WorldWideScience

Sample records for singularly perturbed convection-diffusion

  1. Difference scheme for a singularly perturbed parabolic convection-diffusion equation in the presence of perturbations

    Science.gov (United States)

    Shishkin, G. I.

    2015-11-01

    An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.

  2. Computer difference scheme for a singularly perturbed convection-diffusion equation

    Science.gov (United States)

    Shishkin, G. I.

    2014-08-01

    The Dirichlet problem for a singularly perturbed ordinary differential convection-diffusion equation with a perturbation parameter ɛ (that takes arbitrary values from the half-open interval (0, 1]) is considered. For this problem, an approach to the construction of a numerical method based on a standard difference scheme on uniform meshes is developed in the case when the data of the grid problem include perturbations and additional perturbations are introduced in the course of the computations on a computer. In the absence of perturbations, the standard difference scheme converges at an (δ st ) rate, where δ st = (ɛ + N -1)-1 N -1 and N + 1 is the number of grid nodes; the scheme is not ɛ-uniformly well conditioned or stable to perturbations of the data. Even if the convergence of the standard scheme is theoretically proved, the actual accuracy of the computed solution in the presence of perturbations degrades with decreasing ɛ down to its complete loss for small ɛ (namely, for ɛ = (δ-2max i, j |δ a {/i j }| + δ-1 max i, j |δ b {/i j }|), where δ = δ st and δ a {/i j }, δ b {/i j } are the perturbations in the coefficients multiplying the second and first derivatives). For the boundary value problem, we construct a computer difference scheme, i.e., a computing system that consists of a standard scheme on a uniform mesh in the presence of controlled perturbations in the grid problem data and a hypothetical computer with controlled computer perturbations. The conditions on admissible perturbations in the grid problem data and on admissible computer perturbations are obtained under which the computer difference scheme converges in the maximum norm for ɛ ∈ (0, 1] at the same rate as the standard scheme in the absence of perturbations.

  3. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  4. hp-finite element methods for singular perturbations

    CERN Document Server

    Melenk, Jens M

    2002-01-01

    Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.

  5. Historical developments in singular perturbations

    CERN Document Server

    O'Malley, Robert E

    2014-01-01

    This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a  number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley  has written a number of books on singular perturbations.  This book has developed from many of his works in the field of perturbation theory.

  6. Reliable finite element methods for self-adjoint singular perturbation ...

    African Journals Online (AJOL)

    It is well known that the standard finite element method based on the space Vh of continuous piecewise linear functions is not reliable in solving singular perturbation problems. It is also known that the solution of a two-point boundaryvalue singular perturbation problem admits a decomposition into a regular part and a finite ...

  7. One Critical Case in Singularly Perturbed Control Problems

    Science.gov (United States)

    Sobolev, Vladimir

    2017-02-01

    The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.

  8. Singular perturbation in the physical sciences

    CERN Document Server

    Neu, John C

    2015-01-01

    This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we "see" how a mathematical pattern fits a physical problem is like "hitting the ball." Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutions of the equations their geometric and physical content. Through analysis, we come to sense directly the shape and feel of phenomena. The book is structured into a main text of fundamental ideas and a subtext of problems with detailed solutions. Roughly speaking, the former is the initial contact between mathematics and p...

  9. Singular perturbation for nonlinear boundary-value problems

    Directory of Open Access Journals (Sweden)

    Rina Ling

    1979-01-01

    studied. The problem is a model arising in nuclear energy distribution. For large values of the parameter, the differential equations are of the singular-perturbation type and approximations are constructed by the method of matched asymptotic expansions.

  10. Pulses in singularly perturbed reaction-diffusion systems

    NARCIS (Netherlands)

    Veerman, Frederik Willem Johan

    2013-01-01

    In this thesis, the existence and stability of pulse solutions in two-component, singularly perturbed reaction-diffusion systems is analysed using dynamical systems techniques. New phenomena in very general types of systems emerge when geometrical techniques are applied.

  11. Averaging approximation to singularly perturbed nonlinear stochastic wave equations

    Science.gov (United States)

    Lv, Yan; Roberts, A. J.

    2012-06-01

    An averaging method is applied to derive effective approximation to a singularly perturbed nonlinear stochastic damped wave equation. Small parameter ν > 0 characterizes the singular perturbation, and να, 0 ⩽ α ⩽ 1/2, parametrizes the strength of the noise. Some scaling transformations and the martingale representation theorem yield the effective approximation, a stochastic nonlinear heat equation, for small ν in the sense of distribution.

  12. Geometric singular perturbation analysis of systems with friction

    DEFF Research Database (Denmark)

    Bossolini, Elena

    This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter...... use a Poincaré compactification to study the system near infinity. At infinity, the critical manifold loses hyperbolicity with an exponential rate. We use an adaptation of the blow-up method to recover the hyperbolicity. This enables the identification of a new attracting manifold, that organises...... singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the non-unique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We...

  13. Numerical solution of singularity-perturbed two-point boundary-value problems

    International Nuclear Information System (INIS)

    Masenge, R.W.P.

    1993-07-01

    Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab

  14. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  15. A Parameter Robust Method for Singularly Perturbed Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Erdogan Fevzi

    2010-01-01

    Full Text Available Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.

  16. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 88; Issue 4. Solitary wave solution to a singularly perturbed generalized ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  17. Transcendental smallness in singularly perturbed equations of volterra type

    International Nuclear Information System (INIS)

    Bijura, Angelina M.

    2003-11-01

    The application of different limit processes to a physical problem is an important tool in layer type techniques. Hence the study of initial layer correction functions is of central importance for understanding layer-type problems. It is shown that for singularly perturbed problems of Volterra type, the concept of transcendental smallness is an asymptotic one. Transcendentally small terms may be numerically important. (author)

  18. Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boglaev Igor

    2009-01-01

    Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.

  19. Fitted-Stable Finite Difference Method for Singularly Perturbed Two ...

    African Journals Online (AJOL)

    A fitted-stable central difference method is presented for solving singularly perturbed two point boundary value problems with the boundary layer at one end (left or right) of the interval. A fitting factor is introduced in second order stable central difference scheme (SCD Method) and its value is obtained using the theory of ...

  20. A Schwarz alternating procedure for singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Garbey, M. [Universit Claude Bernard Lyon, Villeurbanne (France); Kaper, H.G. [Argonne National Lab., IL (United States)

    1994-12-31

    The authors show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and transition layers. They give sharp estimates for the optimal position of the domain boundaries and present convergence rates of the algorithm for various second-order singular perturbation problems. The splitting of the operator is domain-dependent, and the iterative solution of each subproblem is based on a modified asymptotic expansion of the operator. They show that this asymptotic-induced method leads to a family of efficient massively parallel algorithms and report on implementation results for a turning-point problem and a combustion problem.

  1. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen- eralized Gardner equation .... will be used in §3 for our purpose. For convenience, we use a version of this theory due to Jones [2]. For the system. { x (t) = f (x, y, ε), y (t) = εg(x, y, ε),. (2.1) where x ∈ Rn, y ...

  2. Singular perturbation method for evolution equations in Banach spaces

    International Nuclear Information System (INIS)

    Mika, J.

    1976-01-01

    The singular perturbation method is applied to linear evolution equations in Banach spaces containing a small parameter multiplying the time derivative. Outer and inner asymptotic solutions are formulated and the sense in which they converge to the exact solution is rigorously defined. It is then shown that the sum of the two asymptotic solutions converges uniformly to the exact solution. Possible applications to various physical situations are indicated. (Auth.)

  3. Bifurcation for non linear ordinary differential equations with singular perturbation

    Directory of Open Access Journals (Sweden)

    Safia Acher Spitalier

    2016-10-01

    Full Text Available We study a family of singularly perturbed ODEs with one parameter and compare their solutions to the ones of the corresponding reduced equations. The interesting characteristic here is that the reduced equations have more than one solution for a given set of initial conditions. Then we consider how those solutions are organized for different values of the parameter. The bifurcation associated to this situation is studied using a minimal set of tools from non standard analysis.

  4. Relaxation periodic solutions of one singular perturbed system with delay

    Science.gov (United States)

    Kashchenko, A. A.

    2017-12-01

    In this paper, we consider a singularly perturbed system of two differential equations with delay, simulating two coupled oscillators with a nonlinear compactly supported feedback. We reduce studying nonlocal dynamics of initial system to studying dynamics of special finite-dimensional mappings: rough stable (unstable) cycles of these mappings correspond to exponentially orbitally stable (unstable) relaxation solutions of initial problem. We show that dynamics of initial model depends on coupling coefficient crucially. Multistability is proved.

  5. Canard solutions of two-dimensional singularly perturbed systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xianfeng [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: chenxf@sjtu.edu.cn; Yu Pei [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Applied Mathematics, University of Western Ontario London, Ont., N6A 5B7 (Canada); Han Maoan [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Weijiang [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2005-02-01

    In this paper, some new lemmas on asymptotic analysis are established. We apply an asymptotic method to study generalized two-dimensional singularly perturbed systems with one parameter, whose critical manifold has an m-22 th-order degenerate extreme point. Certain sufficient conditions are obtained for the existence of canard solutions, which are the extension and correction of some existing results. Finally, one numerical example is given.

  6. Nonlinear singularly perturbed optimal control problems with singular arcs. [flight mechanics application

    Science.gov (United States)

    Ardema, M. D.

    1979-01-01

    Singular perturbation techniques are studied for dealing with singular arc problems by analyzing a relatively low-order but otherwise general system. This system encompasses many flight mechanic problems including Goddard's problem and a version of the minimum time-to-climb problem. Boundary layer solutions are constructed which are stable and reach the outer solution in a finite time. A uniformly valid composite solution is then formed from the reduced and boundary layer solutions. The value of the approximate solution is that it is relatively easy to obtain and does not involve singular arcs. To illustrate the utility of the results, the technique is used to obtain an approximate solution of a simplified version of the aircraft minimum time-to-climb problem.

  7. Non-perturbative string theories and singular surfaces

    International Nuclear Information System (INIS)

    Bochicchio, M.

    1990-01-01

    Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale ε is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius ε. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.)

  8. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni

    2013-01-01

    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  9. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  10. Motion Control of a Quadrotor Aircraft via Singular Perturbations

    Directory of Open Access Journals (Sweden)

    Salvador González-Vázquez

    2013-10-01

    Full Text Available In this paper, a new motion controller for a quadrotor aircraft is introduced. A reformulation of the control inputs of the dynamic model is discussed and then the control algorithm is given in a constructive form. The stability proof of the state space origin of the overall closed-loop system relies on the theory of singularly perturbed systems. Numerical simulations corroborate the viability of the proposed control scheme and the conclusions concerning stability. A set of simulations under practical conditions is also presented, where the system is affected by different types of disturbances and nonlinearities such as noise and actuator saturation.

  11. A singularly perturbed SIS model with age structure.

    Science.gov (United States)

    Banasiak, Jacek; Phongi, Eddy Kimba; Lachowicz, Mirosław

    2013-06-01

    We present a preliminary study of an SIS model with a basic age structure and we focus on a disease with quick turnover, such as influenza or common cold. In such a case the difference between the characteristic demographic and epidemiological times naturally introduces two time scales in the model which makes it singularly perturbed. Using the Tikhonov theorem we prove that for certain classes of initial conditions the nonlinear structured SIS model can be approximated with very good accuracy by lower dimensional linear models.

  12. Regularization of the big bang singularity with random perturbations

    Science.gov (United States)

    Belbruno, Edward; Xue, BingKan

    2018-03-01

    We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.

  13. Infrared singularities of scattering amplitudes in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Neubert, Matthias [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany)

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  14. Travelling wave solutions for a singularly perturbed Burgers–KdV ...

    Indian Academy of Sciences (India)

    Abstract. This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, ...

  15. On the C(R) stability of uncertain singularly perturbed systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, a simple criterion for the C(R) stability of uncertain singularly perturbed systems is proposed. Such a criterion can be easily checked by some algebraic inequality. The upper bound of the singular perturbation parameter ε is also given by estimating the unique positive zero of specific function. Finally, a numerical example is provided to illustrate the main result

  16. Travelling wave solutions for a singularly perturbed Burgers–KdV ...

    Indian Academy of Sciences (India)

    This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for ...

  17. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  18. Singular Perturbation Analysis and Gene Regulatory Networks with Delay

    Science.gov (United States)

    Shlykova, Irina; Ponosov, Arcady

    2009-09-01

    There are different ways of how to model gene regulatory networks. Differential equations allow for a detailed description of the network's dynamics and provide an explicit model of the gene concentration changes over time. Production and relative degradation rate functions used in such models depend on the vector of steeply sloped threshold functions which characterize the activity of genes. The most popular example of the threshold functions comes from the Boolean network approach, where the threshold functions are given by step functions. The system of differential equations becomes then piecewise linear. The dynamics of this system can be described very easily between the thresholds, but not in the switching domains. For instance this approach fails to analyze stationary points of the system and to define continuous solutions in the switching domains. These problems were studied in [2], [3], but the proposed model did not take into account a time delay in cellular systems. However, analysis of real gene expression data shows a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore, delays may have a great effect on the dynamics of the system presenting one of the critical factors that should be considered in reconstruction of gene regulatory networks. The goal of this work is to apply the singular perturbation analysis to certain systems with delay and to obtain an analog of Tikhonov's theorem, which provides sufficient conditions for constracting the limit system in the delay case.

  19. Modelling, singular perturbation and bifurcation analyses of bitrophic food chains.

    Science.gov (United States)

    Kooi, B W; Poggiale, J C

    2018-04-20

    Two predator-prey model formulations are studied: for the classical Rosenzweig-MacArthur (RM) model and the Mass Balance (MB) chemostat model. When the growth and loss rate of the predator is much smaller than that of the prey these models are slow-fast systems leading mathematically to singular perturbation problem. In contradiction to the RM-model, the resource for the prey are modelled explicitly in the MB-model but this comes with additional parameters. These parameter values are chosen such that the two models become easy to compare. In both models a transcritical bifurcation, a threshold above which invasion of predator into prey-only system occurs, and the Hopf bifurcation where the interior equilibrium becomes unstable leading to a stable limit cycle. The fast-slow limit cycles are called relaxation oscillations which for increasing differences in time scales leads to the well known degenerated trajectories being concatenations of slow parts of the trajectory and fast parts of the trajectory. In the fast-slow version of the RM-model a canard explosion of the stable limit cycles occurs in the oscillatory region of the parameter space. To our knowledge this type of dynamics has not been observed for the RM-model and not even for more complex ecosystem models. When a bifurcation parameter crosses the Hopf bifurcation point the amplitude of the emerging stable limit cycles increases. However, depending of the perturbation parameter the shape of this limit cycle changes abruptly from one consisting of two concatenated slow and fast episodes with small amplitude of the limit cycle, to a shape with large amplitude of which the shape is similar to the relaxation oscillation, the well known degenerated phase trajectories consisting of four episodes (concatenation of two slow and two fast). The canard explosion point is accurately predicted by using an extended asymptotic expansion technique in the perturbation and bifurcation parameter simultaneously where the small

  20. A New Algorithm Based on the Homotopy Perturbation Method For a Class of Singularly Perturbed Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    A New Algorithm Based on the Homotopy Perturbation Method For a Class of Singularly Perturbed Boundary Value Problems

    2013-12-01

    Full Text Available . In this paper, a new algorithm is presented to approximate the solution of a singularly perturbed boundary value problem with leftlayer based on the homotopy perturbation technique and applying the Laplace transformation. The convergence theorem and the error bound of the proposed method are proved. The method is examined by solving two examples. The results demonstrate the reliability and efficiency of the proposed method.

  1. Instability of traveling waves of the convective-diffusive Cahn-Hilliard equation

    International Nuclear Information System (INIS)

    Gao Hongjun; Liu Changchun

    2004-01-01

    In this paper we study the instability of the traveling waves of the convective-diffusive Cahn-Hilliard equation. We prove that it is nonlinearly unstable under H 2 perturbations, for some traveling wave solution that is asymptotic to a constant as x→∞

  2. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method

    Science.gov (United States)

    Yaşar, Emrullah; Yıldırım, Yakup; Zhou, Qin; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Triki, Houria; Biswas, Anjan; Belic, Milivoj

    2017-11-01

    This paper obtains optical soliton solution to perturbed nonlinear Schrödinger's equation by modified simple equation method. There are four types of nonlinear fibers studied in this paper. They are Anti-cubic law, Quadratic-cubic law, Cubic-quintic-septic law and Triple-power law. Dark and singular soliton solutions are derived. Additional solutions such as singular periodic solutions also fall out of the integration scheme.

  3. Asymptotic Solutions of Singular Perturbed Problems with an Instable Spectrum of the Limiting Operator

    Directory of Open Access Journals (Sweden)

    Burkhan T. Kalimbetov

    2012-01-01

    Full Text Available The regularization method is applied for the construction of algorithm for an asymptotical solution for linear singular perturbed systems with the irreversible limit operator. The main idea of this method is based on the analysis of dual singular points of investigated equations and passage in the space of the larger dimension, what reduces to study of systems of first-order partial differential equations with incomplete initial data.

  4. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... which is one model in plasma physics and solid physics. [3]. Hamdi et al [4] obtained an exact solitary wave solution to eq. (1.2). They also derived three conserva- tion laws and three invariants of motion for eq. (1.2). [5]. Antonova and Biswas [6] exploited the soliton perturbation theory to eq. (1.2) with γ = 1.

  5. Travelling waves in a singularly perturbed sine-Gordon equation

    NARCIS (Netherlands)

    Derks, Gianne; Doelman, Arjen; van Gils, Stephanus A.; Visser, T.P.P.

    2003-01-01

    We determine the linearised stability of travelling front solutions of a perturbed sine-Gordon equation. This equation models the long Josephson junction using the RCSJ model for currents across the junction and includes surface resistance for currents along the junction. The travelling waves

  6. Travelling waves in a singularly perturbed sine-Gordon equations

    NARCIS (Netherlands)

    Derks, G.L.A.; Derks, Gianne; Doelman, Arjen; van Gils, Stephanus A.; Visser, T.P.P.

    2003-01-01

    We determine the linearised stability of travelling front solutions of a perturbed sine-Gordon equation. This equation models the long Josephson junction using the RCSJ model for currents across the junction and includes surface resistance for currents along the junction. The travelling waves

  7. Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Bank, Randolph E. [Univ. of California, San Diego, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2016-01-20

    This note proposes embedding a time dependent PDE into a convection-diffusion type PDE (in one space dimension higher) with singularity, for which two discretization schemes, the classical streamline-diffusion and the EAFE (edge average finite element) one, are investigated in terms of stability and error analysis. The EAFE scheme, in particular, is extended to be arbitrary order which is of interest on its own. Numerical results, in combined space-time domain demonstrate the feasibility of the proposed approach.

  8. High order singular rank one perturbations of a positive operator

    NARCIS (Netherlands)

    Dijksma, A.; Kurasov, P.; Shondin, Yu.

    2005-01-01

    In this paper self-adjoint realizations in Hilbert and Pontryagin spaces of the formal expression Lα = L + α〈·, φ〉φ are discussed and compared. Here L is a positive self-adjoint operator in a Hilbert space H with inner product 〈· ,·〉, α is a real parameter, and φ in the rank one perturbation is a

  9. Selberg zeta functions and transfer operators an experimental approach to singular perturbations

    CERN Document Server

    Fraczek, Markus Szymon

    2017-01-01

    This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spac...

  10. Stability bound analysis of singularly perturbed systems with time-delay

    Directory of Open Access Journals (Sweden)

    Sun Fengqi

    2013-01-01

    Full Text Available This paper considers the stability bound problem of singularly perturbed systems with time-delay. Some stability criteria are derived by constructing appropriate Lyapunov-Krasovskii functionals. The proposed criteria are less conservative than the existing ones. Two numerical examples are given to illustrate the advantages and effectiveness of the proposed methods.

  11. Relative Error Model Reduction via Time-Weighted Balanced Stochastic Singular Perturbation

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2012-01-01

    A new mixed method for relative error model reduction of linear time invariant (LTI) systems is proposed in this paper. This order reduction technique is mainly based upon time-weighted balanced stochastic model reduction method and singular perturbation model reduction technique. Compared...

  12. A singular perturbation theorem for evolution equations and time-scale arguments for structured population models

    NARCIS (Netherlands)

    Greiner, G.; Heesterbeek, J.A.P.; Metz, J.A.J.

    1994-01-01

    In this paper we present a generalization of a finite dimensional singular perturbation theorem to Banach spaces. From this we obtain sufficient conditions under which a faithful simplification by a time-scale argument is justified for age-structured models of slowly growing populations. An explicit

  13. B-spline solution of a singularly perturbed boundary value problem arising in biology

    International Nuclear Information System (INIS)

    Lin Bin; Li Kaitai; Cheng Zhengxing

    2009-01-01

    We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.

  14. Singular perturbation theory mathematical and analytical techniques with applications to engineering

    CERN Document Server

    Johnson, RS

    2005-01-01

    Written in a form that should enable the relatively inexperienced (or new) worker in the field of singular perturbation theory to learn and apply all the essential ideasDesigned as a learning tool. The numerous examples and set exercises are intended to aid this process.

  15. Integrodifferential Inequality for Stability of Singularly Perturbed Impulsive Delay Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Xu Liguang

    2009-01-01

    Full Text Available The exponential stability of singularly perturbed impulsive delay integrodifferential equations (SPIDIDEs is concerned. By establishing an impulsive delay integrodifferential inequality (IDIDI, some sufficient conditions ensuring the exponentially stable of any solution of SPIDIDEs for sufficiently small are obtained. A numerical example shows the effectiveness of our theoretical results.

  16. On Absence of Pure Singular Spectrum of Random Perturbations and in Anderson Model at Low Disorde

    CERN Document Server

    Grinshpun, V

    2006-01-01

    Absence of singular component, with probability one, in the conductivity spectra of bounded random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of pure point, or absence of pure absolutely continuous component in the corresponding regions of spectra. The main technical tool applied is the theory of rank-one perturbations of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension 2 at low disorder. The new (1999) result implies, via the trace-class perturbation analysis, the Anderson model with the unbounded potential to have only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The new technics, based on the resolvent reduction formula, and ex...

  17. Fuzzy Saturated Output Feedback Tracking Control for Robot Manipulators: A Singular Perturbation Theory Based Approach

    Directory of Open Access Journals (Sweden)

    Huashan Liu

    2011-09-01

    Full Text Available To deal with the problem of the output feedback tracking (OFT control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed‐loop control with only position measurements, linear and nonlinear filters are optionally involved to generate a pseudo signal to surrogate the actual velocity tracking error. As a third contribution, a fuzzy regulator is added to obtain a self‐tuning performance in tackling the disturbances. Moreover, an explicit but strict stability proof of the system based on the stability theory of singularly perturbed systems is presented. Finally, numerical simulations on several sample controllers are implemented to verify the effectiveness of the proposed approach.

  18. Fuzzy Saturated Output Feedback Tracking Control for Robot Manipulators: A Singular Perturbation Theory Based Approach

    Directory of Open Access Journals (Sweden)

    Huashan Liu

    2011-09-01

    Full Text Available To deal with the problem of the output feedback tracking (OFT control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed-loop control with only position measurements, linear and nonlinear filters are optionally involved to generate a pseudo signal to surrogate the actual velocity tracking error. As a third contribution, a fuzzy regulator is added to obtain a self-tuning performance in tackling the disturbances. Moreover, an explicit but strict stability proof of the system based on the stability theory of singularly perturbed systems is presented. Finally, numerical simulations on several sample controllers are implemented to verify the effectiveness of the proposed approach.

  19. Mono-implicit Runge Kutta schemes for singularly perturbed delay differential equations

    Science.gov (United States)

    Rihan, Fathalla A.; Al-Salti, Nasser S.

    2017-09-01

    In this paper, we adapt Mono-Implicit Runge-Kutta schemes for numerical approximations of singularly perturbed delay differential equations. The schemes are developed to reduce the computational cost of the fully implicit method which combine the accuracy of implicit method and efficient implementation. Numerical stability properties of the schemes are investigated. Numerical simulations are provided to show the effectiveness of the method for both stiff and non-stiff initial value problems.

  20. Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems

    Czech Academy of Sciences Publication Activity Database

    Ainsworth, M.; Vejchodský, Tomáš

    2011-01-01

    Roč. 119, č. 2 (2011), s. 219-243 ISSN 0029-599X R&D Projects: GA AV ČR IAA100760702; GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z10190503 Keywords : a posteriori error estimates * singularly perturbed problems * reaction-diffusion Subject RIV: BA - General Mathematics Impact factor: 1.321, year: 2011 http://www.springerlink.com/content/d384608709584278/

  1. Singular Perturbation Based Solution to Optimal Microalgal Growth Problem and Its Infinite Time Horizon Analysis

    Czech Academy of Sciences Publication Activity Database

    Čelikovský, Sergej; Papáček, Štěpán; Cervantes-Herrera, A.; Ruiz-León, J.

