WorldWideScience

Sample records for singularity expansion method

  1. expansion method

    Indian Academy of Sciences (India)

    ... (G /G)-expansion method, here in the present work, we investigate five nonlinear equations of physical importance, namely the (2+1)-dimensional Maccari system, the Pochhammer–Chree equation, the Newell–. Whitehead equation, the Fitzhugh–Nagumo equation and the Burger–Fisher equation. The organization of the ...

  2. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some mathematical equations, which are generally nonlinear, and then find exact analytic solutions of such model equations using a suitable method. By the aid of exact solutions, when they exist, the phenomena modelled by these NLEEs can be better ...

  3. Generalized decomposition methods for singular oscillators

    International Nuclear Information System (INIS)

    Ramos, J.I.

    2009-01-01

    Generalized decomposition methods based on a Volterra integral equation, the introduction of an ordering parameter and a power series expansion of the solution in terms of the ordering parameter are developed and used to determine the solution and the frequency of oscillation of a singular, nonlinear oscillator with an odd nonlinearity. It is shown that these techniques provide solutions which are free from secularities if the unknown frequency of oscillation is also expanded in power series of the ordering parameter, require that the nonlinearities be analytic functions of their arguments, and, at leading-order, provide the same frequency of oscillation as two-level iterative techniques, the homotopy perturbation method if the constants that appear in the governing equation are expanded in power series of the ordering parameter, and modified artificial parameter - Linstedt-Poincare procedures.

  4. Wavefront reconstruction from non-modulated pyramid wavefront sensor data using a singular value type expansion

    Science.gov (United States)

    Hutterer, Victoria; Ramlau, Ronny

    2018-03-01

    The new generation of extremely large telescopes includes adaptive optics systems to correct for atmospheric blurring. In this paper, we present a new method of wavefront reconstruction from non-modulated pyramid wavefront sensor data. The approach is based on a simplified sensor model represented as the finite Hilbert transform of the incoming phase. Due to the non-compactness of the finite Hilbert transform operator the classical theory for singular systems is not applicable. Nevertheless, we can express the Moore–Penrose inverse as a singular value type expansion with weighted Chebychev polynomials.

  5. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.

    1996-12-31

    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  6. Asymptotic expansions of the error for hyper-singular integrals with an interval variable

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2016-01-01

    Full Text Available Abstract In this paper, we present high accuracy quadrature formulas for hyper-singular integrals ∫ a b g ( x q α ( x , t d x $\\int_{a}^{b}g(xq^{\\alpha}(x,t\\, dx$ , where q ( x , t = | x − t | $q(x,t=|x-t|$ (or x − t $x-t$ , t ∈ ( a , b $t\\in(a,b$ , and α ≤ − 1 $\\alpha\\leq-1$ (or α < − 1 $\\alpha<-1$ . If g ( x $g(x$ is 2 m + 1 $2m+1$ times differentiable on [ a , b ] $[a,b]$ , the asymptotic expansions of the error show that the convergence order is O ( h 2 μ + 1 + α $O(h^{2\\mu+1+\\alpha}$ with q ( x , t = | x − t | $q(x,t=|x-t|$ (or x − t $x-t$ for α ≤ − 1 $\\alpha\\leq-1$ (or α < − 1 $\\alpha<-1$ and α being non-integer, and the error power is O ( h η $O(h^{\\eta}$ with q ( x , t = x − t $q(x,t=x-t$ for α being integers less than −1, where η = min ( 2 μ , 2 μ + 2 + α $\\eta =\\min(2\\mu,2\\mu+2+\\alpha$ and μ = 1 , … , m $\\mu=1,\\ldots,m$ . Since the derivatives of the density function g ( x $g(x$ in the quadrature formulas can be eliminated by means of the extrapolation method, the formulas can easily be applied to solving corresponding hyper-singular boundary integral equations. The reliability and efficiency of the proposed formulas in this paper are demonstrated by some numerical examples.

  7. Reliable finite element methods for self-adjoint singular perturbation ...

    African Journals Online (AJOL)

    It is well known that the standard finite element method based on the space Vh of continuous piecewise linear functions is not reliable in solving singular perturbation problems. It is also known that the solution of a two-point boundaryvalue singular perturbation problem admits a decomposition into a regular part and a finite ...

  8. Singularity Preserving Numerical Methods for Boundary Integral Equations

    Science.gov (United States)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  9. Method of rotations for bilinear singular integrals

    Czech Academy of Sciences Publication Activity Database

    Diestel, G.; Grafakos, L.; Honzík, Petr; Zengyan, S.; Terwilleger, E.

    2011-01-01

    Roč. 3, - (2011), s. 99-107 ISSN 1938-9787. [Analysis, Mathematical Physics and Applications. Ixtapa, 01.03.2010-05.03.2010] R&D Projects: GA AV ČR KJB100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : bilinear singular integrals * bilinear Hilbert transform * Fourier multipliers Subject RIV: BA - General Mathematics http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.cma/1298670006&page=record

  10. Modified Differential Transform Method for Two Singular Boundary Values Problems

    Directory of Open Access Journals (Sweden)

    Yinwei Lin

    2014-01-01

    Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.

  11. Gevrey multiscale expansions of singular solutions of PDEs with cubic nonlinearity

    Directory of Open Access Journals (Sweden)

    Alberto Lastra

    2018-02-01

    Full Text Available We study a singularly perturbed PDE with cubic nonlinearity depending on a complex perturbation parameter $\\epsilon$. This is a continuation of the precedent work [22] by the first author. We construct two families of sectorial meromorphic solutions obtained as a small perturbation in $\\epsilon$ of two branches of an algebraic slow curve of the equation in time scale. We show that the nonsingular part of the solutions of each family shares a common formal power series in $\\epsilon$ as Gevrey asymptotic expansion which might be different one to each other, in general.

  12. Solving differential equations for Feynman integrals by expansions near singular points

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  13. Fitted-Stable Finite Difference Method for Singularly Perturbed Two ...

    African Journals Online (AJOL)

    A fitted-stable central difference method is presented for solving singularly perturbed two point boundary value problems with the boundary layer at one end (left or right) of the interval. A fitting factor is introduced in second order stable central difference scheme (SCD Method) and its value is obtained using the theory of ...

  14. Application of singular eigenfunctions method of neutron transport theory

    International Nuclear Information System (INIS)

    Simovicj, R.

    1974-11-01

    A possibility of applying analitical method of neutron transport theory was investigated in research of processes governed by linearized Boltzmann equation, especially in semiconducting media. Analitical singular eigenfunctions method was developed and improved. It was applied in solving the electron transport equation for nonpolar semiconductors in case of constant high electrical field. Energy and angular distribution of high energy electrons was obtained

  15. A numerical method for singular boundary value problem of ordinary differential equation

    International Nuclear Information System (INIS)

    He Qibing

    1992-12-01

    A numerical method, regularizing method, is suggested to treat the singular boundary problem of ordinary differential equation that is raised from controlled nuclear fusion science and other fields owing to their singular physical mechanism. This kind of singular boundary problem has been successfully solved by special treatment near the singular points and using difference method. This method overcomes difficulties in numerical calculation due to the singularity. The convergence results and numerical test are also given

  16. hp-finite element methods for singular perturbations

    CERN Document Server

    Melenk, Jens M

    2002-01-01

    Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.

  17. A Parameter Robust Method for Singularly Perturbed Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Erdogan Fevzi

    2010-01-01

    Full Text Available Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.

  18. Fourth order compact finite difference method for solving singularly ...

    African Journals Online (AJOL)

    A numerical method based on finite difference scheme with uniform mesh is presented for solving singularly perturbed two-point boundary value problems of 1D reaction-diffusion equations. First, the derivatives of the given differential equation is replaced by the finite difference approximations and then, solved by using ...

  19. Singular perturbation method for evolution equations in Banach spaces

    International Nuclear Information System (INIS)

    Mika, J.

    1976-01-01

    The singular perturbation method is applied to linear evolution equations in Banach spaces containing a small parameter multiplying the time derivative. Outer and inner asymptotic solutions are formulated and the sense in which they converge to the exact solution is rigorously defined. It is then shown that the sum of the two asymptotic solutions converges uniformly to the exact solution. Possible applications to various physical situations are indicated. (Auth.)

  20. Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from Group Field Theory condensates

    Energy Technology Data Exchange (ETDEWEB)

    Cesare, Marco de, E-mail: marco.de_cesare@kcl.ac.uk; Sakellariadou, Mairi, E-mail: mairi.sakellariadou@kcl.ac.uk

    2017-01-10

    We study the expansion of the Universe using an effective Friedmann equation obtained from the dynamics of GFT (Group Field Theory) isotropic condensates. The evolution equations are classical, with quantum correction terms to the Friedmann equation given in the form of effective fluids coupled to the emergent classical background. The occurrence of a bounce, which resolves the initial spacetime singularity, is shown to be a general property of the model. A promising feature of this model is the occurrence of an era of accelerated expansion, without the need to introduce an inflaton field with an appropriately chosen potential. We discuss possible viability issues of this scenario as an alternative to inflation.

  1. Detalhes singulares nos procedimentos operacionais da disjunção palatina Singular aspects to operate rapid palatal expansion procedures

    Directory of Open Access Journals (Sweden)

    Orlando Tanaka

    2004-08-01

    Full Text Available A disjunção palatina traz benefícios significativos nas más oclusões caracterizadas pela atresia esquelética do arco dentário superior. Desde os tempos de Angell muitos manuais foram criados com o intuito de orientar a instalação de aparelhos construídos em diferentes formatos e com materiais dos mais diversos fabricantes, utilizando, ainda, diferentes protocolos de ativação que objetivam a referida correção. A tecnologia utilizada para melhorar os materiais componentes dos aparelhos ortodônticos é muito importante mas os pequenos detalhes, que na verdade, não são pequenos, aliados aos conhecimentos científicos e ao bom senso devem ser observados, pois não se deve esperar que o aparelho "faça e resolva" tudo, corrigindo "num passe de mágica" as mordidas cruzadas posteriores. Este trabalho tem por objetivo detalhar as minúcias globais importantes, seja na confecção, na ativação e nos cuidados durante a permanência do disjuntor palatino na cavidade bucal.The rapid maxillary expansion procedure provide significant benefits in malocclusions with esqueletal posterior crossbites.Since Angell, lots of manuals were made in effort to guide the assembly of appliances from different types and employment of several techniques to obtain the desired correction. The technology used to improve the appliance materials is very important, but little details that actually are not so small together with scientific acknowledge and good sense must be regarded because one can not wait for the appliance “to do and solve” everything, correcting the posterior cross bites by a sleight-of-hand trick. The purpose of this report is to detail some little global aspects about construction, activation and concerns during the permanence period of the rapid maxillary expansion appliance in the mouth.

  2. Combined methods for elliptic equations with singularities, interfaces and infinities

    CERN Document Server

    Li, Zi Cai

    1998-01-01

    In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.

  3. Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from Group Field Theory condensates

    Directory of Open Access Journals (Sweden)

    Marco de Cesare

    2017-01-01

    Full Text Available We study the expansion of the Universe using an effective Friedmann equation obtained from the dynamics of GFT (Group Field Theory isotropic condensates. The evolution equations are classical, with quantum correction terms to the Friedmann equation given in the form of effective fluids coupled to the emergent classical background. The occurrence of a bounce, which resolves the initial spacetime singularity, is shown to be a general property of the model. A promising feature of this model is the occurrence of an era of accelerated expansion, without the need to introduce an inflaton field with an appropriately chosen potential. We discuss possible viability issues of this scenario as an alternative to inflation.

  4. Hilbert asymptotic expansion method for evolution equations in Banach spaces

    International Nuclear Information System (INIS)

    Mika, J.

    1978-01-01

    In the paper an abstract initial value problem for a singularly perturbed linear evolution equation in a Banach space is considered. The evolution operator consists of two operators. One of them having an eigenvalue at the origin is multiplied by 1/epsilon where epsilon is a small positive parameter. The Hilbert expansion method is applied to solving the problem and the asymptotic solution is shown to converge uniformly to the exact one with epsilon tending to zero. The results of the paper are applicable to the linear Boltzmann equation if the scattering operator is bounded and the streaming operator is represented in the finite-differnce form. As an example, the Boltzmann equation for neutrons is considered and the Hilbert expansion used to derive the diffusion equation. (author)

  5. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  6. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    Science.gov (United States)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  7. Review of singular potential integrals for method of moments solutions of surface integral equations

    Directory of Open Access Journals (Sweden)

    A. Tzoulis

    2004-01-01

    Full Text Available Accurate evaluation of singular potential integrals is essential for successful method of moments (MoM solutions of surface integral equations. In mixed potential formulations for metallic and dielectric scatterers, kernels with 1/R and r1/R singularities must be considered. Several techniques for the treatment of these singularities will be reviewed. The most common approach solves the MoM source integrals analytically for specific observation points, thus regularizing the integral. However, in the case of r1/R a logarithmic singularity remains for which numerical evaluation of the testing integral is still difficult. A recently by Yl¨a-Oijala and Taskinen proposed remedy to this issue is discussed and evaluated within a hybrid finite element – boundary integral technique. Convergence results for the MoM coupling integrals are presented where also higher-order singularity extraction is considered.

  8. Singular value decomposition methods for wave propagation analysis

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Lefeuvre, F.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 10-1-10-13 ISSN 0048-6604 R&D Projects: GA ČR GA205/01/1064 Grant - others:Barrande(CZ) 98039/98055 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : wave propagation * singular value decomposition Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.832, year: 2003

  9. Method of mechanical quadratures for solving singular integral equations of various types

    Science.gov (United States)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  10. (G /G)-expansion method

    Indian Academy of Sciences (India)

    which appear in many fields such as, solid-state physics, nonlinear optics, fluid dynamics, fluid flow, quantum field theory, electromagnetic waves and so on. In this method we take the advantage of gen- eral solutions of second-order linear ordinary differential equation (LODE) to solve many nonlinear evolution equations ...

  11. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  12. Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side

    Science.gov (United States)

    Amirjanyan, A. A.; Sahakyan, A. V.

    2017-08-01

    A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.

  13. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method

    Science.gov (United States)

    Yaşar, Emrullah; Yıldırım, Yakup; Zhou, Qin; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Triki, Houria; Biswas, Anjan; Belic, Milivoj

    2017-11-01

    This paper obtains optical soliton solution to perturbed nonlinear Schrödinger's equation by modified simple equation method. There are four types of nonlinear fibers studied in this paper. They are Anti-cubic law, Quadratic-cubic law, Cubic-quintic-septic law and Triple-power law. Dark and singular soliton solutions are derived. Additional solutions such as singular periodic solutions also fall out of the integration scheme.

  14. Construction Method of Regularization by Singular Value Decomposition of Design Matrix

    Directory of Open Access Journals (Sweden)

    LIN Dongfang

    2016-08-01

    Full Text Available Tikhonov regularization introduces regularization parameter and stable functional to improve the ill-condition. When the stable functional expressed as two-norm constraint, the regularization method is the same as ridge estimation. The analysis of the variance and bias of the ridge estimation shows that ridge estimation improved the ill-condition but introduced more bias. The estimation reliability is lowered. We get that correct the larger singular values cannot decrease the variance effectively but introduced more bias, correcting the smaller singular values can decrease the variance effectively. We choose the eigenvectors of the smaller singular values to construct the regularization matrix. It can adjust the correction of the singular values, decrease the variance and biases and finally get a more reliable estimation.

  15. Variational Iteration Method for Nonlinear Singular Two-Point Boundary Value Problems Arising in Human Physiology

    Directory of Open Access Journals (Sweden)

    Marwan Abukhaled

    2013-01-01

    Full Text Available The variational iteration method is applied to solve a class of nonlinear singular boundary value problems that arise in physiology. The process of the method, which produces solutions in terms of convergent series, is explained. The Lagrange multipliers needed to construct the correctional functional are found in terms of the exponential integral and Whittaker functions. The method easily overcomes the obstacle of singularities. Examples will be presented to test the method and compare it to other existing methods in order to confirm fast convergence and significant accuracy.

  16. An improved, robust, axial line singularity method for bodies of revolution

    Science.gov (United States)

    Hemsch, Michael J.

    1989-01-01

    The failures encountered in attempts to increase the range of applicability of the axial line singularity method for representing incompressible, inviscid flow about an inclined and slender body-of-revolution are presently noted to be common to all efforts to solve Fredholm equations of the first kind. It is shown that a previously developed smoothing technique yields a robust method for numerical solution of the governing equations; this technique is easily retrofitted to existing codes, and allows the number of circularities to be increased until the most accurate line singularity solution is obtained.

  17. Fixed-point Theorem and the Nishida-Nirenberg Method in Solving Certain Nonlinear Singular Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Jose Ernie C. Lope

    2013-12-01

    Full Text Available In their 2012 work, Lope, Roque, and Tahara considered singular nonlinear partial differential equations of the form tut = F(t; x; u; ux, where the function F is assumed to be continuous in t and holomorphic in the other variables. They have shown that under some growth conditions on the coefficients of the partial Taylor expansion of F as t 0, the equation has a unique solution u(t; x with the same growth order as that of F(t; x; 0; 0. Koike considered systems of partial differential equations using the Banach fixed point theorem and the iterative method of Nishida and Nirenberg. In this paper, we prove the result obtained by Lope and others using the method of Koike, thereby avoiding the repetitive step of differentiating a recursive equation with respect to x as was done by the aforementioned authors.

  18. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Omer; Acar, Mustafa Hilmi

    2007-01-01

    The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results

  19. An efficient method for computing genus expansions and counting numbers in the Hermitian matrix model

    International Nuclear Information System (INIS)

    Alvarez, Gabriel; Martinez Alonso, Luis; Medina, Elena

    2011-01-01

    We present a method to compute the genus expansion of the free energy of Hermitian matrix models from the large N expansion of the recurrence coefficients of the associated family of orthogonal polynomials. The method is based on the Bleher-Its deformation of the model, on its associated integral representation of the free energy, and on a method for solving the string equation which uses the resolvent of the Lax operator of the underlying Toda hierarchy. As a byproduct we obtain an efficient algorithm to compute generating functions for the enumeration of labeled k-maps which does not require the explicit expressions of the coefficients of the topological expansion. Finally we discuss the regularization of singular one-cut models within this approach.

  20. Singular perturbation for nonlinear boundary-value problems

    Directory of Open Access Journals (Sweden)

    Rina Ling

    1979-01-01

    studied. The problem is a model arising in nuclear energy distribution. For large values of the parameter, the differential equations are of the singular-perturbation type and approximations are constructed by the method of matched asymptotic expansions.

  1. Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction

    Directory of Open Access Journals (Sweden)

    Qiuming Cheng

    2011-01-01

    Full Text Available In this paper, we show that geo-anomalies can be delineated for mineral deposit prediction according to singularity theories developed to characterize nonlinear mineralization processes. Associating singularity and geo-anomalies makes it possible to quantitatively study geo-anomalies with modern nonlinear theories and methods. This paper introduces a newly developed singularity analysis of nonlinear mineralization processes and nonlinear methods for characterizing and mapping geo-anomalies for mineral deposit prediction. Mineral deposits, as the products of singular mineralization processes caused by geo-anomalies, can be characterized by means of fractal or multifractal models. It has been shown that singularity can characterize the degree of geo-abnormality, and this has been demonstrated to be useful for mapping anomalies of undiscovered mineral deposits. The study of mineralization and mineral deposits from a nonlinear process point of view is a new but promising research direction. This study emphasizes the relationships between geo-anomalies and singularity, including singular processes resulting in singularity and geo-anomalies, the characterization of singularity and geo-anomalies and the identification of geo-anomalies for mineral deposit prediction. The concepts and methods are demonstrated using a case study of Sn mineral deposit prediction in the Gejiu mineral district in Yunnan, China.

  2. Development of a Method for Selection of Effective Singular Values in Bearing Fault Signal De-Noising

    Directory of Open Access Journals (Sweden)

    Jie Gao

    2016-05-01

    Full Text Available Singular value decomposition (SVD is a widely used and powerful tool for signal extraction under noise. Noise attenuation relies on the selection of the effective singular value because these values are significant features of the useful signal. Traditional methods of selecting effective singular values (or selecting the useful components to rebuild the faulty signal consist of seeking the maximum peak of the differential spectrum of singular values. However, owing to the small number of selected effective singular values, these methods lead to excessive de-noised effects. In order to get a more appropriate number of effective singular values, which preserves the components of the original signal as much as possible, this paper used a difference curvature spectrum of incremental singular entropy to determine the number of effective singular values. Then the position was found where the difference of two peaks in the spectrum declines in an infinitely large degree for the first time, and this position was regarded as the boundary of singular values between noise and a useful signal. The experimental results showed that the modified methods could accurately extract the non-stationary bearing faulty signal under real background noise.

  3. Variational Iteration Method for Singular Perturbation Initial Value Problems with Delays

    Directory of Open Access Journals (Sweden)

    Yongxiang Zhao

    2014-01-01

    Full Text Available The variational iteration method (VIM is applied to solve singular perturbation initial value problems with delays (SPIVPDs. Some convergence results of VIM for solving SPIVPDs are given. The obtained sequence of iterates is based on the use of general Lagrange multipliers; the multipliers in the functionals can be identified by the variational theory. Moreover, the numerical examples show the efficiency of the method.

  4. The optimizied expansion method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2013-01-01

    Spectral methods are fast becoming an indispensable tool for wave-field extrapolation, especially in anisotropic media, because of its dispersion and artifact free, as well as highly accurate, solutions of the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number of inverse FFT required per time extrapolation step, and thus, a lower rank admits faster extrapolations. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its low rank representation.Thus,we obtain more accurate wave-fields using lower rank representation, and thus cheaper extrapolations. The optimization operation to define the low rank representation depends only on the velocity model, and this is done only once, and valid for a full reverse time migration (many shots) or one iteration of full waveform inversion. Applications on the BP model yielded superior results than those obtained using the decomposition approach. For transversely isotopic media, the solutions were free of the shear wave artifacts, and does not require that eta>0.

