Ngako, V.; Affaton, P.; Nnange, J. M.; Njanko, Th.
2003-04-01
Kinematic analysis of the central Cameroon shear zone (CCSZ) and its Sanaga fault relay, indicate early sinistral shear movement (phase D 2) that was later followed by a dextral shear movement (phase D 3) during the Pan-African orogeny. The correlation of tectonic events among the CCSZs, thrusting of the Yaounde Group and the deformation in the Lom Group indicate a diachronous deposition history of these groups, where the Yaounde Group is pre-kinematic while the sedimentary and magmatic rocks of the Lom basin are syn-kinematic. Sinistral shear movements along the CCSZ and Sanaga faults are correlated with metamorphism and thrusting of the Yaounde granulites onto the Congo craton, on one hand, and to the opening of the Lom pull-apart basin, oblique to the shear zone, on the other. Kinematic interactions between shear and thrust movements characterize transpression, whereas interactions between shear and oblique normal fault movements characterize transtension. Resulting kinematic indicators show that the Lom basin represents a sinistral transtensional relay of the Sanaga fault. Greenschist-facies metamorphism in the Lom Group rocks dominantly affected by a monophase tectonic evolution were achieved during the late dextral shear movements along the Sanaga fault.
Familial sinistrals avoid exact numbers.
Directory of Open Access Journals (Sweden)
Uli Sauerland
Full Text Available We report data from an internet questionnaire of sixty number trivia. Participants were asked for the number of cups in their house, the number of cities they know and 58 other quantities. We compare the answers of familial sinistrals--individuals who are left-handed themselves or have a left-handed close blood-relative--with those of pure familial dextrals--right-handed individuals who reported only having right-handed close blood-relatives. We show that familial sinistrals use rounder numbers than pure familial dextrals in the survey responses. Round numbers in the decimal system are those that are multiples of powers of 10 or of half or a quarter of a power of 10. Roundness is a gradient concept, e.g. 100 is rounder than 50 or 200. We show that very round number like 100 and 1000 are used with 25% greater likelihood by familial sinistrals than by pure familial dextrals, while pure familial dextrals are more likely to use less round numbers such as 25, 60, and 200. We then use Sigurd's (1988, Language in Society index of the roundness of a number and report that familial sinistrals' responses are significantly rounder on average than those of pure familial dextrals. To explain the difference, we propose that the cognitive effort of using exact numbers is greater for the familial sinistral group because their language and number systems tend to be more distributed over both hemispheres of the brain. Our data support the view that exact and approximate quantities are processed by two separate cognitive systems. Specifically, our behavioral data corroborates the view that the evolutionarily older, approximate number system is present in both hemispheres of the brain, while the exact number system tends to be localized in only one hemisphere.
Malignant solid pseudopapillary tumor of pancreas causing sinistral portal hypertension
Directory of Open Access Journals (Sweden)
Nisar Ahmad Wani
2011-01-01
Full Text Available Solid pseudopapillary tumor (SPT of the pancreas is a rare benign or low-grade malignant epithelial tumor that occurs mainly in young females in second to fourth decades of life. Pathologic and imaging findings include a well-defined, encapsulated pancreatic mass with cystic and solid components with evidence of hemorrhage. We report a 23-year-old female who presented with upper abdominal pain of long duration and epigastric mass on palpation. Multidetector-row CT (MDCT demonstrated a large well-defined heterogeneous attenuation mass, containing hyperdense areas of hemorrhage mixed with solid enhancing and cystic non-enhancing areas, arising from the pancreatic body and tail. Splenic vein thrombosis was present with dilated splenoportal collateral vessels between splenic hilum and portal/superior mesenteric veins, with dilated vessels seen in the gastric wall, with patent portal vein, compatible with sinistral portal hypertension. Typical imaging features and age and sex of the patient suggested a diagnosis of SPT of pancreas complicated by segmental portal hypertension due to splenic vein thrombosis. Histopathology of the biopsy material was confirmatory.
Directory of Open Access Journals (Sweden)
Ashvin Thambyah
2014-01-01
Full Text Available Previous gait studies on squatting have described a rapid reversal in the direction of the tibiofemoral joint shear reaction force when going into a full weight-bearing deep knee flexion squat. The effects of such a shear reversal have not been considered with regard to the loading demand on knee implants in patients whose activities of daily living require frequent squatting. In this paper, the shear reversal effect is discussed and simulated in a finite element knee implant-bone model, to evaluate the possible biomechanical significance of this effect on femoral component loosening of high flexion implants as reported in the literature. The analysis shows that one of the effects of the shear reversal was a switch between large compressive and large tensile principal strains, from knee extension to flexion, respectively, in the region of the anterior flange of the femoral component. Together with the known material limits of cement and bone, this large mismatch in strains as a function of knee position provides new insight into how and why knee implants may fail in patients who perform frequent squatting.
Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ichihashi, Noriaki
2015-08-01
Static stretching (SS) with hip flexion and knee extension is often used to stretch the hamstrings. However, it is unclear whether there are the differences in the acute effect of this SS maneuver on flexibility between each component of the hamstrings, namely the semitendinosus (ST), semimembranosus (SM), and biceps femoris (BF) muscles. The aims of this study were to investigate the acute effects of SS on the flexibility of the individual muscle components of the hamstrings, and to examine the difference in the acute effect of SS between these components using shear elastic modulus as the index of muscle flexibility. Twenty healthy men (age, 23.4 ± 2.3 years) volunteered for this study. The shear elastic modulus of the ST, SM and BF muscles were measured using ultrasound shear wave elastography before (PRE) and immediately after (POST) 5 min of SS. Measurements of shear elastic modulus were taken with the knee at 90° (slack position) and 45° (extension position) of flexion. In all muscles, the shear elastic modulus at both knee angles decreased significantly after SS. The percentage change in the shear elastic modulus from PRE to POST in the muscles at 45° of knee flexion was greatest in the SM. These results suggest that SS with hip flexion and knee extension has acute effects on increasing flexibility of the hamstring muscle components, especially the SM muscle. Copyright © 2015. Published by Elsevier Ltd.
Sinistrals' Upper Hand: Evidence for Handedness Differences in the Representation of Body Space
Hach, Sylvia; Schutz-Bosbach, Simone
2010-01-01
A difference in the perception of extrapersonal space has been shown to exist between dextrals and sinistrals. On the classical line bisection task, this difference is evident in a greater left bias for dextrals compared to sinistrals. Different modalities and regions of space can be affected. However, it has not yet been investigated whether a…
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sabyasachi, E-mail: sabyaphy@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil). Instituto de Fisica Teorica
2015-12-15
Owing to the Kubo relation, the shear viscosities of pionic and nucleonic components have been evaluated from their corresponding retarded correlators of viscous stress tensor in the static limit, which become non-divergent only for the non-zero thermal widths of the constituent particles. In the real-time thermal field theory, the pion and nucleon thermal widths have respectively been obtained from the pion self-energy for different meson, baryon loops, and the nucleon self-energy for different pion-baryon loops. We have found non-monotonic momentum distributions of pion and nucleon thermal widths, which have been integrated out by their respective Bose-enhanced and Pauli-blocked phase space factors during evaluation of their shear viscosities. The viscosity to entropy density ratio for this mixed gas of pion-nucleon system decreases and approaches its lower bound as the temperature and baryon chemical potential increase within the relevant domain of hadronic matter. (author)
Laakso, J. H.; Straayer, J. W.
1973-01-01
Three large scale advanced composite shear web components were tested and analyzed to evaluate application of the design concept to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron/epoxy reinforced aluminum stiffeners. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs. An approximate analysis of prebuckling deflections is presented and computer-aided design results, which consider prebuckling deformations, indicate that the design concept offers a theoretical weight saving of 31 percent relative to all metal construction. Recommendations are made for design concept options and analytical methods that are appropriate for production hardware.
Amaral, Wagner S.; Kraus, Rita K.; Dantas, Elton L.; Fuck, Reinhardt A.; Pitombeira, João Paulo A.
2017-11-01
The Precambrian basement in the region of Cariré, northeast Ceará Central Domain, NE Brazil, comprises essentially dioritic gneisses and granodiorites formed under high-grade metamorphism conditions. The granulites occur frequently as metric bodies or as boudins in mylonitic/cataclastic orthogneiss matrix, within shear zones related to Transbrasiliano Lineament. Geological mapping in this region confirmed a mylonitic foliation trending ∼ N20E and sub vertical dip (∼70°) towards NW or SE. Hornblende, biotite and orthopyroxene crystals define the lineation of the main extensional direction, with sub horizontal S-SW plunge (∼5-10°). Many outcrops show a large variety of structural elements linked to ductile deformation and typical structural elements representing the transition from ductile to brittle domains. Felsic and mafic dykes of various dimensions and both ductilely and brittlely deformed are found frequently. Analysis of kinematic indicators in the lineament shows both dextral and sinistral shear sense, although ductile dextral shear is more frequent. Structures developed in shallower crustal conditions, including micro-shear, tension gashes and faults trending N12E-N20E, show sinistral kinematics. Zircon crystals obtained from felsic dykes, dislocated by faults parallel to the regional trend of the Transbrasiliano Lineament, display four groups of concordant ages, the most recent of which is ca. 460 Ma. Our data suggest that throughout its complex history, the Transbrasiliano Lineament has been reactivated under brittle conditions from the Upper Ordovician onwards.
Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.
2014-09-01
The influence of mineral grain and grain boundary strength is investigated using a calibrated intact (non-jointed) brittle rock specimen subjected to direct shear with a particle-based distinct element method and its embedded grain-based method. The adopted numerical approach allows one to independently control the grain boundary and mineral grain strength. The investigation reveals that, in direct shear, the normal stress ( σ n) applied to a rock specimen relative to its uniaxial compressive strength (UCS) determines the resulting rupture mechanism, the ultimate rupture zone geometry, and thus its shear stress versus horizontal displacement response. This allows one to develop a rupture matrix based on this controlling parameter (i.e., σ n/UCS). Mineral grain strength reductions result in the lowering of the apparent cohesion intercept of the peak linear Coulomb strength envelope, while grain boundary strength reductions change the peak linear Coulomb strength envelope to a bi-linear or curved shape. The impact of grain boundary strength is only relevant at σ n/UCS ratios 0.17), the influence of weakened grain boundaries is minimized and strength is controlled by that of the mineral grains.
Electromagnetic transport components and sheared flows in drift-Alfven turbulence
DEFF Research Database (Denmark)
Naulin, V.
2003-01-01
Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we...
Woo, Y R; Yoganathan, A P
1985-01-01
The velocity and turbulent shear stress measured in the immediate vicinity of prosthetic heart valves play a vital role in the design and evaluation of these devices. In the past hot wire/film and one-component laser Doppler anemometer (LDA) systems were used extensively to obtain these measurements. Hot wire/film anemometers, however, have some serious disadvantages, including the inability to measure the direction of the flow, the disturbance of the flow field caused by the probe, and the need for frequent calibration. One-component LDA systems do not have these problems, but they cannot measure turbulent shear stresses directly. Since these measurements are essential and are not available in the open literature, a two-component LDA system for measuring velocity and turbulent shear stress fields under pulsatile flow conditions was assembled under an FDA contract. The experimental methods used to create an in vitro data base of velocity and turbulent shear stress fields in the immediate vicinity of prosthetic heart valves of various designs in current clinical use are also discussed.
Shahriari, S; Maleki, H; Hassan, I; Kadem, L
2012-10-11
Evaluating shear induced hemodynamic complications is one of the major concerns in design of the mechanical heart valves (MHVs). The monitoring of these events relies on both numerical simulations and experimental measurements. Currently, numerical approaches are mainly based on a combined Eulerian-Lagrangian approach. A more straightforward evaluation can be based on the Lagrangian analysis of the whole blood. As a consequence, Lagrangian meshfree methods are more adapted to such evaluation. In this study, smoothed particle hydrodynamics (SPH), a fully meshfree particle method originated to simulate compressible astrophysical flows, is applied to study the flow through a normal and a dysfunctional bileaflet mechanical heart valves (BMHVs). The SPH results are compared with the reference data. The accumulation of shear stress patterns on blood components illustrates the important role played by non-physiological flow patterns and mainly vortical structures in this issue. The statistical distribution of particles with respect to shear stress loading history provides important information regarding the relative number of blood components that can be damaged. This can be used as a measure of the response of blood components to the presence of the valve implant or any implantable medical device. This work presents the first attempt to simulate pulsatile flow through BMHVs using SPH method. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue
2017-04-01
Archean granitic gneiss domes and greenstone belts are well-preserved in eastern NCC, one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups were sheared, but some Archean granitic gneisses were also involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400 to 550°C.LA-ICP-MS zircon U-Pb ages of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone was
Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue
2017-05-01
Archean granitic gneiss domes and greenstone belts are well-preserved in eastern North China Craton (NCC), one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups, and some Archean granitic gneisses were involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400-550 °C. LA-ICP-MS zircon U-Pb dating of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone
International Nuclear Information System (INIS)
Ishiyama, Chiemi
2012-01-01
Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter
Yang, Hui; Halliwell, Neil; Coupland, Jeremy
2004-04-01
We have recently proposed a new method to extract the three-dimensional (3D) velocity vector data from double-exposure holographic particle image velocimetry (HPIV), which we call the digital shearing method. In contrast to the full 3D correlation, it has been shown that all three components (3Cs) of particle image displacement can be retrieved using six two-dimensional fast Fourier transform operations and appropriate coordinate transformations. In this paper we demonstrate the capabilities of this approach on actual HPIV data. The holographic recording method described uses an imaging system to record a hologram of high numerical aperture using a conventional 35 mm film. The holograms are digitized and particle images are reconstructed numerically. From particle images reconstructed from separate holograms, we illustrate the analysis process by computing the 3Cs of particle image displacement in a step-by-step manner.
Directory of Open Access Journals (Sweden)
SONG Yang
2014-08-01
Full Text Available The pathogenesis of pancreatic sinistral portal hypertension (PSPH is quite different from that of cirrhotic portal hypertension, and PSPH is the only curable type of portal hypertension. Gastric variceal bleeding is a less common manifestation of PSPH; however, it probably exacerbates the patient’s condition and leads to critical illness, and inappropriate management would result in death. Therefore, it is necessary to develop the optimal management of upper gastrointestinal bleeding in PSPH patients. Splenectomy is considered as a definitive procedure, together with surgical procedures to treat underlying pancreatic diseases. For patients in poor conditions or ineligible for surgery, splenic artery coil embolization is a preferable and effective method to stop bleeding before second-stage operation. The therapeutic decision should be made individually, and the further multi-center study to optimize the management of upper gastrointestinal bleeding from PSPH is warranted.
Cardinaels, Ruth; Verhulst, Kristof; Renardy, Yuriko; Moldenaers, Paula
2008-07-01
The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally
International Nuclear Information System (INIS)
Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula; Renardy, Yuriko
2008-01-01
The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally
Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.
2017-12-01
The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.
ten Veen, Johan H.
2004-03-01
The Pliocene-Quaternary Eşen Çay Basin in southwestern Turkey has a key position in the southern Aegean to gain insight into both lateral and temporal changes in stresses exerted by plate convergence at the Hellenic-Cyprus arc junction. A tectonosedimentary study of the basin development in combination with a structural analysis helped to reveal internal basin deformation and adjacent basement kinematics in order to delineate 3D strain through time. In the Pliocene the basin originated as a fluviolacustrine basin situated in a depression related to a ramp-fold geometry in the Lycian nappe stack. During the late Pliocene, E-W extension caused the development of N-S normal faults, displacement along which caused the differentiation of the relief and deposition of local alluvial fan systems. The Pleistocene is also marked by widespread alluvial-fluvial sedimentation that is triggered by activity at 020° faults. This fault system resulted from WNW-ESE extension and caused disruption of the former basin floor by uplift and tilting of intrabasinal areas, which initiated development of new source areas for the fan sedimentation. The Holocene-Recent period is characterized by a complex combination of faults of which 070° sinistral strike-slip faults are the most important. Fault-slip analysis reveals that deformation occurred in transtension, explained by the addition of a sinistral shear component. This implies that stresses evolved from simple tensional to transtensional over the Pliocene-Quaternary period. The initial extension phase is explained by the kinematic effects of outward growth of the Hellenic forearc, comparable with observations from the island of Rhodes and the eastern Anaximander Mountains. The time-transgressive addition of a sinistral shear component was likely produced by the northeastward propagating transcurrent motions of forearc slivers sheared from the expanding forearc as has been previously inferred for Crete and Rhodes. The latter process
International Nuclear Information System (INIS)
Astill, M.; Sunderland, A.; Waine, M.G.
1980-01-01
A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)
Verhulst, Kristof; Cardinaels, Ruth; Renardy, Yuriko; Moldenaers, Paula
2008-07-01
The steady deformation and orientation of droplets in shear flow, both under bulk and confined conditions, is microscopically studied for blends with one viscoelastic phase and a viscosity ratio of 1.5. The experiments are performed with a Linkam shearing cell and a counter rotating setup, based on a Paar Physica MCR300. For bulk shear flow, it is shown that matrix viscoelasticity suppresses droplet deformation and promotes droplet orientation towards the flow direction. Interestingly, these effects saturate at Deborah numbers above 2. For ellipsoidal droplets, viscoelasticity of the droplet fluid hardly affects the droplet deformation and droplet orientation, even up to Deborah numbers as high as 16. When the droplet is confined between two plates, the droplet deformation and the orientation towards the flow direction increase with confinement ratio, as in fully Newtonian systems. At a Deborah number of 1, the effect of component viscoelasticity under confined conditions remains qualitatively the same as under bulk conditions, at least up to a confinement ratio 2R/H of 0.6. The experiments under bulk conditions are compared with the predictions of phenomenological models, such as the Maffettone-Minale model, for droplet deformation. The Shapira-Haber model, which analytically describes the effects of the walls on the droplet deformation for fully Newtonian systems, is used to describe the experimental results under confinement. Here, this model is combined with the bulk phenomenological models to include bulk viscoelasticity effects. Under the present conditions, the adapted Shapira-Haber model describes the steady droplet deformation under confinement rather well. Finally, the experimentally obtained droplet shapes are compared with the results of 3D simulations, performed with a volume-of-fluid algorithm.
Geological and structural characterization and microtectonic study of shear zones Colonia
International Nuclear Information System (INIS)
Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.
2010-01-01
The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)
de Lima, Jefferson V.; Guimarães, Ignez de P.; Santos, Lucilene; Amorim, José Victor A.; Farias, Douglas José S.
2017-04-01
Two granitoid plutons (Pilõezinhos and Curral de Cima) intruded along the Remígio - Pocinhos shear zone, eastern part of the Borborema Province. The Pilõezinhos and Curral de Cima granites were dated at 566 ± 3 Ma and 618 ± 5 Ma respectively. The granitoids from both plutons have distinct initial 143Nd/144Nd ratios, expressed by εNd(t) values, i.e. the granitoids of Pilõezinhos pluton have lower εNd(t) values (-15.47 to -15.81) and negative εHf (t = 570 Ma) values (-16.0 to -18.6), while the granitoids of the Curral de Cima pluton have εNd(t) values between -1.12 and -5.23. The granitoids of the Curral de Cima pluton are epidote bearing, magnesian calcalkaline I-type granitoids, crystallized under high fO2 conditions. The granitoids of the Pilõezinhos pluton are alkaline, low-fO2, ferroan, ilmenite-series, A2-type granite intrusions. The geochemical and isotopic signatures suggest that the origin of magma of the Curral de Cima granitoids involved mixing/mingling at depth between crustal and mantle magmas, associated to decompression (lateral escape) during the convergent stage of Brasiliano/Pan/African orogeny, which lead the asthenosphere melts to rise into the lower crust. The source of magma of the granitoids of the Pilõezinhos pluton involved a strong crustal component with geochemical and isotopic signatures similar to the orthogneisses of the Serrinha-Pedro Velho Complex, and small mantle component. The emplacement of the Pilõezinhos pluton is associated to an extensional space formed during high-T strike-slip shearing developed by the synchronic movement of the Matinhas sinistral shear zone and Remígio - Pocinhos dextral shear zone.
Koide, Tatsuo; Nagato, Takuya; Kanou, Yoshiyuki; Matsui, Kou; Natsuyama, Susumu; Kawanishi, Toru; Hiyama, Yukio
2013-01-30
The objective of this study was to evaluate the high shear granulation process using near-infrared (NIR) chemical imaging technique and to make the findings available for pharmaceutical development. We prepared granules and tablets made under appropriate- and over-granulation conditions with high shear granulation and observed these granules and tablets using NIR chemical imaging system. We found an interesting phenomenon: lactose agglomeration and segregation of ingredients occurred in experimental tablets when over-granulation conditions, including greater impeller rotation speeds and longer granulation times, were employed. Granules prepared using over-granulation conditions were larger and had progressed to the consolidation stage; segregation between ethenzamide and lactose occurred within larger granules. The segregation observed here is not detectable using conventional analytical technologies such as high pressure liquid chromatography (HPLC) because the content of the granules remained uniform despite the segregation. Therefore, granule visualization using NIR chemical imaging is an effective method for investigating and evaluating the granulation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Livsey, C.; Spero, H. J.; Kozdon, R.
2016-12-01
The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.
Effects of shear coupling on shear properties of wood
Jen Y. Liu
2000-01-01
Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...
El-Wahed, Mohamed A. Abd.
2008-01-01
The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW-SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW-SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE-WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480-525 °C at 2-4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660-580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle-ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement
Zhang, B.
2016-12-01
Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra
Robust Kalman filter design for predictive wind shear detection
Stratton, Alexander D.; Stengel, Robert F.
1991-01-01
Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.
Shear viscosity of liquid mixtures Mass dependence
Kaushal, R
2002-01-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.
Klepaczko, J. R.
1998-10-01
A review is presented on recent progress in shear testing of materials at high and very high strain rates. Some experimental techniques are discussed which allow for materials testing in shear up to 10 6 ls. More detailed informations are provided on experimental techniques based on the Modified Double Shear specimen loaded by direct impact. This technique has been applied so far to test a variety of materials, including construction, armor and inoxidable steels, and also aluminum alloys. The double shear configuration has also been applied to test sheet metals, mostly used in the automotive industry, in a wide range of strain rates. Details of both techniques, including measuring systems and elastic wave propagation in tubes, are discussed. In addition, a new experimental configuration which can be applied for experimental studies of adiabatic shear propagation and high speed machining is discussed. The role of adiabatic heating at different rates of shearing is also discussed, including transition from pure isothermal to pure adiabatic deformation. It appears that the initial impact velocity is an important parameter in development of plastic localization. Finally, a new development is discussed in determination of the Critical Impact Velocity in shear. A comparison is shown between recent experimental findings and a simple analytic estimation. The CIV in shear is a certain mode of adiabatic failure which occurs at relatively high shear velocities of adjacent material layers. Numerical simulations support the existence of the CIV in shear which can be recognized to some extent as a material constant.
Tibet- Himalayan Analogs of Pan-African Shear Zones : Implications for Neoproterozoic Tectonics
Attoh, K.; Brown, L. D.
2009-12-01
Large-scale shear zones are distinct features of Tibet-Himalayan orogen and the Pan-African Trans-Saharan belt. Prominent examples in the Pan-African-belt extend for ~2500 km from the Sahara to the Gulf of Guinea and are characterized by right-slip movements. The NS shear zones, such as 4°50’-Kandi shear zone (KSZ) are complemented by NE-SW shear zones that preserve a record of sinistral movements and are represented by the Central Cameroon shear zone (CCSZ) in the eastern part of the Pan-African domain. The West African shear zones project into similar structures in the Borborema Province of northeast Brazil. In addition, the Pan-African belt preserves structures and rock assemblages that indicate subduction-collision tectonics We propose that structures of Tibet-Himalayan collisional orogen are instructive analogs of the Pan-African structures where: (i) the Pan-African front corresponds to the Main Himalayan thrust and it’s splays; (ii) the main Pan-African suture zone is analogous to the Indus-Tsangpo suture in the Tibet-Himalayan belt; (iii) the 4°50’-KSZ corresponds to Karakoram and it’s linkages with Jiali fault system and (iv) left-slip CCSZ and related shear zones are analogs of Altyn Tagh and Kumlun faults and their splays. This suggests the operation of escape-type tectonics in the Neoproterozoic belt of West-Africa and predicts the nature of the deep structures in the Cenozoic Tibet-Himalayan orogen.
Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.
2009-01-01
We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.
Shear induced structures in crystallizing cocoa butter
Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.
2004-03-01
Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.
Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.
2012-12-01
Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to
Solitary drift waves in the presence of magnetic shear
International Nuclear Information System (INIS)
Meiss, J.D.; Horton, W.
1982-07-01
The two-component fluid equations describing electron drift and ion acoustic waves in a nonuniform magnetized plasma are shown to possess nonlinear two-dimensional solitary wave solutions. In the presence of magnetic shear, radiative shear damping is exponentially small in L/sub s//L/sub n/ for solitary drift waves, in contrast to linear waves
Directory of Open Access Journals (Sweden)
Zilda Maria MUSSOLINO
1998-10-01
Full Text Available Cilindros de selante, padronizados, foram unidos ao esmalte das superfícies vestibulares de incisivos bovinos, após serem planificadas e condicionadas, com ácido fosfórico a 37%, durante 30 segundos. Foram utilizados 40 dentes, aleatoriamente divididos em 4 grupos, cujas coroas foram secionadas, de modo a obter-se duas porções, cervical e incisal. No Grupo I, após o condicionamento, aplicou-se o selante Fluroshield; no Grupo II, antes da aplicação do selante, uma camada do "primer" do Probond foi aplicada; no Grupo III, após o "primer", aplicou-se o adesivo do Probond; e no Grupo IV, somente o adesivo foi aplicado antes do selante. Os espécimes foram armazenados em água a 37°C, durante 36 horas, e então submetidos aos ensaios de cisalhamento. A análise estatística revelou significante diminuição na resistência ao cisalhamento, quando o "primer" foi aplicado previamente ao selante, enquanto a resistência ao cisalhamento do selante foi semelhante quando o adesivo do Probond foi aplicado, com ou sem o "primer". A resistência ao cisalhamento do selante ao esmalte é maior no terço incisal que no terço cervical da coroa.Standardized cylinders of sealants were bonded to the flattened labial enamel of bovine incisor teeth that had previously been subjected to 37% phosphoric acid gel for 30 seconds. A total of 40 teeth were tested, randomly divided in four groups of 10 teeth each. In Group I, the sealant Fluroshield was applied after etching; in Group II after etching, the "primer" of Probond was used before the sealant; in Group III after etching, the bond of Probond was used after the "primer"; and in Group IV only the bond was applied before the sealant. Specimens were stored in water at 37°C during 36 hours, before shear testing using a Universal Testing Machine. There was significant reduction in shear bond strength of the sealant when only the "primer" was used previously to the application of the sealant. There were no
Modeling combined tension-shear failure of ductile materials
International Nuclear Information System (INIS)
Partom, Y
2014-01-01
Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.
International Nuclear Information System (INIS)
Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.
2010-01-01
The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation
Impact of Vertical Wind Shear on Tropical Cyclone Rainfall
Cecil, Dan; Marchok, Tim
2014-01-01
While tropical cyclone rainfall has a large axisymmetric component, previous observational and theoretical studies have shown that environmental vertical wind shear leads to an asymmetric component of the vertical motion and precipitation fields. Composites consistently depict a precipitation enhancement downshear and also cyclonically downwind from the downshear direction. For consistence with much of the literature and with Northern Hemisphere observations, this is subsequently referred to as "Downshear-Left". Stronger shear magnitudes are associated with greater amplitude precipitation asymmetries. Recent work has reinforced the prior findings, and explored details of the response of the precipitation and kinematic fields to environmental vertical wind shear. Much of this research has focused on tropical cyclones away from land, to limit the influence of other processes that might distort the signal related to vertical wind shear. Recent evidence does suggest vertical wind shear can also play a major role in precipitation asymmetries during and after landfall.
Plasticity Approach to Shear Design
DEFF Research Database (Denmark)
Hoang, Cao Linh; Nielsen, Mogens Peter
1998-01-01
The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...
Sheared Electroconvective Instability
Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon
2012-11-01
Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.
Indian Academy of Sciences (India)
cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). .... Figure 1 displays the stress–strain curves at constant shear rate ˙γ applied for t > 0 in units of µ0 and τ−1 ..... In particular, the slow structural relaxations evidently arise from migration of the free volume.
Experiments on sheet metal shearing
Gustafsson, Emil
2013-01-01
Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...
Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement
Directory of Open Access Journals (Sweden)
Heecheul Kim
2015-01-01
Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.
2001-01-01
Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.
Forflytning: shear og friktion
DEFF Research Database (Denmark)
2005-01-01
friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...
Shear-induced inflation of coronal magnetic fields
International Nuclear Information System (INIS)
Klimchuk, J.A.
1990-01-01
Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes. 38 refs
2012-09-13
pneumatically operated paste dumper and belt conveyor system , the loss in weight feeder system , the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...process equipment sprinkler protection systems , and the 5 psig steam supply serving the building heating and make-up air systems . It also included
Magnetic field reconnexion in a sheared field
International Nuclear Information System (INIS)
Ugai, M.
1981-01-01
A nonlinear development of the Petschek mode in a sheared magnetic field where there is a field component Bsub(z) along an X line is numerically studied. It is found that finite-amplitude intermediate waves, adjacent to the slow shock, may eventually stand in the quasi-steady configuration; on the other hand, the fundamental characteristics of the Petschek-mode development are scarcely influenced, either qualitatively or quantitatively, by the Bsub(z) field. (author)
Thompson, Richard B; Paterson, Ian; Chow, Kelvin; Cheng-Baron, June; Scott, Jessica M; Esch, Ben T; Ennis, Daniel B; Haykowsky, Mark J
2010-09-01
Early diastolic left ventricular (LV) untwisting has been evaluated as a manifestation of LV recoil, reflecting the release of elastic energy stored during systole. The primary goal of this study was to characterize the relationship between systolic strain (e.g., circumferential strain and the shear strains that comprise twist) with the resulting early diastolic shear strain rates, including the rate of untwisting. A further goal was to characterize these relationships regionally from apical to basal locations. Cardiac magnetic resonance imaging tissue tagging was used to measure circumferential strain, global and regional (apex, mid, basal) twist (theta), and circumferential-longitudinal (epsilon(CL)) and circumferential-radial (epsilon(CR)) shear strains along with the corresponding untwisting rates (dtheta/dt) and diastolic shear strain rates (depsilon/dt) in 32 healthy males (33 +/- 7 yr). LV untwisting rates and shear strain rates measured during early diastole varied significantly with the measurement location from apex to base (P 0.05). Normalization of the untwisting rates to the peak twist (dtheta/dt(Norm) = -13.6 +/- 2.1 s(-1)) or shear strain rates to peak systolic shear strain (depsilon(CL)/dt(Norm) = -15.0 +/- 5.4 s(-1), and depsilon(CR)/dt(Norm) = -14.2 +/- 7.7 s(-1)) yielded a uniform measure of early diastolic function that was similar for all shear strain and twist components and for all locations from apex to base. These findings support a linear model of torsional recoil in the healthy heart, where diastolic shear strain rates (e.g., untwisting rates) are linearly related to the corresponding preceding systolic shear stain component. Furthermore, these findings suggest that torsional recoil is uncoupled from end-systolic volumes or the associated strains, such as circumferential strain.