    2010-01-01

    Roč. 55, č. 3 (2010), s. 767-772 ISSN 0018-9286 R&D Projects: GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506; CEZ:AV0Z50200510 Keywords : Photosynthetic factory (PSF) * singular perturbation * optimal control Subject RIV: BC - Control Systems Theory Impact factor: 1.950, year: 2010 http://library.utia.cas.cz/separaty/2010/TR/celikovsky-0342103.pdf

  2. Variational Iteration Method for Singular Perturbation Initial Value Problems with Delays

    Directory of Open Access Journals (Sweden)

    Yongxiang Zhao

    2014-01-01

    Full Text Available The variational iteration method (VIM is applied to solve singular perturbation initial value problems with delays (SPIVPDs. Some convergence results of VIM for solving SPIVPDs are given. The obtained sequence of iterates is based on the use of general Lagrange multipliers; the multipliers in the functionals can be identified by the variational theory. Moreover, the numerical examples show the efficiency of the method.

  3. Holographic curvature perturbations in a cosmology with a space-like singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Elisa G.M. [Department of Physics, McGill University,3600 University St., Montréal, QC, H3A 2T8 (Canada); Brandenberger, Robert [Department of Physics, McGill University,3600 University St., Montréal, QC, H3A 2T8 (Canada); Institute for Theoretical Studies, ETH Zürich,Clausiusstr. 47, Zürich, CH-8092 (Switzerland)

    2016-07-19

    We study the evolution of cosmological perturbations in an anti-de-Sitter (AdS) bulk through a cosmological singularity by mapping the dynamics onto the boundary conformal fields theory by means of the AdS/CFT correspondence. We consider a deformed AdS space-time obtained by considering a time-dependent dilaton which induces a curvature singularity in the bulk at a time which we call t=0, and which asymptotically approaches AdS both for large positive and negative times. The boundary field theory becomes free when the bulk curvature goes to infinity. Hence, the evolution of the fluctuations is under better controle on the boundary than in the bulk. To avoid unbounded particle production across the bounce it is necessary to smooth out the curvature singularity at very high curvatures. We show how the bulk cosmological perturbations can be mapped onto boundary gauge field fluctuations. We evolve the latter and compare the spectrum of fluctuations on the infrared scales relevant for cosmological observations before and after the bounce point. We find that the index of the power spectrum of fluctuations is the same before and after the bounce.

  4. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi

    2017-01-31

    Shear bands are narrow zones of intense shear observed during plastic deformations of metals at high strain rates. Because they often precede rupture, their study attracted attention as a mechanism of material failure. Here, we aim to reveal the onset of localization into shear bands using a simple model from viscoplasticity. We exploit the properties of scale invariance of the model to construct a family of self-similar focusing solutions that capture the nonlinear mechanism of shear band formation. The key step is to desingularize a reduced system of singular ordinary differential equations and reduce the problem into the construction of a heteroclinic orbit for an autonomous system of three first-order equations. The associated dynamical system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré--Bendixson theorem to construct a heteroclinic orbit.

  5. Convective diffusion in protein crystal growth

    Science.gov (United States)

    Baird, J. K.; Meehan, E. J.; Xidis, A. L.; Howard, S. B.

    1986-08-01

    We considered a protein crystal in the form of a flat plate suspended in its parent solution so that the normal to the largest face was perpendicular to the acceleration due to gravity. For simplicity, the protein concentration in the solution adjacent to the plate was taken to be the equilibrium solubility. The bulk of the solution was supersaturated, however, which gave rise to a horizontal concentration gradient driving fluid toward the plate. We also took into account the diffusion of the dissolved protein with respect to the moving fluid. In the boundary layer next to the plate, we solved the Navier-Stokes equation and the equation for convective diffusion to determine the flow velocity and the protein mass flux. We found that, because of the convection, the local rate of growth of the plate varied strongly with depth. The variation was diminished by a factor of 1/30 when the local gravity was reduced from g to 10 -6g as occurs aboard the Space Shuttle in earth orbit. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1 mm high crystal has a thickness of 80 μm in earths gravity and 2570 μm in 10 -6g. We examined the optical transmission of the boundary layer and compared it with the "haloes" observed by Feher et al. about growing hemispherical crystals of lysozyme.

  6. The initial value problem for linearized gravitational perturbations of the Schwarzschild naked singularity

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, Gustavo; Gleiser, Reinaldo J [Facultad de Matematica, AstronomIa y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-11-07

    The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation partial deriv{sup 2}PSI{sub z} /partial derivt{sup 2} +HPSI{sub z} =0, where H= -partial deriv{sup 2} /partial derivx{sup 2} + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field PSI{sub z} is singular at r{sub s} = -6M/(l - 1)(l +2), with l being the mode harmonic number. The equation PSI{sub z} obeys is also singular, since V has a second-order pole at r{sub s}. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and r{sub s} < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then r{sub s} > 0, and the singularity appears in the relevant range of r (0 < r < infinity). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, PSI-circumflex, that is a regular function of the metric perturbation for any value of M. The relation of PSI-circumflex to PSI{sub z} is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that PSI-circumflex and PSI{sub z} obey are related as a supersymmetric pair of quantum Hamiltonians H and H-circumflex. For M < 0,H-circumflex has a regular potential and a unique self-adjoint extension in a domain D defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of H-circumflex in D, and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for

  7. A cubic subdomain Galerkin method over the geometrically graded mesh to the singularly perturbed problem

    Science.gov (United States)

    Hepson, Ozlem Ersoy; Daǧ, Idris

    2018-01-01

    In this paper, a subdomain Galerkin method is set up to find solutions of singularly perturbed boundary value problems which are used widely in many areas such as chemical reactor theory, aerodynamics, quantum mechanics, reaction-diffusion process, optimal control, etc. A combination of the cubic B-spline base functions as an approximation function is used to build up the presented method over the geometrically graded mesh. Thus finer mesh can be established through the end parts of the problem domain where steep solutions exist.

  8. Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells

    Science.gov (United States)

    Koshkin, Sergiy; Jovanovic, Vojin

    2017-10-01

    We study the dynamics of pairs of connected masses in the plane, when nonholonomic (knife-edge) constraints are realized by forces of viscous friction, in particular its relation to constrained dynamics, and its approximation by the method of matching asymptotics of singular perturbation theory when the mass to friction ratio is taken as the small parameter. It turns out that long term behaviors of the frictional and constrained systems may differ dramatically no matter how small the perturbation is, and when this happens is not determined by any transparent feature of the equations of motion. The choice of effective time scales for matching asymptotics is also subtle and non-obvious, and secular terms appearing in them can not be dealt with by the classical methods. Our analysis is based on comparison to analytic solutions, and we present a reduction procedure for plane dumbbells that leads to them in some cases.

  9. An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems

    Energy Technology Data Exchange (ETDEWEB)

    Oosterlee, C.W. [Inst. for Algorithms and Scientific Computing, Sankt Augustin (Germany); Washio, T. [C& C Research Lab., Sankt Augustin (Germany)

    1996-12-31

    In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.

  10. Optimal control of singularly perturbed nonlinear systems with state-variable inequality constraints

    Science.gov (United States)

    Calise, A. J.; Corban, J. E.

    1990-01-01

    The established necessary conditions for optimality in nonlinear control problems that involve state-variable inequality constraints are applied to a class of singularly perturbed systems. The distinguishing feature of this class of two-time-scale systems is a transformation of the state-variable inequality constraint, present in the full order problem, to a constraint involving states and controls in the reduced problem. It is shown that, when a state constraint is active in the reduced problem, the boundary layer problem can be of finite time in the stretched time variable. Thus, the usual requirement for asymptotic stability of the boundary layer system is not applicable, and cannot be used to construct approximate boundary layer solutions. Several alternative solution methods are explored and illustrated with simple examples.

  11. Experimental studies on illposed singularly perturbed boundary value problems for parabolic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Hans-Juergen, E-mail: reinhardt@mathematik.uni-siegen.de [Department of Mathematics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, D-57072 Siegen (Germany)

    2011-04-01

    In this paper singularly perturbed parabolic initial-boundary value problems are considered which, in addition, are illposed. The latter means that at one end of the 1-d spatial domain two conditions (for the solution and its spatial derivative) are given while on the other end the corresponding quantities are to be determined. It is well-known that such problems are illposed in the mathematical sense. Here, in addition, boundary layers may occur which make the problems more difficult. For relatively simple examples numerical experiments have been carried out and numerical results are shown. The Conjugate Gradient Methods is used to find the desired quantities iteratively. It will be explained what has to be done in any iteration step. A regularisation is performed by means of discretization and by determining an optimal final iteration step via a stopping rule.

  12. Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation

    KAUST Repository

    Manias, Dimitrios

    2018-01-08

    The dynamics and structure of two turbulent H2/air premixed flames, representative of the corrugated flamelet (Case 1) and thin reaction zone (Case 2) regimes, are analyzed and compared, using the computational singular perturbation (CSP) tools, by incorporating the tangential stretch rate (TSR) approach. First, the analysis is applied to a laminar premixed H2/air flame for reference. Then, a two-dimensional (2D) slice of Case 1 is studied at three time steps, followed by the comparison between two representative 2D slices of Case 1 and Case 2, respectively. Last, statistical analysis is performed on the full three-dimensional domain for the two cases. The dominant reaction and transport processes are identified for each case and the overall role of kinetics/transport is determined.

  13. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    Science.gov (United States)

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-02-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs.

  14. Efficient algorithms for analyzing the singularly perturbed boundary value problems of fractional order

    Science.gov (United States)

    Sayevand, K.; Pichaghchi, K.

    2018-04-01

    In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.

  15. Investigation of Turbulent Hydrogen Premixed Flame Topologies at Different Combustion Regimes Using Computational Singular Perturbation

    Science.gov (United States)

    Tingas, Efstathios-Alexandros; Hernandez Perez, Francisco; Im, Hong

    2017-11-01

    The investigation of turbulent flames at higher Reynolds and Karlovitz numbers has been gaining research interest, due to the advances in the computational power that has facilitated the use of direct numerical simulations (DNS). One of the additional challenges associated with highly turbulent premixed flames is the difficulties in identifying the turbulent flame topologies as the flame structures become severely corrugated or even disrupted by the small scale turbulent eddies. In these conditions, the conventional methods using a scalar iso-surface may lead to uncertainties in describing the flame front dynamics. In this study, the computational singular perturbation (CSP) is utilized as an automated tool to identify the flame front topologies based on the dynamical time scales and eigenvalues. In particular, the tangential stretch rate (TSR) approach, an extended generalized method to depict the dynamics of chemical and transport processes, is used for the flame front identification. The CSP/TSR approach and tools are used to compare the flame fronts of two turbulent H2/air premixed flames and to identify their similarities/differences, from a dynamical point of view. The results for two different combustion regimes are analyzed and compared.

  16. Computational singular perturbation analysis of super-knock in SI engines

    KAUST Repository

    Jaasim, Mohammed

    2018-04-02

    Pre-ignition engine cycles leading to super-knock were simulated with a 48 species skeletal iso-octane mechanism to identify the dominant reaction pathways that are present in super-knock. To mimic pre-ignition, a deflagration front was generated via a hot spot that is placed over the piston at close proximity to the end-wall. Computational singular perturbation (CSP) was used to analyze the chemical dynamics at various in-cylinder locations: a point at the center of the cylinder where the deflagration front consumes the air/fuel mixture and two points located at 3 mm from the end-wall where super-knock and mild knock occur. The CSP analysis of the point at the center of the cylinder reveals weak two-stage ignition-like dynamics with a short second stage. At the other points, a pronounced two-stage ignition is displayed with a long second stage. A distinct contribution of formaldehyde (CHO) at the second stage of ignition that adds to fast explosive modes in the super-knock points is not observed in the point at the center. A comparison between knock and super-knock analysis indicates that a similar set of reactions is responsible for the abnormal behavior but the fast explosive time scales are comparatively slower for knock, indicating lower reactivity, which results in the reduced intensity of knock. The analyzed results decoded important reactions responsible for the occurrence of super-knock.

  17. Existence and rigorous asymptotics of the solutions of a class of singularly perturbed delay-differential equations

    Directory of Open Access Journals (Sweden)

    WANG Na

    2016-06-01

    Full Text Available We consider the singularly perturbed delayed systems of Tichonov′s type with fast and slow variables in a fast bimolecular reaction model. By means of the boundary layer function method, sewing connection and the implicit function theorem, we prove the existence of the solutions of our problems near the degenerate solution for a sufficiently small µ and determine its asymptotic behavior in µ. Meanwhile, the asymptotic expression of the systems is also constructed.

  18. A numerical scheme for singularly perturbed reaction-diffusion problems with a negative shift via numerov method

    Science.gov (United States)

    Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.

    2017-11-01

    In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

  19. On infrared and mass singularities of perturbative QCD in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.; Aurenche, P.; Becherrawy, T.

    1988-07-01

    We discuss the radiative corrections to the production of lepton pairs in a quark-gluon plasma at finite temperature. The real-time formalism is used throughout the calculations. We show that both infrared and mass singularities cancel in the final result. In contrast to the zero-temperature case, no factorization theorem is required to deal with mass singularities

  20. Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation

    Science.gov (United States)

    Butuzov, V. F.

    2017-06-01

    We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.

  1. On the approximation of the canard explosion point in singularly perturbed systems without an explicit small parameter

    DEFF Research Database (Denmark)

    Brøns, Morten; Kristiansen, Kristian Uldall

    2017-01-01

    A canard explosion is the dramatic change of period and amplitude of a limit cycle of a system of nonlinear ODEs in a very narrow interval of the bifurcation parameter. It occurs in slow–fast systems and is well understood in singular perturbation problems where a small parameter epsilon defines...... the time-scale separation. We present an iterative algorithm for the determination of the canard explosion point which can be applied for a general slow–fast system without an explicit small parameter. We also present assumptions under which the algorithm gives accurate estimates of the canard explosion...

  2. Root System of Singular Perturbations of the Harmonic Oscillator Type Operators

    Czech Academy of Sciences Publication Activity Database

    Mityagin, B.; Siegl, Petr

    2016-01-01

    Roč. 106, č. 2 (2016), s. 147-167 ISSN 0377-9017 Institutional support: RVO:61389005 Keywords : non-self-adjoint operators * harmonic oscillator * Riesz basis * quadratic forms * singular petentials Subject RIV: BE - Theoretical Physics Impact factor: 1.671, year: 2016

  3. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    Science.gov (United States)

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  4. Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: Applications to ion channels.

    Science.gov (United States)

    Singer, A; Gillespie, D; Norbury, J; Eisenberg, R S

    2008-01-01

    Ion channels are proteins with a narrow hole down their middle that control a wide range of biological function by controlling the flow of spherical ions from one macroscopic region to another. Ion channels do not change their conformation on the biological time scale once they are open, so they can be described by a combination of Poisson and drift-diffusion (Nernst-Planck) equations called PNP in biophysics. We use singular perturbation techniques to analyse the steady-state PNP system for a channel with a general geometry and a piecewise constant permanent charge profile. We construct an outer solution for the case of a constant permanent charge density in three dimensions that is also a valid solution of the one-dimensional system. The asymptotical current-voltage (I-V ) characteristic curve of the device (obtained by the singular perturbation analysis) is shown to be a very good approximation of the numerical I-V curve (obtained by solving the system numerically). The physical constraint of non-negative concentrations implies a unique solution, i.e., for each given applied potential there corresponds a unique electric current (relaxing this constraint yields non-physical multiple solutions for sufficiently large voltages).

  5. Numerical approach to the inverse convection-diffusion problem

    International Nuclear Information System (INIS)

    Yang, X-H; She, D-X; Li, J-Q

    2008-01-01

    In this paper, the inverse problem on source term identification in convection-diffusion equation is transformed into an optimization problem. To reduce the computational cost and improve computational accuracy for the optimization problem, a new algorithm, chaos real-coded hybrid-accelerating evolution algorithm (CRHAEA), is proposed, in which an initial population is generated by chaos mapping, and new chaos mutation and simplex evolution operation are used. With the shrinking of searching range, CRHAEA gradually directs to an optimal result with the excellent individuals obtained by real-coded evolution algorithm. Its convergence is analyzed. Its efficiency is demonstrated by 15 test functions. Numerical simulation shows that CRHAEA has some advantages over the real-coded accelerated evolution algorithm, the chaos algorithm and the pure random search algorithm

  6. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  7. A granular computing method for nonlinear convection-diffusion equation

    Directory of Open Access Journals (Sweden)

    Tian Ya Lan

    2016-01-01

    Full Text Available This paper introduces a method of solving nonlinear convection-diffusion equation (NCDE, based on the combination of granular computing (GrC and characteristics finite element method (CFEM. The key idea of the proposed method (denoted as GrC-CFEM is to reconstruct the solution from coarse-grained layer to fine-grained layer. It first gets the nonlinear solution on the coarse-grained layer, and then the function (Taylor expansion is applied to linearize the NCDE on the fine-grained layer. Switch to the fine-grained layer, the linear solution is directly derived from the nonlinear solution. The full nonlinear problem is solved only on the coarse-grained layer. Numerical experiments show that the GrC-CFEM can accelerate the convergence and improve the computational efficiency without sacrificing the accuracy.

  8. Estimation and prediction of convection-diffusion-reaction systems from point measurement

    NARCIS (Netherlands)

    Vries, D.

    2008-01-01

    Different procedures with respect to estimation and prediction of systems characterized by convection, diffusion and reactions on the basis of point measurement data, have been studied. Two applications of these convection-diffusion-reaction (CDR) systems have been used as a case study of the

  9. Handling The Singularities of The Perturbed Kratzer and Inverted Kratzer Potentials

    International Nuclear Information System (INIS)

    Nasser, I.; Abdelmonem, M.S.; Abdel-Hady, A.

    2011-01-01

    The singularities in the Kratzer and inverted Kratzer potentials have been absorbed in the reference Hamiltonian. With the help of the Laguerre basis, the full Hamiltonian becomes tridiagonal. The bound state energies are calculated by diagonalizing the full Hamiltonian matrix. However, the resonance state energies are calculated using the complex rotation method. Our results were found to be in excellent agreement with the exact analytic expressions for these potentials. In addition, we considered adding a squelched harmonic oscillator (SQHO) potential to the Kratzer potential and new results of bound state energies are reported here for the first time

  10. Analytical methods for an elliptic singular perturbation problem In a circle

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    2007-01-01

    textabstractWe consider an elliptic perturbation problem in a circle by using the analytical solution that is given by a Fourier series with coefficients in terms of modified Bessel functions. By using saddle point methods we construct asymptotic approximations with respect to a small parameter.

  11. Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes

    Directory of Open Access Journals (Sweden)

    D. V. Lukyanenko

    2016-01-01

    Full Text Available The main objective of the paper is to present a new analytic-numerical approach to singularly perturbed reaction-diffusion-advection models with solutions containing moving interior layers (fronts. We describe some methods to generate the dynamic adapted meshes for an efficient numerical solution of such problems. It is based on a priori information about the moving front properties provided by the asymptotic analysis. In particular, for the mesh construction we take into account a priori asymptotic evaluation of the location and speed of the moving front, its width and structure. Our algorithms significantly reduce the CPU time and enhance the stability of the numerical process compared with classical approaches.The article is published in the authors’ wording.

  12. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

    Directory of Open Access Journals (Sweden)

    Ravi Kanth A.S.V.

    2016-01-01

    Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.

  14. Non-singular orbital elements for special perturbations in the two-body problem

    Science.gov (United States)

    Baù, Giulio; Bombardelli, Claudio; Peláez, Jesús; Lorenzini, Enrico

    2015-12-01

    Seven spatial elements and a time element are proposed as the state variables of a new special perturbation method for the two-body problem. The new elements hold for zero eccentricity and inclination and for negative values of the total energy. They are developed by combining a spatial transformation into projective coordinates (as in the Burdet-Ferrándiz regularization) with a time transformation in which the exponent of the orbital radius is equal to one instead of two (as commonly done in the literature). By following this approach, we discover a new linearization of the two-body problem, from which the orbital elements can be generated by the variation of parameters method. The geometrical significance of the spatial quantities is revealed by a new intermediate frame which differs from a local vertical local horizontal frame by one rotation in the instantaneous orbital plane. Four elements parametrize the attitude in space of this frame, which in turn defines the orientation of the orbital plane and fixes the departure direction for the longitude of the propagated body. The remaining three elements determine the motion along the radial unit vector and the orbital longitude. The performance of the method, tested using a series of benchmark orbit propagation scenarios, is extremely good when compared to several regularized formulations, some of which have been modified and improved here for the first time.

  15. Final results of the CONDORS convective diffusion experiment

    Science.gov (United States)

    Briggs, Gary A.

    1993-01-01

    The Convective Diffusion Observed by Remote Sensors (CONDORS) field experiment conducted at the Boulder Atmospheric Observatory used innovative techniques to obtain three-dimensional mappings of plume concentration fields, χ/ Q, of oil fog detected by lidar and “chaff” detected by Doppler radar. It included extensive meteorological measurements and, in 1983, tracer gases measured at a single sampling arc. Final results from ten hours of elevated and surface release data are summarized here. Many intercomparisons were made. Oil fog χ/ Q measured 40m above the arc are mostly in good agreement with SF 6 values, except in a few instances with large spacial inhomogeneities over short distances. After a correction scheme was applied to compensate for the effect of its settling speed, chaff ∫χ dy/Q agreed well with those of oil except in two cases of oil fog “hot spots”. Mass or frequency distribution vs. azimuth or elevation angle comparisons were made for chaff, oil, and wind, with mostly good agreements. Spacial standard deviations, σy and σz, of chaff and oil agree overall and are consistent at short range with velocity standard deviations σvand σw ≈ 0.6w* (the convective scale velocity), as measured at z>100m. Surface release σy is enhanced up to 60% at small x, consistent with the Prairie Grass measurements and with larger σv and reduced wind speed measured near the surface. Decreased σy at small dimensionless average times is also noted. Finally, convectively scaled ∫χ dy, C y, were plotted versus dimensionless x and z for oil, chaff, and corrected chaff for each 30 60 min period. Aggregated CONDORS C y fields compare well with laboratory tank and LES numerical simulations; surface-released oil fog compares expecially well with the tank experiments. However, large deviations from the norm occurred in individual averaging periods; these deviations correlated strongly with anomalies in measured ω distributions.

  16. A Solution of the Convective-Diffusion Equation for Solute Mass Transfer inside a Capillary Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2010-01-01

    Full Text Available This paper presents an analytical model of substrate mass transfer through the lumen of a membrane bioreactor. The model is a solution of the convective-diffusion equation in two dimensions using a regular perturbation technique. The analysis accounts for radial-convective flow as well as axial diffusion of the substrate specie. The model is applicable to the different modes of operation of membrane bioreactor (MBR systems (e.g., dead-end, open-shell, or closed-shell mode, as well as the vertical or horizontal orientation. The first-order limit of the Michaelis-Menten equation for substrate consumption was used to test the developed model against available analytical results. The results obtained from the application of this model, along with a biofilm growth kinetic model, will be useful in the derivation of an efficiency expression for enzyme production in an MBR.

  17. Canard solution and its asymptotic approximation in a second-order nonlinear singularly perturbed boundary value problem with a turning point

    Science.gov (United States)

    Shen, Jianhe; Han, Maoan

    2014-08-01

    This paper considers the existence and uniformly valid asymptotic approximation of canard solutions in a second-order nonlinear singularly perturbed boundary value problem with a turning point. We get the main results by constructing the asymptotic solution first and then defining a couple of upper and lower solutions suitably on the basis of the asymptotic solution. Two examples are carried out to illustrate and verify the theoretical results.

  18. Multigrid solution of the convection-diffusion equation with high-Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [George Washington Univ., Washington, DC (United States)

    1996-12-31

    A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.

  19. A subgrid viscosity Lagrance-Galerkin method for convection-diffusion problems

    OpenAIRE

    Bermejo Bermejo, Rodolfo; Galan Del Sastre, Pedro; Saavedra Lago, Laura

    2014-01-01

    We present and analyze a subgrid viscosity Lagrange-Galerk in method that combines the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comp., 133: 14 7-157, 2002, and a conventional Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results in an efficient and easy to implement stabilized method for convection dominated convection diffusion reaction problems. Numeric...

  20. Singular potentials in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera-Navarro, V.C. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Koo, E. Ley [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica

    1995-10-01

    This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs.

  1. Isotopy of Morin singularities

    OpenAIRE

    Saji, Kentaro

    2015-01-01

    We define an equivalence relation called A-isotopy between finitely determined map-germs, which is a strengthened version of A-equivalence. We consider the number of A-isotopy classes of equidimensional Morin singularities, and some other well-known low-dimensional singularities. We also give an application to stable perturbations of simple equi-dimensional map-germs.

  2. Finite element procedures for time-dependent convection-diffusion-reaction systems

    Science.gov (United States)

    Tezduyar, T. E.; Park, Y. J.; Deans, H. A.