  5. Mitigating Wind Induced Noise in Outdoor Microphone Signals Using a Singular Spectral Subspace Method

    Directory of Open Access Journals (Sweden)

    Omar Eldwaik

    2018-01-01

    Full Text Available Wind induced noise is one of the major concerns of outdoor acoustic signal acquisition. It affects many field measurement and audio recording scenarios. Filtering such noise is known to be difficult due to its broadband and time varying nature. In this paper, a new method to mitigate wind induced noise in microphone signals is developed. Instead of applying filtering techniques, wind induced noise is statistically separated from wanted signals in a singular spectral subspace. The paper is presented in the context of handling microphone signals acquired outdoor for acoustic sensing and environmental noise monitoring or soundscapes sampling. The method includes two complementary stages, namely decomposition and reconstruction. The first stage decomposes mixed signals in eigen-subspaces, selects and groups the principal components according to their contributions to wind noise and wanted signals in the singular spectrum domain. The second stage reconstructs the signals in the time domain, resulting in the separation of wind noise and wanted signals. Results show that microphone wind noise is separable in the singular spectrum domain evidenced by the weighted correlation. The new method might be generalized to other outdoor sound acquisition applications.

  6. Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ-Expansion Method Implementation

    Directory of Open Access Journals (Sweden)

    Nur Alam

    2016-02-01

    Full Text Available In this research article, we present exact solutions with parameters for two nonlinear model partial differential equations(PDEs describing microtubules, by implementing the exp(−Φ(ξ-Expansion Method. The considered models, describing highly nonlinear dynamics of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE describes the longitudinal model of nonlinear dynamics of microtubules, the second one describes the nonlinear model of dynamics of radial dislocations in microtubules. The acquired solutions are then graphically presented, and their distinct properties are enumerated in respect to the corresponding dynamic behavior of the microtubules they model. Various patterns, including but not limited to regular, singular kink-like, as well as periodicity exhibiting ones, are detected. Being the method of choice herein, the exp(−Φ(ξ-Expansion Method not disappointing in the least, is found and declared highly efficient.

  7. C-point and V-point singularity lattice formation and index sign conversion methods

    Science.gov (United States)

    Kumar Pal, Sushanta; Ruchi; Senthilkumaran, P.

    2017-06-01

    The generic singularities in an ellipse field are C-points namely stars, lemons and monstars in a polarization distribution with C-point indices (-1/2), (+1/2) and (+1/2) respectively. Similar to C-point singularities, there are V-point singularities that occur in a vector field and are characterized by Poincare-Hopf index of integer values. In this paper we show that the superposition of three homogenously polarized beams in different linear states leads to the formation of polarization singularity lattice. Three point sources at the focal plane of the lens are used to create three interfering plane waves. A radial/azimuthal polarization converter (S-wave plate) placed near the focal plane modulates the polarization states of the three beams. The interference pattern is found to host C-points and V-points in a hexagonal lattice. The C-points occur at intensity maxima and V-points occur at intensity minima. Modulating the state of polarization (SOP) of three plane waves from radial to azimuthal does not essentially change the nature of polarization singularity lattice as the Poincare-Hopf index for both radial and azimuthal polarization distributions is (+1). Hence a transformation from a star to a lemon is not trivial, as such a transformation requires not a single SOP change, but a change in whole spatial SOP distribution. Further there is no change in the lattice structure and the C- and V-points appear at locations where they were present earlier. Hence to convert an interlacing star and V-point lattice into an interlacing lemon and V-point lattice, the interferometer requires modification. We show for the first time a method to change the polarity of C-point and V-point indices. This means that lemons can be converted into stars and stars can be converted into lemons. Similarly the positive V-point can be converted to negative V-point and vice versa. The intensity distribution in all these lattices is invariant as the SOPs of the three beams are changed in an

  8. A cubic subdomain Galerkin method over the geometrically graded mesh to the singularly perturbed problem

    Science.gov (United States)

    Hepson, Ozlem Ersoy; Daǧ, Idris

    2018-01-01

    In this paper, a subdomain Galerkin method is set up to find solutions of singularly perturbed boundary value problems which are used widely in many areas such as chemical reactor theory, aerodynamics, quantum mechanics, reaction-diffusion process, optimal control, etc. A combination of the cubic B-spline base functions as an approximation function is used to build up the presented method over the geometrically graded mesh. Thus finer mesh can be established through the end parts of the problem domain where steep solutions exist.

  9. Extrudate Expansion Modelling through Dimensional Analysis Method

    DEFF Research Database (Denmark)

    to describe the extrudates expansion. From the three dimensionless groups, an equation with three experimentally determined parameters is derived to express the extrudate expansion. The model is evaluated with whole wheat flour and aquatic feed extrusion experimental data. The average deviations...... of the correlation are respectively 5.9% and 9% for the whole wheat flour and the aquatic feed extrusion. An alternative 4-coefficient equation is also suggested from the 3 dimensionless groups. The average deviations of the alternative equation are respectively 5.8% and 2.5% in correlation with the same set...

  10. Handling Wavelet Expansions in numerical Methods

    NARCIS (Netherlands)

    Metselaar, Arend Aalberthus Roeland

    2002-01-01

    Wavelet expansions have drawn a lot of attention in recent decades. Wavelets originate from signal analysis, and one of the purposes is data compression. The ability to compress data can also be used to reduce the amount of computation work in a numerical simulation.A family of wavelets forms a

  11. Numerical method for the eigenvalue problem and the singular equation by using the multi-grid method and application to ordinary differential equation

    International Nuclear Information System (INIS)

    Kanki, Takashi; Uyama, Tadao; Tokuda, Shinji.

    1995-07-01

    In the numerical method to compute the matching data which are necessary for resistive MHD stability analyses, it is required to solve the eigenvalue problem and the associated singular equation. An iterative method is developed to solve the eigenvalue problem and the singular equation. In this method, the eigenvalue problem is replaced with an equivalent nonlinear equation and a singular equation is derived from Newton's method for the nonlinear equation. The multi-grid method (MGM), a high speed iterative method, can be applied to this method. The convergence of the eigenvalue and the eigenvector, and the CPU time in this method are investigated for a model equation. It is confirmed from the numerical results that this method is effective for solving the eigenvalue problem and the singular equation with numerical stability and high accuracy. It is shown by improving the MGM that the CPU time for this method is 50 times shorter than that of the direct method. (author)

  12. Influence of the non-singular stress on the crack extension and fatigue life

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Recho, N.; Niu, Z.R.

    2012-01-01

    Highlights: ► BEM is combined by characteristic analysis to calculate the singular stress field. ► A new method is proposed to evaluate the full stress field at crack tip region. ► Effect of non-singular stress on the propagation direction of the fatigue crack is analyzed. ► The influence of non-singular stress on the fatigue crack life is evaluated. - Abstract: The complete elasticity stress field at a crack tip region can be presented by the sum of the singular stress and several non-singular stress terms according to the Williams asymptotic expansion theory. The non-singular stress has a non-negligible influence on the prediction of the crack extension direction and crack growth rate under the fatigue loading. A novel method combining the boundary element method and the singularity characteristic analysis is proposed here to evaluate the complete stress field at a crack tip region. In this new method, any non-singular stress term in the Williams series expansion can be evaluated according to the computational accuracy requirement. Then, a modified Paris law is introduced to predict the crack propagation under the mixed-mode loading for exploring the influence of the non-singular stress on the fatigue life duration. By comparing with the existed experimental results, the predicted crack fatigue life when the non-singular stress is taken into consideration is more accurate than the predicted ones only considering the singular stress.

  13. Convergence Analysis of Generalized Jacobi-Galerkin Methods for Second Kind Volterra Integral Equations with Weakly Singular Kernels

    Directory of Open Access Journals (Sweden)

    Haotao Cai

    2017-01-01

    Full Text Available We develop a generalized Jacobi-Galerkin method for second kind Volterra integral equations with weakly singular kernels. In this method, we first introduce some known singular nonpolynomial functions in the approximation space of the conventional Jacobi-Galerkin method. Secondly, we use the Gauss-Jacobi quadrature rules to approximate the integral term in the resulting equation so as to obtain high-order accuracy for the approximation. Then, we establish that the approximate equation has a unique solution and the approximate solution arrives at an optimal convergence order. One numerical example is presented to demonstrate the effectiveness of the proposed method.

  14. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    International Nuclear Information System (INIS)

    Baker, G.; Siegel, M.; Tanveer, S.

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab

  15. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    Science.gov (United States)

    Baker, Gregory; Siegel, Michael; Tanveer, Saleh

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.

  16. Improved gap filling method based on singular spectrum analysis and its application in space environment

    Science.gov (United States)

    Li, Xiangzhen; Liu, Shuai; Li, Zhi; Gong, Jiancun

    2017-11-01

    Data missing is a common phenomenon in the space environment measurements, which impacts or even blocks the following model-building procedures, predictions and posterior analysis. To fill these data gaps, an improved filling method based on iterative singular spectrum analysis is proposed. It first extracts a distribution array of the gaps and then fills the gaps with all known data. The distribution array is utilized to generate the test sets for cross validation. The embedding window length and principal components are determined by the discrete particle swarm optimization algorithm in a noncontinuous fashion. The effectiveness and adaptability of the filling method are proved by some tests done on solar wind data and geomagnetic indices from different solar activity years.

  17. Frequency-domain method based on the singular value decomposition for frequency-selective NMR spectroscopy.

    Science.gov (United States)

    Stoica, Petre; Sandgren, Niclas; Selén, Yngve; Vanhamme, Leentje; Van Huffel, Sabine

    2003-11-01

    In several applications of NMR spectroscopy the user is interested only in the components lying in a small frequency band of the spectrum. A frequency selective analysis deals precisely with this kind of NMR spectroscopy: parameter estimation of only those spectroscopic components that lie in a preselected frequency band of the NMR data spectrum, with as little interference as possible from the out-of-band components and in a computationally efficient way. In this paper we introduce a frequency-domain singular value decomposition (SVD)-based method for frequency selective spectroscopy that is computationally simple, statistically accurate, and which has a firm theoretical basis. To illustrate the good performance of the proposed method we present a number of numerical examples for both simulated and in vitro NMR data.

  18. On the matrix singularity problem in the variational Gaussian wave packet method

    Energy Technology Data Exchange (ETDEWEB)

    Fabcic, Tomaz; Main, Joerg; Wunner, Guenter [1. Institut fuer Theoretische Physik, Universitaet Stuttgart, 70550 Stuttgart (Germany)

    2007-07-01

    Variational solutions of the time-dependent Schroedinger equation are often based on Gaussian wave packets (GWP) as trial functions. The equations of motion for the time-dependent Gaussian parameters become ill-conditioned from time to time during the propagation, and this problem increases with the number of propagated GWP, leading to extremely small step sizes of the integration routines. On the other hand a sufficiently large number of GWP is necessary to obtain accurate results. The instabilities of the equations of motion are due to a temporary overcrowding of the set of GWP, making the set of linear equations that has to be solved after each time step of integration nearly singular. We present a novel method to overcome these numerical problems by subjecting the GWP to adequate inequality constraints, rendering the integration process orders of magnitude faster. The power of the method is demonstrated for a two dimensional nonintegrable model potential.

  19. IRP methods for Environmental Impact Statements of utility expansion plans

    International Nuclear Information System (INIS)

    Cavallo, J.D.; Hemphill, R.C.; Veselka, T.D.

    1992-01-01

    Most large electric utilities and a growing number of gas utilities in the United States are using a planning method -- Integrated Resource Planning (IRP) - which incorporates demand-side management (DSM) programs whenever the marginal cost of the DSM programs are lower than the marginal cost of supply-side expansion options. Argonne National Laboratory has applied the IRP method in its socio-economic analysis of an Environmental Impact Statement (EIS) of power marketing for a system of electric utilities in the mountain and western regions of the United States. Applying the IRP methods provides valuable information to the participants in an EIS process involving capacity expansion of an electric or gas utility. The major challenges of applying the IRP method within an EIS are the time consuming and costly task of developing a least cost expansion path for each altemative, the detailed quantification of environmental damages associated with capacity expansion, and the explicit inclusion of societal-impacts to the region

  20. An exponential expansion method and its application to the strain wave equation in microstructured solids

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2015-06-01

    Full Text Available The modeling of wave propagation in microstructured materials should be able to account for various scales of microstructure. Based on the proposed new exponential expansion method, we obtained the multiple explicit and exact traveling wave solutions of the strain wave equation for describing different types of wave propagation in microstructured solids. The solutions obtained in this paper include the solitary wave solutions of topological kink, singular kink, non-topological bell type solutions, solitons, compacton, cuspon, periodic solutions, and solitary wave solutions of rational functions. It is shown that the new exponential method, with the help of symbolic computation, provides an effective and straightforward mathematical tool for solving nonlinear evolution equations arising in mathematical physics and engineering.

  1. Singular potentials in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera-Navarro, V.C. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Koo, E. Ley [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica

    1995-10-01

    This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs.

  2. Analysis of MHD instabilities by asymptotic methods. WKB expansion

    Science.gov (United States)

    Tirozzi, Brunello; Tassi, Camillo; Buratti, Paolo

    2016-03-01

    The m = 1 resistive mode for a tokamak plasma with large aspect ratio is considered: the dynamic equations in a resistive layer are solved by means of an asymptotic expansion for values of the growth rate in a suitable range. The eigenvalues characterizing the perturbation are found by means of a series expansion and it is shown that the main contribution to the expression of the eigenvalues is given by the first and the second order of this expansion. This method is different from the one used in the paper [G. Ara et al., Ann. Phys. 112, 443 (1978)], and can be applied in more general situations.

  3. An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-06-01

    Full Text Available Artifacts removal and rhythms extraction from electroencephalography (EEG signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8% than those of the WDec method (79.2% and the infinite impulse response (IIR filtering method (83.3%.

  4. Singular solutions to the Seiberg-Witten and Freund equations on flat space from an iterative method

    International Nuclear Information System (INIS)

    Mosna, Ricardo A.

    2006-01-01

    Although it is well known that the Seiberg-Witten equations do not admit nontrivial L 2 solutions in flat space, singular solutions to them have been previously exhibited--either in R 3 or in the dimensionally reduced spaces R 2 and R 1 --which have physical interest. In this work, we employ an extension of the Hopf fibration to obtain an iterative procedure to generate particular singular solutions to the Seiberg-Witten and Freund equations on flat space. Examples of solutions obtained by such method are presented and briefly discussed

  5. Algebraic method for constructing singular steady solitary waves: a case study

    Science.gov (United States)

    Clamond, Didier; Dutykh, Denys; Galligo, André

    2016-07-01

    This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equation with surface tension, because it provides a tractable model that, at the same time, is not too simple, so interest in the method can be emphasized. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of physics. In capillary-gravity regime, there are two kinds of localized infinitely smooth travelling wave solutions-solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, then the `zoology' of solutions becomes much richer, and the main goal of this study is to provide a complete classification of such singular localized solutions using the methods of the effective algebraic geometry.

  6. Application of potential harmonic expansion method to BEC ...

    Indian Academy of Sciences (India)

    We adopt the potential harmonics expansion method for an ab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations.

  7. expansion method and its applications to nonlinear evolution ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, an extended multiple (G /G)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equa- tion, the generalized shallow ...

  8. Application of potential harmonic expansion method to BEC

    Indian Academy of Sciences (India)

    We adopt the potential harmonics expansion method for an ab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations.

  9. The extended (G/G)-expansion method and travelling wave ...

    Indian Academy of Sciences (India)

    In this paper, we construct the travelling wave solutions to the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law non-linearity by the extended (′/)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with Kerr law nonlinearity with arbitrary parameters.

  10. expansion method and travelling wave solutions for the perturbed ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we construct the travelling wave solutions to the perturbed nonlinear. Schrödinger's equation (NLSE) with Kerr law non-linearity by the extended (G /G)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with. Kerr law nonlinearity with arbitrary ...

  11. expansion method for solving nonlinear space–time fractional ...

    Indian Academy of Sciences (India)

    2016-07-06

    Jul 6, 2016 ... -expansion method for solving fractional differential equations based on a fractional complex transform. We apply this method for solving space–time fractional Cahn–Allen equation and space–time fractional Klein–Gordon equation. The fractional derivatives are described in the sense of modified ...

  12. Modelling of fluid flow in fractured porous media by the singular integral equations method

    International Nuclear Information System (INIS)

    Vu, M.N.

    2012-01-01

    This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self

  13. A New Algorithm Based on the Homotopy Perturbation Method For a Class of Singularly Perturbed Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    A New Algorithm Based on the Homotopy Perturbation Method For a Class of Singularly Perturbed Boundary Value Problems

    2013-12-01

    Full Text Available . In this paper, a new algorithm is presented to approximate the solution of a singularly perturbed boundary value problem with leftlayer based on the homotopy perturbation technique and applying the Laplace transformation. The convergence theorem and the error bound of the proposed method are proved. The method is examined by solving two examples. The results demonstrate the reliability and efficiency of the proposed method.

  14. Quality of potential harmonics expansion method for dilute Bose ...

    Indian Academy of Sciences (India)

    We present and examine an approximate but ab initio many-body approach, viz., potential harmonics expansion method (PHEM), which includes two-body correlations for dilute Bose–Einstein condensates. Comparing the total ground state energy for three trapped interacting bosons calculated in PHEM with the exact ...

  15. Optimized t-expansion method for the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Travenec, Igor; Samaj, Ladislav

    2011-01-01

    A polemic arose recently about the applicability of the t-expansion method to the calculation of the ground state energy E 0 of the Rabi model. For specific choices of the trial function and very large number of involved connected moments, the t-expansion results are rather poor and exhibit considerable oscillations. In this Letter, we formulate the t-expansion method for trial functions containing two free parameters which capture two exactly solvable limits of the Rabi Hamiltonian. At each order of the t-series, E 0 is assumed to be stationary with respect to the free parameters. A high accuracy of E 0 estimates is achieved for small numbers (5 or 6) of involved connected moments, the relative error being smaller than 10 -4 (0.01%) within the whole parameter space of the Rabi Hamiltonian. A special symmetrization of the trial function enables us to calculate also the first excited energy E 1 , with the relative error smaller than 10 -2 (1%). -- Highlights: → We study the ground state energy of the Rabi Hamiltonian. → We use the t-expansion method with an optimized trial function. → High accuracy of estimates is achieved, the relative error being smaller than 0.01%. → The calculation of the first excited state energy is made. The method has a general applicability.

  16. Application of potential harmonic expansion method to BEC ...

    Indian Academy of Sciences (India)

    61–74. Application of potential harmonic expansion method to BEC: Thermodynamic properties of trapped 23Na atoms. ANASUYA KUNDU1, BARNALI CHAKRABARTI2 and TAPAN KUMAR DAS1. 1Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India. 2Department of Physics, K.N. College ...

  17. expansion method for the Burgers, Burgers–Huxley and modified

    Indian Academy of Sciences (India)

    mathematical physics. Keywords. (G /G)-expansion method; Burgers equation; Burgers–Huxley equation; modified. Burgers–KdV equation; travelling wave solutions. PACS Nos 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg. 1. Introduction. Most of the phenomena in real world can be described using nonlinear equations. In recent.

  18. A numerical scheme for singularly perturbed reaction-diffusion problems with a negative shift via numerov method

    Science.gov (United States)

    Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.

    2017-11-01

    In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

  19. The method of boson expansions in quantum theory

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1977-06-01

    A review is presented of boson expansion methods applied in quantum theory, e.g. expansions of spin, bifermion and fermion operators in cases of finite and infinite number of degrees of freedom. The basic purpose of the paper is to formulate the most general criterion allowing one to obtain the so-called finite spin approximation of any given Bose field theory and the class of fermion theories associated with it. On the other hand, we also need to be able to reconstruct the primary Bose field theory, when any finite spin or Fermi systems are given

  20. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  1. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    Science.gov (United States)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  2. Comparative analysis of gradient-field-based orientation estimation methods and regularized singular-value decomposition for fringe pattern processing.

    Science.gov (United States)

    Sun, Qi; Fu, Shujun

    2017-09-20

    Fringe orientation is an important feature of fringe patterns and has a wide range of applications such as guiding fringe pattern filtering, phase unwrapping, and abstraction. Estimating fringe orientation is a basic task for subsequent processing of fringe patterns. However, various noise, singular and obscure points, and orientation data degeneration lead to inaccurate calculations of fringe orientation. Thus, to deepen the understanding of orientation estimation and to better guide orientation estimation in fringe pattern processing, some advanced gradient-field-based orientation estimation methods are compared and analyzed. At the same time, following the ideas of smoothing regularization and computing of bigger gradient fields, a regularized singular-value decomposition (RSVD) technique is proposed for fringe orientation estimation. To compare the performance of these gradient-field-based methods, quantitative results and visual effect maps of orientation estimation are given on simulated and real fringe patterns that demonstrate that the RSVD produces the best estimation results at a cost of relatively less time.

  3. The modified multiple (G /G) -expansion method and its application ...

    Indian Academy of Sciences (India)

    physics pp. 95–105. The modified multiple (G /G)-expansion method and its application to Sharma–Tasso–Olver equation. ZHANG ZHE and DESHENG LI. ∗ ... When some parameters are taken as special values, the multiple ..... In what follows, on different choices of q1(t ), q2(t ), k1,k2,λm1,2 (t) and λn1,2 (t), a series.

  4. expansion method for the Burgers, Burgers–Huxley and modified ...

    Indian Academy of Sciences (India)

    other hand, depending on the sign of the discriminant. = λ2 − 4μ, the solutions of eq. (4) are well known for us. So, we can obtain exact solutions of eq. (1). 3. Applications. In this section, we apply the (G /G)-expansion method to solve the Burgers, Burgers–. Huxley and modified Burgers–KdV equations. 3.1 The Burgers ...

  5. Comparison between the new G'/G expansion method and the extended homogeneous balance method

    Directory of Open Access Journals (Sweden)

    Omer Gozukizil

    2015-12-01

    some modifications using the Riccati equation and the reduced nonlinear ordinary differential equation, respectively, the new G'/G expansion method is straightforward and concise, and taking special values for parameters and using some hyperbolic identities, all the solutions obtained by the extended homogeneous balance method coincide with the solutions obtained by the new G'/G expansion method. Moreover, the new G'/G expansion method gives the general form of solutions and is applied to nonlinear partial differential equations directly without using tedious calculation instead of the extended homogeneous balance method.