Shear-wave splitting and moonquakes
Dimech, J. L.; Weber, R. C.; Savage, M. K.
2017-12-01
Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.
Wang, R.; Xiao, W.; Mei, J.; Polyak, L.
2017-12-01
Oxygen and carbon stable isotopes in planktic foraminifera Neogloboquadrina pachyderma (sinistral) (Nps) have a promising potential for reconstructing (sub)surface water conditions in the Arctic Ocean. Size-dependent (63-154 µm, 154-250 µm, and >250 µm) Nps δ18O and δ13C were measured along with Ice Rafted Debris (IRD) and scanned XRF Ca and Mn contents in sediment core ARC3-P31 from the Chukchi Plateau (434 m water depth) representing paleoceanographic conditions during the last 50 ka (Marine Isotope Stages 1-3). While the interval corresponding to the Last Glacial Maximum is represented by a hiatus, the following deglaciation is clearly marked by a strong depletion in both δ18O and δ13C in all Nps size fractions along with a peak in detrital carbonate IRD indicative of the Canadian Arctic Archipelago provenance. This pronounced feature presumably indicates a collapse event of the northwestern Laurentide Ice Sheet, potentially linked to the rising sea level. In the overall record under study, average values of Nps δ18O and δ13C fluctuate in the range of 1.2-2.1‰ and 0.3-0.9 ‰, respectively. Mid-size Nps δ18O values (154-250 µm) are in average lighter by 0.2-0.5 ‰ than those of small (63-154 µm) and large (>250 µm) Nps tests. This offset may indicate a different water-depth dwelling, possibly affected by a relatively warm subsurface Atlantic water.
Compressibility effects in the shear layer over a rectangular cavity
Energy Technology Data Exchange (ETDEWEB)
Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie
2016-10-26
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.
Nelson, Arif Z.; Ewoldt, Randy H.
2017-11-01
Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.
Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel
Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.
2017-09-01
The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.
Magnetorheological dampers in shear mode
International Nuclear Information System (INIS)
Wereley, N M; Cho, J U; Choi, Y T; Choi, S B
2008-01-01
In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared
Shear strength of non-shear reinforced concrete elements
DEFF Research Database (Denmark)
Hoang, Cao linh
1997-01-01
The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model is b...
Flexible Micropost Arrays for Shear Stress Measurement
Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.
2015-01-01
Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation
Zeegers, J.C.H.; Zeegers, Jos; van den Ende, Henricus T.M.; Blom, C.; Altena, E.G.; Beukema, Gerrit J.; Beukema, G.J.; Mellema, J.
1995-01-01
A new instrument to carry out complex viscosity measurements in equilibrium and in a steady shear flow has been developed. A small amplitude harmonic excitation is superimposed orthogonally to the steady shear rate component. It is realized by a thin-walled cylinder, which oscillates in the axial
Dalton, Benjamin A; Glavatskiy, Kirill S; Daivis, Peter J; Todd, B D
2015-07-01
We use molecular-dynamics computer simulations to investigate the density, strain-rate, and shear-pressure responses of a simple model atomic fluid to transverse and longitudinal external forces. We have previously introduced a response function formalism for describing the density, strain-rate, and shear-pressure profiles in an atomic fluid when it is perturbed by a combination of longitudinal and transverse external forces that are independent of time and have a simple sinusoidal spatial variation. In this paper, we extend the application of the previously introduced formalism to consider the case of a longitudinal force composed of multiple sinusoidal components in combination with a single-component sinusoidal transverse force. We find that additional harmonics are excited in the density, strain-rate, and shear-pressure profiles due to couplings between the force components. By analyzing the density, strain-rate, and shear-pressure profiles in Fourier space, we are able to evaluate the Fourier coefficients of the response functions, which now have additional components describing the coupling relationships. Having evaluated the Fourier coefficients of the response functions, we are then able to accurately predict the density, velocity, and shear-pressure profiles for fluids that are under the influence of a longitudinal force composed of two or three sinusoidal components combined with a single-component sinusoidal transverse force. We also find that in the case of a multisinusoidal longitudinal force, it is sufficient to include only pairwise couplings between different longitudinal force components. This means that it is unnecessary to include couplings between three or more force components in the case of a longitudinal force composed of many Fourier components, and this paves the way for a highly accurate but tractable treatment of nonlocal transport phenomena in fluids with density and strain-rate inhomogeneities on the molecular length scale.
Conjugate Shear Fractures at 'Ki Corona,' Southeast Parga Chasma, Venus
Willis, J. J.; Hansen, V. L.
1996-03-01
Brittle tensile failure of Venus' surface is evident in many tectonic regimes, including as extension fractures associated with caldera collapse, radial and concentric fractures of coronae, fractures normal to folds, and fracture belts. However, evidence of brittle shear failure has been described at only two localities_intersecting fractures oblique to wrinkle ridges in Lavinia Planitia were interpreted as conjugate shear fractures by Watters, and en echelon fractures in Guinevere Planitia record dominant extension. but with a component of shear. We confirm these earlier interpretations, and recognize the widespread nature of conjugate shear fractures across the Venus surface, identifying examples at over 100 locations in varied tectonic regimes, including coronae, wrinkle-ridged plains, and fracture belts. However, we focus here on fracture and fold relations at "Ki Corona" (46.8 degrees S, 302.5 degrees E), and their implications toward corona evolution.
A Piezoelectric Shear Stress Sensor
Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning
2016-01-01
In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry
Model of wind shear conditional on turbulence and its impact on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.
2015-01-01
fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...
Yu, Jimin; Thornalley, David J. R.; Rae, James W. B.; McCave, Nick I.
2013-06-01
The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4-/HCO3- with a roughly constant partition coefficient KD=B>/CaCaCO3BOH 4->/HCO3>¯seawater of 1.48 ± 0.15 × 10-3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) ( 50 m) generally followed the atmospheric CO2 trend but with negative offsets of 10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma
The classification of wind shears from the point of view of aerodynamics and flight mechanics
Seidler, Fritz; Hensel, Gunter
1987-01-01
A study of international statistical data shows that in about three quarters of all serious accidents which occurred with jet propelled airliners wind shear was either one of the main causes of the accident or represented a major contributory cause. Wind shear related problems are examined. The necessity of a use of different concepts, definitions, and divisions is explained, and the concepts and definitions required for the division of wind and wind shear into different categories is discussed. A description of the context between meteorological and aerodynamics-flight mechanics concepts, definitions, and divisions is also provided. Attention is given to wind and wind components, general characteristics of wind shear and the meteorological terms, the basic types of wind shear for aerodynamics-flight mechanics investigations, special types of wind shear for aerodynamics-flight mechanics investigations, and possibilities regarding a change of the wind component.
Nomo, Emmanuel Negue; Tchameni, Rigobert; Vanderhaeghe, Olivier; Sun, Fenguye; Barbey, Pierre; Tekoum, Léontine; Tchunte, Periclex Martial Fosso; Eglinger, Aurélien; Fouotsa, Nicaise Alliance Saha
2017-07-01
The Tcholliré massif, in central north Cameroon, consists of elongated granite plutons that crop out along the Pan-African Tcholliré-Banyo shear zone (TBSZ), a potential suture zone within the Central Africa Orogenic Belt. New structural and geochronological data on these granites constrain the tectonic regime and timing of the TBSZ. The plutons consist of syntectonic granites and granodiorite containing dioritic mafic enclaves. They show an S2 sub-vertical foliation, that trends NE-SW to ENE-WSW. The related L2 lineation is subhorizontal to shallowly plunging to the SW or NE. Kinematic indicators such as asymmetric folds, sigmoidal-shape boudins, shear bands, imbricated feldspar phenocrysts along antithetic fractures point to a sinistral sense of shear. Microstructural analysis shows that structures are acquired from the submagmatic to the low temperature solid state suggesting progressive deformation of the magma during its emplacement, crystallization and cooling. U-Pb zircon dating on this massif yields emplacement ages of 719 ± 12 Ma for the biotite-amphibole granite and muscovite granite, 652.2 ± 5.4 Ma for the biotite-granite and 632 ± 13 Ma for the leucogranite. These geochronological data show in addition, Palaeoproterozoic inherited ages of 1631 ± 30 Ma on the leucogranites of this massif, and point to a Palaeoproterozoic contribution in their genesis. The range of ages (ca. 87 Ma) points to the timing of syntectonic emplacement of felsic magmas coeval with sinistral transpression along the TBSZ during the Pan-African orogeny. These results show that the TBSZ has recorded prolonged deformation associated with crustal magmatism between the Palaeoproterozoic Adamawa-Yadé domain to the southeast and the Sinassi-Mayo Kebbi Neoproterozoic magmatic arc to the Northwest.
Shear Stress Sensing using Elastomer Micropillar Arrays
Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.
2013-01-01
The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.
Wave anisotropy of shear viscosity and elasticity
Rudenko, O. V.; Sarvazyan, A. P.
2014-11-01
The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.
Improving Interlaminar Shear Strength
Jackson, Justin
2015-01-01
To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2
Graham, Rodney
2017-04-01
We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high
Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis
Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya
2018-03-01
In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.
Parametric Study of Rockbolt Shear Behaviour by Double Shear Test
Li, L.; Hagan, P. C.; Saydam, S.; Hebblewhite, B.; Li, Y.
2016-12-01
Failure of rockbolts as a result of shear or bending loads can often be found in underground excavations. The response of rock anchorage systems has been studied in shear, both by laboratory tests as well as numerical modelling in this study. A double shear test was developed to examine the shear behaviour of a bolt installed across two joints at different angles. To investigate the influence of various parameters in the double shear test, a numerical model of a fully grouted rockbolt installed in concrete was constructed and analysed using FLAC3D code. A number of parameters were considered including concrete strength, inclination between rockbolt and joints and rockbolt diameter. The numerical model considered three material types (steel, grout and concrete) and three interfaces (concrete-concrete, grout-concrete and grout-rockbolt). The main conclusions drawn from the study were that the level of bolt resistance to shear was influenced by rock strength, inclination angle, and diameter of the rockbolt. The numerical simulation of the bolt/grout interaction and deformational behaviour was found to be in close agreement with earlier experimental test results.
Physical Components of the Shear Strength of Saturated Clays.
1961-01-01
wCONSTANT 2.30% b ( WATER CONTENT a. I-- EQIALN PRESTSUREL H.4M ILIL NORMA LES INRKS/CMRE FIG 2. ESUTSOFSLO DRET$HEAR TOINACA I70 Z WATER CONTENT END...82174 0 11 0 0 / rI @i 0 0~4 C - I U)U 0w 4^ v U A I 1 0 0n -- N L 0o I-- F- 0o v 0 -: - En (4 0 I- w 0 11 LULL 0Z 0 11111> > IS - Ir - Le 00...l’orientation du plan de rupture et de l’angle de frottement interne de certaines argiles ." Proc. Third Int. Conf. Soil Mech. Found. Eng., Zurich, Vol. 1, pp
SEDflume - High Shear Stress Flume
Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...
Multi Resonance Shear Mode Transducers
2016-11-21
engineering in the single crystal lead magnesium niobate-lead titanate (PMNT) system has uncovered a very unique piezoelectric shear mode. Contrary to...ABSTRACT Crystallographic engineering of single crystal relaxor-based ferroelectrics was used to design broadband, compact, high power, low frequency...utilize the d36 shear piezoelectric coefficient, which has advantages for compact low frequency sonar transducers. The d36 cut is unique in that large
Shear Alfven waves in tokamaks
International Nuclear Information System (INIS)
Kieras, C.E.
1982-12-01
Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma
Shear in high strength concrete bridge girders : technical report.
2013-04-01
Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...
Rheology of sheared gels based on low acyl-gellan gum.
García, M Carmen; Alfaro, M Carmen; Muñoz, José
2016-06-01
Sheared gels containing 0.2 wt% low-acyl gellan gum were prepared by different processing protocols using Na(+) or Ca(2+) as gel-promoting ions. Rheology and confocal laser scanning microscopy were used to gain information on the sample structure. Confocal laser scanning microscopy revealed the formation of a heterogeneous microstructure consisting of a dispersion of gel-like clusters. Small amplitude oscillatory shear stress results indicated that their viscoelastic properties had a predominant elastic component. Flow curves exhibited very high viscosities at low shear stress, an apparent yield stress and very shear thinning behaviour, supporting their applications as a stabilizer. © The Author(s) 2015.
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Shear viscosity of an ordering latex suspension
van der Vorst, A.M.; van der Vorst, B.; van den Ende, Henricus T.M.; Aelmans, N.J.J.; Mellema, J.
1997-01-01
The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield behavior which disappears below a volume fraction of 8%. At high shear rates, the
Experimental observation of shear thickening oscillation
DEFF Research Database (Denmark)
Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko
2013-01-01
We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Squirming through shear thinning fluids
Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun
2015-11-01
Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.
Shear Brillouin light scattering microscope.
Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun
2016-01-11
Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution.
SHEAR ACCELERATION IN EXPANDING FLOWS
Energy Technology Data Exchange (ETDEWEB)
Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)
2016-12-10
Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).
Shear rheology of extended nanoparticles
Petersen, Matt K.; Lane, J. Matthew D.; Grest, Gary S.
2010-07-01
Nonequilibrium molecular-dynamics simulations are presented for the shear rheology of suspensions of extended “jack”-shaped nanoparticles in an explicit solvent. The shear viscosity is measured for two jack-shaped nanoparticle suspensions for volume fractions from 0.01 to 0.15 and compared to spherical nanoparticles of the same mass. Large differences, in some cases, orders of magnitude, are observed for both the equilibrium viscosity and diffusion constant as the shape of the nanoparticle is varied. The source of enhanced viscosity is the very large effective volume swept out by these extended nanoparticles which allows them to become highly entangled even at low volume fraction.
Shear strength of non-shear reinforced concrete elements
DEFF Research Database (Denmark)
Hoang, Cao linh
1997-01-01
. The position of the crack in which sliding takes place is determined by the crack sliding model developed by Jin-Ping Zhang. The theoretical calculations are compared with test results reported in the literature. A good agreement has been found.A simplified method to calculate the shear capacity of T...
CSIR Research Space (South Africa)
Heyes, AM
1998-06-01
Full Text Available [ However\\ in the presence of a stress concentration the ultimate tensile stress can be exceeded before the ultimate shear stress is reached\\ resulting in a tensile failure 0 [ 2[6[ Metallo`raphy and Ener`y Dispersive Spectroscopy "EDS# A microspecimen...\\ Vol[ 4\\ No[ 1\\ pp[ 018 030\\ 0887 0887 Elsevier Science Ltd[ All rights reserved\\ Pergamon Printed in Great Britain 0249 5296:87 ,08[99 9[99 PII] S0249 5296"87#99909 6 AUTOMOTIVE COMPONENT FAILURES A[ M[ HEYES Advanced Engineering and Testing...
Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat
2015-04-01
The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this
El-Din, Gamal Kamal; Abdelkareem, Mohamed
2018-05-01
The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.
Shear flexoelectric coefficient μ1211 in polyvinylidene fluoride
Zhang, Shuwen; Xu, Minglong; Liang, Xu; Shen, Shengping
2015-05-01
Defined as a strain gradient-induced electric polarization, flexoelectricity exists in all dielectric materials. The coefficient that exists between the strain gradient and the electric polarization defines the flexoelectric coefficient tensor. The tensor components along the longitudinal and transverse directions have been studied widely. However, little progress has been reported on flexoelectric properties in the shear direction to date. In this work, a novel method for measurement of the shear flexoelectric coefficient μ1211 of polyvinylidene fluoride is presented. An experiment is conducted on a tubular unpolarized specimen, where shear strain gradient is generated along the radial direction by applying torque to the ends of the tube-shaped specimen. Dynamic torque is exerted on specimens with a static bias value and at different frequencies. The generated shear strain gradient is calculated via finite element analysis and the corresponding induced electrical polarization is measured using a charge amplifier. The shear flexoelectric coefficient μ1211 is found to have an average value of 7.318 × 10-10 C/m at room temperature. The experimental results show good agreement with the theoretical predictions and indicate the potential value of this material property for electromechanical device fabrication.
Shear flexoelectric response along 3121 direction in polyvinylidene fluoride
Zhang, Shuwen; Liang, Xu; Xu, Minglong; Feng, Bo; Shen, Shengping
2015-10-01
Flexoelectricity describes the strain gradient-induced electric polarization. Due to the restrictions of experiment technologies, some of the components of flexoelectric coefficient have not been experimentally obtained. In this letter, an experimental method for the measurement of the shear flexoelectric response along 3121 direction of polyvinylidene fluoride (PVDF) is presented. An experiment is conducted on various unpolarized specimens, where shear strain gradient is generated along the radial direction by applying torque to 3 specially designed specimens. The generated shear strain gradient is calculated via finite element analysis and the corresponding induced electrical response is measured. Dynamic torque is exerted on the specimens with a static bias value and at different frequencies. The shear flexoelectric coefficient μ3121 is found to have an average value of 1.037 × 10-8 C/m. With this method, the shear flexoelectric response along 3121 direction of PVDF is experimentally obtained. The experimental results show good agreement with the current research results and indicate the potential value of this material property for electromechanical device fabrication.
Meniscal shear stress for punching
Tuijthof, Gabrielle J. M.; Meulman, Hubert N.; Herder, Just L.; van Dijk, C. Niek
2009-01-01
Aim: Experimental determination of the shear stress for punching meniscal tissue. Methods: Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available
In vivo shear stress response.
Egginton, Stuart
2011-12-01
EC (endothelial cell) responses to shear stress generated by vascular perfusion play an important role in circulatory homoeostasis, whereas abnormal responses are implicated in vascular diseases such as hypertension and atherosclerosis. ECs subjected to high shear stress in vitro alter their morphology, function and gene expression. The molecular basis for mechanotransduction of a shear stress signal, and the identity of the sensing mechanisms, remain unclear with many candidates under investigation. Translating these findings in vivo has proved difficult. The role of VEGF (vascular endothelial growth factor) flow-dependent nitric oxide release in remodelling skeletal muscle microcirculation is established for elevated (activity, dilatation) and reduced (overload, ischaemia) shear stress, although their temporal relationship to angiogenesis varies. It is clear that growth factor levels may offer only a permissive environment, and alteration of receptor levels may be a viable therapeutic target. Angiogenesis in vivo appears to be a graded phenomenon, and capillary regression on withdrawal of stimulus may be rapid. Combinations of physiological angiogenic stimuli appear not to be additive.
Stünitz, Holger
Folding and simple shear deformation frequently occur together on all scales. The kinematic information from crystallographic preferred orientation (CPO) and microstructural information from shape fabrics are used to investigate the relationships of simple shear and folding in small-scale folds. Three fold samples were analysed: sample 1 with the fold axis perpendicular; sample 2 oblique; and sample 3 essentially parallel to the shear direction. All folds have formed by buckling in a simple shear deformation regime. The principal kinematic directions for each sample lie in a single plane normal to the fold axial plane and at variable angles to the fold axis. The CPOs allow a distinction to be identified between coaxial and simple shear deformation components in different parts of each fold. The shear senses determined by CPOs and shape fabrics indicate that the shear deformation and the buckling of the layers occurred approximately simultaneously in all samples. CPO analysis of the flexural-slip components of the folding suggests that the fold axes have not rotated substantially towards the extension direction since their initiation. The variable orientations of the fold axes are explained by variable original orientations of the anisotropy with respect to the shear direction.
Shear sum rules at finite chemical potential
David, Justin R.; Jain, Sachin; Thakur, Somyadip
2012-03-01
We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T xy component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the mathcal{N} = {4} Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.
Shear Ram Verification Test Protocol (VTP) Best Practices
Energy Technology Data Exchange (ETDEWEB)
Lindley, Roy A. [Argonne National Lab. (ANL), Argonne, IL (United States); Braun, Joseph C. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-01-01
A blowout preventer (BOP) is a critical component used on subsea oil and gas wells during drilling, completion, and workover operations on the U. S. outer continental shelf (OCS). The purpose of the BOP is to seal oil and gas wells, and in the case of an emergency well-control event, to prevent the uncontrolled release of hydrocarbons. One of the most important components of the BOP is the hydraulically operated blind shear ram (BSR) that shears drilling-related components, such as drill pipes, casings, tubings, and wire-related tools that may have been placed in the well. In addition to shearing these components, the BSR must form a seal to keep hydrocarbons within the well bore, even when under the highest well-fluid pressures expected. The purpose of this document is for Argonne National Laboratory (ANL) to provide an independent view, based on current regulations, and best practices for testing and confirming the operability and suitability of BSRs under realistic (or actual) well conditions.
Shear behaviour of reinforced phyllite concrete beams
International Nuclear Information System (INIS)
Adom-Asamoah, Mark; Owusu Afrifa, Russell
2013-01-01
Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.
Shear viscosity of the quark matter
Iwasaki, Masaharu; Ohnishi, Hiromasa; Fukutome, Takahiko
2007-01-01
We discuss shear viscosity of the quark matter by using Kubo formula. The shear viscosity is calculated in the framework of the quasi-particle RPA for the Nambu-Jona-Lasinio model. We obtain a formula that the shear viscosity is expressed by the quadratic form of the quark spectral function in the chiral symmetric phase. The magnitude of the shear viscosity is discussed assuming the Breit-Wigner type for the spectral function.
Shear assessment of reinforced concrete slab bridges
Lantsoght, E.O.L.; Van der Veen, C.; Walraven, J.C.; De Boer, A.
2013-01-01
The capacity of reinforced concrete solid slab bridges in shear is assessed by comparing the design beam shear resistance to the design value of the applied shear force due to the permanent actions and live loads. Results from experiments on half-scale continuous slab bridges are used to develop a
Statistical Model of Extreme Shear
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2005-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...
Statistical Model of Extreme Shear
DEFF Research Database (Denmark)
Larsen, Gunner Chr.; Hansen, Kurt Schaldemose
2004-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...
Effects of texture on shear band formation in plane strain tension/compression and bending
DEFF Research Database (Denmark)
Kuroda, M.; Tvergaard, Viggo
2007-01-01
model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet......In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain...... are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple...
Shear viscosity of nuclear matter
Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.; Plujko, V. A.
2016-11-01
Shear viscosity η is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent-collision regime, the shear viscosity depends on the particle-number density n through the mean-field parameter a , which describes attractive forces in the VDW equation. In the temperature region T =15 -40 MeV, a ratio of the shear viscosity to the entropy density s is smaller than 1 at the nucleon number density n =(0.5 -1.5 ) n0 , where n0=0.16 fm-3 is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the η /s ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of η /s ≫1 are, however, found in both the low-density, n ≪n0 , and high-density, n >2 n0 , regions. This makes the ideal hydrodynamic approach inapplicable for these densities.
Valle Aguado, B.; Azevedo, M. R.; Nolan, J.; Medina, J.; Costa, M. M.; Corfu, F.; Martínez Catalán, J. R.
2017-05-01
A major event of plutonic activity occurred all across the Central Iberian Zone of the Iberian Variscan Belt at the end of Late Paleozoic Variscan collisional tectonism. The present study focuses on the western sector of the Viseu late-post-tectonic batholith (central Portugal), a large composite intrusion comprising three main plutonic units: (a) small bodies of mafic to intermediate composition preferentially concentrated along the northern border, (b) a wide ring of coarse porphyritic biotite monzogranite (Cota-Viseu granite) and (c) a more evolved medium porphyritic, biotite-muscovite monzogranite occupying the central part of the intrusion (Alcafache granite). The compositional zonation pattern of the whole batholith and the complex mixing/mingling relationships between the voluminous Cota-Viseu porphyritic granite and the mafic/intermediate rocks suggest that these melts were withdrawn from a lower crustal source region undergoing partial melting, invasion by mantle-derived mafic magmas, mixing and fractional crystallization. New CA-ID-TIMS U-Pb zircon ages indicate that pluton assembly via multipulse injection of successive magma batches took place between 299.4 ± 0.4 Ma and 296.0 ± 0.6 Ma. A detailed anisotropy of magnetic susceptibility (AMS) survey suggests that pluton emplacement occurred at the extensional termination of a regional-scale, ENE-WSW trending, sinistral D3 shear zone - the Juzbado-Penalva Shear Zone (JPSZ). A dilational opening model involving the development of "en-échelon" tensional gashes at the extensional termination of the fault, followed by progressive opening and widening of north-south trending fractures, provided the space into which the successive magma batches arriving from below were emplaced. Vertical inflation was accommodated by depression of the pluton floor. The proposed model is consistent with the asymmetric wedge-shaped geometry of the intrusion (steep root zone on the northern side, discordant subvertical walls and
Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.
2017-12-01
We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional
Characteristics of the response of the iliac artery to wall shear stress in the anaesthetized pig.
Kelly, R F; Snow, H M
2007-07-15
The functional significance of shear stress-induced vasodilatation in large conduit arteries is unclear since changes in the diameter have little effect on the resistance to blood flow. However, changes in diameter have a relatively large effect on wall shear stress which suggests that the function of flow-mediated dilatation is to reduce wall shear stress. The mean and pulsatile components of shear stress vary widely throughout the arterial system and areas of low mean and high amplitude of wall shear stress are prone to the development of atheroma. In this study, using an in vivo model with the ability to control flow rate and amplitude of flow independently, we investigated the characteristics of the response of the iliac artery to variations in both the mean and amplitude of wall shear stress. The results of this study confirm that increases in mean wall shear stress are an important stimulus for the release of nitric oxide by the endothelium as indicated by changes in arterial diameter and show for the first time, in vivo, that increases in the amplitude of the pulsatile component of shear stress have a small but significant inhibitory effect on this response. A negative feedback mechanism was identified whereby increases in shear stress brought about by increases in blood flow are reduced by the release of nitric oxide from the endothelium causing dilatation of the artery, thus decreasing the stimulus to cell adhesion and, through a direct action of nitric oxide, inhibiting the process of cell adhesion. The results also provide an explanation for the uneven distribution of atheroma throughout the arterial system, which is related to the ratio of pulsatile to mean shear stress and consequent variability in the production of NO.
Simulations of Granular Particles Under Cyclic Shear
Royer, John; Chaikin, Paul
2012-02-01
We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.
International Nuclear Information System (INIS)
Anon.
1993-01-01
This chapter includes descriptions of electronic and mechanical components which do not merit a chapter to themselves. Other hardware requires mention because of particularly high tolerance or intolerance of exposure to radiation. A more systematic analysis of radiation responses of structures which are definable by material was given in section 3.8. The components discussed here are field effect transistors, transducers, temperature sensors, magnetic components, superconductors, mechanical sensors, and miscellaneous electronic components
Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.
2017-12-01
The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.
Giarola, Diana; Capuani, Domenico; Bigoni, Davide
2018-03-01
A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.
Nucleation in Sheared Granular Matter
Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias
2018-02-01
We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.
Nucleation in Sheared Granular Matter.
Rietz, Frank; Radin, Charles; Swinney, Harry L; Schröter, Matthias
2018-02-02
We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.
Energy Technology Data Exchange (ETDEWEB)
Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)
2015-08-15
We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.
Mamo, Kiminad A.
2012-10-01
We study holographic RG flow of the shear viscosity tensor of anisotropic, strongly coupled {N}=4 super-Yang-Mills plasma by using its type IIB supergravity dual in anisotropic bulk spacetime. We find that the shear viscosity tensor has three independent components in the anisotropic bulk spacetime away from the boundary, and one of the components has a non-trivial RG flow while the other two have a trivial one. For the component of the shear viscosity tensor with non-trivial RG flow, we derive its RG flow equation, and solve the equation analytically to second order in the anisotropy parameter a. We derive the RG equation using the equation of motion, holographic Wilsonian RG method, and Kubo's formula. All methods give the same result. Solving the equation, we find that the ratio of the component of the shear viscosity tensor to entropy density η /s flows from above 1/{4π } the horizon (IR) to below 1/{4π } the boundary (UV) where it violates the holographic shear viscosity (Kovtun-Son-Starinets) bound and where it agrees with the other longitudinal component.
Colwell, Morris A
1976-01-01
Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful
International Nuclear Information System (INIS)
Hutchings, M.T.; Schofield, Peter; Seymour, W.A.J.
1986-01-01
A method for non-destructive testing of an industrial component to ascertain if it is a single crystal, and to find the crystal orientations of those parts of the component which are single crystals, involves irradiating the component with a monochromatic collimated neutron beam. Diffracted neutron beams are observed live by means of LiF/ZnS composite screen, an image intensifier and a television camera and screen. (author)
Microstructural description of shear-thickening suspensions
Directory of Open Access Journals (Sweden)
Singh Abhinendra
2017-01-01
Full Text Available Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional and non-thickened (lubricated, frictionless states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.
Developments in Plasticity Approach to Shear
DEFF Research Database (Denmark)
Hoang, Cao Linh; Nielsen, Mogens Peter
1999-01-01
The paper deals with plastic methods applied to shear design of reinforced concrete beams. Emphasis is put on the recently developed crack sliding model applicable to non-shear reinforced and lightly shear reinforced beams and slabs. The model, which is an upper bound plasticity approach, takes...... into account the mechanism of crack formation followed by crack sliding. Comparisons between the model and test results are carried out. Good agreement has been found over a wide range of cases....
Instability of periodic MHD shear flows
International Nuclear Information System (INIS)
Zaqarashvili, T.V.; Oliver, R.; Ballester, J.L.; Belvedere, G.
2004-01-01
The stability of periodic MHD shear flows generated by an external transversal periodic force in magnetized plasma is studied. It is shown that the temporal behaviour of magnetosonic wave spatial Fourier harmonics in such flows is governed by Mathieu equation. Consequently the harmonics with the half frequency of the shear flows grow exponentially in time. Therefore the periodic shear motions are unstable to the perturbations of compressible magnetosonic waves. The motions represent the kinetic part of the transversal oscillation in magnetized plasma. Therefore due to the instability of periodic shear motions, the transversal oscillations may quickly be damped, so transferring their energy to compressible magnetosonic perturbations
Shear flow generation due to electromagnetic instabilities
International Nuclear Information System (INIS)
Wakatani, M.; Sato, M.; Hamaguchi, S.; Miyato, N.