    1988-01-01

    New finite element procedures based on the streamline-upwind/Petrov-Galerkin formulations are developed for time-dependent convection-diffusion-reaction equations. These procedures minimize spurious oscillations for convection-dominated and reaction-dominated problems. The results obtained for representative numerical examples are accurate with minimal oscillations. As a special application problem, the single-well chemical tracer test (a procedure for measuring oil remaining in a depleted field) is simulated numerically. The results show the importance of temperature effects on the interpreted value of residual oil saturation from such tests.

  3. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

    Directory of Open Access Journals (Sweden)

    Ku David N

    2010-07-01

    Full Text Available Abstract Background The finite volume solver Fluent (Lebanon, NH, USA is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. Methods An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK schemes. The fluid has a diffusivity of 3.125 × 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. Results The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140

  4. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport.

    Science.gov (United States)

    Carroll, Gráinne T; Devereux, Paul D; Ku, David N; McGloughlin, Timothy M; Walsh, Michael T

    2010-07-19

    The finite volume solver Fluent (Lebanon, NH, USA) is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) schemes. The fluid has a diffusivity of 3.125 x 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140% and 116% was demonstrated between the experimental

  5. Recent advances in computational-analytical integral transforms for convection-diffusion problems

    Science.gov (United States)

    Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.

    2017-10-01

    An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.

  6. Two-Time Scale Virtual Sensor Design for Vibration Observation of a Translational Flexible-Link Manipulator Based on Singular Perturbation and Differential Games.

    Science.gov (United States)

    Ju, Jinyong; Li, Wei; Wang, Yuqiao; Fan, Mengbao; Yang, Xuefeng

    2016-10-28

    Effective feedback control requires all state variable information of the system. However, in the translational flexible-link manipulator (TFM) system, it is unrealistic to measure the vibration signals and their time derivative of any points of the TFM by infinite sensors. With the rigid-flexible coupling between the global motion of the rigid base and the elastic vibration of the flexible-link manipulator considered, a two-time scale virtual sensor, which includes the speed observer and the vibration observer, is designed to achieve the estimation for the vibration signals and their time derivative of the TFM, as well as the speed observer and the vibration observer are separately designed for the slow and fast subsystems, which are decomposed from the dynamic model of the TFM by the singular perturbation. Additionally, based on the linear-quadratic differential games, the observer gains of the two-time scale virtual sensor are optimized, which aims to minimize the estimation error while keeping the observer stable. Finally, the numerical calculation and experiment verify the efficiency of the designed two-time scale virtual sensor.

  7. Traveling wave solutions of a biological reaction-convection-diffusion equation model by using $(G'/G$ expansion method

    Directory of Open Access Journals (Sweden)

    Shahnam Javadi

    2013-07-01

    Full Text Available In this paper, the $(G'/G$-expansion method is applied to solve a biological reaction-convection-diffusion model arising in mathematical biology. Exact traveling wave solutions are obtained by this method. This scheme can be applied to a wide class of nonlinear partial differential equations.

  8. Computing singularly perturbed differential equations

    Science.gov (United States)

    Chatterjee, Sabyasachi; Acharya, Amit; Artstein, Zvi

    2018-02-01

    A computational tool for coarse-graining nonlinear systems of ordinary differential equations in time is discussed. Three illustrative model examples are worked out that demonstrate the range of capability of the method. This includes the averaging of Hamiltonian as well as dissipative microscopic dynamics whose 'slow' variables, defined in a precise sense, can often display mixed slow-fast response as in relaxation oscillations, and dependence on initial conditions of the fast variables. Also covered is the case where the quasi-static assumption in solid mechanics is violated. The computational tool is demonstrated to capture all of these behaviors in an accurate and robust manner, with significant savings in time. A practically useful strategy for accurately initializing short bursts of microscopic runs for the evolution of slow variables is integral to our scheme, without the requirement that the slow variables determine a unique invariant measure of the microscopic dynamics.

  9. Preconditioning for Singular Perturbation Problems.

    Science.gov (United States)

    1986-08-01

    methods for the solution of (1.1) - see (181, [19]. Almost all iterative methods, including the multigrid methods [14] can be cast in the framework of a...techniques", SIAM J. Numer. Anal., Ser. B. 2, 1 (1964). (14] McCormick, S. F., ed., " Multigrid Methods ", SIAM series on Frontiers of Applied Mathematics 5

  10. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  11. Volumetric vs Mass Velocity in Analyzing Convective-Diffusive Transport Processes in Liquids

    Science.gov (United States)

    Brenner, Howard

    2000-11-01

    Because mass rather than volume is preserved in fluid-mechanical problems involving density changes, a natural predilection exists for quantifying convective-diffusive transport phenomena in terms of a velocity field based upon mass, rather than volume. Indeed, in the classic BSL "Transport Phenomena" textbook, but a single reference exists even to the very concept of a volume velocity, and even then it is relegated to a homework assignment. However, especially when dealing with transport in fluids in which the mass density of the conserved property being transported (e.g., chemical species, internal energy, etc.) is independent of the prevailing pressure, as is largely true in the case of liquids, overwhelming advantages exist is preferring the volume velocity over the more ubiquitous and classical mass velocity. In a generalization of ideas pioneered by D. D. Joseph and co-workers, we outline the reasons for this volumetric velocity preference in a broad general context by identifying a large class of physical problems whose solutions are rendered more accessible by exploiting this unconventional velocity choice.

  12. An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hund, S J; Antaki, J F [Carnegie Mellon University, 700 Technology Dr., CMRI/PTC 4218, Pittsburgh, PA 15219 (United States)], E-mail: shund@andrew.cmu.edu, E-mail: antaki@andrew.cmu.edu

    2009-10-21

    Transport phenomena of platelets and white blood cells (WBCs) are fundamental to the processes of vascular disease and thrombosis. Unfortunately, the dilute volume occupied by these cells is not amenable to fluid-continuum modeling, and yet the cell count is large enough that modeling each individual cell is impractical for most applications. The most feasible option is to treat them as dilute species governed by convection and diffusion; however, this is further complicated by the role of the red blood cell (RBC) phase on the transport of these cells. We therefore propose an extended convection-diffusion (ECD) model based on the diffusive balance of a fictitious field potential, {psi}, that accounts for the gradients of both the dilute phase and the local hematocrit. The ECD model was applied to the flow of blood in a tube and between parallel plates in which a profile for the RBC concentration field was imposed and the resulting platelet concentration field predicted. Compared to prevailing enhanced-diffusion models that dispersed the platelet concentration field, the ECD model was able to simulate a near-wall platelet excess, as observed experimentally. The extension of the ECD model depends only on the ability to prescribe the hematocrit distribution, and therefore may be applied to a wide variety of geometries to investigate platelet-mediated vascular disease and device-related thrombosis.

  13. An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes

    International Nuclear Information System (INIS)

    Hund, S J; Antaki, J F

    2009-01-01

    Transport phenomena of platelets and white blood cells (WBCs) are fundamental to the processes of vascular disease and thrombosis. Unfortunately, the dilute volume occupied by these cells is not amenable to fluid-continuum modeling, and yet the cell count is large enough that modeling each individual cell is impractical for most applications. The most feasible option is to treat them as dilute species governed by convection and diffusion; however, this is further complicated by the role of the red blood cell (RBC) phase on the transport of these cells. We therefore propose an extended convection-diffusion (ECD) model based on the diffusive balance of a fictitious field potential, Ψ, that accounts for the gradients of both the dilute phase and the local hematocrit. The ECD model was applied to the flow of blood in a tube and between parallel plates in which a profile for the RBC concentration field was imposed and the resulting platelet concentration field predicted. Compared to prevailing enhanced-diffusion models that dispersed the platelet concentration field, the ECD model was able to simulate a near-wall platelet excess, as observed experimentally. The extension of the ECD model depends only on the ability to prescribe the hematocrit distribution, and therefore may be applied to a wide variety of geometries to investigate platelet-mediated vascular disease and device-related thrombosis.

  14. Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method

    Science.gov (United States)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chew, Jia Wei

    2018-02-01

    In this study, an alternative second-order boundary scheme is proposed under the framework of the convection-diffusion lattice Boltzmann (LB) method for both straight and curved geometries. With the proposed scheme, boundary implementations are developed for the Dirichlet, Neumann and linear Robin conditions in a consistent way. The Chapman-Enskog analysis and the Hermite polynomial expansion technique are first applied to derive the explicit expression for the general distribution function with second-order accuracy. Then, the macroscopic variables involved in the expression for the distribution function is determined by the prescribed macroscopic constraints and the known distribution functions after streaming [see the paragraph after Eq. (29) for the discussions of the "streaming step" in LB method]. After that, the unknown distribution functions are obtained from the derived macroscopic information at the boundary nodes. For straight boundaries, boundary nodes are directly placed at the physical boundary surface, and the present scheme is applied directly. When extending the present scheme to curved geometries, a local curvilinear coordinate system and first-order Taylor expansion are introduced to relate the macroscopic variables at the boundary nodes to the physical constraints at the curved boundary surface. In essence, the unknown distribution functions at the boundary node are derived from the known distribution functions at the same node in accordance with the macroscopic boundary conditions at the surface. Therefore, the advantages of the present boundary implementations are (i) the locality, i.e., no information from neighboring fluid nodes is required; (ii) the consistency, i.e., the physical boundary constraints are directly applied when determining the macroscopic variables at the boundary nodes, thus the three kinds of conditions are realized in a consistent way. It should be noted that the present focus is on two-dimensional cases, and theoretical

  15. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux

    Science.gov (United States)

    Liu, Lin; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-09-01

    An improved Cattaneo-Christov flux model is proposed which can be used to capture the effects of the time and spatial relaxations, the time and spatial inhomogeneous diffusion and the spatial transition probability of cell transport in a highly non-homogeneous medium. Solutions are obtained by numerical discretization method where the time and spatial fractional derivative are discretized by the L1-approximation and shifted Grünwald definition, respectively. The solvability, stability and convergence of the numerical method for the special case of the Cattaneo-Christov equation are proved. Results indicate that the fractional convection diffusion-wave equation is an evolution equation which displays the coexisting characteristics of parabolicity and hyperbolicity. In other words, for α in (0, 1), the cells transport occupies the characteristics of coupling convection diffusion and wave spreading. Moreover, the effects of pertinent time parameter, time and spatial fractional derivative parameters, relaxation parameter, weight coefficient and the convection velocity on the anomalous transport of cells are shown graphically and analyzed in detail.

  16. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  17. Stable computation of generalized singular values

    Energy Technology Data Exchange (ETDEWEB)

    Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.

  18. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  19. Topological resolution of gauge theory singularities

    Science.gov (United States)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  20. Singular boundary perturbations of distributed systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1990-01-01

    Some problems arising in real-life control applications are addressed--namely, problems concerning non-smooth control inputs on the boundary of the spatial domain. The classical variational approach is extended, and sufficient conditions are given for the solutions to continuous functions of time...

  1. The Geometry of Black Hole Singularities

    Directory of Open Access Journals (Sweden)

    Ovidiu Cristinel Stoica

    2014-01-01

    Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.

  2. Prediction of galactic cosmic ray intensity variation for a few (up to 10-12 years ahead on the basis of convection-diffusion and drift model

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We determine the dimension of the Heliosphere (modulation region, radial diffusion coefficient and other parameters of convection-diffusion and drift mechanisms of cosmic ray (CR long-term variation, depending on particle energy, the level of solar activity (SA and general solar magnetic field. This important information we obtain on the basis of CR and SA data in the past, taking into account the theory of convection-diffusion and drift global modulation of galactic CR in the Heliosphere. By using these results and the predictions which are regularly published elsewhere of expected SA variation in the near future and prediction of next future SA cycle, we may make a prediction of the expected in the near future long-term cosmic ray intensity variation. We show that by this method we may make a prediction of the expected in the near future (up to 10-12 years, and may be more, in dependence for what period can be made definite prediction of SA galactic cosmic ray intensity variation in the interplanetary space on different distances from the Sun, in the Earth's magnetosphere, and in the atmosphere at different altitudes and latitudes.

  3. Finite volume scheme for double convection-diffusion exchange of solutes in bicarbonate high-flux hollow-fiber dialyzer therapy.

    Science.gov (United States)

    Annan, Kodwo

    2012-01-01

    The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO(2) concentration gradients diminished from their maxima and shifted toward the end of the membrane, HCO(3)(-) concentration gradients peaked at the same position. Also, CO(2) concentration decreased rapidly within the first 47 minutes while optimal HCO(3)(-) concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers.

  4. Finite Volume Scheme for Double Convection-Diffusion Exchange of Solutes in Bicarbonate High-Flux Hollow-Fiber Dialyzer Therapy

    Directory of Open Access Journals (Sweden)

    Kodwo Annan

    2012-01-01

    Full Text Available The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers.

  5. Statistical analysis of effective singular values in matrix rank determination

    Science.gov (United States)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  6. Singular Differential Equations and g-Drazin Invertible Operators

    Directory of Open Access Journals (Sweden)

    Alrazi Abdeljabbar

    2016-01-01

    Full Text Available We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.

  7. Singular Differential Equations and g-Drazin Invertible Operators

    OpenAIRE

    Abdeljabbar, Alrazi; Tran, Trung Dinh

    2016-01-01

    We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.

  8. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  9. Geodesic fields with singularities

    International Nuclear Information System (INIS)

    Kafker, A.H.

    1979-01-01

    The question considered is whether or not a Riemannian metric can be found to make a given curve field on a closed surface into geodesics. Allowing singularities removes the restriction to Euler characteristic zero. The main results are the following: only two types of isolated singularities can occur in a geodesic field on a surface. No geodsic fields exist on a surface with Euler characteristic less than zero. If the Euler characteristic is zero, such a geodesic field can have only removable singularities. Only a limited number of geodesic fields exist on S 2 and RP 2 . A closed geodesic (perhaps made from several curves and singularities) always appears in such a field

  10. Introduction to singularities

    CERN Document Server

    Ishii, Shihoko

    2014-01-01

    This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...

  11. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.

    Science.gov (United States)

    Yang, Xuguang; Shi, Baochang; Chai, Zhenhua

    2014-07-01

    In this paper, two modified lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes equations and convection-diffusion equations are proposed via the addition of correction terms in the evolution equations. Utilizing this modification, the value of the dimensionless relaxation time in the LBGK model can be kept in a proper range, and thus the stability of the LBGK model can be improved. Although some gradient operators are included in the correction terms, they can be computed efficiently using local computational schemes such that the present LBGK models still retain the intrinsic parallelism characteristic of the lattice Boltzmann method. Numerical studies of the steady Poiseuille flow and unsteady Womersley flow show that the modified LBGK model has a second-order convergence rate in space, and the compressibility effect in the common LBGK model can be eliminated. In addition, to test the stability of the present models, we also performed some simulations of the natural convection in a square cavity, and we found that the results agree well with those reported in the previous work, even at a very high Rayleigh number (Ra = 10(12)).

  12. Computational methods and modeling. 3. Adaptive Mesh Refinement for the Nodal Integral Method and Application to the Convection-Diffusion Equation

    International Nuclear Information System (INIS)

    Torej, Allen J.; Rizwan-Uddin

    2001-01-01

    The nodal integral method (NIM) has been developed for several problems, including the Navier-Stokes equations, the convection-diffusion equation, and the multigroup neutron diffusion equations. The coarse-mesh efficiency of the NIM is not fully realized in problems characterized by a wide range of spatial scales. However, the combination of adaptive mesh refinement (AMR) capability with the NIM can recover the coarse mesh efficiency by allowing high degrees of resolution in specific localized areas where it is needed and by using a lower resolution everywhere else. Furthermore, certain features of the NIM can be fruitfully exploited in the application of the AMR process. In this paper, we outline a general approach to couple nodal schemes with AMR and then apply it to the convection-diffusion (energy) equation. The development of the NIM with AMR capability (NIMAMR) is based on the well-known Berger-Oliger method for structured AMR. In general, the main components of all AMR schemes are 1. the solver; 2. the level-grid hierarchy; 3. the selection algorithm; 4. the communication procedures; 5. the governing algorithm. The first component, the solver, consists of the numerical scheme for the governing partial differential equations and the algorithm used to solve the resulting system of discrete algebraic equations. In the case of the NIM-AMR, the solver is the iterative approach to the solution of the set of discrete equations obtained by applying the NIM. Furthermore, in the NIM-AMR, the level-grid hierarchy (the second component) is based on the Hierarchical Adaptive Mesh Refinement (HAMR) system,6 and hence, the details of the hierarchy are omitted here. In the selection algorithm, regions of the domain that require mesh refinement are identified. The criterion to select regions for mesh refinement can be based on the magnitude of the gradient or on the Richardson truncation error estimate. Although an excellent choice for the selection criterion, the Richardson

  13. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...

  14. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  15. Analytic continuation in perturbative QCD

    International Nuclear Information System (INIS)

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  16. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  17. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  18. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  19. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  20. Numerical Approaches to Spacetime Singularities

    Directory of Open Access Journals (Sweden)

    Beverly K. Berger

    1998-05-01

    Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.

  1. Gauge invariance properties and singularity cancellations in a modified PQCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos

    2006-01-01

    The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.

  2. Exact Controllability and Perturbation Analysis for Elastic Beams

    International Nuclear Information System (INIS)

    Moreles, Miguel Angel

    2004-01-01

    The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli-Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials

  3. Singularities in FLRW spacetimes

    Science.gov (United States)

    het Lam, Huibert; Prokopec, Tomislav

    2017-12-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.

  4. Perturbative QCD at finite temperature

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-03-01

    We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks

  5. Perturbative spacetimes from Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  6. On adiabatic perturbations in the ekpyrotic scenario

    International Nuclear Information System (INIS)

    Linde, A.; Mukhanov, V.; Vikman, A.

    2010-01-01

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario

  7. Singularities in a Teacup

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good Mathematics from Bad Lenses. Rajaram Nityananda. General Article Volume 19 Issue 9 September 2014 pp 787-796. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Singularities in a Teacup

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good ... Author Affiliations. Rajaram Nityananda1. Azim Premji University, PES Institute of Technology Campus, Pixel Park, B Block, Electronics City, Hosur Road (Beside NICE Road) Bangalore – 560100 ...

  9. Singularities in a Teacup

    Indian Academy of Sciences (India)

    IAS Admin

    Standard presentations of optics concentrate on ideal systems made for imaging which bring all rays from a point ... One of the standard topics we study in school is the action of a spherical mirror. Figure 1 shows a set of ..... singularities of smooth maps, and the beauty of the mathematics needed to understand them, Arnold ...

  10. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...

  11. Pseudospherical surfaces with singularities

    DEFF Research Database (Denmark)

    Brander, David

    2017-01-01

    We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...

  12. Singularities in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept

  13. Analytical solutions of convection–diffusion problems by combining Laplace transform method and homotopy perturbation method

    Directory of Open Access Journals (Sweden)

    Sumit Gupta

    2015-09-01

    Full Text Available The aim of this paper was to present a user friendly numerical algorithm based on homotopy perturbation transform method for solving various linear and nonlinear convection-diffusion problems arising in physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. The homotopy perturbation transform method is a combined form of the homotopy perturbation method and Laplace transform method. The nonlinear terms can be easily obtained by the use of He’s polynomials. The technique presents an accurate methodology to solve many types of partial differential equations The approximate solutions obtained by proposed scheme in a wide range of the problem’s domain were compared with those results obtained from the actual solutions. The comparison shows a precise agreement between the results.

  14. Singular limit analysis of a model for earthquake faulting

    DEFF Research Database (Denmark)

    Bossolini, Elena; Brøns, Morten; Kristiansen, Kristian Uldall

    2017-01-01

    In this paper we consider the one dimensional spring-block model describing earthquake faulting. By using geometric singular perturbation theory and the blow-up method we provide a detailed description of the periodicity of the earthquake episodes. In particular, the limit cycles arise from...

  15. Universality of mass singularities beyond leading logarithm approximation

    International Nuclear Information System (INIS)

    Kripfganz, J.

    1978-08-01

    Lepton pair production is studied in low order QCD perturbation theory. Mass singularities are analyzed. Also non-leading logarithms are found to factorize. This allows the consistent computation of correction terms to the Drell-Yan formula. The same factorization properties remain true in case of polarized initial state hadrons and final state leptons. Working in Coulomb gauge greatly simplifies the calculations. (author)

  16. Fourth order compact finite difference method for solving singularly ...

    African Journals Online (AJOL)

    A numerical method based on finite difference scheme with uniform mesh is presented for solving singularly perturbed two-point boundary value problems of 1D reaction-diffusion equations. First, the derivatives of the given differential equation is replaced by the finite difference approximations and then, solved by using ...

  17. New singularities in nonrelativistic coupled channel scattering. II. Fourth order

    International Nuclear Information System (INIS)

    Khuri, N.N.; Tsun Wu, T.

    1997-01-01

    We consider a two-channel nonrelativistic potential scattering problem, and study perturbation theory in fourth order for the forward amplitude. The main result is that the new singularity demonstrated in second order in the preceding paper I also occurs at the same point in fourth order. Its strength is again that of a pole. copyright 1997 The American Physical Society

  18. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  19. Singularities: the Brieskorn anniversary volume

    National Research Council Canada - National Science Library

    Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M

    1998-01-01

    ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...

  20. Terminal singularities, Milnor numbers, and matter in F-theory

    Science.gov (United States)

    Arras, Philipp; Grassi, Antonella; Weigand, Timo

    2018-01-01

    We initiate a systematic investigation of F-theory on elliptic fibrations with singularities which cannot be resolved without breaking the Calabi-Yau condition, corresponding to Q-factorial terminal singularities. It is the purpose of this paper to elucidate the physical origin of such non-crepant singularities in codimension two and to systematically analyze F-theory compactifications containing such singularities. The singularities reflect the presence of localized matter states from wrapped M2-branes which are not charged under any massless gauge potential. We identify a class of Q-factorial terminal singularities on elliptically fibered Calabi-Yau threefolds for which we can compute the number of uncharged localized hypermultiplets in terms of their associated Milnor numbers. These count the local complex deformations of the singularities. The resulting six-dimensional spectra are shown to be anomaly-free. We exemplify this in a variety of cases, including models with non-perturbative gauge groups with both charged and uncharged localized matter. The underlying mathematics will be discussed further in a forthcoming publication.

  1. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  2. Holographic complexity and spacetime singularities

    International Nuclear Information System (INIS)

    Barbón, José L.F.; Rabinovici, Eliezer

    2016-01-01

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  3. Infinitesimal Structure of Singularities

    Directory of Open Access Journals (Sweden)

    Michael Heller

    2017-02-01

    Full Text Available Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals and of logic (to the intuitionistic logic. Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.

  4. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  5. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  6. Multiscale singularity trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter

    2007-01-01

    We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....

  7. Analytic continuation and perturbative expansions in QCD

    Czech Academy of Sciences Publication Activity Database

    Caprini, I.; Fischer, Jan

    2002-01-01

    Roč. 24, - (2002), s. 127-135 ISSN 1434-6044 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : perturbative expansion * quantum chromodynamics * infrared ambiguity * essential singularities Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.162, year: 2002

  8. Entanglement entropy of singular surfaces under relevant deformations in holography

    Science.gov (United States)

    Ghasemi, Mostafa; Parvizi, Shahrokh

    2018-02-01

    In the vacuum state of a CFT, the entanglement entropy of singular surfaces contains a logarithmic universal term which is only due to the singularity of the entangling surface. We consider the relevant perturbation of a three dimensional CFT for singular entangling surface. We observe that in addition to the universal term due to the entangling surface, there is a new logarithmic term which corresponds to a relevant perturbation of the conformal field theory with a coefficient depending on the scaling dimension of the relevant operator. We also find a new power law divergence in the holographic entanglement entropy. In addition, we study the effect of a relevant perturbation in the Gauss-Bonnet gravity for a singular entangling surface. Again a logarithmic term shows up. This new term is proportional to both the dimension of the relevant operator and the Gauss-Bonnet coupling. We also introduce the renormalized entanglement entropy for a kink region which in the UV limit reduces to a universal positive finite term.

  9. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    Huxley equation. The equation contains two terms with nonlinearities, the cubic term and the advection term. Generally, the severe difficulties of two types encounter in solving this problem. The first one ... Nonlinear phenomena occur in a wide variety of scientific applications such as plasma physics, solid state physics, fluid.

  10. Long term behaviour of singularly perturbed parabolic degenerated equation

    OpenAIRE

    Faye, Ibrahima; Frenod, Emmanuel; Seck, Diaraf

    2011-01-01

    In this paper we consider models for short-term, mean-term and long-term morphodynamics of dunes and megariples. We give an existence and uniqueness result for long term dynamics of dunes. This result is based on a time-space periodic solution existence result for degenerated parabolic equation that we set out. Finally the mean-term and long-term models are homogenized.

  11. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    , is used to solve this equation. This method is able to obtain rapidly convergent successive approximations of exact solution without any restrictive approximations or the transformations that may change the physical behaviour of the problem.