  6. Monte Carlo methods for flux expansion solutions of transport problems

    International Nuclear Information System (INIS)

    Spanier, J.

    1999-01-01

    Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error

  7. Precision die design by the die expansion method

    CERN Document Server

    Ibhadode, A O Akii

    2009-01-01

    This book presents a new method for the design of the precision dies used in cold-forging, extrusion and drawing processes. The method is based upon die expansion, and attempts to provide a clear-cut theoretical basis for the selection of critical die dimensions for this group of precision dies when the tolerance on product diameter (or thickness) is specified. It also presents a procedure for selecting the minimum-production-cost die from among a set of design alternatives. The mathematical content of the book is relatively simple and will present no difficulty to those who have taken basic c

  8. Lens array fabrication method with volume expansion property of PDMS

    Science.gov (United States)

    Jang, WonJae; Kim, Junoh; Lee, Muyoung; Lee, Jooho; Bang, Yousung; Won, Yong Hyub

    2016-03-01

    Conventionally, poly (dimethylsiloxane) lens array is fabricated by replica molding. In this paper, we describe simple method for fabricating lens array with expanding property of PDMS. The PDMS substrate is prepared by spin coating on cleaned glass. After spin coating PDMS, substrate is treated with O2 plasma to promote adhesion between PDMS substrate and photoresist pattern on it. Positive photoresist az-4330 and AZ 430K developer is used for patterning on PDMS. General photolithography process is used to patterning. Then patterned PDMS substrate is dipped to 1- Bromododecane bath. During this process, patterned photoresist work as a barrier and prevent blocked PDMS substrate from reaction with 1-Bromododecane. Unblocked part of PDMS directly react with 1-Bromododecane and results in expanded PDMS volume. The expansion of PDMS is depends on absorbed 1-Bromododecane volume, dipping time and ratio of block to open area. The focal length of lens array is controlled by those PDMS expansion factors. Scale of patterned photoresist determine a diameter of each lens. The expansion occurs symmetrically at center of unblocked PDMS and 1-Bromododecane interface. As a result, the PDMS lens array is achieved by this process.

  9. A multi-stage stochastic transmission expansion planning method

    International Nuclear Information System (INIS)

    Akbari, Tohid; Rahimikian, Ashkan; Kazemi, Ahad

    2011-01-01

    Highlights: → We model a multi-stage stochastic transmission expansion planning problem. → We include available transfer capability (ATC) in our model. → Involving this criterion will increase the ATC between source and sink points. → Power system reliability will be increased and more money can be saved. - Abstract: This paper presents a multi-stage stochastic model for short-term transmission expansion planning considering the available transfer capability (ATC). The ATC can have a huge impact on the power market outcomes and the power system reliability. The transmission expansion planning (TEP) studies deal with many uncertainties, such as system load uncertainties that are considered in this paper. The Monte Carlo simulation method has been applied for generating different scenarios. A scenario reduction technique is used for reducing the number of scenarios. The objective is to minimize the sum of investment costs (IC) and the expected operation costs (OC). The solution technique is based on the benders decomposition algorithm. The N-1 contingency analysis is also done for the TEP problem. The proposed model is applied to the IEEE 24 bus reliability test system and the results are efficient and promising.

  10. Collocation methods for the solution of eigenvalue problems for singular ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Winfried Auzinger

    2006-01-01

    Full Text Available We demonstrate that eigenvalue problems for ordinary differential equations can be recast in a formulation suitable for the solution by polynomial collocation. It is shown that the well-posedness of the two formulations is equivalent in the regular as well as in the singular case. Thus, a collocation code equipped with asymptotically correct error estimation and adaptive mesh selection can be successfully applied to compute the eigenvalues and eigenfunctions efficiently and with reliable control of the accuracy. Numerical examples illustrate this claim.

  11. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  12. Gauss-Jacobi quadratures for weakly, strongly, hyper- and nearly-singular integrals in boundary integral equation methods for domains with sharp edges and corners

    Science.gov (United States)

    Tsalamengas, John L.

    2016-11-01

    We present Gauss-Jacobi quadrature rules in terms of hypergeometric functions for the discretization of weakly singular, strongly singular, hypersingular, and nearly singular integrals that arise in integral equation formulations of potential problems for domains with sharp edges and corners. The rules are tailored to weight functions with algebraic endpoint singularities of a fairly general form, thus allowing one to easily incorporate a wide class of domains into the analysis. Numerical examples illustrate the accuracy and stability of the proposed algorithms; it is shown that the same level of high accuracy can be achieved for any choice of the external variable. The usefulness of the method is exemplified by application to the solution of a singular integral equation that arises in time-harmonic electromagnetic scattering by either closed or open perfectly conducting cylindrical objects with edges and corners, such as polygon cylinders and bent strips. Some practical aspects concerning the role of nearby singularities in achieving a highly accurate solution of singular integral equations are, also, discussed.

  13. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Directory of Open Access Journals (Sweden)

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  14. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    expansion, zero thermal expansion, and negative thermal expansion. Assuming linear elasticity, it is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion coefficients and void. We also show......We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum thermal...... that there is no mechanistic relationship between negative thermal expansion and negative Poisson's ratio....

  15. Feasibility of wavelet expansion methods to treat the energy variable

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.

    2012-01-01

    This paper discusses the use of the Discrete Wavelet Transform (DWT) to implement a functional expansion of the energy variable in neutron transport. The motivation of the work is to investigate the possibility of adapting the expansion level of the neutron flux in a material region to the complexity of the cross section in that region. If such an adaptive treatment is possible, 'simple' material regions (e.g., moderator regions) require little effort, while a detailed treatment is used for 'complex' regions (e.g., fuel regions). Our investigations show that in fact adaptivity cannot be achieved. The most fundamental reason is that in a multi-region system, the energy dependence of the cross section in a material region does not imply that the neutron flux in that region has a similar energy dependence. If it is chosen to sacrifice adaptivity, then the DWT method can be very accurate, but the complexity of such a method is higher than that of an equivalent hyper-fine group calculation. The conclusion is thus that, unfortunately, the DWT approach is not very practical. (authors)

  16. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-03-01

    We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.

  17. (G'/G)-Expansion Method Equivalent to Extended Tanh Function Method

    International Nuclear Information System (INIS)

    Liu Chunping

    2009-01-01

    In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G'/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G'/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G'/G)-expansion method is equivalent to the extended tanh function method. (general)

  18. Qualitative Analysis of Chang'e-1 γ-ray Spectrometer Spectra Using Noise Adjusted Singular Value Decomposition Method

    International Nuclear Information System (INIS)

    Yang Jia; Ge Liangquan; Xiong Shengqing

    2010-01-01

    From the features of spectra shape of Chang'e-1 γ-ray spectrometer(CE1-GRS) data, it is difficult to determine elemental compositions on the lunar surface. Aimed at this problem, this paper proposes using noise adjusted singular value decomposition (NASVD) method to extract orthogonal spectral components from CE1-GRS data. Then the peak signals in the spectra of lower-order layers corresponding to the observed spectrum of each lunar region are respectively analyzed. Elemental compositions of each lunar region can be determined based upon whether the energy corresponding to each peak signal equals to the energy corresponding to the characteristic gamma-ray line emissions of specific elements. The result shows that a number of elements such as U, Th, K, Fe, Ti, Si, O, Al, Mg, Ca and Na are qualitatively determined by this method. (authors)

  19. Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution

    International Nuclear Information System (INIS)

    Baltacioglu, A.K.; Civalek, O.; Akgoez, B.; Demir, F.

    2011-01-01

    This paper presents nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic nonlinearity. The plate formulation is based on first-order shear deformation theory (FSDT). The governing equation of motion for a rectangular laminated composite thick plate is derived by using the von Karman equation. The nonlinear static deflections of laminated plates on elastic foundation are investigated using the discrete singular convolution method. The effects of foundation and geometric parameters of plates on nonlinear deflections are investigated. The validity of the present method is demonstrated by comparing the present results with those available in the literature. - Highlights: → Large deflection analysis of laminated composite plates are investigated. → As foundation, nonlinear elastic models have been used firstly. → The effects of three-parameter foundation are investigated in detail.

  20. A Multipole Expansion Method for Analyzing Lightning Field Changes

    Science.gov (United States)

    Koshak, William J.; Krider, E. Philip; Murphy, Martin J.

    1998-01-01

    Changes in the surface electric field are frequently used to infer the locations and magnitudes of lightning-caused changes in thundercloud charge distributions. The traditional procedure is to assume that the charges that are effectively deposited by the flash can be modeled either as a single point charge (the Q-model) or a point dipole (the P-model). The Q-model has 4 unknown parameters and provides a good description of many cloud-to-ground (CG) flashes. The P-model has 6 unknown parameters and describes many intracloud (IC) discharges. In this paper, we introduce a new analysis method that assumes that the change in the cloud charge can be described by a truncated multipole expansion, i.e., there are both monopole and dipole terms in the unknown source distribution, and both terms are applied simultaneously. This method can be used to analyze CG flashes that are accompanied by large changes in the cloud dipole moment and complex IC discharges. If there is enough information content in the measurements, the model can also be generalized to include quadrupole and higher order terms. The parameters of the charge moments are determined using a 3-dimensional grid search in combination with a linear inversion, and because of this, local minima in the error function and the associated solution ambiguities are avoided. The multipole method has been tested on computer simulated sources and on natural lightning at the NASA Kennedy Space Center and USAF Eastern Range.

  1. Breaking the link between environmental degradation and oil palm expansion: a method for enabling sustainable oil palm expansion.

    Science.gov (United States)

    Harmen Smit, Hans; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance.

  2. Breaking the link between environmental degradation and oil palm expansion: a method for enabling sustainable oil palm expansion.

    Directory of Open Access Journals (Sweden)

    Hans Harmen Smit

    Full Text Available Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance.

  3. Measuring the W-Boson mass at a hadron collider: a study of phase-space singularity methods

    CERN Document Server

    De Rújula, A

    2011-01-01

    The traditional method to measure the W-Boson mass at a hadron collider (more precisely, its ratio to the Z-mass) utilizes the distributions of three variables in events where the W decays into an electron or a muon: the charged-lepton transverse momentum, the missing transverse energy and the transverse mass of the lepton pair. We study the putative advantages of the additional measurement of a fourth variable: an improved phase-space singularity mass. This variable is statistically optimal, and simultaneously exploits the longitudinal- and transverse-momentum distributions of the charged lepton. Though the process we discuss is one of the simplest realistic ones involving just one unobservable particle, it is fairly non-trivial and constitutes a good "training" example for the scrutiny of phenomena involving invisible objects. Our graphical analysis of the phase space is akin to that of a Dalitz plot, extended to such processes.

  4. Pseudospherical surfaces with singularities

    DEFF Research Database (Denmark)

    Brander, David

    2017-01-01

    We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...

  5. Method to determine the thermal expansion of epoxies, inorganic cements and polyester resins at cryogenic temperatures

    International Nuclear Information System (INIS)

    Sereinig, W.; Gross, F.

    1982-01-01

    An apparatus for measuring the integral thermal expansions at cryogenic temperatures is described. The thermal expansions are given for a number of commercial epoxy resins, commercial polyester resins and inorganic cements. A method to reduce the thermal expansion of the resins by the use of quartz powder fillers is reported. (author)

  6. The Lost Foam method – pre-expansion process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-04-01

    Full Text Available In the study, a pre-expansion station, designed by authors, was presented. It consists of a batch pre-expander with a 90 liters capacity foaming chamber, equipped with fluidized-solid dryer of pre-expanded beads and a pneumatic transport system of granules to the silo. Steam is delivered to the pre-expander from the electric vapor generator type LW 40.1. In the study, work principle of the pre-expansion station and pre-expansion tests carried out on this position were presented.

  7. Multiscale singularity trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter

    2007-01-01

    We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....

  8. Identification method for gas-liquid two-phase flow regime based on singular value decomposition and least square support vector machine

    International Nuclear Information System (INIS)

    Sun Bin; Zhou Yunlong; Zhao Peng; Guan Yuebo

    2007-01-01

    Aiming at the non-stationary characteristics of differential pressure fluctuation signals of gas-liquid two-phase flow, and the slow convergence of learning and liability of dropping into local minima for BP neural networks, flow regime identification method based on Singular Value Decomposition (SVD) and Least Square Support Vector Machine (LS-SVM) is presented. First of all, the Empirical Mode Decomposition (EMD) method is used to decompose the differential pressure fluctuation signals of gas-liquid two-phase flow into a number of stationary Intrinsic Mode Functions (IMFs) components from which the initial feature vector matrix is formed. By applying the singular vale decomposition technique to the initial feature vector matrixes, the singular values are obtained. Finally, the singular values serve as the flow regime characteristic vector to be LS-SVM classifier and flow regimes are identified by the output of the classifier. The identification result of four typical flow regimes of air-water two-phase flow in horizontal pipe has shown that this method achieves a higher identification rate. (authors)

  9. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...... on a finite-element discretization of the base cell. The optimization problem is solved using sequential linear programming. To benchmark the design method we first consider two-phase designs. Our optimal two-phase microstructures are in fine agreement with rigorous bounds and the so-called Vigdergauz...

  10. Analytical methods for an elliptic singular perturbation problem In a circle

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    2007-01-01

    textabstractWe consider an elliptic perturbation problem in a circle by using the analytical solution that is given by a Fourier series with coefficients in terms of modified Bessel functions. By using saddle point methods we construct asymptotic approximations with respect to a small parameter.

  11. On Approximate Analytical Solutions of Nonlinear Vibrations of Inextensible Beams using Parameter-Expansion Method

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo

    2010-01-01

    In this work, an analytical method, which is referred to as Parameter-expansion Method is used to obtain the exact solution for the problem of nonlinear vibrations of an inextensible beam. It is shown that one term in the series expansion is sufficient to obtain a highly accurate solution, which...

  12. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  13. A Novel Secure and Robust Image Watermarking Method Based on Decorrelation of Channels, Singular Vectors, and Values

    Directory of Open Access Journals (Sweden)

    IMRAN, M.

    2017-11-01

    Full Text Available A novel secure and robust image watermarking technique for color images is presented in this paper. Besides robustness and imperceptibility (which are the most important requisites of any watermarking scheme, there are two other challenges a good watermarking scheme must meet: security and capacity. Therefore, in devising the presented scheme, special consideration is also given to above-mentioned requirements. In order to do so, principal component analysis is involved to enhance imperceptibility and the unique utilization of singular value decomposition is done to achieve better performance in regard to capacity and robustness. Finally, a novel method is proposed to select constituents of an image for watermark embedding, which further improves the security. As a consequence, four essential requisites of a good watermarking scheme are achieved as visible from experimental results. To measure the behavior of presented watermarking scheme, a number of experiments were conducted by utilizing several color images as host images and as watermarks. The presented technique is compared with the latest available watermarking techniques and attained better results than them.

  14. Existence of solutions to nonlocal and singular elliptic problems via Galerkin method

    Directory of Open Access Journals (Sweden)

    Francisco Julio S. A. Correa

    2004-02-01

    Full Text Available We study the existence of solutions to the nonlocal elliptic equation $$ -M(|u|^2Delta u = f(x,u $$ with zero Dirichlet boundary conditions on a bounded and smooth domain of $mathbb{R}^n$. We consider the $M$-linear case with $fin H^{-1}(Omega $, and the sub-linear case $f(u=u^{alpha}$, $0method for both cases when $M$ continuous and when $M$ is discontinuous.

  15. Second-order singular pertubative theory for gravitational lenses

    Science.gov (United States)

    Alard, C.

    2018-03-01

    The extension of the singular perturbative approach to the second order is presented in this paper. The general expansion to the second order is derived. The second-order expansion is considered as a small correction to the first-order expansion. Using this approach, it is demonstrated that in practice the second-order expansion is reducible to a first order expansion via a re-definition of the first-order pertubative fields. Even if in usual applications the second-order correction is small the reducibility of the second-order expansion to the first-order expansion indicates a potential degeneracy issue. In general, this degeneracy is hard to break. A useful and simple second-order approximation is the thin source approximation, which offers a direct estimation of the correction. The practical application of the corrections derived in this paper is illustrated by using an elliptical NFW lens model. The second-order pertubative expansion provides a noticeable improvement, even for the simplest case of thin source approximation. To conclude, it is clear that for accurate modelization of gravitational lenses using the perturbative method the second-order perturbative expansion should be considered. In particular, an evaluation of the degeneracy due to the second-order term should be performed, for which the thin source approximation is particularly useful.

  16. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Tandogan Kunkel, Asli [Old Dominion Univ., Norfolk, VA (United States)

    2014-08-01

    Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.

  17. Infinitesimal Structure of Singularities

    Directory of Open Access Journals (Sweden)

    Michael Heller

    2017-02-01

    Full Text Available Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals and of logic (to the intuitionistic logic. Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.

  18. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  19. Derivation of quantum Chernoff metric with perturbation expansion method

    Science.gov (United States)

    Zhong, Wei; Ma, Jian; Liu, Jing; Wang, Xiao-Guang

    2014-09-01

    We investigate a measure of distinguishability defined by the quantum Chernoff bound, which naturally induces the quantum Chernoff metric over a manifold of quantum states. Based on a quantum statistical model, we alternatively derive this metric by means of perturbation expansion. Moreover, we show that the quantum Chernoff metric coincides with the infinitesimal form of the quantum Hellinger distance, and reduces to the variant version of the quantum Fisher information for the single-parameter case. We also give the exact form of the quantum Chernoff metric for a qubit system containing a single parameter.

  20. Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method.

    Science.gov (United States)

    He, Yue Jing

    2013-06-17

    As compared to the well-known traditional couple-mode theory, in this study, we proposed a visual, graphical, and simple numerical simulation method for long-period fiber-grating surface-plasmon-resonance (LPG-SPR) sensors. This method combines the finite element method and the eigenmode expansion method. The finite element method was used to solve for the guided modes in fiber structures, including the surface plasmon wave. The eigenmode expansion method was used to calculate the power transfer phenomenon of the guided modes in the fiber structure. This study provides a detailed explanation of the key reasons why the periodic structure of long-period fiber-grating (LPG) can achieve significantly superior results for our method compared to those obtained using other numerical methods, such as the finite-difference time-domain and beam propagation methods. All existing numerical simulation methods focus on large-sized periodic components; only the method established in this study has 3D design and analysis capabilities. In addition, unlike the offset phenomenon of the design wavelength λ(D) and the maximum transmission wavelength λ(max) of the traditional coupled-mode theory, the method established in this study has rapid scanning LPG period capabilities. Therefore, during the initial component design process, only the operating wavelength must be set to ensure that the maximum transmission wavelength of the final product is accurate to the original setup, for example, λ = 1550 nm. We verified that the LPG-SPR sensor designed in this study provides a resolution of ~-45 dB and a sensitivity of ~27000 nm/RIU (refractive index unit). The objective of this study was to use the combination of these two numerical simulation methods in conjunction with a rigorous, simple, and complete design process to provide a graphical and simplistic simulation technique that reduces the learning time and professional threshold required for research and applications of LPG

  1. Efficient method for AC transmission network expansion planning

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M. [Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman (Iran); Faculdade de Engenharia de Ilha Solteira, UNESP - Univ Estadual Paulista, Departamento de Engenharia Eletrica, Ilha Solteira, SP (Brazil); Rashidinejad, M. [Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman (Iran); Carreno, E.M. [Centro de Engenharia, Universidade Estadual do Oeste de Parana, UNIOESTE, Foz do Iguacu - PR (Brazil); Romero, R. [Faculdade de Engenharia de Ilha Solteira, UNESP - Univ Estadual Paulista, Departamento de Engenharia Eletrica, Ilha Solteira, SP (Brazil)

    2010-09-15

    A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RGA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (author)

  2. A local expansion method applied to fast plasma boundary reconstruction for EAST

    Science.gov (United States)

    Guo, Yong; Xiao, Bingjia; Luo, Zhengping

    2011-10-01

    A fast plasma boundary reconstruction technique based on a local expansion method is designed for EAST. It represents the poloidal flux distribution in the vacuum region by a limited number of expansions. The plasma boundary reconstructed by the local expansion method is consistent with EFIT/RT-EFIT results for an arbitrary plasma configuration. On a Linux server with Intel (R) Xeon (TM) CPU 3.2 GHz, the method completes one plasma boundary reconstruction in about 150 µs. This technique is sufficiently reliable and fast for real-time shape control.

  3. Development of a code in three-dimensional cylindrical geometry based on analytic function expansion nodal (AFEN) method

    International Nuclear Information System (INIS)

    Lee, Joo Hee

    2006-02-01

    There is growing interest in developing pebble bed reactors (PBRs) as a candidate of very high temperature gas-cooled reactors (VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. But for realistic analysis of PBRs, there is strong desire of making available high fidelity nodal codes in three-dimensional (r,θ,z) cylindrical geometry. Recently, the Analytic Function Expansion Nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry was extended to two-group (r,z) cylindrical geometry, and gave very accurate results. In this thesis, we develop a method for the full three-dimensional cylindrical (r,θ,z) geometry and implement the method into a code named TOPS. The AFEN methodology in this geometry as in hexagonal geometry is 'robus' (e.g., no occurrence of singularity), due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. We use 13 nodal unknowns in an outer node and 7 nodal unknowns in an innermost node. The general solution of the node can be expressed in terms of that nodal unknowns, and can be updated using the nodal balance equation and the current continuity condition. For more realistic analysis of PBRs, we implemented em Marshak boundary condition to treat the incoming current zero boundary condition and the partial current translation (PCT) method to treat voids in the core. The TOPS code was verified in the various numerical tests derived from Dodds problem and PBMR-400 benchmark problem. The results of the TOPS code show high accuracy and fast computing time than the VENTURE code that is based on finite difference method (FDM)

  4. On the comparsion of the Spherical Wave Expansion-to-Plane Wave Expansion and the Sources Reconstruction Method for Antenna Diagnostics

    DEFF Research Database (Denmark)

    Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando

    2008-01-01

    A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), bas...

