to extract the features of FBG signals, and PSO-SVM is then applied to automatically train a classification model for the impact localization. Meanwhile, an impact monitoring system for the FBG-embedded composites has been established to actually validate our algorithm. Moreover, the relationship between the localization accuracy and the distance from impact to the nearest sensor has also been studied. Results suggest that the localization accuracy keeps increasing and is satisfactory, ranging from 93.89% to 97.14%, on our experimental conditions with the decrease of the distance. This article reports an effective and easy-implementing method for FBG signal processing on SHM systems of the composites.

  18. Economic optimization of heat sink design

    International Nuclear Information System (INIS)

    Ritzer, T.M.; Lau, P.G.

    1994-01-01

    This paper describes the analysis and derivation of an optimum heat sink design for maximizing the thermoelectric cooling performance of a laboratory liquid chiller. The methods employed consisted of certain key changes in the design of the heat sink in order to improve its thermal performance. Parametric studies were performed in order to determine the optimized cooling system design per dollar

  19. Thermoelectric heat sink modeling and optimization

    International Nuclear Information System (INIS)

    Buist, R.J.; Nagy, M.J.

    1994-01-01

    Proper design and optimization of a thermoelectric heat sinks has been neglected somewhat in the design of the thermoelectric cooling systems. TE Technology, Inc. has developed a model over a period of 30 hears. The use and application of this model through optimizing heat sink performance is presented

  20. Forest carbon sinks in the northern hemisphere

    NARCIS (Netherlands)

    Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S.R.; Nabuurs, G.J.; Nilsson, S.; Shvidenko, A.Z.

    2002-01-01

    There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measuretment-based constraints on the magnitude

  1. Analysis of the influence location of the fiber optic sensor on the measurement and determination the heart rate of the human body

    Science.gov (United States)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Cubik, Jakub; Kepak, Stanislav; Vanus, Jan; Zboril, Ondrej; Vasinek, Vladimir

    2017-10-01

    Authors of this article focused on the analysis of the influence location of the fiber-optic sensor on the measurement and determination the heart rate of the human body. The sensor uses a Fiber Bragg Grating (FBG) and is encapsulated in the polymer polydimethylsiloxane (PDMS). The combination of fiber-optic technology and its encapsulation in a polymer PDMS allows the use of the sensor e.g. in magnetic resonance environments (MRI). Among currently solved doctors requirements belongs field focusing on the study of hyperventilation and panic attacks of patients during MRI examination due to their very frequent occurrence. Proposed FBG sensor can help doctors to predict (based on heart rate) hyperventilation and panic attacks of patients during MRI examinations. For the most accurate determination of the heart rate, it is necessary to know the influence location of the sensor on the human body. The sensor functionality and analysis of the sensor placement on the heart rate has been verified by a series of real experimental measurements of test subjects in laboratory environment.

  2. Collaborative Event-Driven Coverage and Rate Allocation for Event Miss-Ratio Assurances in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ozgur Sanli H

    2010-01-01

    Full Text Available Wireless sensor networks are often required to provide event miss-ratio assurance for a given event type. To meet such assurances along with minimum energy consumption, this paper shows how a node's activation and rate assignment is dependent on its distance to event sources, and proposes a practical coverage and rate allocation (CORA protocol to exploit this dependency in realistic environments. Both uniform event distribution and nonuniform event distribution are considered and the notion of ideal correlation distance around a clusterhead is introduced for on-duty node selection. In correlation distance guided CORA, rate assignment assists coverage scheduling by determining which nodes should be activated for minimizing data redundancy in transmission. Coverage scheduling assists rate assignment by controlling the amount of overlap among sensing regions of neighboring nodes, thereby providing sufficient data correlation for rate assignment. Extensive simulation results show that CORA meets the required event miss-ratios in realistic environments. CORA's joint coverage scheduling and rate allocation reduce the total energy expenditure by 85%, average battery energy consumption by 25%, and the overhead of source coding up to 90% as compared to existing rate allocation techniques.

  3. Fire ants perpetually rebuild sinking towers

    Science.gov (United States)

    Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L.; Tovey, Craig

    2017-07-01

    In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.

  4. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    Science.gov (United States)

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  5. INVESTIGATING ENVIRONMENTAL SINKS OF MACROLIDE ...

    Science.gov (United States)

    Possible environmental sinks (wastewater effluents, biosolids, sediments) of macrolide antibiotics (i.e., azithromycin, roxithromycin and clarithromycin)are investigated using state-of-the-art analytical chemistry techniques. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews

  6. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  7. A Fuzzy Logic-Based Personalized Method to Classify Perceived Exertion in Workplaces Using a Wearable Heart Rate Sensor

    Directory of Open Access Journals (Sweden)

    Pablo Pancardo

    2018-01-01

    Full Text Available Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors represent an effective way to capture perceived exertion, ergonomic methods are generic and they do not consider the diffuse nature of the ranges that classify the efforts. Personalized monitoring is needed to enable a real and efficient classification of perceived individual efforts. In this paper, we propose a heart rate-based personalized method to assess perceived exertion; our method uses fuzzy logic as an option to manage imprecision and uncertainty in involved variables. We applied some experiments to cleaning staff and obtained results that highlight the importance of a custom method to classify perceived exertion of people doing physical work.

  8. Non-Intrusive Sensor for In-Situ Measurement of Recession Rate of Ablative and Eroding Materials

    Science.gov (United States)

    Papadopoulos, George (Inventor); Tiliakos, Nicholas (Inventor); Benel, Gabriel (Inventor); Thomson, Clint (Inventor)

    2014-01-01

    A non-intrusive sensor for in-situ measurement of recession rate of heat shield ablatives. An ultrasonic wave source is carried in the housing. A microphone is also carried in the housing, for collecting the reflected ultrasonic waves from an interface surface of the ablative material. A time phasing control circuit is also included for time-phasing the ultrasonic wave source so that the waves reflected from the interface surface of the ablative material focus on the microphone, to maximize the acoustic pressure detected by the microphone and to mitigate acoustic velocity variation effects through the material through a de-coupling process that involves a software algorithm. A software circuit for computing the location off of which the ultrasonic waves scattered to focus back at the microphone is also included, so that the recession rate of the heat shield ablative may be monitored in real-time through the scan-focus approach.

  9. Analytical Thermal and Cost Optimization of Micro-Structured Plate-Fin Heat Sink

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse

    the thermal resistance and to maximize the cost performance of the heat sink. The width and the height of the microchannels, and the fin thickness are analytically optimized at a wide range of pumping power. Using an effective numeric test, the generated equations also discuss the optimum parameters at three......Microchannel heat sinks have been widely used in the field of thermo-fluids due to the rapid growth in technological applications which require high rates of heat transfer in relatively small spaces and volumes. In this work, a micro plate-fin heat sink is optimized parametrically, to minimize...... sizes of the substrate plat of the heat sink. Results show that, at any pumping power there are specific values of the channel width and fin thickness which produce minimum thermal resistance in the heat sink. The results also illustrate that, a larger channel width and a smaller fin thickness lead...

  10. The Use of Electronic Sensor Device to Augment Ligament Balancing Leads to a Lower Rate of Arthrofibrosis After Total Knee Arthroplasty.

    Science.gov (United States)

    Geller, Jeffrey A; Lakra, Akshay; Murtaugh, Taylor

    2017-05-01

    Total knee arthroplasty (TKA) is a highly successful surgery shown to improve quality of life. One of the more common known complications of TKA is early arthrofibrosis requiring manipulation under anesthesia (MUA). This investigation evaluates the incidence of arthrofibrosis before and after the implementation of an electronic sensor device used to assist with ligament balancing. Six hundred ninety TKAs performed without sensor use were compared to a cohort of 252 TKAs performed with sensor usage. Prior to usage, there was a 5% rate of MUA after TKA, while after implementation, the MUA rate went down to 1.6% (P = .004). Ligament balancing using sensor assistance led to a statistically significant decrease in MUA in this cohort of patients. An odds ratio analysis also demonstrated that non-sensor patients had a 3.2× higher likelihood of requiring MUA than the sensor patients. The use of an electronic sensor device during trialing of TKA with resultant improved ligamentous balancing led to a statistically significant reduction in the rate of MUA in this cohort of patients. This type of approach to ligamentous balancing may continue to show evidence of improved clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  12. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  13. The Sinking Sequence of MV Estonia

    OpenAIRE

    Kehren, Felix-Ingo

    2009-01-01

    This thesis reconstructs the sinking of the RoPax Ferry MV Estonia on September 28th 1994, with a strong focus on describing the chain of events that caused the eventual sinking, and how the ship sank. Once the sinking is understood, this thesis explores possible safety improvements that should be implemented in the design of new vessels of this type. The investigation is based on a combination of testimonies of survivors as well as numerical calculations based on the framework of the testimo...

  14. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    Science.gov (United States)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  15. Habitat-specific demography: evidence for source-sink population structure in a mammal, the pika.

    Science.gov (United States)

    Kreuzer, M P; Huntly, N J

    2003-02-01

    Theory suggests that populations may persist in sink habitats that cannot support replacement-level birth rates. Although it is commonly believed that organisms that can actively select habitat should rarely occur in sinks, the frequency of use of sinks in free-ranging species is not well-documented. We found that a population of American pikas ( Ochotona princeps, Lagomorpha) inhabiting distinct alpine habitats (meadow and snowbed) in Wyoming, USA, had habitat-specific demographic rates that produced a source-sink population structure. Population size increased in both habitats in summer and declined in both habitats in winter, with populations in snowbeds increasing more during summer and decreasing more over winter. Birth rates were consistently higher in meadows and populations in meadows had a consistently higher finite rate of increase (lambda, from life tables) than did those in snowbeds, for which lambda was far below that needed for replacement. Patterns of immigration, population structure, and temporal variation in population size were as expected if meadows were functional sources and snowbeds functional sinks. Patterns of snowmelt differed between habitats, predicted the critical difference in birth rates between habitats, and are a likely primary cause of the differences in habitat-specific birth rates that we observed. This study provides a clear example of source-sink population structure for a mammal.

  16. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring

    Directory of Open Access Journals (Sweden)

    Radek Martinek

    2017-04-01

    Full Text Available This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS, and the Normalized Least Mean Square (NLMS Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs, filtered from abdominal maternal phonocardiograms (mPCGs by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV.

  17. A multiplexed electronic architecture for opto-electronic patch sensor to effectively monitor heart rate and oxygen saturation

    Science.gov (United States)

    Yan, Liangwen; Hu, Sijung; Alharbi, Samah; Blanos, Panagiotis

    2018-02-01

    To effectively capture human vital signs, a multi-wavelength optoelectronic patch sensor (MOEPS), together with a schematic architecture of electronics, was developed to overcome the drawbacks of present photoplethysmographic (PPG) sensors. To obtain a better performance of in vivo physiological measurement, the optimal illuminations, i.e., light emitting diodes (LEDs) in the MOEPS, whose wavelength is automatically adjusted to each specific subject, were selected to capture better PPG signals. A multiplexed electronic architecture has been well established to properly drive the MOEPS and effectively capture pulsatile waveforms at rest. The protocol was designed to investigate its performance with the participation of 11 healthy subjects aged between 18 and 30. The signals obtained from green (525nm) and orange (595nm) illuminations were used to extract heart rate (HR) and oxygen saturation (SpO2%). These results were compared with data, simultaneously acquired, from a commercial ECG and a pulse oximeter. Considering the difficulty for current devices to attain the SpO2%, a new computing method, to obtain the value of SpO2%, is proposed depended on the green and orange wavelength illuminations. The values of SpO2% between the MOEPS and the commercial Pulse Oximeter devics showed that the results were in good agreement. The values of HR showed close correlation between commercial devices and the MOEPS (HR: r1=0.994(Green); r2=0.992(Orange); r3=0.975(Red); r4=0.990(IR)).

  18. Data-driven soft sensor design with multiple-rate sampled data

    DEFF Research Database (Denmark)

    Lin, Bao; Recke, Bodil; Knudsen, Jørgen K.H.

    2007-01-01

    , including numerical interpolation, polynomial transformation, data lifting and weighted partial least squares (WPLS). Two modifications to the original data lifting approach are proposed in this paper: reformulating the extraction of a fast model as an optimization problem and ensuring the desired model......Multi-rate systems are common in industrial processes where quality measurements have slower sampling rate than other process variables. Since inter-sample information is desirable for effective quality control, different approaches have been reported to estimate the quality between samples...

  19. A Possible Sink for Methane on Mars

    NARCIS (Netherlands)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-01-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  20. When are fish sources vs. sinks of nutrients in lake ecosystems?

    Science.gov (United States)

    Vanni, Michael J; Boros, Gergely; McIntyre, Peter B

    2013-10-01

    Animals can be important in nutrient cycling through a variety of direct and indirect pathways. A high biomass of animals often represents a large pool of nutrients, leading some ecologists to argue that animal assemblages can represent nutrient sinks within ecosystems. The role of animals as sources vs. sinks of nutrients has been debated particularly extensively for freshwater fishes. We argue that a large pool size does not equate to a nutrient sink; rather, animals can be nutrient sinks when their biomass increases, when emigration rates are high, and/or when nutrients in animal carcasses are not remineralized. To further explore these ideas, we use a simple model to evaluate the conditions under which fish are phosphorus (P) sources or sinks at the ecosystem (lake) level, and at the habitat level (benthic and water column habitats). Our simulations suggest that, under most conditions, fish are sinks for benthic P but are net P sources to the water column. However, P source and sink strengths depend on fish feeding habits (proportion of P consumed from the benthos and water column), migration patterns, and especially the fate of carcass P. Of particular importance is the rate at which carcasses are mineralized and the relative importance of benthic vs. pelagic primary producers in taking up mineralized P (and excreted P). Higher proportional uptake of P by benthic primary producers increases the likelihood that fish are sinks for water column P. Carcass bones and scales are relatively recalcitrant and can represent a P sink even if fish biomass does not change over time. Thus, there is a need for better documentation of the fraction of carcass P that is remineralized, and the fate of this P, under natural conditions. We urge a more holistic perspective regarding the role of animals in nutrient cycling, with a focus on quantifying the rates at which animals consume, store, release, and transport nutrients under various conditions.

  1. Heat sink design considerations in medium power electronic applications with long power cycles

    CERN Document Server

    AUTHOR|(SzGeCERN)744611; Papastergiou, Konstantinos; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the thermal resistance on the thickness counteracts the benefit of the increased thermal capacitance. The increase in the cooling medium flow rate, which corresponds to an increase in the convection coefficient between the heat sink bottom surface and the water, can be avoided by increasing the thickness of the heat sink. In this way, the energy consumption of the cooling system is reduced. The increase in the flow rate drastically reduces the thermal stressing in the thinnest heat sink case. The increase of the heat sink thickne...

  2. Bio-Inspired Micro-Fluidic Angular-Rate Sensor for Vestibular Prostheses

    Directory of Open Access Journals (Sweden)

    Charalambos M. Andreou

    2014-07-01

    Full Text Available This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today’s state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation.

  3. Bio-inspired micro-fluidic angular-rate sensor for vestibular prostheses.

    Science.gov (United States)

    Andreou, Charalambos M; Pahitas, Yiannis; Georgiou, Julius

    2014-07-22

    This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today's state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation.

  4. Carbon Sinks in a Changing Climate: Relative Buoyancy and Sinking Potentials of Various Antarctic Phytoplankton and Ice Algae

    Science.gov (United States)

    Nirmel, S.; Selz, V.

    2016-12-01

    Polar phytoplankton play instrumental roles in global biogeochemical cycles, sometimes serving as massive carbon sinks via the biological pump. In addition to phytoplankton, sea ice supports a significant amount of ice algae, the essential primary producers for the ecosystem in winter and early spring. While sea ice habitat declines on regional scales, the fate of sea ice algae post-ice melt remains relatively unknown, despite its importance in understanding how the biological pump might be affected by sea ice loss. Through a series of settling column experiments on the icebreaker Nathaniel B. Palmer, we aimed to address the question: What controls the fate of the carbon-rich ice algae across the Western Antarctic Peninsula (WAP) during ice melt? We focused on whether species composition affects the sinking potential of ice algal communities. Using FlowCAM imagery, we classified samples collected from the buoyant, neutral, and negatively buoyant portions of the settling columns into genus-level taxonomic classes. We used image parameters and geometric shape equations to calculate the biovolume of each taxonomic group. We further explored relationships between taxa-specific sinking potentials, environmental parameters (temperature and nutrients), and physiological properties of associated algal communities (as described by Fast Rate Repetition fluorometry). Results indicate that colonial Phaeocystis antarctica tends to dominate lower regions of the settling column. Moreover, we observe strong correlations between geographic location and both nutrients and phytoplankton physiology. We found that these three factors are indeed related to taxa-specific buoyancy and sinking indices. An understanding of these relationships sheds more light on the role P. antarctica (a carbon-rich bloom-forming genus) plays in the biological pump; higher sinking rates suggest greater carbon export to depth, while lower sinking rates increase the likelihood of carbon being respired back

  5. Transient cooling of electronics using phase change material (PCM)-based heat sinks

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2008-01-01

    Use of a phase change material (PCM)-based heat sink in transient thermal management of plastic quad flat package (QFP) electronic devices was investigated experimentally and numerically. Results show that increased power inputs enhance the melting rate as well as the thermal performance of the PCM-based heat sinks until the PCM is fully melted. A three-dimensional computational fluid dynamics model was proposed to simulate the problem and demonstrated good agreement with experimental data. Results indicate the potential for PCM-based heat sinks for use in intermittent-use devices

  6. Data-driven soft sensor design with multiple-rate sampled data: a comparative study

    DEFF Research Database (Denmark)

    Lin, Bao; Recke, Bodil; Schmidt, Torben M.

    2009-01-01

    , including the numerical interpolation, polynomial transformation, data lifting, and weighted partial least squares (WPLS). Two modifications to the original data lifting approach are proposed in this paper: reformulating the extraction of a fast model as an optimization problem and ensuring the desired......Multirate systems are common in industrial processes where quality measurements have slower sampling rates than other process variables. Since intersample information is desirable for effective quality control, different approaches have been reported to estimate the quality between samples...... model properties through Tikhonov Regularization. A comparative investigation of the four approaches is performed. Their applicability, accuracy, and robustness to process noise are evaluated with a single-input single-output (SISO) system. The modified data lifting and WPLS approaches are implemented...

  7. The benefits of soft sensor and multi-rate control for the implementation of Wireless Networked Control Systems.

    Science.gov (United States)

    Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V

    2014-12-18

    Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.

  8. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    Science.gov (United States)

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  9. Carbon sink activity of managed grasslands

    Science.gov (United States)

    Klumpp, Katja; Chabbi, Abad; Gastal, Francois; Senapati, Nimai; Charrier, Xavier; Darsonville, Olivier; Creme, Alexandra

    2017-04-01

    In agriculture, a large proportion of GHG emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities however, often questioned the existence of C storing grasslands, as uncertainty surrounding estimates are often larger than the sink itself. Besides climate, key components of the carbon sink activity in grasslands are type and intensity of management practices. Here, we analysed long term data on C flux and soil organic carbon stocks for two long term (>13yrs) national observation sites in France (SOERE-ACBB). These sites comprise a number of grassland fields and managements options (i.e. permanent, sowing, grazing, mowing, and fertilization) offering an opportunity to study carbon offsets (i.e. compensation of CH4 and N2O emissions), climatic-management interactions and trade-offs concerning ecosystem services (e.g. production). Furthermore, for some grassland fields, the carbon sink activity was compared using two methods; repeated soil inventory and estimation of the ecosystem C budget by continuous measurement of CO2 exchange (i.e. eddy covariance) in combination with quantification of other C imports and exports, necessary to estimate net C storage. In general grasslands, were a potential sink of C (i.e. net ecosystem exchange, NEE), where grazed sites had lower NEE compared the cut site. However, when it comes to net C storage (NCS), mowing reduced markedly potential sink leading to very low NCS compared to grazed sites. Including non-CO2 fluxes (CH4 and N2O emission) in the budget, revealed that GHG emissions were offset by C sink activity.

  10. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    Science.gov (United States)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  11. A Low-Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller

    Science.gov (United States)

    2017-03-01

    A Low-Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller Jong Hwan Ko...military surveillance, with a noise-robust moving object detection and region-of-interest based rate controller . The improved robustness to noise...from both environment and hardware further reduces the transmission energy with negligible computation and memory overhead. The rate controller

  12. Short-term association between personal exposure to noise and heart rate variability: The RECORD MultiSensor Study.

    Science.gov (United States)

    El Aarbaoui, Tarik; Méline, Julie; Brondeel, Ruben; Chaix, Basile

    2017-12-01

    Studies revealed long-term associations between noise exposure and cardiovascular health, but the underlying short-term mechanisms remain uncertain. To explore the concomitant and lagged short-term associations between personal exposure to noise and heart rate variability (HRV) in a real life setting in the Île-de-France region. The RECORD MultiSensor Study collected between July 2014 and June 2015 noise and heart rate data for 75 participants, aged 34-74 years, in their living environments for 7 days using a personal dosimeter and electrocardiography (ECG) sensor on the chest. HRV parameters and noise levels were calculated for 5-min windows. Short-term relationships between noise level and log-transformed HRV parameters were assessed using mixed effects models with a random intercept for participants and a temporal autocorrelation structure, adjusted for heart rate, physical activity (accelerometry), and short-term trends. An increase by one dB(A) of A-weighted equivalent sound pressure level (Leq) was associated with a 0.97% concomitant increase of the Standard deviation of normal to normal intervals (SDNN) (95% CI: 0.92, 1.02), of 2.08% of the Low frequency band power (LF) (95% CI: 1.97, 2.18), of 1.30% of the High frequency band power (HF) (95% CI: 1.17, 1.43), and of 1.16% of the LF/HF ratio (95% CI: 1.10, 1.23). The analysis of lagged exposures to noise adjusted for the concomitant exposure illustrates the dynamic of recovery of the autonomic nervous system. Non-linear associations were documented with all HRV parameters with the exception of HF. Piecewise regression revealed that the association was almost 6 times stronger below than above 65 Leq dB(A) for the SDNN and LF/HF ratio. Personal noise exposure was found to be related to a concomitant increase of the overall HRV, with evidence of imbalance of the autonomic nervous system towards sympathetic activity, a pathway to increased cardiovascular morbidity and mortality. Copyright © 2017 Elsevier Ltd

  13. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

    Directory of Open Access Journals (Sweden)

    Abdullah Alzahrani

    2015-10-01

    Full Text Available This study presents the use of a multi-channel opto-electronic sensor (OEPS to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA, and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05; a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001; the bias of BAA 0.85 bpm, the standard deviation (SD 9.20 bpm, and the limits of agreement (LOA from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001; the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate.

  14. Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method

    Science.gov (United States)

    Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun

    2014-12-01

    To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous

  15. Landfills as sinks for (hazardous) substances.

    Science.gov (United States)

    Scharff, Heijo

    2012-12-01

    The primary goal of waste regulations is to protect human health and the environment. This requires the removal from the material cycle of those materials that cannot be processed without harm. Policies to promote recycling hold a risk that pollutants are dispersed. Materials have an environmental impact during their entire life cycle from extraction through production, consumption and recycling to disposal. Essentially there are only two routes for pollutants that cannot be rendered harmless: storage in sinks or dispersion into the environment. Many sinks do not contain substances absolutely, but result in slow dispersion. Dispersion leads to exposure and impact to human health and the environment. It is therefore important to assess the impact of the release to the environment. Based on various sources this paper discusses important material flows and their potential impact. This is compared with the intentions and achievements of European environmental and resource policy. The polluter pays principle is being implemented in Europe, but lags behind implementation of waste management regulations. As long as producers are allowed to add hazardous substances to their products and don't take their products back, it is in society's best interest to carefully consider whether recycling or storage in a sink is the better solution. This requires further development of life-cycle assessment tools and harmonization of regulations. In many cases the sink is unavoidable. Landfills as sinks will be needed in the future. Fail-safe design and construction as well as sustainable management of landfills must be further developed.

  16. Control of Delta Avulsion by Downstream Sediment Sinks

    Science.gov (United States)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  17. Analytical analysis and experimental verification of interleaved parallelogram heat sink

    International Nuclear Information System (INIS)

    Chen, Hong-Long; Wang, Chi-Chuan

    2017-01-01

    Highlights: • A novel air-cooled heat sink profile (IPFM) is proposed to compete with the typical design. • It features two different perimeters with odd fin being rectangular and the rest being parallelogram. • A new modified dimensionless parameter characterized the flow length in triangular region is proposed. • The analytical predictions are in line with the experiments for both conventional and IPFM design. • IPFM design shows a much lower pressure drop and a superior performance especially for dense fins. - Abstract: In this study, a novel air-cooled heat sink profile is proposed to compete with the conventional design. The new design is termed as IPFM (Interleaved Parallelogram Fin Module) which features two different geometrical perimeter shapes of fins. This new design not only gains the advantage of lower pressure drop for power saving; but also gains a material saving for less fin surface area. An assessment of flow impedance and performance between the conventional and IPFM heat sink is analytically investigated and experimentally verified. A new modified dimensionless friction factor for triangular region is proposed. The analytical predictions agree with experimental measurements for both conventional and IPFM design. In electronic cooling design, especially for cloud server air-cooled heat sink design, the flow pattern is usually laminar with Reynolds number being operated less than 2000. In this regime, the IPFM design shows 8–12% less of surface than conventional design when the flow rate is less than 10 CFM; yet the thermal performance is slightly inferior to the conventional design when the flowrate is raised towards 25 CFM. Yet in the test range of 5–25 CFM, a 10–15% lower flow impedance is observed. The smaller fin spacing, the more conspicuous reduction of flow impedance is observed. The optimization of cutting angle is around 35° for 10 CFM, and it is reduced to 15° at a larger flowrate of 20 CFM.

  18. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  19. Bandwidth efficient cluster-based data aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    the available bandwidth efficiently. The proposed Bandwidth Efficient Cluster- based Data Aggregation (BECDA) algorithm presents the solution for the effective data gathering with in-network aggregation. It considers the network with heterogeneous nodes in terms of energy and mobile sink to aggregate the data......A fundamental challenge in the design of Wireless Sensor Network (WSNs) is the proper utilization of resources that are scarce. The critical challenge is to maximize the bandwidth utilization in data gathering and forwarding from sensor nodes to the sink. The main design objective is to utilize...... packets. The optimal approach is achieved by intra and inter-cluster aggregation on the randomly distributed nodes with the variable data generation rate. The proposed algorithm uses the correlation of data within the packet for applying the aggregation function on the data generated by nodes. BECDA shows...

  20. Topology Optimization of Thermal Heat Sinks

    DEFF Research Database (Denmark)

    Klaas Haertel, Jan Hendrik; Engelbrecht, Kurt; Lazarov, Boyan Stefanov

    2015-01-01

    In this paper, topology optimization is applied to optimize the cooling performance of thermal heat sinks. The coupled two-dimensional thermofluid model of a heat sink cooled with forced convection and a density-based topology optimization including density filtering and projection are implemented...... in COMSOL Multiphysics. The optimization objective is to minimize the heat sink’s temperature for a prescribed pressure drop and fixed heat generation. To conduct the optimization, COMSOL’s Optimization Module with GCMMA as the optimization method is used. The implementation of this topology optimization...

  1. Comparison of various sink strengths for analyzing radiation creep, growth and swelling

    International Nuclear Information System (INIS)

    Nichols, F.A.; Liu, Y.Y.