  12. Homogenization in time of singularly perturbed mechanical systems

    CERN Document Server

    Bornemann, Folkmar

    1998-01-01

    This book is about the explicit elimination of fast oscillatory scales in dynamical systems, which is important for efficient computer-simulations and our understanding of model hierarchies. The author presents his new direct method, homogenization in time, based on energy principles and weak convergence techniques. How to use this method is shown in several general cases taken from classical and quantum mechanics. The results are applied to special problems from plasma physics, molecular dynamics and quantum chemistry. Background material from functional analysis is provided and explained to make this book accessible for a general audience of graduate students and researchers.

  13. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  14. Singular vectors, predictability and ensemble forecasting for weather and climate

    International Nuclear Information System (INIS)

    Palmer, T N; Zanna, Laure

    2013-01-01

    The local instabilities of a nonlinear dynamical system can be characterized by the leading singular vectors of its linearized operator. The leading singular vectors are perturbations with the greatest linear growth and are therefore key in assessing the system’s predictability. In this paper, the analysis of singular vectors for the predictability of weather and climate and ensemble forecasting is discussed. An overview of the role of singular vectors in informing about the error growth rate in numerical models of the atmosphere is given. This is followed by their use in the initialization of ensemble weather forecasts. Singular vectors for the ocean and coupled ocean–atmosphere system in order to understand the predictability of climate phenomena such as ENSO and meridional overturning circulation are reviewed and their potential use to initialize seasonal and decadal forecasts is considered. As stochastic parameterizations are being implemented, some speculations are made about the future of singular vectors for the predictability of weather and climate for theoretical applications and at the operational level. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (review)

  15. Cosmological models without singularities

    International Nuclear Information System (INIS)

    Petry, W.

    1981-01-01

    A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)

  16. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  17. Soliton Perturbations, Revisited.

    Science.gov (United States)

    Herman, Russell Leland

    Starting with an 'integrable' nonlinear evolution equation, we are investigating perturbations about a one soliton solution, through the inversion of a linear equation for the first order correction. This differs from the methods based on the perturbation of certain 'scattering data', as the proposed method takes place in coordinate space, and not spectral space. The method is tested on several perturbed Korteweg -DeVries equations. The damped KdV equation is studied in detail, resulting in the resolution of the controversy over the shift in the center of the soliton in favor of the results of Karpman and Maslov. Using a finite difference scheme, a numerically induced shift in the damped soliton's position is predicted through the use of perturbation theory. We extend the results of Ott and Sudan for other damped KdV equations, giving expressions for the shift in soliton position and the asymptotic form of the first order correction to the solution. Next we investigate Menyuk's case of a solution consisting of a soliton plus arbitrary initial radiation, which is subject to a Hamiltonian perturbation; and we show that the radiation must start out small. After these preliminary investigations, we turn to the stochastic KdV equation with external Gaussian white noise, zeta(x,t). For the cases of damping and no damping, the averaged soliton asymptotically becomes a Gaussian wave packet, which decays and broadens according to the same power laws as found by Wadati and Akutsu for the noise zeta(t). Next, we investigate the propagation of a modulated KP soliton and compare our results to the work of Chang. We find that singular perturbation theory cannot explain the evolution of this profile, but we can obtain good qualitative results from the solution of the Cauchy problem for the linearized KP equation. The modulations travel away from the soliton peak and decay in time, leaving a stable planar soliton behind. Finally, we discuss the application of the method to the

  18. Residues and duality for singularity categories of isolated Gorenstein singularities

    OpenAIRE

    Murfet, Daniel

    2009-01-01

    We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.

  19. Existence and Uniqueness of Positive Solution for a Singular Nonlinear Second-Order -Point Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Lv Xuezhe

    2010-01-01

    Full Text Available Abstract The existence and uniqueness of positive solution is obtained for the singular second-order -point boundary value problem for , , , where , , are constants, and can have singularities for and/or and for . The main tool is the perturbation technique and Schauder fixed point theorem.

  20. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has ...

  1. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.

  2. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  3. Generalized decomposition methods for singular oscillators

    International Nuclear Information System (INIS)

    Ramos, J.I.

    2009-01-01

    Generalized decomposition methods based on a Volterra integral equation, the introduction of an ordering parameter and a power series expansion of the solution in terms of the ordering parameter are developed and used to determine the solution and the frequency of oscillation of a singular, nonlinear oscillator with an odd nonlinearity. It is shown that these techniques provide solutions which are free from secularities if the unknown frequency of oscillation is also expanded in power series of the ordering parameter, require that the nonlinearities be analytic functions of their arguments, and, at leading-order, provide the same frequency of oscillation as two-level iterative techniques, the homotopy perturbation method if the constants that appear in the governing equation are expanded in power series of the ordering parameter, and modified artificial parameter - Linstedt-Poincare procedures.

  4. Singular traces theory and applications

    CERN Document Server

    Sukochev, Fedor; Zanin, Dmitriy

    2012-01-01

    This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.

  5. Dynkin graphs and quadrilateral singularities

    CERN Document Server

    Urabe, Tohsuke

    1993-01-01

    The study of hypersurface quadrilateral singularities can be reduced to the study of elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0), and therefore these notes consider, besides the topics of the title, such K3 surfaces too. The combinations of rational double points that can occur on fibers in the semi-universal deformations of quadrilateral singularities are examined, to show that the possible combinations can be described by a certain law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0) can be described by a certain law using classical Dynkin graphs appearing in the theory of semi-simple Lie groups. Further, a similar description for thecombination of singularities on plane sextic curves is given. Standard knowledge of algebraic geometry at the level of graduate students is expected. A new method based on graphs wil...

  6. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  7. Criteria for resolving the cosmological singularity in infinite derivative gravity around expanding backgrounds

    Science.gov (United States)

    Edholm, James; Conroy, Aindriú

    2017-12-01

    We derive the conditions whereby null rays "defocus" within infinite derivative gravity for perturbations around an (A)dS background, and show that it is therefore possible to avoid singularities within this framework. This is in contrast to Einstein's theory of general relativity, where singularities are generated unless the null energy condition is violated. We further extend this to an (A)dS-Bianchi I background metric, and also give an example of a specific perturbation where defocusing is possible given certain conditions.

  8. Gauge-invariance properties and singularity cancellations in a modified PQCD

    Energy Technology Data Exchange (ETDEWEB)

    Cabo, A. [CERN, Theory Division, Geneva (Switzerland); Instituto de Cibernetica, Matematica y Fisica, Group of Theoretical Physics, La Habana (Cuba); Rigol, M. [University of California, Physics Department, Davis, CA (United States)

    2006-07-15

    The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter {alpha}. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the {alpha}-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge-invariance properties. (orig.)

  9. Alien calculus and non perturbative effects in Quantum Field Theory

    Science.gov (United States)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  10. Brane singularities and their avoidance

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia

    2010-01-01

    The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analog of perfect fluid with an arbitrary equation of state P = γρ between the 'pressure' P and the 'density' ρ, our results depend crucially on the constant fluid parameter γ. (i) For γ > -1/2, the flat brane solution suffers from a collapse singularity at a finite distance that disappears in the curved case. (ii) For γ < -1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1 < γ ≤ -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.

  11. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    International Nuclear Information System (INIS)

    Chen, Yu-Zhu; Li, Wen-Du; Dai, Wu-Sheng

    2017-01-01

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  12. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  13. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  14. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  15. Ambient cosmology and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  16. Correlation energy for elementary bosons: Physics of the singularity

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China); Combescot, Monique [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, 75005 Paris (France); Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan (China); Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China)

    2016-04-15

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  17. Wentzel-Bardeen singularity in coupled Luttinger liquids: Transport properties

    International Nuclear Information System (INIS)

    Martin, T.

    1994-01-01

    The recent progress on 1 D interacting electrons systems and their applications to study the transport properties of quasi one dimensional wires is reviewed. We focus on strongly correlated elections coupled to low energy acoustic phonons in one dimension. The exponents of various response functions are calculated, and their striking sensitivity to the Wentzel-Bardeen singularity is discussed. For the Hubbard model coupled to phonons the equivalent of a phase diagram is established. By increasing the filling factor towards half filling the WB singularity is approached. This in turn suppresses antiferromagnetic fluctuations and drives the system towards the superconducting regime, via a new intermediate (metallic) phase. The implications of this phenomenon on the transport properties of an ideal wire as well as the properties of a wire with weak or strong scattering are analyzed in a perturbative renormalization group calculation. This allows to recover the three regimes predicted from the divergence criteria of the response functions

  18. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.

  19. Interval matrices: Regularity generates singularity

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Shary, S.P.

    2018-01-01

    Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  20. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...

  1. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    birth of the Universe in a Big Bang. Nothing could be happier and more persuasive than the observation verifying the prediction of theory. This gave rise to a general belief that singularities were inevitable in general relativity (GR) so long as the dynamics were governed by Einstein's equations and more over positive energy ...

  2. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    of space and time needs revision near these singularities where quantum effects of gravity become important, it is still not clear what structure could replace space ..... The dimensionful parameter μ is a Lagrange multiplier which ensures that the total number of eigenvalues is fixed. 98. Pramana – J. Phys., Vol. 69, No. 1, July ...

  3. Spectral Analysis of a Quantum System with a Double Line Singular Interaction

    Czech Academy of Sciences Publication Activity Database

    Kondej, S.; Krejčiřík, David

    2013-01-01

    Roč. 49, č. 4 (2013), s. 831-859 ISSN 0034-5318 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrödinger operator * singular perturbation * spectral analysis * Hardy inequality * resonance Subject RIV: BE - Theoretical Physics Impact factor: 0.614, year: 2013

  4. Initial conditions for cosmological perturbations

    Science.gov (United States)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  5. Initial conditions for cosmological perturbations

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-01-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations . (paper)

  6. Geometrical shock dynamics, formation of singularities and topological bifurcations of converging shock fronts

    Science.gov (United States)

    Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco

    2014-11-01

    We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.

  7. Remarks on gauge variables and singular Lagrangians

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.

    1977-01-01

    The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)

  8. Converting entropy to curvature perturbations after a cosmic bounce

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward [Max Planck Institute for Gravitational Physics, Albert Einstein Institute,14476 Potsdam-Golm (Germany)

    2016-10-04

    We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

  9. Singularities and Conjugate Points in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a

  10. Analysis of singularity in redundant manipulators

    International Nuclear Information System (INIS)

    Watanabe, Koichi

    2000-03-01

    In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)

  11. Preparation of Sm(x)Ce(1-x)O2(SDC) electrolyte film with gradient structure via a gas-phase controlling convection-diffusion approach on porous substrate.

    Science.gov (United States)

    Wei, Haizhen; Zeng, Yanwei; Wang, Ling; Cai, Tongxiang; Sun, Xiaolei

    2010-12-15

    A SDC electrolyte film with gradient structure rooted on porous alumina substrate has been prepared by using a gas-phase controlling convection-diffusion approach. Investigation on the fabrication principles and the co-precipitation kinetics turned out the gradient distribution of hydroxide product of Ce(OH)(3) and Sm(OH)(3) in a porous substrate could be formed as induced by the down-toward diffusion of NH(3)·H(2)O in polar solvent along vertical direction and the up-toward convection of Sm(3+) and Ce(3+) ions over the cross-section of porous substrate, and the aim ratio of Ce to Sm of 4:1 in the sediment phase would be achieved by controlling component concentration in bulk solution. As a result, Sm(0.2)Ce(0.8)O(2.0)(SDC) electrolyte film with gradient microstructure could be fabricated after a subsequent sintering treatment at a high temperature. Investigation of crystal phase, structural, compositional characteristics of the sintered SDC/substrate specimens proved that a uniform and dense SDC film with an average grain size of ~500 nm spread over on the surface of substrate, and a correct cubic fluorite phase has been formed. Gradient variation presented in both the microstructure of SDC/substrate and the component contents over the cross-section of the SDC/substrate. Numerical analysis on the EDX data presented three component parts were sectioned, including a dense SDC layer of ~25 μm, a uniform filling layer of ~140 μm and a successive diffuse layer stretching as far as ~250 μm. Effect of bulk pH on thickness and surface microstructure of SDC film has been discussed. This microstructure-optimization approach will be applicable to fabricate electrode-supported gradient electrolyte films for IT-SOFC. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The accuracy of several difference schemes for the numerical solution of the two-dimensional convection-diffusion equation, a numerical test using an example with known analytical solution

    International Nuclear Information System (INIS)

    Guenther, C.

    1988-08-01

    This report describes numerical tests with various difference schemes to solve the convection-diffusion equation. Starting point of this investigation has been a scheme proposed by the author, the so-called 'LECUSSO-scheme', which is of order O(Δx 2 ) and avoids unphysical spatial oscillations meaning that this scheme does not suffer from any mesh-Reynolds-number-restriction. To test this scheme a previously described example introduced by Beier et al. with known analytical solution was adoptd and numerically solved using a variety of difference schemes. This is done for a wide range of Reynolds-numbers (20 ≤ Re' ≤ 5000) and equidistant meshes of different size, the comparison being done with respect to the space-dependent error and to the maximum spatial error of the numerical solution. The results of the numerical tests may be summarized as follows: Flows with boundary layers, as the most interesting case are very favourably calculated using upwind methods of second or higher order in conservation form with respect to the absolute value of the maximum spatial error. The amount of this error is near 1/3 of the error obtained with standard schemes unless these schemes not yet produced obsolete results since a mesh-Reynolds-number condition had been violated. As to the increased amount of work (additional 5th point, two different additional types of modified difference approximations with fewer points near the boundary), LSUDS-C (in conservation form) is not better than LECUSSO-C and QUICK-PLUS. The reduced errors of the upwind methods of higher order enable us to proceed to the numerical calculation of flows with higher Reynolds-numbers than before. (orig./GL [de

  13. Gevrey multiscale expansions of singular solutions of PDEs with cubic nonlinearity

    Directory of Open Access Journals (Sweden)

    Alberto Lastra

    2018-02-01

    Full Text Available We study a singularly perturbed PDE with cubic nonlinearity depending on a complex perturbation parameter $\\epsilon$. This is a continuation of the precedent work [22] by the first author. We construct two families of sectorial meromorphic solutions obtained as a small perturbation in $\\epsilon$ of two branches of an algebraic slow curve of the equation in time scale. We show that the nonsingular part of the solutions of each family shares a common formal power series in $\\epsilon$ as Gevrey asymptotic expansion which might be different one to each other, in general.

  14. Singularities formation, structure, and propagation

    CERN Document Server

    Eggers, J

    2015-01-01

    Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.

  15. Energy conditions and spacetime singularities

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete

  16. Numerical Quadrature of Periodic Singular Integral Equations

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally it is demonstra......This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally...... it is demonstrated how a singular integral equation with infinite support can be solved by use of the preceding formulae....

  17. Singular Continuous Floquet Operator for Systems with Increasing Gaps

    CERN Document Server

    Bourget, O

    2002-01-01

    Consider the Floquet operator of a time independent quantum system, periodically perturbed by a rank one kick, acting on a separable Hilbert space: $e^{-iH_0T}e^{-i\\kappa T |\\phi \\ket \\bra \\phi|}$ where $T$ and $\\kappa$ are the period and the coupling constant respectively. Assume the spectrum of the self adjoint operator $H_0$ is pure point, simple, bounded from below and the gaps between the eigenvalues $(\\lambda_n)$ grow like: $\\lambda_{n+1} - \\lambda_{n} \\sim C n^d$ with $d \\geq 2$. Under some hypotheses on the arithmetical nature of the eigenvalues and on the vector $\\phi$, cyclic for $H_0$, we prove the Floquet operator of the perturbed system has purely singular continuous spectrum.

  18. Fundamental solutions of singular SPDEs

    Energy Technology Data Exchange (ETDEWEB)

    Selesi, Dora, E-mail: dora@dmi.uns.ac.rs [Department of Mathematics and Informatics, University of Novi Sad (Serbia)

    2011-07-15

    Highlights: > Fundamental solutions of linear SPDEs are constructed. > Wick-convolution product is introduced for the first time. > Fourier transformation maps Wick-convolution into Wick product. > Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. > Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P({omega}, D) Lozenge u(x, {omega}) = A(x, {omega}) are considered, where A is a singular generalized stochastic process and P({omega}, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A Lozenge I{sup Lozenge (-1)}, where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  19. Why the Singularity Cannot Happen

    OpenAIRE

    Modis, Theodore

    2012-01-01

    The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...

  20. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  1. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  2. On the use of blowup to study regularizations of singularities of piecewise smooth dynamical systems in R^3

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Hogan, S. J.

    2015-01-01

    approach by considering the case of a fold line. We quickly extend a main result of Reves and Seara in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when...... the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided...... a certain nonresonance condition holds. Finally, we provide numerical evidence for the existence of secondary canards near resonance....

  3. Flavour from partially resolved singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)

    2006-06-15

    In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.

  4. Singularities in Free Surface Flows

    Science.gov (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  5. Non-singular bounce transitions in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, 08028, Barcelona (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2013-11-01

    According to classical GR, negative-energy (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by non-singular bounces. Here we explore possible dynamics of such bounces using a simple modification of the Friedmann equation, which ensures that the scale factor bounces when the matter density reaches some critical value ρ{sub c}. This is combined with a simple scalar field 'landscape', where the energy barriers between different vacua are small compared to ρ{sub c}. We find that the bounce typically results in a transition to another vacuum, with a scalar field displacement Δφ ∼ 1 in Planck units. If the new vacuum is AdS, we have another bounce, and so on, until the field finally transits to a positive-energy (de Sitter) vacuum. We also consider perturbations about the homogeneous solution and discuss some of their amplification mechanisms (e.g., tachyonic instability and parametric resonance). For a generic potential, these mechanisms are much less efficient than in models of slow-roll inflation. But the amplification may still be strong enough to cause the bubble to fragment into a mosaic of different vacua.

  6. Mathematical models with singularities a zoo of singular creatures

    CERN Document Server

    Torres, Pedro J

    2015-01-01

    The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.

  7. Singular Continuous Floquet Operator for Periodic Quantum Systems

    CERN Document Server

    Bourget, O

    2004-01-01

    Consider the Floquet operator of a time independent quantum system, acting on a separable Hilbert space, periodically perturbed by a rank one kick: $e^{-iH_0T}e^{-i\\kappa T |\\phi\\ket\\bra\\phi|}$ where $T$, $\\kappa$ are respectively the period and the coupling constant and $H_0$ is a pure point self-adjoint operator, bounded from below. Under some hypotheses on the vector $\\phi$, cyclic for $H_0$ we prove the following: If the gaps between the eigenvalues $(\\lambda_n)$ are such that: $\\lambda_{n+1}-\\lambda_{n}\\geq C n^{-\\gamma}$ for some $\\gamma \\in ]0,1[$ and $C>0$, then the Floquet operator of the perturbed system is purely singular continuous T-a.e. If $H_0$ is the Hamiltonian of the one-dimensional rotator on $L^2({\\mathbb R}/T_0{\\mathbb Z})$ and the ratio $2\\pi T/T_0^2$ is irrational, then the Floquet operator is purely singular continuous as soon as $\\kappa T \

  8. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  9. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Haro, Jaime

    2013-01-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum

  10. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  11. The geometry of warped product singularities

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  12. Non-singular bounce scenarios in loop quantum cosmology and the effective field description

    International Nuclear Information System (INIS)

    Cai, Yi-Fu; Wilson-Ewing, Edward

    2014-01-01

    A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models

  13. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  14. DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH

    OpenAIRE

    Beni Utomo

    2012-01-01

    Dekomposisi Nilai Singular atau Singular Value Decomposition (SVD)merupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA).PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan ma...

  15. Box graphs and singular fibers

    International Nuclear Information System (INIS)

    Hayashi, Hirotaka; Lawrie, Craig; Morrison, David R.; Schäfer-Nameki, Sakura

    2014-01-01

    We determine the higher codimension fibers of elliptically fibered Calabi-Yau fourfolds with section by studying the three-dimensional N=2 supersymmetric gauge theory with matter which describes the low energy effective theory of M-theory compactified on the associated Weierstrass model, a singular model of the fourfold. Each phase of the Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass model, and we show that these have a concise description in terms of decorated box graphs based on the representation graph of the matter multiplets, or alternatively by a class of convex paths on said graph. Transitions between phases have a simple interpretation as “flopping' of the path, and in the geometry correspond to actual flop transitions. This description of the phases enables us to enumerate and determine the entire network between them, with various matter representations for all reductive Lie groups. Furthermore, we observe that each network of phases carries the structure of a (quasi-)minuscule representation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis determines the generators of the cone of effective curves as well as the network of flop transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the box graphs we determine all fiber types in codimensions two and three, and we find new, non-Kodaira, fiber types for E 6 , E 7 and E 8

  16. Naked singularity, firewall, and Hawking radiation.

    Science.gov (United States)

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  17. Spacetime averaging of exotic singularity universes

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P.

    2011-01-01

    Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.

  18. Dissipative control for singular impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Li Yang

    2012-04-01

    Full Text Available The aim of this work is to study the dissipative control problem for singular impulsive dynamical systems. We start by introducing the impulse to the singular systems, and give the definition of the dissipation for singular impulsive dynamical systems. Then we discuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient and necessary conditions for dissipation of these systems by solving some linear matrix inequalities (LMIs. By using this method, we design a state feedback controller to make the closed-loop system dissipative. At last, we testify the feasibility of the method by a numerical example.

  19. On local invariants of singular symplectic forms

    Science.gov (United States)

    Domitrz, Wojciech

    2017-04-01

    We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.

  20. Detecting singular weak-dissipation limit for flutter onset in reversible systems

    Science.gov (United States)

    Bigoni, Davide; Misseroni, Diego; Tommasini, Mirko; Kirillov, Oleg N.; Noselli, Giovanni

    2018-02-01

    A "flutter machine" is introduced for the investigation of a singular interface between the classical and reversible Hopf bifurcations that is theoretically predicted to be generic in nonconservative reversible systems with vanishing dissipation. In particular, such a singular interface exists for the Pflüger viscoelastic column moving in a resistive medium, which is proven by means of the perturbation theory of multiple eigenvalues with the Jordan block. The laboratory setup, consisting of a cantilevered viscoelastic rod loaded by a positional force with nonzero curl produced by dry friction, demonstrates high sensitivity of the classical Hopf bifurcation onset to the ratio between the weak air drag and Kelvin-Voigt damping in the Pflüger column. Thus, the Whitney umbrella singularity is experimentally confirmed, responsible for discontinuities accompanying dissipation-induced instabilities in a broad range of physical contexts.

  1. Quantum transitions through cosmological singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  2. Economías singulares

    Directory of Open Access Journals (Sweden)

    Elvio Alccinelli

    2001-07-01

    Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.

  3. Vector fields on singular varieties

    CERN Document Server

    Brasselet, Jean-Paul; Suwa, Tatsuo

    2009-01-01

    Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

  4. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  5. Singular multiparameter dynamic equations with distributional ...

    African Journals Online (AJOL)

    In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...

  6. Building Reproducible Science with Singularity Containers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...

  7. Spectral analysis for differential operators with singularities

    Directory of Open Access Journals (Sweden)

    Vjacheslav Anatoljevich Yurko

    2004-01-01

    Full Text Available Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.

  8. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  9. Timelike Constant Mean Curvature Surfaces with Singularities

    DEFF Research Database (Denmark)

    Brander, David; Svensson, Martin

    2014-01-01

    We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...

  10. Reasons for singularity in robot teleoperation

    DEFF Research Database (Denmark)

    Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth

    2014-01-01

    In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and delay...

  11. On the genericity of spacetime singularities

    Indian Academy of Sciences (India)

    in terms of the incompleteness of non-space-like geodesics in spacetime. It is possible that such ... outside. The above discussion does not imply the absence of singularity-free solutions to Einstein's equations. ..... spherical collapse also turns out to be a stable feature as implied by the singularity theorems discussed above.

  12. Nietzsche, immortality, singularity and eternal recurrence | Olivier ...

    African Journals Online (AJOL)

    Moreover, once anything has existed, it is in a certain sense, for Nietzsche, necessary despite its temporal singularity. Therefore, to be able to rise to the task of affirming certain actions or experiences in one's own life, bestows on it not merely this kind of necessary singularity, but what he thought of as 'eternal recurrence' –

  13. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  14. Singularity is the Future of ICT Research

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... tech systems, and how in the near future. Artificial Intelligence may impact our lives, AI, Robotics, nanotechnology, mechatronics are collaborative agents of technological singularity. The singularity is already here! Think of modern houses now remotely controlled from far distances, think of e-commerce and.