  5. Singularity detection in FOG-based pavement data by wavelet transform

    Science.gov (United States)

    Yang, Dandan; Wang, Lixin; Hu, Wenbin; Zhang, Zhen; Fu, Jinghua; Gan, Weibing

    2017-04-01

    The angular velocity data of Fiber-Optic Gyro (FOG) has been analyzed to locate the singularity by the wavelet transform (WT) method. By using WT analysis method to decompose and reconstruct the signal of pavement data collecting by the FOG, the different types of pavement singularities can be extracted. The experiments are conducted on different road surfaces. The experimental results show that the locations of bumps and expansion joints have been obtained, with a relative precision of 0.5 m and an absolute precision of 2 m over 2.4 km. The characteristic of the pavement roughness can also be identified.

  6. A comparison between nodal expansion method and nodal Green's function method - 038

    International Nuclear Information System (INIS)

    Wang, Deng-ying; Li Fu; Hu, Yong-ming; Guo, Jiong; Wei, Jin-Feng; Zhang, Jing-yu

    2010-01-01

    This paper presents a unified formulation of the Nodal Expansion Method (NEM) and Nodal Green's Function Method (NGFM) in Cartesian geometry although there is a significant difference between them. Both methods employ the same inner iterative scheme namely Row-Column iteration strategy to solve the interface current equation. It's generally believed that the NEM is somewhat faster than the NGFM. However, calculations of IAEA3D benchmark problem carried out by newly implemented NGFM and NEM show that not only the accuracy but also the performance of the NGFM are better than that of the NEM in Cartesian geometry. Both the NGFM and NEM are extended to solve neutron diffusion equation in cylindrical geometry. Since the traditional transverse integration fails to produce a 1-D transverse integrated equation in Θ-direction, a simple approach is introduced to obtain this equation in Θ-direction. The 1-D transverse integrated equations in r-direction are solved by the NEM using the special polynomials and by the NGFM using Green's function based on modified Bessel function respectively. The same iterative scheme employed for Cartesian geometry can be readily applied to the cylindrical geometry case. The Cylindrical Nodal Expansion Method (CNEM) and the Cylindrical Nodal Green's Function Method (CNGFM) codes are developed and applied to Dodd's r-z benchmark problem. The results show that both the CNEM and CNGFM are capable of very high performance and accuracy in cylindrical geometry. Meanwhile this paper demonstrates that nodal methods have prominent advantages over traditional finite difference method in both Cartesian geometry and cylindrical geometry. (authors)

  7. Dynkin graphs and quadrilateral singularities

    CERN Document Server

    Urabe, Tohsuke

    1993-01-01

    The study of hypersurface quadrilateral singularities can be reduced to the study of elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0), and therefore these notes consider, besides the topics of the title, such K3 surfaces too. The combinations of rational double points that can occur on fibers in the semi-universal deformations of quadrilateral singularities are examined, to show that the possible combinations can be described by a certain law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0) can be described by a certain law using classical Dynkin graphs appearing in the theory of semi-simple Lie groups. Further, a similar description for thecombination of singularities on plane sextic curves is given. Standard knowledge of algebraic geometry at the level of graduate students is expected. A new method based on graphs wil...

  8. Sumudu transform series expansion method for solving the local fractional Laplace equation in fractal thermal problems

    Directory of Open Access Journals (Sweden)

    Guo Zheng-Hong

    2016-01-01

    Full Text Available In this article, the Sumudu transform series expansion method is used to handle the local fractional Laplace equation arising in the steady fractal heat-transfer problem via local fractional calculus.

  9. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)

    1995-09-01

    A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.

  10. Modeling laser beam diffraction and propagation by the mode-expansion method.

    Science.gov (United States)

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.

  11. A reduced polynomial chaos expansion method for the stochastic ...

    Indian Academy of Sciences (India)

    The stochastic finite element analysis of elliptic type partial differential equations is considered. A reduced method of the spectral stochastic finite element method using polynomial chaos is proposed. The method is based on the spectral decomposition of the deterministic system matrix. The reduction is achieved by ...

  12. expansion method and travelling wave solutions for the perturbed ...

    Indian Academy of Sciences (India)

    method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with. Kerr law nonlinearity with arbitrary ...... 2013M532169 and Hunan Province College Students Research. Learning and Innovation Experimental Program (People's Republic of China). References. [1] Z Y Zhang, Turk. J. Phys.

  13. Dissipative control for singular impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Li Yang

    2012-04-01

    Full Text Available The aim of this work is to study the dissipative control problem for singular impulsive dynamical systems. We start by introducing the impulse to the singular systems, and give the definition of the dissipation for singular impulsive dynamical systems. Then we discuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient and necessary conditions for dissipation of these systems by solving some linear matrix inequalities (LMIs. By using this method, we design a state feedback controller to make the closed-loop system dissipative. At last, we testify the feasibility of the method by a numerical example.

  14. Adaptive Laguerre-Gaussian variant of the Gaussian beam expansion method.

    Science.gov (United States)

    Cagniot, Emmanuel; Fromager, Michael; Ait-Ameur, Kamel

    2009-11-01

    A variant of the Gaussian beam expansion method consists in expanding the Bessel function J0 appearing in the Fresnel-Kirchhoff integral into a finite sum of complex Gaussian functions to derive an analytical expression for a Laguerre-Gaussian beam diffracted through a hard-edge aperture. However, the validity range of the approximation depends on the number of expansion coefficients that are obtained by optimization-computation directly. We propose another solution consisting in expanding J0 onto a set of collimated Laguerre-Gaussian functions whose waist depends on their number and then, depending on its argument, predicting the suitable number of expansion functions to calculate the integral recursively.

  15. Fundamental solutions of singular SPDEs

    Energy Technology Data Exchange (ETDEWEB)

    Selesi, Dora, E-mail: dora@dmi.uns.ac.rs [Department of Mathematics and Informatics, University of Novi Sad (Serbia)

    2011-07-15

    Highlights: > Fundamental solutions of linear SPDEs are constructed. > Wick-convolution product is introduced for the first time. > Fourier transformation maps Wick-convolution into Wick product. > Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. > Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P({omega}, D) Lozenge u(x, {omega}) = A(x, {omega}) are considered, where A is a singular generalized stochastic process and P({omega}, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A Lozenge I{sup Lozenge (-1)}, where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  16. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  17. Quality of potential harmonics expansion method for dilute Bose ...

    Indian Academy of Sciences (India)

    method is shown to be very good in the low density limit which is necessary for achieving. Bose–Einstein condensation ... the effective interaction to any desired value simply by tuning the external field. It implies the possibility of BEC ... we investigate the condition for the applicability of our new approach. Since exact. HHEM ...

  18. A reduced polynomial chaos expansion method for the stochastic ...

    Indian Academy of Sciences (India)

    ... numerical examples, namely, bending of a stochastic beam, flow through porous media with stochastic permeability and transverse bending of a plate with stochastic properties. The results obtained from the proposed method are compared with classical polynomial chaos and direct Monte Carlo simulation results.

  19. A reduced polynomial chaos expansion method for the stochastic ...

    Indian Academy of Sciences (India)

    Among the various techniques to solve stochastic partial differential equations, spectral ... problem. The method proposed in this paper is based on a space reduction of the original sys- tem combined with a polynomial chaos approach. In section 2 a brief ...... The 2D covariance function is obtained by multiplying a 1D.

  20. A Schwarz alternating procedure for singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Garbey, M. [Universit Claude Bernard Lyon, Villeurbanne (France); Kaper, H.G. [Argonne National Lab., IL (United States)

    1994-12-31

    The authors show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and transition layers. They give sharp estimates for the optimal position of the domain boundaries and present convergence rates of the algorithm for various second-order singular perturbation problems. The splitting of the operator is domain-dependent, and the iterative solution of each subproblem is based on a modified asymptotic expansion of the operator. They show that this asymptotic-induced method leads to a family of efficient massively parallel algorithms and report on implementation results for a turning-point problem and a combustion problem.

  1. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  2. Brane singularities and their avoidance

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia

    2010-01-01

    The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analog of perfect fluid with an arbitrary equation of state P = γρ between the 'pressure' P and the 'density' ρ, our results depend crucially on the constant fluid parameter γ. (i) For γ > -1/2, the flat brane solution suffers from a collapse singularity at a finite distance that disappears in the curved case. (ii) For γ < -1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1 < γ ≤ -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.

  3. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  4. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    Science.gov (United States)

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  5. Multiple (G /G)-expansion method and its applications to nonlinear ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, an extended multiple (G /G)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equa- tion, the generalized shallow ...

  6. Multiple (G/G)-expansion method and its applications to nonlinear ...

    Indian Academy of Sciences (India)

    In this paper, an extended multiple (′/)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equation, the generalized shallow water ...

  7. Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2013-01-01

    Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.

  8. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  9. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  10. Transmission expansion in Argentina 6: Distribution companies, regulation and the Public Contest method

    Energy Technology Data Exchange (ETDEWEB)

    Littlechild, Stephen C. [Judge Business School, Trumpington Street, Cambridge CB2 1AG (United Kingdom); Skerk, Carlos J. [Mercados Energeticos, Buenos Aires (Argentina)

    2008-07-15

    Argentina's 1992 electricity reform introduced the Public Contest method, which made major expansions of the transmission system the responsibility of users rather than the transmission company or regulatory body. It was sometimes said that the incentives and penalties on distribution companies were inadequate, and that they did not support transmission expansions to improve quality of service, notably a reserve transformer in the tourist town of Bariloche. We note that, in practice, the incentives and penalties varied significantly between Federal and provincial jurisdictions. Although the penalties were scheduled to increase over time at the Federal level, the Federal regulator ENRE reduced the severity of their enforcement, thereby reducing the incentive to support expansions. In practice, however, distribution companies supported all but 2 of 14 expansions proposed by the transmission concessionaire. In both these exceptional cases the provincial regulators opposed the expansion. At Bariloche, the provincial regulators argued that there were better ways of providing the quality of service, and refused to allow the distribution companies to pass the costs to customers. Later, provincial regulators began to introduce improved arrangements for enabling distribution companies to pay for transmission expansions. (author)

  11. Conical flow near singular rays. [shock generation in ideal gas

    Science.gov (United States)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  12. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  13. Geodesic fields with singularities

    International Nuclear Information System (INIS)

    Kafker, A.H.

    1979-01-01

    The question considered is whether or not a Riemannian metric can be found to make a given curve field on a closed surface into geodesics. Allowing singularities removes the restriction to Euler characteristic zero. The main results are the following: only two types of isolated singularities can occur in a geodesic field on a surface. No geodsic fields exist on a surface with Euler characteristic less than zero. If the Euler characteristic is zero, such a geodesic field can have only removable singularities. Only a limited number of geodesic fields exist on S 2 and RP 2 . A closed geodesic (perhaps made from several curves and singularities) always appears in such a field

  14. Biclustering via Sparse Singular Value Decomposition

    KAUST Repository

    Lee, Mihee

    2010-02-16

    Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.

  15. Observational constraints on cosmological future singularities

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)

    2016-11-15

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)

  16. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

    Directory of Open Access Journals (Sweden)

    SURE KÖME

    2014-12-01

    Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

  17. The (G /G )-expansion method for a discrete nonlinear Schrödinger ...

    Indian Academy of Sciences (India)

    Abstract. An improved algorithm is devised for using the (G /G)-expansion method to solve nonlinear differential-difference equations. With the aid of symbolic computation, we choose a discrete nonlinear Schrödinger equation to illustrate the validity and advan- tages of the improved algorithm. As a result, hyperbolic ...

  18. Soliton solutions of coupled systems by improved (G'/G)-expansion method

    Science.gov (United States)

    Mohyud-Din, Syed Tauseef; Shakeel, Muhammad

    2013-10-01

    The paper witnesses the extension of improved (G'/G)-expansion method to generate traveling wave solutions of coupled systems. The proposed algorithm is extremely effective and is tested on two very important systems (namely coupled Higgs and Maccari equations) in mathematical physics. Numerical results reflect complete compatibility of suggested scheme.

  19. Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available We use the local fractional series expansion method to solve the Klein-Gordon equations on Cantor sets within the local fractional derivatives. The analytical solutions within the nondifferential terms are discussed. The obtained results show the simplicity and efficiency of the present technique with application to the problems of the liner differential equations on Cantor sets.

  20. Plume expansion of a laser-induced plasma studied with the particle-in-cell method

    DEFF Research Database (Denmark)

    Ellegaard, Ole; Nedela, T; Urbassek, H

    2002-01-01

     The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall...

  1. Hit expansion approaches using multiple similarity methods and virtualized query structures.

    Science.gov (United States)

    Bergner, Andreas; Parel, Serge P

    2013-05-24

    Ligand-based virtual screening and computational hit expansion methods undoubtedly facilitate the finding of novel active chemical entities, utilizing already existing knowledge of active compounds. It has been demonstrated that the parallel execution of complementary similarity search methods enhances the performance of such virtual screening campaigns. In this article, we examine the use of virtualized template (query, seed) structures as an extension to common search methods, such as fingerprint and pharmacophore graph-based similarity searches. We demonstrate that template virtualization by bioisosteric enumeration and other rule-based methods, in combination with standard similarity search techniques, represents a powerful approach for hit expansion following high-throughput screening campaigns. The reliability of the methods is demonstrated by four different test data sets representing different target classes and two hit finding case studies on the epigenetic targets G9a and LSD1.

  2. Isotopy of Morin singularities

    OpenAIRE

    Saji, Kentaro

    2015-01-01

    We define an equivalence relation called A-isotopy between finitely determined map-germs, which is a strengthened version of A-equivalence. We consider the number of A-isotopy classes of equidimensional Morin singularities, and some other well-known low-dimensional singularities. We also give an application to stable perturbations of simple equi-dimensional map-germs.

  3. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method.

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  4. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-03-01

    Full Text Available Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS. The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  5. Introduction to singularities

    CERN Document Server

    Ishii, Shihoko

    2014-01-01

    This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...

  6. Expansion methods for finding nonlinear stability domains of nuclear reactor models

    International Nuclear Information System (INIS)

    Yang, C.Y.; Cho, N.Z.

    1992-01-01

    Two constructive methods for estimating asymptotic stability domains of nonlinear reactor models are described in this paper: Method A based on expansion of a Lyapunov function and Method B based on expansion of any positive definite function. The methods are established on Lyapunov's stability definitions. Method A provides a sequence of stability regions that eventually approaches the exact stability domain, but requires many expansions to obtain the entire stability region because the starting Lyapunov function usually corresponds to a small stability region and because most reactor systems are stiff. Method B requires only a positive definite function and thus it is easy to come up with a starting region. From a large starting region, the entire stability region is estimated effectively after sufficient iterations. It is particularly useful for reactor systems that are stiff. These methods are applied to several nonlinear reactor models known in the literature: one-temperature feedback model, two-temperature feedback model, and xenon dynamics model, and the results are compared. (author)

  7. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...

  8. A new Riccati equation rational expansion method and its application to (2 + 1)-dimensional Burgers equation

    International Nuclear Information System (INIS)

    Wang Qi; Chen Yong; Zhang Hongqing

    2005-01-01

    In this paper, we present a new Riccati equation rational expansion method to uniformly construct a series of exact solutions for nonlinear evolution equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. The solutions obtained in this paper include rational triangular periodic wave solutions, rational solitary wave solutions and rational wave solutions. The efficiency of the method can be demonstrated on (2 + 1)-dimensional Burgers equation

  9. Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations

    International Nuclear Information System (INIS)

    Chen Yong; Wang Qi; Li Biao

    2005-01-01

    Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally

  10. Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.

  11. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    International Nuclear Information System (INIS)

    Yang, W.; Wu, H.; Cao, L.

    2012-01-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  12. Stability analysis of CMFD acceleration for the wavelet expansion method of neutron transport equation

    International Nuclear Information System (INIS)

    Zheng Youqi; Wu Hongchun; Cao Liangzhi

    2013-01-01

    This paper describes the stability analysis for the coarse mesh finite difference (CMFD) acceleration used in the wavelet expansion method. The nonlinear CMFD acceleration scheme is transformed by linearization and the Fourier ansatz is introduced into the linearized formulae. The spectral radius is defined as the stability criterion, which is the least upper bound (LUB) of the largest eigenvalue of Fourier analysis matrix. The stability analysis considers the effect of mesh size (spectral length), coarse mesh division and scattering ratio. The results show that for the wavelet expansion method, the CMFD acceleration is conditionally stable. The small size of fine mesh brings stability and fast convergent. With the increase of the mesh size, the stability becomes worse. The scattering ratio does not impact the stability obviously. It makes the CMFD acceleration highly efficient in the strong scattering case. The results of Fourier analysis are verified by the numerical tests based on a homogeneous slab problem.

  13. The verification of the Taylor-expansion moment method in solving aerosol breakage

    Directory of Open Access Journals (Sweden)

    Yu Ming-Zhou

    2012-01-01

    Full Text Available The combination of the method of moment, characterizing the particle population balance, and the computational fluid dynamics has been an emerging research issue in the studies on the aerosol science and on the multiphase flow science. The difficulty of solving the moment equation arises mainly from the closure of some fractal moment variables which appears in the transform from the non-linear integral-differential population balance equation to the moment equations. Within the Taylor-expansion moment method, the breakage-dominated Taylor-expansion moment equation is first derived here when the symmetric fragmentation mechanism is involved. Due to the high efficiency and the high precision, this proposed moment model is expected to become an important tool for solving population balance equations.

  14. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  15. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  16. Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method

    International Nuclear Information System (INIS)

    Saddique, I.; Nazar, K.

    2009-01-01

    In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)

  17. Thermodynamics of non-ideal QGP using Mayers cluster expansion method

    International Nuclear Information System (INIS)

    Prasanth, J.P; Simji, P.; Bannur, Vishnu M.

    2013-01-01

    The Quark gluon plasma (QGP) is the state in which the individual hadrons dissolve into a system of free (or almost free) quarks and gluons in strongly compressed system at high temperature. The present paper aims to calculate the critical temperature at which a non-ideal three quark plasma condenses into droplet of three quarks (i.e., into a liquid of baryons) using Mayers cluster expansion method

  18. Many-body expansion of the Fock matrix in the fragment molecular orbital method

    Science.gov (United States)

    Fedorov, Dmitri G.; Kitaura, Kazuo

    2017-09-01

    A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.

  19. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  20. An incident flux expansion transport theory method suitable for coupling to diffusion theory methods in hexagonal geometry

    International Nuclear Information System (INIS)

    Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang

    2013-01-01

    Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s

  1. Application of the Matrix Pencil Method for Estimating the SEM (Singularity Expansion Method) Poles of Source Free Transient Responses From Multiple Look Directions

    National Research Council Canada - National Science Library

    Sarkar, Tapan

    2000-01-01

    .... The SEM poles are independent of the angle at which the transient response is recorded. The only difference between the various waveforms are that the residues at the various poles are of different magnitudes...

  2. Numerical Approaches to Spacetime Singularities

    Directory of Open Access Journals (Sweden)

    Beverly K. Berger

    1998-05-01

    Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.

  3. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  4. On-line reconstruction of in-core power distribution by harmonics expansion method

    International Nuclear Information System (INIS)

    Wang Changhui; Wu Hongchun; Cao Liangzhi; Yang Ping

    2011-01-01

    Highlights: → A harmonics expansion method for the on-line in-core power reconstruction is proposed. → A harmonics data library is pre-generated off-line and a code named COMS is developed. → Numerical results show that the maximum relative error of the reconstruction is less than 5.5%. → This method has a high computational speed compared to traditional methods. - Abstract: Fixed in-core detectors are most suitable in real-time response to in-core power distributions in pressurized water reactors (PWRs). In this paper, a harmonics expansion method is used to reconstruct the in-core power distribution of a PWR on-line. In this method, the in-core power distribution is expanded by the harmonics of one reference case. The expansion coefficients are calculated using signals provided by fixed in-core detectors. To conserve computing time and improve reconstruction precision, a harmonics data library containing the harmonics of different reference cases is constructed. Upon reconstruction of the in-core power distribution on-line, the two closest reference cases are searched from the harmonics data library to produce expanded harmonics by interpolation. The Unit 1 reactor of DayaBay Nuclear Power Plant (DayaBay NPP) in China is considered for verification. The maximum relative error between the measurement and reconstruction results is less than 5.5%, and the computing time is about 0.53 s for a single reconstruction, indicating that this method is suitable for the on-line monitoring of PWRs.

  5. Singularities formation, structure, and propagation

    CERN Document Server

    Eggers, J

    2015-01-01

    Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.

  6. Historical developments in singular perturbations

    CERN Document Server

    O'Malley, Robert E

    2014-01-01

    This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a  number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley  has written a number of books on singular perturbations.  This book has developed from many of his works in the field of perturbation theory.

  7. The G‧G-expansion method for the nonlinear lattice equations

    Science.gov (United States)

    Ayhan, Burcu; Bekir, Ahmet

    2012-09-01

    In this paper, we extended the {G'}/{G}-expansion method to three well-known nonlinear lattice equations. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. This method could give many kinds of exact solutions including soliton solutions expressed by hyperbolic functions and periodic solutions expressed by trigonometric functions in a uniform way if solutions of these kinds exist. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.

  8. Geometric Singularities of the Stokes Problem

    Directory of Open Access Journals (Sweden)

    Nejmeddine Chorfi

    2014-01-01

    Full Text Available When the domain is a polygon of ℝ2, the solution of a partial differential equation is written as a sum of a regular part and a linear combination of singular functions. The purpose of this paper is to present explicitly the singular functions of Stokes problem. We prove the Kondratiev method in the case of the crack. We finish by giving some regularity results.

  9. Singularity analysis, Hadamard products, and tree recurrences

    Science.gov (United States)

    Fill, James Allen; Flajolet, Philippe; Kapur, Nevin

    2005-02-01

    We present a toolbox for extracting asymptotic information on the coefficients of combinatorial generating functions. This toolbox notably includes a treatment of the effect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequence, it becomes possible to unify the analysis of a number of divide-and-conquer algorithms, or equivalently random tree models, including several classical methods for sorting, searching, and dynamically managing equivalence relations.