    1986-02-01

    The essential physics involved in the reaction-rate-theory analysis of radiation effects at temperatures where both vacancies and self interstitials are mobile is contained in the expressions used for the strengths of distributed point-defect sinks such as dislocations, cavities and grain boundaries. These sink strengths have been obtained by various authors in distinctly different ways, thus giving rise to some possible confusion in comparing the various results. This is even more true with respect to the effect of interaction fields on these sink strengths and the so-called bias factors or sink efficiencies have been defined in entirely different ways, thus rendering quantitative comparisons difficult. We present here a comparison of several procedures in the literature, and attempt to make reasonable quantitative comparisons

  2. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    Directory of Open Access Journals (Sweden)

    Yue Ji

    2015-12-01

    Full Text Available The magnetohydrodynamics angular rate sensor (MHD ARS has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  3. Embedding human annoyance rate models in wireless smart sensors for assessing the influence of subway train-induced ambient vibration

    Science.gov (United States)

    Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.

    2016-10-01

    The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.

  4. Simultaneous mobile sink allocation in home environments with applications in mobile consumer robotics

    OpenAIRE

    Chanak, Prasenjit; Banerjee, Indrajit; Sherratt, R. Simon

    2015-01-01

    This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor n...

  5. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions.

    Science.gov (United States)

    Liu, Peng; De Wulf, Odile; Laru, Johanna; Heikkilä, Teemu; van Veen, Bert; Kiesvaara, Juha; Hirvonen, Jouni; Peltonen, Leena; Laaksonen, Timo

    2013-06-01

    Sink conditions used in dissolution tests lead to rapid dissolution rates for nanosuspensions, causing difficulties in discriminating dissolution profiles between different formulations. Here, non-sink conditions were studied for the dissolution testing of poorly water-soluble drug nanosuspensions. A mathematical model for polydispersed particles was established to clarify dissolution mechanisms. The dissolution of nanosuspensions with either a monomodal or bimodal size distribution was simulated. In the experimental part, three different particle sizes of indomethacin nanosuspensions were prepared by the wet milling technique. The effects of the dissolution medium pH and agitation speed on dissolution rate were investigated. The dissolution profiles in sink and non-sink conditions were obtained by changing the ratio of sample amount to the saturation solubility. The results of the simulations and experiments indicated that when the sample amount was increased to the saturation solubility of drug, the slowest dissolution rate and the best discriminating dissolution profiles were obtained. Using sink conditions or too high amount of the sample will increase the dissolution rate and weaken the discrimination between dissolution profiles. Furthermore, the low solubility by choosing a proper pH of the dissolution medium was helpful in getting discriminating dissolution profiles, whereas the agitation speed appeared to have little influence on the dissolution profiles. This discriminatory method is simple to perform and can be potentially used in any nanoproduct development and quality control studies.

  6. A novel inter-fibre light coupling sensor probe using plastic optical fibre for ethanol concentration monitoring at initial production rate

    Science.gov (United States)

    Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.

    2017-04-01

    A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.

  7. Rating

    OpenAIRE

    Karas, Vladimír

    2006-01-01

    Charakteristika ratingu. Dělení a druhy ratingu (rating emise × rating emitenta; dlouhodobý rating × krátkodobý rating; mezinárodní rating × lokální rating). Obecné požadavky kladené na rating. Proces tvorby ratingu. Vyžádaný rating. Nevyžádaný rating. Ratingový proces na bázi volně přístupných informací. Uplatňované ratingové systémy. Ratingová kriteria. Využití a interpretace ratingové známky. Funkce ratingu. Rating v souvislosti s BASEL II. Rating v souvislosti s hospodářskými krizemi....

  8. Reduced growth due to belowground sink limitation is not fully explained by reduced photosynthesis.

    Science.gov (United States)

    Campany, Courtney E; Medlyn, Belinda E; Duursma, Remko A

    2017-08-01

    Sink limitation is known to reduce plant growth, but it is not known how plant carbon (C) balance is affected, limiting our ability to predict growth under sink-limited conditions. We manipulated soil volume to impose sink limitation of growth in Eucalyptus tereticornis Sm. seedlings. Seedlings were grown in the field in containers of different sizes and planted flush to the soil alongside freely rooted (Free) seedlings. Container volume negatively affected aboveground growth throughout the experiment, and light saturated rates of leaf photosynthesis were consistently lower in seedlings in containers (-26%) compared with Free seedlings. Significant reductions in photosynthetic capacity in containerized seedlings were related to both reduced leaf nitrogen content and starch accumulation, indicating direct effects of sink limitation on photosynthetic downregulation. After 120 days, harvested biomass of Free seedlings was on average 84% higher than seedlings in containers, but biomass distribution in leaves, stems and roots was not different. However, the reduction in net leaf photosynthesis over the growth period was insufficient to explain the reduction in growth, so that we also observed an apparent reduction in whole-plant C-use efficiency (CUE) between Free seedlings and seedlings in containers. Our results show that sink limitation affects plant growth through feedbacks to both photosynthesis and CUE. Mass balance approaches to predicting plant growth under sink-limited conditions need to incorporate both of these feedbacks. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength

    Directory of Open Access Journals (Sweden)

    Saadia eBihmidine

    2013-06-01

    Full Text Available Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INV, not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell-cycle and cell-division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive feast genes, they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength

  10. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort.

    Science.gov (United States)

    Shcherbina, Anna; Mattsson, C Mikael; Waggott, Daryl; Salisbury, Heidi; Christle, Jeffrey W; Hastie, Trevor; Wheeler, Matthew T; Ashley, Euan A

    2017-05-24

    The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).

  11. Real World Example of a Hazard Warning System based on a Network of Autonomous High Rate, Low Latency GPS Sensors

    Science.gov (United States)

    Squibb, M.; Bock, Y.; Crowell, B.; Fang, P.; Jamason, P.; Prawirodirdjo, L.

    2008-12-01

    The California Real Time Network consists of 80 autonomous geodetic-quality continuous GPS stations distributed at nominal 20 km spacing throughout Southern California, with plans to expand statewide with a spacing of 80 km. The GPS receivers collect data at a sampling rate of 1 Hz, with capability up to 20 Hz. The data are streamed to a server at Scripps over dedicated spread spectrum radios and existing microwave communication links (such as provided by UCSD's HPWREN project), with a latency of less than 1 s. We have also experimented with streaming data over cellular modems using commercial service providers. CRTN provides an operational test bed for an early warning system (EWS) for geological (earthquake, tsunami, volcano, landslide) and meteorological (flood) hazards. At the server end, we use a GridSphere and JavaServer Pages-based web portal environment with components developed under several NASA-funded projects by Scripps and JPL, enabling users to select, view, manipulate and download GPS data products. An earthquake EWS makes use of and extends some of the components of this web portal. CRTN has constructed portlets to display: 1) strain calculated from the changes in displacements of the GPS stations within a Delaunay triangulation mesh; 2) archived animations of strain maps of seismic events, both actual and simulated; 3) time series of the displacements at a given site; and 4) rapid earthquake models including moment magnitude and location. Another component of the EWS will generate messages to notify registered First Responders upon the detection of seismic events using a lightweight component of the Geophysical Resource Web Services (GRWS) framework developed as part of several NASA projects. Strain and displacement data will be available from within the portal so that users may import data into the portal's web service-based configurable filters and models. We discuss the merits of various components of our sensor network and issues that have

  12. 77 FR 64545 - Drawn Stainless Steel Sinks From China

    Science.gov (United States)

    2012-10-22

    ... merchandise as ``drawn stainless steel sinks with single or multiple drawn bowls, with or without drain boards... finishing the vertical corners to form the bowls. Stainless steel sinks with fabricated bowls may sometimes...

  13. Why do bubbles in Guinness sink?

    Science.gov (United States)

    Benilov, E. S.; Cummins, C. P.; Lee, W. T.

    2013-02-01

    Stout beers show the counter-intuitive phenomena of sinking bubbles, while the beer is settling. Previous research suggests that this phenomenon is due to the small size of the bubbles in these beers and the presence of a circulatory current, directed downwards near the side of the wall and upwards in the interior of the glass. The mechanism by which such a circulation is established and the conditions under which it will occur has not been clarified. In this paper, we use simulations and experiments to demonstrate that the flow in a glass of stout beer depends on the shape of the glass. If it narrows downwards (as the traditional stout glass, the pint, does), the flow is directed downwards near the wall and upwards in the interior and sinking bubbles will be observed. If the container widens downwards, the flow is opposite to that described above and only rising bubbles will be seen.

  14. Source and sink nodes in absence seizures.

    Science.gov (United States)

    Rodrigues, Abner C; Machado, Birajara S; Caboclo, Luis Otavio S F; Fujita, Andre; Baccala, Luiz A; Sameshima, Koichi

    2016-08-01

    As opposed to focal epilepsy, absence seizures do not exhibit a clear seizure onset zone or focus since its ictal activity rapidly engages both brain hemispheres. Yet recent graph theoretical analysis applied to absence seizures EEG suggests the cortical focal presence, an unexpected feature for this type of epilepsy. In this study, we explore the characteristics of absence seizure by classifying the nodes as to their source/sink natures via weighted directed graph analysis based on connectivity direction and strength estimation using information partial directed coherence (iPDC). By segmenting the EEG signals into relatively short 5-sec-long time windows we studied the evolution of coupling strengths from both sink and source nodes, and the network dynamics of absence seizures in eight patients.

  15. Mine shaft sinking in recent decade

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Between 1976 and 1985, 172 new shafts with a total depth of 74,166 m have been sunk in Chinese coal mines. Of the 172 new shafts, 89 were sunk by a conventional method while 83 were sunk by special shaft sinking methods. The shaft excavation technology and equipment in China is near to or has reached world advanced level. There are wide application of mechanisation and improvement in the various shaft excavation techniques. 3 tabs.

  16. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  17. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Science.gov (United States)

    2013-04-10

    ... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... drawn stainless steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized Tariff... notification of a preliminary determinations by Commerce that imports of drawn stainless steel sinks from China...

  18. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  19. Salt Marshes as Sources and Sinks of Silica

    Science.gov (United States)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  20. Fluid motion and solute distribution around sinking aggregates II : Implications for remote detection by colonizing zooplankters

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Thygesen, Uffe Høgsbro

    2001-01-01

    to account for the observed abundances of colonizers. We next solved the advection-diffusion equation to describe the chemical trail left by a leaking and sinking aggregate. The plume is long and slender and may be detected by a horizontally cruising copepod. From the model of the plume and literature- based......Marine snow aggregates are colonized by copepods, and encounter rates inferred from observed abundances of colonizers are high. We examined the potential for hydromechanical and chemical remote detection. The fluid disturbance generated by a sinking aggregate was described by solving the Navier......-Stokes' equation for a sinking sphere at Reynolds numbers typical of marine snow (up to 20). Fluid deformation rate, the component of the flow that can be perceived by copepods, attenuates rapidly, and detection distances estimated from knowledge of the hydromechanical sensitivity in copepods are insufficient...

  1. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    Science.gov (United States)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  2. Variation in heat sink shape for thermal analysis

    Science.gov (United States)

    Wong, C. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Sauli, Z.

    2017-09-01

    The concern about the thermal performance of microelectronics is on the increase due to recent over-heating induced failures which have led to product recalls. Removal of excess heat from microelectronic systems with the use of heat sinks could improve thermal efficiency of the system. The shape of the heat sink model with difference fin configuration has significant influence on cooling performances. This paper investigates the effect of change in heat sink geometry on an electronic package through COMSOL Multiphysics software as well as the thermal performance of difference heat sink geometry corresponding to various air inlet velocities. Based on this study, plate fin heat sink has better thermal performance than strip pin fin and circular pin fin heat sink due to less obstruction of the heat sink design.

  3. Investigating the relative importance of nitrogen deposition on the terrestrial carbon sink in recent decades

    Science.gov (United States)

    O'Sullivan, M.; Buermann, W.; Spracklen, D. V.; Gloor, E. U.; Arnold, S.

    2017-12-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that these parallel increases in fossil fuel burning and terrestrial sink are causally linked via increases in atmospheric CO2 and nitrogen deposition (and carbon-nitrogen interaction). Using the dynamic global vegetation model CLM4.5-BGC, we performed factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we found that increases in nitrogen deposition from 1900 to 2016 led to an additional 32 PgC stored. 40% of this increase could be attributed to East Asia and Europe alone, with North America also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake was 0.7 PgC/yr (20% of the total sink). Comparing the past decade (2005-2016) to the previous (1990-2005), regionally, we find nitrogen deposition to be an important driver of changes in net carbon uptake. In East Asia, increases in nitrogen deposition contributed 26% of the total increase in carbon uptake, with direct CO2 fertilization contributing 67%, and the synergistic carbon-nitrogen effect explaining 7% of the sink. Conversely, declining nitrogen deposition rates over North America contributed negatively (-35%) to the carbon sink, with a near zero contribution from the synergistic effect. At global scale, however, our findings suggest that changes in nitrogen deposition (both direct and via increasing the efficiency of the CO2 fertilization effect) played only a minor role in the enhanced plant carbon uptake and sink activity during the most recent decade. This finding is due to regional compensations but also suggesting that other factors (direct CO2, climate, land use change) may have been more important drivers.

  4. Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007

    Directory of Open Access Journals (Sweden)

    K. Ishii

    2009-11-01

    Full Text Available OH reactivity is one of key indicators which reflect impacts of photochemical reactions in the atmosphere. An observation campaign has been conducted in the summer of 2007 at the heart of Tokyo metropolitan area to measure OH reactivity. The total OH reactivity measured directly by the laser-induced pump and probe technique was higher than the sum of the OH reactivity calculated from concentrations and reaction rate coefficients of individual species measured in this campaign. And then, three-dimensional air quality simulation has been conducted to evaluate the simulation performance on the total OH reactivity including "missing sinks", which correspond to the difference between the measured and calculated total OH reactivity. The simulated OH reactivity is significantly underestimated because the OH reactivity of volatile organic compounds (VOCs and missing sinks are underestimated. When scaling factors are applied to input emissions and boundary concentrations, a good agreement is observed between the simulated and measured concentrations of VOCs. However, the simulated OH reactivity of missing sinks is still underestimated. Therefore, impacts of unidentified missing sinks are investigated through sensitivity analyses. In the cases that unknown secondary products are assumed to account for unidentified missing sinks, they tend to suppress formation of secondary aerosol components and enhance formation of ozone. In the cases that unidentified primary emitted species are assumed to account for unidentified missing sinks, a variety of impacts may be observed, which could serve as precursors of secondary organic aerosols (SOA and significantly increase SOA formation. Missing sinks are considered to play an important role in the atmosphere over Tokyo metropolitan area.

  5. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  6. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    Science.gov (United States)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  7. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  8. Backup and Ultimate Heat Sinks in CANDU Reactors For Prolonged SBO Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T.; Brown, M. J. [Atomic Energy of Canada Limited, Ontario (Canada)

    2013-10-15

    In a pressurized heavy water reactor, following loss of the primary coolant, severe core damage would begin with the depletion of the liquid moderator, exposing the top row of internally-voided fuel channels to steam cooling conditions on the inside and outside. The uncovered fuel channels would heat up, deform and disassemble into core debris. Large inventories of water passively reduce the rate of progression of the accident, prolonging the time for complete loss of engineered heat sinks. The efficacy of available backup and ultimate heat sinks, available in a CANDU 6 reactor, in mitigating the consequences of a prolonged station blackout scenario was analysed using the MAAP4-CANDU code. The analysis indicated that the steam generator secondary side water inventory is the most effective heat sink during the accident. Additional heat sinks such as the primary coolant, moderator, calandria vault water and end shield water are also able to remove decay heat; however, a gradually increasing mismatch between heat generation and heat removal occurs over the course of the postulated event. This mismatch is equivalent to an additional water inventory estimated to be 350,000 kg at the time of calandria vessel failure. In the Enhanced CANDU 6 reactor ∼2,040,000 kg of water in the reserve water tank is available for prolonged emergencies requiring heat sinks.

  9. Development of Thermal Design Program for an Electronic Telecommunication System Using Heat Sink

    International Nuclear Information System (INIS)

    Lee, Jung Hwan; Kim, Jong Man; Chun, Ji Hwan; Bae, Chul Ho; Suh, Myung Won

    2007-01-01

    The purpose of this study is to investigate the cooling performance of heat sinks for an electronic telecommunication system by adequate natural convection. Heat generation rates of electronic components and the temperature distributions of heat sinks and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system, a program is developed. The program used the graphic user interface environment to determine the arrangement of heat sources, interior fan capacity, and heat sink configuration. The simulation results showed that the heat sinks were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of 19 .deg. C. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared. The design program gave good prediction of the effects of various parameters involved in the design of a heat sinks for an electronic telecommunication system

  10. Physiological constrains on Sverdrup's Critical-Depth-Hypothesis: the influences of dark respiration and sinking

    DEFF Research Database (Denmark)

    Lindemann, Christian; Backhaus, Jan O.; St. John, Michael

    2015-01-01

    conditions as driven by convective mixing, and the onset of thermal stratification resulting in the spring bloom. The comparison between a simulation using a standard fixed rate approach in line with the original Sverdrup hypothesis and a simulation parameterized to include variable respiration and sinking...

  11. Is the Southern Benguela a significant regional sink of CO2?

    CSIR Research Space (South Africa)

    Gregor, L

    2013-05-01

    Full Text Available boundary upwelling systems in the global ocean, the southern Benguela was found to be a very small net annual CO(sub2) sink of -1.4 ± 0.6 mol C/m(sup2) per year (1.7 Mt C/year). Regional primary productivity was offset by nearly equal rates of sediment...

  12. Topology optimization of a pseudo 3D thermofluid heat sink model

    DEFF Research Database (Denmark)

    Haertel, Jan H. K.; Engelbrecht, Kurt; Lazarov, Boyan S.

    2018-01-01

    This paper investigates the application of density-based topology optimization to the design of air-cooled forced convection heat sinks. To reduce the computational burden that is associated with a full 3D optimization, a pseudo 3D optimization model comprising a 2D modeled conducting metal base...... sink and a fixed heat production rate in the base plate. Optimized designs are presented and the resulting fin geometry is discussed from a thermal engineering point of view and compared to fin shapes resulting from a pressure drop minimization objective. Parametric studies are conducted to analyze...... is found, confirming the physical validity of the utilized optimization model. Two topology optimized designs are exemplarily benchmarked against a size optimized parallel fin heat sink and an up to 13.6% lower thermal resistance is found to be realized by the topology optimization....

  13. Geological characterization of the Prestige sinking area.

    Science.gov (United States)

    Ercilla, Gemma; Córdoba, Diego; Gallart, Josep; Gràcia, Eulalia; Muñoz, Josep A; Somoza, Luis; Vázquez, Juan T; Vilas, Federico

    2006-01-01

    The tanker Prestige sank off NW Iberia on the 19th November 2002. The stern and bow of the Prestige wreck are located on the southwestern edge of the Galicia Bank, at 3565 m and 3830 m water depths, respectively. This bank is a structural high controlled by major faults with predominant N-S, NNE-SSW, and NNW-SEE trends. It is characterized by moderate to low seismic activity. The faults have controlled the local depositional architecture, deforming, fracturing, relocating and distributing sediments since the Valangian (early Cretaceous). The Prestige sinking area corresponds to an asymmetric half-graben structure with a N-S trend, which conditions the present-day morphology. The faulted flank outcrops and its activity and erosion have favoured the occurrence of mass-movements (slumps, slump debris, mass-flows and turbidity currents), building valleys and depositional lobes. Nearsurface sediments comprise mostly terrigenous and biogenous turbiditic muds and sands with a minor presence of hemipelagic muds, except on the fault scarp where pelagites predominate. Potential geological hazards resulting from tectonic and sedimentary processes affect almost the entire Prestige sinking area.

  14. Causes of sinks near Tucson, Arizona, USA

    Science.gov (United States)

    Hoffmann, John P.; Pool, Donald R.; Konieczki, A. D.; Carpenter, Michael C.

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods. Résumé Des effondrements en forme d'entonnoir se sont produits sur et près d'exploitations agricoles de Pima (Arizona). Ces entonnoirs apparaissent dans les alluvions le long de la plaine d'inondation de la rivière Santa Cruz ; ils ont rendu ces terrains dangereux et inexploitables pour l'agriculture. Plus de 1700 entonnoirs existent dans la plaine d'inondation de la rivière Santa Cruz et sont groupés en deux bandes orientées nord-nord-ouest, approximativement parallèles à la rivière et aux autres chenaux de la plaine d'inondation. Un volume de sédiments estim

  15. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan

    2017-08-22

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  16. Global Modelling of the total OH reactivity: validation against measurements and atmospheric implications of the 'missing' sink

    Science.gov (United States)

    Ferracci, Valerio; Archibald, Alexander T.; Pyle, John A.

    2017-04-01

    The removal of most trace gases emitted into the atmosphere is primarily initiated by reaction with the hydroxyl radical, OH. A number of field campaigns over the last two decades have observed the presence of a "missing" sink of the OH radical in a variety of regions across the planet, from urban areas to remote forests: comparison of the direct measurements of the OH loss rate, also known as total OH reactivity, with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides) indicated that, in some cases, up to 80% of the total OH loss rate was unaccounted for. The implications of this finding are significant, as a potentially major OH sink operating in the atmosphere is not currently accounted for in atmospheric models: the presence of an additional OH sink might, for instance, lead to an increase in the atmospheric lifetime of a number of trace species, including high-impact greenhouse gases such as methane. The only modelling of the total OH reactivity is currently performed on a regional scale; a thorough assessment of the impact of the missing sink on the chemistry and climate of the planet by global modelling is therefore highly desirable. In this work a chemistry-climate model (the Met Office's Unified Model with the United Kingdom Chemistry and Aerosols scheme, UM-UKCA) was used to calculate the total OH reactivity at the planetary boundary layer. The model output was validated against available field measurements to verify that the known OH sinks observed in the field were reproduced correctly by the model: a good agreement was found between the data from more than 30 field campaigns and the model output. Following this, the effects of introducing novel OH sinks in the chemistry scheme were investigated. The first step was the introduction in the model of the newly characterised reactions of peroxy radicals (RO2) with OH, the kinetics and products of which have only

  17. Activity Monitoring and Heart Rate Variability as Indicators of Fall Risk: Proof-of-Concept for Application of Wearable Sensors in the Acute Care Setting.

    Science.gov (United States)

    Razjouyan, Javad; Grewal, Gurtej Singh; Rishel, Cindy; Parthasarathy, Sairam; Mohler, Jane; Najafi, Bijan

    2017-07-01

    Growing concern for falls in acute care settings could be addressed with objective evaluation of fall risk. The current proof-of-concept study evaluated the feasibility of using a chest-worn sensor during hospitalization to determine fall risk. Physical activity and heart rate variability (HRV) of 31 volunteers admitted to a 29-bed adult inpatient unit were recorded using a single chest-worn sensor. Sensor data during the first 24-hour recording were analyzed. Participants were stratified using the Hendrich II fall risk assessment into high and low fall risk groups. Univariate analysis revealed age, daytime activity, nighttime side lying posture, and HRV were significantly different between groups. Results suggest feasibility of wearable technology to consciously monitor physical activity, sleep postures, and HRV as potential markers of fall risk in the acute care setting. Further study is warranted to confirm the results and examine the efficacy of the proposed wearable technology to manage falls in hospitals. [Journal of Gerontological Nursing, 43(7), 53-62.]. Copyright 2017, SLACK Incorporated.

  18. Dust deposition: iron source or sink? A case study

    Directory of Open Access Journals (Sweden)

    Y. Ye

    2011-08-01

    Full Text Available A significant decrease of dissolved iron (DFe concentration has been observed after dust addition into mesocosms during the DUst experiment in a low Nutrient low chlorophyll Ecosystem (DUNE, carried out in the summer of 2008. Due to low biological productivity at the experiment site, biological consumption of iron can not explain the magnitude of DFe decrease. To understand processes regulating the observed DFe variation, we simulated the experiment using a one-dimensional model of the Fe biogeochemical cycle, coupled with a simple ecosystem model. Different size classes of particles and particle aggregation are taken into account to describe the particle dynamics. DFe concentration is regulated in the model by dissolution from dust particles and adsorption onto particle surfaces, biological uptake, and photochemical mobilisation of particulate iron.

    The model reproduces the observed DFe decrease after dust addition well. This is essentially explained by particle adsorption and particle aggregation that produces a high export within the first 24 h. The estimated particle adsorption rates range between the measured adsorption rates of soluble iron and those of colloidal iron, indicating both processes controlling the DFe removal during the experiment. A dissolution timescale of 3 days is used in the model, instead of an instantaneous dissolution, underlining the importance of dissolution kinetics on the short-term impact of dust deposition on seawater DFe.

    Sensitivity studies reveal that initial DFe concentration before dust addition was crucial for the net impact of dust addition on DFe during the DUNE experiment. Based on the balance between abiotic sinks and sources of DFe, a critical DFe concentration has been defined, above which dust deposition acts as a net sink of DFe, rather than a source. Taking into account the role of excess iron binding ligands and biotic processes, the critical DFe concentration might be applied to

  19. Forest Carbon Sinks and Biodiversity Conservation from China's Perspective

    OpenAIRE

    Mingde Cao, Ying Chen

    2010-01-01

    The Kyoto Protocol established the use of forest carbon sinks as one way of compensating for forest ecological values. Forest carbon sinks can promote sustainable economic development and help developed nations reduce their GHG emissions. But without proper legal regulation they may influence the local ecological environment and, in particular, they may harm biodiversity. States need to make laws that regulate forest carbon sinks and protect biodiversity. Environmental law urgently needs to s...

  20. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    Energy Technology Data Exchange (ETDEWEB)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal

  1. The Global Carbon Sink in Tidal Salt Marshes

    Science.gov (United States)

    Chmura, G. L.

    2004-05-01

    For decades researchers have concentrated on proving that C is exported from salt marshes to coastal waters, with limited success. Yet, the C retained in the marsh soils may be equally important. Presumptions that minor amounts of C are stored in salt marsh soils are based upon measurements of low percentages of C in many marshes. Simply measuring the organic matter content of marsh soils provides little indication of the amount or rate of C stored, as this parameter is based upon the percent by mass of the soil. The critical parameter to calculate is C density, derived from percent organic matter and bulk density. (The latter is often neglected in marsh soil studies.) Calculation of C density reveals that minerogenic soils with high bulk densities may have C densities or C storage rates equivalent to more organic soils with low bulk densities. A global average soil C density of 0.055 ± 0.004 g cm-3 has been calculated from 107 measurements reported for salt marshes around the world (Gulf of Mexico, NE and NW Atlantic, Mediterranean and NE Pacific). Assuming an average marsh soil depth of 0.5 m and using inventories of marsh area available for Europe, Scandinavia, Africa, Canada and the U.S., the C stored globally in salt marshes is greater than 430 ± 30 Tg C. The global carbon storage could be twice this as there are no marsh inventories available for Asia or South America. Rates of C storage can be calculated from 96 C density measurements where soil accretion rates also were measured. Globally, marshes sequester an average of 210 g CO2 m-2 yr-1, an order of magnitude greater than rates reported for peatlands. Salt marsh C storage can have regional importance. At a magnitude of 5 Tg C yr-1, tidal wetlands comprise 1--2 percent of the C sink (300--580 Tg C yr-1) estimated for the coterminous U.S. In the Bay of Fundy restoration of salt marshes reclaimed for agricultural land could enable sequestration of an additional 240 to 360 Gg C yr-1, equivalent to 4 to 6

  2. The potential contribution of sinks to meeting Kyoto Protocol commitments

    DEFF Research Database (Denmark)

    Missfeldt, F.; Haites, E.