  15. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  16. Ensemble singular vectors and their use as additive inflation in EnKF

    Directory of Open Access Journals (Sweden)

    Shu-Chih Yang

    2015-07-01

    Full Text Available Given an ensemble of forecasts, it is possible to determine the leading ensemble singular vector (ESV, that is, the linear combination of the forecasts that, given the choice of the perturbation norm and forecast interval, will maximise the growth of the perturbations. Because the ESV indicates the directions of the fastest growing forecast errors, we explore the potential of applying the leading ESVs in ensemble Kalman filter (EnKF for correcting fast-growing errors. The ESVs are derived based on a quasi-geostrophic multi-level channel model, and data assimilation experiments are carried out under framework of the local ensemble transform Kalman filter. We confirm that even during the early spin-up starting with random initial conditions, the final ESVs of the first analysis with a 12-h window are strongly related to the background errors. Since initial ensemble singular vectors (IESVs grow much faster than Lyapunov Vectors (LVs, and the final ensemble singular vectors (FESVs are close to convergence to leading LVs, perturbations based on leading IESVs grow faster than those based on FESVs, and are therefore preferable as additive inflation. The IESVs are applied in the EnKF framework for constructing flow-dependent additive perturbations to inflate the analysis ensemble. Compared with using random perturbations as additive inflation, a positive impact from using ESVs is found especially in areas with large growing errors. When an EnKF is ‘cold-started’ from random perturbations and poor initial condition, results indicate that using the ESVs as additive inflation has the advantage of correcting large errors so that the spin-up of the EnKF can be accelerated.

  17. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  18. Second-order singular pertubative theory for gravitational lenses

    Science.gov (United States)

    Alard, C.

    2018-03-01

    The extension of the singular perturbative approach to the second order is presented in this paper. The general expansion to the second order is derived. The second-order expansion is considered as a small correction to the first-order expansion. Using this approach, it is demonstrated that in practice the second-order expansion is reducible to a first order expansion via a re-definition of the first-order pertubative fields. Even if in usual applications the second-order correction is small the reducibility of the second-order expansion to the first-order expansion indicates a potential degeneracy issue. In general, this degeneracy is hard to break. A useful and simple second-order approximation is the thin source approximation, which offers a direct estimation of the correction. The practical application of the corrections derived in this paper is illustrated by using an elliptical NFW lens model. The second-order pertubative expansion provides a noticeable improvement, even for the simplest case of thin source approximation. To conclude, it is clear that for accurate modelization of gravitational lenses using the perturbative method the second-order perturbative expansion should be considered. In particular, an evaluation of the degeneracy due to the second-order term should be performed, for which the thin source approximation is particularly useful.

  19. Singularity: Scientific containers for mobility of compute.

    Directory of Open Access Journals (Sweden)

    Gregory M Kurtzer

    Full Text Available Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  20. Biclustering via Sparse Singular Value Decomposition

    KAUST Repository

    Lee, Mihee

    2010-02-16

    Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.

  1. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Tirthabir [Department of Physics, St. Cloud State University, St. Cloud, MN 56301 U.S.A (United States); Koivisto, Tomi [Institute for Theoretical Physics and Spinoza Institute, Postbus 80.195, 3508 TD Utrecht (Netherlands); Mazumdar, Anupam, E-mail: tbiswas@loyno.edu, E-mail: T.S.Koivisto@uu.nl, E-mail: a.mazumdar@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster, LA1 4YB (United Kingdom)

    2010-11-01

    One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability.

  2. Singular surfaces in the open field line region of a diverted tokamak

    International Nuclear Information System (INIS)

    Reiman, A.

    1995-05-01

    The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents

  3. 32 CFR 1602.22 - Singular and plural.

    Science.gov (United States)

    2010-07-01

    ....22 Singular and plural. Words importing the singular number shall include the plural number, and words importing the plural number shall include the singular, except where the context clearly indicates...

  4. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  5. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  6. Topology of singular fibers of differentiable maps

    CERN Document Server

    Saeki, Osamu

    2004-01-01

    The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.

  7. Quantization function for attractive, singular potential tails

    International Nuclear Information System (INIS)

    Raab, Patrick N.

    2010-01-01

    The interaction between atoms and molecules with each other are deep potential wells with attractive, singular tails. Bound state energies are determined by a quantization function according to a simple quantization rule. This function is dominantly determined by the singular potential tail for near-threshold states. General expressions for the low- and high-energy contributions of the singular potential tail to the quantization function, as well as the connection to the scattering length are presented in two and three dimensions. Precise analytical expressions for the quantization function are determined for the case of potential tails proportional to -1/r 4 and -1/r 6 for three dimensions. (orig.)

  8. DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH

    Directory of Open Access Journals (Sweden)

    Beni Utomo

    2012-11-01

    Full Text Available Dekomposisi Nilai Singular atau Singular Value Decomposition (SVDmerupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA.PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan matriks U dan Vmemuat eigenvektor yang sudah terurut dari nilai variansi terbesar ke nilai variansiterkecilnya. Variansi terbesar memiliki arti eigenvektor menangkap ciri-ciri yangpaling banyak berubah. Sifat inilah yang dipakai untuk membentuk eigenface.

  9. Odd-parity perturbations of the self-similar LTB spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Emily M; Nolan, Brien C, E-mail: emilymargaret.duffy27@mail.dcu.ie, E-mail: brien.nolan@dcu.ie [School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2011-05-21

    We consider the behaviour of odd-parity perturbations of those self-similar LemaItre-Tolman-Bondi spacetimes which admit a naked singularity. We find that a perturbation which evolves from initially regular data remains finite on the Cauchy horizon. Finiteness is demonstrated by considering the behaviour of suitable energy norms of the perturbation (and pointwise values of these quantities) on natural spacelike hypersurfaces. This result holds for a general choice of initial data and initial data surface. Finally, we examine the perturbed Weyl scalars in order to provide a physical interpretation of our results. Taken on its own, this result does not support cosmic censorship; however, a full perturbation of this spacetime would include even-parity perturbations, so we cannot conclude that this spacetime is stable to all linear perturbations.

  10. Singular mean-filed games

    KAUST Repository

    Cirant, Marco

    2016-11-22

    Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.

  11. Frame independent cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Prokopec, Tomislav; Weenink, Jan, E-mail: t.prokopec@uu.nl, E-mail: j.g.weenink@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3585 CE Utrecht (Netherlands)

    2013-09-01

    We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.

  12. Growth of matter perturbation in quintessence cosmology

    Science.gov (United States)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  13. Algunas aclaraciones acerca del conocimiento del singular.

    Directory of Open Access Journals (Sweden)

    Carlos Llano Cifuentes

    2013-11-01

    Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.

  14. Technological Singularity: What Do We Really Know?

    Directory of Open Access Journals (Sweden)

    Alexey Potapov

    2018-04-01

    Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.

  15. Topological Signals of Singularities in Ricci Flow

    Directory of Open Access Journals (Sweden)

    Paul M. Alsing

    2017-08-01

    Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.

  16. Approximate Uniqueness Estimates for Singular Correlation Matrices.

    Science.gov (United States)

    Finkbeiner, C. T.; Tucker, L. R.

    1982-01-01

    The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)

  17. Finite conformal quantum gravity and spacetime singularities

    Science.gov (United States)

    Modesto, Leonardo; Rachwał, Lesław

    2017-12-01

    We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.

  18. Geometric Singularities of the Stokes Problem

    Directory of Open Access Journals (Sweden)

    Nejmeddine Chorfi

    2014-01-01

    Full Text Available When the domain is a polygon of ℝ2, the solution of a partial differential equation is written as a sum of a regular part and a linear combination of singular functions. The purpose of this paper is to present explicitly the singular functions of Stokes problem. We prove the Kondratiev method in the case of the crack. We finish by giving some regularity results.

  19. Singularity analysis, Hadamard products, and tree recurrences

    Science.gov (United States)

    Fill, James Allen; Flajolet, Philippe; Kapur, Nevin

    2005-02-01

    We present a toolbox for extracting asymptotic information on the coefficients of combinatorial generating functions. This toolbox notably includes a treatment of the effect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequence, it becomes possible to unify the analysis of a number of divide-and-conquer algorithms, or equivalently random tree models, including several classical methods for sorting, searching, and dynamically managing equivalence relations.

  20. Observational constraints on cosmological future singularities

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)

    2016-11-15

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)

  1. A non-perturbative approach to the Coleman-Weinberg mechanism in massless scalar QED

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Nogueira, F.S.; Svaiter, N.F.

    1995-08-01

    We rederived non-perturbatively the Coleman-Weinberg expression for the effective potential for massless scalar QED. Our result is not restricted to small values of the coupling constants. This shows that the Coleman-Weinberg result can be established beyond the range of perturbation theory. Also, we derive it in a manifestly renormalization group invariant way. It is shown that with the derivation given no Landau ghost singularity arises. The finite temperature case is discussed. (author). 13 refs

  2. The Perturbed Puma Model

    International Nuclear Information System (INIS)

    Rong Shu-Jun; Liu Qiu-Yu

    2012-01-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element U e3 is always zero. The nonzero mixing matrix element U e3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry. (the physics of elementary particles and fields)

  3. The Perturbed Puma Model

    Science.gov (United States)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  4. Perturbative QCD and jets

    International Nuclear Information System (INIS)

    Mueller, A.H.

    1986-03-01

    A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)

  5. Zircons reveal ancient perturbations

    Science.gov (United States)

    McKenzie, N. Ryan

    2017-12-01

    A link between CO2 outgassing from carbonatite volcanoes during the Ediacaran and one of the most prominent carbon cycle perturbations in Earth's history is suggested by an analysis of the trace-element composition of detrital zircons.

  6. Introduction to perturbation techniques

    CERN Document Server

    Nayfeh, Ali H

    2011-01-01

    Similarities, differences, advantages and limitations of perturbation techniques are pointed out concisely. The techniques are described by means of examples that consist mainly of algebraic and ordinary differential equations. Each chapter contains a number of exercises.

  7. Toroidal Energy Principle (TEP) and perturbed equilibrium code STB

    Science.gov (United States)

    Zakharov, Leonid; Hu, Di

    2016-10-01

    The MHD energy principle TEP is presented in terms of perturbations of the vector potential, rather than plasma displacement. This form makes TEP capable to discribe both the ideal plasmas stability and the perturbed equilibria. The functional is expressed in two terms. The first one represents the energy of magnetic field and is calculated using working equilibrium coordinate system. The second term, containing plasma displacement is expressed in the compact form using Hamada coordinates. This representation uses the same combinations of metric coefficients as in the equilibrium calculations. The STB code implements the TEP for both ideal MHD and perturbed equilibria. In the first case, it uses the matching conditions of the ideal MHD. In the second case, the 2-D equilibrium islands are introduced in order to resolve the singularity and match the solutions across the resonant surfaces Partially by (a) US DoE Contract No. DE-AC02-09-CH11466, (b) General Fusion Inc.

  8. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  9. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  10. Singular vector decomposition of the internal variability of the Canadian Regional Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Emilia Paula; Laprise, Rene [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Zadra, Ayrton [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Environment Canada, Meteorological Research Division, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada)

    2012-03-15

    Previous studies have shown that Regional Climate Models (RCM) internal variability (IV) fluctuates in time depending on synoptic events. This study focuses on the physical understanding of episodes with rapid growth of IV. An ensemble of 21 simulations, differing only in their initial conditions, was run over North America using version 5 of the Canadian RCM (CRCM). The IV is quantified in terms of energy of CRCM perturbations with respect to a reference simulation. The working hypothesis is that IV is arising through rapidly growing perturbations developed in dynamically unstable regions. If indeed IV is triggered by the growth of unstable perturbations, a large proportion of the CRCM perturbations must project onto the most unstable singular vectors (SVs). A set of ten SVs was computed to identify the orthogonal set of perturbations that provide the maximum growth with respect to the dry total-energy norm during the course of the CRCM ensemble of simulations. CRCM perturbations were then projected onto the subspace of SVs. The analysis of one episode of rapid growth of IV is presented in detail. It is shown that a large part of the IV growth is explained by initially small-amplitude unstable perturbations represented by the ten leading SVs, the SV subspace accounting for over 70% of the CRCM IV growth in 36 h. The projection on the leading SV at final time is greater than the projection on the remaining SVs and there is a high similarity between the CRCM perturbations and the leading SV after 24-36 h tangent-linear model integration. The vertical structure of perturbations revealed that the baroclinic conversion is the dominant process in IV growth for this particular episode. (orig.)

  11. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    Science.gov (United States)

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  12. Singularity hypotheses a scientific and philosophical assessment

    CERN Document Server

    Moor, James; Søraker, Johnny; Steinhart, Eric

    2012-01-01

    Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.

  13. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  14. Holographic subregion complexity for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2017-10-15

    Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)

  15. Perturbative anyon gas

    International Nuclear Information System (INIS)

    Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75

    1992-06-01

    The problem of the statistical mechanics of an anyon gas is addressed. A perturbative analysis in the anyonic coupling constant α is reviewed, and the thermodynamical potential is computed at first and second order. An adequate second quantized formalism (field theory at finite temperature) is proposed. At first order in perturbation theory, the results are strikingly simple: only the second virial coefficient close to bosonic statistics is corrected. At second order, however, the complexity of the anyon model appears. One can compute exactly the perturbative correction to each cluster coefficient. However, and contrary to first order, a closed expression for the equation of state seems out of reach. As an illustration, the perturbative expressions of a 3 , a 4 , a 5 and a 6 are given at second order. Finally, using the same formalism, the equation of state of an anyon gas in a constant magnetic field is analyzed at first order in perturbation theory. (K.A.) 16 refs.; 3 figs.; 7 tabs

  16. Singular vectors for the WN algebras

    Science.gov (United States)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  17. Conformal invariance of curvature perturbation

    CERN Document Server

    Gong, Jinn-Ouk; Park, Wan Il; Sasaki, Misao; Song, Yong-Seon

    2011-01-01

    We show that in the single component situation all perturbation variables in the comoving gauge are conformally invariant to all perturbation orders. Generally we identify a special time slicing, the uniform-conformal transformation slicing, where all perturbations are again conformally invariant to all perturbation orders. We apply this result to the delta N formalism, and show its conformal invariance.

  18. Interaction of two singular Lissajous lines in free space.

    Science.gov (United States)

    Chen, Haitao; Gao, Zenghui; Wang, Wanqing

    2017-05-20

    The interaction of two singular Lissajous lines emergent from a polychromatic vector beam is studied. It is shown that singular Lissajous lines disappear with propagation; meanwhile Lissajous singularities take place. The handedness reversal, the changes in the shape of Lissajous figures, and the degree of polarization of Lissajous singularities, as well as the creation and annihilation of a single singularity, may appear by varying the control parameters. In addition, the transformation of the shape of line h=0, the creation and annihilation of pairs of Lissajous singularities not only with opposite topological charge and same handedness, but also with same degree of polarization, take place with propagation.

  19. Dispersion and betatron function correction in the Advanced Photon Source storage ring using singular value decomposition.

    Energy Technology Data Exchange (ETDEWEB)

    Emery, L.

    1999-04-13

    Magnet errors and off-center orbits through sextuples perturb the dispersion and beta functions in a storage ring (SR), which affects machine performance. In a large ring such as the Advanced Photon Source (APS), the magnet errors are difficult to determine with beam-based methods. Also the non-zero orbit through sextuples result from user requests for steering at light source points. For expediency, a singular value decomposition (SVD) matrix method analogous to orbit correction was adopted to make global corrections to these functions using strengths of several quadrupoles as correcting elements. The direct response matrix is calculated from the model of the perfect lattice. The inverse is calculated by SVD with a selected number of singular vectors. Resulting improvement in the lattice functions and machine performance will be presented.

  20. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  1. Stability and chaotic dynamics of a perturbed rate gyro

    International Nuclear Information System (INIS)

    Chen, H.-H.

    2006-01-01

    An analysis of stability and chaotic dynamics is presented by a single-axis rate gyro subjected to linear feedback control loops. This rate gyro is supposed to be mounted on a space vehicle which undergoes an uncertain angular velocity ω Z (t) around its spin axis and simultaneously acceleration ω-bar X (t) occurs with respect to the output axis. The necessary and sufficient conditions of stability and degeneracy conditions for the autonomous case, whose vehicle undergoes a steady rotation, were provided by Routh-Hurwitz theory. The stability of the nonlinear nonautonomous system was investigated by Liapunov stability and instability theorems. As the electrical time constant is much smaller than the mechanical time constant, the singularly perturbed system can be obtained by the singular perturbation theory. The Liapunov stability of this system by studying the reduced and boundary-layer systems was also analyzed. Using the Melinikov technique, we can give criteria for the existence of chaos in the gyro motion when the vehicle undergoes perturbed harmonic rotation about its spin and output axes

  2. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  3. A singularity theorem based on spatial averages

    Indian Academy of Sciences (India)

    Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating ...

  4. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  5. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.

    2011-01-01

    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  6. Classical resolution of singularities in dilaton cosmologies

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to

  7. Mobile communications technology: The singular factor responsible ...

    African Journals Online (AJOL)

    This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...

  8. Polynomial computation of Hankel singular values

    NARCIS (Netherlands)

    Kwakernaak, H.

    1992-01-01

    A revised and improved version of a polynomial algorithm is presented. It was published by N.J. Young (1990) for the computation of the singular values and vectors of the Hankel operator defined by a linear time-invariant system with a rotational transfer matrix. Tentative numerical experiments

  9. Singular Nonlinear H∞ Optimal Control Problem

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1996-01-01

    The theory of nonlinear H∞ optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for

  10. Ray tracing in anisotropic media with singularities

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2001-01-01

    Roč. 145, č. 1 (2001), s. 265-276 ISSN 0956-540X R&D Projects: GA ČR GA205/00/1350 Institutional research plan: CEZ:AV0Z3012916 Keywords : anisotropic media * ray tracing * singularities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.366, year: 2001

  11. Inverting dedevelopment: geometric singularity theory in embryology

    Science.gov (United States)

    Bookstein, Fred L.; Smith, Bradley R.

    2000-10-01

    The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.

  12. On the genericity of spacetime singularities

    Indian Academy of Sciences (India)

    the framework of a general spacetime without any symmetry conditions, in terms of the overall behaviour of .... We now outline the basic idea and the chain of logic behind the proof of a typical singularity theorem ..... a detailed investigation of the dynamics of gravitational collapse within the frame- work of Einstein's theory.

  13. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  14. Perturbed S3 neutrinos

    DEFF Research Database (Denmark)

    jora, Renata; Schechter, Joseph; Naeem Shahid, M.

    2009-01-01

    We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos...

  15. Generalized Parton Distributions and their Singularities

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin

    2011-04-01

    A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.

  16. São Carlos Workshop on Real and Complex Singularities

    CERN Document Server

    Ruas, Maria

    2007-01-01

    The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.

  17. A Note on Inclusion Intervals of Matrix Singular Values

    OpenAIRE

    Cui, Shu-Yu; Tian, Gui-Xian

    2012-01-01

    We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  18. PREFACE: Singular interactions in quantum mechanics: solvable models

    Science.gov (United States)

    Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir

    2005-06-01

    editors study a toy model of a decay under the influence of a time-periodic δ potential. E Demiralp describes the spectrum of a spherical harmonic oscillator amended with a concentric family of δ-shell interactions. Another of the editors presents an isoperimetric problem for point interactions arranged at vertices of a polygon. W Huddell and R Hughes show how singular perturbations of a one-dimensional Dirac operator can be approximated by regular potentials, and J Brasche constructs a family of Hamiltonians in which the singular interaction has a more complicated support, namely a Brownian path. Finally, B Pavlov and I Antoniou apply the singular perturbation technique to another classical Hamiltonian, that of a generalized Friedrichs model; no matter that the unperturbed observable is called momentum in their paper. The three papers in the following group are distinguished by the fact that they consider systems which are fully or partially periodic. F Bentosela and M Tater analyse scattering on a crystalline `slab' modelled by point interactions distributed periodically on a finite number of parallel plates. E de Prunelé studies evolution of wavepackets in crystal models of different geometries, and M Avdonin et al discuss a simple model of a spin-dependent scattering on a one-dimensional array of quantum dots. The next group of papers is devoted to a topic which was untouched at the time of the aforementioned first edition, namely quantum graphs, which became a subject of interest after numerous applications of such systems to semiconductor, carbon and other nanostructures. Most contributions here deal with the `usual' model in which the Hamiltonian is a Schrödinger operator supported by the graph. P Kuchment describes spectral properties of such graphs, in particular periodic ones and those with decorations. S Albeverio and K Pankrashkin present a modification of Krein's formula which is suitable for constructing Hamiltonians of quantum graphs using boundary

  19. The Computational Singular Perturbation/Perfectly Stirred Reactor Approach in Reduced Chemistry of Premixed Ethanol Combustion

    NARCIS (Netherlands)

    Fratalocchi, V.; Kok, J. B.W.

    2017-01-01

    Ethanol is a bio-fuel widely used in engines as a fuel or fuel additive. It is, in particular, attractive because it can be easily produced in high quality from renewable resources. Its properties are of interest in many fields, such as gas turbines applications as well as fuel cells. In the past

  20. Singular point-like perturbations of the Laguerre operator in a Pontryagin space

    NARCIS (Netherlands)

    Dijksma, A; Shondin, Y; Albeverio, S; Elander, N; Everitt, WN; Kurasov, P

    2002-01-01

    The spectral problem for the Laguerre equation on (0, infinity) with real parameter a in the case 0 1 and /alpha/ not equal 2, 3,..., this function belongs to the

  1. Singular Perturbations and Time Scales in Modeling and Control of Dynamic Systems,

    Science.gov (United States)

    1980-11-01

    separate fluctuations within each of the N clases . ihere dmwtiaL r a-c the mcriz A L exptessed as -ven though transition probabilities an-large as 0.2 A...of t. Y. 3er- Salons , Chairman of the Swtesc Control Comnmfittee. Thus work wsi supported a pans by the U. S. Army Rieanth office wider Coet DAAO29

  2. Self-consistent removal of sawtooth oscillations from transient plasma data by generalized singular value decomposition

    International Nuclear Information System (INIS)

    Erba, M.; Mattioli, M.; Segui, J.L.

    1997-10-01

    This paper addresses the problem of removing sawtooth oscillations from multichannel plasma data in a self-consistent way, thereby preserving transients that have a different physical origin. The technique which does this is called the Generalized Singular Value Decomposition (GSVD), and its properties are discussed. Using the GSVD, we analyze spatially resolved electron temperature measurements from the Tore Supra tokamak, made in transient regimes that are perturbed either by the laser blow-off injection of impurities or by pellet injection. Non-local transport issues are briefly discussed. (author)

  3. Singularities and the geometry of spacetime

    Science.gov (United States)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove

  4. Stability of naked singularity arising in gravitational collapse of Type ...

    Indian Academy of Sciences (India)

    ... )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set ...

  5. THE EXT RACORPOREAL FERTILIZATION TECHNOLOGIES AND THE SINGULARITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    S. V. Denysenko

    2013-05-01

    Full Text Available The peculiarities of modern medicine development connected with the technological and informative singularity are analyzed. The risks of realization of extracorporeal fertilization are examined from positions of development of informative singularity. The warning problems of origin of singularity are discussed on t h e base of t h e newest technologies development.

  6. Positive solutions for higher order singular p-Laplacian boundary ...

    Indian Academy of Sciences (India)

    of positive solutions for sublinear 2m-th order singular p-Laplacian BVPs on closed interval. Keywords. Positive solution; singular BVPs; sufficient and necessary conditions; p-Laplacian equations. 1. Introduction. In this paper, we are concerned with higher order singular p-Laplacian boundary value problems. ⎧. ⎨. ⎩.

  7. Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps with prescribed singular fibers

    OpenAIRE

    Kalmar, Boldizsar

    2006-01-01

    We give a Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of -1 codimensional stable maps with prescribed singular fibers.

  8. Renormalized Lie perturbation theory

    International Nuclear Information System (INIS)

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another

  9. Degenerate asymptotic perturbation theory

    International Nuclear Information System (INIS)

    Hunziker, W.; Pillet, C.A.

    1983-01-01

    Asymptotic Rayleigh-Schroedinger perturbation theory for discrete eigenvalues is developed systematically in the general degenerate case. For this purpose we study the spectral properties of mxm - matrix functions A(kappa) of a complex variable kappa which have an asymptotic expansion ΣAsub(k)kappasup(k) as kappa->0. We show that asymptotic expansions for groups of eigenvalues and for the corresponding spectral projections of A(kappa) can be obtained from the set [Asub(k)] by analytic perturbation theory. Special attention is given to the case where A(kappa) is Borel-summable in some sector originating from kappa=0 with opening angle >π. Here we prove that the asymptotic series describe individual eigenvalues and eigenprojections of A(kappa) which are shown to be holomorphic in S near kappa=0 and Borel summable if Asub(k)sup(*)=Asub(k) for all k. We then fit these results into the scheme of Rayleigh-Schroedinger perturbation theory and we give some examples of asymptotic estimates for Schroedinger operators. (orig.)

  10. Twisting perturbed parafermions

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-07-01

    Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.

  11. Singular electrostatic energy of nanoparticle clusters

    Science.gov (United States)

    Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.

    2016-02-01

    The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h . We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c (h ) , together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.