2003-01-01
Shear flow is the most important ingredient governing nonlinear behavior of many types of plasma instability. Electromagnetic effects on shear flow generation have been studied for an electro- magnetic drift wave called resistive drift-Alfven mode (RDAM) and a global MHD mode called resistive wall mode (RWM). For RDAM it is found that the generated shear flow stabilizes the dominant modes; however, other modes are destabilized. For RWM Maxwell stress due to magnetic fluctuations has a tendency to suppress the poloidal flow near the plasma surface, which gives almost same saturation level, since the shear flow stabilization disappears. (author)
Low-rise shear wall failure modes
International Nuclear Information System (INIS)
Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.
1991-01-01
A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs
Continuous shear - a method for studying material elements passing a stationary shear plane
DEFF Research Database (Denmark)
Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras
2003-01-01
Traditionally, material response to shear deformation has been studied with methods where the shear is gradually increasing from zero to the final value over a certain fixed deformation zone, e.g. in the well-known torsion test of a tube with a defined shear zone established by a machined...... circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....
A biaxial method for inplane shear testing. [shear strain in composite materials
Bush, H. G.; Weller, T.
1978-01-01
A biaxial method for performing inplane shear tests of materials using a shear frame is described. Aluminum plate and sandwich specimens were used to characterize the uniformity of shear strain imparted by the biaxial method of loading as opposed to the uniaxial method. The inplane stiffening effect of aluminum honeycomb core was determined. Test results for (+ or - 45) graphite-epoxy laminate are presented. Some theoretical considerations of subjecting an anisotropic material to a uniform shear deformation are discussed.
Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites
2016-01-01
14 Fig. 9 Load vs. deflection curves from short beam shear experiments ..........17 Fig. 10 Short beam shear specimens cracking in tension on...Walter et al.17 Fig. 10 Short beam shear specimens cracking in tension on the bottom of the specimen Approved for public release; distribution is...unlimited. 19 Fig. 11 Short beam shear specimens cracking as viewed from the side While the 2-D base composite produced a widespread
Shear thinning behaviors in magmas
Vetere, F. P.; Cassetta, M.; Perugini, D.
2017-12-01
Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour
Punching shear capacity of reinforced concrete slabs with headed shear studs
DEFF Research Database (Denmark)
Hoang, Linh Cao; Pop, Anamaria
2015-01-01
. To design shear reinforcement in slabs, on the other hand, the engineer must settle for an empirical equation. The aim of the study reported is to demonstrate that it is possible in a simple manner to design shear reinforcement in slabs based on the same rigid-plasticity foundation as for beam shear design...
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
Xu, Yuan; Dai, Feng
2018-03-01
A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.
deposit, Singhbhum shear zone, eastern India
Indian Academy of Sciences (India)
Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between ...
Solvable groups and a shear construction
DEFF Research Database (Denmark)
Freibert, Marco; Swann, Andrew Francis
The twist construction is a geometric model of T-duality that includes constructions of nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds may be used in a shear construction, which in algebraic form builds certain solvable Lie groups from Abelian ones. We discuss...... other examples of geometric structures that may be obtained from the shear construction....
Rating precast prestressed concrete bridges for shear
2008-12-01
Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...
Behaviour of Corroded Single Stud Shear Connectors
Directory of Open Access Journals (Sweden)
Wen Xue
2017-03-01
Full Text Available In this study, the effect of corrosion on the static behavior of stud shear connectors was investigated. An innovative test setup for single stud shear connectors was designed and established. Two series of specimens having different stud diameters were fabricated and tested. The test specimens were firstly corroded to different corrosion rates by the electronic accelerating method. Static loading tests were then performed to obtain the load-slip curves and ultimate strengths of the corroded test specimens. The actual corrosion rates were measured from the studs obtained from the tested specimens. The test results were compared with the push out test specimens having similar corrosion rates. It is shown that the test results obtained from the single stud shear connectors are conservative compared with the corroded push test specimens, which prove the validation of the single stud shear connector test method. The effect of corrosion on the behavior of stud shear connectors was also presented.
Experimental study on the adiabatic shear bands
International Nuclear Information System (INIS)
Affouard, J.
1984-07-01
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr
Friction of Shear-Fracture Zones
Riikilä, T. I.; Pylväinen, J. I.; Åström, J.
2017-12-01
A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.
Imaging Shear Strength Along Subduction Faults
Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.
2017-11-01
Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.
Simple shear of deformable square objects
Treagus, Susan H.; Lan, Labao
2003-12-01
Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.
Imaging shear strength along subduction faults
Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.
2017-01-01
Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.
Effect of Shear Applied During a Pharmaceutical Process on Near Infrared Spectra.
Hernández, Eduardo; Pawar, Pallavi; Rodriguez, Sandra; Lysenko, Sergiy; Muzzio, Fernando J; Romañach, Rodolfo J
2016-03-01
This study describes changes observed in the near-infrared (NIR) diffuse reflectance (DR) spectra of pharmaceutical tablets after these tablets were subjected to different levels of strain (exposure to shear) during the mixing process. Powder shearing is important in the mixing of powders that are cohesive. Shear stress is created in a system by moving one surface over another causing displacements in the direction of the moving surface and is part of the mixing dynamics of particulates in many industries including the pharmaceutical industry. In continuous mixing, shear strain is developed within the process when powder particles are in constant movement and can affect the quality attributes of the final product such as dissolution. These changes in the NIR spectra could affect results obtained from NIR calibration models. The aim of the study was to understand changes in the NIR diffuse reflectance spectra that can be associated with different levels of strain developed during blend shearing of laboratory samples. Shear was applied using a Couette cell and tablets were produced using a tablet press emulator. Tablets with different shear levels were measured using NIR spectroscopy in the diffuse reflectance mode. The NIR spectra were baseline corrected to maintain the scattering effect associated with the physical properties of the tablet surface. Principal component analysis was used to establish the principal sources of variation within the samples. The angular dependence of elastic light scattering shows that the shear treatment reduces the size of particles and produces their uniform and highly isotropic distribution. Tablet compaction further reduces the diffuse component of scattering due to realignment of particles. © The Author(s) 2016.
Leahy, Lauren N.; Haslach, Henry W.
2018-02-01
During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.
Shear-coupled PL waves observed at the Kerguelen Isles
Pettersen, O.; Maupin, V.
2003-04-01
S-waves generated by earthquakes in Indonesia and recorded at the seismological broadband station PAF on the Kerguelen Isles are usually followed by particularly large, long and monochromatic wavetrains. These wavetrains are not observed, or are not as prominent, for events at comparable epicentral distances in other source regions. They have a clear dominant period of about 20 seconds and last usually for more than 100s. They show slight normal dispersion, and have a prograde elliptical motion in the vertical propagation plane with largest amplitude on the radial component. These characteristics suggest that the observed waves are shear-coupled PL-waves, i.e., a phase which propagates partly as a mantle S-wave and partly as P-waves trapped in the crust. The P-wave portion of the propagation may occur close to the source, close to the receiver, or at both ends of the wavepath, over a significant portion of the epicentral distance. Observations at Kerguelen of strong shear-coupled PL waves from Indonesian earthquakes suggest a special crust and upper mantle structure in the region between the Kerguelen hotspot and the South-East Indian Ridge, 1000 km away. This includes the region where a special upper mantle anisotropic structure has been detected from surface wave polarisation anomalies. We analyse which implications the strong shear-coupled PL waves may have on the structure between the hotspot and the ridge.
Shear-induced APAP de-agglomeration.
Llusa, Marcos; Levin, Michael; Snee, Ronald D; Muzzio, Fernando J
2009-12-01
Active pharmaceutical ingredient agglomerates can generate many solid product regulatory compliance issues. To study the effects of shear rate, strain, type of excipient, and grade of acetaminophen (APAP) on the process of APAP de-agglomeration. A shear-controlled environment is used to expose six different blends that consist of one of three APAP grades and one of two possible types of excipient to 10 different combinations of shear rate and strain. APAP agglomerates are sifted and weighed. Finer APAP grades lead to blends with more APAP agglomerates and type of excipient only affects the de-agglomeration process for the finest APAP grade. De-agglomeration proceeds mainly as a function of strain with a minor contribution toward further de-agglomeration when larger shear rates are used. When mechanical stress (which us proportional to shear rate) overcomes interparticle forces, de-agglomeration occurs. Higher shear rates (and stress) contribute slightly to further APAP de-agglomeration. Extended exposure to stress (strain) reduces the size and the number of agglomerates. Blends with finer APAP present more agglomerates, particularly after low strain exposure. This article presents a useful method for formulation and process development. Exposing blends to higher shear rates and especially to strain mitigates APAP agglomeration in blends. Finer APAP presents more agglomerates and the type of excipient used affects the degree of APAP agglomeration.
Surface shear inviscidity of soluble surfactants.
Zell, Zachary A; Nowbahar, Arash; Mansard, Vincent; Leal, L Gary; Deshmukh, Suraj S; Mecca, Jodi M; Tucker, Christopher J; Squires, Todd M
2014-03-11
Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 10(3)-10(4) times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants.
IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR
Directory of Open Access Journals (Sweden)
Philippe Lopez
2011-05-01
Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.
Shear rheology of molten crumb chocolate.
Taylor, J E; Van Damme, I; Johns, M L; Routh, A F; Wilson, D I
2009-03-01
The shear rheology of fresh molten chocolate produced from crumb was studied over 5 decades of shear rate using controlled stress devices. The Carreau model was found to be a more accurate description than the traditional Casson model, especially at shear rates between 0.1 and 1 s(-1). At shear rates around 0.1 s(-1) (shear stress approximately 7 Pa) the material exhibited a transition to a solid regime, similar to the behavior reported by Coussot (2005) for other granular suspensions. The nature of the suspension was explored by investigating the effect of solids concentration (0.20 chocolate was then compared with the rheology of (1) a synthetic chocolate, which contained sunflower oil in place of cocoa butter, and (2) a suspension of sugar of a similar size distribution (volume mean 15 mum) in cocoa butter and emulsifier. The chocolate and synthetic chocolate showed very similar rheological profiles under both steady shear and oscillatory shear. The chocolate and the sugar suspension showed similar Krieger-Dougherty dependency on volume fraction, and a noticeable transition to a stiff state at solids volume fractions above approximately 0.5. Similar behavior has been reported by Citerne and others (2001) for a smooth peanut butter, which had a similar particle size distribution and solids loading to chocolate. The results indicate that the melt rheology of the chocolate is dominated by hydrodynamic interactions, although at high solids volume fractions the emulsifier may contribute to the departure of the apparent viscosity from the predicted trend.
Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste.
Wang, Xiaojun; Subramaniam, Kolluru V; Lin, Fengbao
2010-06-01
A test procedure for measuring changes in amplitude and phase of SH ultrasonic waves from the interface between fused-quartz and cement paste samples is presented. The phase change is determined from the temporal shift in the reflected signal relative to the incident signal. The sensitivity of the measured parameters to changes in acoustic impedance of the materials in contact with fused-quartz is evaluated for different angles of incidence. It is shown that a reflection measurement at normal incidence at nano-second temporal resolution does not provide sufficient sensitivity to measure the viscous component of shear modulus of low viscosity fluids and cannot be applied to cement paste while it is in a fluid state. Monitoring the measured amplitude and phase at oblique angle of incidence allows for measuring fluids with acoustic impedance comparable to cement paste. The reflection measurements are used to determine the evolution of elastic and viscous components of shear modulus cement paste with time. Influence of sampling rate and temperature effects on the phase measurements are evaluated and shown to be significant. It is shown that the initial loss of workability of cement paste through setting process is associated with a larger relative increase in the viscous component of shear modulus. Following the initial rapid rise of the viscous component of shear modulus, there is a larger relative increase in the elastic component, which can be related to the emergence of a solid structure capable of retaining an imprint. 2010 Elsevier B.V. All rights reserved.
Shear reinforced beams in autoclaved aerated concrete
DEFF Research Database (Denmark)
Cornelius, Thomas
2010-01-01
combinations of reinforcement and for variable slenderness ratios. Theoretical approaches will be evaluated and compared with the test results of several test series. The load bearing capacity of shear reinforced aircrete is highly dependent on the anchorage and bond behaviour of the shear reinforcement......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...
Problems pilots face involving wind shear
Melvin, W. W.
1977-01-01
Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.
Energy Technology Data Exchange (ETDEWEB)
Read, Rodney S. (RSRead Consulting Inc. (Canada))
2011-07-15
This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada
International Nuclear Information System (INIS)
Read, Rodney S.
2011-07-01
This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada
Yang, Hui; Alcock, Rob D.; Halliwell, Neil A.; Coupland, Jeremy M.
2003-11-01
In the past, the use of optical and digital three-dimensional correlation methods have been demonstrated to extract velocity data from the complex amplitude distribution of particle images in holographic particle image velocimetry (HPIV). Recently we have proposed a digital shearing method to extract three-component particle displacement data throughout a complete image field. In contrast to full three-dimensional correlation, it has been shown that all three components of particle image displacement can be retrieved using just four two-dimensional fast Fourier transform (FFT) operations and appropriate coordinate transformations. In this paper we describe three-dimensional correlation and digital shearing methods and compare their performance in terms of computational efficiency and measurement accuracy. The simulated results show that the digital shearing method has comparable accuracy to three-dimensional correlation but is significantly faster.
Mohmand, Muhammad Humayun; Ahmad, Muhammad
2014-01-01
BACKGROUND According to statistics of American Society of Plastic Surgeons, cosmetic rhinoplasty was the second most frequently performed cosmetic surgery. This study shares the experiences with component rhinoplasty. METHODS From 2004 to 2010, all patients underwent aesthetic nasal surgery were enrolled. The patients requiring only correction of septal deviation and those presenting with cleft lip nasal deformity were excluded. All procedures were performed under general anaesthesia with ope...
1994-09-01
The document has a collection of 19 papers (11 on technologies, 8 on applications) by 26 authors and coauthors. Technological topics include: evolution from conventional HEMT's double heterojunction and planar types of pseudomorphic HEMT's; MMIC R&D and production aspects for very-low-noise, low-power, and very-low-noise, high-power applications; hyperfrequency CAD tools; parametric measurements of hyperfrequency components on plug-in cards for design and in-process testing uses; design of Class B power amplifiers and millimetric-wave, bigrid-transistor mixers, exemplifying combined use of three major types of physical simulation in electrical modeling of microwave components; FET's for power amplification at up to 110 GHz; production, characterization, and nonlinear applications of resonant tunnel diodes. Applications topics include: development of active modules for major European programs; tubes versus solid-state components in hyperfrequency applications; status and potentialities of national and international cooperative R&D on MMIC's and CAD of hyperfrequency circuitry; attainable performance levels in multifunction MMIC applications; state of the art relative of MESFET power amplifiers (Bands S, C, X, Ku); creating a hyperfrequency functions library, of parametrizable reference cells or macrocells; and design of a single-stage, low-noise, band-W amplifier toward development of a three-stage amplifier.
Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation
Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
2016-07-01
Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.
Turbulent shear layers in confining channels
Benham, Graham; Castrejon-Pita, Alfonso; Hewitt, Ian; Please, Colin; Style, Rob; Bird, Paul
2017-11-01
The development of shear layers are ubiquitous in a wide range of situations, from diffusers, nozzles, turbines and ducts to urban air flow and geophysical flows. In this talk we present a simple model for the development of shear layers between flows that mix in confining channels. The model, comprising two plug flow regions separated by a linear shear layer, shows good agreement with both laboratory experiments and computational turbulence modelling (at a fraction of the computation time). Such efficient models, capable of capturing and exhibiting the main characteristics of the turbulent shear layers, are expected to be useful for both modelling and design purposes. We demonstrate the latter by showing how the model can be utilised to optimise pressure recovery in diffusers with non-uniform inflows. EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling, VerdErg Renewable Energy Limited, John Fell Fund (Oxford University Press).
Localization in inelastic rate dependent shearing deformations
Katsaounis, Theodoros
2016-09-18
Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd
Electrostatic ion cyclotron velocity shear instability
Lemons, D. S.; Winske, D.; Gary, S. P.
1992-01-01
A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).
Recent progress in shear punch testing
International Nuclear Information System (INIS)
Hamilton, M.L.; Toloczko, M.B.; Lucas, G.E.
1994-09-01
The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys
Shear strength of clay and silt embankments.
2009-09-01
Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...
Immiscible blend morphology after shear and elongation
Batch, Gibson L.; Trifkovic, Milana; Hedegaard, Aaron; Macosko, Christopher W.
2015-05-01
This work examines the role of shear and extensional strain on immiscible blend morphology, namely domain size, orientation, and co-continuity. The domain size reduces with surface tension similar to what is observed with isolated droplets. The domain size is shown to increase with shear strain due to coalescence. Hence the best mixing is found with low shear strains, i.e. low rates of shear and short durations of time. Extensional strain (extrusion draw ratio DR) reduces phase width and thickness with a DR-0.5 dependence, suggesting the transformation to a fibrilar morphology. The critical draw ratio for morphology transformation is approximately 7, in agreement with observations by Grace for droplet breakup in elongation. Fibrilar morphology is also consistent with a large increase in strain-to-break in the drawn film and with observed creep and optical scattering behavior.
Recent progress in shear punch testing
Energy Technology Data Exchange (ETDEWEB)
Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Toloczko, M.B.; Lucas, G.E. [Univ. of California, Santa Barbara, CA (United States)
1994-09-01
The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys.
Laser-assisted shearing: new application for high-power diode lasers
Emonts, Michael; Brecher, Christian
2010-02-01
Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".
Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model
Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.
2017-11-01
Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.
Sustainable Shear Behaviour of 2-Span Continuous Reinforced Concrete T-Beams with CFRP Strips
Directory of Open Access Journals (Sweden)
Abdul Samad Abdul Aziz
2017-01-01
Full Text Available Reinforced concrete (RC structures are generally subjected to various load conditions and are susceptible to environmental impact. With time, most of these structures will be subjected to change in their usage. Unexpected increase in load changes may cause severe damage to the structural components, and eventual leading to various types of structural failure. It is noted that shear failure in nature is a sudden failure and should be avoided at all times. To increase its service life due to shear, structures can be strengthened or repaired using CFRP strips wrapped within the shear span (av of the beam. Hence, this paper presents an investigation on the sustainable behaviour of two span continuous RC T-beams strengthened and repaired by wrapping Carbon Fibre Reinforced Polymer (CFRP strips at intervals along the shear span (av of the beam. The CFRP strips will be orientated in two directions either at 0°/90° or 45°/35°. Five beams, one control beam, two initially strengthened beams and two precracked and repaired beams were cast and cured in room temperature before testing. All T-beams were designed to fail in shear and are subjected to four-point bending test until failure. Upon completion of the test, all beam specimens shows good sustainable behaviour as the ultimate load and shear load shows an increase in capacity by up to 23% with improve ductile behaviour.
Thermodynamics of dilute gases in shear flow
Jou, D.; Criado-Sancho, M.
2001-03-01
We consider the effect of shear and normal viscous pressures on the non-equilibrium entropy of ideal gases in Couette flow. These results extend the previous ones (Bidar et al., Physica A 233 (1996) 163), where normal pressure effects were ignored. Furthermore, we analyze the non-equilibrium contributions to the chemical potential, which may be useful in the analysis of shear-induced effects on colligative properties and chemical equilibrium.
Hydrodynamical fluctuations in smooth shear flows
International Nuclear Information System (INIS)
Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.
1999-11-01
Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic
Modeling and implementation of wind shear data
Frost, Walter
1987-01-01
The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.
Assessment of Shear Strength in Silty Soils
Directory of Open Access Journals (Sweden)
Stefaniak Katarzyna
2015-06-01
Full Text Available The article presents a comparison of shear strength values in silty soils from the area of Poznań, determined based on selected Nkt values recommended in literature, with values of shear strength established on the basis of Nkt values recommended by the author. Analysed silty soils are characterized by the carbonate cementation zone, which made it possible to compare selected empirical coefficients both in normally consolidated and overconsolidated soils
Speckle Shearing Interferometry And Its Application
Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang
1983-12-01
The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.
Experimental study of shear rate dependence in perpetually sheared granular matter
Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai
2017-06-01
We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.
Experimental study of shear rate dependence in perpetually sheared granular matter
Directory of Open Access Journals (Sweden)
Liu Sophie Yang
2017-01-01
Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.
A new look on blood shear thinning
Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana
2015-11-01
Blood is a shear-thinning fluid. At shear rates γ˙ cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
Shear thinning in non-Brownian suspensions.
Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie
2018-02-14
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.
Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions
Breedveld, L.V.A.; van den Ende, Henricus T.M.; Bosscher, M.; Bosscher, M.; Jongschaap, R.J.J.; Mellema, J.
2002-01-01
The full diffusion tensor of shear-induced self-diffusion has been measured experimentally for the first time. In addition to the well-known components in the velocity gradient, Dyy, and vorticity direction, Dzz, the coefficients Dxx and Dxy have been determined for concentrated suspensions of
Modeling Force Transfer around Openings in Wood-Frame Shear Walls
Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker
2012-01-01
This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...
International Nuclear Information System (INIS)
Passarelli, Claudia Regina
1996-01-01
This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr 87 / Sr 86 initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 ± 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 ± 15 Ma.)
Searle, Shayle R; McCulloch, Charles E
1992-01-01
WILEY-INTERSCIENCE PAPERBACK SERIES. The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models.".
Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas
DEFF Research Database (Denmark)
Bruun, Georg
2012-01-01
Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...
Panel and planar experimental shear behavior of wood panels ...
African Journals Online (AJOL)
Panel and planar experimental shear behavior of wood panels laminated softwood oriented OSB conditioned at different environments. ... to that measured in the case of panel shear for different environments. Keywords : oriented strand board – panel shear strength- planar shear strength - environment – moisture content ...
Evaluation of size dependent design shear strength of reinforced ...
Indian Academy of Sciences (India)
mate shear strengths of reinforced concrete (RC) beams without web reinforcement. The shear strength ... percentage of flexural reinforcement and depth of the beam constant) as (i) deep beams with 0. < a/d ≤ 1, (ii) ... the shear strength of deep beams when the shear span-to-depth ratio was 1.0 (Tan & Lu 1999;. Walraven ...
Exponential Shear Flow of Linear, Entangled Polymeric Liquids
DEFF Research Database (Denmark)
Neergaard, Jesper; Park, Kyungho; Venerus, David C.
2000-01-01
A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...
Effect of tree roots on a shear zone: modeling reinforced shear stress.
Kazutoki Abe; Robert R. Ziemer
1991-01-01
Tree roots provide important soil reinforcement that impoves the stability of hillslopes. After trees are cut and roots begin to decay, the frequency of slope failures can increase. To more fully understand the mechanics of how tree roots reinforce soil, fine sandy soil containing pine roots was placed in a large shear box in horizontal layers and sheared across a...
Comparison of direct shear and simple shear responses of municipal solid waste in USA
Fei, Xunchang
2017-10-25
Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.
Extreme model reduction of shear layers
Qawasmeh, Bashar Rafee
The aim of this research is to develop nonlinear low-dimensional models (LDMs) to describe vortex dynamics in shear layers. A modified Proper Orthogonal Decomposition (POD)/Galerkin projection method is developed to obtain models at extremely low dimension for shear layers. The idea is to dynamically scale the shear layer along y direction to factor out the shear layer growth and capture the dynamics by only a couple of modes. The models are developed for two flows, incompressible spatially developing and weakly compressible temporally developing shear layers, respectively. To capture basic dynamics, the low-dimensional models require only two POD modes for each wavenumber/frequency. Thus, a two-mode model is capable of representing single-wavenumber/frequency dynamics such as vortex roll-up, and a four-mode model is capable of representing the nonlinear dynamics involving a fundamental wavenumber/frequency and its subharmonic, such as vortex pairing/merging. Most of the energy is captured by the first mode of each wavenumber/frequency, the second POD mode, however, plays a critical role and needs to be included. In the thesis, we first apply the approach on temporally developing weakly compressible shear layers. In compressible flows, the thermodynamic variables are dynamically important, and must be considered. We choose isentropic Navier-Stokes equations for simplicity, and choose a proper inner product to present both kinetic energy and thermal energy. Two cases of convective Mach numbers are studied for low compressibility and moderate compressibility. Moreover, we study the sensitivity of the compressible four-mode model to several flow parameters: Mach number, the strength of initial perturbations of the fundamental and its subharmonic, and Reynolds number. Secondly we apply the approach on spatially developing incompressible shear layers with periodicity in time. We consider a streamwise parabolic form of the Navier-Stokes equations. When we add arbitrary
Stochastic parametric resonance in shear flows
Directory of Open Access Journals (Sweden)
F. J. Poulin
2005-01-01
Full Text Available Time-periodic shear flows can give rise to Parametric Instability (PI, as in the case of the Mathieu equation (Stoker, 1950; Nayfeh and Mook, 1995. This mechanism results from a resonance between the oscillatory basic state and waves that are superimposed on it. Farrell and Ioannou (1996a, b explain that PI occurs because the snap-shots of the velocity profile are subject to transient growth. If the flows were purely steady the transient growth would subside and not have any long lasting effect. However, the coupling between transient growth and the time variation of the basic state create PI. Mathematically, transient growth, and therefore PI, are due to the nonorthogonal eigenspace in the linearized system. Poulin et al. (2003 studied a time-periodic barotropic shear flow that exhibited PI, and thereby produced mixing at the interface between Potential Vorticity (PV fronts. The instability led to the formation of vortices that were stretched. A later study of an oscillatory current in the Cape Cod Bay illustrated that PI can occur in realistic shear flows (Poulin and Flierl, 2005. These studies assumed that the basic state was periodic with a constant frequency and amplitude. In this work we study a shear flow similar to that found in Poulin et al. (2003, but now where the magnitude of vorticity is a stochastic variable. We determine that in the case of stochastic shear flows the transient growth of perturbations of the snapshots of the basic state still generate PI.
Piezoelectric energy harvesting through shear mode operation
International Nuclear Information System (INIS)
Malakooti, Mohammad H; Sodano, Henry A
2015-01-01
Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)
Examining shear processes during magma ascent
Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.
2017-12-01
Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.
Evaluation of shear mounted elastomeric damper
Zorzi, E.; Walton, J.
1982-01-01
Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.
Electrostatic ion cyclotron velocity shear instability
International Nuclear Information System (INIS)
Lemons, D.S.; Winske, D.; Gary, S.P.
1992-01-01
An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, κρ i ∼ 0.5, and one at short wavelength, κρ i > 1.5 (κρ i is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit
Colloidal Aggregate Structure under Shear by USANS
Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.
2015-03-01
Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.
Pressure-shear experiments on granular materials.
Energy Technology Data Exchange (ETDEWEB)
Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)
2011-10-01
Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.
Yang, Xin-Yue
Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone
Transversely Compressed- and Restrained Shear Joints
DEFF Research Database (Denmark)
Schmidt, Jacob Wittrup; Hansen, Christian Skodborg
2013-01-01
Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....... This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due...... to the friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...
On shear rheology of gel propellants
Energy Technology Data Exchange (ETDEWEB)
Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)
2007-04-15
Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Varghese, Anoop; Gompper, Gerhard; Winkler, Roland G
2017-12-01
Hydrodynamic fluctuations in simple fluids under shear flow are demonstrated to be spatially correlated, in contrast to the fluctuations at equilibrium, using mesoscopic hydrodynamic simulations. The simulation results for the equal-time hydrodynamic correlations in a multiparticle collision dynamics (MPC) fluid in shear flow are compared with the explicit expressions obtained from fluctuating hydrodynamics calculations. For large wave vectors k, the nonequilibrium contributions to transverse and longitudinal velocity correlations decay as k^{-4} for wave vectors along the flow direction and as k^{-2} for the off-flow directions. For small wave vectors, a crossover to a slower decay occurs, indicating long-range correlations in real space. The coupling between the transverse velocity components, which vanishes at equilibrium, also exhibits a k^{-2} dependence on the wave vector. In addition, we observe a quadratic dependency on the shear rate of the nonequilibrium contribution to pressure.
Scheller, Johannes; Rizzo, Karl-Joseph; Jodin, Gurvan; Duhayon, Eric; Rouchon, Jean-François; Hunt, Julian; Braza, Marianna
2015-11-01
Time-resolved PIV measurements are conducted at a Reynolds number of 270 . 000 downstream of the trailing edge of a NACA4412 airfoil equipped with trailing-edge piezoelectric tab actuators to investigate the high-frequency low-amplitude actuation's effect on the shear-layer. A comparison of the time-averaged Reynolds stress tensor components at different actuation frequency reveals a significant impact of the actuation on the shear-layer dynamics. A proper orthogonal decomposition analysis is conducted in order to investigate the actuation's impact on the vortex breakdown. It will be shown that a specific low-amplitude actuation frequency enables a reduction of the predominant shear-layer frequencies.
Buckling analysis of thick plates using refined trigonometric shear deformation theory
Directory of Open Access Journals (Sweden)
Sachin Madhavrao Gunjal
2015-12-01
Full Text Available In this paper, a refined trigonometric shear deformation plate theory is applied for the buckling analysis of thick isotropic square and rectangular plates. The theory involves only two unknowns, as against three in first order shear deformation theory and other higher order theories. The theory involves sinusoidal function in the in-plane displacement. The transverse displacement involves bending and shear components. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported isotropic rectangular plate subjected to uniaxial and biaxial compression is considered for the detailed numerical study. Results of critical buckling load for simply supported isotropic rectangular plates are compared with those of other refined theories.
Enhancing Rotational Diffusion Using Oscillatory Shear
Leahy, Brian D.
2013-05-29
Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.
Shear reinforced beams in autoclaved aerated concrete
DEFF Research Database (Denmark)
Cornelius, Thomas
2010-01-01
Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...
Shear viscosity coefficient of liquid lanthanides
Energy Technology Data Exchange (ETDEWEB)
Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakore@rediffmail.com; Prajapati, A. V., E-mail: anand0prajapati@gmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)
2015-05-15
Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.
Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow.
Ji, Shichen; Jiang, Run; Winkler, Roland G; Gompper, Gerhard
2011-10-07
In order to study the dynamics of colloidal suspensions with viscoelastic solvents, a simple mesoscopic model of the solvent is required. We propose to extend the multiparticle collision dynamics (MPC) technique--a particle-based simulation method, which has been successfully applied to study the hydrodynamic behavior of many complex fluids with Newtonian solvent--to shear-thinning viscoelastic solvents. Here, the normal MPC particles are replaced by dumbbells with finite-extensible nonlinear elastic (FENE) springs. We have studied the properties of FENE-dumbbell fluids under simple shear flow with shear rate ̇γ. The stress tensor is calculated, and the viscosity η and the first normal-stress coefficient Ψ(1) are obtained. Shear-thinning behavior is found for reduced shear rates Γ= ̇γτ>1, where τ is a characteristic dumbbell relaxation time. Here, both η and Ψ(1) display power-law behavior in the shear-thinning regime. Thus, the FENE-dumbbell fluid with MPC collisions provides a good description of viscoelastic fluids. As a first application, we study the flow behavior of a colloid in a shear-thinning viscoelastic fluid in two dimensions. A slowing down of the colloid rotation in a viscoelastic fluid compared to a Newtonian fluid is obtained, in agreement with recent numerical calculations and experimental results. © 2011 American Institute of Physics
Shear thinning and shear thickening of a confined suspension of vesicles
Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.