    2001-01-01

    scenario, at least some of the sinks have costs lower than the market price, so the larger the eligible sinks, the lower the compliance costs for industrialised countries. Greater use of sinks also reduces the net income received by the economies in transition and developing countries. Increased use......, a range of average costs is used with the lowest cost allowing maximum use of sinks. The effects considered are the impacts on compliance costs for OECD countries, economies in transition, and developing countries and the mix of actions used by industrialised countries to achieve compliance. In every...

  3. Effects of biofouling on the sinking behavior of microplastics

    Science.gov (United States)

    Kaiser, David; Kowalski, Nicole; Waniek, Joanna J.

    2017-12-01

    Although plastic is ubiquitous in marine systems, our current knowledge of transport mechanisms is limited. Much of the plastic entering the ocean sinks; this is intuitively obvious for polymers such as polystyrene (PS), which have a greater density than seawater, but lower density polymers like polyethylene (PE) also occur in sediments. Biofouling can cause large plastic objects to sink, but this phenomenon has not been described for microplastics microplastic particles in estuarine and coastal waters to determine how biofouling changes their sinking behavior. Sinking velocities of PS increased by 16% in estuarine water (salinity 9.8) and 81% in marine water (salinity 36) after 6 weeks of incubation. Thereafter sinking velocities decreased due to lower water temperatures and reduced light availability. Biofouling did not cause PE to sink during the 14 weeks of incubation in estuarine water, but PE started to sink after six weeks in coastal water when sufficiently colonized by blue mussels Mytilus edulis, and its velocity continued to increase until the end of the incubation period. Sinking velocities of these PE pellets were similar irrespective of salinity (10 vs. 36). Biofilm composition differed between estuarine and coastal stations, presumably accounting for differences in sinking behavior. We demonstrate that biofouling enhances microplastic deposition to marine sediments, and our findings should improve microplastic transport models.

  4. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    DEFF Research Database (Denmark)

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo-imaging......Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... camera was used to measure the thermal field distribution. Ideas for future research involving improvement of the experimental setup and modeling verification are given....

  5. Sources and sinks of stratospheric water vapor

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H 2 O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H 2 O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H 2 O

  6. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink

    DEFF Research Database (Denmark)

    Ahlström, Anders; Raupach, Michael R.; Schurgers, Guy

    2015-01-01

    regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.......The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems...... to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic...

  7. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  8. Evaluation of the thermal performance with different fin shapes of the air-cooled heat sink for power electronic applications

    Directory of Open Access Journals (Sweden)

    Chang-Woo Han

    2016-01-01

    Full Text Available The proper selection of the heat sink, which is attached at the insulated-gate bipolar transistor (IGBT module to dissipate heat by electric losses of the IGBT/diode chips, is important to satisfy the design criterion of the IGBT module. Prior to the performance evaluation of the air-cooled heat sink using the numerical method, the suitability of the simulation model was validated through the experimental result of the developed product. The simulation model predicted the hotspot temperature on the heat sink within a margin of error of 5.6 percent. From the verified numerical method, the thermal performance of the heat sink was evaluated according to the shape of the fins. The heat sink with the perforated fins had an excellent thermal performance because the rate of increment of the dissipation area was greater than the rate of decrement of the convection coefficient. The selected heat sink with the perforated fins was attached at the IGBT module and the junction temperature of the IGBT module was predicted. The predicted junction temperature was 131.4°C and the result satisfied the design criterion of 140.0°C.

  9. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves

    International Nuclear Information System (INIS)

    Plaut, Z.; Mayoral, M.L.; Reinhold, L.

    1987-01-01

    When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of 14 C detected in sugar phosphates and UDPglucose following 14 CO 2 supply. When mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO 2 fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans 14 C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO 2 fixation rate was constant for several days

  10. Privacy-Preserving Data Aggregation in Two-Tiered Wireless Sensor Networks with Mobile Nodes

    Directory of Open Access Journals (Sweden)

    Yonglei Yao

    2014-11-01

    Full Text Available Privacy-preserving data aggregation in wireless sensor networks (WSNs with mobile nodes is a challenging problem, as an accurate aggregation result should be derived in a privacy-preserving manner, under the condition that nodes are mobile and have no pre-specified keys for cryptographic operations. In this paper, we focus on the SUM aggregation function and propose two privacy-preserving data aggregation protocols for two-tiered sensor networks with mobile nodes: Privacy-preserving Data Aggregation against non-colluded Aggregator and Sink (PDAAS and Privacy-preserving Data Aggregation against Colluded Aggregator and Sink (PDACAS. Both protocols guarantee that the sink can derive the SUM of all raw sensor data but each sensor’s raw data is kept confidential. In PDAAS, two keyed values are used, one shared with the sink and the other shared with the aggregator. PDAAS can protect the privacy of sensed data against external eavesdroppers, compromised sensor nodes, the aggregator or the sink, but fails if the aggregator and the sink collude. In PDACAS, multiple keyed values are used in data perturbation, which are not shared with the aggregator or the sink. PDACAS can protect the privacy of sensor nodes even the aggregator and the sink collude, at the cost of a little more overhead than PDAAS. Thorough analysis and experiments are conducted, which confirm the efficacy and efficiency of both schemes.

  11. Focus on image sensors

    NARCIS (Netherlands)

    Jos Gunsing; Daniël Telgen; Johan van Althuis; Jaap van de Loosdrecht; Mark Stappers; Peter Klijn

    2013-01-01

    Robots need sensors to operate properly. Using a single image sensor, various aspects of a robot operating in its environment can be measured or monitored. Over the past few years, image sensors have improved a lot: frame rate and resolution have increased, while prices have fallen. As a result,

  12. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  13. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  14. Monitoring Methods and its Application of Carbon Sinks Based on GPRS

    Directory of Open Access Journals (Sweden)

    Songwei Zeng

    2014-05-01

    Full Text Available Scientific and effective monitoring of forest carbon emissions and carbon sinks can provide a scientific basis for national development of low-carbon economy. Due to the limitations of technical conditions and cost, it is very difficult to obtain accurate data of the regional carbon sink by using the existing common means. First, this paper discusses the benefit and weakness of kinds of monitoring methods of forest carbon emissions and carbon sinks. Then, it mainly proposes the way based on carbon flux measurement model, which is based on wireless network technology, combined with the continuing dynamic perceived information needs of carbon flux tower. In addition, the article develops the smart sensor nodes to meet the multi-scale, multi-objective time and space requirements. The node and the system had successfully accomplished the online auto-monitoring of the CO2 concentration, temperature and humid value of the monitoring area of Taihu town in Linan, Zhejiang Provice of China, which lays the foundation for building carbon emissions, carbon quantitative monitoring comprehensive platform, real-time release carbon balance regional information.

  15. 77 FR 23752 - Drawn Stainless Steel Sinks From China

    Science.gov (United States)

    2012-04-20

    ... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... reason of imports from China of drawn stainless sinks, provided for in subheading 7324.10.00 of the... than fair value (LTFV) and subsidized by the Government of China. \\1\\ The record is defined in sec. 207...

  16. Copepods use chemical trails to find sinking marine snow aggregates

    DEFF Research Database (Denmark)

    Lombard, Fabien; Koski, Marja; Kiørboe, Thomas

    2013-01-01

    Copepods are major consumers of sinking marine particles and hence reduce the efficiency of the biological carbon pump. Their high abundance on marine snow suggests that they can detect sinking particles remotely. By means of laboratory observations, we show that the copepod Temora longicornis ca...

  17. Sinking in Quicksand: An Applied Approach to the Archimedes Principle

    Science.gov (United States)

    Evans, G. M.; Evans, S. C.; Moreno-Atanasio, R.

    2015-01-01

    The objective of this paper is to present a laboratory experiment that explains the phenomenon of sinking in quicksand simulated as a fluidized bed. The paper demonstrates experimentally and theoretically that the proportion of a body that sinks in quicksand depends on the volume fraction of solids and the density of the body relative to the…

  18. Transcriptional profiling of mechanically and genetically sink-limited soybeans

    Science.gov (United States)

    The absence of a reproductive sink causes physiological and morphological changes in soybean plants. These include increased accumulation of nitrogen and starch in the leaves and delayed leaf senescence. To identify transcriptional changes that occur in leaves of these sink-limited plants, we used R...

  19. Grain boundary strength as point defect sink strength

    International Nuclear Information System (INIS)

    Volobuev, A.V.; Gann, V.V.

    1987-01-01

    Sink strength of spherical grain boundary as an absolutely absorbing surface and as finite thickness wall consisting of the edge dislocations are considered. The values of the grain boundary sink strength are shown to be critically dependent on the point defect recombination degree

  20. Sinks as integrative elements of the anthropogenic metabolism

    Science.gov (United States)

    Kral, Ulrich; Brunner, Paul H.

    2015-04-01

    The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.

  1. Design of a Wireless Sensor System with the Algorithms of Heart Rate and Agility Index for Athlete Evaluation.

    Science.gov (United States)

    Li, Meina; Kim, Youn Tae

    2017-10-17

    Athlete evaluation systems can effectively monitor daily training and boost performance to reduce injuries. Conventional heart-rate measurement systems can be easily affected by artifact movement, especially in the case of athletes. Significant noise can be generated owing to high-intensity activities. To improve the comfort for athletes and the accuracy of monitoring, we have proposed to combine robust heart rate and agility index monitoring algorithms into a small, light, and single node. A band-pass-filter-based R-wave detection algorithm was developed. The agility index was calculated by preprocessing with band-pass filtering and employing the zero-crossing detection method. The evaluation was conducted under both laboratory and field environments to verify the accuracy and reliability of the algorithm. The heart rate and agility index measurements can be wirelessly transmitted to a personal computer in real time by the ZigBee telecommunication system. The results show that the error rate of measurement of the heart rate is within 2%, which is comparable with that of the traditional wired measurement method. The sensitivity of the agility index, which could be distinguished as the activity speed, changed slightly. Thus, we confirmed that the developed algorithm could be used in an effective and safe exercise-evaluation system for athletes.

  2. A Nonlinear Energy Sink with Energy Harvester

    Science.gov (United States)

    Kremer, Daniel

    The transfer of energy between systems is a natural process, manifesting in many different ways. In engineering transferable energy can be considered wanted or unwanted. Specifically in mechanical systems, energy transfer can occur as unwanted vibrations, passing from a source to a receiver. In electrical systems, energy transfer can be desirable, where energy from a source may be used elsewhere. This work proposes a method to combine the two, converting unwanted mechanical energy into useable electrical energy. A nonlinear energy sink (NES) is a vibration absorber that passively localizes vibrational energy, removing mechanical energy from a primary system. Consisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a NES can localize vibrational energy from a source and dissipate it through damping. Replacing the NES mass with a series of magnets surrounded by coils fixed to the primary mass, the dissipated energy can be directly converted to electrical energy. A NES with energy harvesting properties is constructed and introduced. The system parameters are identified, with the NES having an essentially cubic nonlinear stiffness. A transduction factor is quantified linking the electrical and mechanical systems. An analytic analysis is carried out studying the transient and harmonically excited response of the system. It is found that the energy harvesting does not reduce the vibrational absorption capabilities of the NES. The performance of the system in both transient and harmonically excited responses is found to be heavily influenced by input energies. The system is tested, with good match to analytic results.

  3. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?

    Science.gov (United States)

    Sepulveda, A.J.; Lowe, W.H.

    2011-01-01

    Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.

  5. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    Science.gov (United States)

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  6. Diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoi-dohrnii complex.

    Science.gov (United States)

    Khanam, Mst Ruhina Margia; Shimasaki, Yohei; Hosain, Md Zahangir; Mukai, Koki; Tsuyama, Michito; Qiu, Xuchun; Tasmin, Rumana; Goto, Hiroshi; Oshima, Yuji

    2017-05-01

    The present research investigated the effect of diuron on sinking rate and the physiochemical changes in two marine diatoms, Thalassiosira pseudonana (single-celled species) and Skeletonema marinoi-dohrnii complex (chain-forming species). The results revealed that the sinking rate of both diatoms exposed to diuron at a level of 50% effective concentration for growth (EC50) decreased significantly compared with the control. Photosynthetic performance (Fv/Fm and PI ABS ) of both diatoms also decreased significantly with diuron exposure. The number of cells per chain in S. marinoi-dohrnii decreased significantly with diuron treatment, but T. pseudonana cell diameter remained stable. Neutral lipid concentration per cell was significantly higher compared with control at 72 h in both diatom species exposed to EC50 level diuron. And water-soluble protein concentration per cell at 72 h was lower than control in the T. pseudonana EC50 group only. These biochemical changes may decrease specific gravity of cells and seems to cause a decreased sinking rate in diatoms. The positive significant correlation between the numbers of cells per chain and sinking rate in S. marinoi-dohrnii indicated that chain length is also an important factor in sinking rate regulation for chain-forming diatoms. Thus, our present study suggested that suppression of photosynthetic performance and the resultant physiochemical changes induced the decreased sinking rate that may inhibit the normal survival strategy (avoidance from the surface layer where strong light either causes photo-inhibition or interrupts resting cell formation). Therefore, the use of antifouling agents should be considered for the sustainable marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A large and persistent carbon sink in the world's forests

    Science.gov (United States)

    Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; Ciais, P.; Jackson, R.B.; Pacala, S.W.; McGuire, A.D.; Piao, S.; Rautiainen, A.; Sitch, S.; Hayes, D.

    2011-01-01

    The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ?? 0.4 petagrams of carbon per year (Pg C year-1) globally for 1990 to 2007. We also estimate a source of 1.3 ?? 0.7 Pg C year-1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ?? 0.5 Pg C year-1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ?? 0.5 Pg C year-1. Together, the fluxes comprise a net global forest sink of 1.1 ?? 0.8 Pg C year-1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

  8. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  9. Silicon force sensor

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  10. Mesoscale inversion of carbon sources and sinks

    International Nuclear Information System (INIS)

    Lauvaux, T.

    2008-01-01

    Inverse methods at large scales are used to infer the spatial variability of carbon sources and sinks over the continents but their uncertainties remain large. Atmospheric concentrations integrate the surface flux variability but atmospheric transport models at low resolution are not able to simulate properly the local atmospheric dynamics at the measurement sites. However, the inverse estimates are more representative of the large spatial heterogeneity of the ecosystems compared to direct flux measurements. Top-down and bottom-up methods that aim at quantifying the carbon exchanges between the surface and the atmosphere correspond to different scales and are not easily comparable. During this phD, a mesoscale inverse system was developed to correct carbon fluxes at 8 km resolution. The high resolution transport model MesoNH was used to simulate accurately the variability of the atmospheric concentrations, which allowed us to reduce the uncertainty of the retrieved fluxes. All the measurements used here were observed during the intensive regional campaign CERES of May and June 2005, during which several instrumented towers measured CO 2 concentrations and fluxes in the South West of France. Airborne measurements allowed us to observe concentrations at high altitude but also CO 2 surface fluxes over large parts of the domain. First, the capacity of the inverse system to correct the CO 2 fluxes was estimated using pseudo-data experiments. The largest fraction of the concentration variability was attributed to regional surface fluxes over an area of about 300 km around the site locations depending on the meteorological conditions. Second, an ensemble of simulations allowed us to define the spatial and temporal structures of the transport errors. Finally, the inverse fluxes at 8 km resolution were compared to direct flux measurements. The inverse system has been validated in space and time and showed an improvement of the first guess fluxes from a vegetation model

  11. Data collection framework for energy efficient privacy preservation in wireless sensor networks having many-to-many structures.

    Science.gov (United States)

    Bahşi, Hayretdin; Levi, Albert

    2010-01-01

    Wireless sensor networks (WSNs) generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-to-many structures evolved due to the need for conveying collected event information to multiple sinks. Privacy preserved data collection models in the literature do not solve the problems of WSN applications in which network has multiple un-trusted sinks with different level of privacy requirements. This study proposes a data collection framework bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks at the same anonymized output. If the same output is formed, it can be multicasted to all sinks. The other trivial solution is to produce different anonymized outputs for each sink and send them to related sinks. Multicasting is an energy efficient data sending alternative for some sensor nodes. Since minimization of energy consumption is an important design criteria for WSNs, multicasting the same event information to multiple sinks reduces the energy consumption of overall network.

  12. Data Collection Framework for Energy Efficient Privacy Preservation in Wireless Sensor Networks Having Many-to-Many Structures

    Directory of Open Access Journals (Sweden)

    Hayretdin Bahsi

    2010-09-01

    Full Text Available Wireless sensor networks (WSNs generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-to-many structures evolved due to the need for conveying collected event information to multiple sinks. Privacy preserved data collection models in the literature do not solve the problems of WSN applications in which network has multiple un-trusted sinks with different level of privacy requirements. This study proposes a data collection framework bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks at the same anonymized output. If the same output is formed, it can be multicasted to all sinks. The other trivial solution is to produce different anonymized outputs for each sink and send them to related sinks. Multicasting is an energy efficient data sending alternative for some sensor nodes. Since minimization of energy consumption is an important design criteria for WSNs, multicasting the same event information to multiple sinks reduces the energy consumption of overall network.

  13. Sinks in the landscape, Boltzmann brains and the cosmological constant problem

    Science.gov (United States)

    Linde, Andrei

    2007-01-01

    This paper extends a recent investigation of the string theory landscape (Ceresole et al 2006 Phys. Rev. D 74 086010), where it was found that the decay rate of de Sitter (dS) vacua to a collapsing space with a negative vacuum energy can be quite large. The parts of space that experience a decay to a collapsing space, or to a Minkowski vacuum, never return back to dS space. The channels of irreversible vacuum decay serve as sinks for the probability flow. The existence of such sinks is a distinguishing feature of the string theory landscape. We describe relations between several different probability measures for eternal inflation taking into account the existence of the sinks. The local (comoving) description of the inflationary multiverse suffers from the so-called Boltzmann brain (BB) problem unless the probability of the decay to the sinks is sufficiently large. We show that some versions of the global (volume-weighted) description do not have this problem even if one ignores the existence of the sinks. We argue that if the number of different vacua in the landscape is large enough, the anthropic solution of the cosmological constant problem in the string landscape scenario should be valid for a broad class of the probability measures which solve the BB problem. If this is correct, the solution of the cosmological constant problem may be essentially measure-independent. Finally, we describe a simplified approach to the calculations of anthropic probabilities in the landscape, which is less ambitious but also less ambiguous than other methods. To the memory of Eugene Feinberg, who was trying to make a bridge between science, philosophy and art.

  14. Denitrification in an oligotrophic estuary: a delayed sink for riverine nitrate

    OpenAIRE

    Hellemann, Dana; Tallberg, Petra Astrid Sofia; Bartl, Ines; Voss, Maren; Hietanen, Siru Susanna

    2017-01-01

    Estuaries are often seen as natural filters of riverine nitrate, but knowledge of this nitrogen sink in oligotrophic systems is limited. We measured spring and summer dinitrogen production (denitrification, anammox) in muddy and non-permeable sandy sediments of an oligotrophic estuary in the northern Baltic Sea, to estimate its function in mitigating the riverine nitrate load. Both sediment types had similar denitrification rates, and no anammox was detected. In spring at high nitrate loading...

  15. Determination of air exchange rates of rooms and deposition factors for fine particles by means of photoelectric aerosol sensors

    International Nuclear Information System (INIS)

    Skillas, G.; Siegmann, H.C.; Hueglin, Ch.

    1999-01-01

    Indoor and outdoor concentrations or airborne fine particles from internal combustion engines have been measured over periods of 24 h with a time resolution of 10 s. With this time series, the ventilation air exchange rate of different rooms has been computed using a novel approach to the solution of the mass balance equation. A 'mixing time' parameter has been introduced in order to account for the initial non-homogeneous distribution of the pollutants in the rooms. It is demonstrated that this method can be used to determine the impact of health relevant outdoor particles on the indoor particle concentration. This yields information on the protection a building offers against pollutants entering from outdoors. (author)

  16. Genetic Algorithm Design of a 3D Printed Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tong [ORNL; Ozpineci, Burak [ORNL; Ayers, Curtis William [ORNL

    2016-01-01

    In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sinkcompared to commercially available heat sinks.

  17. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Kyunghee Sun

    2018-03-01

    Full Text Available When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on the distance from the sink node and transmits data by setting different buffer thresholds to each group. This method reduces energy consumption of sensor devices located near the sink node and enhances the IoT system’s general energy efficiency. When a sensor device is moved and, thus, becomes unable to transmit data, it is allocated to a new group so that it can continue transmitting data to the sink node.

  18. Cost Estimates Of Concentrated Photovoltaic Heat Sink Production

    Science.gov (United States)

    2016-06-01

    water heating , but the majority of installed solar systems , are PV (EIA, 2015). Solar power generation has great benefits for the DON considering the...Current CPV systems use basic heat sink designs to increase efficiency. Modern heat sink design can achieve greater overall efficiencies of electricity...professionally developed cost analysis of adding optimized cooling technologies to concentrated photovoltaic (CPV) systems . Current CPV systems use basic heat

  19. A large and persistent carbon sink in the world's forests

    Science.gov (United States)

    Yude Pan; Richard A. Birdsey; Jingyun Fang; Richard Houghton; Pekka E. Kauppi; Werner A. Kurz; Oliver L. Phillips; Anatoly Shvidenko; Simon L. Lewis; Josep G. Canadell; Philippe Ciais; Robert B. Jackson; Stephen W. Pacala; A. David McGuire; Shilong Piao; Aapo Rautiainen; Stephen Sitch; Daniel. Hayes

    2011-01-01

    The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year-1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg...

  20. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha.

    Science.gov (United States)

    Dorchin, Netta; Cramer, Michael D; Hoffmann, John H

    2006-07-01

    Although insect galls are widely known to influence source-sink relationships in plants, the relationship between photosynthesis and gall activity has not been extensively studied. In this study we used 14CO2, photosynthesis, and respiration measurements to examine the capacity of bud galls induced by the wasp Trichilogaster signiventris (Pteromalidae) as carbon sinks in Acacia pycnantha. Galls of this species develop either in vegetative or reproductive buds, depending on the availability of tissues at different times of the year, and effectively eliminate seed production by the plant. Photosynthetic rates in phyllodes subtending clusters of galls were greater than rates in control phyllodes, a result we attributed to photosynthesis compensating for increased carbon demand by the galls. Contrary to previous studies, we found that photosynthesis within galls contributed substantially to the carbon budgets of the galls, particularly in large, mature galls, which exhibited lower specific respiration rates allowing for a net carbon gain in the light. To determine the sink capacity and competitive potential of galls, we measured the proportion of specific radioactivity in galls originating from either vegetative or reproductive buds and found no difference between them. The proportion of the total amount of phyllode-derived 14C accumulated in both clustered and solitary galls was less than that in fruits. Galls and fruits were predominantly reliant on subtending rather than on distant phyllodes for photosynthate. Solitary galls that developed in vegetative buds constituted considerably stronger sinks than galls in clusters on inflorescences where there was competition between galls or fruits for resources from the subtending phyllode. Wasps developing in solitary vegetative galls were correspondingly significantly larger than those from clustered galls. We conclude that, in the absence of inflorescence buds during summer and fall, the ability of the wasps to cause gall

  1. Long-period astronomically-forced terrestrial carbon sinks

    Science.gov (United States)

    Valero, Luis; Cabrera, Lluís; Sáez, Alberto; Garcés, Miguel

    2016-06-01

    Sequestration of organic matter by peat accumulation constitutes a primary sink for carbon in the global carbon cycle. The processes that control the formation and storage of peat at geological time scales are poorly understood but are of a non-solved issue of fundamental importance for understanding the global climate system. We analyzed a 7 million years long terrestrial record of Late Oligocene age from the As Pontes Basin in Northern Spain, which demonstrates that minima in the 405-kyr and 2.4-Myr eccentricity cycles play a key role in peat formation. Such nodes exhibit reduced precession amplitudes, thus avoiding extremes in seasons and seasonal contrast for a prolonged period of time. In the As Pontes Basin, this orbital configuration is associated with a decrease in siliciclastic sedimentation and enhanced peat formation. Feedbacks between equilibrium landscapes and ecosystem stability will lead to a deceleration of weathering and erosion rates in catchment areas and to minimum and stable sediment flux along the sediment routing system. Mid-latitude peat burial could contribute to disturb the carbon cycle by removing (atmospheric) carbon at times of minimum eccentricity.

  2. Understanding looping kinetics of a long polymer molecule in solution. Exact solution for delta function sink model

    Science.gov (United States)

    Ganguly, Moumita; Chakraborty, Aniruddha

    2017-10-01

    A diffusion theory for intramolecular reactions of polymer chain in dilute solution is formulated. We give a detailed analytical expression for calculation of rate of polymer looping in solution. The physical problem of looping can be modeled mathematically with the use of a Smoluchowski-like equation with a Dirac delta function sink of finite strength. The solution of this equation is expressed in terms of Laplace Transform of the Green's function for end-to-end motion of the polymer in absence of the sink. We have defined two different rate constants, the long term rate constant and the average rate constant. The average rate constant and long term rate constant varies with several parameters such as length of the polymer (N), bond length (b) and the relaxation time τR. The long term rate constant is independent of the initial probability distribution.

  3. Using plant growth modeling to analyse C source-sink relations under drought: inter and intra specific comparison

    Directory of Open Access Journals (Sweden)

    Benoit ePallas

    2013-11-01

    Full Text Available The ability to assimilate C and allocate NSC (non structural carbohydrates to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyse such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed.

  4. Phenology, growth and physiological adjustments of oil palm (Elaeis guineensis) to sink limitation induced by fruit pruning.

    Science.gov (United States)

    Legros, S; Mialet-Serra, I; Caliman, J-P; Siregar, F A; Clement-Vidal, A; Fabre, D; Dingkuhn, M

    2009-11-01

    Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source-sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source-sink imbalances are poorly understood. This study investigated oil palm adjustments to imbalances caused by severe fruit pruning. An experiment with two treatments (control and complete fruit pruning) during 22 months in 2006-2008) and six replications per treatment was conducted in Indonesia. Phenology, growth of above-ground vegetative and reproductive organs, leaf morphology, inflorescence sex differentiation, dynamics of non-structural carbohydrate reserves and light-saturated net photosynthesis (A(max)) were monitored. Artificial sink limitation by complete fruit pruning accelerated development rate, resulting in higher phytomer, leaf and inflorescence numbers. Leaf size and morphology remained unchanged. Complete fruit pruning also suppressed the abortion of male inflorescences, estimated to be triggered at about 16 months before bunch maturity. The number of female inflorescences increased after an estimated lag of 24-26 months, corresponding to time from sex differentiation to bunch maturity. The most important adjustment process was increased assimilate storage in the stem, attaining nearly 50 % of dry weight in the stem top, mainly as starch, whereas glucose, which in controls was the most abundant non-structural carbohydrate stored in oil palm, decreased. The development rate of oil palm is in part controlled by source-sink relationships. Although increased rate of development and proportion of female inflorescences constituted observed adjustments to sink limitation, the low plasticity of plant architecture (constant leaf size, absence of branching) limited compensatory growth. Non-structural carbohydrate storage was thus the main

  5. Numerical study of metal foam heat sinks under uniform impinging flow

    International Nuclear Information System (INIS)

    Andreozzi, A; Bianco, N; Iasiello, M; Naso, V

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses. (paper)

  6. Numerical study of metal foam heat sinks under uniform impinging flow

    Science.gov (United States)

    Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.

  7. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency

    Science.gov (United States)

    Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; Voter, Arthur F.