  12. Spectral asymptotics for nonsmooth singular Green operators

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2014-01-01

    Singular Green operators G appear typically as boundary correction terms in resolvents for elliptic boundary value problems on a domain Ω ⊂ ℝ n , and more generally they appear in the calculus of pseudodifferential boundary problems. In particular, the boundary term in a Krein resolvent formula...... is a singular Green operator. It is well-known in smooth cases that when G is of negative order −t on a bounded domain, its eigenvalues ors-numbers have the behavior (*)s j (G) ∼ cj −t/(n−1) for j → ∞, governed by the boundary dimension n − 1. In some nonsmooth cases, upper estimates (**)s j (G) ≤ Cj −t/(n−1...

  13. Further holographic investigations of big bang singularities

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Hertog, Thomas [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Horowitz, Gary T. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)

    2015-07-09

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves N=4 super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  14. Further holographic investigations of big bang singularities

    Science.gov (United States)

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T.

    2015-07-01

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  15. Singular tachyon kinks from regular profiles

    International Nuclear Information System (INIS)

    Copeland, E.J.; Saffin, P.M.; Steer, D.A.

    2003-01-01

    We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately

  16. Method of rotations for bilinear singular integrals

    Czech Academy of Sciences Publication Activity Database

    Diestel, G.; Grafakos, L.; Honzík, Petr; Zengyan, S.; Terwilleger, E.

    2011-01-01

    Roč. 3, - (2011), s. 99-107 ISSN 1938-9787. [Analysis, Mathematical Physics and Applications. Ixtapa, 01.03.2010-05.03.2010] R&D Projects: GA AV ČR KJB100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : bilinear singular integrals * bilinear Hilbert transform * Fourier multipliers Subject RIV: BA - General Mathematics http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.cma/1298670006&page=record

  17. Space-time singularities in Weyl manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, I.P. [CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Barreto, A.B.; Romero, C. [Universidade Federal da Paraiba, Departamento de Fisica, C. Postal 5008, Joao Pessoa, PB (Brazil)

    2015-09-15

    We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame. (orig.)

  18. The technological singularity and exponential medicine

    OpenAIRE

    Iraj Nabipour; Majid Assadi

    2016-01-01

    The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested th...

  19. Singular reduction of Nambu-Poisson manifolds

    Science.gov (United States)

    Das, Apurba

    The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.

  20. Singular inflation from generalized equation of state fluids

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, S., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D., E-mail: odintsov@ieec.uab.es [Institut de Ciencies de lEspai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Cerdanyola del Valles, Barcelona (Spain); ICREA, Passeig Lluîs Companys, 23, 08010 Barcelona (Spain); National Research Tomsk State University, 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation); Oikonomou, V.K., E-mail: v.k.oikonomou1979@gmail.com [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); National Research Tomsk State University, 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation)

    2015-07-30

    We study models with a generalized inhomogeneous equation of state fluids, in the context of singular inflation, focusing to so-called Type IV singular evolution. In the simplest case, this cosmological fluid is described by an equation of state with constant w, and therefore a direct modification of this constant w fluid is achieved by using a generalized form of an equation of state. We investigate from which models with generalized phenomenological equation of state, a Type IV singular inflation can be generated and what the phenomenological implications of this singularity would be. We support our results with illustrative examples and we also study the impact of the Type IV singularities on the slow-roll parameters and on the observational inflationary indices, showing the consistency with Planck mission results. The unification of singular inflation with singular dark energy era for specific generalized fluids is also proposed.

  1. Symmetry and perturbation theory

    Science.gov (United States)

    Gaeta, Giuseppe

    A co-chain map for the G invariant De Rham complex -- New examples of trihamiltonian structures linking different Lenard chains -- Wave propagation in an elastic medium: GDS equations -- Parametric excitation in nonlinear dynamics -- Collisionless action-minimizing trajectories for the equivariant 3-body problem in R2 -- The Lagrangian and Hamiltonian formulations for a special class of non-conservative systems -- Shadowing chains of collision orbits for the elliptic 3-body problem -- Similarity reductions of an optical model -- Fold, transcritical and pitchfork singularities for time-reversible systems -- Homographic three-body motions with positive and negative masses -- Remarks on conformal Killing tensors and separation of variables -- A regularity theory for optimal partition problems -- Lambda and mu-symmetries -- Potential symmetries and linearization of some evolution equations -- Periodic solutions for zero mass nonlinear wave equations -- Fundamental covariants in the invariant theory of Killing tensors -- Global geometry of 3-body trajectories with vanishing angular momentum -- The relation between the topological structure of the set of controllable affine systems and topological structures of the set of controllable homogenuous systems in low dimension -- On preservation of action variables for satellite librations in elliptic orbits with account of solar light pressure -- An explicit solution of the (quantum) elliptic Calogero-Sutherland model -- An application of the Melnikov integral to a restricted three body problem -- Reductions of integrable equations and automorphic Lie algebras -- Geometric reduction of Poisson operators -- Closed manifolds admitting metrics with the same geodesics -- A transcritical-flip bifurcation in a model for a robot-arm -- Alignment and the classification of Lorentz-signature tensors -- Renormalization group symmetry and gas dynamics -- Refined computation of hypernormal forms -- New order reductions for Euler

  2. Perturbative quantum chromodynamics

    CERN Document Server

    1989-01-01

    This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu

  3. Analytical Solitons for Langmuir Waves in Plasma Physics with Cubic Nonlinearity and Perturbations

    Science.gov (United States)

    Zhou, Qin; Mirzazadeh, M.

    2016-09-01

    We presented an analytical study on dynamics of solitons for Langmuir waves in plasma physics. The mathematical model is given by the perturbed nonlinear Schrödinger equation with full nonlinearity and Kerr law nonlinearity. There are three techniques of integrability were employed to extract exact solutions along with the integrability conditions. The topological 1-soliton solutions, singular 1-soliton solutions, and plane wave solution were reported by Ricatti equation expansion approach and then the bright 1-soliton solution, singular 1-soliton solution, periodic singular solutions, and plane wave solution were derived with the help of trial solution method. Finally, based on the G'/G-expansion scheme, we obtained the hyperbolic function travelling wave solution, trigonometric function travelling wave solution, and plane wave solution.

  4. Perturbative and Non-Perturbative Aspects of N=8 Supergravity

    CERN Document Server

    Ferrara, Sergio

    2011-01-01

    Some aspects of quantum properties of N=8 supergravity in four dimensions are discussed for non-practitioners. At perturbative level, they include the Weyl trace anomaly as well as composite duality anomalies, the latter being relevant for perturbative finiteness. At non-perturbative level, we briefly review some facts about extremal black holes, their Bekenstein-Hawking entropy and attractor flows for single- and two-centered solutions.

  5. Analytic perturbation theory in analyzing some QCD observables

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    2001-01-01

    This paper is devoted to the application of the recently devised ghost-free analytic perturbation theory (APT) for the analysis of some QCD observables. We start with a discussion of the main problem of the perturbative QCD, ghost singularities, and with a resume of its resolving within the APT. By a few examples in various energy and momentum transfer regions (with the flavor number f=3,4 and 5) we demonstrate the effect of the improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (∝α s 3 ) is as a rule numerically inessential. This gives hope for a practical solution of the well-known problem of the asymptotic nature of the common QFT perturbation series. The second result is that the usual perturbative analysis of time-like events with the large π 2 term in the α s 3 coefficient is not adequate at s≤2GeV 2 . In particular, this relates to τ decay. Then for the ''high'' (f=5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10GeV 1/2 s (2) values. Our physical conclusion is that the anti α s (M Z 2 ) value averaged over the f=5 data appreciably differs, left angle anti α s (M Z 2 ) right angle f=5 ≅0.124, from the currently accepted ''world average'' (=0.118). (orig.)

  6. Analytic perturbation theory in analyzing some QCD observables

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    2001-01-01

    The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory (APT) for analysis of some QCD observables. We start with the discussion of the main problem of the perturbative QCD - ghost singularities and with the resume of this trouble solution within the APT. By a few examples in the various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order of α s 3 ) is as a rule numerically inessential. This raises hope for practical solving the well-known problem of asymptotic nature of common QFT perturbation series. The second conclusion is that a common perturbative analysis of time-like events with the big π 2 term in the π 2 coefficient is not adequate at s ≤ 2 GeV 2 . In particular, this relates to τ decay. Then, for the 'high' (f = 5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10 GeV ≤ √s ≤ 170 GeV) for analysis of shape/events data contains a systematic negative error of a 1 - 2 per cent level for the extracted α bar s (2) values. Our physical conclusion is that the α bar s (M Z 2 ) value averaged over the f = 5 data s (M Z 2 )> APT; f= 5 ≅ 0.124 appreciably differs from the currently accepted 'world average' (= 0.118)

  7. The Singularity May Never Be Near

    OpenAIRE

    Walsh, Toby

    2017-01-01

    There is both much optimisim and pessimism around artificial intelligence (AI) today. The optimists are investing millions of dollars, and even in some cases billions of dollars into AI. The pessimists, on the other hand, predict that AI will end many things: jobs, warfare, and even the human race. Both the optimists and the pessimists often appeal to the idea of a technological singularity, a point in time where machine intelligence starts to run away, and a new, more in- telligent “species”...

  8. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  9. Clifford wavelets, singular integrals, and Hardy spaces

    CERN Document Server

    Mitrea, Marius

    1994-01-01

    The book discusses the extensions of basic Fourier Analysis techniques to the Clifford algebra framework. Topics covered: construction of Clifford-valued wavelets, Calderon-Zygmund theory for Clifford valued singular integral operators on Lipschitz hyper-surfaces, Hardy spaces of Clifford monogenic functions on Lipschitz domains. Results are applied to potential theory and elliptic boundary value problems on non-smooth domains. The book is self-contained to a large extent and well-suited for graduate students and researchers in the areas of wavelet theory, Harmonic and Clifford Analysis. It will also interest the specialists concerned with the applications of the Clifford algebra machinery to Mathematical Physics.

  10. Beyond the singularity of the 2-D charged black hole

    International Nuclear Information System (INIS)

    Giveon, Amit; Rabinovici, Eliezer; Sever, Amit

    2003-01-01

    Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)

  11. Pursell-Shanks type theorems for fewnomial singularities

    International Nuclear Information System (INIS)

    Khimshiashvili, G.

    2006-04-01

    We discuss certain situations in which the analytic isomorphism class of an isolated hypersurface singularity is determined by the Lie algebra of derivations of its moduli algebra. Our main attention is given to singularities defined by polynomials with the number of monomials equal to the number of variables. In this context, we indicate several classes of singularities which are classified by the associated Lie algebras. In particular, it is shown that this takes place for isolated singularities defined by binomials in two variables with the Milnor number not less than 7, which implies that simple singularities with Milnor number not less than 7 can be classified by the associated Lie algebras. Similar results are obtained for several other classes of isolated hypersurfaces singularities. A number of related results and open problems are also presented. (author)

  12. Perturbative Noncommutative Regularization

    CERN Document Server

    Hawkins, E J

    1999-01-01

    I propose a nonperturbative regularization of quantum field theories with contact interactions (primarily, scalar field theories). This is given by the geometric quantization of compact Kähler manifolds and generalizes what has already been proposed by Madore, Grosse, Klimčík, and Prešnajder for the two-sphere. I discuss the perturbation theory derived from this regularized model and propose an approximation technique for evaluating the Feynman diagrams. This amounts to a momentum cutoff combined with phase factors at vertices. To illustrate the exact and approximate calculations, I present, as examples, the simplest diagrams for the lf4 model on the spaces S2,S 2×S2 , and CP2 . This regularization fails for noncompact spaces. I give a brief dimensional analysis argument as to why this is so. I also discuss the relevance of the topology of Feynman diagrams to their ultra-violet and infra-red divergence behavior in this model.

  13. Perturbation theory with instantons

    International Nuclear Information System (INIS)

    Carruthers, P.; Pinsky, S.S.; Zachariasen, F.

    1977-05-01

    ''Perturbation theory'' rules are developed for calculating the effect of instantons in a pure Yang-Mills theory with no fermions, in the ''dilute gas'' approximation in which the N-instanton solution is assumed to be the sum of N widely separated one-instanton solutions. These rules are then used to compute the gluon propagator and proper vertex function including all orders of the instanton interaction but only to lowest order in the gluon coupling. It is to be expected that such an approximation is valid only for momenta q larger than the physical mass μ. The result is that in this regime instantons cause variations in the propagator and vertex of the form (μ 2 /q 2 )/sup -8π 2 b/ where b is the coefficient in the expansion of the β function: β = bg 3 +...

  14. Identify Foot of Continental Slope by singular spectrum and fractal singularity analysis

    Science.gov (United States)

    Li, Q.; Dehler, S.

    2012-04-01

    Identifying the Foot of Continental Slope (FOCS) plays a critical role in the determination of exclusive economic zone (EEZ) for coastal nations. The FOCS is defined by the Law of the Sea as the point of maximum change of the slope and it is mathematically equivalent to the point which has the maximum curvature value in its vicinity. However, curvature is the second derivative and the calculation of second derivative is a high pass and noise-prone filtering procedure. Therefore, identification of FOCS with curvature analysis methods is often uncertain and erroneous because observed bathymetry profiles or interpolated raster maps commonly include high frequency noises and artifacts, observation errors, and local sharp changes. Effective low-pass filtering methods and robust FOCS indicator algorithms are highly desirable. In this approach, nonlinear singular spectral filtering and singularity FOCS-indicator methods and software tools are developed to address this requirement. The normally used Fourier domain filtering methods decompose signals into Fourier space, composed of a fixed base that depends only on the acquisition interval of the signal; the signal is required to be stationary or at least weak stationary. In contrast to that requirement, the developed singular spectral filtering method constructs orthogonal basis functions dynamically according to different signals, and it does not require the signal to be stationary or weak stationary. Furthermore, singular spectrum analysis (SSA) can assist in designing suitable filters to carefully remove high-frequency local or noise components while reserving useful global and local components according to energy distribution. Geoscientific signals, including morphological ocean bathymetry data, often demonstrate fractal or multifractal properties. With proper definition of scales in the vicinity of a certain point and related measures, it is found that 1-dimensional bathymetry profiles and 2-dimensional raster maps

  15. Confronting dark energy models mimicking ΛCDM epoch with observational constraints: Future cosmological perturbations decay or future Rip?

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2013-01-01

    We confront dark energy models which are currently similar to ΛCDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from ΛCDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as ΛCDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.

  16. Confronting dark energy models mimicking {Lambda}CDM epoch with observational constraints: Future cosmological perturbations decay or future Rip?

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V., E-mail: artyom.art@gmail.com [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Odintsov, Sergei D. [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Eurasian International Center for Theor. Physics, Eurasian National University, Astana 010008 (Kazakhstan); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2013-01-29

    We confront dark energy models which are currently similar to {Lambda}CDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from {Lambda}CDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as {Lambda}CDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.

  17. Quantum singularities in the FRW universe revisited

    International Nuclear Information System (INIS)

    Letelier, Patricio S.; Pitelli, Joao Paulo M.

    2010-01-01

    The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=(1/3)ρ in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied, and it is shown that the energy conditions are violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the nonsingular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of nonnormalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.

  18. Electricity consumption forecasting using singular spectrum analysis

    Directory of Open Access Journals (Sweden)

    Moisés Lima de Menezes

    2015-01-01

    Full Text Available El Análisis Espectral Singular (AES es una técnica no paramétrica que permite la descomposición de una serie de tiempo en una componente de señal y otra de ruido. De este modo, AES es una técnica útil para la extracción de la tendencia, la suavización y el filtro una serie de tiempo. En este artículo se investiga el efecto sobre el desempeño los modelos de Holt-Winters y de Box & Jenkins al ser aplicados a una serie de tiempo filtrada por AES. Tres diferentes metodologías son evaluadas con el enfoque de AES: Análisis de Componentes Principales (ACP, análisis de conglomerados y análisis gráfico de vectores singulares. Con el fin de ilustrar y comparar dichas metodologías, en este trabajo también se presentaron los principales resultados de un experimento computacional para el consumo residencial mensual de electricidad en Brasil.

  19. Identification of discrete chaotic maps with singular points

    Directory of Open Access Journals (Sweden)

    P. G. Akishin

    2001-01-01

    Full Text Available We investigate the ability of artificial neural networks to reconstruct discrete chaotic maps with singular points. We use as a simple test model the Cusp map. We compare the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet Neural Network. The numerical scheme for the accurate determination of a singular point is also developed. We show that combining a neural network with the numerical algorithm for the determination of the singular point we are able to accurately approximate discrete chaotic maps with singularities.

  20. Metric dimensional reduction at singularities with implications to Quantum Gravity

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    2014-08-01

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity.

  1. Numerical investigation of stress singularities in cracked bimaterial body

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, Lucie; Hutař, Pavel

    2008-01-01

    Roč. 385-387, - (2008), s. 125-128 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /7./. Seoul, 09.09.2008-11.09.2008] R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GP106/06/P239; GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : bimaterial interface * stress singularity exponent * corner singularity * vertex singularity * general singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics

  2. Can non-commutativity resolve the big-bang singularity?

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)

    2004-08-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)

  3. Cosmological perturbations in massive bigravity

    International Nuclear Information System (INIS)

    Lagos, Macarena; Ferreira, Pedro G.

    2014-01-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model

  4. Singularity Theory for W-Algebra Potentials

    NARCIS (Netherlands)

    Gaite, J

    1994-01-01

    The Landau potentials of W3-algebra models are analyzed with algebraic-geometric methods. The number of ground states and the number of independent perturbations of every potential coincide and can be computed. This number agrees with the structure of ground states obtained in a previous paper,

  5. MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Z.; Lin, W. P. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Kang, X., E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn [Partner Group of MPI for Astronomy, Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China)

    2013-03-10

    An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.

  6. Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side

    Science.gov (United States)

    Amirjanyan, A. A.; Sahakyan, A. V.

    2017-08-01

    A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.

  7. A vida singular de um jovem militante

    Directory of Open Access Journals (Sweden)

    Áurea Maria Guimarães

    2012-01-01

    Full Text Available Esse artigo é fruto de uma pesquisa realizada no período de 2007 a 2010, junto a jovens militantes da cidade de Campinas, com o objetivo de compreender as diferentes maneiras que conduziam esses jovens tanto a reproduzir um modelo de vida quanto a criar outras possibilidades de militância na relação com esse modelo. Entre as histórias orais de vida narradas por jovens que militavam em diferentes grupos ou instituições, escolhi a vida de Biula, representante do movimento estudantil secundarista, procurando evidenciar que a singularidade desta vida, como também e a de outros jovens, estava conectada à problematização que faziam no interior de certas práticas, histórica e culturalmente constituídas, possibilitando a criação de novas formas de subjetivação nas quais se modificava a experiência que tinham deles mesmos na relação com os seus heróis ou modelos de referência. Palavras-chave: história oral – transcriação – heróis – resistência - processos de singularização.   THE SINGULAR LIFE OF A YOUNG MILITANT ABSTRACT   This article is the result of a research carried out from 2007 to 2010 with   young militants in the city of Campinas, aiming to understand the different ways which conducted these youngsters to both reproduce a life model and create other possibilities of militancy in the relationship with this model. Among oral stories narrated by young militants from different groups or institutions, I have chosen the life of Biula, a representative of the secondary students’ movement, trying to show that the singularity of this life and other youngsters’ lives was connected to the problematization they promoted within certain practices, historically and culturally built, thus enabling the creation of new subjectification modes in which the experience they had of themselves in the relationship with their heroes or reference models has changed. Key words: oral history -  transcreation – heroes

  8. Perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1979-12-01

    The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures

  9. Perturbative quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1979-12-01

    The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e/sup +/e/sup -/..-->..had//sigma/sub e/sup +/e/sup -/..--> mu../sup +/..mu../sup -//, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures. (RWR)

  10. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  11. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    41] which will be measured to high accuracy at Jefferson Laboratory at the experiment PrimEx. 4. Baryon chiral perturbation theory. Baryon chiral perturbation theory in the modern era was first formulated in [6]. This was a relativistic formulation ...

  12. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  13. Continual integral in perturbation theory

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1975-01-01

    It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)

  14. Resumming the string perturbation series

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Alba; Mariño, Marcos; Zakany, Szabolcs [Département de Physique Théorique et section de Mathématiques,Université de Genève, Genève, CH-1211 (Switzerland)

    2015-05-07

    We use the AdS/CFT correspondence to study the resummation of a perturbative genus expansion appearing in the type II superstring dual of ABJM theory. Although the series is Borel summable, its Borel resummation does not agree with the exact non-perturbative answer due to the presence of complex instantons. The same type of behavior appears in the WKB quantization of the quartic oscillator in Quantum Mechanics, which we analyze in detail as a toy model for the string perturbation series. We conclude that, in these examples, Borel summability is not enough for extracting non-perturbative information, due to non-perturbative effects associated to complex instantons. We also analyze the resummation of the genus expansion for topological string theory on local ℙ{sup 1}×ℙ{sup 1}, which is closely related to ABJM theory. In this case, the non-perturbative answer involves membrane instantons computed by the refined topological string, which are crucial to produce a well-defined result. We give evidence that the Borel resummation of the perturbative series requires such a non-perturbative sector.

  15. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  16. Singular Instantons and Painlevé VI

    Science.gov (United States)

    Muñiz Manasliski, Richard

    2016-06-01

    We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU_2 on S^4, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (P_VI}) and we will give an explicit expression of the map between instantons and solutions to P_{VI}. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S^4. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.

  17. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  18. Spectral singularities and zero energy bound states

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-08-15

    Single particle scattering around zero energy is re-analysed in view of recent experiments with ultra-cold atoms, nano-structures and nuclei far from the stability valley. For non-zero orbital angular momentum the low energy scattering cross section exhibits dramatic changes depending on the occurrence of either a near resonance or a bound state or the situation in between, that is a bound state at zero energy. Such state is singular in that it has an infinite scattering length, behaves for the eigenvalues but not for the eigenfunctions as an exceptional point and has no pole in the scattering function. These results should be observable whenever the interaction or scattering length can be controlled. (authors)

  19. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs

  20. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  1. Stability of naked singularity arising in gravitational collapse of Type ...

    Indian Academy of Sciences (India)

    to choose the velocity function and rest of the initial data so that the end state of collapse is either a black hole (BH) or a naked singularity (NS). This result is significant for two reasons: (1) It produces a substantially 'big' initial data set which under gravitational collapse results into a naked singularity. (2) Type I matter fields.

  2. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.

    1996-12-31

    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  3. The Notion of 'Singularity' in the Work of Gilles Deleuze

    DEFF Research Database (Denmark)

    Borum, Peter

    2017-01-01

    In Deleuze, singularity replaces generality in the economy of thought. A Deleuzian singularity is an event, but the notion comprises the effectuation of the event into form. The triptych émission–distribution–répartition itself distributes the dimensions of the passage from form-giving event...

  4. Periodic solutions to second-order indefinite singular equations

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2017-01-01

    Roč. 263, č. 1 (2017), s. 451-469 ISSN 0022-0396 Institutional support: RVO:67985840 Keywords : degree theory * indefinite singularity * periodic solution * singular differential equation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.988, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022039617301134

  5. Some BMO estimates for vector-valued multilinear singular integral ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the multilinear operator related to some singular integral operators is obtained. The main purpose of this paper is to establish the BMO end-point estimates for some vector-valued multilinear operators related to certain singular integral operators. First, let us introduce some notations [10,16]. Throughout this paper, Q = Q(x,r).

  6. Infinite derivative gravity : non-singular cosmology & blackhole solutions

    NARCIS (Netherlands)

    Mazumdar, Anupam

    2017-01-01

    Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and

  7. A Note on Inclusion Intervals of Matrix Singular Values

    Directory of Open Access Journals (Sweden)

    Shu-Yu Cui

    2012-01-01

    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  8. The Metaphysics and Epistemology of Singular Terms | Borg ...

    African Journals Online (AJOL)

    Can we draw apart questions of what it is to be a singular term (a metaphysical issue) from questions about how we tell when some expression is a singular term (an epistemological matter)? Prima facie, it might seem we can't: language, as a man-made edifice, might seem to prohibit such a distinction, and, indeed, some ...

  9. Dynamics of Learning in MLP: Natural Gradient and Singularity Revisited.

    Science.gov (United States)

    Amari, Shun-Ichi; Ozeki, Tomoko; Karakida, Ryo; Yoshida, Yuki; Okada, Masato

    2018-01-01

    The dynamics of supervised learning play a main role in deep learning, which takes place in the parameter space of a multilayer perceptron (MLP). We review the history of supervised stochastic gradient learning, focusing on its singular structure and natural gradient. The parameter space includes singular regions in which parameters are not identifiable. One of our results is a full exploration of the dynamical behaviors of stochastic gradient learning in an elementary singular network. The bad news is its pathological nature, in which part of the singular region becomes an attractor and another part a repulser at the same time, forming a Milnor attractor. A learning trajectory is attracted by the attractor region, staying in it for a long time, before it escapes the singular region through the repulser region. This is typical of plateau phenomena in learning. We demonstrate the strange topology of a singular region by introducing blow-down coordinates, which are useful for analyzing the natural gradient dynamics. We confirm that the natural gradient dynamics are free of critical slowdown. The second main result is the good news: the interactions of elementary singular networks eliminate the attractor part and the Milnor-type attractors disappear. This explains why large-scale networks do not suffer from serious critical slowdowns due to singularities. We finally show that the unit-wise natural gradient is effective for learning in spite of its low computational cost.