2018-01-01
Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.
International Nuclear Information System (INIS)
Fuhrmann, Alexander; Engler, Adam J
2015-01-01
Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or ‘spinning disk’ in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. (paper)
Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG
Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar
2018-03-01
The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.
A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter
International Nuclear Information System (INIS)
Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.
2007-01-01
We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material
Hammering Yucca Flat, Part Two: Shear-Wave Velocity
Finlay, T. S.; Abbott, R. E.; Knox, H. A.; Tang, D. G.; James, S. R.; Haney, M. M.; Hampshire, J. B., II
2015-12-01
In preparation for the next phase of the Source Physics Experiment (SPE), we conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. Results from this survey will be used to inform the geologic models associated with the SPE project. For this study, we used a novel 13,000 kilogram weight-drop seismic source to interrogate an 18-km North-South transect of Yucca Flat. Source points were spaced every 200 meters and were recorded by 350 to 380 3-component 2-Hz geophones with variable spacings of 10, 20, and 100 meters. We utilized the Refraction-Microtremor (ReMi) technique to create multiple 1D dispersion curves, which were then inverted for shear-wave velocity profiles using the Dix inversion method (Tsai and Haney, 2015). Each of these 1D velocity models was subsequently stitched together to create a 2D profile over the survey area. The dispersion results indicate a general decrease in surface-wave phase velocity to the south. This result is supported by slower shear-wave velocity sediments and increasing basin depth towards the survey's southern extent. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Strain stiffening and stress heterogeneities in sheared collagen networks
Urbach, Jeffrey
2014-03-01
Disordered networks of stiff or semi-flexible filaments display unusual mechanical properties, including dramatic stiffening when sheared, but little is known about the spatial distribution of stresses. This talk will introduce the technique of Boundary Stress Microscopy, which adapts the approach of traction force microscopy to rheological measurements in order to quantify the non-uniform surface stresses in sheared soft materials. Our results on networks of the biopolymer collagen, a major component of the extracellular matrix, show stress variations over length scales much larger than the network mesh size. We find that the heterogeneity increases with strain stiffening, with stresses at high strains exceeding average stresses by an order of magnitude. The strain stiffening behavior over a wide range of mesh sizes can be parameterized by a single characteristic strain and associated stress, which describes both the strain stiffening regime and network yielding. The characteristic stress is approximately proportional to network density, but the peak stress at both the characteristic strain and at yielding are remarkably insensitive to concentration. These results show the power of Boundary Stress Microscopy to reveal the nature of stress propagation in disordered soft materials, which is critical for understanding many important mechanical properties, including the ultimate strength of a material and the nature of appropriate microscopic constitutive equations. Supported by the AFOSR (FA9550-10-1-0473) and the NSF (DMR-0804782).
Test and Analysis of a New Ductile Shear Connection Design for RC Shear Walls
DEFF Research Database (Denmark)
Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes
2017-01-01
This paper presents a new and construction-friendly shear connection for assembly of precast reinforced concrete shear wall elements. In the proposed design, the precast elements have indented interfaces and are connected by a narrow zone grouted with mortar and reinforced with overlapping U......-bar loops. Contrary to the classical shear connections, the planes of the U-bar loops are here parallel to the plane of the wall elements. This feature enables a construction-friendly installation of the elements without the risk of rebars clashing. The core of mortar inside each U-bar loop is reinforced...
Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil
2017-11-22
Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.
Inhomogeneities in sheared ultrathin lubricating films
Manias, E; Hadziioannou, G; ten Brinke, G.
1996-01-01
Nonequilibrium molecular dynamics computer simulations have been used to study nanoscopically confined oligomer films under shear. Beyond the well-known density layering across such films, other structural and dynamical inhomogeneities exist across such films and are discussed here. When these films
Red blood cell in simple shear flow
Chien, Wei; Hew, Yayu; Chen, Yeng-Long
2013-03-01
The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.
Vane shear test for cohesionless soils
Park, Sung-Sik; An, Zhou; Ye, Sung-Ryol; Lee, Sae-Byeok; Chae, Kyung-Hyeon
2015-04-01
The vane shear test (VST) is a simple and rapid testing method for determining the undrained shear strength of cohesive soils. It has not been applied for granular soils because the failure surface was irregular and hardly determined due to their cohesionless property. In this study, the VST was used to determine the shear strength of cohesionless soils such as sand. A small laboratory vane with 5 cm in diameter and 10 cm in height was inserted into sand within pressurized cell. When the vane rotates within sand, a failure surface can be assumed to be cylindrical shape because the sand is pressurized with loading frame. Dry Nakdong River sand was prepared for loose and dense conditions in the cell and the axial pressure of 50, 100, and 200 kPa was applied on the surface of sand. The relationship between measured torque and resistant force along cylindrical shape due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. It was possible for the VST to determine the shear strength of sand under confined condition.
Lightweight concrete modification factor for shear friction.
2013-10-01
This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...
Size Segregation in Sheared Jammed Colloids
Mbi, Armstrong; Blair, Daniel
2013-03-01
It is well known that granular materials can spontaneously size segregate when continuously driven. However, in jammed colloidal suspensions, this phenomenon is not well understood. Colloidal dispersions provide a unique system to study the structure and dynamics of jammed matter. In this talk, we present results of size segregation of a continuously sheared binary colloidal suspension well above point J. Our colloidal system is comprised of indexed-matched bi-disperse silica particles with diameters a = { 2 . 3 μm and 3 . 2 μm } and at ϕ 61 % , well above the colloidal glass transition. We apply a highly controlled shear at a constant shear rate through the use of a rheometer. By coupling our rheometer with a high-speed laser scanning confocal microscope, we directly image the structure and flow profiles of the suspension as it un-jams. We observe migration of the small and large species; large particles move to the top while the small particles move toward the bottom conserving the total volume fraction in all regions. Moreover, we find that an associating feature of segregation is a sustained shear band. Our results are consistent with a recently proposed void filling and squeeze expulsion mechanism. Funding is provided by NSF DMR #0847490.
Shearing DNA for genomic library construction.
Hengen, P N
1997-07-01
Methods and reagents is a unique monthly column that highlights current discussion in the newsgroup bionet.molibio.methds-reagnts, available on the internet. This month's column discusses the pros and cons of various techniques used to shear DNA for shotgun cloning. For details on how to partake in the newsgroup, see the accompanying box.
ESTIMATION OF SHEAR STRENGTH PARAMETERS OF ...
African Journals Online (AJOL)
This research work seeks to develop models for predicting the shear strength parameters (cohesion and angle of friction) of lateritic soils in central and southern areas of Delta State using artificial neural network modeling technique. The application of these models will help reduce cost and time in acquiring geotechnical ...
Structural relaxation monitored by instantaneous shear modulus
DEFF Research Database (Denmark)
Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil
1998-01-01
time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....
Measurement of cavitation induced wall shear stress
Dijkink, R.J.; Ohl, C.D.
2008-01-01
The wall shear stress from cavitation bubbles collapsing close to a rigid boundary is measured with a constant temperature anemometer. The bubble is created with focused laser light, and its dynamics is observed with high-speed photography. By correlating the frames, a hydrophone signal, and the
Longitudinal shear vibrations of composite poroelastic cylinders ...
African Journals Online (AJOL)
Employing Biot's theory of wave propagation in liquid saturated porous media, longitudinal shear vibrations of composite poroelastic cylinders of infinite extent are investigated. The composite poroelastic cylinder is made of two different poroelastic materials. The dilatations of liquid and solid media are zero, hence liquid ...
Shear localization and microstructure in coarse grained beta titanium alloy
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)
2016-01-15
Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.
Dynamics of microcapsules in oscillating shear flow
Zhao, Mengye; Bagchi, Prosenjit
2011-11-01
We present a three-dimensional numerical study on the dynamics of deformable capsules in sinusoidally oscillating shear flow. We consider capsules of spherical and oblate spheroid resting shapes. For spherical resting shapes, we find an identical deformation response during positive and negative vorticities. However, the deformation response becomes unequal and shows complex behavior for nonspherical resting shapes. The average elongation is higher in the retarding phase of the shear flow than in the accelerating phase. Primarily two types of dynamics are observed for nonspherical shapes: a clockwise/counter-clockwise swinging motion in response to the altering flow direction that occurs at both high and low values of shear rate amplitudes, and a continuous/unidirectional tumbling motion that occurs at intermediate values. The unidirectional tumbling motion occurs despite the fact that the time-average vorticity is zero. Such a tumbling motion is accompanied by a continuous tank-treading motion of the membrane in the opposite direction. We obtain phase diagram that shows existence of two critical shear rates and two oscillation frequencies. The unidirectional tumbling motion occurs in the intermediate range, and the clockwise/counter-clockwise swinging motion occurs otherwise. We also find that the dynamics is highly sensitive to the initial condition. A swinging is generally observed when the capsule is released aligned with the extensional or compressional axis of the shear flow, and a tumbling is observed otherwise. These results suggest the possibility of chaotic behavior of cells in time-dependent flows. We provide explanations of such complex dynamics by analyzing the coupling between the shape and angular oscillation and the imposed flow oscillation.
Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading
Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.
2005-01-01
The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.
Self-organization in space plasma: formation of magnetic shear in current sheets
Zelenyi, Lev; Delcourt, Dominique; Mingalev, Oleg; Malova, Helmi; Popov, Victor; Grigorenko, Elena; Petrukovich, Anatoli
2016-07-01
Thin current sheets are plasma structures that usually appear near reconnection regions. The presence of the shear magnetic field is characteristic for these structures. Self-consistent kinetic model of magnetotail thin current sheet (TCS) is used to understand the mechanisms of self-organization of sheared thin current sheets in a space plasma. It is shown that these configurations appear as a result of self-consistent evolution of some initial magnetic perturbation at current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field-aligned currents in the center of the current sheet, as a result of north-south asymmetry of quasi-adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented.
Test and Analysis of a New Ductile Shear Connection Design for RC Shear Walls
DEFF Research Database (Denmark)
Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes
2017-01-01
This paper presents a new and construction-friendly shear connection for assembly of precast reinforced concrete shear wall elements. In the proposed design, the precast elements have indented interfaces and are connected by a narrow zone grouted with mortar and reinforced with overlapping U......-bar loops. Contrary to the classical shear connections, the planes of the U-bar loops are here parallel to the plane of the wall elements. This feature enables a construction-friendly installation of the elements without the risk of rebars clashing. The core of mortar inside each U-bar loop is reinforced...... with a transverse double T-headed bar to ensure transfer of tension between the overlapping U-bars. Push-off tests show that a significantly ductile load-displacement response can be obtained by the new solution as compared to the performance of the conventional keyed shear connection design. The influence...
Effects of nanoscale density inhomogeneities on shearing fluids
DEFF Research Database (Denmark)
Ben, Dalton,; Peter, Daivis,; Hansen, Jesper Schmidt
2013-01-01
It is well known that density inhomogeneities at the solid-liquid interface can have a strong effect on the velocity profile of a nanoconfined fluid in planar Poiseuille flow. However, it is difficult to control the density inhomogeneities induced by solid walls, making this type of system...... unsuitable for a comprehensive study of the effect on density inhomogeneity on nanofluidic flow. In this paper, we employ an external force compatible with periodic boundary conditions to induce the density variation, which greatly simplifies the problem when compared to flow in nonperiodic nanoconfined...... systems. Using the sinusoidal transverse force method to produce shearing velocity profiles and the sinusoidal longitudinal force method to produce inhomogeneous density profiles, we are able to observe the interactions between the two property inhomogeneities at the level of individual Fourier components...
Fracture Behavior of Dielectric Elastomer under Pure Shear Loading
Ahmad, D.; Patra, K.
2017-09-01
Dielectric elastomer has become a very important material for many emerging applications areas like optics, micro fluidics, sensors, actuators and energy harvesting. However, these elastomer components are prone to fracture or catastrophic failure because of defects likes notches, flaws, and fatigue crack, impurities which occur during production or during service. To make better use of this material, it is important to investigate fracture characteristics under different operating conditions. This study experimentally investigated the effects of notch length and strain rate on the fracture toughness, failure stretch and failure stress of acrylic elastomer under pure shear deformation mode. It is observed that failure stretch depends on notch length and independent of strain rate, but failure stress decreases with increasing notch length and increases with increasing strain rate. It is also found that fracture toughness is independent of notch lengths. However, fracture toughness is found to increase with strain rate.
The effect of shearing rate and slope angle on the simple shear response of marine clays
Biscontin, G.; Rutherford, C.
2010-12-01
The response of submarine slopes to seismic or storm loading has become an important element in the risk assessment for offshore structures and local tsunami hazard. Evaluation of submarine slope stability requires characterization of soil behavior and relies on the selection of appropriate parameter values. Although the traditional simple shear device has been used to investigate cyclic loading effects on marine clay, it does not allow for complex loading conditions which often contribute to the failure on submarine slopes. Understanding the interaction between the initial shear stress, the slope angle, and the multi-directional shaking due to earthquakes or storm loading is an important aspect to understanding the failure mechanisms of submarine slope failures. The initial static driving force on the slope is combined with the dynamic loading by storms and earthquakes to create complex loading paths. Therefore, the ability to apply complex stress or strain paths is important to fully study the shear response of marine clays on submarine slopes. A new multi-directional simple shear device developed at Texas A&M University allows loading along three independent axes, two perpendicular horizontal directions to allow any stress or strain paths in the horizontal plane, and a third in the vertical direction. This device is used to investigate the response of Gulf of Mexico marine deposits to different loading conditions. To study the effect of slope angle on the shear response of the soil, samples are subjected to a shear stress during consolidation, Kα consolidation. One-dimensional monotonic and cyclic shearing of Ko consolidated specimens is used to simulate level ground conditions, whereas sloping surfaces were simulated using Kα consolidation for both monotonic and cyclic tests. The effects of shearing rate on the soil response are investigated using strain controlled tests at varying frequencies.
Validation of a Perturbed-Continuum Model for Shear Localization
National Research Council Canada - National Science Library
Iyer, K; Schoenfeld, S; Casem, D; Wright, T
2004-01-01
.... Experiments and continuum analysis (Wright, 2002) have shown sudden stress collapse via shear localization may be related to velocity or strain rate perturbations in the vicinity of shear band initiation...
Heat Treatment of Al 7075 for Ejection Seat Shear Wire
National Research Council Canada - National Science Library
Wong, Catherine
1999-01-01
.... Current lots of Al 6061 could not duplicate the double shear breaking load values and so it was attempted to achieve the required double shear breaking load in the Al 7075 alloy with a stable microstructure...
Measurement and modelling of bed shear induced by solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.
horizontal continental shelf. Measurements of bed shear stress, surface elevation and flow velocities were carried out. Periodic waves were also generated and the bed shear stresses measured over a horizontal bed were found to be comparable with the earlier...
López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J
2014-04-01
We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.
Relaxation of jammed colloidal suspensions after shear cessation.
Ianni, Francesca; Lasne, David; Sarcia, Régis; Hébraud, Pascal
2006-07-01
The dynamics of heterogeneities in a shear thickening, concentrated colloidal suspension is investigated through speckle visibility spectroscopy, a dynamic light scattering technique recently introduced [P. K. Dixon and D. J. Durian, Phys. Rev. Lett. 90, 184302 (2003)]. Formation of shear-induced heterogeneities is observed in the jamming regime, and their relaxation after shear cessation is monitored as a function of the applied shear stress. The relaxation time of these heterogeneities increases when a higher stress is applied.
Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall
Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan
2018-03-01
Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.
International Nuclear Information System (INIS)
Jiquan Li; Kishimoto, Y.; Tuda, T.
2000-01-01
The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)
Spatially-resolved microstructure in shear banding wormlike micellar solutions
International Nuclear Information System (INIS)
Helgeson, Matthew E.; Reichert, Matthew D.; Wagner, Norman J.; Kaler, Eric W.
2008-01-01
Recently proposed theories for shear banding in wormlike micellar solutions (WLMs) rely on a shear-induced isotropic-nematic (I-N) phase separation as the mechanism for banding. Critical tests of such theories require spatially-resolved measurements of flow-kinematics and local mesoscale microstructure within the shear bands. We have recently developed such capabilities using a short gap Couette cell for flow-small angle neutron scattering (flow-SANS) measurements in the 1-2 plane of shear with collaborators at the NIST Center for Neutron Research. This work combines flow-SANS measurements with rheology, rheo-optics and velocimetry measurements to present the first complete spatially-resolved study of WLMs through the shear banding transition for a model shear banding WLM solution near the I-N phase boundary. The shear rheology is well-modeled by the Giesekus constitutive equation, with incorporated stress diffusion to predict shear banding. By fitting the stress diffusivity at the onset of banding, the model enables prediction of velocity profiles in the shear banded state which are in quantitative agreement with measured flow-kinematics. Quantitative analysis of the flow-SANS measurements shows a critical segmental alignment for banding and validates the Giesekus model predictions, linking segmental orientation to shear banding and providing the first rigorous evidence for the shear-induced I-N transition mechanism for shear banding
Modified bond model for shear in slabs under concentrated loads
Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.
2015-01-01
Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.
[Biomechanic shear stress in carotid arteries and atherosclerosis development].
Kaźmierski, Radosław
2003-01-01
One of the major hemodynamic forces acting on blood vessels is shear stress, which is, the friction force between the endothelial cell surface and flowing blood. Arterial shear stress within physiologic range (15-70 dyne/cm2) induces endothelial quiescence and an atheroprotective gene expression profile. Low shear stress ( 70 dyne/cm2) induce prothrombotic state.
Diagonal Cracking and Shear Strength of Reinforced Concrete Beams
DEFF Research Database (Denmark)
Zhang, Jin-Ping
1997-01-01
The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...
A yield criterion based on mean shear stress
Emmens, W.C.; van den Boogaard, Antonius H.
2014-01-01
This work investigates the relation between shear stress and plastic yield considering that a crystal can only deform in a limited set of directions. The shear stress in arbitrary directions is mapped for some cases showing relevant differences. Yield loci based on mean shear stress are con-
Structure of the Small Amplitude Motion on Transversely Sheared Mean Flows
Goldstein, Marvin E.; Afsar, Mohamed Z.; Leib, Stewart J.
2013-01-01
This paper considers the small amplitude unsteady motion of an inviscid non-heat conducting compressible fluid on a transversely sheared mean flow. It extends a previous result given in Goldstein (1978(b) and 1979(a)) which shows that the hydrodynamic component of the motion is determined by two arbitrary convected quantities in the absence of solid surfaces or other external sources. The result is important because it can be used to specify appropriate boundary conditions for unsteady surface interaction problems on transversely sheared mean flows in the same way that the vortical component of the Kovasznay (1953) decomposition is used to specify these conditions for surface interaction problems on uniform mean flows. But unlike the Kovasznay (1953) case the arbitrary convected quantities no longer bear a simple relation to the physical variables. One purpose of this paper is to derive a formula that relates these quantities to the (physically measurable) vorticity and pressure fluctuations in the flow.
Plasticity Approach to HSC Shear Wall Design
DEFF Research Database (Denmark)
Liu, Lunying; Nielsen, Mogens Peter
1998-01-01
The paper describes a simple theory for determining the ultimate strength of shear walls. It is based on application of the theory of perfectly plastic materials. When applied to concrete the theoretical solutions must be modified by inserting into the solutions a reduced compressive strength...... to 140 MPa and reinforcement yield strengths up to 1420 MPa. The work was carried out as a Ph.D. study by the first author, the second author supervising the study.Keywords: shear wall, plasticity, strut and tie, load-carrying capacity, concrete, reinforcement....... of concrete. The reduced strength is named the effective strength. The paper describes simple lower bound solutions. They consist of pure strut action or strut action combined with diagonal compression fields outside the struts. Near moment maximum and near supports the stress fields are modified to save...
Internal shear cracking in bulk metal forming
DEFF Research Database (Denmark)
Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf
2017-01-01
This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... set of test cases regardless the amount of pre-strain derived from previous upsetting under near frictionless conditions. The new proposed criterion can be easily implemented in existing finite element programs and its scope of application allows extending previous work on the opening modes in surface...
Shear-dependant toroidal vortex flow
Energy Technology Data Exchange (ETDEWEB)
Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)
2013-01-15
Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.
Direct measurement of shear properties of microfibers
Energy Technology Data Exchange (ETDEWEB)
Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Skove, M. J.; Rao, A. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Oliveira, L. [School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Serkiz, S. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)
2014-09-15
As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar{sup ®} 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.
Implications of Orientation in Sheared Cocoa Butter
Guthrie, Sarah E.; Mazzanti, Gianfranco; Marangoni, Alejandro; Idziak, Stefan H. J.
2004-03-01
We will present x-ray and mechanical studies of oriented phases of cocoa butter. The structural elements of foods play an important role in determining such things as quality and shelf stability. The specific structure and properties of cocoa butter, however, are complicated due to the ability of the cocoa butter to form crystals in six polymorphic forms. Recent work has shown that the application of shear not only accelerates the transitions to more stable polymorphs, but also causes orientation of the crystallites[1]. The implications of orientation on the structures formed under conditions of shear and cooling will be described using x-ray diffraction and mechanical measurements. 1 G. Mazzanti, S. E. Guthrie, E. B. Sirota et al., Crystal Growth & Design 3 (5), 721 (2003).
Shear Stress Sensing with Elastic Microfence Structures
Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok;
2015-01-01
In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.
Second-harmonic generation in shear wave beams with different polarizations
Energy Technology Data Exchange (ETDEWEB)
Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)
2015-10-28
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
[Study of shear rate in modified airlift nitrifying bioreactor].
Jin, Ren-cun; Zheng, Ping
2006-06-01
The characteristics of shear rate in an airlift nitrifying bioreactor and its influencing factors were studied. The results showed that the shear rate was different in different sections of the bioreactor. With inlet gas flowrate at 430 approximately 2700 L x h(-1), the overall shear rate was (0.702 approximately 3.13) x 10(5) s(-1), shear rate in riser was (1.07 approximately 31.3) x 10(5) s(-1) and in gas-liquid separator was (1.12 approximately 25.0) x 10(5) s(-1), respectively. It indicates that the highest shear rates prevailed in the riser part of bioreactor. The operational variables and the bioreactor configurations exerted a significant influence on the shear level of the bioreactor. When inlet gas flowrate was raised from 1300 to 2700 L x h(-1), shear rate in riser and separator ascended first and then descended subsequently. The diameter of draft tube (d) was negatively correlated with shear rate. When the draft tube with diameter of 5.5 cm was installed, the shear rates in riser, separator and overall shear rate were 85.5%, 82.3% and 80.6%, respectively less as compared with that with diameter of 4.0 cm. The number of static mixers (N) was positively correlated with the shear rate. When d was set at 4.0 cm, with N of 10 and 39, the shear rates in riser were 6.14 and 7.97 times higher respectively, than that of conventional bioreactor. The ratio of maximum local shear rate to overall shear rate was 3.68 approximately 7.66, and the homogeneity of the shear field in airlift bioreactors could be improved if d and N were set at 5.5 cm and 10 approximately 13, respectively.
Motional Effect on Wall Shear Stresses
DEFF Research Database (Denmark)
Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won
Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....
Self-organization in circular shear layers
DEFF Research Database (Denmark)
Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter
1996-01-01
Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...... both weakly nonlinear analysis and full numerical simulations that closely reproduce the experimental observations. Varying the Reynolds number leads to bifurcation sequences accompanied by topological changes in the distribution of the coherent structures as well as clear transitions in the total...
Understanding Transition to Turbulence in Shear Layers.
1983-05-01
state of shear-layer systems by state variables appropriate for phase- space approach. (See Section A.19 for illustration of simple two-dimensional and...three-dimensional phase spaces .) The broad learning process concludes in Chapter 3 with otherwise * inaccessible conceptualization of disturbances in...scales, they represent a plausible model for the occurrence of fine- scale intermittency which led Kolmogoroff to reconsider his universal similarity
Shear rheological characterization of motor oils
Bair, Scott; Winer, Ward O.
1988-01-01
Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.
Surface shear rheology of saponin adsorption layers.
Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Edward; Stoyanov, Simeon D
2012-08-21
Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial biological activities. The molecular mechanisms behind these unusual properties are unknown, and, therefore, the saponins have attracted significant research interest in recent years. In our previous study (Stanimirova et al. Langmuir 2011, 27, 12486-12498), we showed that the triterpenoid saponins extracted from Quillaja saponaria plant (Quillaja saponins) formed adsorption layers with unusually high surface dilatational elasticity, 280 ± 30 mN/m. In this Article, we study the shear rheological properties of the adsorption layers of Quillaja saponins. In addition, we study the surface shear rheological properties of Yucca saponins, which are of steroid type. The experimental results show that the adsorption layers of Yucca saponins exhibit purely viscous rheological response, even at the lowest shear stress applied, whereas the adsorption layers of Quillaja saponins behave like a viscoelastic two-dimensional body. For Quillaja saponins, a single master curve describes the data for the viscoelastic creep compliance versus deformation time, up to a certain critical value of the applied shear stress. Above this value, the layer compliance increases, and the adsorption layers eventually transform into viscous ones. The experimental creep-recovery curves for the viscoelastic layers are fitted very well by compound Voigt rheological model. The obtained results are discussed from the viewpoint of the layer structure and the possible molecular mechanisms, governing the rheological response of the saponin adsorption layers.
Structures and shear response of lipid monolayers
International Nuclear Information System (INIS)
Dutta, P.; Ketterson, J.B.
1993-02-01
This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases
Supercritical Mixing in a Shear Coaxial Injector
2016-07-27
the literature [19]. This method is implemented by Saunders and Kennelly and is available as an open source utility [20]. The details of the method...computationally expensive and yields insignificant benefit in comparison to the straight line assumption. The procedure by Saunders and Kennelly thus...dark core, outer injector flow and outer shear layer are marked on the experimental image by the dashed, closely dotted and sparsely dotted lines
VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; DEKKER, A; KIRKPATRICK, CJ; BUSSCHER, HJ
1994-01-01
In this study, human umbilical vein and human saphenous vein endothelial cells ware seeded on glass and exposed to fluid shear in a parallel-plate flow chamber. cell retention, morphology and migration were studied as a function of shear stress and of adhesion time prior to exposure to shear.
Cosmic Shear With ACS Pure Parallels
Rhodes, Jason
2002-07-01
Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan textiti {F775W} we will measure for the first time: beginlistosetlength sep0cm setlengthemsep0cm setlengthopsep0cm em the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using the Grad's method we calculate the entropy production and derive a formula for the second order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance the shear tensor and the shear viscosity to entropy density ratio $\\eta/s$ are numerically calculated by an iterative and self-consistent prescription within the second order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with $\\eta/s$ obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling $\\alpha_s \\sim 0.3$(with $\\eta/s\\approx 0.18$) and is a factor of 2-3 larger at a small coupling $\\alpha_s \\sim 0.01$. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on $\\eta/s$, except when employing a small $\\alpha_s$. On the other hand, we demonstrate th...
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using Grad’s method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling αs ∼ 0.3 (with η/s ≈ 0.18) and is a factor of 2–3 larger at a small coupling αs ∼ 0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small αs . On the other hand, we demonstrate that for such small αs , the gluon syst...
Fladt, Matthias; Soder, Christian; Schwarz, Winfried; Trieloff, Mario
2017-04-01
The Northern Phyllite Zone (NPZ) is a low-grade mylonitic shear zone between the high-grade rocks of the Mid-German Crystalline Zone and the very low-grade rocks of the Rhenohercynian Zone of the Variscan orogen. The NPZ comprises low-grade metasedimentary and metavolcanic rocks. Basaltic, intermediate and rhyolitic metavolcanics from the Soonwald and the Southern Taunus Mountains show the following paragenesis: actinolite + chlorite + epidote + albite + phengite + titanite + quartz ± calcite ± stilpnomelane ± pumpellyite ± aegirine-augite; blue amphibole (winchite) + chlorite + phengite + stilpnomelane + albite + titanite + quartz + magnetite ± epidote ± hematite; quartz + albite + K-feldspar + phengite + chlorite + titanite ± stilpnomelane ± ilmenite ± magnetite ± hematite. Occasionally, relict magmatic phases are present. The foliation strikes SW-NE and dips 60-70° to the NW. Stretching lineations are subhorizontal. P-T-estimations were done on the basis of equilibrium assemblage modelling yielding peak metamorphic conditions of 300-350 °C and 6-6.5 kbar. Thus, burial depths of 20-22 km and a low geothermal gradient of 15-16 °C/km are inferred. ⁴⁰Ar/3⁹Ar-dating of stepwise heated phengite separates (100-200 µm) results in plateau ages of ˜320 Ma. Two of the examined separates show argon diffusive loss ⁴⁰Ar/3⁹Ar-age spectra, which yield a period of argon loss between 145 and 130 Ma. Diffusive argon loss is possibly related to widespread Jurassic-Cretaceous hydrothermal activity in SW Germany. We interpret the Northern Phyllite Zone as a sinistral shear zone documenting prolonged oblique convergence following the peak of the Variscan orogeny between 340-330 Ma until 320 Ma.
Structural Origin of Shear Viscosity of Liquid Water.
Yamaguchi, Tsuyoshi
2018-01-25
The relation between the microscopic structure and shear viscosity of liquid water was analyzed by calculating the cross-correlation between the shear stress and the two-body density using the molecular dynamics simulation. The slow viscoelastic relaxation that dominates the steady-state shear viscosity was ascribed to the destruction of the hydrogen-bonding network structure along the compression axis of the shear distortion, which resembles the structural change under isotropic hydrostatic compression. It means that the shear viscosity of liquid water reflects the anisotropic destruction-formation dynamics of the hydrogen-bonding network.