    2015-01-01

    Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus, sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary. PMID:25766999

  8. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Science.gov (United States)

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  9. Investigation on the performance of a prototype of thermo-electric generation with heat pipe-heat sink

    Directory of Open Access Journals (Sweden)

    Elghool Ali

    2017-01-01

    Full Text Available A significant problem in thermo-electric generators is the thermal design of the heat sink because it affects the performance of thermo-electric modules. As compared to conventional cooling systems, heat pipe heat sink have numerous advantages. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (passive system. This paper presents the analysis of power generation using the combination of heat pipes and thermo-electric generators. The aim is to improve power output by an appropriate design of the heat sink. The average geometrical parameters of heat sink (fin height, fin space and fin thickness were obtained from data collected from previous studies closely similar to this prototype. The prototype was tested and the temperature, voltage and current data were collected. All data were recorded by using a temperature data recorder, power meter and multimeter. It was found that the highest maximum power output was 1.925 watts at a temperature difference of 85°C. However, the prototype did not achieve the maximum output expected. This was a result of limitation of TEG model (where only one TEG was used and the limitation of the performance of the prototype. The prototype successfully generated enough power to charge a cell phone and laptop when connected to two or three TEGs. Moreover the heat pipe heat sink needs optimization to meet the design output from the manufacturer of the TEG at hot side temperature and cold side temperature

  10. Physiological and subjective responses to standing showers, sitting showers, and sink baths.

    Science.gov (United States)

    Ohnaka, T; Tochihara, Y; Kubo, M; Yamaguchi, C

    1995-09-01

    The purpose of this study was to investigate physiological and subjective responses during and after bathing in three different bathing methods. Eight healthy males bathed for 10 minutes, and then rested for 30 minutes. Three kinds of bathing methods - standing shower, sitting shower and sink bath - were adopted in this experiment. Water temperature and flow volume of the showers were kept at 41 degrees C and 11 liter/min, while water temperature of the bath was kept at 40 degrees C. Rectal temperature, skin temperatures and heart rate of the subjects were measured continuously during bathing and the subsequent 30-minute rest. Blood pressure and votes for thermal sensations were recorded before bathing, after 5 and 10 minutes of bathing, and 5, 10, 20 and 30 minutes after bathing. The following results were obtained. 1) Although rectal temperature rose, on the average, by 0.15 degrees C in all bathing methods, there were no significant differences among the three bathing methods at any time in the experiment. 2) Mean skin temperature (Tsk) during the sink bath was significantly higher than that in the standing or sitting shower. After bathing, Tsk of sink bath was slightly higher than those of the remaining conditions, but did not significantly differ among the bathing methods. 3) Heart rate increased gradually during all the bathing methods, however, only HR in the standing shower exceeded 100 beats/min which was significantly higher than those of the two remaining bathing methods. 4) Blood pressure (BP) decreased rapidly during the sink bath in contrast to an increased BP in the sitting and standing showers.

  11. Reducing Sediment Connectivity Through man-Made and Natural Sediment Sinks in the Minizr Catchment, Northwest Ethiopia

    NARCIS (Netherlands)

    Mekonnen, Mulatie; Keesstra, Saskia D.; Baartman, Jantiene E.M.; Stroosnijder, Leo; Maroulis, Jerry

    2017-01-01

    Man-made and natural sediment sinks provide a practical means for reducing downstream reservoir sedimentation by decreasing soil erosion and enhancing the rate of sedimentation within a catchment. The Minizr catchment (20 km2) in the northwest Ethiopian highlands contains numerous

  12. Mobility and Heterogeneity Aware Cluster-Based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    of redundant sensing data and hence, results in energy and bandwidth constraints. In this context, the paper proposes the sink mobility and nodes heterogeneity aware cluster-based data aggregation algorithm (MHCDA) for efficient bandwidth utilization and an increase in network lifetime. The proposed algorithm......Internet of things (IoT) is the modern era, which offers a variety of novel applications for mobile targets and opens the new domains for the distributed data aggregations using Wireless Sensor Networks (WSNs). However, low cost tiny sensors used for network formation generate the large amount...... uses a predefined region for the aggregation of packets at the cluster head for minimizing computation and communication cost. MHCDA exploits correlation of data packets generated by nodes with a variable packet generation rate to reduce energy consumption by 8.66%. Also, it prolongs the network life...

  13. Mobi-Sim: An Emulation and Prototyping Platform for Protocols Validation of Mobile Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Omina Mezghani

    2017-01-01

    Full Text Available The objective of this paper is to provide a new simulator framework for mobile WSN that emulate a sensor node at a laptop i.e. the laptop will model and replace a sensor node within a network. This platform can implement different WSN routing protocols to simulate and validate new developed protocols in terms of energy consumption, loss packets rate, delivery ratio, mobility support, connectivity and exchanged messages number in real time. To evaluate the performance of Mobi-Sim, we implement into it two popular protocols (LEACH-M and LEACH sink-mobile and compare its results to TOSSIM. Then, we propose another routing protocol based on clustering that we compare it to LEACH-M.

  14. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  15. Validation of the New VIIRS Deep Blue Algorithm with AERONET in Dust Source and Sink Regions

    Science.gov (United States)

    Carletta, N.; Hsu, N. Y. C.; Sayer, A. M.; Bettenhausen, C.; Lee, J.

    2015-12-01

    With the impacts dust aerosols have on our climate and air quality it is important to measure them. One such satellite data set is Deep Blue, which provides aerosol optical depth (AOD) measurements over land and ocean surfaces. This is valuable when tracking dust aerosols that travel over a variety of different surfaces between their source and sink. Deep Blue has a data record from 1997 to present provided by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and two Moderate Imaging Spectroradiometers (MODIS). These instruments are now either well past their life expectancy (MODIS) or no longer in operation (SeaWiFS). To continue the record, the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which has similar capabilities to MODIS, will be used. This presentation presents validation results of the new version 1 VIIRS Deep Blue aerosol products, using data from the AErosol RObotic NETwork (AERONET). A diverse set of locations, from dust source to sink over land and ocean, have been selected for this validation, which demonstrates reliable performance of Deep Blue products for various surface conditions.

  16. A survey of routing protocols in wireless body sensor networks.

    Science.gov (United States)

    Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed

    2014-01-13

    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.

  17. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  18. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  19. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    Science.gov (United States)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  20. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  1. Correlation between dynamic tomato fruit-set and source-sink ratio: a common relationship for different plant densities and seasons?

    Science.gov (United States)

    Kang, MengZhen; Yang, LiLi; Zhang, BaoGui; de Reffye, Philippe

    2011-04-01

    It is widely accepted that fruit-set in plants is related to source-sink ratio. Despite its critical importance to yield, prediction of fruit-set remains an ongoing problem in crop models. Functional-structural plant models are potentially able to simulate organ-level plasticity of plants. To predict fruit-set, the quantitative link between source-sink ratio and fruit-set probability is analysed here via a functional-structural plant model, GreenLab. Two experiments, each with four plant densities, were carried out in a solar greenhouse during two growth seasons (started in spring and autumn). Dynamic fruit-set probability was estimated by frequent observation on inflorescences. Source and sink parameter values were obtained by fitting GreenLab outputs for the biomass of plant parts (lamina, petiole, internode, fruit), at both organ and plant level, to corresponding destructive measurements at six dates from real plants. The dynamic source-sink ratio was calculated as the ratio between biomass production and plant demand (sum of all organ sink strength) per growth cycle, both being outputs of the model. Most sink parameters were stable over multiple planting densities and seasons. From planting, source-sink ratio increased in the vegetative stage and reached a peak after fruit-set commenced, followed by a decrease of leaf appearance rate. Fruit-set probability was correlated with the source-sink ratio after the appearance of flower buds. The relationship between fruit-set probability and the most correlated source-sink ratio could be quantified by a single regression line for both experiments. The current work paves the way to predicting dynamic fruit-set using a functional structure model.

  2. Heat transfer of Al2O3 nanofluids in microchannel heat sink

    Science.gov (United States)

    Razali, A. A.; Sadikin, A.; Ibrahim, S. A.

    2017-04-01

    Microchannel heat sink creates an innovative cooling technology to remove large amount of heat from small area. Recently, nanotechnology gain interest to explore the microchannel cooling benefits of nanofluids as working fluid. The objective of this study is to investigate the effect of heat transfer to Al2O3 nanofluids after used as working fluid in the microchannel. In this study, the microchannel was design in square shape with a cross section of 0.5×0.5 mm2 and made by copper. The experiment was conducted in laminar flow with Reynolds number ranging approximately from 633 to 1172. The present study was focused on heat transfer of Al2O3 nanofluids in microchannel heat sink at concentration of 1.0 wt. % and 2.5 wt. % dispersed in water. The heat was produced at bottom of the heat sink is 325 W. The computational simulation method was carried out to validate the experimental results. It was observed that the heat transfer rate is higher when using Al2O3 nanofluids compared to water. However, according to X-ray diffraction method (XRD), it is found that the structure of Al2O3 particles tends to more integrity and the crystallite size grows up after increased the temperature in the microchannel.

  3. Synchronizing data from irregularly sampled sensors

    Science.gov (United States)

    Uluyol, Onder

    2017-07-11

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

  4. Vibration mitigation of a bridge cable using a nonlinear energy sink: design and experiment

    Directory of Open Access Journals (Sweden)

    Weiss Mathieu

    2015-01-01

    Full Text Available This work deals with the design and experiment of a cubic nonlinear energy sink (NES for horizontal vibration mitigation of a bridge cable. Modal analysis of horizontal linear modes of the cable is experimentally performed using accelerometers and displacement sensors. A theoretical simplified 2-dof model of the coupled cable-NES system is used to analytically design the NES by mean of multi-time scale systems behaviours and detection its invariant manifold, equilibrium and singular points which stand for periodic and strongly modulated regimes, respectively. Numerical integration is used to confirm the efficiency of the designed NES for the system under step release excitation. Then, the prototype system is built using geometrical cubic nonlinearity as the potential of the NES. Efficiency of the prototype system for mitigation of horizontal vibrations of the cable under for step release and forced excitations is experimentally demonstrated.

  5. Sparsity-Based Spatial Interpolation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yan Yao

    2011-02-01

    Full Text Available In wireless sensor networks, due to environmental limitations or bad wireless channel conditions, not all sensor samples can be successfully gathered at the sink.  In this paper, we try to recover these missing samples without retransmission. The missing samples estimation problem is mathematically formulated as a 2-D spatial interpolation. Assuming the 2-D sensor data can be sparsely represented by a dictionary, a sparsity-based recovery approach by solving for l1 norm minimization is proposed. It is shown that these missing samples can be reasonably recovered based on the null space property of the dictionary. This property also points out the way to choose an appropriate sparsifying dictionary to further reduce the recovery errors. The simulation results on synthetic and real data demonstrate that the proposed approach can recover the missing data reasonably well and that it outperforms the weighted average interpolation methods when the data change relatively fast or blocks of samples are lost. Besides, there exists a range of missing rates where the proposed approach is robust to missing block sizes.

  6. Sparsity-based spatial interpolation in wireless sensor networks.

    Science.gov (United States)

    Guo, Di; Qu, Xiaobo; Huang, Lianfen; Yao, Yan

    2011-01-01

    In wireless sensor networks, due to environmental limitations or bad wireless channel conditions, not all sensor samples can be successfully gathered at the sink. In this paper, we try to recover these missing samples without retransmission. The missing samples estimation problem is mathematically formulated as a 2-D spatial interpolation. Assuming the 2-D sensor data can be sparsely represented by a dictionary, a sparsity-based recovery approach by solving for l(1) norm minimization is proposed. It is shown that these missing samples can be reasonably recovered based on the null space property of the dictionary. This property also points out the way to choose an appropriate sparsifying dictionary to further reduce the recovery errors. The simulation results on synthetic and real data demonstrate that the proposed approach can recover the missing data reasonably well and that it outperforms the weighted average interpolation methods when the data change relatively fast or blocks of samples are lost. Besides, there exists a range of missing rates where the proposed approach is robust to missing block sizes.

  7. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    Science.gov (United States)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  8. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  9. Carbon sequestration in sinks. An overview of potential and costs

    International Nuclear Information System (INIS)

    Kolshus, Hans H.

    2001-01-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  10. Pediatric sink-bathing: a risk for scald burns.

    Science.gov (United States)

    Baggott, Kaitlin; Rabbitts, Angela; Leahy, Nicole E; Bourke, Patrick; Yurt, Roger W

    2013-01-01

    Our burn center previously reported a significant incidence of scald burns from tap water among patients treated at the center. However, mechanism of these scalds was not investigated in detail. A recent series of pediatric patients who sustained scalds while bathing in the sink was noted. To evaluate the extent of these injuries and create an effective prevention program for this population, a retrospective study of bathing-related sink burns among pediatric patients was performed. Patients between the ages of 0 and 5.0 years who sustained scald burns while being bathed in the sink were included in this study. Sex, race, age, burn size, length of stay, and surgical procedures were reviewed. During the study period of January 2003 through August 2008, 56 patients who were scalded in the sink were admitted, accounting for 54% of all bathing-related scalds. Among these, 56% were boys and 45% were Hispanic. Mean age was 0.8 ± 0.1 years. Burn size and hospital length of stay averaged 5 ± 0.7% and 11 ± 1 days, respectively. Of this group, 10.7% required skin grafting. The overwhelming majority (94% of patients) were discharged home. The remaining patients were discharged to inpatient rehabilitation, foster care, and others. Pediatric scald burns sustained while bathing in a sink continue to be prevalent at our burn center. Because of limited space and the child's proximity to faucet handles and water flow, sinks are an unsafe location to bathe a child. While such practice may be necessary for some families, comprehensive burn prevention education must address this hazard.

  11. Role of transitory carbon reserves during adjustment to climate variability and source-sink imbalances in oil palm (Elaeis guineensis).

    Science.gov (United States)

    Legros, S; Mialet-Serra, I; Clement-Vidal, A; Caliman, J-P; Siregar, F A; Fabre, D; Dingkuhn, M

    2009-10-01

    Oil palm (Elaeis guineensis Jacq.) is a perennial, tropical, monocotyledonous plant characterized by simple architecture and low phenotypic plasticity, but marked by long development cycles of individual phytomers (a pair of one leaf and one inflorescence at its axil). Environmental effects on vegetative or reproductive sinks occur with various time lags depending on the process affected, causing source-sink imbalances. This study investigated how the two instantaneous sources of carbon assimilates, CO(2) assimilation and mobilization of transitory non-structural carbohydrate (NSC) reserves, may buffer such imbalances. An experiment was conducted in Indonesia during a 22-month period (from July 2006 to May 2008) at two contrasting locations (Kandista and Batu Mulia) using two treatments (control and complete fruit pruning treatment) in Kandista. Measurements included leaf gas exchange, dynamics of NSC reserves and dynamics of structural aboveground vegetative growth (SVG) and reproductive growth. Drought was estimated from a simulated fraction of transpirable soil water. The main sources of variation in source-sink relationships were (i) short-term reductions in light-saturated leaf CO(2) assimilation rate (A(max)) during seasonal drought periods, particularly in Batu Mulia; (ii) rapid responses of SVG rate to drought; and (iii) marked lag periods between 16 and 29 months of environmental effects on the development of reproductive sinks. The resulting source-sink imbalances were buffered by fluctuations in NSC reserves in the stem, which mainly consisted of glucose and starch. Starch was the main buffer for sink variations, whereas glucose dynamics remained unexplained. Even under strong sink limitation, no negative feedback on A(max) was observed. In conclusion, the different lag periods for environmental effects on assimilate sources and sinks in oil palm are mainly buffered by NSC accumulation in the stem, which can attain 50% (dw:dw) in stem tops. The resulting

  12. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  13. New Method of Sinking Caisson Tunnel in Soft Soil

    OpenAIRE

    Bame, Abda Berisso

    2013-01-01

    Sinking a caisson tunnel in soft soil is new idea and this new concept could be an alternative method of tunneling in soft soil. The aim of this study is to evaluate geotechnical feasibility of sinking the caisson tunnel to the desired depth at the selected soil profile along tunnel alignment. This caisson tunneling method is proposed to reduce the use of temporary works such as propping of sheet pile walls and increase the ease and speed of construction. Besides, it reduces the disturbance o...

  14. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  15. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    Science.gov (United States)

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  16. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage.

    Directory of Open Access Journals (Sweden)

    Wenting Li

    Full Text Available The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.. The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity and three nitrogen levels (0, 0.2, 0.4 g N∙kg-1 soil. The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield.

  17. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage.

    Science.gov (United States)

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg-1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield.

  18. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Science.gov (United States)

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  19. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  20. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  1. A Routing Protocol Based on Received Signal Strength for Underwater Wireless Sensor Networks (UWSNs

    Directory of Open Access Journals (Sweden)

    Meiju Li

    2017-11-01

    Full Text Available Underwater wireless sensor networks (UWSNs are featured by long propagation delay, limited energy, narrow bandwidth, high BER (Bit Error Rate and variable topology structure. These features make it very difficult to design a short delay and high energy-efficiency routing protocol for UWSNs. In this paper, a routing protocol independent of location information is proposed based on received signal strength (RSS, which is called RRSS. In RRSS, a sensor node firstly establishes a vector from the node to a sink node; the length of the vector indicates the RSS of the beacon signal (RSSB from the sink node. A node selects the next-hop along the vector according to RSSB and the RSS of a hello packet (RSSH. The node nearer to the vector has higher priority to be a candidate next-hop. To avoid data packets being delivered to the neighbor nodes in a void area, a void-avoiding algorithm is introduced. In addition, residual energy is considered when selecting the next-hop. Meanwhile, we establish mathematic models to analyze the robustness and energy efficiency of RRSS. Lastly, we conduct extensive simulations, and the simulation results show RRSS can save energy consumption and decrease end-to-end delay.

  2. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  3. An unusual presentation of Burkitt's lymphoma | Sinke | Malawi ...

    African Journals Online (AJOL)

    An unusual presentation of Burkitt's lymphoma. EA Sinke, EJ van Hasselt. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...

  4. Minimization of sink mark defects in injection molding process ...

    African Journals Online (AJOL)

    Handling of numerous processing variables to control defects is a mammoth task that costs time, effort and money. This paper presents a simple and efficient way to study the influence of injection molding variables on sink marks using Taguchi approach. Using the Taguchi approach, optimal parameter settings and the ...

  5. Enhanced heat sink with geometry induced wall-jet

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M. [Department of Mechanical Engineering Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh (Bangladesh)

    2016-07-12

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  6. A new method to optimize natural convection heat sinks

    Science.gov (United States)

    Lampio, K.; Karvinen, R.

    2017-08-01

    The performance of a heat sink cooled by natural convection is strongly affected by its geometry, because buoyancy creates flow. Our model utilizes analytical results of forced flow and convection, and only conduction in a solid, i.e., the base plate and fins, is solved numerically. Sufficient accuracy for calculating maximum temperatures in practical applications is proved by comparing the results of our model with some simple analytical and computational fluid dynamics (CFD) solutions. An essential advantage of our model is that it cuts down on calculation CPU time by many orders of magnitude compared with CFD. The shorter calculation time makes our model well suited for multi-objective optimization, which is the best choice for improving heat sink geometry, because many geometrical parameters with opposite effects influence the thermal behavior. In multi-objective optimization, optimal locations of components and optimal dimensions of the fin array can be found by simultaneously minimizing the heat sink maximum temperature, size, and mass. This paper presents the principles of the particle swarm optimization (PSO) algorithm and applies it as a basis for optimizing existing heat sinks.

  7. Cleaning up nitrogen pollution may reduce future carbon sinks

    NARCIS (Netherlands)

    Gu, Baojing; Ju, Xiaotang; Wu, Yiyun; Erisman, Jan Willem; Bleeker, Albert; Reis, Stefan; Sutton, Mark A.; Lam, Shu Kee; Smith, Pete; Oenema, Oene; Smith, Rognvald I.; Lu, Xuehe; Ye, Xinyue; Chen, Deli

    2018-01-01

    Biosphere carbon sinks are crucial for reducing atmospheric carbon dioxide (CO2) concentration to mitigate global warming, but are substantially affected by the input of reactive nitrogen (Nr). Although the effects of anthropogenic CO2 emission and nitrogen deposition (indicated by Nr emission to

  8. Million Trees Los Angeles: Carbon dioxide sink or source?

    Science.gov (United States)

    E.G. McPherson; A. Kendall; S. Albers

    2015-01-01

    This study seeks to answer the question, 'Will the Million Trees LA (MTLA) programme be a CO2 sink or source?' Using surveys, interviews, field sampling and computer simulation of tree growth and survival over a 40-year period, we developed the first process-based life cycle inventory of CO2 for a large tree...

  9. Development of an operations evaluation system for sinking EDM

    NARCIS (Netherlands)

    Lauwers, B.; Oosterling, J.A.J.; Vanderauwera, W.

    2010-01-01

    This paper describes the development and validation of an operations evaluation system for sinking EDM operations. Based on a given workpiece geometry (e.g. mould), regions to be EDM'ed are automatically indentified. For a given electrode configuration, consisting of one or more regions, EDM

  10. Children's Typically-Perceived-Situations of Floating and Sinking

    Science.gov (United States)

    Joung, Yong Jae

    2009-01-01

    The purpose of this study is to explore children's typically-perceived-situations (TPS) of "floating" and "sinking". TPS refers to the situation rising spontaneously in an individual's mind when they first think of a phenomenon or concept. Data were collected from 148 Year 5 Korean children. As a result of analysing the data…

  11. Predator transitory spillover induces trophic cascades in ecological sinks

    DEFF Research Database (Denmark)

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian

    2012-01-01

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross...

  12. Characterization of Hop-and-Sink Locomotion of Water Fleas

    Science.gov (United States)

    Skipper, A. N.; Murphy, D. W.; Webster, D. R.

    2017-11-01

    The freshwater crustacean Daphnia magna is a widely studied zooplankton in relation to food webs, predator-prey interactions, and other biological/ecological considerations; however, their locomotion is poorly quantified and understood. These water fleas utilize a hop-and-sink mechanism that consists of making quick, impulsive jumps by beating their antennae to propel themselves forward (roughly 1 body length). The animals then sink for a period, during which they stretch out their antennae to increase drag and thereby reduce their sinking velocity. Time-resolved three-dimensional flow fields surrounding the animals were quantified with a unique infrared tomographic particle image velocimetry (tomo-PIV) system. Three-dimensional kinematics data were also extracted from the image sequences. In the current work, we compared body kinematics and flow disturbance among organisms of size in the range of 1.3 to 2.8 mm. The stroke cycle averaged 150 +/- 20 ms, with each stroke cycle split nearly evenly between power and recovery strokes. The kinematics data collapsed onto a self-similar curve when properly nondimensionalized, and a general trend was shown to exist between the nondimensionalized peak body speed and body length. The fluid flow induced by each antennae consisted of a viscous vortex ring that demonstrated a slow decay in the wake. The viscous dissipation showed no clear dependence on body size, whereas the volume of fluid exceeding 5 mm/s (the speed near the sinking speed of the animal) decayed more slowly with increasing body size.

  13. Source to sink transport and regulation by environmental factors

    Directory of Open Access Journals (Sweden)

    Remi eLemoine

    2013-07-01

    Full Text Available Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air and soil pollutants and biotic (mutualistic and pathogenic microbes, viruses, aphids and parasitic plants factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favoured in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g. by callose deposition and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses… also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  14. EVALUATION OF SINK EFFECTS ON VOCS FROM A LATEX PAINT

    Science.gov (United States)

    The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and texanol. These oxygenated compounds rep...

  15. Source and Sink Strength of Carbon Dioxide, Methane and ...

    African Journals Online (AJOL)

    MICHAEL

    Full-text Available Online at www.bioline.org.br/ja. Source and Sink Strength of Carbon Dioxide, Methane and Distribution of Sulfate in Salt-marsh Soils at the Wadden Sea Coast of Northern Germany. ·1KHAN, MD. HARUNOR RASHID; 2HANS-PETER BLUME; 1TADASHI. ADACHI; 3ULRICH PFISTERER; 3UDO MÜLLER- ...

  16. Pathway of phloem unloading in tobacco sink leaves

    International Nuclear Information System (INIS)

    Turgeon, R.

    1987-01-01

    Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Source leaves were labeled with 14 CO 2 and experimental treatments were begun approximately 1 h later when label had entered the sink leaves. Autoradiographs were prepared from rapidly frozen, lyophilized sink tissue at the beginning and end of the treatments and the amount of label in veins and in surrounding cells was determined by microdensitometry. Photoassimilate unloaded from third order and larger, but not smaller, veins. Long-distance import and unloading did not respond the same way to all experimental treatments. Import was completely inhibited by cold, anaerobiosis or steam girdling the sink leaf petiole. Unloading was inhibited by cold but continued in an anaerobic atmosphere and after steam girdling. Uptake of exogenous [ 14 C]sucrose was inhibited by anaerobiosis. Since an apoplastic pathway of phloem unloading would involve solute uptake from the apoplast the results are most consistent with passive symplastic unloading of photoassimilates from phloem to surrounding cells

  17. Minimization of sink mark defects in injection molding process ...

    African Journals Online (AJOL)

    user

    Arriving at critical variables based on initial screening. 5. Additional expanded Taguchi's experiments for minimization of sink marks. 2.1. Design of simple, scalable and generic model and machine selection: A simple and scalable disc part (Figure 1) was prepared using Pro/Engineer. The model base wall was fixed at 3mm.

  18. Analysis of ultimate-heat-sink spray ponds. Technical report

    International Nuclear Information System (INIS)

    Codell, R.

    1981-08-01

    This report develops models which can be utilized in the design of certain types of spray ponds used in ultimate heat sinks at nuclear power plants, and ways in which the models may be employed to determine the design basis required by U.S. Nuclear Regulatory Commission Regulatory Guide 1.27

  19. Sink or Swim? Debt Review's Ambivalent "Lifeline" ____A Second ...

    African Journals Online (AJOL)

    Full title: Sink or Swim? Debt Review's Ambivalent "Lifeline" ---- A Second Sequel To "… A Tale of Two Judgments" Nedbank V Andrews (240/2011) 2011 Zaecpehc 29 (10 May 2011); Firstrand Bank Ltd V Evans 2011 4 SA 597 (KZD) And Firstrand Bank Ltd V Janse Van Rensburg 2012 2 All SA 186 (ECP). The interface ...

  20. Energy Efficient Wireless Sensor Network Modelling Based on Complex Networks

    Directory of Open Access Journals (Sweden)

    Lin Xiao

    2016-01-01

    Full Text Available The power consumption and energy efficiency of wireless sensor network are the significant problems in Internet of Things network. In this paper, we consider the network topology optimization based on complex network theory to solve the energy efficiency problem of WSN. We propose the energy efficient model of WSN according to the basic principle of small world from complex networks. Small world network has clustering features that are similar to that of the rules of the network but also has similarity to random networks of small average path length. It can be utilized to optimize the energy efficiency of the whole network. Optimal number of multiple sink nodes of the WSN topology is proposed for optimizing energy efficiency. Then, the hierarchical clustering analysis is applied to implement this clustering of the sensor nodes and pick up the sink nodes from the sensor nodes as the clustering head. Meanwhile, the update method is proposed to determine the sink node when the death of certain sink node happened which can cause the paralysis of network. Simulation results verify the energy efficiency of the proposed model and validate the updating of the sink nodes to ensure the normal operation of the WSN.

  1. An automatic window opening system to prevent drowning in vehicles sinking in water

    KAUST Repository

    Giesbrecht, Gordon G.