  10. Singularity is the future of ICT research | Osuagwu | West African ...

    African Journals Online (AJOL)

    Proponents of the singularity call the event an "intelligence explosion" which is a key factor of the Singularity where super-intelligence design successive generations of increasingly powerful minds. The originator of the term – Vernor Vinge - and popularized by Ray Kurzwei has proposed that Artificial Intelligence, human ...

  11. Singular Null Hypersurfaces in General Relativity

    International Nuclear Information System (INIS)

    Dray, T

    2006-01-01

    Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of

  12. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  13. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  14. Workshop on Singularities in Geometry, Topology, Foliations and Dynamics

    CERN Document Server

    Lê, Dung; Oka, Mutsuo; Snoussi, Jawad

    2017-01-01

    This book features state-of-the-art research on singularities in geometry, topology, foliations and dynamics and provides an overview of the current state of singularity theory in these settings. Singularity theory is at the crossroad of various branches of mathematics and science in general. In recent years there have been remarkable developments, both in the theory itself and in its relations with other areas. The contributions in this volume originate from the “Workshop on Singularities in Geometry, Topology, Foliations and Dynamics”, held in Merida, Mexico, in December 2014, in celebration of José Seade’s 60th Birthday. It is intended for researchers and graduate students interested in singularity theory and its impact on other fields.

  15. The structure of singularities in nonlocal transport equations

    Energy Technology Data Exchange (ETDEWEB)

    Hoz, F de la [Departamento de Matematica Aplicada, Universidad del PaIs Vasco-Euskal Herriko Unibertsitatea, Escuela Universitaria de IngenierIa Tecnica Industrial, Plaza de la Casilla 3, 48012 Bilbao (Spain); Fontelos, M A [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain)

    2008-05-09

    We describe the structure of solutions developing singularities in the form of cusps in finite time in nonlocal transport equations of the family: {theta}{sub t}-{delta}({theta}H({theta})){sub x}-(1-{delta})H({theta}){theta}{sub x}=0, 0<={delta}<=1, where H represents the Hilbert transform. Equations of this type appear in various contexts: evolution of vortex sheets, models for quasi-geostrophic equation and evolution equations for order parameters. Equation (1) was studied, and the existence of singularities developing in finite time was proved. The structure of such singularities was, nevertheless, not described. In this paper, we will describe the geometry of the solution in the neighborhood of the singularity once it develops and the (self-similar) way in which it is approached as t {yields} t{sub 0}, where t{sub 0} is the singular time.

  16. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  17. Detection of Singularities in Fingerprint Images Using Linear Phase Portraits

    Science.gov (United States)

    Ram, Surinder; Bischof, Horst; Birchbauer, Josef

    abstract The performance of fingerprint recognition depends heavily on the reliable extraction of singularities. Common algorithms are based on a Poinc’are Index estimation. These algorithms are only robust when certain heuristics and rules are applied. In this chapter we present a model-based approach for the detection of singular points. The presented method exploits the geometric nature of linear differential equation systems. Our method is robust against noise in the input image and is able to detect singularities even if they are partly occluded. The algorithm proceeds by fitting linear phase portraits at each location of a sliding window and then analyses its parameters. Using a well-established mathematical background, our algorithm is able to decide if a singular point is existent. Furthermore, the parameters can be used to classify the type of the singular point into whorls, deltas and loops.

  18. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig

    2017-10-18

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.

  19. Variational nodal transport perturbation theory

    International Nuclear Information System (INIS)

    Laurin-Kovitz, K.F.; Lewis, E.E.

    1996-01-01

    A perturbation method based on the variational nodal method for solving the neutron transport equation is developed for multidimensional geometries. The method utilizes the solution of the corresponding adjoint transport equation to calculate changes in the critical eigenvalue due to cross-section changes. Both first-order and exact perturbation theory expressions are derived. The adjoint solution algorithm has been formulated and incorporated into the variational nodal option of the Argonne National Laboratory DIF3D production code. To demonstrate the efficacy of the methods, perturbation calculations are performed on the three-dimensional Takeda benchmark problems in both Cartesian and hexagonal geometries. The resulting changes in eigenvalue are also obtained by direct calculation with the variational nodal method and compared with the change approximated by the first-order and exact theory expressions from the perturbation method. Exact perturbation results are in excellent agreement with the actual eigenvalue differences calculated in VARIANT. First-order theory holds well for sufficiently small perturbations. The times required for the perturbation calculations are small compared with those expended for the base-forward and adjoint calculations

  20. Disformal transformation of cosmological perturbations

    Directory of Open Access Journals (Sweden)

    Masato Minamitsuji

    2014-10-01

    Full Text Available We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (nonconservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  1. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  2. Inflationary Perturbations from Deformed CFT

    CERN Document Server

    Van der Schaar, J P

    2004-01-01

    We present a new method to calculate the spectrum of (slow-roll) inflationary perturbations, inspired by the conjectured dS/CFT correspondence. We show how the standard result for the spectrum of inflationary perturbations can be obtained from deformed CFT correlators, whose behavior is determined by the Callan-Symanzik equation. We discuss the possible advantages of this approach and end with some comments on the role of holography in dS/CFT and its relation to the universal nature of the spectrum of inflationary perturbations.

  3. Cosmological perturbations beyond linear order

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  4. Convective-diffusive transport in protein crystal growth

    Science.gov (United States)

    Lin, H.; Rosenberger, F.; Alexander, J. I. D.; Nadarajah, A.

    1995-05-01

    Particular interest in the role of convection in protein crystallization has arisen since some protein single crystals of improved structural quality have been obtained under reduced gravity conditions. We have numerically modeled the time-dependent diffusive-convective transport in an isothermal protein crystal growth system at standard and zero gravity (1 g and 0 g). In the 2D model used, a rectangular crystal of fixed dimensions 400 μm × 600 μm is positioned at the bottom of a 1 mm high and 6 mm wide growth cell. The aqueous solution contains protein and precipitant. For the dependence of the crystal growth rate on interfacial supersaturation, experimental data for lysozyme are used. The repartitioning of water and precipitant at the growing interface is based on experimental segregation data for lysozyme: NaCl, and on complete rejection for a fictitious system in which lysozyme and precipitant have the same diffusivity. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order of magnitude as those found in earlier experiments. As expected, convective transport enhances the growth rates. However, even when diffusion dominates mass transport, i.e. at 0 g, lysozyme crystal growth remains kinetically limited. Irrespective of the diffusivity of the precipitant, due to the low growth rates, the precipitant distribution in the solution remains rather uniform even at 0 g, unless strong coupling between precipitant and protein fluxes is assumed. The salt distribution in the crystal is predicted to be non-uniform at both 1 g and 0 g, as a consequence of protein depletion in the solution.

  5. 3rd Singularity Theory Meeting of Northeast region & the Brazil-Mexico 2nd Meeting on Singularities

    CERN Document Server

    Neto, Aurélio; Mond, David; Saia, Marcelo; Snoussi, Jawad; BMMS 2/NBMS 3; ENSINO; Singularities and foliations geometry, topology and applications

    2018-01-01

    This proceedings book brings selected works from two conferences, the 2nd Brazil-Mexico Meeting on Singularity and the 3rd Northeastern Brazilian Meeting on Singularities, that were hold in Salvador, in July 2015. All contributions were carefully peer-reviewed and revised, and cover topics like Equisingularity, Topology and Geometry of Singularities, Topological Classification of Singularities of Mappings, and more. They were written by mathematicians from several countries, including Brazil, Spain, Mexico, Japan and the USA, on relevant topics on Theory of Singularity, such as studies on deformations, Milnor fibration, foliations, Catastrophe theory, and myriad applications. Open problems are also introduced, making this volume a must-read both for graduate students and active researchers in this field.

  6. The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    Science.gov (United States)

    Argyres, Philip C.; Ünsal, Mithat

    2012-08-01

    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle's resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.

  7. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...... project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory....

  8. Perturbation theory of quantum resonances

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2016-01-01

    Roč. 135, č. 7 (2016), s. 159 ISSN 1432-2234 Institutional support: RVO:61388955 Keywords : Partitioning technique * Analytic continuation * Perturbative expansion Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  10. Propagation property of the non-paraxial vector Lissajous singularity beams in free space

    Science.gov (United States)

    Chen, Haitao; Gao, Zenghui

    2016-12-01

    The analytic expressions for the free-space propagation of paraxial and non-paraxial vector Lissajous singularity beams are derived, and used to compare the propagation property of a Lissajous singularity carried by paraxial and non-paraxial vector beams in free space. It is found that the creation of a single Lissajous singularity, the creation and annihilation of pairs Lissajous singularities may take place for the both cases. However, after the annihilation of a pair of singularities, no Lissajous singularities appear in the output field for non-paraxial vector Lissajous singularity beams, which is different from the paraxial vector Lissajous singularity beams.

  11. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  12. Boundary singularities produced by the motion of soap films.

    Science.gov (United States)

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  13. Solutions of dissimilar material singularity and contact problems

    International Nuclear Information System (INIS)

    Yang, Y.

    2003-09-01

    Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)

  14. Singular Dimensions of theN= 2 Superconformal Algebras. I

    Science.gov (United States)

    Dörrzapf, Matthias; Gato-Rivera, Beatriz

    Verma modules of superconfomal algebras can have singular vector spaces with dimensions greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce the concept of adapted orderings on superconformal algebras. We prove several general results on the ordering kernels associated to the adapted orderings and show that the size of an ordering kernel implies an upper limit for the dimension of a singular vector space. We apply this method to the topological N= 2 algebra and obtain the maximal dimensions of the singular vector spaces in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29 in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular vectors at level 1. Finally, by using the topological twists and the spectral flows, we also obtain the maximal dimensions of the singular vector spaces for the Neveu-Schwarz N= 2 algebra (0, 1 or 2) and for the Ramond N= 2 algebra (0, 1, 2 or 3).

  15. Singular Hopf bifurcation in a differential equation with large state-dependent delay.

    Science.gov (United States)

    Kozyreff, G; Erneux, T

    2014-02-08

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.

  16. Open conformal systems and perturbations of transfer operators

    CERN Document Server

    Pollicott, Mark

    2017-01-01

    The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, meromorphic maps and rational functions. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite t...

  17. Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-10-06

    In this work, we propose a new regularization approach for linear least-squares problems with random matrices. In the proposed constrained perturbation regularization approach, an artificial perturbation matrix with a bounded norm is forced into the system model matrix. This perturbation is introduced to improve the singular-value structure of the model matrix and, hence, the solution of the estimation problem. Relying on the randomness of the model matrix, a number of deterministic equivalents from random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various estimated signal characteristics. In addition, simulations show that our approach is robust in the presence of model uncertainty.

  18. An investigation of singular Lagrangians as field systems

    International Nuclear Information System (INIS)

    Rabei, E.M.

    1995-07-01

    The link between the treatment of singular Lagrangians as field systems and the general approach is studied. It is shown that singular Lagrangians as field systems are always in exact agreement with the general approach. Two examples and the singular Lagrangian with zero rank Hessian matrix are studied. The equations of motion in the field systems are equivalent to the equations which contain acceleration, and the constraints are equivalent to the equations which do not contain acceleration in the general approach treatment. (author). 10 refs

  19. Singularity Preserving Numerical Methods for Boundary Integral Equations

    Science.gov (United States)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  20. Repulsive and attractive timelike singularities in vacuum cosmologies

    International Nuclear Information System (INIS)

    Miller, B.D.

    1979-01-01

    Spherically symmetric cosmologies whose big bang is partially spacelike and partially timelike are constrained to occur only in the presence of certain types of matter, and in such cosmologies the timelike part of the big bang is a negative-mass singularity. In this paper examples are given of cylindrically symmetric cosmologies whose big bang is partially spacelike and partially timelike. These cosmologies are vacuum. In some of them, the timelike part of the big bang is clearly a (generalized) negative-mass singularity, while in others it is a (generalized) positive-mass singularity

  1. Finger image quality based on singular point localization

    DEFF Research Database (Denmark)

    Wang, Jinghua; Olsen, Martin A.; Busch, Christoph

    2014-01-01

    Singular points are important global features of fingerprints and singular point localization is a crucial step in biometric recognition. Moreover the presence and position of the core point in a captured fingerprint sample can reflect whether the finger is placed properly on the sensor. Therefore...... and analyze the importance of singular points on biometric accuracy. The experiment is based on large scale databases and conducted by relating the measured quality of a fingerprint sample, given by the positions of core points, to the biometric performance. The experimental results show the positions of core...

  2. Singularities on the boundary of the stability domain near 1:1-resonance

    Science.gov (United States)

    Hoveijn, I.; Kirillov, O. N.

    We study the linear differential equation x˙=Lx in 1:1-resonance. That is, x∈R and L is 4×4 matrix with a semi-simple double pair of imaginary eigenvalues (iβ,-iβ,iβ,-iβ). We wish to find all perturbations of this linear system such that the perturbed system is stable. Since linear differential equations are in one-to-one correspondence with linear maps we translate this problem to gl(4,R). In this setting our aim is to determine the stability domain and the singularities of its boundary. The dimension of gl(4,R) is 16, therefore we first reduce the dimension as far as possible. Here we use a versal unfolding of L, i.e. a transverse section of the orbit of L under the adjoint action of Gl(4,R). Repeating a similar procedure in the versal unfolding we are able to reduce the dimension to 4. A 3-sphere in this 4-dimensional space contains all information about the neighborhood of L in gl(4,R). Considering the 3-sphere as two 3-discs glued smoothly along their common boundary we find that the boundary of the stability domain is contained in two right conoids, one in each 3-disc. The singularities of this surface are transverse self-intersections, Whitney umbrellas and an intersection of self-intersections where the surface has a self-tangency. A Whitney stratification of the 3-sphere such that the eigenvalue configurations of corresponding matrices are constant on strata allows us to describe the neighborhood of L and in particular identify the stability domain.

  3. Singularity fitting in hydrodynamical calculations II

    International Nuclear Information System (INIS)

    Richtmyer, R.D.; Lazarus, R.B.

    1975-09-01

    This is the second report in a series on the development of techniques for the proper handling of singularities in fluid-dynamical calculations; the first was called Progress Report on the Shock-Fitting Project. This report contains six main results: derivation of a free-surface condition, which relates the acceleration of the surface with the gradient of the square of the sound speed just behind it; an accurate method for the early and middle stages of the development of a rarefaction wave, two orders of magnitude more accurate than a simple direct method used for comparison; the similarity theory of the collapsing free surface, where it is shown that there is a two-parameter family of self-similar solutions for γ = 3.9; the similarity theory for the outgoing shock, which takes into account the entropy increase; a ''zooming'' method for the study of the asymptotic behavior of solutions of the full initial boundary-value problem; comparison of two methods for determining the similarity parameter delta by zooming, which shows that the second method is preferred. Future reports in the series will contain discussions of the self-similar solutions for this problem, and for that of the collapsing shock, in more detail and for the full range (1, infinity) of γ; the values of certain integrals related to neutronic and thermonuclear rates near collapse; and methods for fitting shocks, contact discontinuities, interfaces, and free surfaces in two-dimensional flows

  4. Singular limits in thermodynamics of viscous fluids

    CERN Document Server

    Feireisl, Eduard

    2017-01-01

    This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...

  5. Investigation of relation between singular points and number of limit cycles for a rotor-AMBs system

    International Nuclear Information System (INIS)

    Li, J.; Tian, Y.; Zhang, W.

    2009-01-01

    The relation between singular points and the number of limit cycles is investigated for a rotor-active magnetic bearings system with time-varying stiffness and single-degree-of-freedom. The averaged equation of the system is a perturbed polynomial Hamiltonian system of degree 5. The dynamic characteristics of the unperturbed system are first analyzed for a certain parameter group. The number of limit cycles and their configurations of the perturbed system under eight different parametric groups are obtained and the influence of eight control conditions on the number of limit cycles is studied. The results obtained here will play an important leading role in the study of the properties of nonlinear dynamics and control of the rotor-active magnetic bearings system with time-varying stiffness.

  6. Problems at the interface between perturbative and nonperturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Bodwin, G.T.; Lepage, G.P.

    1983-06-01

    Predictions based on perturbative QCD rest on three premises: (1) that hadronic interactions become weak in strength at small invariant separation; (2) that the perturbative expansion in α/sub s/(Q) is well-defined; and (3) factorization: all effects of collinear singularities, confinement, nonperturbative interactions, and bound state dynamics can be isolated at large momentum transfer in terms of structure functions, fragmentation functions, or in the case of exclusive processes, distribution amplitudes. The assumption that the perturbative expansion for hard scattering amplitudes converges has certainly not been demonstrated; in addition, there are serious ambiguities concerning the choice of renormalization scheme and scale choice Q 2 for the expansion in α/sub s/(Q 2 ). We will discuss a new procedure to at least partly rectify the latter problem. In the case of exclusive processes, the factorization of hadronic amplitudes at large momentum transfer in the form of distribution amplitudes convoluted with hard scattering quark-gluon subprocess amplitudes can be demonstrated systematically to all orders in α/sub s/(Q 2 ). In the case of inclusive reactions, factorization remains an ansatz; general all-orders proofs do not exist because of the complications of soft initial state interactions for hadron-induced processes; thus far factorization has only been verified to two loops beyond lowest order in a regime where the applicability of perturbation theory is in doubt. However, we shall show that a necessary condition for the validity of factorization in inclusive reactions is that the momentum transfer must be large compared to the (rest frame) length of the target. We review the present status of the factorization ansatz. 52 references

  7. A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, M. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); de Diego, D.M. [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, 28040 Madrid (Spain)

    1997-06-01

    We construct a constraint algorithm for singular Lagrangian systems subjected to nonholonomic constraints which generalizes that of Dirac for constrained Hamiltonian systems. {copyright} {ital 1997 American Institute of Physics.}

  8. A singular value sensitivity approach to robust eigenstructure assignment

    DEFF Research Database (Denmark)

    Søgaard-Andersen, Per; Trostmann, Erik; Conrad, Finn

    1986-01-01

    A design technique for improving the feedback properties of multivariable state feedback systems designed using eigenstructure assignment is presented. Based on a singular value analysis of the feedback properties a design parameter adjustment procedure is outlined. This procedure allows...

  9. Quantum gravitational collapse: non-singularity and non-locality

    International Nuclear Information System (INIS)

    Greenwood, Eric; Stojkovic, Dejan

    2008-01-01

    We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.

  10. A singularity-free WEC-respecting time machine

    OpenAIRE

    Krasnikov, S. V.

    1997-01-01

    A time machine (TM) is constructed whose creating in contrast to all TMs known so far requires neither singularities, nor violation of the weak energy condition (WEC). The spacetime exterior to the TM closely resembles the Friedmann universe.

  11. Propagation of singularities for linearised hybrid data impedance tomography

    DEFF Research Database (Denmark)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2017-01-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non...

  12. Object detection with a multistatic array using singular value decomposition

    Science.gov (United States)

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  13. Singularities of robot mechanisms numerical computation and avoidance path planning

    CERN Document Server

    Bohigas, Oriol; Ros, Lluís

    2017-01-01

    This book presents the singular configurations associated with a robot mechanism, together with robust methods for their computation, interpretation, and avoidance path planning. Having such methods is essential as singularities generally pose problems to the normal operation of a robot, but also determine the workspaces and motion impediments of its underlying mechanical structure. A distinctive feature of this volume is that the methods are applicable to nonredundant mechanisms of general architecture, defined by planar or spatial kinematic chains interconnected in an arbitrary way. Moreover, singularities are interpreted as silhouettes of the configuration space when seen from the input or output spaces. This leads to a powerful image that explains the consequences of traversing singular configurations, and all the rich information that can be extracted from them. The problems are solved by means of effective branch-and-prune and numerical continuation methods that are of independent interest in themselves...

  14. Two-Sided Gravitational Mirror: Sealing off Curvature Singularities

    OpenAIRE

    Davidson, Aharon; Yellin, Ben

    2011-01-01

    A gravitational mirror is a non-singular finite redshift surface which bounces all incident null geodesics. While a white mirror (outward bouncing) resembles 't Hooft's brick wall, a black mirror (inward bouncing) offers a novel mechanism for sealing off curvature singularities. The geometry underlying a two-sided mirror is characterized by a single signature change, to be contrasted with the signature flip which governs the black hole geometry. To demonstrate the phenomenon analytically, we ...

  15. Wave-breaking and generic singularities of nonlinear hyperbolic equations

    International Nuclear Information System (INIS)

    Pomeau, Yves; Le Berre, Martine; Guyenne, Philippe; Grilli, Stephan

    2008-01-01

    Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the numerical results. This shows the power of the analysis by methods using generic concepts of nonlinear science. (open problem)

  16. Uniqueness of singular solution of semilinear elliptic equation

    Indian Academy of Sciences (India)

    Nonhomogeneous semilinear elliptic equation; positive solutions; asymptotic behavior; singular ... a removable singular point of a solution of equation (1.1), the existence of the derivatives of the solution depends on the 'blow up' ..... On the other hand, for 0 <ε

  17. Singularity confinement for maps with the Laurent property

    International Nuclear Information System (INIS)

    Hone, A.N.W.

    2007-01-01

    The singularity confinement test is very useful for isolating integrable cases of discrete-time dynamical systems, but it does not provide a sufficient criterion for integrability. Quite recently a new property of the bilinear equations appearing in discrete soliton theory has been noticed: The iterates of such equations are Laurent polynomials in the initial data. A large class of non-integrable mappings of the plane are presented which both possess this Laurent property and have confined singularities

  18. Resonance scattering and singularities of the scattering function

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2010-05-15

    Recent studies of transport phenomena with complex potentials are explained by generic square root singularities of spectrum and eigenfunctions of non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that such singularities produce a significant effect upon the pole behaviour of the scattering matrix, and more significantly upon the associated residues. This mechanism explains why by proper choice of the system parameters the resonance cross section is increased drastically in one channel and suppressed in the other channel. (authors)

  19. Multifractal signal reconstruction based on singularity power spectrum

    International Nuclear Information System (INIS)

    Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning

    2016-01-01

    Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.

  20. Modified Differential Transform Method for Two Singular Boundary Values Problems

    Directory of Open Access Journals (Sweden)

    Yinwei Lin

    2014-01-01

    Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.

  1. Classical resolution of black hole singularities via wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Olmo, Gonzalo J. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Rubiera-Garcia, D. [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Sanchez-Puente, A. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain)

    2016-03-15

    In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature. (orig.)

  2. Fields generated by sums and products of singular moduli

    OpenAIRE

    Faye, Bernadette; Riffaut, Antonin

    2017-01-01

    We show that the field $\\mathbb{Q}(x,y)$, generated by two singular moduli~$x$ and~$y$, is generated by their sum ${x+y}$, unless~$x$ and~$y$ are conjugate over~$\\mathbb{Q}$, in which case ${x+y}$ generates a subfield of degree at most~$2$. We obtain a similar result for the product of two singular moduli.

  3. Perturbation theory in large order

    International Nuclear Information System (INIS)

    Bender, C.M.

    1978-01-01

    For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures

  4. Removal of apparent singularity in grid computations

    International Nuclear Information System (INIS)

    Jakubovics, J.P.

    1993-01-01

    A self-consistency test for magnetic domain wall models was suggested by Aharoni. The test consists of evaluating the ratio S = var-epsilon wall /var-epsilon wall , where var-epsilon wall is the wall energy, and var-epsilon wall is the integral of a certain function of the direction cosines of the magnetization, α, β, γ over the volume occupied by the domain wall. If the computed configuration is a good approximation to one corresponding to an energy minimum, the ratio is close to 1. The integrand of var-epsilon wall contains terms that are inversely proportional to γ. Since γ passes through zero at the centre of the domain wall, these terms have a singularity at these points. The integral is finite and its evaluation does not usually present any problems when the direction cosines are known in terms of continuous functions. In many cases, significantly better results for magnetization configurations of domain walls can be obtained by computations using finite element methods. The direction cosines are then only known at a set of discrete points, and integration over the domain wall is replaced by summation over these points. Evaluation of var-epsilon wall becomes inaccurate if the terms in the summation are taken to be the values of the integrand at the grid points, because of the large contribution of points close to where γ changes sign. The self-consistency test has recently been generalised to a larger number of cases. The purpose of this paper is to suggest a method of improving the accuracy of the evaluation of integrals in such cases. Since the self-consistency test has so far only been applied to two-dimensional magnetization configurations, the problem and its solution will be presented for that specific case. Generalisation to three or more dimensions is straight forward

  5. On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli

    Directory of Open Access Journals (Sweden)

    R. Carniel

    2006-01-01

    Full Text Available The well known strombolian activity at Stromboli volcano is occasionally interrupted by rarer episodes of paroxysmal activity which can lead to considerable hazard for Stromboli inhabitants and tourists. On 5 April 2003 a powerful explosion, which can be compared in size with the latest one of 1930, covered with bombs a good part of the normally tourist-accessible summit area. This explosion was not forecasted, although the island was by then effectively monitored by a dense deployment of instruments. After having tackled in a previous paper the problem of highlighting the timescale of preparation of this event, we investigate here the possibility of highlighting precursors in the volcanic tremor continuously recorded by a short period summit seismic station. We show that a promising candidate is found by examining the degree of coupling between successive singular values that result from the Singular Spectrum Analysis of the raw seismic data. We suggest therefore that possible anomalies in the time evolution of this parameter could be indicators of volcano instability to be taken into account e.g. in a bayesian eruptive scenario evaluator. Obviously, further (and possibly forward testing on other cases is needed to confirm the usefulness of this parameter.