  10. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Solution of the agglomerate Brownian coagulation using Taylor-expansion moment method.

    Science.gov (United States)

    Yu, Mingzhou; Lin, Jianzhong

    2009-08-01

    The newly proposed Taylor-expansion moment method (TEMOM) is extended to solve agglomerate coagulation in the free-molecule regime and in the continuum regime, respectively. The moment equations with respect to fractal dimension are derived based on 3rd Taylor-series expansion technique. The validation of this method is done by comparing its result with the published data at each limited size regime. By comparing with analytical method, sectional method (SM) and quadrature method of moments (QMOMs), this new approach is shown to produce the most efficiency without losing much accuracy. At each limited size regime, the effect of fractal dimension on the decay of particle number and particle size growth is mainly investigated, and especially in the continuum regime the relation of mean diameters of size distributions with different fractal dimensions is first proposed. The agglomerate size distribution is found to be sensitive to the fractal dimension and the initial geometric mean deviation before the self-preserving size distribution is achieved in the continuum regime.

  12. A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation.

    Science.gov (United States)

    Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A

    The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.

  13. Implementation of Kalman filter algorithm on models reduced using singular pertubation approximation method and its application to measurement of water level

    Science.gov (United States)

    Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky

    2018-03-01

    The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.

  14. Topological Signals of Singularities in Ricci Flow

    Directory of Open Access Journals (Sweden)

    Paul M. Alsing

    2017-08-01

    Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.

  15. Singularities in FLRW spacetimes

    Science.gov (United States)

    het Lam, Huibert; Prokopec, Tomislav

    2017-12-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.

  16. Methods of abdominal wall expansion for repair of incisional herniae: a systematic review.

    Science.gov (United States)

    Alam, N N; Narang, S K; Pathak, S; Daniels, I R; Smart, N J

    2016-04-01

    To systematically review the available literature regarding methods for abdominal wall expansion and compare the outcome of primary fascial closure rates. A systematic search of Pubmed and Embase databases was conducted using the search terms "Abdominal wall hernia", "ventral hernia", "midline hernia", "Botulinum toxin", "botox", "dysport", "progressive preoperative pneumoperitoneum", and "tissue expanders". Study quality was assessed using the Methodological Index for Non-Randomised Studies. 21 of the 105 studies identified met the inclusion criteria. Progressive preoperative pneumoperitoneum (PPP) was performed in 269 patients across 15 studies with primary fascial closure being achieved in 226 (84%). 16 patients had a recurrence (7.2%) and the complication rate was 12% with 2 reported mortalities. There were 4 studies with 14 patients in total undergoing abdominal wall expansion using tissue expanders with a fascial closure rate of 92.9% (n = 13). A recurrence rate of 10.0% (n = 1) was reported with 1 complication and no mortalities. Follow up ranged from 3 to 36 months across the studies. There were 2 studies reporting the use of botulinum toxin with 29 patients in total. A primary fascial closure rate of 100% (n = 29) was demonstrated although a combination of techniques including component separation and Rives-Stoppa repair were used. There were no reported complications related to the use of Botulinum Toxin. However, the short-term follow up in many cases and the lack of routine radiological assessment for recurrence suggests that the recurrence rate has been underestimated. PPP, tissue expanders and Botulinum toxin are safe and feasible methods for abdominal wall expansion prior to incisional hernia repair. In combination with existing techniques for repair, these methods may help provide the crucial extra tissue mobility required to achieve primary closure.

  17. An adaptive mesh refinement approach for average current nodal expansion method in 2-D rectangular geometry

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported

  18. A refinement of the analytic function expansion nodal method with interface flux moments

    International Nuclear Information System (INIS)

    Woo, S. W.; Cho, N. Z.; Noh, J. M.

    1999-01-01

    A refinement of the AFEN method has been performed by increasing the number of flux expansion terms in the manner that the original basis functions are combined with the transverse-direction linear functions. In this manner, the added terms can be kept to still satisfy the diffusion equation. The additional constraints required are provided by the interface flux moments defined as the weighted-average fluxes at the interface. The refined AFEN method was tested against the OECD-L336 benchmark problem. The results show that the method improves the accuracy in predicting the flux distribution and that it can replace the corner-point fluxes with the interface moments without accuracy degradation. Excluding the corner-point flux increases the flexibility in implementing this method into the existing codes that do not have the corner-point flux scheme and may make it fit better for the non-linear scheme based on two-node problems

  19. svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification

    Directory of Open Access Journals (Sweden)

    Zhu Dongxiao

    2010-06-01

    Full Text Available Abstract Background Comparative analysis of gene expression profiling of multiple biological categories, such as different species of organisms or different kinds of tissue, promises to enhance the fundamental understanding of the universality as well as the specialization of mechanisms and related biological themes. Grouping genes with a similar expression pattern or exhibiting co-expression together is a starting point in understanding and analyzing gene expression data. In recent literature, gene module level analysis is advocated in order to understand biological network design and system behaviors in disease and life processes; however, practical difficulties often lie in the implementation of existing methods. Results Using the singular value decomposition (SVD technique, we developed a new computational tool, named svdPPCS (SVD-based Pattern Pairing and Chart Splitting, to identify conserved and divergent co-expression modules of two sets of microarray experiments. In the proposed methods, gene modules are identified by splitting the two-way chart coordinated with a pair of left singular vectors factorized from the gene expression matrices of the two biological categories. Importantly, the cutoffs are determined by a data-driven algorithm using the well-defined statistic, SVD-p. The implementation was illustrated on two time series microarray data sets generated from the samples of accessory gland (ACG and malpighian tubule (MT tissues of the line W118 of M. drosophila. Two conserved modules and six divergent modules, each of which has a unique characteristic profile across tissue kinds and aging processes, were identified. The number of genes contained in these models ranged from five to a few hundred. Three to over a hundred GO terms were over-represented in individual modules with FDR Conclusions svdPPCS is a novel computational tool for the comparative analysis of transcriptional profiling. It especially fits the comparison of time

  20. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  1. Self-Consistency Method to Evaluate a Linear Expansion Thermal Coefficient of Composite with Dispersed Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available The rational use of composites as structural materials, while perceiving the thermal and mechanical loads, to a large extent determined by their thermoelastic properties. From the presented review of works devoted to the analysis of thermoelastic characteristics of composites, it follows that the problem of estimating these characteristics is important. Among the thermoelastic properties of composites occupies an important place its temperature coefficient of linear expansion.Along with fiber composites are widely used in the technique of dispersion hardening composites, in which the role of inclusions carry particles of high-strength and high-modulus materials, including nanostructured elements. Typically, the dispersed particles have similar dimensions in all directions, which allows the shape of the particles in the first approximation the ball.In an article for the composite with isotropic spherical inclusions of a plurality of different materials by the self-produced design formulas relating the temperature coefficient of linear expansion with volume concentration of inclusions and their thermoelastic characteristics, as well as the thermoelastic properties of the matrix of the composite. Feature of the method is the self-accountability thermomechanical interaction of a single inclusion or matrix particles with a homogeneous isotropic medium having the desired temperature coefficient of linear expansion. Averaging over the volume of the composite arising from such interaction perturbation strain and stress in the inclusions and the matrix particles and makes it possible to obtain such calculation formulas.For the validation of the results of calculations of the temperature coefficient of linear expansion of the composite of this type used two-sided estimates that are based on the dual variational formulation of linear thermoelasticity problem in an inhomogeneous solid containing two alternative functional (such as Lagrange and Castigliano

  2. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.

    2009-01-01

    We show that the wave equation solution using a conventional finite‐difference scheme, derived commonly by the Taylor series approach, can be derived directly from the rapid expansion method (REM). After some mathematical manipulation we consider an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second order time finite‐difference scheme that is frequently used in more conventional finite‐difference implementations. We then show that if we use more terms from the REM we can obtain a more accurate time integration of the wave field. Consequently, we have demonstrated that the REM is more accurate than the usual finite‐difference schemes and it provides a wave equation solution which allows us to march in large time steps without numerical dispersion and is numerically stable. We illustrate the method with post and pre stack migration results.

  3. A high-order immersed boundary discontinuous-Galerkin method for Poisson's equation with discontinuous coefficients and singular sources

    OpenAIRE

    Brandstetter, G; Govindjee, S

    2015-01-01

    © 2014 John Wiley & Sons, Ltd. We adopt a numerical method to solve Poisson's equation on a fixed grid with embedded boundary conditions, where we put a special focus on the accurate representation of the normal gradient on the boundary. The lack of accuracy in the gradient evaluation on the boundary is a common issue with low-order embedded boundary methods. Whereas a direct evaluation of the gradient is preferable, one typically uses post-processing techniques to improve the quality of th...

  4. Acoustic boundary element method formulation with treatment of nearly singular integrands by element subdivision

    DEFF Research Database (Denmark)

    Cutanda Henríquez, Vicente; Juhl, Peter Møller

    2008-01-01

    It is well known that the Boundary Element Method (BEM) in its standard version cannot readily handle situations where the calculation point is very close to a surface. These problems are found: i) when two boundary surfaces are very close together, such as in narrow gaps and thin bodies, and ii)...

  5. Laplace transform series expansion method for solving the local fractional heat-transfer equation defined on Cantor sets

    Directory of Open Access Journals (Sweden)

    Sun Huan

    2016-01-01

    Full Text Available In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.

  6. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    Science.gov (United States)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  7. Singularities in a Teacup

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good Mathematics from Bad Lenses. Rajaram Nityananda. General Article Volume 19 Issue 9 September 2014 pp 787-796. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Singularities in a Teacup

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good ... Author Affiliations. Rajaram Nityananda1. Azim Premji University, PES Institute of Technology Campus, Pixel Park, B Block, Electronics City, Hosur Road (Beside NICE Road) Bangalore – 560100 ...

  9. Singularities in a Teacup

    Indian Academy of Sciences (India)

    IAS Admin

    Standard presentations of optics concentrate on ideal systems made for imaging which bring all rays from a point ... One of the standard topics we study in school is the action of a spherical mirror. Figure 1 shows a set of ..... singularities of smooth maps, and the beauty of the mathematics needed to understand them, Arnold ...

  10. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...

  11. Singularities in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept

  12. Singularities in Free Surface Flows

    Science.gov (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  13. Application of the G'/G Expansion Method in Ultrashort Pulses in Nonlinear Optical Fibers

    Directory of Open Access Journals (Sweden)

    Jiang Xing-Fang

    2013-01-01

    Full Text Available With the increasing input power in optical fibers, the dispersion problem is becoming a severe restriction on wavelength division multiplexing (WDM. With the aid of solitons, in which the shape and speed can remain constant during propagation, it is expected that the transmission of nonlinear ultrashort pulses in optical fibers can effectively control the dispersion. The propagation of a nonlinear ultrashort laser pulse in an optical fiber, which fits the high-order nonlinear Schrödinger equation (NLSE, has been solved using the G'/G expansion method. Group velocity dispersion, self-phase modulation, the fourth-order dispersion, and the fifth-order nonlinearity of the high-order NLSE were taken into consideration. A series of solutions has been obtained such as the solitary wave solutions of kink, inverse kink, the tangent trigonometric function, and the cotangent trigonometric function. The results have shown that the G'/G expansion method is an effective way to obtain the exact solutions for the high-order NLSE, and it provides a theoretical basis for the transmission of ultrashort pulses in nonlinear optical fibers.

  14. δ-expansion method for nonlinear stochastic differential equations describing wave propagation in a random medium.

    Science.gov (United States)

    Van Gorder, Robert A

    2010-11-01

    We apply the δ-expansion method to nonlinear stochastic differential equations describing wave propagation in a random medium. In particular, we focus our attention on a model describing a nonlinear wave propagating in a turbulent atmosphere which has random variations in the refractive index (we take these variations to be stochastic). The method allows us to construct much more reasonable perturbation solutions with relatively few terms (compared to standard "small-parameter" perturbation methods) due to more accurate linearization used in constructing the initial approximation. We demonstrate that the method allows one to compute effective wave numbers more precisely than other methods applied to the problem in the literature. The method also picks up on the stochastic damping of the solutions quickly, holding all of the relevant data in the initial term. These properties allow for both a qualitative and a quantitative construction of physically meaningful solutions. In particular, we show that the method allows one to retain higher-order harmonics which are hard to capture with standard perturbation methods based on small parameters.

  15. A Modal Expansion Equilibrium Cycle Perturbation Method for Optimizing High Burnup Fast Reactors

    Science.gov (United States)

    Touran, Nicholas W.

    This dissertation develops a simulation tool capable of optimizing advanced nuclear reactors considering the multiobjective nature of their design. An Enhanced Equilibrium Cycle (EEC) method based on the classic equilibrium method is developed to evaluate the response of the equilibrium cycle to changes in the core design. Advances are made in the consideration of burnup-dependent cross sections and dynamic fuel performance (fission gas release, fuel growth, and bond squeeze-out) to allow accuracy in high-burnup reactors such as the Traveling Wave Reactor. EEC is accelerated for design changes near a reference state through a new modal expansion perturbation method that expands arbitrary flux perturbations on a basis of λ-eigenmodes. A code is developed to solve the 3-D, multigroup diffusion equation with an Arnoldi-based solver that determines hundreds of the reference flux harmonics and later uses these harmonics to determine expansion coefficients required to approximate the perturbed flux. The harmonics are only required for the reference state, and many substantial and localized perturbations from this state are shown to be well-approximated with efficient expressions after the reference calculation is performed. The modal expansion method is coupled to EEC to produce the later-in-time response of each design perturbation. Because the code determines the perturbed flux explicitly, a wide variety of core performance metrics may be monitored by working within a recently-developed data management system called the ARMI. Through ARMI, the response of each design perturbation may be evaluated not only for the flux and reactivity, but also for reactivity coefficients, thermal hydraulics parameters, economics, and transient performance. Considering the parameters available, an automated optimization framework is designed and implemented. A non-parametric surrogate model using the Alternating Conditional Expectation (ACE) algorithm is trained with many design

  16. Singularities: the Brieskorn anniversary volume

    National Research Council Canada - National Science Library

    Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M

    1998-01-01

    ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...

  17. Solving a coupled field problem by eigenmode expansion and finite element method

    Directory of Open Access Journals (Sweden)

    Bernd Baumann

    2007-09-01

    Full Text Available The propagation of sound in fluids is governed by a set of coupled partial differential equations supplemented by an appropriate equation of state. In many cases of practical importance one restricts attention to the case of ideal fluids with vanishing transport coefficients. Then, the differential equations decouple and sound propagation can be described by the wave equation. However, when loss mechanisms are important, this is in general not possible and the full set of equations has to be considered. For photoacoustic cells, an alternative procedure has been used for the calculation of the photoacoustic signal of cylinder shaped cells. The method is based on an expansion of the sound pressure in terms of eigenmodes and the incorporation of loss through quality factors of various physical origins. In this paper, we demonstrate that the method can successfully be applied to photoacoustic cells of unconventional geometry using finite element analysis.

  18. Towards automatic global error control: Computable weak error expansion for the tau-leap method

    KAUST Repository

    Karlsson, Peer Jesper

    2011-01-01

    This work develops novel error expansions with computable leading order terms for the global weak error in the tau-leap discretization of pure jump processes arising in kinetic Monte Carlo models. Accurate computable a posteriori error approximations are the basis for adaptive algorithms, a fundamental tool for numerical simulation of both deterministic and stochastic dynamical systems. These pure jump processes are simulated either by the tau-leap method, or by exact simulation, also referred to as dynamic Monte Carlo, the Gillespie Algorithm or the Stochastic Simulation Slgorithm. Two types of estimates are presented: an a priori estimate for the relative error that gives a comparison between the work for the two methods depending on the propensity regime, and an a posteriori estimate with computable leading order term. © de Gruyter 2011.

  19. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Young, D.A. [Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter. {copyright} {ital 1997} {ital The American Physical Society}

  20. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Science.gov (United States)

    Rogers, Forrest J.; Young, David A.

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.

  1. Efficient enforcement of far-field boundary conditions in the Transformed Field Expansions method

    Science.gov (United States)

    Nicholls, David P.

    2011-09-01

    The Method of Transformed Field Expansions (TFE) has been demonstrated to be a robust and highly accurate numerical scheme for simulating solutions of boundary value and free boundary problems from the sciences and engineering. As a Boundary Perturbation Method it builds highly accurate solutions based upon exact solutions in a simple, canonical, geometry and corrects these via Taylor series to fit the actual geometry at hand. The TFE method has significantly enhanced stability properties when compared with other Boundary Perturbation approaches, however, this comes at the cost of requiring a full volumetric discretization as opposed the surface formulation that other methods can realize. In this paper we outline two techniques for ameliorating this shortcoming, first by employing a Legendre Spectral Element Method to implement efficient, graded meshes, and second by utilizing an Artificial Boundary with a Transparent Boundary Condition placed quite close to the boundary of the domain. In this contribution we focus on the specific problem of simulating the Dirichlet-Neumann operator associated to Laplace's equation on a periodic cell (which arises in the water wave problem). While the details of our results are specific to this problem, the general conclusions are valid for the wider class of problems to which the TFE method can be applied. For each technique we discuss implementation details and display numerical results which support the conclusion that each of these techniques can greatly reduce the computational cost of using the TFE method.

  2. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  3. Holographic complexity and spacetime singularities

    International Nuclear Information System (INIS)

    Barbón, José L.F.; Rabinovici, Eliezer

    2016-01-01

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  4. The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions

    KAUST Repository

    Huang, Jianhua Z.

    2009-12-01

    Two-way functional data consist of a data matrix whose row and column domains are both structured, for example, temporally or spatially, as when the data are time series collected at different locations in space. We extend one-way functional principal component analysis (PCA) to two-way functional data by introducing regularization of both left and right singular vectors in the singular value decomposition (SVD) of the data matrix. We focus on a penalization approach and solve the nontrivial problem of constructing proper two-way penalties from oneway regression penalties. We introduce conditional cross-validated smoothing parameter selection whereby left-singular vectors are cross- validated conditional on right-singular vectors, and vice versa. The concept can be realized as part of an alternating optimization algorithm. In addition to the penalization approach, we briefly consider two-way regularization with basis expansion. The proposed methods are illustrated with one simulated and two real data examples. Supplemental materials available online show that several "natural" approaches to penalized SVDs are flawed and explain why so. © 2009 American Statistical Association.

  5. Computation of resistive instabilities by matched asymptotic expansions

    Science.gov (United States)

    Glasser, A. H.; Wang, Z. R.; Park, J.-K.

    2016-11-01

    We present a method for determining the linear resistive magnetohydrodynamic (MHD) stability of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner regions about singular layers where q =m /n , with m and n toroidal mode numbers, respectively, and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency, which are identical to the Euler-Lagrange equations for minimizing the potential energy δW. The solutions to these equations go to infinity at the singular surfaces. The inner regions satisfy the equations of motion of resistive MHD with a finite eigenvalue, resolving the singularity. Both outer and inner regions are solved numerically by newly developed singular Galerkin methods, using specialized basis functions. These solutions are matched asymptotically, providing a complex dispersion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry. The dispersion relation may have multiple complex unstable roots, which are found by advanced root-finding methods. These methods are much faster and more robust than the previous numerical methods. The new methods are applicable to more challenging high-pressure and strongly shaped plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear regime, where the outer and inner regions overlap, they are also much faster and more accurate than the straight-through methods, which treat the resistive MHD equations in the whole plasma volume.

  6. Exact traveling wave solutions to the Klein–Gordon equation using the novel (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2014-01-01

    Full Text Available The novel (G′/G-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein–Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G′/G-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs in applied mathematics, mathematical physics and engineering.

  7. Exact traveling wave solutions to the Klein-Gordon equation using the novel (G‧/G)-expansion method

    Science.gov (United States)

    Hafez, M. G.; Alam, Md. Nur; Akbar, M. Ali

    The novel (G‧/G)-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein-Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G‧/G)-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs) in applied mathematics, mathematical physics and engineering.

  8. Applications of the New Compound Riccati Equations Rational Expansion Method and Fan's Subequation Method for the Davey-Stewartson Equations

    Directory of Open Access Journals (Sweden)

    Zedan Hassan

    2010-01-01

    Full Text Available We used what we called extended Fan's sub-equation method and a new compound Riccati equations rational expansion method to construct the exact travelling wave solutions of the Davey-Stewartson (DS equations. The basic idea of the proposed extended Fan's subequation method is to take fulls advantage of the general elliptic equations, involving five parameters, which have many new solutions and whose degeneracies lead to special subequations involving three parameters like Riccati equation, first-kind elliptic equation, auxiliary ordinary equation and generalized Riccati equation. Many new exact solutions of the Davey-Stewartson (DS equations including more general soliton solutions, triangular solutions, and double-periodic solutions are constructed by symbolic computation.

  9. Applying the expansion method in hierarchical functions to the solution of Navier-Stokes equations for incompressible fluids

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane

    1999-01-01

    This work presents a novel numeric method, based on the finite element method, applied for the solution of the Navier-Stokes equations for incompressible fluids in two dimensions in laminar flow. The method is based on the expansion of the variables in almost hierarchical functions. The used expansion functions are based on Legendre polynomials, adjusted in the rectangular elements in a such a way that corner, side and area functions are defined. The order of the expansion functions associated with the sides and with the area of the elements can be adjusted to the necessary or desired degree. This novel numeric method is denominated by Hierarchical Expansion Method. In order to validate the proposed numeric method three well-known problems of the literature in two dimensions are analyzed. The results show the method capacity in supplying precise results. From the results obtained in this thesis it is possible to conclude that the hierarchical expansion method can be applied successfully for the solution of fluid dynamic problems that involve incompressible fluids. (author)

  10. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  11. The exotic heat-trace asymptotics of a regular-singular operator revisited

    OpenAIRE

    Vertman, Boris

    2013-01-01

    We discuss the exotic properties of the heat-trace asymptotics for a regular-singular operator with general boundary conditions at the singular end, as observed by Falomir, Muschietti, Pisani and Seeley as well as by Kirsten, Loya and Park. We explain how their results alternatively follow from the general heat kernel construction by Mooers, a natural question that has not been addressed yet, as the latter work did not elaborate explicitly on the singular structure of the heat trace expansion...