    2017-07-12

    Objective: Every year about 400 people die in submersed vehicles in North America and this number increases to 2,000–5,000 in all industrialized nations. The best way to survive is to quickly exit through the windows. An Automatic Window Opening System (AWOS; patent protected) was designed to sense when a vehicle is in water and to open the electric windows, but only when the vehicle is upright. Methods: The AWOS consists of a Detection Module (DM), in the engine compartment, and a Power Window Control Module (PWCM) inside the driver’s door. The DM contains a Water Sensor, a Level Sensor and a Microcontroller Unit (MCU). The Level Sensor provides the angular orientation of the car using a 3-axis acceleration sensor and prevents automatic window opening if the car is outside the orientation range (±20° in the roll axis, ±30° in the pitch axis, with a 2 s delay). Systems were installed on two cars and one SUV. A crane lowered vehicles in water either straight down (static tests) or by swinging the vehicles to produce forward movement (dynamic tests). Results: In all tests, when the vehicles landed upright, windows opened immediately and effectively. When vehicles landed inverted, or at a very steep angle, the system did not engage until an upright and level position was attained. Conclusions: This system may help decrease drowning deaths in sinking vehicles. If occupants do not know, or forget, what to do, the open window could hopefully prompt them to exit safely through that window.

  2. Demography and species contribution to carbon sink in eastern US forests

    Science.gov (United States)

    Zhu, K.; Woodall, C. W.; Clark, J. S.

    2013-12-01

    Multiple approaches have estimated carbon accumulation in the forests of the eastern United States, and attempts have been made to identify the primary causes for the carbon sink. However, these methods do not consider tree population dynamics and species identity, where different successional statuses and geographic distributions might play an important role. For a suite of tree species, we quantified their relative contributions of growth, mortality, and recruitment to carbon accumulation, using ground-based data collected from an extensive network of 20,000 permanent plots remeasured by the USDA Forest Service's Forest Inventory and Analysis program from 1996 to 2011. We examined their carbon-demography dynamics in relation to forest stand age. Increased forest live biomass confirms a carbon sink in eastern US forests. Across all species, the carbon is accumulating at a rate of 1.17 t/ha/yr, with largest contributions from Pinus spp. (pines, 0.26 t/ha/yr) and Quercus spp. (oaks, 0.28 t/ha/yr). Separated into different demographic components, many species show growth dominates the overall carbon accumulation. For all species, growth contributes 1.56 t/ha/yr to carbon gain, mortality contributes 0.80 t/ha/yr to carbon loss, and recruitment contributes 0.56 t/ha/yr to carbon gain. Comparisons with species composition and stand age suggest that the carbon dynamics might be largely driven by successional trend. Early successional species have comparable carbon gains from growth and recruitment, and relatively small losses from mortality. For example, Liquidambar styraciflua (sweetgum) gains 0.32 t/ha/yr from growth, 0.24 t/ha/yr from recruitment, and loses 0.15 t/ha/yr from mortality. On the contrary, late successional species have carbon gains dominated by growth, rather than recruitment, and carbon losses from mortality. For example, Fagus grandifolia (American beech) gains 0.47 t/ha/yr from growth, 0.15 t/ha/yr from recruitment, and loses 0.34 t/ha/yr from

  3. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    Science.gov (United States)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    EC procedures were applied to the raw 10-Hz data, including time-lag compensation, block average, WPL-correction, planar fit, low- and high-frequency corrections etc. in EddyPro software (LI-COR Inc., USA). Calculated fluxes with bad quality flags (more than 6 of 9) were excluded. Spikes due to rains, instrument malfunction were removed too. Storage of CO2 from the surface to the measurement level which is very significant in tall tropical forest was added to the flux. Then low-turbulence correction was applied with u*-threshold of 0.178 m s-1. After these steps only 43 % of 30-min data of 2012 still presented, so the rate of gaps was 57 % (mainly at night and in rains). Data were gapfilled using on-line tool at the web-site of Max-Plank Institute, Germany and Flux-Analysis Tool, Japan. Different gap-filling procedures (non-linear regressions, look-up tables, model evaluation, artificial gaps-method) as well as u*-threshold shifting from 0 to 0.25 resulted in drift of 2012 net carbon exchange total from -296 to -612 g C m-2 (strong carbon sink still remain). Unfortunately, the situation of more then 50 % of gaps in CO2 flux is usual for tropical EC stations because of frequent calm nights. So, a gap-filling algorithm is extremely important for evaluation of long-term totals. We found for Vietnamese data that even few spikes which were not removed before gap-filling can change all-year total by up to 20-50 g m-2 year-1. Especially 'powerful' are big positive values at night in rare-occurred good turbulence. Possibly these values are physical. But they influence regressions in look-up table method dramatically because amount of data in peak of rainy season in night-time is too small. So, the gap-filling algorithm happened to be very sensitive to spikes. Additionally, striking was the fact that storage of CO2 appeared to be the main factor influencing 1-year totals after gap-filling procedure. Taking storage into account shifted the 2012 sum from +182 to -402 g m-2 year

  4. Packets distribution in a tree-based topology wireless sensor networks

    CSIR Research Space (South Africa)

    Akpakwu, GA

    2016-07-01

    Full Text Available The concept of data distribution within cluster of sensor nodes to the source sink has resulted to intense research in Wireless Sensor Networks (WSNs). In this paper, in order to determine the scheduling length of packet distribution, a tree-based...

  5. Recurring large deep earthquakes in Hindu Kush driven by a sinking slab

    Science.gov (United States)

    Zhan, Zhongwen; Kanamori, Hiroo

    2016-07-01

    Hindu Kush subduction zone produces large intermediate-depth earthquakes within a small volume every 10-15 years. Here we study the last three M ≥ 7 events within the cluster and find complex and diverse rupture processes. However, their main subevents appear to recur on the same fault patch, dipping 70° to the south. This recurrence requires an average of 9.6 cm/yr slip rate on the patch, much higher than the ~1 cm/yr surface convergence rate measured geodetically. The high slip rate is likely caused by significant slab internal deformation, such as localized slab stretching/necking. We infer that the Hindu Kush subducted slab below 210 km is sinking through the mantle at a vertical rate of 10 cm/yr.

  6. light-weight digital signature algorithm for wireless sensor networks

    Indian Academy of Sciences (India)

    M LAVANYA

    Abstract. The essential security mechanism in wireless sensor networks (WSNs) is authentication, where nodes can authenticate each other before transmitting a valid data to a sink. There are a number of public key authentication procedures available for WSN in recent years. Due to constraints in WSN environment there ...

  7. light-weight digital signature algorithm for wireless sensor networks

    Indian Academy of Sciences (India)

    M LAVANYA

    2017-09-14

    Sep 14, 2017 ... Abstract. The essential security mechanism in wireless sensor networks (WSNs) is authentication, where nodes can authenticate each other before transmitting a valid data to a sink. There are a number of public key authentication procedures available for WSN in recent years. Due to constraints in WSN ...

  8. Sink stimulation of leaf photosynthesis by the carbon costs of rhizobial and arbuscular mycorrhizal fungal symbioses

    NARCIS (Netherlands)

    Kaschuk, G.

    2009-01-01

    Key words: biochemical model of leaf photosynthesis; carbon sink strength; chlorophyll fluorescence; harvest index; leaf protein; leaf senescence; legumes; photosynthetic nutrient use efficiency; Pi recycling; source-sink regulation; ureides One of the most fascinating processes in plant

  9. Utilizing joint routing and capacity assignment algorithms to achieve inter- and intra-group delay fairness in multi-rate multicast wireless sensor networks.

    Science.gov (United States)

    Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Lin, Leo Shih-Chang; Wen, Yean-Fu

    2013-03-14

    Recent advance in wireless sensor network (WSN) applications such as the Internet of Things (IoT) have attracted a lot of attention. Sensor nodes have to monitor and cooperatively pass their data, such as temperature, sound, pressure, etc. through the network under constrained physical or environmental conditions. The Quality of Service (QoS) is very sensitive to network delays. When resources are constrained and when the number of receivers increases rapidly, how the sensor network can provide good QoS (measured as end-to-end delay) becomes a very critical problem. In this paper; a solution to the wireless sensor network multicasting problem is proposed in which a mathematical model that provides services to accommodate delay fairness for each subscriber is constructed. Granting equal consideration to both network link capacity assignment and routing strategies for each multicast group guarantees the intra-group and inter-group delay fairness of end-to-end delay. Minimizing delay and achieving fairness is ultimately achieved through the Lagrangean Relaxation method and Subgradient Optimization Technique. Test results indicate that the new system runs with greater effectiveness and efficiency.

  10. Utilizing Joint Routing and Capacity Assignment Algorithms to Achieve Inter- and Intra-Group Delay Fairness in Multi-Rate Multicast Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yean-Fu Wen

    2013-03-01

    Full Text Available Recent advance in wireless sensor network (WSN applications such as the Internet of Things (IoT have attracted a lot of attention. Sensor nodes have to monitor and cooperatively pass their data, such as temperature, sound, pressure, etc. through the network under constrained physical or environmental conditions. The Quality of Service (QoS is very sensitive to network delays. When resources are constrained and when the number of receivers increases rapidly, how the sensor network can provide good QoS (measured as end-to-end delay becomes a very critical problem. In this paper; a solution to the wireless sensor network multicasting problem is proposed in which a mathematical model that provides services to accommodate delay fairness for each subscriber is constructed. Granting equal consideration to both network link capacity assignment and routing strategies for each multicast group guarantees the intra-group and inter-group delay fairness of end-to-end delay. Minimizing delay and achieving fairness is ultimately achieved through the Lagrangean Relaxation method and Subgradient Optimization Technique. Test results indicate that the new system runs with greater effectiveness and efficiency.

  11. Kebutuhan Luasan Areal Hutan Kota sebagai Rosot (Sink Gas CO2 untuk Mengantisipasi Penurunan Luasan Ruang Terbuka Hijau di Kota Bogor

    Directory of Open Access Journals (Sweden)

    Dachlan N. Endes

    2011-12-01

    Full Text Available The purpose of this study was to determine the need of the urban forest area as sink (sequestration of CO2 gas from fuel oil and gas in Bogor City. Analysis of dynamic system is used to determine the need. Powersim software with the license number PSSL-N999998-5NC2Y was used in this research. Satellite imagery in 2003, 2005 and 2007 were used to analyze the extent of green space and built space as well as percentage changes. This study revealed that the urban forest area required as well as the number of seedlings are varies according to time and the sink rate. Therefore, the selection of tree species based on the sink rate should really be considered. By using the very high-sink rate trees, the area needed for this purpose will be smaller and can also make lower the ambient concentration. On the other hand, when the use of high-sink trees, the ambient concentration of this gas will increase again and the urban forest area that needed will be larger.

  12. COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS: UNA COMPARACIÓN DE DOS ALGORITMOS DE OPTIMIZACIÓN GLOBAL

    Directory of Open Access Journals (Sweden)

    Jorge Mario Cruz Duarte

    Full Text Available This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO and Harmony Search (HS. These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times of finding a better solution than UPSO, but with a higher dispersion rate (about five times. Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.

  13. Acoustic monitoring of a ball sinking in vibrated granular sediments

    Science.gov (United States)

    van den Wildenberg, Siet; Léopoldès, Julien; Tourin, Arnaud; Jia, Xiaoping

    2017-06-01

    We develop an ultrasound probing to investigate the dynamics of a high density ball sinking in 3D opaque dense granular suspensions under horizontal weak vibrations. We show that the motion of the ball in these horizontally vibrated glass bead packings saturated by water is consistent with the frictional rheology. The extracted stress-strain relation evidences an evolution of flow behaviour from frictional creep to inertial regimes. Our main finding is that weak external vibration primarily affects the yield stress and controls the depth of sinking via vibration-induced sliding at the grain contact. Also, we observe that the extracted rheological parameters depend on the size of the probing ball, suggesting thus a non-local rheology.

  14. Finite element simulation of sink pass round tubes using Ansys

    Directory of Open Access Journals (Sweden)

    Nagarkar M.P.

    2012-01-01

    Full Text Available Modeling and simulation of metal forming processes are increasingly in demand from the industry as the resulting models are found to be valuable tools considering the optimization of the existing and development of new processes. By the application of modeling and simulation techniques, it is possible to reduce the number of time-consuming experiments such as prototyping. Seamless tubes of various sizes and shapes are manufactured by various processes like sinking, fixed plug, floating plug, moving mandrel, cold working and hot working. The present work deals with the simulation of round tubes while passing through the sink pass, using ANSYS software. The simulation results are the displacement and von Mises stresses. The procedure can be used to improve the product quality and to study the effect of various parameters like die angle on the product quality.

  15. Metamaterial Sensors

    Directory of Open Access Journals (Sweden)

    Jing Jing Yang

    2013-01-01

    Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.

  16. Automotive Sensors and MEMS Technology

    Science.gov (United States)

    Nonomura, Yutaka

    - Automotive sensors are used for emission gas purification, energy conservation, car kinematic performance, safety and ITS (intelligent transportation system). The comparison of the sensor characteristics was made for their application area. Many kinds of the principles are applied for the sensors. There are two types of sensors, such as physical and chemical one. Many of the automotive sensors are physical type such as mechanical sensors. And a gas sensor is a chemical type. The sensors have been remarkably developed with the advancement of the MEMS (Micro Electro Mechanical Systems) technology. In this paper, gas, pressure, combustion pressure, acceleration, magnetic, and angular rate sensors for automotive use are explained with their features. The sensors are key devices to control cars in the engine, power train, chassis and safety systems. The environment resistance, long term reliability, and low cost are required for the automotive sensors. They are very hard to be resolved. However, the sensor technology contributes greatly to improving global environment, energy conservation, and safety. The applications of automotive sensors will be expanded with the automobile developments.

  17. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  18. Sinking failure of scour protection at wind turbine foundation

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Nielsen, Anders W.

    2013-01-01

    This paper summarises the results of an experimental study on scour protection around offshore wind turbine foundations, with special emphasis on the sinking failure of the scour protection work in Horns Rev 1 offshore wind farm (Denmark). The paper reviews previous results obtained by the author....... A brief account is also given of filter criteria and their application to the Horns Rev 1 case, whereby the present results and the filter criteria results are linked....

  19. Pin fin compliant heat sink with enhanced flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Mark D.

    2018-04-10

    Heat sinks and methods of using the same include a top and bottom plate, at least one of which has a plurality of pin contacts flexibly connected to one another, where the plurality of pin contacts have vertical and lateral flexibility with respect to one another; and pin slice layers, each having multiple pin slices, arranged vertically between the top and bottom plates such that the plurality of pin slices form substantially vertical pins connecting the top and bottom plates.

  20. Sinking of armour layer around a vertical cylinder exposed to waves and current

    DEFF Research Database (Denmark)

    Nielsen, Anders Wedel; Probst, Thomas; Petersen, Thor Ugelvig

    2015-01-01

    The mechanisms of the sinking of a scour protection adjacent to a monopile are described in this paper, together with the determination of the equilibrium sinking depth in various wave and combined wave and current conditions based on physical model tests.Sinking of the rocks may ultimately lead ...

  1. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000

    NARCIS (Netherlands)

    Bellassen, V.; Viovy, N.; Luyssaert, S.; Maire, G.; Schelhaas, M.; Ciais, P.

    2011-01-01

    European forests are an important carbon sink; however, the relative contributions to this sink of climate, atmospheric CO2 concentration ([CO2]), nitrogen deposition and forest management are under debate. We attributed the European carbon sink in forests using ORCHIDEE-FM, a process-based

  2. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000

    NARCIS (Netherlands)

    Bellassen, Valentin; Viovy, Nicolas; Luyssaert, Sebastiaan; Le Maire, Guerric; Schelhaas, Mart Jan; Ciais, Philippe

    2011-01-01

    European forests are an important carbon sink; however, the relative contributions to this sink of climate, atmospheric CO 2 concentration ([CO 2]), nitrogen deposition and forest management are under debate. We attributed the European carbon sink in forests using ORCHIDEE-FM, a process-based

  3. The sinking of the Soviet Mike class nuclear powered submarine

    International Nuclear Information System (INIS)

    1989-01-01

    The purpose of this preliminary study is to assess the quantities of the longer-lived or persistent radioactive materials, or source terms, that have been lost at sea with the sinking of the Soviet MIKE class submarine off Bear Island on 7 April 1989. The report arrives at an assessment of the amount of radioactivity and compares this to the quantities of radioactive materials dumped by the UK from 1953 to 1982 at which time sea dumping of radioactive wastes was suspended by international resolve. This comparison can be used to assess the relative significance of the sinking of this submarine. The study does not extrapolate the estimated radioactive source terms to an environmental or radiological significance of the sinking, although it is concluded that unless the submarine is recovered intact from the ocean floor, the by far greater part of the radioactive materials on board will disperse to the marine environment at some future time, if they are not doing so already. (author)

  4. [Carbon storage and carbon sink of mangrove wetland: research progress].

    Science.gov (United States)

    Zhang, Li; Guo, Zhi-hua; Li, Zhi-yong

    2013-04-01

    Mangrove forest is a special wetland forest growing in the inter-tidal zone of tropical and subtropical regions, playing important roles in windbreak, promoting silt sedimentation, resisting extreme events such as cyclones and tsunamis, and protecting coastline, etc. The total area of global mangrove forests is about 152000 km2, only accounting for 0. 4% of all forest area. There are about 230 km2 mangrove forests in China. The mangrove forests in the tropics have an average carbon storage as high as 1023 Mg hm-2, and the global mangrove forests can sequestrate about 0. 18-0. 228 Pg C a-1. In addition to plant species composition, a variety of factors such as air temperature, seawater temperature and salinity, soil physical and chemical properties, atmospheric CO2 concentration, and human activities have significant effects on the carbon storage and sink ability of mangrove forests. Many approaches based onfield measurements, including allometric equations, remote sensing, and model simulation, are applied to quantify the carbon storage and sink ability of mangrove forest wetland. To study the carbon storage and sink ability of mangrove wetland can promote the further understanding of the carbon cycle of mangrove wetland and related controlling mechanisms, being of significance for the protection and rational utilization of mangrove wetland.

  5. Two Tier Cluster Based Data Aggregation (TTCDA) in Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    the packet count reached at the sink. Here, we propose Two Tier Cluster based Data Aggregation (TTCDA) algorithm for the randomly distributed nodes to minimize computation and communication cost. The TTCDA is energy and bandwidth efficient since it reduces the transmission of the number of packets......Wireless Sensor Network (WSN) often used for monitoring and control applications where sensor nodes collect data and send it to the sink. Most of the nodes consume their energy in transmission of data packets without aggregation to sink, which may be located at single or multi hop distance....... The direct transmission of data packets to the sink from nodes in the network causes increased communication costs in terms of energy, average delay and network lifetime. In this context, the data aggregation techniques minimize the communication cost with efficient bandwidth utilization by decreasing...

  6. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink.

    Science.gov (United States)

    Sitch, S; Cox, P M; Collins, W J; Huntingford, C

    2007-08-16

    The evolution of the Earth's climate over the twenty-first century depends on the rate at which anthropogenic carbon dioxide emissions are removed from the atmosphere by the ocean and land carbon cycles. Coupled climate-carbon cycle models suggest that global warming will act to limit the land-carbon sink, but these first generation models neglected the impacts of changing atmospheric chemistry. Emissions associated with fossil fuel and biomass burning have acted to approximately double the global mean tropospheric ozone concentration, and further increases are expected over the twenty-first century. Tropospheric ozone is known to damage plants, reducing plant primary productivity and crop yields, yet increasing atmospheric carbon dioxide concentrations are thought to stimulate plant primary productivity. Increased carbon dioxide and ozone levels can both lead to stomatal closure, which reduces the uptake of either gas, and in turn limits the damaging effect of ozone and the carbon dioxide fertilization of photosynthesis. Here we estimate the impact of projected changes in ozone levels on the land-carbon sink, using a global land carbon cycle model modified to include the effect of ozone deposition on photosynthesis and to account for interactions between ozone and carbon dioxide through stomatal closure. For a range of sensitivity parameters based on manipulative field experiments, we find a significant suppression of the global land-carbon sink as increases in ozone concentrations affect plant productivity. In consequence, more carbon dioxide accumulates in the atmosphere. We suggest that the resulting indirect radiative forcing by ozone effects on plants could contribute more to global warming than the direct radiative forcing due to tropospheric ozone increases.

  7. Boreal forest BVOC exchange: emissions versus in-canopy sinks

    Science.gov (United States)

    Zhou, Putian; Ganzeveld, Laurens; Taipale, Ditte; Rannik, Üllar; Rantala, Pekka; Petteri Rissanen, Matti; Chen, Dean; Boy, Michael

    2017-12-01

    A multilayer gas dry deposition model has been developed and implemented into a one-dimensional chemical transport model SOSAA (model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to calculate the dry deposition velocities for all the gas species included in the chemistry scheme. The new model was used to analyse in-canopy sources and sinks, including gas emissions, chemical production and loss, dry deposition, and turbulent transport of 12 featured biogenic volatile organic compounds (BVOCs) or groups of BVOCs (e.g. monoterpenes, isoprene+2-methyl-3-buten-2-ol (MBO), sesquiterpenes, and oxidation products of mono- and sesquiterpenes) in July 2010 at the boreal forest site SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations). According to the significance of modelled monthly-averaged individual source and sink terms inside the canopy, the selected BVOCs were classified into five categories: 1. Most of emitted gases are transported out of the canopy (monoterpenes, isoprene + MBO). 2. Chemical reactions remove a significant portion of emitted gases (sesquiterpenes). 3. Bidirectional fluxes occur since both emission and dry deposition are crucial for the in-canopy concentration tendency (acetaldehyde, methanol, acetone, formaldehyde). 4. Gases removed by deposition inside the canopy are compensated for by the gases transported from above the canopy (acetol, pinic acid, β-caryophyllene's oxidation product BCSOZOH). 5. The chemical production is comparable to the sink by deposition (isoprene's oxidation products ISOP34OOH and ISOP34NO3). Most of the simulated sources and sinks were located above about 0.2 hc (canopy height) for oxidation products and above about 0.4 hc for emitted species except formaldehyde. In addition, soil deposition (including deposition onto understorey vegetation) contributed 11-61 % to the overall in-canopy deposition. The emission sources peaked at about 0.8-0.9 hc, which was higher than 0.6 hc

  8. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  9. Atmospheric CO2 source and sink patterns over the Indian region

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2016-02-01

    Full Text Available In this paper we examine CO2 emission hot spots and sink regions over India as identified from global model simulations during the period 2000–2009. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines and other industrial and urban centres; CO2 sink regions coincide with the locations of dense forest. Fossil fuel CO2 emissions are compared with two bottom-up inventories: the Regional Emission inventories in ASia (REAS v1.11; 2000–2009 and the Emission Database for Global Atmospheric Research (EDGAR v4.2 (2000–2009. Estimated fossil fuel emissions over the hot spot region are  ∼  500–950 gC m−2 yr−1 as obtained from the global model simulation, EDGAR v4.2 and REAS v1.11 emission inventory. Simulated total fluxes show increasing trends, from 1.39 ± 1.01 % yr−1 (19.8 ± 1.9 TgC yr−1 to 6.7 ± 0.54 % yr−1 (97 ± 12 TgC yr−1 over the hot spot regions and decreasing trends of −0.95 ± 1.51 % yr−1 (−1 ± 2 TgC yr−1 to −5.7 ± 2.89 % yr−1 (−2.3 ± 2 TgC yr−1 over the sink regions. Model-simulated terrestrial ecosystem fluxes show decreasing trends (increasing CO2 uptake over the sink regions. Decreasing trends in terrestrial ecosystem fluxes imply that forest cover is increasing, which is consistent with India State of Forest Report (2009. Fossil fuel emissions show statistically significant increasing trends in all the data sets considered in this study. Estimated trend in simulated total fluxes over the Indian region is  ∼  4.72 ± 2.25 % yr−1 (25.6 TgC yr−1 which is slightly higher than global growth rate  ∼  3.1 % yr−1 during 2000–2010.

  10. Atmospheric CO2 source and sink patterns over the Indian region

    Science.gov (United States)

    Fadnavis, Suvarna; Kumar, K. Ravi; Tiwari, Yogesh K.; Pozzoli, Luca

    2016-02-01

    In this paper we examine CO2 emission hot spots and sink regions over India as identified from global model simulations during the period 2000-2009. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines and other industrial and urban centres; CO2 sink regions coincide with the locations of dense forest. Fossil fuel CO2 emissions are compared with two bottom-up inventories: the Regional Emission inventories in ASia (REAS v1.11; 2000-2009) and the Emission Database for Global Atmospheric Research (EDGAR v4.2) (2000-2009). Estimated fossil fuel emissions over the hot spot region are ˜ 500-950 gC m-2 yr-1 as obtained from the global model simulation, EDGAR v4.2 and REAS v1.11 emission inventory. Simulated total fluxes show increasing trends, from 1.39 ± 1.01 % yr-1 (19.8 ± 1.9 TgC yr-1) to 6.7 ± 0.54 % yr-1 (97 ± 12 TgC yr-1) over the hot spot regions and decreasing trends of -0.95 ± 1.51 % yr-1 (-1 ± 2 TgC yr-1) to -5.7 ± 2.89 % yr-1 (-2.3 ± 2 TgC yr-1) over the sink regions. Model-simulated terrestrial ecosystem fluxes show decreasing trends (increasing CO2 uptake) over the sink regions. Decreasing trends in terrestrial ecosystem fluxes imply that forest cover is increasing, which is consistent with India State of Forest Report (2009). Fossil fuel emissions show statistically significant increasing trends in all the data sets considered in this study. Estimated trend in simulated total fluxes over the Indian region is ˜ 4.72 ± 2.25 % yr-1 (25.6 TgC yr-1) which is slightly higher than global growth rate ˜ 3.1 % yr-1 during 2000-2010.

  11. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    M. C. Honda

    2013-06-01

    Full Text Available At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the Fukushima Daiichi Nuclear Power Plant (FNPP1 accident occurred on 11 March 2011. Radiocesium (134Cs and 137Cs derived from the FNPP1 accident was detected in sinking particles collected at 500 m in late March 2011 and at 4810 m in early April 2011 at both stations. The sinking velocity of 134Cs and 137Cs was estimated to be 22 to 71 m day−1 between the surface and 500 m and >180 m day−1 between 500 m and 4810 m. 137Cs concentrations varied from 0.14 to 0.25 Bq g−1 dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. Although the radiocesium may have been adsorbed onto or incorporated into clay minerals, correlations between 134Cs and lithogenic material were not always significant; therefore, the form of the cesium associated with the sinking particles is still an open question. The total 137Cs inventory by late June at K2 and by late July at S1 was 0.5 to 1.7 Bq m−2 at both depths. Compared with 137Cs input from both stations by April 2011, estimated from the surface 137Cs concentration and mixed-layer depth and by assuming that the observed 137Cs flux was constant throughout the year, the estimated removal rate of 137Cs from the upper layer (residence time in the upper layer was 0.3 to 1.5% yr−1 (68 to 312 yr. The estimated removal rates and residence times are comparable to previously reported values after the Chernobyl accident (removal rate: 0.2–1%, residence time: 130–390 yr.

  12. Evaluating Thermoelectric Power Generation Device Performance Using a Rectangular Microchannel Heat Sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2011-01-01

    In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 x 10-4 m and that of t......In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 x 10-4 m...... and thermal parameters are considered for both laminar and turbulent regimes in the channels. Furthermore, using the temperature difference through each TEG, the system efficiency is calculated. The results show that the microchannel heat sink gives a higher pressure drop, but the heat flow across the TEG...

  13. The effect of glyphosate on import into a sink leaf of sugar beet

    International Nuclear Information System (INIS)

    Shieh, Wenjang; Geiger, D.R.