  6. Symmetry breaking and singularity structure in Bose-Einstein condensates

    Science.gov (United States)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  7. Curing Black Hole Singularities with Local Scale Invariance

    Directory of Open Access Journals (Sweden)

    Predrag Dominis Prester

    2016-01-01

    Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.

  8. Double parton scattering singularity in one-loop integrals

    Science.gov (United States)

    Gaunt, Jonathan R.; Stirling, W. James

    2011-06-01

    We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the `two-parton GPD' framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the `double PDF' framework of Snigirev.

  9. Perturbations of the Friedmann universe

    International Nuclear Information System (INIS)

    Novello, M.; Salim, J.M.; Heintzmann, H.

    1982-01-01

    Correcting and extending previous work by Hawking (1966) and Olson (1976) the complete set of perturbation equations of a Friedmann Universe in the quasi-Maxwellian form is derived and analized. The formalism is then applied to scalar, vector and tensor perturbations of a phenomenological fluid, which is modelled such as to comprise shear and heat flux. Depending on the equation of state of the background it is found that there exist unstable (growing) modes of purely rotational character. It is further found that (to linear order at least) any vortex perturbation is equivalent to a certain heat flux vector. The equation for the gravitational waves are derived in a completely equivalent method as in case of the propagation, in a curved space-time, of electromagnetic waves in a plasma endowed with some definite constitutive relations. (Author) [pt

  10. Geometric Desingularization of a Cusp Singularity in Slow-Fast Systems with Applications to Zeeman's Examples

    NARCIS (Netherlands)

    Broer, Henk W.; Kaper, Tasso J.; Krupa, Martin

    2013-01-01

    The cusp singularity-a point at which two curves of fold points meet-is a prototypical example in Takens' classification of singularities in constrained equations, which also includes folds, folded saddles, folded nodes, among others. In this article, we study cusp singularities in singularly

  11. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  12. Singularity kinematics principle and position-singularity analyses of the 6-3 Stewart-Gough parallel manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Zhou, Hui; Li, Baokun [Jiangnan University, Province (China); Shen, Long [Shanghai University, Shanghai (China)

    2011-02-15

    This paper presents a new principle and method of kinematics to analyze the singularity of Stewart-Gough parallel manipulators and addresses the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulators for special orientations. Based on the kinematic relationship of a rigid body, a necessary and sufficient condition that three velocities of three non-collinear points in a moving rigid body can determine a screw motion is addressed and some typical singular configurations of the 6-3 Stewart-Gough parallel manipulators are also addressed in detail. With the above-mentioned condition, a symbolic analytical polynomial expression of degree three in the moving platform position parameters, representing the position-singularity locus of the 6-3 Stewart-Gough manipulators for special orientations, is derived: and the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulator for these special orientations is investigated at length. It is shown that position-singularity loci of the 6-3 Stewart-Gough parallel manipulator for these special orientations will be a plane and a hyperbolic paraboloid, even three intersecting planes.

  13. Cosmological perturbation theory and quantum gravity

    International Nuclear Information System (INIS)

    Brunetti, Romeo; Fredenhagen, Klaus; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna

    2016-01-01

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  14. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  15. Chaotic inflation with metric and matter perturbations

    International Nuclear Information System (INIS)

    Feldman, H.A.; Brandenberger, R.H.

    1989-01-01

    A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)

  16. Image deblurring using a perturbation-basec regularization approach

    KAUST Repository

    Alanazi, Abdulrahman

    2017-11-02

    The image restoration problem deals with images in which information has been degraded by blur or noise. In this work, we present a new method for image deblurring by solving a regularized linear least-squares problem. In the proposed method, a synthetic perturbation matrix with a bounded norm is forced into the discrete ill-conditioned model matrix. This perturbation is added to enhance the singular-value structure of the matrix and hence to provide an improved solution. A method is proposed to find a near-optimal value of the regularization parameter for the proposed approach. To reduce the computational complexity, we present a technique based on the bootstrapping method to estimate the regularization parameter for both low and high-resolution images. Experimental results on the image deblurring problem are presented. Comparisons are made with three benchmark methods and the results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and SSIM values.

  17. A numerical method for singular boundary value problem of ordinary differential equation

    International Nuclear Information System (INIS)

    He Qibing

    1992-12-01

    A numerical method, regularizing method, is suggested to treat the singular boundary problem of ordinary differential equation that is raised from controlled nuclear fusion science and other fields owing to their singular physical mechanism. This kind of singular boundary problem has been successfully solved by special treatment near the singular points and using difference method. This method overcomes difficulties in numerical calculation due to the singularity. The convergence results and numerical test are also given

  18. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  19. Basics of QCD perturbation theory

    International Nuclear Information System (INIS)

    Soper, D.E.

    1997-01-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  20. Current issues in perturbative QCD

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1994-12-01

    This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets

  1. Principles of chiral perturbation theory

    International Nuclear Information System (INIS)

    Leutwyler, H.

    1995-01-01

    An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)

  2. Perturbation theory from stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1984-01-01

    By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)

  3. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with .... terms of the effective Lagrangian at two-loop or O(p6) order is now available [12]. The formidable task of ... and straightforward manner for the system and are of great importance for the analysis of experimental ...

  4. Empirical singular vectors of baroclinic flows deduced from experimental data of a differentially heated rotating annulus

    Directory of Open Access Journals (Sweden)

    Michael Hoff

    2015-01-01

    Full Text Available Instability is related to exponentially growing eigenmodes. Interestingly, when finite time intervals are considered, growth rates of certain initial perturbations can exceed the growth rates of the most unstable modes. Moreover, even when all modes are damped, such particular initial perturbations can still grow during finite time intervals. The perturbations with the largest growth rates are called singular vectors (SVs or optimal perturbations. They not only play an important role in atmospheric ensemble predictions, but also for the theory of instability and turbulence. Starting point for a classical SV-analysis is a linear dynamical system with a known system matrix. In contrast to this traditional approach, measured data are used here to estimate the linear propagator. For this estimation, a method is applied that uses the covariances of the measured time series to find the principal oscillation patterns (POPs that are the empirically estimated linear eigenmodes of the system. By using the singular value decomposition (SVD, we can estimate the modes of maximal growth of the propagator which are thus the empirically estimated SVs. These modes can be understood as a superposition of POPs that form a complete but in general non-orthogonal basis. The data used, originate from a differentially heated rotating annulus laboratory experiment. This experiment is an analogue of the earth's atmosphere and is used to study the development of baroclinic waves in a well controlled and reproducible way without the need of numerical approximations. Baroclinic waves form the background for many studies on SV growth and it is thus straight forward to apply the technique of empirical SV estimation to these laboratory data. To test the method of SV estimation, we use a quasi-geostrophic barotropic model and compare the known SVs from that model with SVs estimated from a surrogate data set that was generated with the help of the exact model propagator and some

  5. Analysis of perturbations of moments associated with orthogonality linear functionals through the Szegö transformation

    Directory of Open Access Journals (Sweden)

    Edinson Fuentes

    2015-06-01

    Full Text Available In this paper, we consider perturbations to a sequence of moments associated with an orthogonality linear functional that is represented by a positive measure supported in [−1, 1]. In particular, given a perturbation to such a measure on the real line, we analyze the perturbation obtained on the corresponding measure on the unit circle, when both measures are related through the Szeg´´o transformation. A similar perturbation is analyzed through the inverse Szeg´´o transformation. In both cases, we show that the applied perturbation can be expressed in terms of the singular part of the measures, and also in terms of the corresponding sequences of moments. Resumen. En el presente trabajo, analizamos las perturbaciones a una sucesión de momentos asociada a un funcional lineal de ortogonalidad que se representa por una medida positiva con soporte en [−1, 1]. En particular, dada una cierta perturbación a dicha medida en la recta real, analizamos la perturbación obtenida en la correspondiente medida en la circunferencia unidad, cuando dichas medidas están relacionadas por la transformación de Szeg´´o. También se analiza una perturbación similar a través de la transformación inversa de Szeg´´o. En ambos casos, se muestra que la perturbación aplicada puede ser expresada en términos de la parte singular de las medidas, y también a través de las correspondientes sucesiones de momentos.

  6. On the initial singularity problem in rainbow cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Grasiele [Dipartimento di Fisica, Università ' ' La Sapienza' ' , P.le A. Moro 2, Roma, 00185 (Italy); Gubitosi, Giulia [Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ United Kingdom (United Kingdom); Amelino-Camelia, Giovanni, E-mail: grasiele.dossantos@icranet.org, E-mail: g.gubitosi@imperial.ac.uk, E-mail: giovanni.amelino-camelia@roma1.infn.it [Dipartimento di Fisica, Università ' ' La Sapienza' ' and Sez. Roma1 INFN, P.le A. Moro 2, Roma, 00185 (Italy)

    2015-08-01

    It has been recently claimed that the initial singularity might be avoided in the context of rainbow cosmology, where one attempts to account for quantum-gravitational corrections through an effective-theory description based on an energy-dependent ('rainbow') spacetime metric. We here scrutinize this exciting hypothesis much more in depth than previous analyses. In particular, we take into account all requirements for singularity avoidance, while previously only a subset of these requirements had been considered. Moreover, we show that the implications of a rainbow metric for thermodynamics are more significant than previously appreciated. Through the analysis of two particularly meaningful examples of rainbow metrics we find that our concerns are not merely important conceptually, but actually change in quantitatively significant manner the outcome of the analysis. Notably we only find examples where the singularity is not avoided, though one can have that in the regime where our semi-classical picture is still reliable the approach to the singularity is slowed down when compared to the standard classical scenario. We conclude that the study of rainbow metrics provides tantalizing hints of singularity avoidance but is inconclusive, since some key questions remain to be addressed just when the scale factor is very small, a regime which, as here argued, cannot be reliably described by an effective rainbow-metric picture.

  7. Singular value correlation functions for products of Wishart random matrices

    International Nuclear Information System (INIS)

    Akemann, Gernot; Kieburg, Mario; Wei, Lu

    2013-01-01

    We consider the product of M quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalizes the classical Wishart–Laguerre Gaussian unitary ensemble with M = 1. In this paper, we first compute the joint probability distribution for the singular values of the product matrix when the matrix size N and the number M are fixed but arbitrary. This leads to a determinantal point process which can be realized in two different ways. First, it can be written as a one-matrix singular value model with a non-standard Jacobian, or second, for M ⩾ 2, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer G-function. For both formulations, we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of the hypergeometric and Meijer G-functions, generalizing the Laguerre polynomials for M = 1. Our investigation was motivated from applications in telecommunication of multi-layered scattering multiple-input and multiple-output channels. We present the ergodic mutual information for finite-N for such a channel model with M − 1 layers of scatterers as an example. (paper)

  8. Lanczos potentials and a definition of gravitational entropy for perturbed Friedman-Lemaitre-Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Mena, Filipe C; Tod, Paul

    2007-01-01

    We give a prescription for constructing a Lanczos potential for a cosmological model which is a purely gravitational perturbation of a Friedman-Lemaitre-Robertson-Walker spacetime. For the radiation equation of state, we find the Lanczos potential explicitly via Fourier transforms. As an application, we follow up a suggestion of Penrose (1979 Singularities and time-asymmetry General Relativity: An Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)) and propose a definition of gravitational entropy for these cosmologies. With this definition, the gravitational entropy initially is finite if and only if the initial Weyl tensor is finite

  9. Hidden singularities in non-abelian gauge fields

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1978-01-01

    It is shown that the potential (and field) of a non-abelian gauge theory is not well determined when it has a singular point. When this is the cause, it is important to specify the regularization procedure used to give a precise definition of physical quantities at the singularity at any stage of the computation. The fact that a certain A sub(μ) (associated with the given regularization) represents the vacuum when F sub(μν) is a zero distribution not only on the global space but also in all its projections to arbitrary subspaces is discussed. The example used as a base for the discussion is A vetor = i (sigma vetor Λ r vetor / r 2 ). For this example it is shown that different regularizations give the same field in the global space but they give different distributions when projected to subspaces containing the singular point [pt

  10. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-03-01

    We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.

  11. Polarization singularity anarchy in three dimensional ellipse fields

    Science.gov (United States)

    Freund, Isaac

    2004-11-01

    Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.

  12. Singular cosmological evolution using canonical and ghost scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D. [Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain); Oikonomou, V.K. [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Saridakis, Emmanuel N., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp, E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com, E-mail: Emmanuel_Saridakis@baylor.edu [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)

    2015-09-01

    We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.

  13. PT -symmetric spectral singularity and negative-frequency resonance

    Science.gov (United States)

    Pendharker, Sarang; Guo, Yu; Khosravi, Farhad; Jacob, Zubin

    2017-03-01

    Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic waves. We show the connection of our discovered symmetry to parity-time (PT ) symmetry in moving media and the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of PT -symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in novel photonic systems.

  14. Image Fakery Detection Based on Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    T. Basaruddin

    2009-11-01

    Full Text Available The growing of image processing technology nowadays make it easier for user to modify and fake the images. Image fakery is a process to manipulate part or whole areas of image either in it content or context with the help of digital image processing techniques. Image fakery is barely unrecognizable because the fake image is looking so natural. Yet by using the numerical computation technique it is able to detect the evidence of fake image. This research is successfully applied the singular value decomposition method to detect image fakery. The image preprocessing algorithm prior to the detection process yields two vectors orthogonal to the singular value vector which are important to detect fake image. The result of experiment to images in several conditions successfully detects the fake images with threshold value 0.2. Singular value decomposition-based detection of image fakery can be used to investigate fake image modified from original image accurately.

  15. Identity and singularity: Metastability and morphogenesis in light of Deleuze

    Directory of Open Access Journals (Sweden)

    Barison Marcello

    2015-01-01

    Full Text Available The question of life is inextricably connected with the problem of identification and with the fact that each identification process includes the acquisition of a form. Nevertheless, it appears that at the biological level, that is, for what concerns a morphogenetic description of the status of the living being, the term singularity comes into play right there where you would expect to get into the notion of identity. According to Christian De Duve, the organic form has no identity, but it expresses - and is an expression of - a singularity. Given these observations, this is the object of the paper: to explain in a clear and consistent way how these terms - namely identity and singularity - differ and whether it is possible to ground their distinction in a coherent theoretical manner.

  16. Breakdown of predictability: an investigation on the nature of singularities

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1980-12-01

    When relations are extrapolated beyond their premises of discovery, the operation sometimes results in an undefined object, i.e., one which cannot be identified within the given structure. The thesis is put forth that the occurrence of singularities is due to ''incompleteness'' in knowledge. An intuitive answer on how to deal with singularities (in, for instance, the real number system, space-time, quantum field theory) is presented first. Then a quasi-formalistic approach, e.g. non-standard models in higher-order languages and Lawvere's axiomatic formulation of categories, is set out. The independence of singularity with respect to other primitive notions of the Universe of knowledge is noted

  17. Symposium on Singularities, Representation of Algebras, and Vector Bundles

    CERN Document Server

    Trautmann, Günther

    1987-01-01

    It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.

  18. Singularity problem of control moment gyro cluster with vibration isolators

    Directory of Open Access Journals (Sweden)

    Cui Yinghui

    2016-02-01

    Full Text Available As powerful torque amplification actuators, control moment gyros (CMGs are often used in the attitude control of many state-of-the-art high resolution satellites. However, the disturbance generated by the CMGs can not only reduce the attitude stability of a satellite but also deteriorate the performance of optic payloads. Currently, CMG vibration isolators are widely used to target this problem. The isolators can affect the singularity of the CMG system as they are placed between the CMGs and the satellite bus and provide additional freedoms to the CMG system due to their flexibility. The formulation of the output torque of a CMG is studied first considering the dynamic imbalance of its spin rotor and then the deformation angle as a result of the isolator’s flexibility is calculated. With the additional freedoms, the influence of isolator on the singularity problem is studied and a new steering logic to escape from the singular states is proposed.

  19. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    Science.gov (United States)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  20. Singularity analysis of potential fields to enhance weak anomalies

    Science.gov (United States)

    Chen, G.; Cheng, Q.; Liu, T.

    2013-12-01

    Geoanomalies generally are nonlinear, non-stationary and weak, especially in the land cover areas, however, the traditional methods of geoanomaly identification are usually based on linear theory. In past two decades, many power-law function models have been developed based on fractal concept in mineral exploration and mineral resource assessment, such that the density-area (C-A) model and spectrum-area model (S-A) suggested by Qiuming Cheng have played important roles in extracting geophysical and geochemical anomalies. Several power-law relationships are evident in geophysical potential fields, such as field value-distance, power spectrum-wave number as well as density-area models. The singularity index based on density-area model involves the first derivative transformation of the measure. Hence, we introduce the singularity analysis to develop a novel high-pass filter for extracting gravity and magnetic anomalies with the advantage of scale invariance. Furthermore, we suggest that the statistics of singularity indices can provide a new edge detection scheme for the gravity or magnetic source bodies. Meanwhile, theoretical magnetic anomalies are established to verify these assertions. In the case study from Nanling mineral district in south China and Qikou Depression in east China, compared with traditional geophysical filtering methods including multiscale wavelet analysis and total horizontal gradient methods, the singularity method enhances and extracts the weak anomalies caused by buried magmatic rocks more effectively, and provides more distinct boundary information of rocks. Moreover, the singularity mapping results have good correspondence relationship with both the outcropping rocks and known mineral deposits to support future mineral resource exploration. The singularity method based on fractal analysis has potential to be a new useful theory and technique for processing gravity and magnetic anomaly data.

  1. The status of perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1988-10-01

    The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs

  2. Seung-Nelson representation for singular thin sheets

    Science.gov (United States)

    Witten, Thomas; Wang, Jin

    2011-03-01

    We extend the popular Seung-Nelson model to better study thin elastic sheets with singular or multi-scale structures, which are common phenomena in thin sheets. Because it requires a uniform distribution of lattice points over the simulated sheets, the original model is ill-equipped to study these singular structures. Our extended model retains the essence of the original one, but it allows lattice points to be concentrated as needed in regions of large curvatures. We will compare the two methods by applying them to study the energy of the core region of a developable cone. Supported by NSF award DMR 0820054.

  3. Propagation of singularities for linearised hybrid data impedance tomography

    Science.gov (United States)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  4. Surface singularities in Eddington-inspired Born-Infeld gravity.

    Science.gov (United States)

    Pani, Paolo; Sotiriou, Thomas P

    2012-12-21

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.

  5. Dimorphism by Singularity Theory in a Model for River Ecology.

    Science.gov (United States)

    Golubitsky, Martin; Hao, Wenrui; Lam, King-Yeung; Lou, Yuan

    2017-05-01

    Geritz, Gyllenberg, Jacobs, and Parvinen show that two similar species can coexist only if their strategies are in a sector of parameter space near a nondegenerate evolutionarily singular strategy. We show that the dimorphism region can be more general by using the unfolding theory of Wang and Golubitsky near a degenerate evolutionarily singular strategy. Specifically, we use a PDE model of river species as an example of this approach. Our finding shows that the dimorphism region can exhibit various different forms that are strikingly different from previously known results in adaptive dynamics.

  6. Harnack's Inequality for Degenerate and Singular Parabolic Equations

    CERN Document Server

    DiBenedetto, Emmanuele; Vespri, Vincenzo

    2012-01-01

    Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive

  7. Fatigue crack shape prediction based on the stress singularity exponent

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Ševčík, Martin; Náhlík, Luboš; Knésl, Zdeněk

    488-489, č. 1 (2012), s. 178-181 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GA101/09/0867 Grant - others:GA AV ČR(CZ) M100420901 Institutional research plan: CEZ:AV0Z2041904 Keywords : stress singularity exponent * crack front curvature * vertex singularity * free surface effect Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Can noncommutativity resolve the Big-Bang singularity?

    CERN Document Server

    Maceda, M; Manousselis, P; Zoupanos, George

    2004-01-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has noncommutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a noncommutative version of the Kasner metric is constructed which is nonsingular at all scales and becomes commutative at large length scales.

  9. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  10. Robust Course Keeping Control of a Fully Submerged Hydrofoil Vessel with Actuator Dynamics: A Singular Perturbation Approach

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2017-01-01

    Full Text Available This paper presents a two-time scale control structure for the course keeping of an advanced marine surface vehicle, namely, the fully submerged hydrofoil vessel. The mathematical model of course keeping control for the fully submerged hydrofoil vessel is firstly analyzed. The dynamics of the hydrofoil servo system is considered during control design. A two-time scale model is established so that the controllers of the fast and slow subsystems can be designed separately. A robust integral of the sign of the error (RISE feedback control is proposed for the slow varying system and a disturbance observer based state feedback control is established for the fast varying system, which guarantees the disturbance rejection performance for the two-time scale systems. Asymptotic stability is achieved for the overall closed-loop system based on Lyapunov stability theory. Simulation results show the effectiveness and robustness of the proposed methodology.

  11. Matrix perturbations: bounding and computing eigenvalues

    NARCIS (Netherlands)

    Reis da Silva, R.J.

    2011-01-01

    Despite the somewhat negative connotation of the word, not every perturbation is a bad perturbation. In fact, while disturbing the matrix entries, many perturbations still preserve useful properties such as the orthonormality of the basis of eigenvectors or the Hermicity of the original matrix. In

  12. FRW Cosmological Perturbations in Massive Bigravity

    CERN Document Server

    Comelli, D; Pilo, L

    2014-01-01

    Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.

  13. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S(⋅) may not be densely defined and the perturbation operator is a bounded linear operator from ¯D(A) into () such that = ...

  14. Multiplicative perturbations of local C-semigroups

    Indian Academy of Sciences (India)

    In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S ( ⋅ ) may not be densely defined and the perturbation operator is a bounded linear operator from D ( A ) ¯ into () such that = on D ( A ) ¯ ...

  15. Jacobian approach to optimal determination of perturbation ...

    African Journals Online (AJOL)

    In this work, the optimal determination of the perturbation factor (λ) or perturbation parameter for gradient method is considered. The spectrum analysis of the associated Jacobian of the associated matrix has laid the basis for the judicious selection of the perturbation factor. Numerical work is carried out to prove our ...

  16. Transitions of the Multi-Scale Singularity Trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Kreiborg, Sven

    2005-01-01

    Multi-Scale Singularity Trees(MSSTs) [10] are multi-scale image descriptors aimed at representing the deep structures of images. Changes in images are directly translated to changes in the deep structures; therefore transitions in MSSTs. Because MSSTs can be used to represent the deep structure o...

  17. Analysis of the essential spectrum of singular matrix differential operators

    Czech Academy of Sciences Publication Activity Database

    Ibrogimov, O. O.; Siegl, Petr; Tretter, C.

    2016-01-01

    Roč. 260, č. 4 (2016), s. 3881-3926 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : essential spectrum * system of singular differential equations * operator matrix * Schur complement * magnetohydrodynamics * Stellar equilibrium model Subject RIV: BE - Theoretical Physics Impact factor: 1.988, year: 2016

  18. Stability of naked singularity arising in gravitational collapse of Type ...

    Indian Academy of Sciences (India)

    big' ... data in spherically symmetric gravitational collapse for Type I matter fields. ... data. In §2, we briefly summarize the analysis given in [3] and state the conditions on the initial data under which the collapse will lead to a naked singularity.

  19. Singular nonlinear H-infinity optimal control problem

    NARCIS (Netherlands)

    Maas, W.C.A.; Maas, W.C.A.; van der Schaft, Arjan

    1996-01-01

    The theory of nonlinear H∞ of optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for

  20. Probing singularities in quantum cosmology with curvature scalars

    International Nuclear Information System (INIS)

    Oliveira-Neto, G.; Correa Silva, E.V.; Lemos, N.A.; Monerat, G.A.

    2009-01-01

    We provide further evidence that the canonical quantization of cosmological models eliminates the classical Big Bang singularity, using the de Broglie-Bohm interpretation of quantum mechanics. We compute the 'local expectation value' of the Ricci and Kretschmann scalars, for some quantum FRW models. We show that they are finite for all time.