Directory of Open Access Journals (Sweden)
Nolan M. Dehler
2006-06-01
Full Text Available Shear zones geometry in the Paraíba do Sul belt, southeastern Brazil, delineates a NE-trending fan-like structure. Shear zones dip towards SE in the northern limb, and towards NW in the southern one. This geometry has been interpreted either due to transpression or to late folding of flat-lying thrust surfaces. Stretching lineation plunges to ENE-ESE in the northern limb and towards NNE-NE in the southern one. Structural data in the southern limb of the divergent fan suggest a two stage kinematic evolution in high-temperature conditions: an earlier stage with top-to-SSW/SW sinistral thrusting and orogenic-parallel tangential motion, and a later stage with top-down to NNE/NE transtensional deformation. We propose a heterogeneous deformation model to explain the observed shear reversal, and suggest that the imposed transpressional displacement gradient may change during progressive deformation due to transient rheological inhomogeneities in bulk pure shear strain. In the earlier stage, the partially molten material could easily accommodate the imposed strain rates, giving rise firstly to the SW-directed shearing. As the thermal disturbance tended to vanish and the convergence increased, the NNE-directed transtensional shearing developed. We propose that the transtensional deformation characterized in this paper could be related to extrusion processes during regional transpressional strain.A geometria das zonas de cisalhamento no CinturãoParaíba do Sul no Rio de Janeiro, sudeste do Brasil, delineia uma estrutura-em-leque com direção NE. Estaszonas de cisalhamento mergulham para SE no flanco norte, e para NW no flanco sul da estrutura. Esta geometria tem sido interpretada de duas formas: (a implantação de um regime transpressivo ou (b dobramento tardio de superfícies de empurrão originalmente sub-horizontais. A lineação de estiramento mineral mostra caimento para ENE-ESE, no flanco norte, e para NNE-NE, no flanco sul, onde ocorre a Zona
Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow
Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.
2015-01-01
In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ˙0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ˙0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ˙0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion. PMID:26798789
Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow
Directory of Open Access Journals (Sweden)
A. J. Giacomin
2015-03-01
Full Text Available In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics. We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ̇0 is above unity, (ii nonlinear viscoelasticity (where both λω and λγ̇0 exceed unity, and (iii linear viscoelasticity (where λω exceeds unity and where λγ̇0 approaches zero. We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.
Dilatancy of Shear Transformations in a Colloidal Glass
Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.
2018-01-01
Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.
Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density.
Furukawa, Akira
2017-01-01
We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.
Directory of Open Access Journals (Sweden)
Farzad Tahmasbi
Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.
Atomic structure of amorphous shear bands in boron carbide.
Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W
2013-01-01
Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.
Edge-Induced Shear Banding in Entangled Polymeric Fluids
Hemingway, Ewan J.; Fielding, Suzanne M.
2018-03-01
Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ ˙ (for states of homogeneous shear) is monotonic, or has a region of negative slope, d σ /d γ ˙ edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances—which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally—can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.
Directory of Open Access Journals (Sweden)
Han-Seung Lee
2016-05-01
Full Text Available This study set out to derive the optimal conditions for ensuring the monolithicity of ultra-high-performance concrete (UHPC. Direct shear tests were performed to examine the influence on the bonding shear performance. The experimental variables included tamping and delay, which were set to 0, 15, 30, and 60 min. SEM and XRD analyses of the microstructure and composition were performed. The direct shear tests showed that the bonding shear strength was enhanced by the addition of tamping. For the normal-strength concrete (NSC, it is thought that a monolithicity of around 95% can be attained with a cold joint formation delay up to 60 min. In contrast, while the normalized bonding shear strength reduction of UHPC with a delay of 15 min was the lowest at around 8%, a dramatic degradation in the bonding shear performance was observed after 15 min. XRD analyses of the middle and surface sections revealed the composition of the thin film formed at the surface of the UHPC and, as a result, the main component appeared to be SiO2, which is believed to be a result of the rising of the SiO2-based filler, used as an admixture in this study, towards the surface, due to its low specific gravity.
Oskin, Michael; Perg, Lesley; Blumentritt, Dylan; Mukhopadhyay, Sujoy; Iriondo, Alexander
2007-03-01
rate of 1.6 ± 0.2 mm/yr satisfies the data. These rates are faster than any other paleoseismic or long-term slip rate yet determined for other dextral faults in the Mojave Desert and imply that fault slip rates and earthquake productivity are heterogeneous across this portion of the ECSZ. Total displacement across the Calico fault diminishes northward as shear is distributed into folding and sinistral faults in the Calico Mountains. This pattern is consistent with an approximately threefold drop in geologic slip rate as the Calico fault steps over onto the Blackwater fault and demonstrates the significance of fault interaction for understanding the pattern of present-day strain accumulation in the ECSZ.
Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices
Wambaugh, J. F.; Marchesoni, F.; Nori, Franco
2003-04-01
Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/
Friction of polymer hydrogels studied by resonance shear measurements.
Ren, Huai-Yin; Mizukami, Masashi; Tanabe, Tadao; Furukawa, Hidemitsu; Kurihara, Kazue
2015-08-21
The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components. The friction of viscoelastic hydrogel materials has been extensively studied between planar gel and planar substrate surfaces from the viewpoint of an interfacial interaction. However, the geometry of the contact in practical applications is much more complex. The contribution of geometric and elastic deformation terms of a gel to friction could not be neglected. In this study, we used resonance shear measurements (RSMs) for characterizing the shear response of a glass sphere on a flat polymer hydrogel, a double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide. The contact mechanics conformed to the Johnson-Kendall-Roberts theory. The observed resonance curves exhibited rather sharp peaks when the DN gel and the silica sphere were brought into contact, and their intensity and frequency increased with the increase in the normal load. We proposed a simple physical model of the shearing system, and the elastic (k2) and viscous (b2) parameters of the interface between a silica sphere and a flat DN gel were obtained. The friction force from elastic deformation and viscous dissipation terms was then estimated using the obtained parameters. It was revealed that the elastic parameter (k2) increased up to 1780 N m(-1) at a normal load of 524 mN, while the viscous parameter (b2) was zero or quite low (friction force between a flat DN gel and a silica sphere in air was dominated by the elastic term due to the local deformation by contact with the silica sphere. By adding water, the elastic parameter (k2) remained the same, while the viscous parameter (b2) slightly increased. However, the viscous term fviscous was still much smaller than felastic. To the best of our knowledge, this study was the first quantitative estimation of the contribution of the elastic deformation term to the friction in the case
DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS
Directory of Open Access Journals (Sweden)
S. A. Bornyakov
2016-01-01
Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of
Magnetic and shape fabrics of magnetite in simple shear flows
Arbaret, Laurent; Launeau, Patrick; Diot, Hervé; Sizaret, Stanislas
2013-01-01
The magnetite fabrics measured by anisotropy of magnetic susceptibility (AMS) and by shape preferred orientation (SPO) optical methods are classically used as flow kinematics indicators in lava flows. The development of magnetite fabrics during simple shear strains γ ≤ 20 was performed using a suspension of 1% volume fraction of multidomain magnetite randomly contained in a mixture of silicone and wax. We measured AMS fabric and SPO ellipsoids by calculating a quadratic shape tensor from oriented thin-sections. For γ 8, fabric elements, foliation and lineation, are stabilised closely parallel to the flow plane and the shear direction, respectively. Two- and three-dimensional numerical simulations using measured aspect ratios of magnetite point out that the large scattering of aspect ratios and the initial orientation distribution of particles are together responsible for a wide-ranging loss of periodicity. The stable AMS and SPO fabrics observed at large strains in experiments are the result of these primary fabric properties combined to collisions between particles and, possibly, their complex three-dimensional shapes. In addition, the constant angular relationship observed at large strains between fabrics and flow components is related to the transient collisions. Consequently, the determination of the lava flow kinematics by using fabric properties measured either by AMS or by SPO analyses should be indubitably associated to a detailed study of the three-dimensional shape of the solid carriers. Regularly shaped populations of low elongated particles will be capable to produce cyclic to oscillating fabrics, while the fabric of elongated particles will be more sensitive to the shape parameters and collisions, ultimately favouring stable fabrics at large strains.
Directory of Open Access Journals (Sweden)
Yoo Jae Kim
2018-01-01
Full Text Available To successfully process concrete, it is necessary to predict and control its flow behavior. However, the workability of concrete is not completely measured or specified by current standard tests. Furthermore, it is only with a clear picture of cement hydration and setting that full prediction and control of concrete performance can be generalized. In order to investigate the rheological properties of blended cement pastes, a rotational viscometer (RV was used to determine the flow characteristics of ordinary and blended pastes to provide assurance that it can be pumped and handled. Additionally, a dynamic shear rheometer (DSR was used to characterize both the viscous and elastic components of pastes. Ordinary Portland cement paste and blended pastes (slag, fly ash, and silica fume were investigated in this study. The stress and strain of the blended specimens were measured by the DSR, which characterizes both viscous and elastic behaviors by measuring the complex shear modulus (the ratio of total shear stress to total shear strain and phase angle (an indicator of the relative amounts of recoverable and nonrecoverable deformation of materials. Cement pastes generally exhibit different rheological behaviors with respect to age, mineral admixture type, and cement replacement level.
The plane strain shear fracture of the advanced high strength steels
International Nuclear Information System (INIS)
Sun, Li
2013-01-01
The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component
The Roles of Fluid Compression and Shear in Electron Energization during Magnetic Reconnection
Li, Xiaocan; Guo, Fan; Li, Hui; Birn, Joachim
2018-03-01
Particle acceleration in space and astrophysical reconnection sites is an important unsolved problem in studies of magnetic reconnection. Earlier kinetic simulations have identified several acceleration mechanisms that are associated with particle drift motions. Here, we show that, for sufficiently large systems, the energization processes due to particle drift motions can be described as fluid compression and shear, and that the shear energization is proportional to the pressure anisotropy of energetic particles. By analyzing results from fully kinetic simulations, we show that the compression energization dominates the acceleration of high-energy particles in reconnection with a weak guide field, and the compression and shear effects are comparable when the guide field is 50% of the reconnecting component. Spatial distributions of those energization effects reveal that reconnection exhausts, contracting islands, and island-merging regions are the three most important regions for compression and shear acceleration. This study connects particle energization by particle guiding-center drift motions with that due to background fluid motions, as in the energetic particle transport theory. It provides foundations for building particle transport models for large-scale reconnection acceleration such as those in solar flares.
Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P
2014-11-01
Organization of airway epithelium determines ciliary beat direction and coordination for proper mucociliary clearance. Fluidic shear stresses have the potential to influence ciliary organization. Here, an in vitro fluidic flow system was developed for inducing long-term airflow shear stresses on airway epithelium with a view to influencing epithelial organization. Our system consists of a fluidic device for cell culture, integrated into a humidified airflow circuit. The fluidic device has a modular design and is made from a combination of polystyrene and adhesive components incorporated into a 6-well filter membrane insert. We demonstrate the system operates within physiologically relevant shear and pressure ranges and estimate the shear stress exerted on the epithelial cell layer as a result of air flow using a computational model. For both the bronchial epithelial cell line BEAS2B and primary human tracheal airway epithelial cells, we demonstrate that cells remain viable within the device when exposed to airflow for 24 h and that normal differentiation and cilia formation occurs. Furthermore, we demonstrate the utility of our device for exploring the impact of exposing cells to airflow: our tool enables quantification of cytoskeletal organization, and is compatible with in situ bead assays to assess the orientation of cilia beating.
IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass
International Nuclear Information System (INIS)
Bouzakher, B.; Benameur, T.; Sidhom, H.
2009-01-01
Infrared thermography observation and in situ atomic force microscopy characterization were carried out to investigate the mechanical damage processes at the edge-notch region of large ribbons of Fe 78 Si 10 B 12 metallic glass. An obvious thermoelastic and inelastic degradation phenomenon was observed ahead at the notched region of the specimens, which probably result from free volume accumulation process and shear band activity during plane stress solicitations. Moreover, AFM topographic and frictional analysis of changes in the crack path during stable crack propagation regime revealed a periodic morphology evolution, formation of nanoscale damage cavity in the range of 20-140 nm and a maximum temperature rise ahead of the pre-crack tip was found in the order of 1.5 deg. C. The nanometer scaled shear offset, discreteness and shear bands density were determined. While these key parameters play a role in observing a large plastic zone in front of the crack, however they are unable to explain the distinct intrinsic ductility of some monolithic metallic glasses. A general Mohr-Coulomb-type constitutive description was used to deduce analytic expressions for prediction of the variation of hydrostatic component of the applied stress to the shear stress ratio as function of Poisson's ratio.
Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer
Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram
2015-11-01
Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.
SHEAR STRENGTH IN THE GLUE LINE OF Eucalyptus sp. AND Pinus sp.WOOD
Directory of Open Access Journals (Sweden)
Juliana Jerásio Bianche
Full Text Available ABSTRACT To evaluate the adhesive efficiency on the union of glued joints in a particular temperature and humidity conditions for a specified time the adhesive must be submitted to specific load tests, such as shear in the glue line. The objective of this study was to evaluate the shear strength in the glue line of Eucalyptus sp and Pinus sp.woods. Five adhesives (castor oil, sodium silicate, modified silicate, , PVA and resorcinol-formaldehyde, three weights (150 g/m2, 200 g/m2, and 250 g/m2 and two species (Eucalyptus sp. and Pinus sp. of wood were used. Twelve specimens were obtained from each repetition per treatment, corresponding to 108 specimens that were conditioned at a temperature of 23 ± 1°C and relative humidity of 50 ± 2%. The interaction between the weight and type of adhesive was significant for the shear strength in the glue line of eucalyptus wood. However, no interaction between the weight and the adhesive was found for pinus, only the isolated from the adhesive effect. Chemical bonds originated in the polymerization of resorcinol-formaldehyde adhesives and castor bi-component conferred upon these adhesives the greatest resistance in the glue line. Castor and resorcinol-formaldehyde adhesives showed the highest shear strength values in the line of glue and wood failure. Castor adhesive presented satisfactory performance for bonding of eucalyptus and pine woods.
Interaction of shear and normal stresses in multiaxial fatigue damage analysis
Directory of Open Access Journals (Sweden)
Nicholas R. Gates
2016-07-01
Full Text Available Due to the abundance of engineering components subjected to complex multiaxial loading histories, being able to accurately estimate fatigue damage under multiaxial stress states is a fundamental step in many fatigue life analyses. In this respect, the Fatemi-Socie (FS critical plane damage parameter has been shown to provide excellent fatigue life correlations for a variety of materials and loading conditions. In this parameter shear strain amplitude has a primary influence on fatigue damage and the maximum normal stress on the maximum shear plane has a secondary, but important, influence. In this parameter, the maximum normal stress is normalized by the material yield strength in order to preserve the unitless feature of strain. However, in examining some literature data it was found that in certain situations the FS parameter can result in better fatigue life predictions if the maximum normal stress is normalized by shear stress range instead. These data include uniaxial loadings with large tensile mean stress, and some non-proportional axial-torsion load paths with different normal-shear stress interactions. This modification to the FS parameter was investigated by using fatigue data from literature for 7075-T651 aluminum alloy, as well as additional data from 2024-T3 aluminum alloy fatigue tests performed in this study.
Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer
Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire
The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.
Jaishankar, Aditya; Wee, May; Matia-Merino, Lara; Goh, Kelvin K T; McKinley, Gareth H
2015-06-05
Mamaku gum is a polysaccharide extracted from the fronds of the black tree fern found in New Zealand. The cooked pith has traditionally been used for various medicinal purposes and as a food source by the Maori people of New Zealand. It has potential applications as a thickener in the food industry and as a palliative for patients with dysphagia. Studies on the shear rheology of Mamaku gum have revealed that the gum exhibits shear thickening at a critical shear rate due to a transition from intra- to inter-molecular chain interactions upon shear-induced chain elongation. In this paper, we demonstrate that these interactions are primarily due to hydrogen bonding. We perform extensional rheology on mixtures of Mamaku gum and urea (a known disruptor of hydrogen bonds) to quantify the nature of these interactions. Capillary Breakup Extensional Rheometry (CaBER) performed on the pure Mamaku gum solutions yield plateau values of the Trouton ratio as high as ∼10(4), showing that the viscoelasticity of the gum in uniaxial elongation is much higher than in shear. For all Mamaku concentrations tested, the extensional viscosity decreases upon increasing urea concentration. Furthermore, the relaxation time decreases exponentially with increasing urea concentration. This exponential relationship is independent of the Mamaku concentration, and is identical to the relationships between urea concentration and characteristic timescales measured in nonlinear shear rheology. We show using the sticky reptation model for polymers with multiple sticker groups along the backbone how such a relationship is consistent with a linear decrease in the free energy for hydrogen bond dissociation. We then demonstrate that a time-concentration superposition principle can be used to collapse the viscoelastic properties of the Mamaku-gum/urea mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kornuta, Jeffrey A.; Nepiyushchikh, Zhanna; Gasheva, Olga Y.; Mukherjee, Anish; Zawieja, David C.
2015-01-01
Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm2) than at 3 cmH2O (0.64 dyne/cm2). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. PMID:26333787
Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick
2018-04-01
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl
Ewing, D.; Pollard, A.
1996-11-01
It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.
Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field
DEFF Research Database (Denmark)
Chakrabarti, N.; Juul Rasmussen, J.
1999-01-01
the coupled equations for potential and pressure exhibit special tripolar vortex-like structures. For the general case, however, parallel ion dynamics is included and the equation describing the stationary ITG vortex has the structure of a nonlinear Poisson-type equation. Analytical as well as numerical...... solutions of this equation are presented for various possible cases. It is shown that, for a critical value of the velocity shear asymmetric dipolar vortices can arise which are strongly modified as a localized vortex chain at resonance. For strong velocity shear these structures are destroyed...
Evaluation of composite shear walls behavior (parametric study
Directory of Open Access Journals (Sweden)
Ali Nikkhoo
2017-11-01
Full Text Available Composite shear walls which are made of a layer of steel plate with a concrete cover in one or both sides of the steel plate, are counted as the third generation of the shear walls. Nowadays, composite shear walls are widely utilized in building new resisting structures as well as rehabilitating of the existing structures in earthquake-prone countries. Despite of its advantages, use of the composite shear walls is not yet prevalent as it demands more detailed appropriate investigation. Serving higher strength, flexibility and better energy absorption, while being more economical are the main advantages of this system which has paved its path to be used in high-rise buildings, structural retrofit and reservoir tanks. In this research, channel shear connectors are utilized to connect the concrete cover to the steel plate. As a key parameter, variation in the distance of shear connectors and their arrangement on the behavior of composite shear walls has been scrutinized. In addition, the shear stiffness, flexibility, out of plane displacement and the energy absorption of the structural system has been explored. For this purpose, several structural models with different shear distances and arrangements have been investigated. The obtained results reveal that with increase in shear connectors’ distance, the wall stiffness would reduce while its lateral displacement increases up to eighty percent While the out of plane displacement of the steel plate will reduce up to three times.
A New Annular Shear Piezoelectric Accelerometer
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.
2000-01-01
This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... is made of tungsten. All processes and materials comply with MIL-STD-11268. The mounted resonance frequency exceeds 40kHz. The sensitivity is 10mV/g ±5%. During the design process, the new design is evaluated and sufficiently optimized by using the Finite Element (FE) simulation before making actual...
Behaviour of voids in a shear field
DEFF Research Database (Denmark)
Tvergaard, Viggo
2009-01-01
to a plane connecting the ends of the micro-crack is used as an approximate representation of contact stresses during frictionless sliding. In a previous study of the same problem the author applied hydrostatic pressure inside the nearly closed micro-crack to approximate contact conditions. The transverse...... surface loads used in the present analyses avoid the tendency to unrealistically elongate the voids. It is found that even though the model applied here gives significantly later occurrence of a maximum overall shear stress than that found by using hydrostatic pressure, the present model does predict...
Homotopy Shear Band Solutions in Gradient Plasticity
Raees, Ammarah; Xu, Hang; Aifantis, Elias C.
2017-05-01
Analytical shear band type solutions for finite domains are derived within the framework of gradient plasticity theory by employing the homotopy analysis method (HAM). Such types of solutions were available in the literature only for infinite domains in the nonlinear material softening regime and steady-state conditions, as well as for finite domains in the material hardening regime. HAM allows for solutions to be obtained for both hardening and softening material models, as well as for unsteady conditions periodic solutions are also derived. The HAM results are verified with numerical simulations, which show excellent agreement. Moreover, an error analysis is provided which guarantees the convergence of our series solution.
Granular convection driven by shearing inertial forces.
Rodríguez-Liñán, G M; Nahmad-Molinari, Y
2006-01-01
Convection velocity measurements in vertically vibrated granular materials are presented. The convection velocity close to the walls grows quadratically with the difference between the maximum and critical, or excess, amplitude (proposed as a dynamic parameter to describe related problems) and it is shown numerically that the average bed-bottom relative velocity during the distancing between them, grows linearly with the squared as well. This is interpreted as the signature of an inertial shearing force or momentum transfer proportional to the bed-container relative velocity, acting mainly during the bed-plate distancing part of each cycle which leads to the formation of the convective flux.
Orientational ordering in sheared inelastic dumbbells.
Reddy, K Anki; Kumaran, V; Talbot, J
2009-09-01
Using even driven simulations, we show that homogeneously sheared inelastic dumbbells in two dimensions are randomly orientated in the limit of low density. As the packing fraction is increased, particles first tend to orient along the extensional axis, and then as the packing fraction is further increased, the alignment shifts closer to the flow axis. The orientational order parameter displays a continuous increase with packing fraction and does not appear to exhibit a universal scaling with elongation. Except at the highest packing fractions, the orientational distribution function can be reconstructed with only the first coefficient of the Fourier expansion.
Propagation of waves in shear flows
Fabrikant, A L
1998-01-01
The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside
Energy Technology Data Exchange (ETDEWEB)
Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.
2011-02-20
potential for erosion, it is important to compare the measured shear strength to penetrometer measurements and to develop a correlation (or correlations) between UCS measured by a pocket penetrometer and direct shear strength measurements for various homogeneous and heterogeneous simulants. This study developed 11 homogeneous simulants, whose shear strengths vary from 4 to 170 kPa. With these simulants, we developed correlations between UCS measured by a Geotest E-280 pocket penetrometer and shear strength values measured by a Geonor H-60 hand-held vane tester and a more sophisticated bench-top unit, the Haake M5 rheometer. This was achieved with side-by-side measurements of the shear strength and UCS of the homogeneous simulants. The homogeneous simulants developed under this study consist of kaolin clay, plaster of Paris, and amorphous alumina CP-5 with water. The simulants also include modeling clay. The shear strength of most of these simulants is sensitive to various factors, including the simulant size, the intensity of mixing, and the curing time, even with given concentrations of simulant components. Table S.1 summarizes these 11 simulants and their shear strengths.
Test and lower bound modeling of keyed shear connections in RC shear walls
DEFF Research Database (Denmark)
Sørensen, Jesper Harrild; Herfelt, Morten Andersen; Hoang, Linh Cao
2018-01-01
This paper presents an investigation into the ultimate behavior of a recently developed design for keyed shear connections. The influence of the key depth on the failure mode and ductility of the connection has been studied by push-off tests. The tests showed that connections with larger key inde...
Distribution functions of a simple fluid under shear: Low shear rates
International Nuclear Information System (INIS)
Kalyuzhnyi, Y.V.; Cui, S.T.; Cummings, P.T.; Cochran, H.D.
1999-01-01
Anisotropic pair distribution functions for a simple, soft sphere fluid at moderate and high density under shear have been calculated by nonequilibrium molecular dynamics, by equilibrium molecular dynamics with a nonequilibrium potential, and by a nonequilibrium distribution function theory [H. H. Gan and B. C. Eu, Phys. Rev. A 45, 3670 (1992)] and some variants. The nonequilibrium distribution function theory consists of a nonequilibrium Ornstein-Zernike relation, a closure relation, and a nonequilibrium potential and is solved in spherical harmonics. The distortion of the fluid structure due to shear is presented as the difference between the nonequilibrium and equilibrium pair distribution functions. From comparison of the results of theory against results of equilibrium molecular dynamics with the nonequilibrium potential at low shear rates, it is concluded that, for a given nonequilibrium potential, the theory is reasonably accurate, especially with the modified hypernetted chain closure. The equilibrium molecular-dynamics results with the nonequilibrium potential are also compared against the results of nonequilibrium molecular dynamics and suggest that the nonequilibrium potential used is not very accurate. In continuing work, a nonequilibrium potential better suited to high shear rates [H. H. Gan and B. C. Eu, Phys. Rev. A 46, 6344 (1992)] is being tested. copyright 1999 The American Physical Society
Lin, Neil Y. C.
2013-12-01
Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.
Shear rheology of lipid monolayers and insights on membrane fluidity
Espinosa, Gabriel; López-Montero, Iván; Monroy, Francisco; Langevin, Dominique
2011-01-01
The concept of membrane fluidity usually refers to a high molecular mobility inside the lipid bilayer which enables lateral diffusion of embedded proteins. Fluids have the ability to flow under an applied shear stress whereas solids resist shear deformations. Biological membranes require both properties for their function: high lateral fluidity and structural rigidity. Consequently, an adequate account must include, in addition to viscosity, the possibility for a nonzero shear modulus. This knowledge is still lacking as measurements of membrane shear properties have remained incomplete so far. In the present contribution we report a surface shear rheology study of different lipid monolayers that model distinct biologically relevant situations. The results evidence a large variety of mechanical behavior under lateral shear flow. PMID:21444777
Microalga propels along vorticity direction in a shear flow
Chengala, Anwar; Hondzo, Miki; Sheng, Jian
2013-05-01
Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.
Flexure of thick orthotropic plates by exponential shear deformation theory
Directory of Open Access Journals (Sweden)
A. S. Sayyad
Full Text Available In the present paper, a variationally consistent exponential shear deformation theory taking into account transverse shear deformation effect is presented for the flexural analysis of thick orthotropic plates. The inplane displacement field uses exponential function in terms of thickness coordinate to include the shear deformation effect. The transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for static flexure of simply supported orthotropic plates are compared with those of other refined theories and elasticity solution wherever applicable. The results obtained by present theory are in excellent agreement with those of exact results and other higher order theories. Thus the efficacy of the present refined theory is established.
Shear stress induced stimulation of mammalian cell metabolism
Mcintire, L. V.; Frangos, J. A.; Eskin, S. G.
1988-01-01
A flow apparatus was developed for the study of the metabolic response of anchorage dependent cells to a wide range of steady and pulsatile shear stresses under well controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/sq cm, and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. It is demonstrated that shear stresses in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress.
Shear and shear friction of ultra-high performance concrete bridge girders
Crane, Charles Kennan
Ultra-High Performance Concrete (UHPC) is a new class of concrete characterized by no coarse aggregate, steel fiber reinforcement, low w/c, low permeability, compressive strength exceeding 29,000 psi (200 MPa), tensile strength ranging from 1,200 to 2,500 psi (8 to 17 MPa), and very high toughness. These properties make prestressed precast UHPC bridge girders a very attractive replacement material for steel bridge girders, particularly when site demands require a comparable beam depth to steel and a 100+ year life span is desired. In order to efficiently utilize UHPC in bridge construction, it is necessary to create new design recommendations for its use. The interface between precast UHPC girder and cast-in-place concrete decks must be characterized in order to safely use composite design methods with this new material. Due to the lack of reinforcing bars, all shear forces in UHPC girders have to be carried by the concrete and steel fibers. Current U.S. codes do not consider fiber reinforcement in calculating shear capacity. Fiber contribution must be accurately accounted for in shear equations in order to use UHPC. Casting of UHPC may cause fibers to orient in the direction of casting. If fibers are preferentially oriented, physical properties of the concrete may also become anisotropic, which must be considered in design. The current research provides new understanding of shear and shear friction phenomena in UHPC including: (1) Current AASHTO codes provide a non-conservative estimate of interface shear performance of smooth UHPC interfaces with and without interface steel. (2) Fluted interfaces can be created by impressing formliners into the surface of plastic UHPC. AASHTO and ACI codes for roughened interfaces are conservative for design of fluted UHPC interfaces.(3) A new equation for the calculation of shear capacity of UHPC girders is presented which takes into account the contribution of steel fiber reinforcement. (4) Fibers are shown to preferentially
The effect of particle shape on mixing in a high shear mixer
Sinnott, Matthew D.; Cleary, Paul W.
2016-11-01
Discrete element method modelling is used to study the effect of particle shape on the flow dynamics and mixing in a high shear mixer. The blade generates strong flow over its top surface while compacting and pushing forward particles that are directly in front of the blade. A complex three dimensional flow is established with vertical and radial flow components that are shape dependent and which control the nature of the mixing. Mixing was found to be fast in the azimuthal direction, of intermediate speed in the vertical direction and comparatively slow in the radial mixing. Diffusive mixing is characterised using the granular temperature which shows that the regions of higher granular temperature are larger for round particles than non-round ones leading to stronger diffusive mixing. The spatial distribution of the convective component of mixing is identified using novel calculation of shear strain rate. This size and shape of the high shear region is found to be only slightly sensitive to the particle shape indicating that the convective mixing is relatively independent of shape, except in the middle of the mixer. The blockiness of the particles has the strongest impact on flow and mixing while the mixing has only a weak dependence on the particle aspect ratio.
Del Sarto, Daniele; Pegoraro, Francesco
2018-03-01
The momentum anisotropy contained in a sheared flow may be transferred to a pressure anisotropy, both gyrotropic and non-gyrotropic, via the action of the fluid strain on the pressure tensor components. In particular, it is the traceless symmetric part of the strain tensor (i.e. the so-called shear tensor) that drives the mechanism, the fluid vorticity just inducing rotations of the pressure tensor components. This possible mechanism of anisotropy generation from an initially isotropic pressure is purely dynamical and can be described in a fluid framework where the full pressure tensor evolution is retained. Here, we interpret the correlation between vorticity and anisotropy, often observed in numerical simulations of solar wind turbulence, as due to the correlation between shear rate tensor and fluid vorticity. We then discuss some implications of this analysis for the onset of the Kelvin-Helmholtz instability in collisionless plasmas where a full pressure tensor evolution is allowed, and for the modelling of secondary reconnection in turbulence.
Influence of Freestream and Forced Disturbances on the Shear Layers of a Square Prism
Lander, Daniel Chapman
points of the KH instability were documented and shown to exhibit features distinct from the plane mixing layer. The evolution of the integrated turbulent kinetic energy was documented and a linear region of growth was associated with the amplification of the KH instability. A scaling relationship of the Kelvin-Helmholtz to von-Karman frequencies was established for the square prism shear layer. ƒKH/ƒ VK was shown to be a power-law function of Re D, with differing characteristics to the much more studied circular cylinder. Increasing ReD up to ˜ 70,000 bolsters the Reynolds stresses in the shear layers as they enter the wake, shortening the wake formation length, LF. The shear layer diffusion length, LD was quantified and the Gerrard-Product, LF x LD, was introduced to account for constant St D in the presence of the reduced LF as function of ReD. A freestream disturbance condition with intensity □ u¯¯ 2¯ / U infinity = 0.065 and longitudinal integral length scale, Lxu = 0.33 was considered for the case of ReD = 50,000. Disturbances were introduced by means of small circular cylinder placed upstream of the stagnation streamline. The disturbance moved the time-averaged position of the shear layer towards the body but did not substantially alter the growth rate of its width. The "normal" transition-to-turbulence pathway, via laminar vortex formation and subsequent pairing of vortices in the initial stages of the shear layer was shown to be highly sensitive to external disturbances. The disturbance interrupted the typical transition pathway and was associated with a Bypass-transition mechanism, which subsequently increased the likelihood of intermittent shear layer reattachment on the downstream surface of the body. Triple decomposition was used to study the random and coherent components of the VK structures in the wake. Data indicated a narrowing and lengthening of the wake, which was accompanied by a rise in base pressure and a reduction in time-averaged drag
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.