    1990-01-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying 14 CO 2 to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying 14 C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves

  14. Fundamental lifetime mechanisms in routing protocols for wireless sensor networks: a survey and open issues.

    Science.gov (United States)

    Eslaminejad, Mohammadreza; Razak, Shukor Abd

    2012-10-09

    Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues.

  15. Smart sensors

    Science.gov (United States)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  16. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  17. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  18. Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit

    Directory of Open Access Journals (Sweden)

    Alexandre José da Silva

    Full Text Available Abstract Water deficit is a major factor limiting crop yield in rainfed areas. We hypothesized that under water deficit the decrease of photosynthetic production stimulates: carbohydrate remobilization from leaves, stems and roots to reproductive organs; and decreasing flowering intensity and pod development. The present work aims to study the effect of water deficit during bloom and grain pod-filling stages in two indeterminate soybean cultivar, Vtop and Nidera. The following physiological parameters were evaluated by means of daily CO2 assimilation rate (Ai, dynamic of carbohydrates in tissues, plant growth, grain yield and yield components. The study was conducted in a greenhouse with plants sown in tanks of 0.5 m3. Regardless of the phenological phase, water deficit reduced Ai, plant growth and number of pods and seeds per plant. The fact that grain yield was less affected by water deficit at bloom than at grain pod-filling stage was attributed to larger seeds found at bloom. In both treatments, a sharp reduction on carbohydrate content was found in leaves, stem and roots at the beginning of pod formation. The high amounts of carbohydrates remobilized for seed growth, along with the high values of Ai observed in well-watered plants, indicate that grain yield of soybeans is source rather than sink limited. On the other hand, in water deficit treatments, a new stimulus for carbohydrate storage was found in the leaves and stem at the beginning of grain maturity, suggesting that grain yield was limited by sink capacity.

  19. Enhanced heat transfer characteristics of conjugated air jet impingement on a finned heat sink

    Directory of Open Access Journals (Sweden)

    Qiu Shuxia

    2017-01-01

    Full Text Available Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.

  20. Bacterial Succession on Sinking Particles in the Ocean's Interior

    Directory of Open Access Journals (Sweden)

    Erik A. Pelve

    2017-11-01

    Full Text Available Sinking particles formed in the photic zone and moving vertically through the water column are a main mechanism for nutrient transport to the deep ocean, and a key component of the biological carbon pump. The particles appear to be processed by a microbial community substantially different from the surrounding waters. Single cell genomics and metagenomics were employed to describe the succession of dominant bacterial groups during particle processing. Sinking particles were extracted from sediment traps at Station Aloha in the North Pacific Subtropical Gyre (NPSG during two different trap deployments conducted in July and August 2012. The microbial communities in poisoned vs. live sediment traps differed significantly from one another, consistent with prior observations by Fontanez et al. (2015. Partial genomes from these communities were sequenced from cells belonging to the genus Arcobacter (commensalists potentially associated with protists such as Radiolaria, and Vibrio campbellii (a group previously reported to be associated with crustacea. These bacteria were found in the particle-associated communities at specific depths in both trap deployments, presumably due to their specific host-associations. Partial genomes were also sequenced from cells belonging to Idiomarina and Kangiella that were enriched in live traps over a broad depth range, that represented a motile copiotroph and a putatively non-motile algicidal saprophyte, respectively. Planktonic bacterial cells most likely caught in the wake of the particles belonging to Actinomarina and the SAR11 clade were also sequenced. Our results suggest that similar groups of eukaryote-associated bacteria are consistently found on sinking particles at different times, and that particle remineralization involves specific, reproducible bacterial succession events in oligotrophic ocean waters.

  1. Subterranean karst environments as a global sink for atmospheric methane

    Science.gov (United States)

    Webster, Kevin D.; Drobniak, Agnieszka; Etiope, Giuseppe; Mastalerz, Maria; Sauer, Peter E.; Schimmelmann, Arndt

    2018-03-01

    The air in subterranean karst cavities is often depleted in methane (CH4) relative to the atmosphere. Karst is considered a potential sink for the atmospheric greenhouse gas CH4 because its subsurface drainage networks and solution-enlarged fractures facilitate atmospheric exchange. Karst landscapes cover about 14% of earth's continental surface, but observations of CH4 concentrations in cave air are limited to localized studies in Gibraltar, Spain, Indiana (USA), Vietnam, Australia, and by incomplete isotopic data. To test if karst is acting as a global CH4 sink, we measured the CH4 concentrations, δ13CCH4, and δ2HCH4 values of cave air from 33 caves in the USA and three caves in New Zealand. We also measured CO2 concentrations, δ13CCO2, and radon (Rn) concentrations to support CH4 data interpretation by assessing cave air residence times and mixing processes. Among these caves, 35 exhibited subatmospheric CH4 concentrations in at least one location compared to their local atmospheric backgrounds. CH4 concentrations, δ13CCH4, and δ2HCH4 values suggest that microbial methanotrophy within caves is the primary CH4 consumption mechanism. Only 5 locations from 3 caves showed elevated CH4 concentrations compared to the atmospheric background and could be ascribed to local CH4 sources from sewage and outgassing swamp water. Several associated δ13CCH4 and δ2HCH4 values point to carbonate reduction and acetate fermentation as biochemical pathways of limited methanogenesis in karst environments and suggest that these pathways occur in the environment over large spatial scales. Our data show that karst environments function as a global CH4 sink.

  2. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  3. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  4. Improving the Cooling Efficiency of Heat Sinks through the Use of Different Types of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Ibrahim Mjallal

    2018-01-01

    Full Text Available As the temperature of electronic devices increases, their failure rate increases. That is why electrical devices should be cooled. One of the promising cooling techniques is using Phase Change Materials (PCMs. A new passive temperature management technique, that involves the direct placement of PCMs on the chip, has been explored and developed. PCMs are potential temperature regulators that can store thermal energy and release it during melting and freezing respectively. PCM-based heat sinks can efficiently store the heat dissipated from the electronic components to delay the peak temperature of the electronic devices as much as possible and then release the stored energy during the off period. This paper compares the temperature distribution on a heat sink with and without PCM with different magnitudes of heat flux. Also, two different PCMs with different densities, namely salt-hydrate and wax, have been investigated in cooling electronic devices.

  5. Sources and Sinks: Elucidating Mechanisms, Documenting Patterns, and Forecasting Impacts

    Science.gov (United States)

    2017-01-18

    Walker, L. E., Marzluff, J. M., & Cimprich, D. A. 2016. Source-sink population dynamics driven by a brood parasite : A case study of an endangered songbird, the black- capped vireo. Biological Conservation 203:108-118. ...relied on resighting banded birds . However, even with over 600 banded birds and >300 natal dispersal records, we did not have enough resightings among...less than 10 g in mass, making long term tracking via telemetry difficult due to the weight restrictions on protected migratory birds . Despite

  6. Fate and transport of fragrance materials in principal environmental sinks.

    Science.gov (United States)

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    Sulfide buildup in sewer networks is associated with several problems, including health impacts, corrosion of sewer structures and odor nuisance. In recent years, significant advances in the knowledge of the major processes governing sulfide buildup in sewer networks have been made. This paper...... summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  8. Is The Bovine Pedal Bone Sinking Around Calving?

    DEFF Research Database (Denmark)

    Bach, Kurt; Nielsen, Søren Saxmose; Capion, Nynne

    Introduction Softening of connective tissue of the claw suspensory apparatus around calving as described by Tarlton, et al. (2002) may lead to sinking of the bovine pedal bone resulting in compression of the digital cushion. The objective of this study was to describe changes in the thickness...... covered with water to improve the image quality. At each examination, the body condition score (BCS) of the heifers was recorded. The thickness of the soft tissue in the sole, defined as the distance between inner margin of the sole horn and the pedal bone, was measured on the ultrasonographic images...

  9. CSRQ: Communication-Efficient Secure Range Queries in Two-Tiered Sensor Networks.

    Science.gov (United States)

    Dai, Hua; Ye, Qingqun; Yang, Geng; Xu, Jia; He, Ruiliang

    2016-02-20

    In recent years, we have seen many applications of secure query in two-tiered wireless sensor networks. Storage nodes are responsible for storing data from nearby sensor nodes and answering queries from Sink. It is critical to protect data security from a compromised storage node. In this paper, the Communication-efficient Secure Range Query (CSRQ)-a privacy and integrity preserving range query protocol-is proposed to prevent attackers from gaining information of both data collected by sensor nodes and queries issued by Sink. To preserve privacy and integrity, in addition to employing the encoding mechanisms, a novel data structure called encrypted constraint chain is proposed, which embeds the information of integrity verification. Sink can use this encrypted constraint chain to verify the query result. The performance evaluation shows that CSRQ has lower communication cost than the current range query protocols.

  10. CSRQ: Communication-Efficient Secure Range Queries in Two-Tiered Sensor Networks

    Science.gov (United States)

    Dai, Hua; Ye, Qingqun; Yang, Geng; Xu, Jia; He, Ruiliang

    2016-01-01

    In recent years, we have seen many applications of secure query in two-tiered wireless sensor networks. Storage nodes are responsible for storing data from nearby sensor nodes and answering queries from Sink. It is critical to protect data security from a compromised storage node. In this paper, the Communication-efficient Secure Range Query (CSRQ)—a privacy and integrity preserving range query protocol—is proposed to prevent attackers from gaining information of both data collected by sensor nodes and queries issued by Sink. To preserve privacy and integrity, in addition to employing the encoding mechanisms, a novel data structure called encrypted constraint chain is proposed, which embeds the information of integrity verification. Sink can use this encrypted constraint chain to verify the query result. The performance evaluation shows that CSRQ has lower communication cost than the current range query protocols. PMID:26907293

  11. CSRQ: Communication-Efficient Secure Range Queries in Two-Tiered Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hua Dai

    2016-02-01

    Full Text Available In recent years, we have seen many applications of secure query in two-tiered wireless sensor networks. Storage nodes are responsible for storing data from nearby sensor nodes and answering queries from Sink. It is critical to protect data security from a compromised storage node. In this paper, the Communication-efficient Secure Range Query (CSRQ—a privacy and integrity preserving range query protocol—is proposed to prevent attackers from gaining information of both data collected by sensor nodes and queries issued by Sink. To preserve privacy and integrity, in addition to employing the encoding mechanisms, a novel data structure called encrypted constraint chain is proposed, which embeds the information of integrity verification. Sink can use this encrypted constraint chain to verify the query result. The performance evaluation shows that CSRQ has lower communication cost than the current range query protocols.

  12. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  13. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  14. Assessment of the soil organic carbon sink in a project for the conversion of farmland to forestland: a case study in Zichang county, Shaanxi, China.

    Science.gov (United States)

    Mu, Lan; Liang, Yinli; Han, Ruilian

    2014-01-01

    The conversion of farmland to forestland not only changes the ecological environment but also enriches the soil with organic matter and affects the global carbon cycle. This paper reviews the influence of land use changes on the soil organic carbon sink to determine whether the Chinese "Grain-for-Green" (conversion of farmland to forestland) project increased the rate of SOC content during its implementation between 1999 and 2010 in the hilly and gully areas of the Loess Plateau in north-central China. The carbon sink was quantified, and the effects of the main species were assessed. The carbon sink increased from 2.26×106 kg in 1999 to 8.32×106 kg in 2010 with the sustainable growth of the converted areas. The black locust (Robinia pseudoacacia L.) and alfalfa (Medicago sativa L.) soil increased SOC content in the top soil (0-100 cm) in the initial 7-yr period, while the sequestration occurred later (>7 yr) in the 100-120 cm layer after the "Grain-for-Green" project was implemented. The carbon sink function measured for the afforested land provides evidence that the Grain-for-Green project has successfully excavated the carbon sink potential of the Shaanxi province and served as an important milestone for establishing an effective organic carbon management program.

  15. Assessment of the soil organic carbon sink in a project for the conversion of farmland to forestland: a case study in Zichang county, Shaanxi, China.

    Directory of Open Access Journals (Sweden)

    Lan Mu

    Full Text Available The conversion of farmland to forestland not only changes the ecological environment but also enriches the soil with organic matter and affects the global carbon cycle. This paper reviews the influence of land use changes on the soil organic carbon sink to determine whether the Chinese "Grain-for-Green" (conversion of farmland to forestland project increased the rate of SOC content during its implementation between 1999 and 2010 in the hilly and gully areas of the Loess Plateau in north-central China. The carbon sink was quantified, and the effects of the main species were assessed. The carbon sink increased from 2.26×106 kg in 1999 to 8.32×106 kg in 2010 with the sustainable growth of the converted areas. The black locust (Robinia pseudoacacia L. and alfalfa (Medicago sativa L. soil increased SOC content in the top soil (0-100 cm in the initial 7-yr period, while the sequestration occurred later (>7 yr in the 100-120 cm layer after the "Grain-for-Green" project was implemented. The carbon sink function measured for the afforested land provides evidence that the Grain-for-Green project has successfully excavated the carbon sink potential of the Shaanxi province and served as an important milestone for establishing an effective organic carbon management program.

  16. Simulation of melting of a nano-enhanced phase change material (NePCM in a square cavity with two heat source–sink pairs

    Directory of Open Access Journals (Sweden)

    Aziz Ebrahimi

    2015-12-01

    Full Text Available Melting of a NePCM in a square cavity with different arrangements of two heat source–sink pairs flush-mounted on the vertical sidewalls is investigated numerically. The governing equations were solved on a non-uniform mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid–liquid interface. Four different cases are studied: Case I where the sources and sinks are separately placed on two vertical sidewalls; Case II where the sources and sinks are alternately placed on two vertical sidewalls; Case III where the sources are placed below the sinks on the vertical sidewalls; and Case IV where the sources are placed above the sinks on the vertical sidewalls. It was found that, Case II has the highest liquid fraction and Case IV possesses the lowest liquid fraction at the final stages of the melting process. In addition, the impacts of the nanoparticle loading are analyzed. In all the cases studied, the volumetric concentration of nanoparticles of 2% would result in the highest melting rate.

  17. Model investigation of NO3 secondary organic aerosol (SOA) source and heterogeneous organic aerosol (OA) sink in the western United States

    Science.gov (United States)

    Fry, J. L.; Sackinger, K.

    2012-09-01

    The relative importance of NO3-initiated source and heterogeneous sink of organic aerosol in the western United States is investigated using the WRF/Chem regional weather and chemistry model. The model is run for the four individual months, representing the four seasons, of January, May, August, and October, to produce hourly spatial maps of surface concentrations of NO3, organic aerosol (OA), and reactive organic gases (ROG, a sum of alkene species tracked in the lumped chemical mechanism employed). These "baseline" simulations are used in conjunction with literature data on secondary organic aerosol (SOA) mass yields, average organic aerosol composition, and reactive uptake coefficients for NO3 on organic surfaces to predict SOA source and OA heterogeneous loss rates due to reactions initiated by NO3. We find both source and sink rates maximized downwind of urban centers, therefore with a varying location that depends on wind direction. Both source and sink terms are maximum in summer, and SOA source dominates over OA loss by approximately three orders of magnitude, with large day-to-day variability. The NO3 source of SOA (peak production rates of 0.4-3.0 μg kg-1 h-1) is found to be significantly larger than the heterogeneous sink of OA via NO3 surface reactions (peak loss rates of 0.5-8 × 10-4 μg kg-1 h-1).

  18. Model investigation of NO3 secondary organic aerosol (SOA source and heterogeneous organic aerosol (OA sink in the western United States

    Directory of Open Access Journals (Sweden)

    K. Sackinger

    2012-09-01

    Full Text Available The relative importance of NO3-initiated source and heterogeneous sink of organic aerosol in the western United States is investigated using the WRF/Chem regional weather and chemistry model. The model is run for the four individual months, representing the four seasons, of January, May, August, and October, to produce hourly spatial maps of surface concentrations of NO3, organic aerosol (OA, and reactive organic gases (ROG, a sum of alkene species tracked in the lumped chemical mechanism employed. These "baseline" simulations are used in conjunction with literature data on secondary organic aerosol (SOA mass yields, average organic aerosol composition, and reactive uptake coefficients for NO3 on organic surfaces to predict SOA source and OA heterogeneous loss rates due to reactions initiated by NO3. We find both source and sink rates maximized downwind of urban centers, therefore with a varying location that depends on wind direction. Both source and sink terms are maximum in summer, and SOA source dominates over OA loss by approximately three orders of magnitude, with large day-to-day variability. The NO3 source of SOA (peak production rates of 0.4–3.0 μg kg−1 h−1 is found to be significantly larger than the heterogeneous sink of OA via NO3 surface reactions (peak loss rates of 0.5–8 × 10−4 μg kg−1 h−1.

  19. First results from Mo/Au transition-edge sensor X-ray calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, C.K. E-mail: caroline.k.stahle@gsfc.nasa.gov; Finkbeiner, F.M.; Boyce, K.R.; Chen, T.; Figueroa Feliciano, E.; Gygax, J.D.; Kelley, R.L.; Li, M.; Mattson, B.J.; Mott, D.B.; Porter, F.S.; Stahle, C.M.; Szymkowiak, A.E.; Tralshawala, N

    2000-04-07

    Superconducting bilayers made of thin films of molybdenum and gold show promise as robust transition-edge sensor (TES) thermometers for calorimeters. We present our first X-ray results from experiments with Mo/Au TES calorimeters on silicon-nitride membranes. These results include analysis of the signal pulse shape and noise as functions of the bias point, which is varied through changing the bias voltage for operation at different places within the superconducting transition and changing the heat sink temperature relative to the transition temperature. Ultimately, we determined that the performance of our devices is limited by the slew rate of the SQUID amplifier used to measure the change in current, which restricts the choice of bias. The amplifier must be replaced before further device characterization and optimization can proceed.

  20. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity

    Science.gov (United States)

    van der Meer, Douwe G.; van Hinsbergen, Douwe J. J.; Spakman, Wim

    2018-01-01

    Across the entire mantle we interpret 94 positive seismic wave-speed anomalies as subducted lithosphere and associate these slabs with their geological record. We document this as the Atlas of the Underworld, also accessible online at www.atlas-of-the-underworld.org, a compilation comprising subduction systems active in the past 300 Myr. Deeper slabs are correlated to older geological records, assuming no relative horizontal motions between adjacent slabs following break-off, using knowledge of global plate circuits, but without assuming a mantle reference frame. The longest actively subducting slabs identified reach the depth of 2500 km and some slabs have impinged on Large Low Shear Velocity Provinces in the deepest mantle. Anomously fast sinking of some slabs occurs in regions affected by long-term plume rising. We conclude that slab remnants eventually sink from the upper mantle to the core-mantle boundary. The range in subduction-age versus - depth in the lower mantle is largely inherited from the upper mantle history of subduction. We find a significant depth variation in average sinking speed of slabs. At the top of the lower mantle average slab sinking speeds are between 10 and 40 mm/yr, followed by a deceleration to 10-15 mm/yr down to depths around 1600-1700 km. In this interval, in situ time-stationary sinking rates suggest deceleration from 20 to 30 mm/yr to 4-8 mm/yr, increasing to 12-15 mm/yr below 2000 km. This corroborates the existence of a slab deceleration zone but we do not observe long-term (> 60 My) slab stagnation, excluding long-term stagnation due to compositional effects. Conversion of slab sinking profiles to viscosity profiles shows the general trend that mantle viscosity increases in the slab deceleration zone below which viscosity slowly decreases in the deep mantle. This is at variance with most published viscosity profiles that are derived from different observations, but agrees qualitatively with recent viscosity profiles suggested

  1. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Two distinct CO2 sink/source characteristics appeared from the compiled observed data 1984-2013 in the tropical Indonesian seas. The western part persistently emits CO2 to the atmosphere, while the eastern is rather dynamic which emits and absorbs smaller amount of CO2 to and from atmosphere, respectively. The segregation is proximal to the virtual Wallace line, where in the continental shelf is located. Lower salinity and higher silicate condition in the western part influenced the higher pCO2 condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year condition. Yet, during La Ninã, higher wind speed increases CO2 flux twice compared to Normal year. In the continental shelf area where CO2 sink area is found, 29 years data showed that pCO2 trend is increasing ±0.6-3.8 μatm/year. From this study, the overall areas have a significant source of CO2 of approximately 10 - 24 μatm.

  2. Thermal performance measurements on ultimate heat sinks--cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.; Abbey, O.B.

    1977-12-01

    The primary objective of the studies described is to obtain the requisite data, with respect to modeling requirements, to characterize thermal performance of heat sinks for nuclear facilities existing at elevated water temperatures in result of experiencing a genuinely large heat load and responding to meteorological influence. The data should reflect thermal performance for combinations leading to worst-case meteorological influence. A geothermal water retention basin has been chosen as the site for the first measurement program and data have been obtained in the first of several experiments scheduled to be performed there. These data illustrate the thermal and water budgets during episodes of cooling from an initially high pond water bulk temperature. Monitoring proceeded while the pond experienced only meteorological and seepage influence. The data are discussed and are presented as a data volume which may be used for calculation purposes. Suggestions for future measurement programs are stated with the intent to maintain and improve relevance to nuclear ultimate heat sinks while continuing to examine the performance of the analog geothermal pond. It is further suggested that the geothermal pond, with some modification, may be a suitable site for spray pond measurements

  3. A highly stable microchannel heat sink for convective boiling

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan Chin

    2009-01-01

    To develop a highly stable two-phase microchannel heat sink, we experimented with convective boiling in diverging, parallel microchannels with different distributions of laser-etched artificial nucleation sites. Each microchannel had a mean hydraulic diameter of 120 µm. The two-phase flow visualization and the magnitudes of pressure drop and inlet temperature oscillations under boiling conditions demonstrated clearly the merits of using artificial nucleation sites to further stabilize the flow boiling in diverging, parallel microchannels. The stability map showed the plane of subcooling number versus phase change number. It illustrated that diverging, parallel microchannels with artificial nucleation cavities have a much wider stable region than parallel microchannels with uniform cross-sections or diverging, parallel microchannels without artificial nucleation cavities. In addition, the results revealed that the design with cavities distributed uniformly along the downstream half of the channel presented the best stability performance among the three distributions of nucleation sites. This particular design can be regarded as a highly stable microchannel heat sink for convective boiling

  4. Plant Fructokinases: Evolutionary, Developmental, and Metabolic Aspects in Sink Tissues

    Directory of Open Access Journals (Sweden)

    Ofer Stein

    2018-03-01

    Full Text Available Sucrose, a glucose–fructose disaccharide, is the main sugar transported in the phloem of most plants and is the origin of most of the organic matter. Upon arrival in sink tissues, the sucrose must be cleaved by invertase or sucrose synthase. Both sucrose-cleaving enzymes yield free fructose, which must be phosphorylated by either fructokinase (FRK or hexokinase (HXK. The affinity of FRK to fructose is much higher than that of HXK, making FRKs central for fructose metabolism. An FRK gene family seems to exist in most, if not all plants and usually consists of several cytosolic FRKs and a single plastidic FRK. These genes are expressed mainly in sink tissues such as roots, stems, flowers, fruits, and seeds, with lower levels of expression often seen in leaves. Plant FRK enzymes vary in their biochemical properties such as affinity for fructose, inhibition by their substrate (i.e., fructose, and expression level in different tissues. This review describes recently revealed roles of plant FRKs in plant development, including the combined roles of the plastidic and cytosolic FRKs in vascular tissues and seed development.

  5. My car is sinking: automobile submersion, lessons in vehicle escape.

    Science.gov (United States)

    Giesbrecht, Gordon G; McDonald, Gerren K

    2010-08-01

    In North America approximately 400 individuals per year die in submersed vehicles, accounting for 5-11% of all drownings. About half of people surveyed would let the vehicle fill with water before attempting exit. We used a crane and two passenger vehicles of the same make, model, and year-one with passenger compartment intact (I) and one with holes (H) in the floor (area approximately 2200 cm2)--to conduct occupied and unoccupied submersions. Three phases of submersion were identified: 1) FLOATING, vehicles floated for 15 s (H) to 63 s (I) before the water reached the bottom of the side windows; 2) SINKING, the subsequent period until the vehicle is completely under water, but before it fills completely; and 3) SUBMERGED, the vehicle was full of water and several feet below the surface. Total time to submersion was 150 s for I but only 37 s for H. Opening the door to exit Vehicle I decreased submersion time from 150 to 30 s. Even the most difficult exit strategy attempted (three men and a child manikin through one window) was quickly performed from Vehicle I (only 51 s). During one exit attempt, initiated during the sinking phase, it was impossible to open the doors or windows until the vehicle was completely full of water. A vehicle is most easily exited during the initial Floating Phase. We suggest the following escape procedure: SEATBELT(s) unfastened; WINDOWS open; CHILDREN released from restraints and brought close to an adult; and OUT, children should exit first.

  6. Modeling the dynamical sinking of biogenic particles in oceanic flow

    Directory of Open Access Journals (Sweden)

    P. Monroy

    2017-06-01

    Full Text Available We study the problem of sinking particles in a realistic oceanic flow, with major energetic structures in the mesoscale, focussing on the range of particle sizes and densities appropriate for marine biogenic particles. Our aim is to evaluate the relevance of theoretical results of finite size particle dynamics in their applications in the oceanographic context. By using a simplified equation of motion of small particles in a mesoscale simulation of the oceanic velocity field, we estimate the influence of physical processes such as the Coriolis force and the inertia of the particles, and we conclude that they represent negligible corrections to the most important terms, which are passive motion with the velocity of the flow, and a constant added vertical velocity due to gravity. Even if within this approximation three-dimensional clustering of particles can not occur, two-dimensional cuts or projections of the evolving three-dimensional density can display inhomogeneities similar to the ones observed in sinking ocean particles.

  7. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Komal Saifullah Khan

    2014-11-01

    Full Text Available Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models.

  8. Nitrogen cycling and bacterial community structure of sinking and aging diatom aggregates

    DEFF Research Database (Denmark)

    Lundgaard, Ann Sofie Birch; Treusch, Alexander H.; Stief, Peter

    2017-01-01

    ABSTRACT: Sinking phycodetrital aggregates can contribute to anaerobic nitrogen turnover as they may represent oxygen-depleted microbial hot spots in otherwise oxygenated waters. However, the dynamics of anaerobic nitrogen cycling during the long descent of aggregates through oxic or hypoxic waters...... and dissimilatory NO3– reduction to NO2– (DNRN) were the most important processes of aggregate-associated anaerobic nitrogen cycling. However, at 70% air saturation, rates of anaerobic N cycling were lower and decayed towards 0 after an early rise, whereas at 15% air saturation, they remained constantly high...... are unknown. Thus, model aggregates prepared from the diatom Skeletonema marinoi were allowed to age for 4 d at high and low ambient O2 levels (70 and 15% air saturation, respectively), and changes in nitrogen transformations and microbial community structure were followed. At both O2 levels, denitrification...

  9. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kwangsoo Kim

    2015-05-01

    Full Text Available A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  10. Branch-based centralized data collection for smart grids using wireless sensor networks.

    Science.gov (United States)

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  11. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jiawei Tang

    2018-03-01

    Full Text Available The Internet of things (IoT is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs. The main contributions of a TBSR are (a the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of

  12. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Tang, Jiawei; Liu, Anfeng; Zhang, Jian; Xiong, Neal N; Zeng, Zhiwen; Wang, Tian

    2018-03-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery

  13. Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident

    Science.gov (United States)

    Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.

    2018-02-01

    RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.