  12. Field stochastic quantization. A non perturbative method and 1/N expansion

    International Nuclear Information System (INIS)

    Berard, A.

    1993-04-01

    Parisi and Wu's stochastic quantization gives a new interpretation of Feynman's euclidean path integral measure. Following a general presentation and a description of specific properties of this quantification scheme, a non perturbative variational method is established. A general solution is obtained, based on a 1/N expansion. Its application to solvable models in dimension 0 is completed and extended to models in arbitrary dimension with internal O(N) or U(N) symmetries: φ 4 , non linear σ and C P N-1 . Essential parameters of this theory are obtained analytically to different orders in 1/N through an iterative procedure. This variational approach allows also for a study of internal and external symmetries and leads in particular to translationally non-invariant topological solution

  13. Numerical solution of DGLAP equations using Laguerre polynomials expansion and Monte Carlo method.

    Science.gov (United States)

    Ghasempour Nesheli, A; Mirjalili, A; Yazdanpanah, M M

    2016-01-01

    We investigate the numerical solutions of the DGLAP evolution equations at the LO and NLO approximations, using the Laguerre polynomials expansion. The theoretical framework is based on Furmanski et al.'s articles. What makes the content of this paper different from other works, is that all calculations in the whole stages to extract the evolved parton distributions, are done numerically. The employed techniques to do the numerical solutions, based on Monte Carlo method, has this feature that all the results are obtained in a proper wall clock time by computer. The algorithms are implemented in FORTRAN and the employed coding ideas can be used in other numerical computations as well. Our results for the evolved parton densities are in good agreement with some phenomenological models. They also indicate better behavior with respect to the results of similar numerical calculations.

  14. Efficient algorithms for analyzing the singularly perturbed boundary value problems of fractional order

    Science.gov (United States)

    Sayevand, K.; Pichaghchi, K.

    2018-04-01

    In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.

  15. Solitary wave solutions of the fourth order Boussinesq equation through the exp(-Ф(η))-expansion method.

    Science.gov (United States)

    Akbar, M Ali; Hj Mohd Ali, Norhashidah

    2014-01-01

    The exp(-Ф(η))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(-Ф(η))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(-Ф(η))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering. 35C07; 35C08; 35P99.

  16. Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

    Directory of Open Access Journals (Sweden)

    Mahmoud Paripour

    2014-08-01

    Full Text Available In this paper, the Bernstein polynomials are used to approximatethe solutions of linear integral equations with multiple time lags (IEMTL through expansion methods (collocation method, partition method, Galerkin method. The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out

  17. An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220

    Science.gov (United States)

    Rezaeian, P.; Ataenia, V.; Shafiei, S.

    2017-12-01

    In this paper, the flux of photons inside the irradiation cell of the Gammacell-220 is calculated using an analytical method based on multipole moment expansion. The flux of the photons inside the irradiation cell is introduced as the function of monopole, dipoles and quadruples in the Cartesian coordinate system. For the source distribution of the Gammacell-220, the values of the multipole moments are specified by direct integrating. To confirm the validation of the presented methods, the flux distribution inside the irradiation cell was determined utilizing MCNP simulations as well as experimental measurements. To measure the flux inside the irradiation cell, Amber dosimeters were employed. The calculated values of the flux were in agreement with the values obtained by simulations and measurements, especially in the central zones of the irradiation cell. In order to show that the present method is a good approximation to determine the flux in the irradiation cell, the values of the multipole moments were obtained by fitting the simulation and experimental data using Levenberg-Marquardt algorithm. The present method leads to reasonable results for the all source distribution even without any symmetry which makes it a powerful tool for the source load planning.

  18. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-03

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve load over many years or decades. CEMs can be computationally complex and are often forced to estimate key parameters using simplified methods to achieve acceptable solve times or for other reasons. In this paper, we discuss one of these parameters -- capacity value (CV). We first provide a high-level motivation for and overview of CV. We next describe existing modeling simplifications and an alternate approach for estimating CV that utilizes hourly '8760' data of load and VG resources. We then apply this 8760 method to an established CEM, the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016). While this alternative approach for CV is not itself novel, it contributes to the broader CEM community by (1) demonstrating how a simplified 8760 hourly method, which can be easily implemented in other power sector models when data is available, more accurately captures CV trends than a statistical method within the ReEDS CEM, and (2) providing a flexible modeling framework from which other 8760-based system elements (e.g., demand response, storage, and transmission) can be added to further capture important dynamic interactions, such as curtailment.

  19. Optical characteristic research on fiber Bragg gratings utilizing finite element and eigenmode expansion methods.

    Science.gov (United States)

    He, Yuejing; Chen, Xuanyang

    2014-06-19

    Compared with coupled-mode theory (CMT), which is widely used for studies involving optical fiber Bragg gratings (FBGs), the proposed investigation scheme is visualized, diagrammatic, and simple. This method combines the finite element method (FEM) and eigenmode expansion method (EEM). The function of the FEM is to calculate all guided modes that match the boundary conditions of optical fiber waveguides. Moreover, the FEM is used for implementing power propagation for HE11 in optical fiber devices. How the periodic characteristic of FBG causes this novel scheme to be substantially superior to CMT is explained in detail. Regarding current numerical calculation techniques, the scheme proposed in this paper is the only method capable of the 3D design and analysis of large periodic components. Additionally, unlike CMT, in which deviations exist between the designed wavelength λ(D) and the maximal reflection wavelength λmax, the proposed method performs rapid scans of the periods of optical FBG. Therefore, once the operating wavelength is set for the component design, the maximal reflection wavelength of the final products can be accurately limited to that of the original design, such as λ = 1550 nm. Furthermore, a comparison between the period scan plot and the optical spectra plot for FBG indicated an inverse relationship between the periods and wavelengths. Consequently, this property can be used to predict the final FBG spectra before implementing time-consuming calculations. By employing this novel investigation scheme involving a rigorous design procedure, the graphical and simple calculation method reduces the studying time and professional expertise required for researching and applying optical FBG.

  20. Optical Characteristic Research on Fiber Bragg Gratings Utilizing Finite Element and Eigenmode Expansion Methods

    Directory of Open Access Journals (Sweden)

    Yuejing He

    2014-06-01

    Full Text Available Compared with coupled-mode theory (CMT, which is widely used for studies involving optical fiber Bragg gratings (FBGs, the proposed investigation scheme is visualized, diagrammatic, and simple. This method combines the finite element method (FEM and eigenmode expansion method (EEM. The function of the FEM is to calculate all guided modes that match the boundary conditions of optical fiber waveguides. Moreover, the FEM is used for implementing power propagation for HE11 in optical fiber devices. How the periodic characteristic of FBG causes this novel scheme to be substantially superior to CMT is explained in detail. Regarding current numerical calculation techniques, the scheme proposed in this paper is the only method capable of the 3D design and analysis of large periodic components. Additionally, unlike CMT, in which deviations exist between the designed wavelength λD and the maximal reflection wavelength λmax, the proposed method performs rapid scans of the periods of optical FBG. Therefore, once the operating wavelength is set for the component design, the maximal reflection wavelength of the final products can be accurately limited to that of the original design, such as λ = 1550 nm. Furthermore, a comparison between the period scan plot and the optical spectra plot for FBG indicated an inverse relationship between the periods and wavelengths. Consequently, this property can be used to predict the final FBG spectra before implementing time-consuming calculations. By employing this novel investigation scheme involving a rigorous design procedure, the graphical and simple calculation method reduces the studying time and professional expertise required for researching and applying optical FBG.

  1. Uniform gradient expansions

    Directory of Open Access Journals (Sweden)

    Massimo Giovannini

    2015-06-01

    Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  2. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  3. Traveling wave solutions of a biological reaction-convection-diffusion equation model by using $(G'/G$ expansion method

    Directory of Open Access Journals (Sweden)

    Shahnam Javadi

    2013-07-01

    Full Text Available In this paper, the $(G'/G$-expansion method is applied to solve a biological reaction-convection-diffusion model arising in mathematical biology. Exact traveling wave solutions are obtained by this method. This scheme can be applied to a wide class of nonlinear partial differential equations.

  4. The optimized expansion based low-rank method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2014-03-01

    Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.

  5. Numerical divergence effects of equivalence theory in the nodal expansion method

    International Nuclear Information System (INIS)

    Zika, M.R.; Downar, T.J.

    1993-01-01

    Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible

  6. Cosmological models without singularities

    International Nuclear Information System (INIS)

    Petry, W.

    1981-01-01

    A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)

  7. An analytic method for S-expansion involving resonance and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ipinza, M.C.; Penafiel, D.M. [Departamento de Fisica, Universidad de Concepcion (Chile); DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy); Lingua, F. [DISAT, Politecnico di Torino (Italy); Ravera, L. [DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy)

    2016-11-15

    In this paper we describe an analytic method able to give the multiplication table(s) of the set(s) involved in an S-expansion process (with either resonance or 0{sub S}-resonant-reduction) for reaching a target Lie (super)algebra from a starting one, after having properly chosen the partitions over subspaces of the considered (super)algebras. This analytic method gives us a simple set of expressions to find the subset decomposition of the set(s) involved in the process. Then, we use the information coming from both the initial (super)algebra and the target one for reaching the multiplication table(s) of the mentioned set(s). Finally, we check associativity with an auxiliary computational algorithm, in order to understand whether the obtained set(s) can describe semigroup(s) or just abelian set(s) connecting two (super)algebras. We also give some interesting examples of application, which check and corroborate our analytic procedure and also generalize some result already presented in the literature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs

  9. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  10. Joint Application of Bilinear Operator and F-Expansion Method for (2+1-Dimensional Kadomtsev-Petviashvili Equation

    Directory of Open Access Journals (Sweden)

    Shaolin Li

    2014-01-01

    Full Text Available The bilinear operator and F-expansion method are applied jointly to study (2+1-dimensional Kadomtsev-Petviashvili (KP equation. An exact cusped solitary wave solution is obtained by using the extended single-soliton test function and its mechanical feature which blows up periodically in finite time for cusped solitary wave is investigated. By constructing the extended double-soliton test function, a new type of exact traveling wave solution describing the assimilation of solitary wave and periodic traveling wave is also presented. Our results validate the effectiveness for joint application of the bilinear operator and F-expansion method.

  11. Existence of a solution to the Dirichlet problem associated to a second-order differential equation with singularities: the method of lower and upper functions

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2013-01-01

    Roč. 20, č. 3 (2013), s. 469-491 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order singular equation * Dirichlet problem * solvability Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-3/gmj-2013-0030/gmj-2013-0030. xml ?format=INT

  12. Existence of a solution to the Dirichlet problem associated to a second-order differential equation with singularities: the method of lower and upper functions

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2013-01-01

    Roč. 20, č. 3 (2013), s. 469-491 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order singular equation * Dirichlet problem * solvability Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-3/gmj-2013-0030/gmj-2013-0030.xml?format=INT

  13. Thermal expansion of Pd-based metallic glasses by ab initio methods and high energy X-ray diffraction.

    Science.gov (United States)

    Evertz, Simon; Music, Denis; Schnabel, Volker; Bednarcik, Jozef; Schneider, Jochen M

    2017-11-16

    Metallic glasses are promising structural materials due to their unique properties. For structural applications and processing the coefficient of thermal expansion is an important design parameter. Here we demonstrate that predictions of the coefficient of thermal expansion for metallic glasses by density functional theory based ab initio calculations are efficient both with respect to time and resources. The coefficient of thermal expansion is predicted by an ab initio based method utilising the Debye-Grüneisen model for a Pd-based metallic glass, which exhibits a pronounced medium range order. The predictions are critically appraised by in situ synchrotron X-ray diffraction and excellent agreement is observed. Through this combined theoretical and experimental research strategy, we show the feasibility to predict the coefficient of thermal expansion from the ground state structure of a metallic glass until the onset of structural changes. Thereby, we provide a method to efficiently probe a potentially vast number of metallic glass alloying combinations regarding thermal expansion.

  14. Detection of Singularities in Fingerprint Images Using Linear Phase Portraits

    Science.gov (United States)

    Ram, Surinder; Bischof, Horst; Birchbauer, Josef

    abstract The performance of fingerprint recognition depends heavily on the reliable extraction of singularities. Common algorithms are based on a Poinc’are Index estimation. These algorithms are only robust when certain heuristics and rules are applied. In this chapter we present a model-based approach for the detection of singular points. The presented method exploits the geometric nature of linear differential equation systems. Our method is robust against noise in the input image and is able to detect singularities even if they are partly occluded. The algorithm proceeds by fitting linear phase portraits at each location of a sliding window and then analyses its parameters. Using a well-established mathematical background, our algorithm is able to decide if a singular point is existent. Furthermore, the parameters can be used to classify the type of the singular point into whorls, deltas and loops.

  15. Residues and duality for singularity categories of isolated Gorenstein singularities

    OpenAIRE

    Murfet, Daniel

    2009-01-01

    We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.

  16. Vector fields on singular varieties

    CERN Document Server

    Brasselet, Jean-Paul; Suwa, Tatsuo

    2009-01-01

    Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

  17. Gauge invariance properties and singularity cancellations in a modified PQCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos

    2006-01-01

    The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.

  18. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has ...

  19. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.

  20. A new theoretical method for calculating temperature and water vapor saturation ratio in an expansion cloud chamber

    Science.gov (United States)

    Moteki, Nobuhiro; Kondo, Yutaka

    2013-06-01

    The expansion cloud chamber is a widely used apparatus for investigating the dynamics of condensational growth of aerosols and clouds. Theoretical calculations of temperature T and water vapor saturation ratio S are necessary for quantitative interpretations of experimental data obtained from the expansion cloud chamber. In this paper, we revisit the thermodynamics associated with the underlying assumptions for calculating the time-dependent temperature T(t) and saturation ratio S(t) in an expansion chamber as a function of experimentally observable parameters. We introduce an intuitive and robust method, the virtual path (VP) method, by which changes in the thermodynamic state of a moist air parcel containing cloud droplets are schematically represented on a thermodynamic diagram. The validity of the VP method is confirmed by comparisons with the differential equation (DE) method, which is a numerical simulation of real physical processes according to the time evolution equations involving T and S. In contrast to the conventional DE method, the governing equations of the VP method do not involve time t, an irrelevant parameter in the framework of classical thermodynamics. The VP method is advantageous compared to the DE method because the former is applicable to the raw experimental data acquired with a finite time resolution, allowing a robust calculation of the T and S values and the errors that are only caused by the measurement errors of the input data.

  1. Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: A Chebyshev-Hermite-Padé method

    Science.gov (United States)

    Boyd, John P.

    2009-01-01

    When two or more branches of a function merge, the Chebyshev series of u([lambda]) will converge very poorly with coefficients an of Tn([lambda]) falling as O(1/n[alpha]) for some small positive exponent [alpha]. However, as shown in [J.P. Boyd, Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation, Appl. Math. Comput. 143 (2002) 189-200], it is possible to obtain approximations that converge exponentially fast in n. If the roots that merge are denoted as u1([lambda]) and u2([lambda]), then both branches can be written without approximation as the roots of (u-u1([lambda]))(u-u2([lambda]))=u2+[beta]([lambda])u+[gamma]([lambda]). By expanding the nonsingular coefficients of the quadratic, [beta]([lambda]) and [gamma]([lambda]), as Chebyshev series and then applying the usual roots-of-a-quadratic formula, we can approximate both branches simultaneously with error that decreases proportional to for some constant [sigma]>0 where N is the truncation of the Chebyshev series. This is dubbed the "Chebyshev-Shafer" or "Chebyshev-Hermite-Padé" method because it substitutes Chebyshev series for power series in the generalized Padé approximants known variously as "Shafer" or "Hermite-Padé" approximants. Here we extend these ideas. First, we explore square roots with branches that are both real-valued and complex-valued in the domain of interest, illustrated by meteorological baroclinic instability. Second, we illustrate triply branched functions via roots of the Kepler equation, f(u;[lambda],[epsilon])[reverse not equivalent]u-[epsilon]sin(u)-[lambda]=0. Only one of the merging roots is real-valued and the root depends on two parameters ([lambda],[epsilon]) rather than one. Nonetheless, the Chebyshev-Hermite-Padé scheme is successful over the whole two-dimensional parameter plane. We also discuss how to cope with poles and logarithmic singularities that arise in our examples at the

  2. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  3. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mai, Trieu T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve demand over the evolution of many years or decades. Various CEM formulations are used to evaluate systems ranging in scale from states or utility service territories to national or multi-national systems. CEMs can be computationally complex, and to achieve acceptable solve times, key parameters are often estimated using simplified methods. In this paper, we focus on two of these key parameters associated with the integration of variable generation (VG) resources: capacity value and curtailment. We first discuss common modeling simplifications used in CEMs to estimate capacity value and curtailment, many of which are based on a representative subset of hours that can miss important tail events or which require assumptions about the load and resource distributions that may not match actual distributions. We then present an alternate approach that captures key elements of chronological operation over all hours of the year without the computationally intensive economic dispatch optimization typically employed within more detailed operational models. The updated methodology characterizes the (1) contribution of VG to system capacity during high load and net load hours, (2) the curtailment level of VG, and (3) the potential reductions in curtailments enabled through deployment of storage and more flexible operation of select thermal generators. We apply this alternate methodology to an existing CEM, the Regional Energy Deployment System (ReEDS). Results demonstrate that this alternate approach provides more accurate estimates of capacity value and curtailments by explicitly capturing system interactions across all hours of the year. This approach could be applied more broadly to CEMs at many different scales where hourly resource and load data is available, greatly improving the representation of challenges

  4. Maxillary Expansion

    OpenAIRE

    Agarwal, Anirudh; Mathur, Rinku

    2010-01-01

    ABSTRACT Maxillary transverse discrepancy usually requires expansion of the palate by a combination of orthopedic and orthodontic tooth movements. Three expansion treatment modalities are used today: rapid maxillary expansion, slow maxillary expansion and surgically assisted maxillary expansion.This article aims to review the maxillary expansion by all the three modalities and a brief on commonly used appliances.

  5. Method for measurement of relative differences in thermal expansion coefficients (LWBR development program)

    International Nuclear Information System (INIS)

    Alexander, J.E.

    1978-06-01

    The report describes a test which was conducted to determine the variation in thermal expansion coefficients of specimens from several material heats of Type 304 stainless steel. The purpose of this document is to identify the procedures, equipment, and analysis used in performing this test. From a review of the data which were used in establishing the values given for mean coefficient of thermal expansion in the 1968 ASME Boiler and Pressure Vessel Code, Section III, a +-3.3-percent maximum variation was determined for Type 304 CRES in the temperature range of interest. The results of the test reduced this variation to +-0.53 percent based on a 95/99-percent tolerance interval for the material tested. The testing equipment, procedure, and analysis are not complicated and this type of test is recommended for applications in which the variation in thermal expansion coefficients is desired for a limited number of material heats

  6. A study of uniform stars using 1/d-expansions and numerical methods

    Science.gov (United States)

    Gaunt, D. S.; Yu, T. C.

    2000-02-01

    We study a lattice model of an interacting uniform self-avoiding star polymer with f branches. A 1/d -expansion for the limiting reduced free energy is derived through order 1/d for general f and, for f = 3, to order 1/d 2 . The terms in the expansion are independent of f and agree term by term with the corresponding expansion for interacting self-avoiding walks. We also present a miscellany of numerical results obtained by more conventional series and Monte Carlo techniques. All our results, both past and present, support the conjecture that the limiting reduced free energies of f -stars, walks and polygons are identical for all values of the interaction parameter icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/> .

  7. Generalized Parton Distributions and their Singularities

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin

    2011-04-01

    A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.

  8. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  9. Solutions of dissimilar material singularity and contact problems

    International Nuclear Information System (INIS)

    Yang, Y.

    2003-09-01

    Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)

  10. The relationship between the Johnson-Baranger time-dependent folded diagram expansion and the time-independent methods of perturbation theory

    International Nuclear Information System (INIS)

    Passos, E.M.J. de

    1976-01-01

    The relationship between the Johnson-Baranger time-dependent folded diagram (JBFD) expansion, and the time independent methods of perturbation theory, are investigated. In the nondegenerate case, the JBFD expansion and the Rayleigh-Schroedinger perturbation expansion, for the ground state energy, are identical. On the other hand, in the degenerate case, for the nonhermitian effective interaction considered, the JBFD expansion, of the effective interaction, is equal to the perturbative expansion of the effective interaction of the nonhermitian eigenvalue problem of Bloch and Brandow-Des Cloizeaux. For the two hermitian effective interactions, the JBFD expansion of the effective interaction differs from the perturbation expansion of the effective interaction of the hermitian eigenvalue problem of Des Cloizeaux [pt

  11. Singularities of robot mechanisms numerical computation and avoidance path planning

    CERN Document Server

    Bohigas, Oriol; Ros, Lluís

    2017-01-01

    This book presents the singular configurations associated with a robot mechanism, together with robust methods for their computation, interpretation, and avoidance path planning. Having such methods is essential as singularities generally pose problems to the normal operation of a robot, but also determine the workspaces and motion impediments of its underlying mechanical structure. A distinctive feature of this volume is that the methods are applicable to nonredundant mechanisms of general architecture, defined by planar or spatial kinematic chains interconnected in an arbitrary way. Moreover, singularities are interpreted as silhouettes of the configuration space when seen from the input or output spaces. This leads to a powerful image that explains the consequences of traversing singular configurations, and all the rich information that can be extracted from them. The problems are solved by means of effective branch-and-prune and numerical continuation methods that are of independent interest in themselves...

  12. Multifractal signal reconstruction based on singularity power spectrum

    International Nuclear Information System (INIS)

    Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning

    2016-01-01

    Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.