Inplane shear capacity of reinforced composite masonry block walls
International Nuclear Information System (INIS)
White, W.H.; Tseng, W.S.
1981-01-01
The objective of this paper is to describe a test program performed to determine the inplane shear capacity, stiffness and ductility of composite masonry walls subjected to earthquake type loadings. Specimens were simultaneously subjected to a range of compressive loads to simulate dead load; and inplane shear loads with full load reversal to simulate the earthquake cycling load. The influence of horizontal and vertical reinforcing steel percentages on the inplane shear capacity, stiffness and ductility was also investigated. (orig./HP)
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs
Shear and anchorage behaviour of fire exposed hollow core slabs
Fellinger, J.H.H.; Stark, J.; Walraven, J.C.
2005-01-01
The fire resistance of hollow core slabs is currently assessed considering flexural failure only. However, fire tests showed that shear or anchorage failure can also govern the load bearing behaviour. As the shear and anchorage capacity of these slabs rely on the tensile strength of the concrete, the load bearing capacity with respect to these failure modes decreases dramatically during fire due to the impact of thermal stresses. This paper presents a FE model for the shear and anchorage beha...
FRP shear strengthening of RC beams and walls
Sas, Gabriel
2008-01-01
The shear failure of Fibre Reinforced Polymers (FRP) strengthened reinforced concrete (RC) beams has not been studied to the same extent as the bending failure mechanism in the past decade. The complex nature of the shear failure mechanism just for reinforced concrete beams is still under debate among scientists and not solved yet. If we add the FRP strengthening to the already existing unknown issues, it is quite clear why attention was not focused on the shear failure of strengthened beam. ...
Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs
Ucar, Eren
2018-01-01
Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...
Ioannidi, Paraskevi Io; Le Pourhiet, Laetitia; Moreno, Marcos; Agard, Philippe; Oncken, Onno; Angiboust, Samuel
2017-04-01
Determination of the subduction interface rheological parameters is an interesting aspect of geodynamics since it can help better understand the physical nature of plate locking and its relation to surface deformation patterns observed at different time scales (GPS displacements during the seismic cycle). Since direct rheological measurements are not possible, unfortunately, we herein try to determine the effective rheological parameters of a subduction interface using finite element modelling. We use the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions trying to find the one that can best mimic simple shear experiments performed on rock samples. After examining different parameters including the shearing velocity, the temperature and the viscosity, we added complexity to the geometry by including a second phase. This complexity arose from field observations, where composite shear zone outcrops often characterize the subduction interface. Stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. In order to test our methodology, we first use clast-in-matrix geometries from thin sections taken through lab experiments. In a second stage, we upscale the method to outcrop scale clast-in-matrix geometries. By sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction of a natural interface. In a next step, these effective frictions will be used as input into seismic cycle deformation models in an attempt to assess the
Control of a three-dimensional turbulent shear layer by means of oblique vortices
Jürgens, Werner; Kaltenbach, Hans-Jakob
2018-04-01
The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.
Double Lap Shear Testing of Coating-Modified Ice Adhesion to Specific Shuttle Component Surfaces
National Research Council Canada - National Science Library
Ferrick, M. G; Mulherin, Nathan D; Coutermarsh, Barry A; Durell, Glenn D; Curtis, Leslie A; St. Clair, Terry L; Weiser, Erik S; Cano, Roberto J; Smith, Trent M; Stevenson, Charles G; Martinez, Eloy C
2006-01-01
The goals of this experimental program were to optimize the effectiveness of an icephobic coating for use on several Space Shuttle surfaces, to evaluate the effects of adding an ultraviolet light absorber (UVA...
Shear flow stabilization of the hydromagnetic Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Roderick, N.F.; Shumlak, U.; Douglas, M.; Peterkin, R.E. Jr.; Ruden, E.
1997-01-01
Numerical simulations have indicated that shear flow may help stabilize the hydromagnetic Rayleigh-Taylor instability in imploding plasma z-pinches. A simple extension to a model presented in Chandrasekhar has been developed to study the linear stability of incompressible plasma subjected to both a shear flow and acceleration. The model has been used to investigate the stability plasma implosion schemes using externally imposed velocity shear which develops from the plasma flow itself. Specific parameters were chosen to represent plasma implosions driven by the Saturn and PBFA-Z, pulsed power generators at Sandia National Laboratories. Results indicate a high shear is necessary to stabilize the z-pinch implosions studied
Is swimming in a shear-thinning fluid more efficient?
Pietrzyk, Kyle; Nganguia, Herve; Pak, On Shun
2017-11-01
Micro-organisms expend energy moving through complex fluids that often display shear-thinning viscosity. A motility mechanism not only needs to generate the necessary propulsion speed but also be energetically efficient. Although the efficiency of swimming is well characterized in Newtonian fluids, much less is known about this biologically relevant aspect of locomotion in shear-thinning fluids. Does the shear-thinning rheology render swimming more efficient or less? How does it alter the efficiency of different types of swimmers? We will address these fundamental questions of locomotion in a shear-thinning fluid.
Shear wave elastography with a new reliability indicator
Directory of Open Access Journals (Sweden)
Christoph F. Dietrich
2016-09-01
Full Text Available Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s. The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed. The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France, point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France. More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Aerosol penetration through a seismically loaded shear wall
International Nuclear Information System (INIS)
Farrar, C.R.; Girrens, S.P.
1992-01-01
An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 μm monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs
Shear zones between rock units with no relative movement
DEFF Research Database (Denmark)
Koyi, H.; Schmeling, H.; Burchardt, S.
2012-01-01
Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other...... magma body (stoping). From the fluid dynamics point of view these shear zones can be regarded as the low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact (aspect ratio 1:1:1) moving bodies generate axial symmetric (cone like) shear zones...
Shear zones between rock units with no relative movement
DEFF Research Database (Denmark)
Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi
2013-01-01
Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other...... a partially molten magma body (stoping). From the fluid dynamics perspective these shear zones can be regarded as low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact moving bodies (aspect ratio 1:1:1) generate axial symmetric (cone like) shear zones...
Results of shear studies with 241-AY-101 sludge
International Nuclear Information System (INIS)
WARRANT, R.W.
2001-01-01
The Department of Energy's Tanks Focus Area (TFA) authorized a project to study the effect of shear on the settling properties of high-level waste sludge to support retrieval programs. A series of settling studies was conducted on a composite sample of tank 241-AY-101 (AY-101) material. Comparisons were made with duplicate samples that were sheared with a tissue homogenizer and allowed to settle. Aliquots of sheared and unsheared settled solids were submitted for chemical and radiological analyses. There are five major conclusions from the study that apply to AY-101 sludge: (1) Sludge settling rates are detectably decreased after shearing of particles by means of a tissue homogenizer. A significant decrease in the settling rates was measured after 2 minutes of shearing. A smaller additional decrease in the settling rates was observed after an additional 10 minutes of shearing. (2) Sodium and Cesium appear to be present in both the liquid and solid phases of the composite sample. (3) The shearing of the solids does not appear to significantly change the distribution of the radionuclides, ( 241 Am, 90 Sr, Total Alpha, or other radionuclides), within the solids. (4) The mean particle diameter decreases after shearing with the tissue homogenizer and affects the settling rate in proportion to the square of the particle diameter. (5) The sonication of the unsheared particles produces a similar particle size reduction to that of shearing with a tissue homogenizer. It is difficult to quantitatively compare the shear produced by a mixer pump installed in a double-shell tank with that produced by the tissue homogenizer in the laboratory. On a qualitative basis, the mixing pump would be expected to have less mechanical and more hydraulic shearing effect than the tissue homogenizer. Since the particle size distribution studies indicate that (for the AY-101 solids) the breaking up of particle aggregates is the main means of particle size reduction, then the hydraulic shearing
Direct Shear Behavior of Fiber Reinforced Concrete Elements
Directory of Open Access Journals (Sweden)
Hussein Al-Quraishi
2018-01-01
Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory
Diagonal Cracking and Shear Strength of Reinforced Concrete Beams
DEFF Research Database (Denmark)
Zhang, Jin-Ping
1997-01-01
The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...... found by the usual plastic theory, a physical explanation is given for this phenomenon and a way to estimate the shear capacity of reinforced concrete beams, based on the theory of plasticity, is described. The theoretical calculations are shown to be in fairly good agreement with test results from...
Failure modes of low-rise shear walls
International Nuclear Information System (INIS)
Farrar, C.R.; Reed, J.W.; Salmon, M.W.
1993-01-01
A summary of available data concerning the structural response of low-rise shear walls is presented. These data will be used to address two failure modes associated with shear wall structures. First, the data concerning the seismic capacity of the shear walls are examined, with emphasis on excessive deformations that can cause equipment failure. Second, the data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary for computing the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional
Shear weakening for different lithologies observed at different saturation stages
Diethart-Jauk, Elisabeth; Gegenhuber, Nina
2018-01-01
For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.
Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure
Zhang, Zhuangnan; Zhang, Yan
2018-03-01
With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.
Enhanced heterogeneous nucleation on oxides in Al alloys by intensive shearing
International Nuclear Information System (INIS)
Li, H T; Wang, Y; Fan, Z
2012-01-01
Oxides, in liquid aluminium alloys, can cause severe difficulties during casting, contribute to the formation of cast defects and degrade the mechanical properties of cast components. In this paper, microstructural characteristics of naturally occurring oxides in the melts of commercial purity aluminium and Al-Mg binary alloys have been investigated. They are characterised by densely populated oxide particles within liquid oxide films. With intensive shearing, the particle agglomerates are dispersed into uniformly distributed individual particles. It was found that with intensive melt shearing, grain refinement of α-Al can be achieved by the dispersed oxide particles. The smaller lattice misfit between the oxide particles and the α-Al phase is characterised by a well defined crystallographic orientation relationship. And the mechanisms of grain refinement are discussed.
Rheometry-PIV of shear-thickening wormlike micelles.
Marín-Santibañez, Benjamín M; Pérez-Gonzalez, José; de Vargas, Lourdes; Rodríguez-Gonzalez, Francisco; Huelsz, Guadalupe
2006-04-25
The shear-thickening behavior of an equimolar semidilute aqueous solution of 40 mM/L cetylpyridinium chloride and sodium salicylate was studied in this work by using a combined method of rheometry and particle image velocimetry (PIV). Experiments were conducted at 27.5 degrees C with Couette, vane-bob, and capillary rheometers in order to explore a wide shear stress range as well as the effect of boundary conditions and time of flow on the creation and destruction of shear-induced structures (SIS). The use of the combined method of capillary rheometry with PIV allowed the detection of fast spatial and temporal variations in the flow kinematics, which are related to the shear-thickening behavior and the dynamics of the SIS but are not distinguished by pure rheometrical measurements. A rich-in-details flow curve was found for this solution, which includes five different regimes. Namely, at very low shear rates a Newtonian behavior was found, followed by a shear thinning one in the second regime. In the third, shear banding was observed, which served as a precursor of the SIS and shear-thickening. The fourth and fifth regimes in the flow curve were separated by a spurtlike behavior, and they clearly evidenced the existence of shear-thickening accompanied by stick-slip oscillations at the wall of the rheometer, which subsequently produced variations in the shear rate under shear stress controlled flow. Such a stick-slip phenomenon prevailed up to the highest shear stresses used in this work and was reflected in asymmetric velocity profiles with spatial and temporal variations linked to the dynamics of creation and breakage of the SIS. The presence of apparent slip at the wall of the rheometer provides an energy release mechanism which leads to breakage of the SIS, followed by their further reformation during the stick part of the cycles. In addition, PIV measurements allowed the detection of apparent slip at the wall, as well as mechanical failures in the bulk of the
Directory of Open Access Journals (Sweden)
Maryna Perepelyuk
Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.
Lattice shear distortions in fluorite structure oxides
International Nuclear Information System (INIS)
Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.
1979-01-01
Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
Optimal recovery from microburst wind shear
Mulgund, Sandeep S.
1993-01-01
Severe low-altitude wind variability represents an infrequent but significant hazard to aircraft taking off or landing. During the period from 1964 to 1985, microburst wind shear was a contributing factor in at least 26 civil aviation accidents involving nearly 500 fatalities and over 200 injuries. A microburst is a strong localized downdraft that strikes the ground, creating winds that diverge radially from the impact point. The physics of microbursts have only been recently understood in detail, and it has been found that effective recovery from inadvertent encounters may require piloting techniques that are counter-intuitive to flight crews. The goal of this work was to optimize the flight path of a twin-jet transport aircraft encountering a microburst during approach to landing. The objective was to execute an escape maneuver that maintained safe ground clearance and an adequate stall margin during the climb-out portion of the trajectory.
Research Advances on Fabricated Shear Wall System
Liu, Xudong; Wang, Donghui; Wang, Sheng; Zhai, Yu
2018-03-01
With the rapid development of the construction industry, building energy consumption has been increasing, has become a problem that can not be ignored. It is imperative to develop energy-saving buildings. A new type of prefabricated shear wall is assembled and partially assembled by prefabricated parts, and some concrete is spliced together. The new structure has good integrity, seismic resistance and excellent energy saving and environmental protection performance. It reduces building energy consumption to a great extent. Therefore, the design method, manufacturing process, site assembly process and key technical problems of the system are discussed. For the construction industry gradually entered the energy conservation, environmental protection, safety and durability of sustainable development laid the foundation.
Shear Adhesive Connections for Glass Structures
Machalická, K.; Horčičková, I.; Eliášová, M.
2015-11-01
Unique aesthetical properties of glass - not only transparency but also smooth, glossy and primarily reflective surface - give this material special importance in the contemporary architecture. In every structural application of glass it is necessary to solve the problem associated with connections between glass pane and other part from a different material or between two glass elements. Moreover, there are many types of hybrid structures that combine glass and different materials to achieve safe failure behaviour and high degree of transparency at the same time. Connection of brittle glass and reinforcing material is an essential part of these structures, where composite action between two parts is beneficially ensured by a glued joint. The current paper deals with the experimental analysis focused on the determination of mechanical characteristics of adhesives applied in planar connections under shear loading.
Shear Resistance between Concrete-Concrete Surfaces
Kovačovic, Marek
2013-12-01
The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.
Nonlinear evolution of layered stratified shear flows
Lee, Victoria; Caulfield, Colm-Cille
2000-11-01
We investigate numerically and theoretically the nonlinear evolution of a parallel shear flow at moderate Reynolds number which has embedded within it a mixed layer of intermediate fluid. Linear stability theory predicts that such flows are unstable to stationary vortical disturbances which are a generalization of an inviscid instability first considered by G. I. Taylor. We investigate the behaviour of these Taylor modes at finite amplitude through numerical simulations. Through considering the long-time evolution of such flows, we investigate how secondary instabilities, and the layered background density profile, affect merging between neighbouring Taylor billows, and alter the irreversible mixing of the background stratification as the flow undergoes transition to small-scale disorder.
Reynolds stress and shear flow generation
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.
2001-01-01
The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method......, based on density measurements, to estimate the Reynolds stress, and demonstrate the validity range of this quantity, which we term the pseudo-Reynolds stress. The advantage of such a quantity is that accurate measurements of density fluctuations are much easier to obtain experimentally. Prior...
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.
2017-12-01
1 in the lowest part of the atmospheric surface layer with the form ∼ {u}* 2{k}-1, where {u}* is the surface friction velocity and k is the wavenumber. Tchen’s turbulence theory is shown to be able to predict the measured spectra of the wind velocity component parallel to the mean wind direction for eddy sizes larger than the measurement height above the ground. An amended analytical model for the near-neutral surface layer spectrum is then proposed. This model, which is applicable to the scaling of the u spectrum at all heights in the surface layer, is obtained by a combination of Kaimal’s classical spectral model for scaling the inertial subrange with Tchen’s 1953 and 1954 proposed shear production subrange theory. The shear production-amended spectral model is compared with observations of ensemble-averaged near-neutral spectra selected during a nine-month measurement period from recordings from six sonic anemometers at heights of 10, 20, 40, 60, 80, and 100 m in the meteorological tower at the test site for large wind turbines in Høvsøre, Denmark. Finally, potential applications of the new spectral model are discussed, in particular for use within the lowest one-third of the surface layer in which the production subrange component of the spectrum is most prominent. The new spectral model can supply wavenumber-resolved turbulent kinetic energies for the prediction of wind loads on buildings, bridges, and wind turbines, and its spectral parameterization can also be used for scale-dependent parameterization of, e.g., surface-released atmospheric dispersion calculations for regions close to the ground.
Shear History Extensional Rheology Experiment: A Proposed ISS Experiment
Hall, Nancy R.; Logsdon, Kirk A.; Magee, Kevin S.
2007-01-01
The Shear History Extensional Rheology Experiment (SHERE) is a proposed International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. Collectively referred to as Boger fluids, these polymer solutions have become a popular choice for rheological studies of non-Newtonian fluids and are the non-Newtonian fluid used in this experiment. The SHERE hardware consists of the Rheometer, Camera Arm, Interface Box, Cabling, Keyboard, Tool Box, Fluid Modules, and Stowage Tray. Each component will be described in detail in this paper. In the area of space exploration, the development of in-situ fabrication and repair technology represents a critical element in evolution of autonomous exploration capability. SHERE has the capability to provide data for engineering design tools needed for polymer parts manufacturing systems to ensure their rheological properties have not been impacted in the variable gravity environment and this will be briefly addressed.
Energy considerations in accelerating rapid shear granular flows
Directory of Open Access Journals (Sweden)
S. P. Pudasaini
2009-05-01
Full Text Available We present a complete expression for the total energy associated with a rapid frictional granular shear flow down an inclined surface. This expression reduces to the often used energy for a non-accelerating flow of an isotropic, ideal fluid in a horizontal channel, or to the energy for a vertically falling mass. We utilize thickness-averaged mass and momentum conservation laws written in a slope-defined coordinate system. Both the enhanced gravity and friction are taken into account in addition to the bulk motion and deformation. The total energy of the flow at a given spatial position and time is defined as the sum of four energy components: the kinetic energy, gravity, pressure and the friction energy. Total energy is conserved for stationary flow, but for non-stationary flow the non-conservative force induced by the free-surface gradient means that energy is not conserved. Simulations and experimental results are used to sketch the total energy of non-stationary flows. Comparison between the total energy and the sum of the kinetic and pressure energy shows that the contribution due to gravity acceleration and frictional resistance can be of the same order of magnitude, and that the geometric deformation plays an important role in the total energy budget of the cascading mass. Relative importance of the different constituents in the total energy expression is explored. We also introduce an extended Froude number that takes into account the apparent potential energy induced by gravity and pressure.
Study on load-deflection characteristics of heavily reinforced concrete shear walls
International Nuclear Information System (INIS)
Fukuzawa, R.; Chiba, O.; Hatori, T.; Yagishita, K.
1987-01-01
Twenty seven specimens of reinforced concrete shear walls are employed and many effective results are obtained. The outline of this experimental study, the equation to estimate the maximum shear strength, the skeleton curves and the hysteresis loops on the shear deformation, and the shear deformations at the maximum shear strength, etc. are introduced. (orig./HP)
Shear thickening of Laponite suspensions with poly (ethylene oxide)
Fall, A.; Bonn, D.
2012-01-01
We study the effect of addition of polyethylene oxide (PEO) on the rheological behavior of suspensions of Laponite. Experiments were performed on mixtures of PEO and Laponite at different concentrations. These mixtures can exhibit very strong shear thickening behavior: under shear, the suspension
Parametric excitation of drift waves in a sheared slab geometry
International Nuclear Information System (INIS)
Vranjes, J.; Weiland, J.
1992-01-01
The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)
Midbroken Reinforced Concrete Shear Frames Due to Earthquakes
DEFF Research Database (Denmark)
Köylüoglu, H. U.; Cakmak, A. S.; Nielsen, Søren R. K.
A non-linear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame...
Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."
Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.
2010-01-01
We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork
Influence of steady shear flow on dynamic viscoelastic properties of ...
Indian Academy of Sciences (India)
Rheological parameters such as loss modulus (″) and dynamic viscosity (′) do not vary significantly on superposing steady state shear with oscillatory shear in the studied range of experiment at 185°C in un-reinforced LLDPE. Kevlar fibre reinforced LLDPE and Kevlar/glass fibre reinforced LLDPE showed significant ...
Structure parameter of electrorheological fluids in shear flow.
Jiang, Jile; Tian, Yu; Meng, Yonggang
2011-05-17
A structure parameter, Sn = η(c)γ/τ(E), is proposed to represent the increase of effective viscosity due to the introduction of particles into a viscous liquid and to analyze the shear behavior of electrorheological (ER) fluids. Sn can divide the shear curves of ER fluids, τ/E(2) versus Sn, into three regimes, with two critical values Sn(c) of about 10(-4) and 10(-2), respectively. The two critical Sn(c) are applicable to ER fluids with different particle volume fractions φ in a wide range of shear rate γ and electric field E. When Sn fluids is mainly dominated by E and by shear rate when Sn > 10(-2). The electric current of ER fluids under E varied with shear stress in the same or the opposite trend in different shear rate ranges. Sn(c) also separates the conductivity variation of ER fluids into three regimes, corresponding to different structure evolutions. The change of Sn with particle volume fraction and E has also been discussed. The shear thickening in ER fluids can be characterized by Sn(c)(L) and Sn(c)(H) with a critical value about 10(-6). As an analogy to friction, the correspondence between τ/E(2) and friction coefficient, Sn and bearing numbers, as well as the similarity between the shear curve of ER fluids and the Stribeck curve of friction, indicate a possible friction origin in ER effect.
Interfacial stresses in strengthened beam with shear cohesive zone ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... This paper presents an analytical solution, based on Smith and Teng's equations, for interfacial shear and normal stresses in reinforced concrete (RC) beams strengthened with a fibre reinforced polymer (FRP) plate. However, the shear stress–strain relationship is considered to be bilinear curve.
Shear crack formation and propagation in reinforced Engineered Cementitious Composites
DEFF Research Database (Denmark)
Paegle, Ieva; Fischer, Gregor
2011-01-01
capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC...
Shear jamming in granular experiments without basal friction
Zheng, H.; Dijksman, J.A.; Behringer, R.P.
2014-01-01
Jammed states of frictional granular systems can be induced by shear strain at densities below the isostatic jamming density $(\\\\phi_c)$ . It remains unclear, however, how much friction affects this so-called shear jamming. Friction appears in two ways in this type of experiment: friction between
Experimental investigation of separated shear layer from a leading ...
Indian Academy of Sciences (India)
leading edge is investigated for a range of angles of attack under different pressure gradients for a .... strate the features of separated shear layer over a semi-circular leading edge and showed that the instability ..... Figure 7. Effect of pressure gradient on the growth of shear layer detailed from the onset of separation to.
Review on symmetric structures in ductile shear zones
Mukherjee, Soumyajit
2017-07-01
Symmetric structures in ductile shear zones range widely in shapes and geneses. Matrix rheology, its flow pattern, its competency contrast with the clast, degree of slip of the clast, shear intensity and its variation across shear zone and deformation temperature, and degree of confinement of clast in shear zones affects (independently) the degree of symmetry of objects. Kinematic vorticity number is one of the parameters that govern tail geometry across clasts. For example, symmetric and nearly straight tails develop if the clast-matrix system underwent dominantly a pure shear/compression. Prolonged deformation and concomitant recrystallization can significantly change the degree of symmetry of clasts. Angular relation between two shear zones or between a shear zone and anisotropy determines fundamentally the degree of symmetry of lozenges. Symmetry of boudinaged clasts too depends on competency contrast between the matrix and clast in some cases, and on the degrees of slip of inter-boudin surfaces and pure shear. Parasitic folds and post-tectonic veins are usually symmetric.
Short Communications The effect of shearing pregnant ewes prior to ...
African Journals Online (AJOL)
shearing of winter-lambing ewes prior to lambing, although effects on lamb birth mass and survival were ... The effect on lambs of shearing ewes prior to lambing in pad- docks has not been researched to the same ..... production and feed intake in unmated and mated Border Leicester x. Romney crossbred ewes shorn in ...
Contrasting metamorphism across Cauvery Shear Zone, south India
Indian Academy of Sciences (India)
The Palghat Cauvery Shear Zone (CSZ) is a major shear zone that possibly extends into different fragments of Gondwanaland. In the present study maﬁc granulites occurring on either side of the CSZ in Namakkal area, southern India are examined. Textural features recorded in the maﬁc granulites are crucial in elucidating ...
Shear rheological properties of fresh human faeces with different ...
African Journals Online (AJOL)
Samples were further tested for moisture content, total solids, volatile content, and ash content. Faecal samples were found to have a yield stress; there was a decrease in apparent viscosity with increasing shear rate. For any given shear rate, higher apparent viscosities are associated with lower moisture contents. Across a ...
Ordering fluctuations in a shear-banding wormlike micellar system
DEFF Research Database (Denmark)
Angelico, R.; Rossi, C. Oliviero; Ambrosone, L.
2010-01-01
We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin–water–cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic–nematic phase transition. From rheological...
Critical wall shear stress for the EHEDG test method
DEFF Research Database (Denmark)
Jensen, Bo Boye Busk; Friis, Alan
2004-01-01
In order to simulate the results of practical cleaning tests on closed processing equipment, based on wall shear stress predicted by computational fluid dynamics, a critical wall shear stress is required for that particular cleaning method. This work presents investigations that provide a critical...
A refined shear deformation theory for flexure of thick beams
Directory of Open Access Journals (Sweden)
Yuwaraj M. Ghugal
Full Text Available A Hyperbolic Shear Deformation Theory (HPSDT taking into account transverse shear deformation effects, is used for the static flexure analysis of thick isotropic beams. The displacement field of the theory contains two variables. The hyperbolic sine function is used in the displacement field in terms of thickness coordinate to represent shear deformation. The transverse shear stress can be obtained directly from the use of constitutive relations, satisfying the shear stress-free boundary conditions at top and bottom of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions of the theory are obtained using the principle of virtual work. General solutions of thick isotropic simply supported, cantilever and fixed beams subjected to uniformly distributed and concentrated loads are obtained. Expressions for transverse displacement of beams are obtained and contribution due to shear deformation to the maximum transverse displacement is investigated. The results of the present theory are compared with those of other refined shear deformation theories of beam to verify the accuracy of the theory.
On Howard's conjecture in heterogeneous shear flow problem
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
Abstract. Howard's conjecture, which states that in the linear instability problem of inviscid heterogeneous parallel shear flow growth rate of an arbitrary unstable wave must approach zero as the wave length decreases to zero, is established in a mathematically rigorous fashion for plane parallel heterogeneous shear flows ...
Nonlinear genetic-based simulation of soil shear strength parameters
Indian Academy of Sciences (India)
New nonlinear solutions were developed to estimate the soil shear strength parameters utilizing linear genetic programming (LGP). The soil cohesion intercept () and angle of shearing resistance () were formulated in terms of the basic soil physical properties. The best models were selected after developing and ...
Shear capacity of slabs under a combination of loads
Lantsoght, E.O.L.; Van der Veen, C.; Walraven, J.C.
2013-01-01
Existing solid slab bridges under a combination of wheel loads and distributed traffic loads sometimes do not fulfil the code requirements for shear. However, reinforced concrete slabs loaded close to the support are subjected to shear stresses which might result in a failure mode of combined
Shear Strength of Concrete I-Beams - Contributions of Flanges
DEFF Research Database (Denmark)
Teoh, B. K.; Hoang, Cao Linh; Nielsen, Mogens Peter
1999-01-01
The contribution of flanges to the shear strength of reinforced concrete beams has up to now either been neglected or evaluated by very simple empirical formulas. However, the contribution may sometimes be large, up to 20-30%. In this paper the flange contribution for shear reinforced I-beams has...
Structural behavior of human lumbar intervertebral disc under direct shear.
Schmidt, Hendrik; Häussler, Kim; Wilke, Hans-Joachim; Wolfram, Uwe
2015-03-18
The intervertebral disc (IVD) is a complex, flexible joint between adjacent vertebral bodies that provides load transmission while permitting movements of the spinal column. Finite element models can be used to help clarify why and how IVDs fail or degenerate. To do so, it is of importance to validate those models against controllable experiments. Due to missing experimental data, shear properties are not used thus far in validating finite element models. This study aimed to investigate the structural shear properties of human lumbar IVDs in posteroanterior (PA) and laterolateral (LL) loading directions. Fourteen lumbar IVDs (median age: 49 years) underwent direct shear in PA and LL loading directions. A custom-build shear device was used in combination with a materials testing machine to load the specimens until failure. Shear stiffness, ultimate shear force and displacement, and work to failure were determined. Each specimen was tested until complete or partial disruption. Median stiffness in PA direction was 490 N/mm and in LL direction 568 N/mm. Median ultimate shear force in the PA direction was 2,877 N and in the LL direction 3,199 N. Work to failure was 12 Nm in the PA and 9 Nm in the LL direction. This study was an experiment to subject IVDs to direct shear. The results could help us to understand the structure and function of IVDs with regard to mechanical spinal stability, and they can be used to validate finite element models of the IVD.
Harvesting short rotation woody crops with a shear
Wellington Cardoso; Dana Mitchell; Tom Gallagher; Daniel. and de Souza
2014-01-01
A time and motion study was performed on a skid steer equipped with a 14-inch tree shear attachment. The machine was used to install initial coppice harvesting treatments on three stands across the south. The study included one willow and two cottonwood sites. The stands averaged from 2 to 4 years old. Approximately 200 trees were shear harvested from each of the...
Methodology for calculating shear stress in a meandering channel
Kyung-Seop Sin
2010-01-01
Shear stress in meandering channels is the key parameter to predict bank erosion and bend migration. A representative study reach of the Rio Grande River in central New Mexico has been modeled in the Hydraulics Laboratory at CSU. To determine the shear stress distribution in a meandering channel, the large scale (1:12) physical modeling study was conducted in the...
Shear and Anchorage Behaviour of Fire Exposed Hollow Core Slabs
Fellinger, J.H.H.
2004-01-01
Hollow core (HC) slabs are made of precast concrete with pretensioned strands. These slabs are popular as floor structures in offices and housing. At ambient conditions, the load bearing capacity can be dominated by four different failure modes, i.e. flexure, anchorage, shear compression and shear
Shear and anchorage behaviour of fire exposed hollow core slabs
Fellinger, J.H.H.; Stark, J.; Walraven, J.C.