  14. Does high reactive nitrogen input from the atmosphere decrease the carbon sink strength of a peatland?

    Science.gov (United States)

    Brümmer, Christian; Zöll, Undine; Hurkuck, Miriam; Schrader, Frederik; Kutsch, Werner

    2017-04-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (ΣNr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ΣNr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ΣNr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study indicates that the sink strength of the peatland has likely been decreased through elevated N deposition over the past decades. It also demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  15. Radiation Effects in Dual Heat Sinks for Cooling of Concentrated Photovoltaics

    Science.gov (United States)

    2016-06-01

    IN DUAL HEAT SINKS FOR COOLING OF CONCENTRATED PHOTOVOLTAICS by Mark T. Brandau June 2016 Thesis Advisor: Garth Hobson Co-Advisor...thesis 4. TITLE AND SUBTITLE RADIATION EFFECTS IN DUAL HEAT SINKS FOR COOLING OF CONCENTRATED PHOTOVOLTAICS 5. FUNDING NUMBERS 6. AUTHOR(S) Mark...examined the effectiveness of improving the cooling of concentrated photovoltaics (CPV) through the use of dual heat sinks. The intent was to improve

  16. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  17. Cloning, Expression, and Characterization of Sorbitol Transporters from Developing Sour Cherry Fruit and Leaf Sink Tissues1

    Science.gov (United States)

    Gao, Zhifang; Maurousset, Laurence; Lemoine, Remi; Yoo, Sang-Dong; van Nocker, Steven; Loescher, Wayne

    2003-01-01

    The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persica L. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 and PcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (Km sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity. PMID:12692316

  18. Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries

    International Nuclear Information System (INIS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2017-01-01

    Highlights: • 3D transient thermal analysis of a pouch Li-ion cell has been carried out. • Using pin fin heat sink improves the temperature reduction at low pumping powers. • Using pin fin heat sink enhances the temperature uniformity at low air flow rates. • Porous aluminum foam insertion with pin fins improves temperature reduction. • Porous aluminum foam insertion with pin fins enhances temperature uniformity. - Abstract: Three-dimensional transient thermal analysis of an air-cooled module was carried out to investigate cumulative effects of using pin fin heat sink and porous metal foam on thermal management of a Li-ion (lithium-ion) battery pack. Five different cases were designed as Case 1: flow channel without any pin fin or porous metal foam insertion, Case 2: flow channel with aluminum pin fins, Case 3: flow channel with porous aluminum foam pin fins, Case 4: fully inserted flow channel with porous aluminum foam, and Case 5: fully inserted flow channel with porous aluminum foam and aluminum pin fins. The effects of porous aluminum insertions, pin fin types, air flow inlet temperature, and air flow inlet velocity on the temperature uniformity and maximum temperature inside the battery pack were systematically investigated. The results showed that using pin fin heat sink (Case 2) is appropriate only for low air flow velocities. In addition, the use of porous aluminum pin fins or embedding porous aluminum foam inside the air flow channel (Cases 3 and 4) are not beneficial for thermal management improvement. The combination of aluminum pin fins and porous aluminum foam insertion inside the air flow channel (Case 5) is a proper option that improves both temperature reduction and temperature uniformity inside the battery cell.

  19. Robbing Peter to Pay Paul: Modeling the Dynamic Evolution of the Coastal Carbon Sink Across Multiple Landforms

    Science.gov (United States)

    Herbert, E. R.; Walters, D.; Windham-Myers, L.; Kirwan, M. L.

    2016-12-01

    Evaluating the strength and long-term stability of the coastal carbon sink requires a consideration of the spatial evolution of coastal landscapes in both the horizontal and vertical dimensions. We present a model of the transformation and burial of carbon along a bay-marsh-upland forest complex to explore the response of the coastal carbon sink to sea level rise (SLR) and anthropogenic activity. We establish a carbon mass-balance by coupling dynamic biogeochemically-based models of soil carbon burial in aquatic, intertidal, and upland environments with a physically-based model of marsh edge erosion, vertical growth and migration into adjacent uplands. The modeled increase in marsh vertical growth and carbon burial at moderate rates of sea level rise (3-10 mm/yr) is consistent with a synthesis of 219 field measurements of marsh carbon accumulation that show a significant (ploss of forest carbon stocks. Coastlines with high relief or barriers to wetland migration can become sources of carbon through the erosion of buried carbon stocks, but we show that the recapture of eroded carbon through vertical growth can be an important mechanism for reducing carbon loss. Overall, we show that the coastal carbon balance must be evaluated in a landscape context to account for changes in the size and magnitude of both the stocks and sinks of marsh carbon and for the transfers of carbon between coastal habitats. These results may help inform current efforts to appraise coastal carbon sinks that are beset by issues of landscape heterogeneity and the provenance of buried carbon.

  20. Impingement thermal performance of perforated circular pin-fin heat sinks

    Science.gov (United States)

    Wen, Mao-Yu; Yeh, Cheng-Hsiung

    2018-04-01

    The study presents the experimental information on heat transfer performance of jet impingement cooling on circular pin- fin heat sinks with/without a hollow perforated base plate. Smoke flow visualization is also used to investigate the behavior of the complicated flow phenomena of the present heat sinks for this impingement cooling. The effects of flow Reynolds numbers (3458≤Re≤11,526), fin height, the geometry of the heat sinks (with/without a hollow perforated base plate), and jet-to-test heat sink placement (1 ≤ H/ d≤16) are examined. In addition, empirical correlation to estimate the heat transfer coefficient was also developed.

  1. Sensor Compendium - A Snowmass Whitepaper-

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M. [Syracuse Univ., NY (United States); Battaglia, M. [Univ. of California, Santa Cruz, CA (United States); Bolla, G. [Purdue Univ., West Lafayette, IN (United States); Bortoletto, D. [Purdue Univ., West Lafayette, IN (United States); Caberera, B. [Stanford Univ., CA (United States); Carlstrom, J E [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Chang, C. L. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Cooper, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Da Via, C. [Univ. of Manchester (United Kingdom); Demarteau, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fast, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frisch, H. [Univ. of Chicago, IL (United States), et al.

    2013-10-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  2. The transmission interferometric adsorption sensor

    International Nuclear Information System (INIS)

    Heuberger, M; Balmer, T E

    2007-01-01

    This paper describes a high-speed adsorption sensor based on thin-film interference at the interfaces. The sensor can be used as a stand-alone instrument or in combination with a direct surface force measurement, which yields a wide range of additional information on molecular interactions on adsorbed films. The achieved mass resolution of the presented method (1-10 ng cm -2 Hz -1/2 ) is comparable to or better than other modern bio-sensors. The dependence of mass resolution on various factors is presented and demonstrated in a number of relevant examples. The described method is suitable for the implementation of a low-cost bio-sensor with a minimal number of optical elements. The measurement spot size is one micrometre or more and sampling rates >10 Hz are readily possible. In contrast to other bio-sensors, the signal baseline has a remarkable long-term stability since the measured signal is virtually independent of refractive index changes in the fluid medium above the sensor surface. In combination with an optical spectral correlation method, the classical computer calculations are substituted by an optical calculator and a label-free real-time imaging adsorption sensor is realized. We demonstrate sensor operation both inside the extended surface forces apparatus as well as in a stand-alone bio-sensor configuration. As a final point, we illustrate the imaging capability of this new sensor technology on a patterned bio-functionalized surface. (review article)

  3. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  4. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  5. The 'Jupiter' sinking: effects on children's fears, depression and anxiety.

    Science.gov (United States)

    Yule, W; Udwin, O; Murdoch, K

    1990-11-01

    Twenty-five girls who survived the sinking of the cruise ship 'Jupiter' were compared with three other groups of girls--71 controls from a separate school; 46 girls in the same school who had not wanted to go on the cruise; and 13 girls who were in a 'near miss' group in that they wanted to go but did not get places. All completed the Fear Survey Schedule for Children (revised form), the Children's Manifest Anxiety Scale and the Birleson Depression Inventory. Survivors did not become generally more fearful. Rather, they developed significantly greater fears to stimuli related to the traumatic event. The results are discussed in relation to the conditioning theory of the acquisition of phobias.

  6. What Really Caused the ROKS Cheonan Warship Sinking?

    Directory of Open Access Journals (Sweden)

    Hwang Su Kim

    2014-01-01

    Full Text Available This paper is concerned with the sinking of the Korean naval warship (ROKS Cheonan and the reported spectra of the seismic signals recorded at the time of the incident. The spectra of seismic signals show prominently amplitude peaks at around 8.5 Hz and its harmonics. These frequencies were explained with the vibrations of a water column due to an underwater explosion. This explanation is highly doubtful and concerns about its validity have already been raised in the scientific community. In this work an alternative explanation is presented: it is shown that the recorded seismic spectra are consistent with the natural frequencies of vibrations of a large submarine with a length of around 113 m. This finding raises the possibility that the ROKS Cheonan sunk because of the collision with a large submarine rather than the explosion of a torpedo or an underwater mine.

  7. Important aspects of sinks for linking emission trading systems

    Energy Technology Data Exchange (ETDEWEB)

    Hirsbrunner, Simon; Taenzler, Dennis; Reuster, Lena [Adelphi Research gGmbH, Berlin (Germany)

    2011-06-15

    The discussion on how to design policy instruments to reduce emissions and enhance removals from land use, land use change, and forestry is likely to be a key feature of a future global climate protection framework and will also influence the design of an emerging global carbon market. By analyzing different ETSs it turns out that very specific provisions are in place to deal with carbon sinks. Different instruments, eligible activities and standards reflect the prevailing emissions profile and cultural preferences of a geographic area. The inclusion of forestry in a cap, for instance, makes provisions on additionality and non-permanence obsolete, but increases the relevance of other issues such as accounting and enforcement. (orig.)

  8. Sinking into the Sea? Climate Change and AOSIS Strategies

    DEFF Research Database (Denmark)

    Højland, Camille Marie Risager; Svendsen, Gert Tinggaard

    2017-01-01

    Agreement, 2) A CO2 tax, 3) Subsidising new green technology, 4) That AOSIS should look for coalition partners, e.g. China, and 5) Even stronger focus on the linkage between climate change and future migration. Employing such strategies may save the SIDS from sinking into the sea and, at the same time......Climate change poses a serious threat to the world, in particular to the Small Island Developing States (SIDS). The organisation Alliance of Small Island States (AOSIS) represents the SIDS by giving them a voice in the United Nations. We discuss the different aspects of climate change and the role...... that a small actor like AOSIS plays in protecting the citizens of its member states rather than free ride on larger actors. Which strategies should AOSIS use to encourage an even more ambitious climate policy in the future? We suggest five relevant strategies: 1) Introduction of sanctions in the Paris...

  9. Forensic seismology and the sinking of the Kursk

    Science.gov (United States)

    Koper, Keith D.; Wallace, Terry C.; Taylor, Steven R.; Hartse, Hans E.

    On August 10, 2000, Russia's Northern Fleet began its largest naval exercise in more than a decade. Among the vessels taking part was the heavily-armed Kursk, an Oscar class submarine that was the most modern cruise-missile sub in the fleet.Beginning on August 14, a series of reports in the press indicated that the Kursk had been severely damaged during the exercise and that the crew were likely dead. By August 17, news agencies were reporting that seismic networks in the Baltic area had detected two seismic events which appeared to correspond to the Kursk disaster in time and space (Figure 1). Specifically the seismic events were consistent with reports from the British Broadcasting Corporation on the location of ongoing rescue efforts. The fact that this section of the Barents Sea is essentially aseismic added credence to the assertion that the seismic events were directly related to the sinking of the Kursk.

  10. Transport of defense compounds from source to sink

    DEFF Research Database (Denmark)

    Jørgensen, Morten Egevang; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2015-01-01

    Plants synthesize a plethora of defense compounds crucial for their survival in a challenging and changing environment. Transport processes are important for shaping the distribution pattern of defense compounds, albeit focus hitherto has been mostly on their biosynthetic pathways. A recent...... identification of two glucosinolate transporters represents a breakthrough in our understanding of glucosinolate transport in Arabidopsis and has advanced knowledge in transport of defense compounds. In this review, we discuss the role of the glucosinolate transporters in establishing dynamic glucosinolate...... distribution patterns and source-sink relations. We focus on lessons learned from glucosinolate transport that may apply to transport of other defense compounds and discuss future avenues in the emerging field of defense compound transport....

  11. Sinking into the Sea? Climate Change and AOSIS Strategies

    DEFF Research Database (Denmark)

    Højland, Camille Marie Risager; Svendsen, Gert Tinggaard

    2017-01-01

    Climate change poses a serious threat to the world, in particular to the Small Island Developing States (SIDS). The organisation Alliance of Small Island States (AOSIS) represents the SIDS by giving them a voice in the United Nations. We discuss the different aspects of climate change and the role...... Agreement, 2) A CO2 tax, 3) Subsidising new green technology, 4) That AOSIS should look for coalition partners, e.g. China, and 5) Even stronger focus on the linkage between climate change and future migration. Employing such strategies may save the SIDS from sinking into the sea and, at the same time...... that a small actor like AOSIS plays in protecting the citizens of its member states rather than free ride on larger actors. Which strategies should AOSIS use to encourage an even more ambitious climate policy in the future? We suggest five relevant strategies: 1) Introduction of sanctions in the Paris...

  12. Efficient Aggregation of Multiple Classes of Information in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Biswanath Mukherjee

    2009-10-01

    Full Text Available Congestion in a Wireless Sensor Network (WSN can lead to buffer overflow, resource waste and delay or loss of critical information from the sensors. In this paper, we propose the Priority-based Coverage-aware Congestion Control (PCC algorithm which is distributed, priority-distinct, and fair. PCC provides higher priority to packets with event information in which the sink is more interested. PCC employs a queue scheduler that can selectively drop any packet in the queue. PCC gives fair chance to all sensors to send packets to the sink, irrespective of their specific locations, and therefore enhances the coverage fidelity of theWSN. Based on a detailed simulation analysis, we show that PCC can efficiently relieve congestion and significantly improve the system performance based on multiple metrics such as event throughput and coverage fidelity. We generalize PCC to address data collection in a WSN in which the sensor nodes have multiple sensing devices and can generate multiple types of information. We propose a Pricing System that can under congestion effectively collect different types of data generated by the sensor nodes according to values that are placed on different information by the sink. Simulation analysis show that our Pricing System can achieve higher event throughput for packets with higher priority and achieve fairness among different categories. Moreover, given a fixed system capacity, our proposed Pricing System can collect more information of the type valued by the sink.

  13. Role of metabolite transporters in source-sink carbon allocation

    Directory of Open Access Journals (Sweden)

    Frank eLudewig

    2013-07-01

    Full Text Available Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g. roots, flowers, small leaves and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer.The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole.In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or - in combination with nitrogen - as protein in protein storage vacuoles and protein bodies.Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters.

  14. Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction

    Science.gov (United States)

    Clément, C.; Toussaint, R.; Stojanova, M.; Aharonov, E.

    2018-02-01

    This article focuses on liquefaction of saturated granular soils, triggered by earthquakes. Liquefaction is defined here as the transition from a rigid state, in which the granular soil layer supports structures placed on its surface, to a fluidlike state, in which structures placed initially on the surface sink to their isostatic depth within the granular layer. We suggest a simple theoretical model for soil liquefaction and show that buoyancy caused by the presence of water inside a granular medium has a dramatic influence on the stability of an intruder resting at the surface of the medium. We confirm this hypothesis by comparison with laboratory experiments and discrete-element numerical simulations. The external excitation representing ground motion during earthquakes is simulated via horizontal sinusoidal oscillations of controlled frequency and amplitude. In the experiments, we use particles only slightly denser than water, which as predicted theoretically increases the effect of liquefaction and allows clear depth-of-sinking measurements. In the simulations, a micromechanical model simulates grains using molecular dynamics with friction between neighbors. The effect of the fluid is captured by taking into account buoyancy effects on the grains when they are immersed. We show that the motion of an intruder inside a granular medium is mainly dependent on the peak acceleration of the ground motion and establish a phase diagram for the conditions under which liquefaction happens, depending on the soil bulk density, friction properties, presence of water, and peak acceleration of the imposed large-scale soil vibrations. We establish that in liquefaction conditions, most cases relax toward an equilibrium position following an exponential in time. We also show that the equilibrium position itself, for most liquefaction regimes, corresponds to the isostatic equilibrium of the intruder inside a medium of effective density. The characteristic time to relaxation is

  15. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  16. Southern Hemisphere bog persists as a strong carbon sink during droughts

    Science.gov (United States)

    Goodrich, Jordan P.; Campbell, David I.; Schipper, Louis A.

    2017-10-01

    Peatland ecosystems have been important global carbon sinks throughout the Holocene. Most of the research on peatland carbon budgets and effects of variable weather conditions has been done in Northern Hemisphere Sphagnum-dominated systems. Given their importance in other geographic and climatic regions, a better understanding of peatland carbon dynamics is needed across the spectrum of global peatland types. In New Zealand, much of the historic peatland area has been drained for agriculture but little is known about rates of carbon exchange and storage in unaltered peatland remnants that are dominated by the jointed wire rush, Empodisma robustum. We used eddy covariance to measure ecosystem-scale CO2 and CH4 fluxes and a water balance approach to estimate the sub-surface flux of dissolved organic carbon from the largest remaining raised peat bog in New Zealand, Kopuatai bog. The net ecosystem carbon balance (NECB) was estimated over four years, which included two drought summers, a relatively wet summer, and a meteorologically average summer. In all measurement years, the bog was a substantial sink for carbon, ranging from 134.7 to 216.9 gC m-2 yr-1, owing to the large annual net ecosystem production (161.8 to 244.9 gCO2-C m-2 yr-1). Annual methane fluxes were large relative to most Northern Hemisphere peatlands (14.2 to 21.9 gCH4-C m-2 yr-1), although summer and autumn emissions were highly sensitive to dry conditions, leading to very predictable seasonality according to water table position. The annual flux of dissolved organic carbon was similar in magnitude to methane emissions but less variable, ranging from 11.7 to 12.8 gC m-2 yr-1. Dry conditions experienced during late summer droughts led to significant reductions in annual carbon storage, which resulted nearly equally from enhanced ecosystem respiration due to lowered water tables and increased temperatures, and from reduced gross primary production due to vapor pressure deficit-related stresses to the

  17. Assessing Canada's Forest Carbon Sinks from 1901 TO 2008 BY Combining Inventory with Climate Data (Invited)

    Science.gov (United States)

    Chen, J. M.; Wu, C.; Gonsamo, A.; Kurz, W.; Hember, R.; Price, D. T.; Boisvenue, C.; Zhang, F.; Chang, K.

    2013-12-01

    The forest carbon cycle is not only controlled by climate, tree species and site conditions, but also by disturbance affecting the biomass and age of forest stands. The Carbon Budget Model of the Canadian forest sector (CBM-CFS3) calculates the complete forest carbon cycle by combining forest inventory data on forest species, biomass and stand age with empirical yield information and statistics on forest disturbances, management and land-use change. It is used for national reporting and climate policy purposes. The Integrated Terrestrial Ecosystem Carbon model (InTEC) is driven by remotely-sensed vegetation parameters (forest type, leaf area index, clumping index) and fire scar, soil and climate data and simulates forest growth and the carbon cycle as a function of stand age using a process-based approach. Gridded forest biomass, stand age and disturbance data based on forest inventory are also used as inputs to InTEC. Efforts are being made to enhance the CBM-CFS3's capacity to assess the impacts of global change on the forest carbon budget by utilizing InTEC process modeling methodology. For this purpose, InTEC is first implemented on 3432 permanent sampling plots in coastal and interior BC, and it is found that climate warming explained 70% and 75% of forest growth enhancement over the period from 1956 to 2001 in coastal and interior BC, respectively, and the remainder is attributed to CO2 and nitrogen fertilization effects. The growth enhancement, in terms of the increase in the stemwood accumulation rate after adjusting for the stand age effect, is about 24% for both areas over the same period. To assess the impact of climate change on the forest carbon cycle across Canada, polygon-based CBM and gridded InTEC results are aggregated to 60 reconciliation units (RU), and their interannual variabilities over the period from 1990 to 2008 are compared in each RU. CBM results show interannual variability in response to forest disturbance, while InTEC results show

  18. Reliable and Efficient Communications in Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Abdelhakim, M.M.

    2014-01-01

    Wireless sensor network (WSN) is a key technology for a wide range of military and civilian applications. Limited by the energy resources and processing capabilities of the sensor nodes, reliable and efficient communications in wireless sensor networks are challenging, especially when the sensors are deployed in hostile environments. This research aims to improve the reliability and efficiency of time-critical communications in WSNs, under both benign and hostile environments. We start with wireless sensor network with mobile access points (SENMA), where the mobile access points traverse the network to collect information from individual sensors. Due to its routing simplicity and energy efficiency, SENMA has attracted lots of attention from the research community. Here, we study reliable distributed detection in SENMA under Byzantine attacks, where some authenticated sensors are compromised to report fictitious information. The q-out-of-m rule is considered. It is popular in distributed detection and can achieve a good trade-off between the miss detection probability and the false alarm rate. However, a major limitation with this rule is that the optimal scheme parameters can only be obtained through exhaustive search. By exploiting the linear relationship between the scheme parameters and the network size, we propose simple but effective sub-optimal linear approaches. Then, for better flexibility and scalability, we derive a near-optimal closed-form solution based on the central limit theorem. It is proved that the false alarm rate of the q-out-of-m scheme diminishes exponentially as the network size increases, even if the percentage of malicious nodes remains fixed. This implies that large-scale sensor networks are more reliable under malicious attacks. To further improve the performance under time varying attacks, we propose an effective malicious node detection scheme for adaptive data fusion; the proposed scheme is analyzed using the entropy-based trust model

  19. Radiation sensors

    International Nuclear Information System (INIS)

    Wykes, J.S.; Adsley, I.

    1981-01-01

    Radiation detectors, suitable for use in industrial environments, eg coal mines are claimed. At least two scintillation crystals are mounted on a resilient support material, preferably silicone rubber. The sensors are both robust and compact. (U.K.)

  20. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  1. [Research progress on carbon sink function of agroforestry system under climate change].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Zhou, Zi-Juan; Shan, Li-Shan

    2014-10-01

    As a land comprehensive utilization system, agroforestry system can absorb and fix CO2 effectively to increase carbon storage, and also reduces greenhouse effect convincingly while reaching the aim of harvest. The regulatory role in CO2 makes humans realize that agroforestry systems have significant superiority compared with single cropping systems, therefore, understanding the carbon sinks of different components in an agroforestry system and its influencing factors play an important role in studying global carbon cycle and accurate evaluation of carbon budget. This paper reviewed the concept and classification of agroforestry system, and then the carbon sequestration potentials of different components in agroforestry systems and influencing factors. It was concluded that the carbon sequestration rate of plants from different agroforestry systems in different regions are highly variable, ranging from 0.59 to 11.08 t C · hm(-2) · a(-1), and it is mainly influenced by climatic factors and the characteristics of agroforestry systems (species composition, tree density and stand age). The soil C sequestration of any agroforestry system is influenced by the amount and quality of biomass input provided by tree and nontree components of the system and the soil properties such as soil texture and soil structure. Overall the amount of carbon storage in any agroforestry system depends on the structure and function of its each component. The future studies should focus on the carbon sink functions of structurally optimized agroforestry systems, the temporal variation and spatial distribution pattern of carbon storage in agroforestry system and its carbon sequestration mechanism in a long time.

  2. Photosynthate supply and utilization in alfalfa: a developmental shift from a source to a sink limitation of photosynthesis

    International Nuclear Information System (INIS)

    Baysdorfer, C.; Bassham, J.A.

    1985-01-01

    Long-term carbon dioxide enrichment, 14 CO 2 feeding, and partial defoliation were employed as probes to investigate source/sink limitations of photosynthesis during the development of symbiotically grown alfalfa. In the mature crop, long-term CO 2 enrichment does not affect the rates of net photosynthesis, relative growth, 14 C export to nonphotosynthetic organs, or the rates of 14 C label incorporation into leaf sucrose, starch, or malate. The rate of glycolate labeling is, however, substantially reduced under these conditions. When the mature crop was partially defoliated, a considerable increase in net photosynthesis occurred in the remaining leaves. In the seedling crop, long-term CO 2 enrichment increased dry matter accumulation, primarily as a result of increases in leaf starch content. Although the higher rates of starch synthesis are not maintained, the growth enhancement of the enriched plants persisted throughout the experimental period. These results imply a source limitation of seedling photosynthesis and a sink limitation of photosynthesis in more mature plants. Consequently, both the supply and the utilization of photosynthate may limit seasonal photosynthesis in alfalfa

  3. Energy Efficient MAC Scheme for Wireless Sensor Networks with High-Dimensional Data Aggregate

    Directory of Open Access Journals (Sweden)

    Seokhoon Kim

    2015-01-01

    Full Text Available This paper presents a novel and sustainable medium access control (MAC scheme for wireless sensor network (WSN systems that process high-dimensional aggregated data. Based on a preamble signal and buffer threshold analysis, it maximizes the energy efficiency of the wireless sensor devices which have limited energy resources. The proposed group management MAC (GM-MAC approach not only sets the buffer threshold value of a sensor device to be reciprocal to the preamble signal but also sets a transmittable group value to each sensor device by using the preamble signal of the sink node. The primary difference between the previous and the proposed approach is that existing state-of-the-art schemes use duty cycle and sleep mode to save energy consumption of individual sensor devices, whereas the proposed scheme employs the group management MAC scheme for sensor devices to maximize the overall energy efficiency of the whole WSN systems by minimizing the energy consumption of sensor devices located near the sink node. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of active time of sensor devices, transmission delay, control overhead, and energy consumption. Therefore, the proposed scheme is suitable for sensor devices in a variety of wireless sensor networking environments with high-dimensional data aggregate.

  4. Marine snow derived from abandoned larvacean houses: Sinking rates, particle content and mechanisms of aggregate formation

    DEFF Research Database (Denmark)

    Hansen, J.L.S.; Kiørboe, Thomas; Alldredge, A.L.

    1996-01-01

    The dynamics and formation mechanisms of marine snow aggregates from abandoned larvacean houses were examined by laboratory experiments and field sampling during a spring diatom bloom in a shallow fjord on the west coast of the USA. Intact aggregates were sampled both from sediment traps and dire......The dynamics and formation mechanisms of marine snow aggregates from abandoned larvacean houses were examined by laboratory experiments and field sampling during a spring diatom bloom in a shallow fjord on the west coast of the USA. Intact aggregates were sampled both from sediment traps...... assemblages were observed in aggregates collected in the water column and in sediment traps. Most of the fecal pellets found in the houses were most Likely produced by the larvaceans themselves. Numbers of diatoms per house corresponded with the diatom concentrations in the ambient water and, on average, each...

  5. Increasing carbon sinks in European forests: effect of afforestation and changes in mean growing stock volume

    NARCIS (Netherlands)

    Vilén, T.; Cienciala, E.; Schelhaas, M.; Verkerk, P.J.; Lindner, M.; Peltola, H.

    2016-01-01

    In Europe, both forest area and growing stock have increased since the 1950s, and European forests have acted as a carbon sink during the last six decades. However, the contribution of different factors affecting the sink is not yet clear. In this study, historical inventory data were combined with

  6. A Descriptive Study of Pre-Service Science Teachers' Misconceptions about Sinking-Floating

    Science.gov (United States)

    Kiray, Seyit Ahmet; Aktan, Filiz; Kaynar, Hamza; Kilinc, Sena; Gorkemli, Tugce

    2015-01-01

    The purpose of this study is twofold. Firstly, it attempts to determine the pre-service science teachers' misconceptions about floating and sinking. Secondly, it aims to reveal the level of pre-service science teachers' misconceptions, scientific knowledge, lack of knowledge, and lack of confidence related to floating and sinking. To conduct the…

  7. Thermodynamic optimization of heat/cold sink extenders in thermoelectric cooling assemblies

    International Nuclear Information System (INIS)

    Lau, P.G.; Ritzer, T.M.; Buist, R.J.