  13. Singular Dimensions of theN= 2 Superconformal Algebras. I

    Science.gov (United States)

    Dörrzapf, Matthias; Gato-Rivera, Beatriz

    Verma modules of superconfomal algebras can have singular vector spaces with dimensions greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce the concept of adapted orderings on superconformal algebras. We prove several general results on the ordering kernels associated to the adapted orderings and show that the size of an ordering kernel implies an upper limit for the dimension of a singular vector space. We apply this method to the topological N= 2 algebra and obtain the maximal dimensions of the singular vector spaces in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29 in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular vectors at level 1. Finally, by using the topological twists and the spectral flows, we also obtain the maximal dimensions of the singular vector spaces for the Neveu-Schwarz N= 2 algebra (0, 1 or 2) and for the Ramond N= 2 algebra (0, 1, 2 or 3).

  14. Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion

    DEFF Research Database (Denmark)

    Døssing, Mads; Aagaard Madsen, Helge; Bak, Christian

    2012-01-01

    The blade element momentum (BEM) method is widely used for calculating the quasi-steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now...... by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios. It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM....... In short, allows fast aerodynamic calculations and optimizations with a much higher degree of accuracy than the traditional BEM model. Copyright © 2011 John Wiley & Sons, Ltd....

  15. Hadron formation in a non-ideal quark gluon plasma using Mayer's method of cluster expansion

    International Nuclear Information System (INIS)

    Prasanth, J.P.; Bannur, Vishnu M.

    2015-01-01

    This work investigates the applicability of using the Mayer's cluster expansion method to derive the equation of state (EoS) of the quark-antiquark plasma. Dissociation of heavier hadrons in QGP is studied. The possibility of the existence of quarkonium after deconfinement at higher temperature than the critical temperature T > T c is investigated. The EoS has been studied by calculating second and third cluster integrals. The results are compared and discussed with available works. (author)

  16. New exact solutions of the(2+1-dimensional Broer-Kaup equation by the consistent Riccati expansion method

    Directory of Open Access Journals (Sweden)

    Jiang Ying

    2017-01-01

    Full Text Available In this work, we study the (2+1-D Broer-Kaup equation. The composite periodic breather wave, the exact composite kink breather wave and the solitary wave solutions are obtained by using the coupled degradation technique and the consistent Riccati expansion method. These results may help us to investigate some complex dynamical behaviors and the interaction between composite non-linear waves in high dimensional models

  17. Identify Foot of Continental Slope by singular spectrum and fractal singularity analysis

    Science.gov (United States)

    Li, Q.; Dehler, S.

    2012-04-01

    Identifying the Foot of Continental Slope (FOCS) plays a critical role in the determination of exclusive economic zone (EEZ) for coastal nations. The FOCS is defined by the Law of the Sea as the point of maximum change of the slope and it is mathematically equivalent to the point which has the maximum curvature value in its vicinity. However, curvature is the second derivative and the calculation of second derivative is a high pass and noise-prone filtering procedure. Therefore, identification of FOCS with curvature analysis methods is often uncertain and erroneous because observed bathymetry profiles or interpolated raster maps commonly include high frequency noises and artifacts, observation errors, and local sharp changes. Effective low-pass filtering methods and robust FOCS indicator algorithms are highly desirable. In this approach, nonlinear singular spectral filtering and singularity FOCS-indicator methods and software tools are developed to address this requirement. The normally used Fourier domain filtering methods decompose signals into Fourier space, composed of a fixed base that depends only on the acquisition interval of the signal; the signal is required to be stationary or at least weak stationary. In contrast to that requirement, the developed singular spectral filtering method constructs orthogonal basis functions dynamically according to different signals, and it does not require the signal to be stationary or weak stationary. Furthermore, singular spectrum analysis (SSA) can assist in designing suitable filters to carefully remove high-frequency local or noise components while reserving useful global and local components according to energy distribution. Geoscientific signals, including morphological ocean bathymetry data, often demonstrate fractal or multifractal properties. With proper definition of scales in the vicinity of a certain point and related measures, it is found that 1-dimensional bathymetry profiles and 2-dimensional raster maps

  18. Singular traces theory and applications

    CERN Document Server

    Sukochev, Fedor; Zanin, Dmitriy

    2012-01-01

    This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.

  19. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  20. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    Science.gov (United States)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  1. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    Science.gov (United States)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  2. Geometric singular perturbation analysis of systems with friction

    DEFF Research Database (Denmark)

    Bossolini, Elena

    This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter...... use a Poincaré compactification to study the system near infinity. At infinity, the critical manifold loses hyperbolicity with an exponential rate. We use an adaptation of the blow-up method to recover the hyperbolicity. This enables the identification of a new attracting manifold, that organises...... singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the non-unique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We...

  3. Singularities and the geometry of spacetime

    Science.gov (United States)

    Hawking, Stephen

    2014-11-01

    the occurrence of singularities are discussed and then a number of theorems are presented which prove the occurrence of singularities in most cosmological solutions. A procedure is given which could be used to describe and classify the singularites and their expected nature is discussed. Sections 2 and 3 are reviews of standard work. In Section 4, the deviation equation is standard but the matrix method used to analyse it is the author's own as is the decomposition given of the Bianchi identities (this was also obtained independently by Trümper). Variation of curves and conjugate points are standard in a positive-definite metric but this seems to be the first full account for timelike and null curves in a Lorentz metric. Except where otherwise indicated in the text, Sections 5 and 6 are the work of the author who, however, apologises if through ignorance or inadvertance he has failed to make acknowledgements where due. Some of this work has been described in [Hawking S.W. 1965b. Occurrence of singularities in open universes. Phys. Rev. Lett. 15: 689-690; Hawking S.W. and G.F.R. Ellis. 1965c. Singularities in homogeneous world models. Phys. Rev. Lett. 17: 246-247; Hawking S.W. 1966a. Singularities in the universe. Phys. Rev. Lett. 17: 444-445; Hawking S.W. 1966c. The occurrence of singularities in cosmology. Proc. Roy. Soc. Lond. A 294: 511-521]. Undoubtedly, the most important results are the theorems in Section 6 on the occurrence of singularities. These seem to imply either that the General Theory of Relativity breaks down or that there could be particles whose histories did not exist before (or after) a certain time. The author's own opinion is that the theory probably does break down, but only when quantum gravitational effects become important. This would not be expected to happen until the radius of curvature of spacetime became about 10-14 cm.

  4. Abundant traveling wave solutions of the compound KdV-Burgers equation via the improved (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2012-12-01

    Full Text Available In this article, we investigate the compound KdV-Burgers equation involving parameters by applying the improved (G′/G-expansion method for constructing some new exact traveling wave solutions including solitons and periodic solutions. The second order linear ordinary differential equation with constant coefficients is used, in this method. The obtained solutions are presented through the hyperbolic, the trigonometric and the rational functions. Further, it is significant to point out that some of our solutions are in good agreement for special cases with the existing results which validates our other solutions. Moreover, some of the obtained solutions are described in the figures.

  5. Applications of extended F-expansion and projective Ricatti equation methods to (2+1)-dimensional soliton equations

    Science.gov (United States)

    Kumar, Hitender; Chand, Fakir

    2013-03-01

    The (2+1)-dimensional Maccari and nonlinear Schrödinger equations are reduced to a nonlinear ordinary differential equation (ODE) by using a simple transformation, various solutions of the nonlinear ODE are obtained by using extended F-expansion and projective Ricatti equation methods. With the aid of solutions of the nonlinear ODE more explicit traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions are found out. It is shown that these methods provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

  6. On the use of two classical series expansion methods to determine the vibration of harmonically excited pure cubic oscillators

    International Nuclear Information System (INIS)

    Kovacic, Ivana; Brennan, Michael J.

    2008-01-01

    An analytical approach to determine the steady-state response of a damped and undamped harmonically excited oscillator with no linear term and with cubic non-linearity is presented. The governing equation is transformed into a form suitable for the application of a classical series expansion technique. The Linstedt-Poincare method and the method of multiple scales are then used to determine the amplitude-frequency response and approximate solution for the response at the excitation frequency. The results obtained are compared with numerical solutions and analytical solutions found in the literature for the case when there is strong non-linearity

  7. Long-Term Reserve Expansion of Power Systems With High Wind Power Penetration Using Universal Generating Function Methods

    DEFF Research Database (Denmark)

    DING, YI; Wang, Peng; Goel, Lalit

    2010-01-01

    from long term planning point of view utilizing universal generating function (UGF) methods. The reliability models of wind farms and conventional generators are represented as the correspondin UGFs and the special operators for these UGFs are defined to evaluate the customer and the system...... reliabilities. The effect of transmission network on customer reliabilities is also considered in the system UGF. The power output models of wind turbine generators in a wind farm considering wind speed correlation and un-correlation are developed, respectively. A reliability-based reserve expansion method...

  8. On asymptotical expansions for certain singular integrals: 2-dimensional case

    OpenAIRE

    Vasilyev, Vladimir B.

    2015-01-01

    One discusses a problem of asymptotical behavior for some operators in a general theory of pseudo differential equations on manifolds with borders. Using the distribution theory one obtains certain explicit representations for these operators. These limit distributions are constructed with a help of the Fourier transform, Dirac mass-function and its derivatives, and well-known distribution related to the Cauchy type integral.

  9. Conclusions about niche expansion in introduced Impatiens walleriana populations depend on method of analysis.

    Directory of Open Access Journals (Sweden)

    Lisa Mandle

    Full Text Available Determining the degree to which climate niches are conserved across plant species' native and introduced ranges is valuable to developing successful strategies to limit the introduction and spread of invasive plants, and also has important ecological and evolutionary implications. Here, we test whether climate niches differ between native and introduced populations of Impatiens walleriana, globally one of the most popular horticultural species. We use approaches based on both raw climate data associated with occurrence points and ecological niche models (ENMs developed with Maxent. We include comparisons of climate niche breadth in both geographic and environmental spaces, taking into account differences in available habitats between the distributional areas. We find significant differences in climate envelopes between native and introduced populations when comparing raw climate variables, with introduced populations appearing to expand into wetter and cooler climates. However, analyses controlling for differences in available habitat in each region do not indicate expansion of climate niches. We therefore cannot reject the hypothesis that observed differences in climate envelopes reflect only the limited environments available within the species' native range in East Africa. Our results suggest that models built from only native range occurrence data will not provide an accurate prediction of the potential for invasiveness if applied to areas containing a greater range of environmental combinations, and that tests of niche expansion may overestimate shifts in climate niches if they do not control carefully for environmental differences between distributional areas.

  10. Conclusions about niche expansion in introduced Impatiens walleriana populations depend on method of analysis.

    Science.gov (United States)

    Mandle, Lisa; Warren, Dan L; Hoffmann, Matthias H; Peterson, A Townsend; Schmitt, Johanna; von Wettberg, Eric J

    2010-12-29

    Determining the degree to which climate niches are conserved across plant species' native and introduced ranges is valuable to developing successful strategies to limit the introduction and spread of invasive plants, and also has important ecological and evolutionary implications. Here, we test whether climate niches differ between native and introduced populations of Impatiens walleriana, globally one of the most popular horticultural species. We use approaches based on both raw climate data associated with occurrence points and ecological niche models (ENMs) developed with Maxent. We include comparisons of climate niche breadth in both geographic and environmental spaces, taking into account differences in available habitats between the distributional areas. We find significant differences in climate envelopes between native and introduced populations when comparing raw climate variables, with introduced populations appearing to expand into wetter and cooler climates. However, analyses controlling for differences in available habitat in each region do not indicate expansion of climate niches. We therefore cannot reject the hypothesis that observed differences in climate envelopes reflect only the limited environments available within the species' native range in East Africa. Our results suggest that models built from only native range occurrence data will not provide an accurate prediction of the potential for invasiveness if applied to areas containing a greater range of environmental combinations, and that tests of niche expansion may overestimate shifts in climate niches if they do not control carefully for environmental differences between distributional areas.

  11. Wave-breaking and generic singularities of nonlinear hyperbolic equations

    International Nuclear Information System (INIS)

    Pomeau, Yves; Le Berre, Martine; Guyenne, Philippe; Grilli, Stephan

    2008-01-01

    Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the numerical results. This shows the power of the analysis by methods using generic concepts of nonlinear science. (open problem)

  12. Averaging approximation to singularly perturbed nonlinear stochastic wave equations

    Science.gov (United States)

    Lv, Yan; Roberts, A. J.

    2012-06-01

    An averaging method is applied to derive effective approximation to a singularly perturbed nonlinear stochastic damped wave equation. Small parameter ν > 0 characterizes the singular perturbation, and να, 0 ⩽ α ⩽ 1/2, parametrizes the strength of the noise. Some scaling transformations and the martingale representation theorem yield the effective approximation, a stochastic nonlinear heat equation, for small ν in the sense of distribution.

  13. Equation level matching: An extension of the method of matched asymptotic expansion for problems of wave propagation

    Science.gov (United States)

    Faria, Luiz; Rosales, Rodolfo

    2017-11-01

    We introduce an alternative to the method of matched asymptotic expansions. In the ``traditional'' implementation, approximate solutions, valid in different (but overlapping) regions are matched by using ``intermediate'' variables. Here we propose to match at the level of the equations involved, via a ``uniform expansion'' whose equations enfold those of the approximations to be matched. This has the advantage that one does not need to explicitly solve the asymptotic equations to do the matching, which can be quite impossible for some problems. In addition, it allows matching to proceed in certain wave situations where the traditional approach fails because the time behaviors differ (e.g., one of the expansions does not include dissipation). On the other hand, this approach does not provide the fairly explicit approximations resulting from standard matching. In fact, this is not even its aim, which to produce the ``simplest'' set of equations that capture the behavior. Ruben Rosales work was partially supported by NSF Grants DMS-1614043 and DMS-1719637.

  14. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    Science.gov (United States)

    Challberg, Roy C.; Gou, Perng-Fei; Chu, Cherk Lam; Oliver, Robert P.

    1999-01-01

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.

  15. Object detection with a multistatic array using singular value decomposition

    Science.gov (United States)

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  16. Calculation of Clay Permeability Using a Rectangular Particle-Water Film Model by the Double-Scale Asymptotic Expansion Method

    Directory of Open Access Journals (Sweden)

    Xiaowu Tang

    2016-01-01

    Full Text Available Permeability of soil plays an important role in geotechnical engineering and is commonly determined by methods combining measurements with theory. Using the double-scale asymptotic expansion method, the Navier-Stokes equation is numerically solved to calculate the permeability, based on the homogenization method and the assumption that the homogeneous microstructure of the relevant porous media is represented accurately as the Representative Elemental Volume (REV. In this study, the commonly used square model is tested in the calculation of sea clay permeability. The results show large deviations. It is suspected that the square model could not represent the flattened shape of the clay particles and the bound water film wrapping around them. Hence, the Rectangle Particle-Water Film Model (i.e., the R-W model is proposed. After determining the horizontal and vertical characteristic length of the unit cell using two pairs of initial data, the permeabilities of other different void ratios could be inversely calculated. The results of three types of clay obtained using the R-W model agree well with the experimental data. This shows the efficient feasibility and accuracy of the R-W model by providing a good representation of the clay particles when using the double-scale asymptotic expansion method to calculate clay permeability.

  17. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    International Nuclear Information System (INIS)

    Chen, Yu-Zhu; Li, Wen-Du; Dai, Wu-Sheng

    2017-01-01

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  18. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  19. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  20. Ambient cosmology and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  1. Numerical Evaluation of Arbitrary Singular Domain Integrals Using Third-Degree B-Spline Basis Functions

    Directory of Open Access Journals (Sweden)

    Jin-Xiu Hu

    2014-01-01

    Full Text Available A new approach is presented for the numerical evaluation of arbitrary singular domain integrals. In this method, singular domain integrals are transformed into a boundary integral and a radial integral which contains singularities by using the radial integration method. The analytical elimination of singularities condensed in the radial integral formulas can be accomplished by expressing the nonsingular part of the integration kernels as a series of cubic B-spline basis functions of the distance r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. A few numerical examples are provided to verify the correctness and robustness of the presented method.

  2. Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Tarikul Islam

    2018-03-01

    Full Text Available In this article, the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW equation are successfully examined by the recently established rational (G′/G-expansion method. The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform. Consequently, the theories of the ordinary differential equations are implemented effectively. Three types closed form traveling wave solutions, such as hyperbolic function, trigonometric function and rational, are constructed by using the suggested method in the sense of conformable fractional derivative. The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel. It is observed that the performance of the rational (G′/G-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.

  3. Sudden future singularities in quintessence and scalar-tensor quintessence models

    Science.gov (United States)

    Lymperis, A.; Perivolaropoulos, L.; Lola, S.

    2017-10-01

    We demonstrate analytically and numerically the existence of geodesically complete singularities in quintessence and scalar-tensor quintessence models with scalar field potential of the form V (ϕ )˜|ϕ |n with 0 equations and ts is the time of the singularity. In the case of quintessence we find q =n +2 (i.e. 2 equation of state w =p/ρ , is present. We find that the strength of the singularity (value of q ) remains unaffected by the presence of a perfect fluid. The linear and quadratic terms in (ts-t ) that appear in the expansion of the scale factor around ts are subdominant for the diverging derivatives close to the singularity, but can play an important role in the estimation of the Hubble parameter. Using the analytically derived relations between these terms, we derive relations involving the Hubble parameter close to the singularity, which may be used as observational signatures of such singularities in this class of models. For quintessence with matter fluid, we find that close to the singularity H ˙=3/2 Ω0 m(1 +zs)3-3 H2. These terms should be taken into account when searching for future or past time such singularities, in cosmological data.

  4. Studies on the Zeroes of Bessel Functions and Methods for Their Computation: IV. Inequalities, Estimates, Expansions, etc., for Zeros of Bessel Functions

    Science.gov (United States)

    Kerimov, M. K.

    2018-01-01

    This paper is the fourth in a series of survey articles concerning zeros of Bessel functions and methods for their computation. Various inequalities, estimates, expansions, etc. for positive zeros are analyzed, and some results are described in detail with proofs.

  5. A singular finite element technique for calculating continuum damping of Alfvén eigenmodes

    International Nuclear Information System (INIS)

    Bowden, G. W.; Hole, M. J.

    2015-01-01

    Damping due to continuum resonances can be calculated using dissipation-less ideal magnetohydrodynamics provided that the poles due to these resonances are properly treated. We describe a singular finite element technique for calculating the continuum damping of Alfvén waves. A Frobenius expansion is used to determine appropriate finite element basis functions on an inner region surrounding a pole due to the continuum resonance. The location of the pole due to the continuum resonance and mode frequency is calculated iteratively using a Galerkin method. This method is used to find the complex frequency and mode structure of a toroidicity-induced Alfvén eigenmode in a large aspect ratio circular tokamak and is shown to agree closely with a complex contour technique

  6. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.

  7. Interval matrices: Regularity generates singularity

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Shary, S.P.

    2018-01-01

    Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  8. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...

  9. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    birth of the Universe in a Big Bang. Nothing could be happier and more persuasive than the observation verifying the prediction of theory. This gave rise to a general belief that singularities were inevitable in general relativity (GR) so long as the dynamics were governed by Einstein's equations and more over positive energy ...

  10. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    of space and time needs revision near these singularities where quantum effects of gravity become important, it is still not clear what structure could replace space ..... The dimensionful parameter μ is a Lagrange multiplier which ensures that the total number of eigenvalues is fixed. 98. Pramana – J. Phys., Vol. 69, No. 1, July ...

  11. Remarks on gauge variables and singular Lagrangians

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.

    1977-01-01

    The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)

  12. Singularity kinematics principle and position-singularity analyses of the 6-3 Stewart-Gough parallel manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Zhou, Hui; Li, Baokun [Jiangnan University, Province (China); Shen, Long [Shanghai University, Shanghai (China)

    2011-02-15

    This paper presents a new principle and method of kinematics to analyze the singularity of Stewart-Gough parallel manipulators and addresses the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulators for special orientations. Based on the kinematic relationship of a rigid body, a necessary and sufficient condition that three velocities of three non-collinear points in a moving rigid body can determine a screw motion is addressed and some typical singular configurations of the 6-3 Stewart-Gough parallel manipulators are also addressed in detail. With the above-mentioned condition, a symbolic analytical polynomial expression of degree three in the moving platform position parameters, representing the position-singularity locus of the 6-3 Stewart-Gough manipulators for special orientations, is derived: and the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulator for these special orientations is investigated at length. It is shown that position-singularity loci of the 6-3 Stewart-Gough parallel manipulator for these special orientations will be a plane and a hyperbolic paraboloid, even three intersecting planes.

  13. Singularities and Conjugate Points in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a

  14. Analysis of singularity in redundant manipulators

    International Nuclear Information System (INIS)

    Watanabe, Koichi

    2000-03-01

    In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)

  15. Enriched Meshfree Method for an Accurate Numerical Solution of the Motz Problem

    Directory of Open Access Journals (Sweden)

    Won-Tak Hong

    2016-01-01

    Full Text Available We present an enriched meshfree solution of the Motz problem. The Motz problem has been known as a benchmark problem to verify the efficiency of numerical methods in the presence of a jump boundary data singularity at a point, where an abrupt change occurs for the boundary condition. We propose a singular basis function enrichment technique in the context of partition of unity based meshfree method. We take the leading terms of the local series expansion at the point singularity and use them as enrichment functions for the local approximation space. As a result, we obtain highly accurate leading coefficients of the Motz problem that are comparable to the most accurate numerical solution. The proposed singular enrichment technique is highly effective in the case of the local series expansion of the solution being known. The enrichment technique that is used in this study can be applied to monotone singularities (of type rα with α<1 as well as oscillating singularities (of type rαsin⁡(ϵlog⁡r. It is the first attempt to apply singular meshfree enrichment technique to the Motz problem.

  16. Relativistic rise measurement by cluster counting method in time expansion chamber

    International Nuclear Information System (INIS)

    Rehak, P.; Walenta, A.H.