2005-01-01
The fire resistance of hollow core slabs is currently assessed considering flexural failure only. However, fire tests showed that shear or anchorage failure can also govern the load bearing behaviour. As the shear and anchorage capacity of these slabs rely on the tensile strength of the concrete,
Wind Shear Characteristics at Central Plains Tall Towers (presentation)
Energy Technology Data Exchange (ETDEWEB)
Schwartz, M.; Elliott, D.
2006-06-05
The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.
Seismic strengthening of RC structures with exterior shear walls
Indian Academy of Sciences (India)
performance of exterior RC shear walls (ESW) that are placed parallel to the building's sides. In reality, installing a shear wall to a structural system will surely ..... This study has been carried out with the financial support of State Planning Organization of Turkey with grant number BAP–08–11-DPT.2004K120760, with Middle ...
Weak Weak Lensing : How Accurately Can Small Shears be Measured?
Kuijken, K.
2006-01-01
Abstract: Now that weak lensing signals on the order of a percent are actively being searched for (cosmic shear, galaxy-galaxy lensing, large radii in clusters...) it is important to investigate how accurately weak shears can be determined. Many systematic effects are present, and need to be
Measurement and modeling of bed shear stress under solitary waves
Digital Repository Service at National Institute of Oceanography (India)
Jayakumar, S.; Guard, P.A.; Baldock, T.E.
Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 10 sup (4) < R sub (e...
NONLINEAR RHEOLOGY OF POLYMER MELTS UNDER SHEAR-FLOW
Subbotin, A.V.; Semenov, A.N.; Manias, E; Hadziioannou, G; ten Brinke, G.
1995-01-01
The nonlinear theology of an unentangled polymer melt under shear flow is considered theoretically. The finite chain extensibility is taken into account explicitly. The tangential stress and the first and the second normal-stress differences are calculated as a function of shear rate gamma. It is
On the nature of shear thinning in nanoscopically confined films
Manias, E.; Bitsanis, I.; Hadziioannou, G.; Brinke, G. ten
1996-01-01
Non-Equilibrium Molecular Dynamics (NEMD) computer simulations were employed to study films in nanometer confinements under shear. Focusing on the response of the viscosity, we found that nearly all the shear thinning takes place inside the solid-oligomer interface and that the adsorbed layers are
Effects of irregularity and anisotropy on the propagation of shear ...
African Journals Online (AJOL)
The propagation of shear waves differs between geo-media due to layer's structure and irregularity present in different layers. This paper studies the propagation of shear waves in a monoclinic layer with irregularity lying between two isotropic semiinfinite elastic medium. The displacement in the monoclinic layer is obtained ...
Steady shear viscosity of stirred yoghurts with varying ropiness
van Marle, M.E.; van Marle, M.E.; van den Ende, Henricus T.M.; de Kruif, C.G.; de Kruif, C.G.; Mellema, J.
1999-01-01
Stirred yogurt was viewed as a concentrated dispersion of aggregates consisting of protein particles. The steady-shear behavior of three types of stirred yogurt with varying ropiness was investigated experimentally. To describe the shear-dependent viscosity, a microrheological model was used which
Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...
Indian Academy of Sciences (India)
Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e. ...
Shear behavior of concrete beams externally prestressed with Parafil ropes
Directory of Open Access Journals (Sweden)
A.H. Ghallab
2013-03-01
Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.
Simulation of shear and turbulence impact on wind turbine performance
DEFF Research Database (Denmark)
Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.
of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly...
Mitigating component performance variation
Gara, Alan G.; Sylvester, Steve S.; Eastep, Jonathan M.; Nagappan, Ramkumar; Cantalupo, Christopher M.
2018-01-09
Apparatus and methods may provide for characterizing a plurality of similar components of a distributed computing system based on a maximum safe operation level associated with each component and storing characterization data in a database and allocating non-uniform power to each similar component based at least in part on the characterization data in the database to substantially equalize performance of the components.
Variability and component composition
T. van der Storm (Tijs)
2004-01-01
textabstractIn component-based product populations, feature models have to be described at the component level to be able to benefit from a product family approach. As a consequence, composition of components becomes very complex. We describe how component-level variability can be managed in the
Effect of rock joint roughness on its cyclic shear behavior
Directory of Open Access Journals (Sweden)
S.M. Mahdi Niktabar
2017-12-01
Full Text Available Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris (PoP. Regular joints were simulated by keeping regular asperity with asperity angles of 15°–15° and 30°–30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°–30° and 15°–45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm × 298 mm × 125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.
Directory of Open Access Journals (Sweden)
Noirez Laurence
2017-03-01
Full Text Available This work points out the importance of the substrate boundary conditions to lower the dissipation in the dynamic measurement and access the closest dynamic characteristics of liquids, in particular to access the low frequency shear elasticity. The liquid/surface interface is a source of dissipation that enters and impacts the measurement. Examples of steady-state shear flows or flow birefringence are presented to highlight the non-universality of the behavior with respect to the nature of the substrate or the sheared thickness. Additionally the present development completes and extends the identification of low frequency shear elasticity made at sub-millimeter gaps in various one-component liquids to salt-free aqueous solutions (CTAB-water (Hexadecyl-TrimethylAmmonium Bromide.
The DES Science Verification Weak Lensing Shear Catalogs
International Nuclear Information System (INIS)
Jarvis, M.
2016-01-01
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees
Coexistence and transition between shear zones in slow granular flows.
Moosavi, Robabeh; Shaebani, M Reza; Maleki, Maniya; Török, János; Wolf, Dietrich E; Losert, Wolfgang
2013-10-04
We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient μ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by μ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength.
Stabilization of ballooning modes with sheared toroidal rotation
International Nuclear Information System (INIS)
Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.
1995-01-01
Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics
Shear induced phase transitions induced in edible fats
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams
DEFF Research Database (Denmark)
Paegle, Ieva; Fischer, Gregor
2010-01-01
capacity of beams loaded primarily in shear and if ECC can partially or fully replace the conventional transverse steel reinforcement in beams. However, there is a lack of understanding of how the fibers affect the shear carrying capacity and deformation behavior of structural members if used either...... in combination with conventional transverse reinforcement or exclusively to provide shear resistance. The experimental investigation focuses on the influence of fibers on the shear caring capacity and the crack development in ECC beams subjected to shear. The experimental program consists of ECC with short...... randomly distributed PVA (polyvinyl alcohol) fiber beams with different stirrup spacing and reinforced concrete (RC) beams for comparison. Displacement and strain measurements taken using the ARAMIS photogrammetric data acquisition system by means of processing at high frame rate captured images of applied...
Shear strength of steel fiber-reinforced concrete beams
Directory of Open Access Journals (Sweden)
Daniel de Lima Araújo
2014-02-01
Full Text Available This study analyzed the mechanical behavior of shear strength of steel fiber-reinforced concrete beams. Six beams subjected to shear loading were tested until failure. Additionally, prisms were tested to evaluate fiber contribution to the concrete shear strength. Steel fibers were straight, hook-ended,35 mmlong and aspect ratio equal to 65. Volumetric fractions used were 1.0 and 2.0%. The results demonstrated a great contribution from steel fibers to shear strength of reinforced concrete beams and to reduce crack width, which can reduce the amount of stirrups in reinforced concrete structures. Beam capacity was also evaluated by empirical equations, and it was found that these equations provided a high variability, while some of them have not properly predicted the ultimate shear strength of the steel fiber-reinforced concrete beams.
Study on the Critical Shear Stress of Cohesive Sediments
Zheng, Fei-dong; An, Jian-feng
2017-12-01
Since the measurements of bulk property parameters of cohesive sediments can be done easily, it is useful to relate the critical shear stress of cohesive sediments to some of these parameters. In this paper, data from two experiments are reanalysed and the dependence of the critical shear stress on bulk density, clay solid content and clay volume content is highlighted. The results from Sharif demonstrate the critical shear stress as a function of bulk density and clay solid content, while that from Kothyari and Jain indicate that the critical shear stress depends on both the clay solid content and clay volume content of cohesive sediments in the presence of gravel and air. Moreover, it is concluded a critical clay solid content exists around 18%, beyond which the critical shear stress increases rapidly with the increase of bulk density.
Human capability in the perception of extensional and shear viscosity.
Lv, Zhihong; Chen, Jianshe; Holmes, Melvin
2017-10-01
Shear and extensional deformation are two basic rheological phenomena which occur commonly in our daily life. Because of the very different nature of the two deformations, fluid materials may exhibit significant differences in their responses to shear and extensional forces. This work investigated the human perception of shear and extensional viscosity and tested the hypothesis that human have different discriminatory sensation mechanisms including scaling to the two deformations. A series of fluid samples were prepared using two common food thickeners, guar gum and sodium carboxylmethylcellulose (CMC-Na). The shear and extensional flow behavior of these fluids were assessed using shear and extensional rheometers and in addition two separate sensory analysis sessions were organized to assess human sensitivity in perceiving the two viscosities. Magnitude estimation was used in the first session to assess human sensitivity in the perception of the shear and extensional viscosities and just-noticeable-difference (JND) assessment was used for the second session to identify the typical threshold of viscosity discrimination. For the participants considered, it was found that the perception of both shear and extensional viscosity follow a power law relationship i.e. Steven's law. It was also observed that the human has a greater discriminatory capacity in perceiving extensional viscosity. JND analysis showed that the human threshold in detecting shear viscosity difference was 9.33%, but only 6.20% for extensional viscosity. Shear and extensional deformation are two basic rheological properties which occur during food manipulation, mastication, deglutition executed during oral consumption and also in the processing and packaging of foods. Fluid resistance against shear and extensional deformation differ widely and whilst this has been confirmed theoretically and experimentally, a clear understanding of human perception of these properties will have beneficial returns to
Directory of Open Access Journals (Sweden)
Ammar N. HANOON
2014-12-01
Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.
The shear viscosity in anisotropic phases
Energy Technology Data Exchange (ETDEWEB)
Jain, Sachin [Department of Physics, Cornell University,Ithaca, New York 14853 (United States); Samanta, Rickmoy; Trivedi, Sandip P. [Department of Theoretical Physics, Tata Institute of Fundamental Research,Colaba, Mumbai 400005 (India)
2015-10-06
We construct anisotropic black brane solutions and analyse the behaviour of some of their metric perturbations. These solutions correspond to field theory duals in which rotational symmetry is broken due an externally applied, spatially constant, force. We find, in several examples, that when the anisotropy is sufficiently big compared to the temperature, some components of the viscosity tensor can become very small in units of the entropy density, parametrically violating the KSS bound. We obtain an expression relating these components of the viscosity, in units of the entropy density, to a ratio of metric components at the horizon of the black brane. This relation is generally valid, as long as the forcing function is translationally invariant, and it directly connects the parametric violation of the bound to the anisotropy in the metric at the horizon. Our results suggest the possibility that such small components of the viscosity tensor might also arise in anisotropic strongly coupled fluids found in nature.
Comparison of bed shear under non-breaking and breaking solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.; Baldock, T.E.
New experimental measurements of bed shear under solitary waves and solitary bores that represent tsunamis are presented. The total bed shear stress was measured directly using a shear cell apparatus. The solitary wave characteristics were measured...
Fake μ s : A cautionary tail of shear-thinning locomotion
Montenegro-Johnson, Thomas D.
2017-08-01
Propulsion through fluids is a key component in the life cycle of many microbes, be it in development, infection, or simply finding nutrients. In systems of biomedical relevance, this propulsion is often through polymer suspensions that endow the fluid with complex non-Newtonian properties, such as shear-thinning and viscoelastic behavior. Due to the complexity of three-dimensional (3D) non-Newtonian modeling, two-dimensional (2D) undulatory propulsion has recently been extensively studied as a means of garnering physical intuition for these systems. However, while streamlines, swimming speeds, and swimmer trajectories are strikingly similar in 2D and 3D Newtonian calculations, behavior in non-Newtonian fluids depends upon flow derivatives, such as the shear rate, which are radically different. Taking shear thinning as an example rheology, prevalent in biological fluids such as physiological mucus, this Rapid Communication demonstrates how failing to account for this difference can misguide our understanding of 3D non-Newtonian swimming.
Flux of parallel flow momentum by parallel shear flow driven instability
International Nuclear Information System (INIS)
Kosuga, Yusuke; Itoh, Sanae-I.; Itoh, Kimitaka
2016-01-01
The flux of parallel momentum by parallel shear flow driven instability is calculated with the self-consistent mode dispersion. The result indicates that the diffusive component has two characteristic terms: ν D1 ∼ v tilde x 2 /γ (0) and ν D2 ∼ v tilde x 2 /(k ∥ 2 D ∥ ) where v tilde x is the fluctuation radial velocity, γ (0) is the growth rate of the mode, k ∥ is the parallel wave number, and D ∥ is the electron diffusivity along the magnetic field. ν D1 results when the parallel flow shear is above the threshold, while ν D2 is important around the marginal state. Since typically ν D1 >> ν D2 ∼ D n , where D n is the particle diffusivity, the Prandtl number (≡ ν/D n ) becomes large when parallel flow shear driven instability occurs. This feature may explain the experimental observation on the difference between profiles of density and toroidal flow in edge and SOL plasmas. (author)
Statistics on Near Wall Structures and Shear Stress Distribution from 3D Holographic Measurement.
Sheng, J.; Malkiel, E.; Katz, J.
2007-11-01
Digital Holographic Microscopy performs 3D velocity measurement in the near-wall region of a turbulent boundary layer in a square channel over a smooth wall at Reτ=1,400. Resolution of ˜1μm over a sample volume of 1.5x2x1.5mm (x^+=50, y^+=60, z^+=50) is sufficient for resolving buffer layer and lower log layer structures, and for measuring instantaneous wall shear stress distributions from velocity gradients in the viscous sublayer. Results, based on 700 instantaneous realizations, provide detailed statistics on the spatial distribution of both wall stress components along with characteristic flow structures. Conditional sampling based on maxima and minima of wall shear stresses, as well as examination of instantaneous flow structures, lead to development of a conceptual model for a characteristic flow phenomenon that seems to generating extreme stress events. This structure develops as an initially spanwise vortex element rises away from the surface, due to local disturbance, causing a local stress minimum. Due to increasing velocity with elevation, this element bends downstream, forming a pair of inclined streamwise vortices, aligned at 45^0 to freestream, with ejection-like flow between them. Entrainment of high streamwise momentum on the outer sides of this vortex pair generates streamwise shear stress maxima, 70 δν downstream, which are displaced laterally by 35 δν from the local minimum.
Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear
Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor
2010-05-01
Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by
Buckling and fracture behaviour of cracked thin plates under shear loading
International Nuclear Information System (INIS)
Brighenti, Roberto; Carpinteri, Andrea
2011-01-01
Thin-walled structural components are widely used in several engineering applications such as in aerospace, naval, nuclear power plant, pressure vessel, mechanical and civil fields. Since they are frequently characterised by a high slenderness, the safety assessment of such structural components requires to carefully consider the buckling collapse which can heavily limit their allowable bearing capacity. For very thin plates, buckling collapse can occur under compression, shear, or even under tension. In the present paper, the buckling and fracture collapse mechanisms in an elastic rectangular thin-plate with a central straight crack under shear loading are analysed. Different boundary conditions, crack length and orientation are considered. Through a parametric finite elements (FE) numerical analysis, the crack sensitivity of the collapse load of such a structural component is examined. The obtained results are discussed, and some interesting and useful conclusions are drawn. The collapse mechanism occurring earlier (buckling or fracture) is found by varying the fracture toughness of the material, and some failure-type maps depending on the geometrical parameters of the crack are determined.
Nonperturbative calculation of the shear viscosity in hot $\\phi^{4}$ theory in real time
Wang, E; Wang, Enke; Heinz, Ulrich
1999-01-01
Starting from the Kubo formula we calculate the shear viscosity in hot phi**4 theory nonperturbatively by resumming ladders with a real-time version of the Bethe-Salpeter equation at finite temperature. In the weak coupling limit, the generalized Fluctuation-Dissipation Theorem is shown to decouple the Bethe-Salpeter equations for the different real-time components of the 4-point function. The resulting scalar integral equation is identical with the one obtained by Jeon using diagrammatic ``cutting rules'' in the Imaginary Time Formalism.
Nonlinear interaction of Rayleigh--Taylor and shear instabilities
International Nuclear Information System (INIS)
Finn, J.M.
1993-01-01
Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed
Swinging of two-domains vesicles in shear flow
Viallat, Annie; Tusch, Simon; Khelloufi, Kamel; Leonetti, Marc
2014-11-01
Giant lipid vesicles and red blood cells in shear flow at low shear rates tank tread (TT) at small viscosity ratio between the inner particle volume and the external fluid, and flip or tumble (T) at large viscosity ratio. The phase diagram of motion of red blood cells is however much more complex. Swinging superimposes to TT, cells wobble and roll rather than tumble with increasing shear rate and present a shear-rate driven transition between TT to T. These features are attributed to the shear elasticity and the non spherical stress-free shape of the cell membrane, which stores shear elastic energy as a function of the relative position of its elements. We have created vesicles with a phase diagram of motion comparable to that of red blood cells by preparing membranes with two lipids and cholesterol. These membranes present two domains separated by a contact line. The line has a tension energy that depends on its relative position on the vesicle. Similarly to red blood cells, two-domains vesicles swing and wobble. An analytical model where line tension energy is added to the Keller and Skalak's model fits our experimental data without any adjustable parameter. Our experiments and model shed light on the motion of deformable particles in shear flow.
Phase separating colloid polymer mixtures in shear flow
Energy Technology Data Exchange (ETDEWEB)
Derks, Didi; Imhof, Arnout [Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Aarts, Dirk G A L [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Bonn, Daniel [Laboratoire de Physique Statistique, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris cedex 05 (France)], E-mail: didi.derks@lps.ens.fr
2008-10-08
We study the process of phase separation of colloid polymer mixtures in the (spinodal) two-phase region of the phase diagram in shear flow. We use a counter-rotating shear cell and image the system by means of confocal laser scanning microscopy. The system is quenched from an initially almost homogeneous state at very high (200 s{sup -1}) shear rate to a low shear rate {gamma}-dot. A spinodal decomposition pattern is observed. Initially, the characteristic length scale increases linearly with time. As the structure coarsens, the shear imposes a certain length scale on the structure and a clear asymmetry develops. The domains become highly stretched along the flow direction, and the domain width along the vorticity axis reaches a stationary size, which scales as approx. {gamma}-do{sup -0.35}. Furthermore, on quenching from an intermediate (6.7 s{sup -1}) to a low shear rate the elongated structures become Rayleigh unstable and break up into smaller droplets. Still, the system eventually reaches the same steady state as was found from a direct high to low shear rate quench through coarsening.
Small-scale wind shear definition for aerospace vehicle design.
Fichtl, G. H.
1972-01-01
Rawinsonde wind profile data provide adequate wind shear information for vertical height intervals greater than 1 km. To specify wind shears for intervals below 1 km for space vehicle design, detailed wind-profile information like that provided by the FPS-16 Radar/Jimsphere system or an extrapolation procedure is required. This paper is concerned with the latter alternative. It is assumed that any realization from an ensemble of wind profiles can be represented in terms of a Fourier integral. This permits the calculation of the ensemble standard deviation and mean of the corresponding shear ensemble for any altitude and shear interval in terms of the power spectrum of the ensemble of wind profiles. The results of these calculations show that the mean and standard deviation of the wind shear ensemble, as well as the wind shear for any percentile, asymptotically behave like the vertical interval to the 0.7 power. This result is in excellent agreement with shear data from Cape Kennedy, Fla.
Rayleigh-Taylor instabilities with sheared magnetic fields
International Nuclear Information System (INIS)
Ruderman, M. S.; Terradas, J.; Ballester, J. L.
2014-01-01
Magnetic Rayleigh-Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes of an interface and a slab model under the presence of gravity are analytically calculated assuming that the orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate, corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As an application of the results found in this paper we have indirectly determined the shear angle in solar prominence threads using their lifetimes and the estimation of the Alfvén speed of the structure.
Rayleigh-Taylor instabilities with sheared magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Ruderman, M. S. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Terradas, J.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2014-04-20
Magnetic Rayleigh-Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes of an interface and a slab model under the presence of gravity are analytically calculated assuming that the orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate, corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As an application of the results found in this paper we have indirectly determined the shear angle in solar prominence threads using their lifetimes and the estimation of the Alfvén speed of the structure.
Tensile and shear methods for measuring strength of bilayer tablets.
Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin
2017-05-15
Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.
On the persistence of adiabatic shear bands
Directory of Open Access Journals (Sweden)
Bassim M.N.
2012-08-01
Full Text Available It is generally agreed that the initiation and development of adiabatic shear bands (ASBs are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the “scars” due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
Mixing by shear, dilation, swap, and diffusion
Brassart, Laurence; Liu, Qihan; Suo, Zhigang
2018-03-01
This paper presents a theory of poroviscosity for binary solutions. Subject to mechanical forces and connected to reservoirs of molecules, a binary solution evolves by concurrent flow and diffusion. Our theory generalizes the classical theory of interdiffusion by decoupling the molecular processes for flow and diffusion. We further remove the assumption of local chemical equilibrium, so that the insertion of molecular into a material element, accompanied by a change in volume, is treated as non-equilibrium process and is put on the same footing as the process of shear deformation by viscous flow. The theory of poroviscosity has an intrinsic length scale, called the poroviscous length, below which the homogenization of a composition heterogeneity is limited by viscous flow, rather than by diffusion. The theory has implications for the analysis of interdiffusion in systems that display a decoupling between flow and diffusion, such as supercooled liquids, glasses, and physical gels. We illustrate the theory with numerical examples of a layered structure and a spherical particle. We discuss the results for feature sizes below and above the poroviscous length.
Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.
Directory of Open Access Journals (Sweden)
Melissa Li
Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.
U.S. Environmental Protection Agency — The Reusable Component Services (RCS) is a super-catalog of components, services, solutions and technologies that facilitates search, discovery and collaboration in...
Development of a Shear Deformable Element Using the Absolute Nodal Coordinate Formulation
National Research Council Canada - National Science Library
Omar, Mohamed
2000-01-01
.... The effect of the shear deformation is accounted for without the need for introducing Timoshenko's shear coefficient By using the absolute coordinates, the nonlinear strain-displacement relationships...
Wall shear stress hot film sensor for use in gases
International Nuclear Information System (INIS)
Osorio, O D; Silin, N
2011-01-01
The purpose of this work is to present the construction and characterization of a wall shear stress hot film sensor for use in gases made with MEMS technology. For this purpose, several associated devices were used, including a constant temperature feedback bridge and a shear stress calibration device that allows the sensor performance evaluation. The sensor design adopted here is simple, economical and is manufactured on a flexible substrate allowing its application to curved surfaces. Stationary and transient wall shear stress tests were carried on by means of the calibration device, determining its performance for different conditions.
Coherent structures in compressible free-shear-layer flows
Energy Technology Data Exchange (ETDEWEB)
Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center
1997-08-01
Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.
Shear viscosities of photons in strongly coupled plasmas
Directory of Open Access Journals (Sweden)
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Thermal convection of viscoelastic shear-thinning fluids
International Nuclear Information System (INIS)
Albaalbaki, Bashar; Khayat, Roger E; Ahmed, Zahir U
2016-01-01
The Rayleigh–Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien–Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity. (paper)
Stimulated bioluminescence by fluid shear stress associated with pipe flow
Energy Technology Data Exchange (ETDEWEB)
Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)
2011-01-01
Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.
Experimental measurement of granular fabric and its evolution under shearing
Wiebicke, Max; Andò, Edward; Salvatore, Erminio; Viggiani, Gioacchino; Herle, Ivo
2017-06-01
X-ray μ computed tomography (CT) made three-dimensional in-situ imaging of natural granular materials possible. Previous work using x-ray μCT and triaxial compression tests has studied the 3D kinematics of individual grains during shear banding [1]. This works aims to supplement these measurements of kinematics with the measurement of different fabric entities, such as particle or contact orientations. It was found that the individual orientations of the different fabric entities pick up on the forming and the direction of the evolving shear band. The evolution of the anisotropy of the bulk of orientations corresponds to the macroscopic behaviour during the shearing test.
High Resolution Shear Profile Measurements in Entangled Polymers
Hayes, Keesha A.
2008-11-17
We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.
Response Modification Factor of Coupled Steel Shear Walls
Directory of Open Access Journals (Sweden)
gholamreza abdollahzadeh
2013-06-01
Full Text Available The present research is concerned with the determination of ductility, over-strength and response modification factors of coupled steel shear wall frames. Three structural models with various numbers of stories, bay width and coupling beam height were analyzed using static pushover and incremental nonlinear dynamic analyses. The ductility, over-strength and response modification factors for the three models are determined. Tentative values of 11.1, 11.6 and 10.6 are suggested for the response modification factor of coupled steel shear wall frames with deep and medium depth coupling beams, and uncoupled steel shear wall frames, respectively in the allowable stress design method.
Software component quality evaluation
Clough, A. J.
1991-01-01
The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.
Directory of Open Access Journals (Sweden)
M. S. Samora
Full Text Available Abstract There are many theories and empirical formulas for estimating the shear strength of reinforced concrete structures without transverse reinforcement. The security factor of any reinforced concrete structure, against a possible collapse, is that it does not depend on the tensile strength of the concrete and the formation of any collapse is ductile, thus giving advance warning. The cracking from tensile stress can cause breakage of the concrete and should be avoided at all cost, with the intent that any such breakage does not incur any type of failure within the structure. In the present research study, experiments were performed in order to analyze the complementary mechanisms of the shear strength of lattice beams of reinforced concrete frames without transverse reinforcement. The experimental program entails the testing of eight frames that were subjected to a simple bending process. Two concrete resistance classes for analyzing compressive strength were considered on the construction of frames, 20 MPa and 40 MPa. To resist the bending stresses, the beams of the frames are designed in domain 3 of the ultimate limit states. Different rates and diameters of longitudinal reinforcement were used, 1.32% and 1.55% with 12.5 mm diameter and 16.0 mm in longitudinal tensile reinforcement. From the obtained results, an analysis was made of the criteria already proposed for defining the norms pertinent to the portion of relevant contribution for the shear resistance mechanisms of concrete without the use of transverse reinforcement and the influence of the concrete resistance and longitudinal reinforcement rates established in the experimental numerical results.
Reactor component automatic grapple
International Nuclear Information System (INIS)
Greenaway, P.R.
1982-01-01
A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment. (author)
Bro, R.; Smilde, A.K.
2014-01-01
Principal component analysis is one of the most important and powerful methods in chemometrics as well as in a wealth of other areas. This paper provides a description of how to understand, use, and interpret principal component analysis. The paper focuses on the use of principal component analysis
Self-shearing retentive pins: a laboratory evaluation of pin channel penetration before shearing.
Barkmeier, W W; Cooley, R L
1979-09-01
This laboratory study determined the depth reached by self-shearing pins in dentin pin channels. Pin channels were prepared with the self-limiting shoulder twist drill for each of the four systems tested. Mean channel depth reached for the various pin systems was: Stabilok (small), 2.31 mm; Stabilok (medium), 1.78 mm; Reten Pin, 1.40 mm; and TMS (Regular), 2.04 mm. A coparison was also made by calculating the mean percent of penetration in relation to the depth of prepared pin channel: Stabilok (small), 92.50%; Stabilok (medium), 63.62%; Reten Pin, 66.67%; and TMS (Regular) 81.75%.
Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.
Glavatskiy, Kirill S; Dalton, Benjamin A; Daivis, Peter J; Todd, B D
2015-06-01
We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.
Glavatskiy, Kirill S.; Dalton, Benjamin A.; Daivis, Peter J.; Todd, B. D.
2015-06-01
We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.
Energy Technology Data Exchange (ETDEWEB)
Burrell, K.H.
1996-11-01
One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.
Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams
Directory of Open Access Journals (Sweden)
Alhamad Siyam
2017-01-01
Full Text Available This study investigates the shear behavior of deep concrete beams reinforced with basalt fiber reinforced polymer (BFRP bars for flexure without web reinforcements. The experimental testing performed herein consisted of a total of 4 short beams, three of which were reinforced with BFRP and one beam was reinforced with steel bars. The primary test variable was the shear-span-to-effective-depth ratio (a/d and its influence on the beams’ mid-span deflections, shear capacity, load-deformation relationships and the failure modes.
In vitro analysis of self-shearing retentive pins.
Collard, E W; Caputo, A A; Standlee, J P; Duncanson, M G
1981-02-01
Combining stress, analysis, microscopic examination, mechanical testing of the shear mechanism, and retention of the Reten Pin leads to the following conclusions: 1. The suggested 0.006 inch pin-channel mismatch induces high lateral and apical stresses. Microscopically, this was seen to correlate with injury to the dentin. 2. The degree of retention was increased by using a smaller pin-channel mismatch. This correlates with smaller stresses and reduced dentinal damage. 3. The shear mechanism acts in a uniform manner, with a relatively small variation from the mean. It is suggested that for the best results the manufacturer should supply larger twist drills and pins with a somewhat deeper self-shearing groove to minimize apical involvement during shearing of the handle from the pin.
Drift Wave Test Particle Transport in Reversed Shear Profile
International Nuclear Information System (INIS)
Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.
1998-01-01
Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated
The combined compression and shear of a rectangular rubber block
Hill, James M.; Myers, Timothy G.
1992-09-01
For long rectangular rubber blocks with metal plates bonded to their upper and lower surfaces, approximate force-deflection relations are obtained for the problem of combined compression (or tension) and shear. The results obtained generalise that of Klingbeil and Shield for the case of pure compression alone, as well as incorporating the well known simple shear result. However, unlike the pure compression solution, horizontal and vertical force resultants on the free surfaces cannot both be set to zero, which is a well known characteristic of simple shearing. Here the strategy is adopted of equating to zero only the horizontal force resultants on the free surfaces so that the pure compression approximation of Klingbeil and Shield emerges in the event of zero shear. The force-deflection relations so obtained are illustrated graphically.
Wind shear extremes at possible offshore wind turbine locations
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2003-01-01
Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.windda...... seems to be rather conservative for an offshore location, compared to the estimated values based on measurements.......Positive and negative short-term extreme wind shear distributions (conditioned on the mean wind speed) are determined and compared for a number of offshore sites. The analysis is based on rapidly sampled field measurements (1-8 Hz) extracted from the "Database on Wind Characteristics" (www.......winddata.com). Three different averaging periods (2, 5 and 10 seconds) are considered, and for each averaging period a relation between the resulting extreme shear distributions and the averaging time are presented. The short-term extreme shear analysis is based on different spatial distances, and extrapolation...