    1994-01-01

    The heat sink extender serves many purposes in the overall design of thermoelectric cooling assembly. One purpose is to serve as a thermojunction, another involves temperature control. The optimization of the heat sink extender is discussed and several schemes are considered

  8. On the estimation method of compressed air consumption during pneumatic caisson sinking

    OpenAIRE

    平川, 修治; ヒラカワ, シュウジ; Shuji, HIRAKAWA

    1990-01-01

    There are several methods in estimation of compressed air consumption during pneumatic caisson sinking. It is re uired in the estimation of compressed air consumption by the methods under the same conditions. In this paper, it is proposed the methods which is able to estimate accurately the compressed air consumption during pnbumatic caissons sinking at this moment.

  9. The potential of willow and poplar plantations as carbon sinks in Sweden

    International Nuclear Information System (INIS)

    Rytter, Rose-Marie

    2012-01-01

    A large share, estimated at 12–25%, of the annual anthropogenic greenhouse gas emissions is attributed to global deforestation. Increasing the forested areas therefore has a positive impact on carbon (C) sequestration and mitigation of high atmospheric CO 2 concentrations. Fast-growing species, such as willow and poplar, are of high interest as producers of biomass for fuel, but also as C sinks. The present study estimated the rate of C sequestration in biomass and soil in willow and poplar plantations. Calculations were based on above- and below-ground biomass production data from field experiments, including fine root turnover, litter decomposition rates, and production levels from commercial plantations. Accumulation of C in woody biomass, above and below ground, was estimated at 76.6–80.1 Mg C ha −1 and accumulation of C in the soil at 9.0–10.3 Mg C ha −1 over the first 20–22 years. The average rates of C sequestration were 3.5–4.0 Mg C ha −1 yr −1 in woody biomass, and 0.4–0.5 Mg C ha −1 yr −1 in the soil. If 400,000 ha of abandoned arable land in Sweden were planted with willow and poplar, about 1.5 Tg C would be sequestered annually in woody biomass and 0.2 Tg C in soils. This would be nearly one tenth of the annual anthropogenic emissions of C in Sweden today. These calculations show the potential of fast-growing plantations on arable land to mitigate the effect of high CO 2 concentrations over a short time span. Knowledge gaps were found during the calculation process and future research areas were suggested. -- Highlights: ► Poplars and willows as producers of biomass for fuel and as C sinks. ► Calculation of C sequestration rates in biomass and soil in willow and poplar plantations. ► Increasing forested areas has positive impact on high CO 2 levels. ► Willow and poplar plantations on arable land mitigate anthropogenic CO 2 emissions.

  10. Section 2: Assessment of local and regional carbon sources and sinks

    Science.gov (United States)

    This section of the book discusses assessment of local and regional carbon sinks. The chapters of Section 1 discuss the increase in the global CO2 concentration, the aggregate sum of all local and regional carbon sources, whereas those of Section 2 focus mostly on sinks: The terrestrial sinks of soils, grasses, and forest can become sources of CO2 when those sinks die or burn (plants) or erode (soils). Likewise, as ocean temperatures increase, the solubility of CO2 in the seas decreases, reducing the capacity of that sink. Additionally, although the terrestrial sequestration literature provides a wide range of new options, forest management and agricultural soils management—as Perry et al. and Mikhailova et al., respectively, discuss—can increase carbon storage capacity without a great deal of new research.

  11. Atmospheric chemistry, sources and sinks of carbon suboxide, C3O2

    Science.gov (United States)

    Keßel, Stephan; Cabrera-Perez, David; Horowitz, Abraham; Veres, Patrick R.; Sander, Rolf; Taraborrelli, Domenico; Tucceri, Maria; Crowley, John N.; Pozzer, Andrea; Stönner, Christof; Vereecken, Luc; Lelieveld, Jos; Williams, Jonathan

    2017-07-01

    Carbon suboxide, O = C = C = C = O, has been detected in ambient air samples and has the potential to be a noxious pollutant and oxidant precursor; however, its lifetime and fate in the atmosphere are largely unknown. In this work, we collect an extensive set of studies on the atmospheric chemistry of C3O2. Rate coefficients for the reactions of C3O2 with OH radicals and ozone were determined as kOH = (2.6 ± 0.5) × 10-12 cm3 molecule-1 s-1 at 295 K (independent of pressure between ˜ 25 and 1000 mbar) and kO3 products are CO and CO2, as observed experimentally. The UV absorption spectrum and the interaction of C3O2 with water (Henry's law solubility and hydrolysis rate constant) were also investigated, enabling its photodissociation lifetime and hydrolysis rates, respectively, to be assessed. The role of C3O2 in the atmosphere was examined using in situ measurements, an analysis of the atmospheric sources and sinks and simulation with the EMAC atmospheric chemistry-general circulation model. The results indicate sub-pptv levels at the Earth's surface, up to about 10 pptv in regions with relatively strong sources, e.g. influenced by biomass burning, and a mean lifetime of ˜ 3.2 days. These predictions carry considerable uncertainty, as more measurement data are needed to determine ambient concentrations and constrain the source strengths.

  12. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling

    International Nuclear Information System (INIS)

    Zhao, Jin; Huang, Shanbo; Gong, Liang; Huang, Zhaoqin

    2016-01-01

    Micro pin-fin heat sink, characterized by low thermal resistance, compact structure and uniform temperature distribution along the flow direction, is effective and valuable for thermal management of electronic devices. To enhance the cooling performance of the micro square pin-fin heat sink, a geometry optimizing method changing pin-fin porosity and pin-fin located angle is proposed in this paper. The flow and heat transfer characteristics were studied numerically and the geometry of the micro square pin-fin heat sink was optimized. To reveal the characteristics and advantages of the micro square pin-fin heat sink, the comparison between the square pin-fin and the column pin-fin was made. Numerical results indicate that both the pin-fin porosity and located angle are important for the cooling capacity and thermal performance of the micro square pin-fin heat sink; the optimal porosity and located angle for thermal performance are 0.75 and 30° respectively. Furthermore, micro heat sinks with the optimized square pin-fin present better thermal performance than micro column pin-fin heat sinks, which implies that there is great potential to employ micro square pin-fin heat sinks for thermal management on electronic devices with high energy density. - Highlights: • An optimization method on geometry is proposed for micro square pin-fin heat sink. • Pin-fin porosity and pin-fin located angle are important on thermal performance. • Heat sinks with optimized square pin-fin hold higher cooling capacity than column pin-fin.

  13. Radiation sensor

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1977-01-01

    Radiation sensor and thermocouple, respectively, which can be used for reactor in-core instrumentation. The radiation sensor consists of an inconel conductor wire and rhodium emitter wire, the thermocouple of two intertwined alumel or chromel wires. Both are arranged in the center of a metal tube relative to which they are separated by an insulator made of SiO 2 fibers. This insulator is first introduced as a loose fabric between the radiation sensor and the thermocouple, respectively, and the metal tube and then compacted to a density of 35-73% of pure SiO 2 by drawing the tube. There is no need for soldering or welding. The insulation resistivity at room temperature ist between 10 14 and 10 15 ohms. (ORU) [de

  14. How phosphorus limitation can control climatic gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  15. Managing carbon sinks by changing rotation length in European forests

    Energy Technology Data Exchange (ETDEWEB)

    Kaipainen, Terhi; Liski, Jari; Pussinen, Ari; Karjalainen, Timo

    2004-06-01

    Elongation of rotation length is a forest management activity countries may choose to apply under Article 3.4 of the Kyoto Protocol to help them meet their commitments for reduction of greenhouse gas emissions. We used the CO2FIX model to analyze how the carbon stocks of trees, soil and wood products depend on rotation length in different European forests. Results predicted that the carbon stock of trees increased in each forest when rotation length was increased, but the carbon stock of soil decreased slightly in German and Finnish Scots pine forests; the carbon stock of wood products also decreased slightly in cases other than the Sitka spruce forest in UK. To estimate the efficiency of increasing rotation length as an Article 3.4 activity, we looked at changes in the carbon stock of trees resulting from a 20-year increase in current rotation lengths. To achieve the largest eligible carbon sink mentioned in Article 3.4 of the Kyoto Protocol, the rotation lengths need to be increased on areas varying from 0.3 to 5.1 Mha depending on the forest. This would in some forests cause 1-6% declines in harvesting possibilities. The possible decreases in the carbon stock of soil indicate that reporting the changes in the carbon stocks of forests under Article 3.4 may require measuring soil carbon.

  16. Source-sink driven planetary flows in a polar basin

    Science.gov (United States)

    Gavilan Pascual-Ahuir, Estanislao; Willmott, Andrew; Luneva, Maria; Morales Maqueda, Miguel

    2017-04-01

    Analytical process models are developed to study linear, steady-state, source-sink and wind stress curl driven barotropic planetary flows in a circular polar basin on the sphere with simple shelf topography. The leading order dynamical balance is geostrophic except near the boundary of the basin and the shelf edge, where dissipation in the form of either linear bottom friction or eddy diffusion becomes significant. Full spherical geometry is retained in the derivation of the barotropic vorticity equation. Subsequently, an overlooked approximation in the refereed literature of the sixties is adopted whereby the latitudinal dependence in the coefficients of the vorticity equation are suppressed, hence allowing analytical solutions to be obtained we refer to this as the "beta sphere approximation". The approximation is justified, a posteriori, and the study compares the analytical solutions with numerical solutions obtained from the NEMO ocean modelling system. Numerical experiments with NEMO are used to extend the process model solutions by obtaining the steady wind and boundary forced circulation in a polar basin with open boundaries representing the Bering Strait, Canadian Archipelago and Greenland Sea, and with a continental self and a representation of the Lomonosov ridge. NEMO based experiments are also conducted to investigate the sea surface anomaly field driven by the fluctuating flow through one, or more, of the straits connecting the Arctic basin to its marginal seas. Finally, we reflect on the likely impact of sea ice on the barotropic circulation in the Arctic Ocean.

  17. The deep sea is a major sink for microplastic debris

    Science.gov (United States)

    Woodall, Lucy C.; Sanchez-Vidal, Anna; Canals, Miquel; Paterson, Gordon L.J.; Coppock, Rachel; Sleight, Victoria; Calafat, Antonio; Rogers, Alex D.; Narayanaswamy, Bhavani E.; Thompson, Richard C.

    2014-01-01

    Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question—where is all the plastic? PMID:26064573

  18. Nonuniform ocean acidification and attenuation of the ocean carbon sink

    Science.gov (United States)

    Fassbender, Andrea J.; Sabine, Christopher L.; Palevsky, Hilary I.

    2017-08-01

    Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas (pCO2) are rising, pH levels are declining, and the ocean's buffer capacity is eroding. Regional differences in short-term pH trends primarily have been attributed to physical and biological processes; however, heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.

  19. OPG's approach of crediting natural circulation in outage heat sinks

    International Nuclear Information System (INIS)

    Fung, K.K.; Mackinnon, J.C.

    2001-01-01

    A review of crediting natural circulation as a backup means of removing the reactor core decay heat during an outage in Ontario Power Generation's nuclear stations was completed in 2000. The objective was to define the configurations and conditions under which natural circulation can be confidently credited as an effective heat transport mechanism for use in shutdown heat sink management. The project was an interdisciplinary program, and involved analyses in the areas of heat transport system thermalhydaulics, fuel and fuel channel thermal and mechanical behaviour, radiation physics, and probabilistic risks. The assessment shows that it is economically acceptable to credit natural circulation as a backup means of removing the core decay heat whenever the no fuel failure criteria are met. The economic risks associated with such a potential use decrease with time after shutdown. The waiting times after shutdown when there would be various levels of risks of damaging the pressure tubes and fuel bundles were derived for use in planning maintenance activities so as to minimize the economic risks. (author)

  20. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows

    KAUST Repository

    Mazarrasa, Inés

    2017-03-20

    Seagrass are among the most important natural carbon sinks on Earth with Posidonia oceanica (Mediterranean Sea) considered as the most relevant species. Yet, the number of direct measurements of organic carbon burial rates in P. oceanica is still scarce and the effect of local environmental factors remains largely unexplored. In addition, P. oceanica meadows are declining due to the increase in anthropogenic pressure in coastal areas during the last century. The aim of this study is to assess the recent carbon sink capacity of P. oceanica and particularly the effect of human pressure and two environmental factors, water depth and exposure to wave energy (based on a fetch index), on the carbon burial rate since 1900. We conducted an extensive survey of sediment cores in meadows distributed across a gradient of depth, fetch, and human pressure around The Balearic Islands. Sediment and carbon accumulation rates were obtained from 210Pb concentrations profiles. Top-30 centimeters carbon stocks (6.1 ± 1.4 kg C m−2) and burial rates (26 ± 6 g C m−2 yr1) varied up to fivefold across meadows. No significant effect of water depth in carbon burial rates was observed. Although fetch was significantly correlated with sediment mean grain size, confirming the effect of wave exposure in the patterns of sedimentation, fetch alone could not explain the differences in carbon burial rates among the meadows examined. Human pressure affected carbon burial rates, leading to increased rates since the onset of the rise in anthropogenic pressure, particularly so in sheltered meadows supporting high human pressure.

  1. Assessing the integrated sediment trapping role of man-made and natural sediment sinks, Minizr catchment, Ethiopia

    Science.gov (United States)

    Mekonnen, Mulatie; Keesstra, Saskia; Stroosnijder, Leo; Baartman, Jantiene

    2016-04-01

    To enhance sedimentation within a catchment, man-made sediment trapping (ST) measures and natural sediment sinks are playing a vital role. To evaluate the ST role of such measures, this study was conducted at Minizr catchment, northwest Ethiopian highlands. Man-made soil and water conservation (SWC) structures constructed within the catchment and natural sediment sinks (floodplain and wetland) were digitized and quantified from Google earth imagery. Sediment pins, vertical cut measurements through the deposit (after the rainy season) and SWC structures dimension measurements (before and after the rainy seasons) were used to estimate the trapped sediment depth. Inflow and outflow suspended sediment measurements were done to calculate sediment trapping efficacies (STEs). On average, SWC structures trapped ~7922 t yr-1 (56 kg m-1 yr-1) and micro-trenches trapped ~13260 kg yr-1 (a micro-trench trapped 23 kg yr-1). A floodplain located near the centre of the catchment trapped ~ 9971 t yr-1 (59 kg m-2 yr-1) and a wetland located near the outlet of the catchment trapped ~ 8715 t yr-1 (36 kg m-2 yr-1). The STEs of the wetland and the floodplain were found to be 85 % and 77 %, respectively. Substantial difference was observed between the STE of grassed and un-grassed waterways, 75 % and 21 %, respectively. About ~40 % of the transported sediment was trapped by major sediment traps (both man-made and natural) and ~60 % is still leaving the catchment and entering into Koga reservoir. Although man-made structures and natural sediment sinks trapped large amount of sediment, the rate of sediment red-deposition is lower than the rate of sediment export at the outlet of the catchment, which is because of lack of an integrated ST approach.

  2. Practical Considerations in the Implementation of Collaborative Beamforming on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Santiago Felici-Castell

    2017-01-01

    Full Text Available Wireless Sensor Networks (WSNs are composed of spatially distributed autonomous sensor devices, named motes. These motes have their own power supply, processing unit, sensors and wireless communications However with many constraints, such as limited energy, bandwidth and computational capabilities. In these networks, at least one mote called a sink, acts as a gateway to connect with other networks. These sensor networks run monitoring applications and then the data gathered by these motes needs to be retrieved by the sink. When this sink is located in the far field, there have been many proposals in the literature based on Collaborative Beamforming (CB, also known as Distributed or Cooperative Beamforming, for these long range communications to reach the sink. In this paper, we conduct a thorough study of the related work and analyze the requirements to do CB. In order to implement these communications in real scenarios, we will consider if these requirements and the assumptions made are feasible from the point of view of commercial motes and their constraints. In addition, we will go a step further and will consider different alternatives, by relaxing these requirements, trying to find feasible assumptions to carry out these types of communications with commercial motes. This research considers the nonavailability of a central clock that synchronizes all motes in the WSN, and all motes have identical hardware. This is a feasibility study to do CB on WSN, using a simulated scenario with randomized delays obtained from experimental data from commercial motes.

  3. Surface Air Temperature Fluctuations and Lapse Rates on Olivares Gamma Glacier, Rio Olivares Basin, Central Chile, from a Novel Meteorological Sensor Network

    Directory of Open Access Journals (Sweden)

    Edward Hanna

    2017-01-01

    Full Text Available Empirically based studies of glacier meteorology, especially for the Southern Hemisphere, are relatively sparse in the literature. Here, we use an innovative network of highly portable, low-cost thermometers to report on high-frequency (1-min time resolution surface air temperature fluctuations and lapse rates (LR in a ~800-m elevational range (from 3,675 to 4,492 m a.s.l. across the glacier Olivares Gamma in the central Andes, Chile. Temperatures were measured during an intense field campaign in late Southern summer, 19–27 March 2015, under varying weather conditions. We found a complex dependence of high-frequency LR on time of day, topography, and wider meteorological conditions, with hourly temperature variations during this week that were probably mainly associated with short- and long-wave radiation changes and not with wind speed/direction changes. Using various pairs of sites within our station network, we also analyze spatial variations in LR. Uniquely in this study, we compare temperatures measured at heights of 1-m and 2-m above the glacier surface for the network of five sites and found that temperatures at these two heights occasionally differed by more than ±4°C during the early afternoons, although the mean temperature difference is much smaller (~0.3°C. An implication of our results is that daily, hourly, or even monthly averaged LR may be insufficient for feeding into accurate melt models of glacier change, with the adoption of subhourly (ideally 1–10-min resolution LR likely to prove fruitful in developing new innovative high-time-resolution melt modelling. Our results are potentially useful as input LR for local glacier melt models and for improving the understanding of lapse rate fluctuations and glacier response to climate change.

  4. Location aware event driven multipath routing in Wireless Sensor Networks: Agent based approach

    Directory of Open Access Journals (Sweden)

    A.V. Sutagundar

    2013-03-01

    Full Text Available Wireless Sensor Networks (WSNs demand reliable and energy efficient paths for critical information delivery to sink node from an event occurrence node. Multipath routing facilitates reliable data delivery in case of critical information. This paper proposes an event triggered multipath routing in WSNs by employing a set of static and mobile agents. Every sensor node is assumed to know the location information of the sink node and itself. The proposed scheme works as follows: (1 Event node computes the arbitrary midpoint between an event node and the sink node by using location information. (2 Event node establishes a shortest path from itself to the sink node through the reference axis by using a mobile agent with the help of location information; the mobile agent collects the connectivity information and other parameters of all the nodes on the way and provides the information to the sink node. (3 Event node finds the arbitrary location of the special (middle intermediate nodes (above/below reference axis by using the midpoint location information given in step 1. (4 Mobile agent clones from the event node and the clones carry the event type and discover the path passing through special intermediate nodes; the path above/below reference axis looks like an arc. While migrating from one sensor node to another along the traversed path, each mobile agent gathers the node information (such as node id, location information, residual energy, available bandwidth, and neighbors connectivity and delivers to the sink node. (5 The sink node constructs a partial topology, connecting event and sink node by using the connectivity information delivered by the mobile agents. Using the partial topology information, sink node finds the multipath and path weight factor by using link efficiency, energy ratio, and hop distance. (6 The sink node selects the number of paths among the available paths based upon the criticalness of an event, and (7 if the event is non

  5. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong (Jonathan Loo

    2011-01-01

    Full Text Available Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  6. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  7. Autonomic Context-Aware Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nídia G. S. Campos

    2015-01-01

    Full Text Available Autonomic Computing allows systems like wireless sensor networks (WSN to self-manage computing resources in order to extend their autonomy as much as possible. In addition, contextualization tasks can fuse two or more different sensor data into a more meaningful information. Since these tasks usually run in a single centralized context server (e.g., sink node, the massive volume of data generated by the wireless sensors can lead to a huge information overload in such server. Here we propose DAIM, a distributed autonomic inference machine distributed which allows the sensor nodes to do self-management and contextualization tasks based on fuzzy logic. We have evaluated DAIM in a real sensor network taking into account other inference machines. Experimental results illustrate that DAIM is an energy-efficient contextualization method for WSN, reducing 48.8% of the number of messages sent to the context servers while saving 19.5% of the total amount of energy spent in the network.

  8. Microcantilever Sensors

    Science.gov (United States)

    Lang, Hans Peter; Gerber, Christoph

    Microfabricated cantilevers have been used in atomic force microscopy for the topography imaging of non-conductive surfaces for more than 20 years. Cantilever beams without tips have proved their applicability in recent years as miniaturized, ultrasensitive, and fast-responding sensors for applications in chemistry, physics, biochemistry, and medicine. Microcantilever sensors respond by bending due to the absorption of molecules. A shift in resonance frequency also occurs. They can be operated in different environments such as gaseous environment, liquids, or vacuum. In gas, microcantilever sensors can be operated as an artificial nose, whereby the bending pattern of a microfabricated array of eight polymer-coated silicon cantilevers is characteristic of the different vapors from solvents, flavors, and beverages. When operated in a liquid, microcantilever sensors are able to detect biochemical reactions. Each cantilever is functionalized with a specific biochemical probe receptor, sensitive for detection of the corresponding target molecule. Applications lie in the fields of label- and amplification-free detection of DNA hybridization, the detection of proteins as well as antigen-antibody reactions, and the detection of larger entities, such as bacteria and fungi.

  9. Imaging Sensors

    Indian Academy of Sciences (India)

    Natural and Manmade Sensors. A less well-known instance of how we have been anticipated by evolution refers to the compound eye of insects like bees, wasps, etc. and of arthropods like the horseshoe crab (Figure 1). The compound eye consists of several thousand ommatidia. Each ommatidium is a separate detector, ...

  10. GMI sensor

    Czech Academy of Sciences Publication Activity Database

    Platil, A.; Malátek, M.; Ripka, P.; Kraus, Luděk

    2004-01-01

    Roč. 110, 1-3 (2004), s. 341-342 ISSN 0924-4247 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetic sensors * GMI * magnetometer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.462, year: 2004

  11. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  12. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels

    NARCIS (Netherlands)

    Dijkstra, Marcel; de Boer, Meint J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2008-01-01

    A calorimetric miniaturized flow sensor was realized with a linear sensor response measured for water flow up to flow rates in the order of 300 nl min-1. A versatile technological concept is used to realize a sensor with a thermally isolated freely suspended silicon-rich silicon-nitride microchannel

  13. Characterization of Radial Curved Fin Heat Sink under Natural and Forced Convection

    Science.gov (United States)

    Khadke, Rishikesh; Bhole, Kiran

    2018-02-01

    Heat exchangers are important structures widely used in power plants, food industries, refrigeration, and air conditioners and now widely used in computing systems. Finned type of heat sink is widely used in computing systems. The main aim of the design of the heat sink is to maintain the optimum temperature level. To achieve this goal so many geometrical configurations are implemented. This paper presents a characterization of radially curved fin heat sink under natural and forced convection. Forced convection is studied for the optimization of temperature for better efficiency. The different alternatives in geometry are considered in characterization are heat intensity, the height of the fin and speed of the fan. By recognizing these alternatives the heat sink is characterized by the heat flux usually generated in high-end PCs. The temperature drop characteristics across height and radial direction are presented for the constant heat input and air flow in the heat sink. The effect of dimensionless elevation height (0 ≤ Z* ≤ 1) and Elenbaas Number (0.4 ≤ El ≤ 2.8) of the heat sink were investigated for study of the Nusselt number. Based on experimental characterization, process plan has been developed for the selection of the similar heat sinks for desired output (heat dissipation and temperature distribution).

  14. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Sistem Pemantauan Kadar pH, Suhu dan Warna pada Air Sungai Melalui Web Berbasis Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Ahmad Sabiq

    2017-07-01

    Full Text Available Water is a very important natural resource for human life and other living things. Water pollution, especially in river water, should be controlled because of the rapid development. One technology to monitor multiple physical quantities scattered in a region is the Wireless Sensor Network (WSN. WSN technology has the ability to transmit data from sensor readings and forward data received from other nodes. In this study, prototype monitoring system of pH level, temperature, and color based on WSN that can be monitored through the developed web. The sensors at each node are connected to Arduino Uno as a processing unit, data read from the sensor is sent to the sync node via XBee wireless device. In the sink, the PC also serves as a database server and a web server is used. Test results with two different dispersion indicate that sensor readings can be read by all nodes and received by the sync node and can be displayed on web pages that have been built. Air merupakan sumber daya alam yang sangat penting bagi kehidupan manusia dan mahluk hidup lainnya. Pencemaran air khususnya air sungai perlu dikendalikan seiring makin cepatnya pembangunan. Salah satu teknologi untuk melakukan pemantauan besaran fisik dalam wilayah yang tersebar adalah Wireless Sensor Network (WSN, yang memiliki kemampuan untuk mengirimkan data hasil pembacaan sensor serta meneruskan data yang diterima dari node lain. Pada penelitian ini dikembangkan purwarupa sistem pemantauan kadar pH, suhu dan warna berbasis WSN yang dapat dipantau melalui web. Sensor pada setiap node dihubungkan ke Arduino Uno sebagai unit pemroses, data yang dibaca dari sensor dikirimkan ke node sink melalui perangkat XBee nirkabel. Pada sink digunakan PC yang berfungsi juga sebagai database server dan web server. Hasil dari pengujian dengan dua penyebaran yang berbeda didapatkan hasil bahwa pembacaan sensor dapat dibaca oleh seluruh node dan diterima oleh sink serta dapat ditampilkan melalui laman web yang

  16. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    Science.gov (United States)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  17. Optical fibre microwire sensors

    OpenAIRE

    Brambilla, G.; Belal, Mohammad; Jung, Y.; Song, Z.; Xu, F.; Newson, T.P.; Richardson, D.J.

    2011-01-01

    This paper reviews sensing applications of optical fibre microwires and nanowires. In addition to the usual benefits of sensors based on optical fibres, these sensors are extremely compact and have fast response speeds. In this review sensors will be grouped in three categories according to their morphology: linear sensors, resonant sensors and tip sensors. While linear and resonant sensors mainly exploit the fraction of power propagating outside the microwire physical boundary, tip sensors t...

  18. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  19. Quantifying Sources, Sinks and Gas-surface Interactions on the Moon from LADEE Measurements of Exospheric Na and K

    Science.gov (United States)

    Colaprete, A.; Sarantos, M.; Poppe, A. R.; Bennett, C.; Orlando, T. M.

    2015-12-01

    We present numerical simulations of the generation and loss of the sodium (Na) and potassium (K) exospheres of the Moon and compare these results to recent LADEE observations. While both species appear to migrate towards the poles like other volatiles, Na resides on the soil and exosphere for one to two months before getting lost to the solar wind or the subsurface. K exhibits a different evolutionary trend: it is lost much more quickly than ionization and sputtering rates allow for, suggesting that it is lost to the ground in just a few bounces. Thus, the two alkalis exhibit very different interactions with the lunar surface. Reproducing the monthly variation exhibited by Na requires higher source rates at Mare, or higher sink rates at Highlands, or a combination of both. The very different behavior of Na on Mare and Highlands soils is reminiscent of laboratory experiments of water binding on Apollo fine soils.

  20. Acetone in the atmosphere: Distribution, sources, and sinks

    Science.gov (United States)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.