Shear testing of fiber reinforced metal matrix composites
Pindera, Marek-Jerzy
1989-01-01
This paper outlines the elements of a combined experimental/analytical methodology for accurate shear characterization of unidirectional composites in the linear and nonlinear range, with particular attention devoted to metal matrix composites. It is illustrated that consistent results can be obtained for a large class of composites from two commonly employed shear test methods currently in use by composites researchers when the influence of various factors that affect the determination of the actual shear response is properly analyzed. These factors include the effects of material anisotropy, specimen geometry, manner of load introduction, and test fixture design on the stress and deformation fields in the test section of off-axis and Iosipescu specimens. Common errors associated with the measurement of deformation fields and calculation of stress fields are discussed and quantified. Particular problems in the determination of the shear response of unidirectional boron/aluminum using the Iosipescu test are illustrated and discussed.
Interaction of equal-size bubbles in shear flow.
Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam
2013-04-01
The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.
A continuum mechanics analysis of shear characterisation methods
Akkerman, Remko
2018-01-01
The shear response of fabrics and fabric reinforced materials is primarily characterised by means of Picture Frame and Bias Extension experiments. Normalisation methods have been proposed earlier to enable comparison between different measurement results. Here, a continuum mechanics based analysis
Production of functional proteins: balance of shear stress and gravity
Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)
2011-01-01
A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.
Shear capacity of in service prestressed concrete bridge girders.
2010-05-17
The design of prestressed concrete bridge girders has changed significantly over the past several : decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that : was used forty years ago is very different than t...
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio; Chen, Liu
2014-02-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Nonlinear physics of shear Alfvén waves
International Nuclear Information System (INIS)
Zonca, Fulvio; Chen, Liu
2014-01-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, C.; Ruigrok, E.; Shiomi, K.
2016-01-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal
Boundary shear stress along rigid trapezoidal bends
Christopher I. Thornton; Kyung-Seop Sin; Paul Sclafani; Steven R. Abt
2012-01-01
The migration of alluvial channels through the geologic landform is an outcome of the natural erosive processes. Mankind continually attempts to stabilize channel meandering processes, both vertically and horizontally, to reduce sediment discharge, provide boundary definition, and enable economic development along the river's edge. A critical component in the...
Adiabatic Shear Bands in Simple and Dipolar Viscoplastic Materials
1991-08-01
Slock ’Jncergoing overall Simple Shearing Deformations. 4. PUBLICATIONS a) ARTICLES IN REFEREED JOURNALS 1. R. C. Batra and Y. W. Kwon ...11) (12) wmen can be viewed as a generalized von Mises yield surface when the flow stress (given oy the ngnt-hand side of (12)) at a material...since Vtarchand and Duffy observed that during the drop o( the shear stress, the nominal strain increases oy approximately 5%. The Litonski law for
Effect of Particle Size on Shear Stress of Magnetorheological Fluids
Chiranjit Sarkar; Harish Hirani
2015-01-01
Magnetorheological fluids (MRF), known for their variable shear stress contain magnetisable micrometer-sized particles (few micrometer to 200 micrometers) in a nonmagnetic carrier liquid. To avoid settling of particles, smaller sized (3-10 micrometers) particles are preferred, while larger sized particles can be used in MR brakes, MR clutches, etc. as mechanical stirring action in those mechanisms does not allow particles to settle down. Ideally larger sized particles provide higher shear str...
Structural studies of lamellar surfactant systems under shear
DEFF Research Database (Denmark)
Mortensen, K.
2001-01-01
Recent experimental studies on concentrated surfactant systems are reviewed. Particular attention is focused on the transformation from planar lamellar sheets to multilamellar vesicles. It is discussed whether both of these states are thermodynamic stable, or if the MLV is an artifact of shear...... induced factors. Recent studies includes the dependence on shear, and dependence on salt and cosurfactants, and thereby related lamellar defects. The review include moreover the demonstration that polymeric amphiphiles dramatically enhance the quality of classical surfactants. (C) 2001 Elsevier Science...
A constitutive model for simple shear of dense frictional suspensions
Singh, Abhinendra; Mari, Romain; Denn, Morton M.; Morris, Jeffrey F.
2018-03-01
Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $\\phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $\\phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(\\phi,\\tilde{\\sigma}$, and $\\mu)$, with $\\tilde{\\sigma} = \\sigma/\\sigma_0$ the dimensionless shear stress and $\\mu$ the coefficient of interparticle friction: the dimensional stress is $\\sigma$, and $\\sigma_0 \\propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \\textquotedblleft jamming\\textquotedblright\\ points at volume fraction $\\phi_{\\rm J}^0 = \\phi_{\\rm rcp}$ (random close packing) for the low-stress lubricated state, and at $\\phi_{\\rm J} (\\mu) < \\phi_{\\rm J}^0$ for any nonzero $\\mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.
Comment on "Accelerating cosmological expansion from shear and bulk viscosity"
Giovannini, Massimo
2015-01-01
In a recent Letter [Phys. Rev. Lett. 114 091301 (2105)] the cause of the acceleration of the present Universe has been identified with the shear viscosity of an imperfect relativistic fluid even in the absence of any bulk viscous contribution. The gist of this comment is that the shear viscosity, if anything, can only lead to an accelerated expansion over sufficiently small scales well inside the Hubble radius.
Microvoid Formation during Shear Deformation of Ultrahigh Strength Steels
1989-01-01
These speci- mens are machined from standard sized Charpy blanks. They have two narrow gage sections which are displaced simultaneously in simple shear...Figure 2). Dynamic tests were performed in a modified instrumented Charpy im- LOADING SCHEMATIC DIAGRAM pact machine. The Charpy specimen fixture was...In addition, the pendulum weight nliatic diagram ot a double linear shear specimen. h ,peclmen is w sp h rsheared " ithin the tvwo reduced sections
Inflation in a shear-or curvature-dominated universe
International Nuclear Information System (INIS)
Steigman, G.; Turner, M.S.
1983-01-01
We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)
Application of bamboo for flexural and shear reinforcement in concrete beams
Schneider, Nathan Alan
As the developing world is industrializing and people migrate to cities, the need for infrastructure is growing quickly and concrete has become one of the most widely used construction materials. One poor construction practice observed widely across the developing world is the minimal use of reinforcement for concrete structures due to the high cost of steel. As a low-cost, high-performance material with good mechanical properties, bamboo has been investigated as an alternative to steel for reinforcing concrete. The goal of this research is to add to the knowledge base of bamboo reinforced concrete (BRC) by investigating a unique stirrup design and testing the lap-splicing of flexural bamboo reinforcement in concrete beams. Component tests on the mechanical properties of Moso bamboo (Phyllostachys edulis) were performed, including tensile tests and pull-out tests. The results of the component tests were used to design and construct 13 BRC beams which were tested under monotonic gravity loading in 3 and 4-point bending tests. Three types of beams were designed and tested, including shear controlled, flexure controlled, and lap-spliced flexure controlled beams. The test results indicated that bamboo stirrups increased unreinforced concrete beam shear capacities by up to 259%. The flexural bamboo increased beam capacities by up to 242% with an optimal reinforcement ratio of up to 3.9%, assuming sufficient shear capacity. Limitations of the bamboo reinforcement included water absorption as well as poor bonding capability to the concrete. The test results show that bamboo is a viable alternative to steel as tensile reinforcement for concrete as it increases the ultimate capacity of the concrete, allows for high deflections and cracks, and provides warning of impending structural failure.
Effects of opening in shear walls of 30- storey building
Directory of Open Access Journals (Sweden)
Ruchi Sharma
2015-03-01
Full Text Available Tall towers and multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection and stability (i.e. Resistance to overturning moments requirement become more important. Shear walls (Structural walls contribute significant lateral stiffness, strength, and overall ductility and energy dissipation capacity. In many structural walls a regular pattern of openings has to be provided due to various functional requirements such as to accommodate doors, windows and service ducts. Such type of openings reduces the stiffness of the shear wall to some extent depending on the shape and size of the opening. In the present parametric study, efforts are made to investigate and critically assess the effects of various size of openings in shear walls on the responses and behaviors of multi-storey buildings. The 30 storey Prototype buildings with different types of openings in shear wall with and without incorporating the volume of shear wall reduced in the boundary elements are analyzed using software E-TABS using Response spectrum method (1893(Part-1-2002 and Time history method.
Modeling Shear Induced Von Willebrand Factor Binding to Collagen
Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong
2017-11-01
Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).
On the asymmetric distribution of shear-relative typhoon rainfall
Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan
2018-02-01
The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.
Effect of Particle Size on Shear Stress of Magnetorheological Fluids
Directory of Open Access Journals (Sweden)
Chiranjit Sarkar
2015-05-01
Full Text Available Magnetorheological fluids (MRF, known for their variable shear stress contain magnetisable micrometer-sized particles (few micrometer to 200 micrometers in a nonmagnetic carrier liquid. To avoid settling of particles, smaller sized (3-10 micrometers particles are preferred, while larger sized particles can be used in MR brakes, MR clutches, etc. as mechanical stirring action in those mechanisms does not allow particles to settle down. Ideally larger sized particles provide higher shear stress compared to smaller sized particles. However there is need to explore the effect of particle sizes on the shear stress. In the current paper, a comparison of different particle sizes on MR effect has been presented. Particle size distributions of iron particles were measured using HORIBA Laser Scattering Particle Size Distribution Analyser. The particle size distribution, mean sizes and standard deviations have been presented. The nature of particle shapes has been observed using scanning electron microscopy. To explore the effect of particle sizes, nine MR fluids containing small, large and mixed sized carbonyl iron particles have been synthesized. Three concentrations (9%, 18% and 36% by volume for each size of particles have been used. The shear stresses of those MRF samples have been measured using ANTON PAAR MCR-102 Rheometer. With increase in volume fraction of iron particles, the MR fluids synthesized using “mixed sized particles” show better shear stress compared to the MR fluids containing “smaller sized spherical shaped particles” and “larger sized flaked shaped particles” at higher shear rate.
Inelastic deformations of fault and shear zones in granitic rock
International Nuclear Information System (INIS)
Wilder, D.G.
1986-02-01
Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads
Nanoscale dislocation shear loops at static equilibrium and finite temperature
Dang, Khanh; Capolungo, Laurent; Spearot, Douglas E.
2017-12-01
Atomistic simulations are used to determine the resolved shear stress necessary for equilibrium and the resulting geometry of nanoscale dislocation shear loops in Al. Dislocation loops with different sizes and shapes are created via superposition of elemental triangular dislocation displacement fields in the presence of an externally imposed shear stress. First, a bisection algorithm is developed to determine systematically the resolved shear stress necessary for equilibrium at 0 K. This approach allows for the identification of dislocation core structure and a correlation between dislocation loop size, shape and the computed shear stress for equilibrium. It is found, in agreement with predictions made by Scattergood and Bacon, that the equilibrium shape of a dislocation loop becomes more circular with increasing loop size. Second, the bisection algorithm is extended to study the influence of temperature on the resolved shear stress necessary for stability. An approach is presented to compute the effective lattice friction stress, including temperature dependence, for dislocation loops in Al. The temperature dependence of the effective lattice friction stress can be reliably computed for dislocation loops larger than 16.2 nm. However, for dislocation loops smaller than this threshold, the effective lattice friction stress shows a dislocation loop size dependence caused by significant overlap of the stress fields on the interior of the dislocation loops. Combined, static and finite temperature atomistic simulations provide essential data to parameterize discrete dislocation dynamics simulations.
Investigation of sheared liquids by neutron backscattering and reflectivity
Wolff, M; Hock, R; Frick, B; Zabel, H
2002-01-01
We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)
Swimming efficiency in a shear-thinning fluid
Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun
2017-12-01
Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.
Displacement-length scaling of brittle faults in ductile shear.
Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius
2011-11-01
Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.
Displacement–length scaling of brittle faults in ductile shear
Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius
2011-01-01
Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996
Shear-limited test particle diffusion in 2-dimensional plasmas
International Nuclear Information System (INIS)
Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H.E.
2002-01-01
Measurements of test-particle diffusion in pure ion plasmas show 2D enhancements over the 3D rates, limited by shear in the plasma rotation ω E (r). The diffusion is due to 'long-range' ion-ion collisions in the quiescent, steady-state Mg + plasma. For short plasma length L p and low shear S≡r∂ω E /∂r, thermal ions bounce axially many times before shear separates them in θ, so the ions move in (r,θ) as bounce averaged 'rods' of charge (i.e. 2D point vortices). Experimentally, we vary the number of bounces over the range 0.2≤N b ≤10,000. For long plasmas with N b ≤1, we observe diffusion in quantitative agreement with the 3D theory of long-range ExB drift collisions. For shorter plasmas or lower shear, with N b >1, we measure diffusion rates enhanced by up to 100x. For exceedingly small she0ar, i.e. N b ≥1000, we observe diffusion rates consistent with the Taylor-McNamara estimates for a shear-free thermal plasma. Overall, the data shows fair agreement with Dubin's new theory of 2D diffusion in shear, which predicts an enhancement of D 2D /D 3D ≅N b up to the Taylor-McNamara limit
Energy Technology Data Exchange (ETDEWEB)
Passarelli, Claudia Regina
1996-12-31
This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr{sup 87} / Sr{sup 86} initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 {+-} 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 {+-} 15 Ma.) 220 refs., 107 figs., 18 tabs., 4 maps
Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V
2012-01-01
Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...
ExB-Shear Effects on Magnetic-Flutter Diffusion of Electron-Drift Trajectories in ITG Turbulence
Dimits, A. M.; Nevins, W. M.; Wang, E.; Candy, J.; Holland, C.
2015-11-01
Magnetic-field stochasticity arises due to microtearing perturbations, which can be driven linearly or nonlinearly, even at very modest values of the plasma beta. The resulting magnetic-flutter contribution may or may not be a significant component of the overall electron (particle and thermal) transport. Initial investigations of the effect of ExB shear on electron-drift magnetic-flutter diffusion coefficient Dedr (r ,v||) using perturbed magnetic fields from GYRO simulations of ITG turbulence show two interesting results: 1) an absence of any peak in Dedr (r ,v||) at values of the ``resonant'' parallel velocity, v||, at which the ExB shear negates the magnetic shear, and 2) a significant increase in Dedr (r ,v||) for electrons with v|| surprisingly far from the resonant velocity. We explore these effects both through a more detailed quantification of the displacement and decorrelation rates of the orbits, as a function of parallel distance, and through a simplified model of electron drift motion in a poloidally localized turbulent magnetic field. Furthermore, we argue that a correct model will have ExB shearing of the perturbed magnetic field structures themselves, and we extend our investigations to include this effect. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344, and by GA under Contract DE-FG03-95ER54309.
Ucar, Taner; Merter, Onur
2018-01-01
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
Energy Technology Data Exchange (ETDEWEB)
Tiwary, R.; Mehrotra, A.K. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering
2008-07-01
The effects of deposition time and shear rate on the deposition of solids was investigated under turbulent flow, for solutions of a multi-component wax in a paraffinic solvent. The deposition experiments were performed in a bench-scale flow-loop apparatus, incorporating a co-current double-pipe heat exchanger. The experiment involved 2 mixture compositions (10 and 15 mass per cent wax) at Reynolds numbers between 9000 and 27000 over a range of deposition times from 30 min to 24 h. The study showed that the deposit mass decreased with an increase in the Reynolds number, but it increased asymptotically with the deposition time. The deposit mass and density data were analyzed using a pseudo-steady-state heat transfer model to study the variation in the deposit-layer thickness and thermal conductivity with shear rate and deposition time. According to the GC analysis of deposit samples, there were noticeable changes in the carbon-number-distribution with shear rate and time. The variations in deposit properties were also assessed using a recently proposed model involving one-dimensional cubical-cage deformation. These study results provide evidence that deposition from waxy crude oils is mainly a thermally-driven process, in which the shear stress and the deposition time play significant roles by influencing the deposit properties. 4 refs.
Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows
Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan
2017-11-01
We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.
Directory of Open Access Journals (Sweden)
Vieraşu, T.
2011-01-01
Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.
Vieraşu, T.; Bălăşescu, M.
2011-01-01
In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.
Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Porter, Christopher Donald; Schick, David Edward
2017-09-12
Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.
Energy Technology Data Exchange (ETDEWEB)
MARTIN RL; OMBERG RP
1975-12-19
The core component pot is an open top vessel used to hold both new and irradiated core components for storage in the IDS and for holding the components submerged in sodium while being trasported inside CLEM. The top of the CCP is equipped with a grapple lip which is engaged by the hoisting grapples. Heat for maintaining the preheat of new components and dissipation of decay heat of irradiated fuel assemblies is conducted between the wall of the pot and the surrounding environment by thermal radiation and convection.
Energy Technology Data Exchange (ETDEWEB)
Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)
2014-09-01
The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.
Degree of coupling in high-rise mixed shear walls structures
Indian Academy of Sciences (India)
A simple method of analysis is presented to determine the inﬂuence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and ...
Degree of coupling in high-rise mixed shear walls structures
Indian Academy of Sciences (India)
Keywords. Coupled shear walls; degree of coupling; peak shear demand; concrete. ... The proposed graphical method is based on the continuous medium theory and allows a rapid assessment of the structural behaviour of coupled shear wall bents in mixed shear wall structures that are subject to horizontal loading.
E–W strike slip shearing of Kinwat granitoid at South East Deccan ...
Indian Academy of Sciences (India)
R D Kaplay
2017-07-21
Jul 21, 2017 ... cO Indian Academy of Sciences. DOI 10.1007/s12040-017-0853-8. E–W strike slip shearing of Kinwat granitoid at South East. Deccan ...... shear zone, Sutlej section-structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes; Int. J.
Numerical investigation into strong axis bending shear interaction in rolled I-shaped steel sections
Dekker, R.W.A.; Snijder, B.H.; Maljaars, J.
2016-01-01
Clause 6.2.8 of EN 1993-1-1 covers the design rules on bending-shear resistance, taking presence of shear into account by a reduced yield stress for the shear area. Numerical research on bending-shear interaction by means of the Abaqus Finite Element modelling soft-ware is presented. The numerical
The effect of collagen removal on shear bond strength of four single bottle adhesive systems
Directory of Open Access Journals (Sweden)
Kasraie Sh
2006-07-01
Full Text Available Background and Aim: Achieving adhesion between restorative materials and dentin as a wet and dynamic surface is an important topic in restorative and especially in conservative dentistry. Adhesion of new dentin bonding systems depends on the formation of hybrid layer and micromechanical retention. Nevertheless, an ideal adhesive system has not yet been introduced .Recent studies reveal an increase in bonding stability when the collagen is removed from demineralized dentin surfaces. This study investigates the effect of collagen removal on the shear bond strength of four single bottle dentin bonding systems regarding their structural differences. Materials and Methods: This experimental study was performed on 56 intact human premolar teeth. Smooth surfaces of dentin were prepared on buccal & lingual aspects of teeth, providing 112 dentin surfaces. The dentin surfaces were etched with 37% phosphoric acid for 15 seconds and then rinsed. The specimens were divided into 8 groups. Single bottle adhesive systems [Single Bond (3M, One-Step (Bisco, Prime & Bond NT (Dentsply, and Excite (Vivadent] were then applied on the dentin surfaces of 4 groups using the wet bonding technique. In the other 4 groups, the demineralized dentin surfaces were treated with a 5.25% solution of sodium hypochlorite for one minute in order to remove the surface organic components. The adhesive systems mentioned before were applied to these 4 groups with the same wet bonding technique. A cylinder of Z100 (3M dental composite with a 3 mm diameter and 2 mm height was placed on the adhesive covered dentin surface of all groups and light-cured (400 mW/cm2 ,40 sec on each side. The specimens were kept in distilled water at room temperature for one week and then thermocycled for 3000 times (5-55 oc. Shear bond strength of specimens was measured using an Instron (1495 universal mechanical testing machine with cross-head speed of 0.5 mm/minute and chisel form shearing blade. Data were
Shear layer flame stabilization sensitivities in a swirling flow
Directory of Open Access Journals (Sweden)
Christopher Foley
2017-03-01
Full Text Available A variety of different flame configurations and heat release distributions exist in high swirl, annular flows, due to the existence of inner and outer shear layers as well a vortex breakdown bubble. Each of these different configurations, in turn, has different thermoacoustic sensitivities and influences on combustor emissions, nozzle durability, and liner heating. This paper presents findings on the sensitivities of the outer shear layer- stabilized flames to a range of parameters, including equivalence ratio, bulkhead temperature, flow velocity, and preheat temperature. There is significant hysteresis for flame attachment/detachment from the outer shear layer and this hysteresis is also described. Results are also correlated with extinction stretch rate calculations based on detailed kinetic simulations. In addition, we show that the bulkhead temperature near the flame attachment point has significant impact on outer shear layer detachment. This indicates that understanding the heat transfer between the edge flame stabilized in the shear layer and the nozzle hardware is needed in order to predict shear layer flame stabilization limits. Moreover, it shows that simulations cannot simply assume adiabatic boundary conditions if they are to capture these transitions. We also show that the reference temperature for correlating these transitions is quite different for attachment and local blow off. Finally, these results highlight the deficiencies in current understanding of the influence of fluid mechanic parameters (e.g. velocity, swirl number on shear layer flame attachment. For example, they show that the seemingly simple matter of scaling flame transition points with changes in flow velocities is not understood.
Impact of shear rate modulation on vascular function in humans.
Tinken, Toni M; Thijssen, Dick H J; Hopkins, Nicola; Black, Mark A; Dawson, Ellen A; Minson, Christopher T; Newcomer, Sean C; Laughlin, M Harold; Cable, N Timothy; Green, Daniel J
2009-08-01
Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow-mediated dilation, a largely NO-mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling, and bilateral handgrip exercise. During each intervention, a cuff inflated to 60 mm Hg was placed on 1 arm to unilaterally manipulate the shear rate stimulus. In the noncuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline flow-mediated dilation (4.6%, 6.9%, and 6.7%) increased similarly in response to heating, handgrip, and cycling (8.1%, 10.4%, and 8.9%, ANOVA; P<0.001, no interaction; P=0.89). In contrast, cuffed arm antegrade shear rate was lower than in the noncuffed arm for all of the conditions (P<0.05), and the increase in flow-mediated dilation was abolished in this arm (4.7%, 6.7%, and 6.1%; 2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding that may have relevance for the impact of different exercise interventions on vascular adaptation in humans.
Insulation interlaminar shear strength testing with compression and irradiation
International Nuclear Information System (INIS)
McManamy, T.J.; Brasier, J.E.; Snook, P.
1989-01-01
The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 x 25 x 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 x 10 9 and 2 x 10 10 rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs
NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST
Directory of Open Access Journals (Sweden)
Andrea Formato
2007-03-01
Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.
Shear strength of palm oil clinker concrete beams
International Nuclear Information System (INIS)
Mohammed, Bashar S.; Foo, W.L.; Hossain, K.M.A.; Abdullahi, M.
2013-01-01
Highlights: ► Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ► The palm oil clinker concrete can be classified as lightweight concrete. ► Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ► The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m 3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ ⩾ 1. However, a 0.5 safety factor should be included in the formula for ρ < 1
Towards Cognitive Component Analysis
DEFF Research Database (Denmark)
Hansen, Lars Kai; Ahrendt, Peter; Larsen, Jan
2005-01-01
Cognitive component analysis (COCA) is here defined as the process of unsupervised grouping of data such that the ensuing group structure is well-aligned with that resulting from human cognitive activity. We have earlier demonstrated that independent components analysis is relevant for representi...
Experimental Verification of Current Shear Design Equations for HSRC Beams
Directory of Open Access Journals (Sweden)
Attaullah Shah
2012-07-01
Full Text Available Experimental research on the shear capacity of HSRC (High Strength Reinforced Concrete beams is relatively very limited as compared to the NSRC (Normal Strength Reinforced Concrete beams. Most of the Building Codes determine the shear strength of HSRC with the help of empirical equations based on experimental work of NSRC beams and hence these equations are generally regarded as un-conservative for HSRC beams particularly at low level of longitudinal reinforcement. In this paper, 42 beams have been tested in two sets, such that in 21 beams no transverse reinforcement has been used, whereas in the remaining 21 beams, minimum transverse reinforcement has been used as per ACI-318 (American Concrete Institute provisions. Two values of compressive strength 52 and 61 MPa, three values of longitudinal steel ratio and seven values of shear span to depth ratio have been have been used. The beams were tested under concentrated load at the mid span. The results are compared with the equations proposed by different international building codes like ACI, AASHTO LRFD, EC (Euro Code, Canadian Code and Japanese Code for shear strength of HSRC beams.From comparison, it has been observed that some codes are less conservative for shear design of HSRC beams and further research is required to rationalize these equations.
Microfluidic viscometers for shear rheology of complex fluids and biofluids
Wang, William S.; Vanapalli, Siva A.
2016-01-01
The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids. PMID:27478521
Instabilities and vortex dynamics in shear flow of magnetized plasmas
International Nuclear Information System (INIS)
Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.
1990-03-01
Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab
Shear stress mediates endothelial adaptations to exercise training in humans.
Tinken, Toni M; Thijssen, Dick H J; Hopkins, Nicola; Dawson, Ellen A; Cable, N Timothy; Green, Daniel J
2010-02-01
Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period of bilateral handgrip training. Shear stress responses were attenuated in one arm by cuff inflation to 60 mm Hg. Similar increases were observed in grip strength and forearm volume and girth in both limbs. Acute bouts of handgrip exercise increased shear rate (P<0.005) and flow-mediated dilation percentage (P<0.05) in the uncuffed limb, whereas no changes were evident in the cuffed arm. Handgrip training increased flow-mediated dilation percentage in the noncuffed limb at weeks 2, 4, and 6 (P<0.001), whereas no changes were observed in the cuffed arm. Brachial artery peak reactive hyperemia, an index of resistance artery remodeling, progressively increased with training in the noncuffed limb (P<0.001 and 0.004); no changes were evident in the cuffed arm. Neither acute nor chronic shear manipulation during exercise influenced endothelium-independent glyceryl trinitrate responses. These results demonstrate that exercise-induced changes in shear provide the principal physiological stimulus to adaptation in flow-mediated endothelial function and vascular remodeling in response to exercise training in healthy humans.
Numerical Modelling of Double-Steel Plate Composite Shear Walls
Directory of Open Access Journals (Sweden)
Michaela Elmatzoglou
2017-02-01
Full Text Available Double-steel plate concrete composite shear walls are being used for nuclear plants and high-rise buildings. They consist of thick concrete walls, exterior steel faceplates serving as reinforcement and shear connectors, which guarantee the composite action between the two different materials. Several researchers have used the Finite Element Method to investigate the behaviour of double-steel plate concrete walls. The majority of them model every element explicitly leading to a rather time-consuming solution, which cannot be easily used for design purposes. In the present paper, the main objective is the introduction of a three-dimensional finite element model, which can efficiently predict the overall performance of a double-steel plate concrete wall in terms of accuracy and time saving. At first, empirical formulations and design relations established in current design codes for shear connectors are evaluated. Then, a simplified finite element model is used to investigate the nonlinear response of composite walls. The developed model is validated using results from tests reported in the literature in terms of axial compression and monotonic, cyclic in-plane shear loading. Several finite element modelling issues related to potential convergence problems, loading strategies and computer efficiency are also discussed. The accuracy and simplicity of the proposed model make it suitable for further numerical studies on the shear connection behaviour at the steel-concrete interface.
Thermal analysis of isotropic plates using hyperbolic shear deformation theory
Directory of Open Access Journals (Sweden)
Shinde B.M.
2013-12-01
Full Text Available In this paper, thermal analysis of a thick isotropic rectangular plate is carried out using the hyperbolic shear deformation theory (HYSDT. The displacement field of the theory contains three variables. The hyperbolic sine and cosine functions are used in the displacement field in-terms of thickness coordinate to represent the effect of shear deformation. The most important feature of the theory is that, the transverse shear stresses can be obtained directly from the use of constitutive relations, hence the theory does not need shear correction factor. The theory accounts for parabolic distribution of transverse shear stresses across the thickness satisfying the stress free boundary conditions at top and bottom surfaces of the plate. Governing differential equations and boundary conditions of the theory are obtained using the principle of virtual work. The results obtained for bending analysis of isotropic plates subjected to uniformly distributed thermal load are compared with those obtained by other theories, to validate the accuracy of the presented theory.
Shear heating in creeping faults changes the onset of convection
Tung, R.; Poulet, T.; Alevizos, S.; Veveakis, E.; Regenauer-Lieb, K.
2017-10-01
The interaction between mechanical deformation of creeping faults and fluid flow in porous media has an important influence on the heat and mass transfer processes in Earth sciences. Creeping faults can act as heat sources due to the effect of shear heating and as such could be expected to alter the conditions for hydrothermal convection. In this work, we provide a finite element-based numerical framework developed to resolve the problem of heat and mass transfer in the presence of creeping faults. This framework extends the analytical approach of the linear stability analysis (LSA) frequently used to determine the bifurcation criterion for onset of convection, allowing us to study compressible cases with the option of complex geometry and/or material inhomogeneities. We demonstrate the impact of creeping faults on the onset of convection and show that shear heating—expressed through its dimensionless group the Gruntfest number Gr—has exponential influence on the critical value of the Lewis number Le (inversely proportional to the Rayleigh number Ra) required for convection: Lec ˜ Lec0 eGr. In this expression, Lec0 is the critical value of Le in the absence of shear heating. This exponential scaling shows that shear heating increases the critical Lewis number and triggers hydrothermal convection at lower permeability than in situations without it. We also show that the effect of shear heating in a fault significantly alters the pattern of convection in and around the fault zone.
Shear modulus imaging with spatially-modulated ultrasound radiation force.
McAleavey, Stephen; Menon, Manoj; Elegbe, Etana
2009-10-01
The application of Spatially-Modulated Ultrasound Radiation Force (SMURF) to shear modulus imaging is demonstrated in tissue-mimicking phantoms and porcine liver. Scanning and data acquisition was performed with a Siemens Antares ultrasound scanner and VF7-3 linear array operating at 4.21 MHz. Modulus estimates in uniform phantoms of Zerdine with shear moduli of 5.1 and 12.4 kPa exhibited standard deviations within 6% of the mean value. Zerdine spheres 1 cm in diameter (nominally 2.7, 4.7 and 15 kPa) in a 8 kPa (nominal) background are clearly resolved. Cross sectional images of a soft conical inclusion in a gelatin-based phantom indicate a spatial resolution of approximately 2.5 mm. Images of the shear modulus of an ex-vivo sample of porcine liver tissue show an average value of 3 kPa. A stifflesion induced with 0.5 mL of 10% glutaraldehyde is clearly visible as a region of shear modulus in excess of 10 kPa. A modulus gradient associated with the diffusion of the glutaraldehyde is visible. Two pulse sequences were examined, differing only in the timing of the beams used to generate the shear waves. Details of the beam sequences and subsequent signal processing are presented.