    1979-10-01

    A new approach to the measurement of the ionization energy loss for the charged particle identification in the region of the relativistic rise was tested experimentally. The method consists of determining in a special drift chamber (TEC) the number of clusters of the primary ionization. The method gives almost the full relativistic rise and narrower landau distribution. The consequences for a practical detector are discussed

  17. Using Finite Element and Eigenmode Expansion Methods to Investigate the Periodic and Spectral Characteristic of Superstructure Fiber Bragg Gratings.

    Science.gov (United States)

    He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping

    2016-02-04

    In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size.

  18. Designing a Novel High-Performance FBG-OADM Based on Finite Element and Eigenmode Expansion Methods

    Directory of Open Access Journals (Sweden)

    Sheng-Chih Yang

    2016-12-01

    Full Text Available This study designed a novel high-performance fiber Bragg grating (FBG optical add/drop multiplexers (OADMs by referring to current numerical simulation methods. The proposed FBG-OADM comprises two single-mode fibers placed side by side. Both optical fibers contained an FBG featuring identical parameters and the same geometric structure. Furthermore, it fulfills the full width at half maximum (FWHM requirement for dense wavelength-division multiplexers (DWDMs according to the International Telecommunication Union (i.e., FWHM < 0.4 nm. Of all related numerical calculation methods, the combination of the finite element method (FEM and eigenmode expansion method (EEM, as a focus in this study, is the only one suitable for researching and designing large-scale components. To enhance the accuracy and computational performance, this study used numerical methods—namely, the object meshing method, the boundary meshing method, the perfectly matched layer, and the perfectly reflecting boundary—to simulate the proposed FBG-OADM. The simulation results showed that the novel FBG-OADM exhibited a −3 dB bandwidth of 0.0375 nm. In addition, analysis of the spectrum revealed that the drop port achieved the power output of 0 dB at an operating wavelength of 1550 nm.

  19. Using Finite Element and Eigenmode Expansion Methods to Investigate the Periodic and Spectral Characteristic of Superstructure Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Yue-Jing He

    2016-02-01

    Full Text Available In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%. This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML, perfectly reflecting boundary (PRB, object meshing method (OMM, and boundary meshing method (BMM into the finite element method (FEM and eigenmode expansion method (EEM. The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size.

  20. Naked singularity formation in Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Ziaie, Amir Hadi; Atazadeh, Khedmat [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Tavakoli, Yaser, E-mail: am.ziaie@mail.sbu.ac.i, E-mail: k-atazadeh@sbu.ac.i, E-mail: tavakoli@ubi.p [Departamento de Fisica, Universidade da Beira Interior, Rua Marques d' Avila e Bolama, 6200 Covilha (Portugal)

    2010-04-07

    Gravitational collapse of the Brans-Dicke scalar field with non-zero potential in the presence of matter fluid obeying the barotropic equation of state, p = wrho, is studied. Utilizing the concept of the expansion parameter, it is seen that the cosmic censorship conjecture may be violated for w=-1/3 and w=-2/3 which correspond to the cosmic string and domain wall, respectively. We have shown that physically, it is the rate of collapse that governs the formation of a black hole or a naked singularity as the final fate of dynamical evolution and only for these two cases can the singularity be naked as the collapse end state. Also the weak energy condition is satisfied by the collapsing configuration.

  1. Bifurcations of a class of singular biological economic models

    International Nuclear Information System (INIS)

    Zhang Xue; Zhang Qingling; Zhang Yue

    2009-01-01

    This paper studies systematically a prey-predator singular biological economic model with time delay. It shows that this model exhibits two bifurcation phenomena when the economic profit is zero. One is transcritical bifurcation which changes the stability of the system, and the other is singular induced bifurcation which indicates that zero economic profit brings impulse, i.e., rapid expansion of the population in biological explanation. On the other hand, if the economic profit is positive, at a critical value of bifurcation parameter, the system undergoes a Hopf bifurcation, i.e., the increase of delay destabilizes the system and bifurcates into small amplitude periodic solution. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results obtained here. In addition, we study numerically that the system undergoes a saddle-node bifurcation when the bifurcation parameter goes through critical value of positive economic profit.

  2. Analytic continuation and perturbative expansions in QCD

    Czech Academy of Sciences Publication Activity Database

    Caprini, I.; Fischer, Jan

    2002-01-01

    Roč. 24, - (2002), s. 127-135 ISSN 1434-6044 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : perturbative expansion * quantum chromodynamics * infrared ambiguity * essential singularities Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.162, year: 2002

  3. Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Azizallah Alvandi

    2017-06-01

    Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.

  4. Numerical analytic continuation by a mollification method based on Hermite function expansion

    Science.gov (United States)

    Zhao, Zhenyu

    2012-04-01

    The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. Data are only given approximately on the real axis. A mollification method based on expanded Hermite functions has been introduced to deal with the ill-posedness of the problem. We have shown that the mollification parameter can be chosen by a discrepancy principle and a corresponding error estimate has also been obtained. Numerical tests are given to show the effectiveness of the method.

  5. Application of the (G/G)-expansion method for the Burgers, Burgers ...

    Indian Academy of Sciences (India)

    ... travelling wave solutions of these sets of equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.

  6. Energy conditions and spacetime singularities

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete

  7. Numerical Quadrature of Periodic Singular Integral Equations

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally it is demonstra......This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally...... it is demonstrated how a singular integral equation with infinite support can be solved by use of the preceding formulae....

  8. Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-01-01

    The dynamic adsorption of ionic surfactants at air-water interfaces have been less-well studied than that of the simpler non-ionics since experimental limitations on dynamic surface tension (DST) measurements create inconsistencies in their kinetic analysis. Using our newly designed "Micropipette...... interfacial area-expansion method", we have measured and evaluated both equilibrium and dynamic adsorption of a well-known anionic surfactant, sodium dodecyl sulphate (SDS), in the absence or presence of 100mM NaCl. Our focus was to determine if and to what extent the inclusion of a new correction parameter...... for the "ideal ionic activity", A±i, can renormalize both equilibrium and dynamic surface tension measurements and provide better estimates of the diffusion coefficient of ionic surfactants in aqueous media obtained from electroneutral models, namely extended Frumkin isotherm and Ward-Tordai adsorption models...

  9. Why the Singularity Cannot Happen

    OpenAIRE

    Modis, Theodore

    2012-01-01

    The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...

  10. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  11. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  12. Flavour from partially resolved singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)

    2006-06-15

    In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.

  13. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    Science.gov (United States)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  14. Singularity analysis of potential fields to enhance weak anomalies

    Science.gov (United States)

    Chen, G.; Cheng, Q.; Liu, T.

    2013-12-01

    Geoanomalies generally are nonlinear, non-stationary and weak, especially in the land cover areas, however, the traditional methods of geoanomaly identification are usually based on linear theory. In past two decades, many power-law function models have been developed based on fractal concept in mineral exploration and mineral resource assessment, such that the density-area (C-A) model and spectrum-area model (S-A) suggested by Qiuming Cheng have played important roles in extracting geophysical and geochemical anomalies. Several power-law relationships are evident in geophysical potential fields, such as field value-distance, power spectrum-wave number as well as density-area models. The singularity index based on density-area model involves the first derivative transformation of the measure. Hence, we introduce the singularity analysis to develop a novel high-pass filter for extracting gravity and magnetic anomalies with the advantage of scale invariance. Furthermore, we suggest that the statistics of singularity indices can provide a new edge detection scheme for the gravity or magnetic source bodies. Meanwhile, theoretical magnetic anomalies are established to verify these assertions. In the case study from Nanling mineral district in south China and Qikou Depression in east China, compared with traditional geophysical filtering methods including multiscale wavelet analysis and total horizontal gradient methods, the singularity method enhances and extracts the weak anomalies caused by buried magmatic rocks more effectively, and provides more distinct boundary information of rocks. Moreover, the singularity mapping results have good correspondence relationship with both the outcropping rocks and known mineral deposits to support future mineral resource exploration. The singularity method based on fractal analysis has potential to be a new useful theory and technique for processing gravity and magnetic anomaly data.

  15. Constructing diabatic representations using adiabatic and approximate diabatic data - Coping with diabolical singularities

    Science.gov (United States)

    Zhu, Xiaolei; Yarkony, David R.

    2016-01-01

    We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, Hd, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of Hd individually provides a starting point (seed) from which convergence of the full Hd construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,41A states of phenol and the 1,21A states of NH3, states which are coupled by conical intersections.

  16. Constructing diabatic representations using adiabatic and approximate diabatic data – Coping with diabolical singularities

    International Nuclear Information System (INIS)

    Zhu, Xiaolei; Yarkony, David R.

    2016-01-01

    We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H d , and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H d individually provides a starting point (seed) from which convergence of the full H d construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4 1 A states of phenol and the 1,2 1 A states of NH 3 , states which are coupled by conical intersections

  17. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    International Nuclear Information System (INIS)

    Gaiotto, D.; Teschner, J.

    2012-03-01

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S 4 . (orig.)

  18. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, D. [Institute for Advanced Study (IAS), Princeton, NJ (United States); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S{sup 4}. (orig.)

  19. Symposium on Singularities, Representation of Algebras, and Vector Bundles

    CERN Document Server

    Trautmann, Günther

    1987-01-01

    It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.

  20. Nonsingular Einsteinian Cosmology: How Galactic Momentum Prevents Cosmic Singularities

    Directory of Open Access Journals (Sweden)

    Kenneth J. Epstein

    2013-01-01

    Full Text Available It is shown how Einstein's equation can account for the evolution of the universe without an initial singularity and can explain the inflation epoch as a momentum dominated era in which energy from matter and radiation drove extremely accelerated expansion of space. It is shown how an object with momentum loses energy to the expanding universe and how this energy can contribute to accelerated spatial expansion more effectively than vacuum energy, because virtual particles, the source of vacuum energy, can have negative energy, which can cancel any positive energy from the vacuum. Radiation and matter with momentum have positive but decreasing energy in the expanding universe, and the energy lost by them can contribute to accelerated spatial expansion between galactic clusters, making dark energy a classical effect that can be explained by general relativity without quantum mechanics, and, as (13 and (15 show, without an initial singularity or a big bang. This role of momentum, which was overlooked in the Standard Cosmological Model, is the basis of a simpler model which agrees with what is correct in the old model and corrects what is wrong with it.

  1. Applications of the adiabatic-expansion method to selected problems in atomic and molecular physics

    International Nuclear Information System (INIS)

    Georgian, T.

    1986-01-01

    Rydberg states of atoms and molecules are of immense importance today in basic spectroscopic and collisional studies of long-range interactions, including investigations of fundamental problems concerning quantum electrodynamics; in the study of strong external field effects on atomic and molecular systems, with particular emphasis being placed on transitions to chaos in the regime where the external field strength becomes comparable to the Coulomb field strength; and in the development of ultra short-wavelength lasers and frequency up-converters. This listing could obviously be extended, and serves only to exemplify the breadth of those research areas concerned with the nature of Rydberg states. In order to provide effective designs of ultra short-wavelength lasers, example, one must understand the interaction between Rydberg states and valence states, since the latter can provide efficient nonradiative de-excitation pathways. At present, however, Rydberg states and valence states are treated by disparate theoretical schemes, namely, the quantum defect method (QDM) and the quantum chemistry method (QCM), respectively. In order to study Rydberg/valence mixing, both types of states must be described within the same theoretical ansatz. A novel theoretical treatment is presented, based on an electronic adiabatic separation which unifies the QDM with QCM

  2. Nuclear power plant sensor fault detection using singular value ...

    Indian Academy of Sciences (India)

    In this paper, a method is proposed to detect and identify any degradation of sensor performance. The validation process consists of two steps: (i) residual generation and (ii) fault detection by residual evaluation.Singular value decomposition (SVD) and Euclidean distance (ED) methods are used to generate the residual ...

  3. Discrete singular convolution for the generalized variable-coefficient ...

    African Journals Online (AJOL)

    Numerical solutions of the generalized variable-coefficient Korteweg-de Vries equation are obtained using a discrete singular convolution and a fourth order singly diagonally implicit Runge-Kutta method for space and time discretisation, respectively. The theoretical convergence of the proposed method is rigorously ...

  4. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    International Nuclear Information System (INIS)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2015-01-01

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals

  5. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    Science.gov (United States)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2015-05-01

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  6. Travelling Wave Solutions of Coupled Burger’s Equations of Time-Space Fractional Order by Novel (Gʹ/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Rashida Hussain

    2017-04-01

    Full Text Available In this paper, Novel (Gʹ/G-expansion method is used to find new generalized exact travelling wave solutions of fractional order coupled Burger’s equations in terms of trigonometric functions, rational functions and hyperbolic functions with arbitrary parameters. For the conversion of the partial differential equation to the ordinary differential equation, complex transformation method is used. Novel (Gʹ/G-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear equations. Moreover, for the representation of these exact solutions we have plotted graphs for different values of parameters which were in travelling waveform.

  7. Single phase and two-phase flow pressure losses through restrictions, expansions and inserts

    International Nuclear Information System (INIS)

    Glenat, P.; Solignac, P.

    1984-11-01

    We give a selection of methods to predict pressure losses through retrictions, expansions and inserts. In single phase flow, we give the classical method based on the one-dimensional momentum and mass balances. In two-phase flow, we propose the method given by Harshe et al. and an empirical approach suggested by Chisholm. We notice the distinction between long and short inserts depends upon wether or not the vena contracta lies within insert. Finally, we propose three correlations to calculate void fraction through the singularities which have been considered [fr

  8. Mathematical models with singularities a zoo of singular creatures

    CERN Document Server

    Torres, Pedro J

    2015-01-01

    The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.

  9. Singular perturbation in the physical sciences

    CERN Document Server

    Neu, John C

    2015-01-01

    This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we "see" how a mathematical pattern fits a physical problem is like "hitting the ball." Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutions of the equations their geometric and physical content. Through analysis, we come to sense directly the shape and feel of phenomena. The book is structured into a main text of fundamental ideas and a subtext of problems with detailed solutions. Roughly speaking, the former is the initial contact between mathematics and p...

  10. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  11. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    Science.gov (United States)

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  12. A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Yuyang Gao

    2016-09-01

    Full Text Available With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data processing, but the individual back-propagation artificial neural network cannot always satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in this study, which consists of data preprocessing, parameter optimization and a neural network for advancing the accuracy of short-term wind speed forecasting. According to the case study, in which the data are collected from Peng Lai, a city located in China, the simulation results indicate that the hybrid forecasting method yields better predictions compared to the individual BP, which indicates that the hybrid method exhibits stronger forecasting ability.

  13. Image Fakery Detection Based on Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    T. Basaruddin

    2009-11-01

    Full Text Available The growing of image processing technology nowadays make it easier for user to modify and fake the images. Image fakery is a process to manipulate part or whole areas of image either in it content or context with the help of digital image processing techniques. Image fakery is barely unrecognizable because the fake image is looking so natural. Yet by using the numerical computation technique it is able to detect the evidence of fake image. This research is successfully applied the singular value decomposition method to detect image fakery. The image preprocessing algorithm prior to the detection process yields two vectors orthogonal to the singular value vector which are important to detect fake image. The result of experiment to images in several conditions successfully detects the fake images with threshold value 0.2. Singular value decomposition-based detection of image fakery can be used to investigate fake image modified from original image accurately.

  14. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  15. Seung-Nelson representation for singular thin sheets

    Science.gov (United States)

    Witten, Thomas; Wang, Jin

    2011-03-01

    We extend the popular Seung-Nelson model to better study thin elastic sheets with singular or multi-scale structures, which are common phenomena in thin sheets. Because it requires a uniform distribution of lattice points over the simulated sheets, the original model is ill-equipped to study these singular structures. Our extended model retains the essence of the original one, but it allows lattice points to be concentrated as needed in regions of large curvatures. We will compare the two methods by applying them to study the energy of the core region of a developable cone. Supported by NSF award DMR 0820054.

  16. Propagation of singularities for linearised hybrid data impedance tomography

    Science.gov (United States)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  17. New exact traveling wave solutions to the (1+1-dimensional Klein-Gordon-Zakharov equation for wave propagation in plasma using the exp(-Φ(ξ-expansion method

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2015-03-01

    Full Text Available The (1+1-dimensional nonlinear Klein-Gordon-Zakharov equation considered as a model equation for describing the interaction of the Langmuir wave and the ion acoustic wave in high frequency plasma. By the execution of the exp(-Φ(ξ-expansion, we obtain new explicit and exact traveling wave solutions to this equation. The obtained solutions include kink, singular kink, periodic wave solutions, soliton solutions and solitary wave solutions of bell types. The variety of structure and graphical representation make the dynamics of the equations visible and provides the mathematical foundation in plasma physics and engineering.

  18. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  19. Removability of singularity for nonlinear elliptic equations with p(x-growth

    Directory of Open Access Journals (Sweden)

    Yongqiang Fu

    2013-09-01

    Full Text Available Using Moser's iteration method, we investigate the problem of removable isolated singularities for elliptic equations with p(x-type nonstandard growth. We give a sufficient condition for removability of singularity for the equations in the framework of variable exponent Sobolev spaces.

  20. Removability of singularity for nonlinear elliptic equations with p(x)-growth

    OpenAIRE

    Yongqiang Fu; Yingying Shan

    2013-01-01

    Using Moser's iteration method, we investigate the problem of removable isolated singularities for elliptic equations with p(x)-type nonstandard growth. We give a sufficient condition for removability of singularity for the equations in the framework of variable exponent Sobolev spaces.

  1. NESTLE, Few-Group Neutron Diffusion for Steady-State and Transient Problems by Nodal Expansion Method (NEM)

    International Nuclear Information System (INIS)

    2006-01-01

    1 - Description of program or function: NESTLE solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). The NESTLE code can solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- or four-energy groups can be utilized, with all energy groups being thermal groups (i.e. up-scatter exits) if desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections are parametrized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed. The December 1996 release of NESTLE V5.02 includes the option to utilize a Weilandt Eigenvalue Shift method in place of the Semi-Implicit Chebyshev Polynomial method to accelerate the outer iterations. In addition, flux, fission source and power density are now exponentially extrapolated to the new time-step time value to improve convergence. Other features added include the following: implicit or explicit transient T-H feedback option, specification of whether convergence after a NEM/T-H update is demanded, frequency of NEM coupling coefficients update based upon L2 fission source relative error reduction, execution time specification of control file name, input echo execution option, and improved run-time statistics. In addition, various minor bugs were fixed, and code

  2. General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2014-03-01

    Full Text Available The new approach of generalized (G′/G-expansion method is significant, powerful and straightforward mathematical tool for finding exact traveling wave solutions of nonlinear evolution equations (NLEEs arise in the field of engineering, applied mathematics and physics. Dispersive effects due to microstructure of materials combined with nonlinearities give rise to solitary waves. In this article, the new approach of generalized (G′/G-expansion method has been applied to construct general traveling wave solutions of the strain wave equation in microstructured solids. Abundant exact traveling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important role in engineering fields.

  3. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  4. Topological resolution of gauge theory singularities

    Science.gov (United States)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  5. The geometry of warped product singularities

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  6. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  7. DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH

    OpenAIRE

    Beni Utomo

    2012-01-01

    Dekomposisi Nilai Singular atau Singular Value Decomposition (SVD)merupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA).PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan ma...

  8. Singular limit analysis of a model for earthquake faulting

    DEFF Research Database (Denmark)

    Bossolini, Elena; Brøns, Morten; Kristiansen, Kristian Uldall

    2017-01-01

    In this paper we consider the one dimensional spring-block model describing earthquake faulting. By using geometric singular perturbation theory and the blow-up method we provide a detailed description of the periodicity of the earthquake episodes. In particular, the limit cycles arise from...

  9. Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boglaev Igor

    2009-01-01

    Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.

  10. Nuclear power plant sensor fault detection using singular value

    Indian Academy of Sciences (India)

    The validation process consists of two steps: (i) residual generation and (ii) fault detection by residual evaluation.Singular value decomposition (SVD) and Euclidean distance (ED) methods are used to generate the residual and evaluate the fault on the residual space, respectively. This paper claims that SVD-based fault ...

  11. Singularities and computer algebra festschrift for Gert-Martin Greuel on the occasion of his 70th birthday

    CERN Document Server

    Pfister, Gerhard; Schulze, Mathias

    2017-01-01

    This book arose from a conference on “Singularities and Computer Algebra” which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel’s 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra. Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schönemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists. The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.

  12. Box graphs and singular fibers

    International Nuclear Information System (INIS)

    Hayashi, Hirotaka; Lawrie, Craig; Morrison, David R.; Schäfer-Nameki, Sakura

    2014-01-01

    We determine the higher codimension fibers of elliptically fibered Calabi-Yau fourfolds with section by studying the three-dimensional N=2 supersymmetric gauge theory with matter which describes the low energy effective theory of M-theory compactified on the associated Weierstrass model, a singular model of the fourfold. Each phase of the Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass model, and we show that these have a concise description in terms of decorated box graphs based on the representation graph of the matter multiplets, or alternatively by a class of convex paths on said graph. Transitions between phases have a simple interpretation as “flopping' of the path, and in the geometry correspond to actual flop transitions. This description of the phases enables us to enumerate and determine the entire network between them, with various matter representations for all reductive Lie groups. Furthermore, we observe that each network of phases carries the structure of a (quasi-)minuscule representation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis determines the generators of the cone of effective curves as well as the network of flop transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the box graphs we determine all fiber types in codimensions two and three, and we find new, non-Kodaira, fiber types for E 6 , E 7 and E 8

  13. Naked singularity, firewall, and Hawking radiation.

    Science.gov (United States)

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  14. Spacetime averaging of exotic singularity universes

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P.

    2011-01-01

    Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.

  15. On local invariants of singular symplectic forms

    Science.gov (United States)

    Domitrz, Wojciech

    2017-04-01

    We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.

  16. Polynomial Chaos Expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide RF Wien filter

    Science.gov (United States)

    Slim, J.; Rathmann, F.; Nass, A.; Soltner, H.; Gebel, R.; Pretz, J.; Heberling, D.

    2017-07-01

    For the measurement of the electric dipole moment of protons and deuterons, a novel waveguide RF Wien filter has been designed and will soon be integrated at the COoler SYnchrotron at Jülich. The device operates at the harmonic frequencies of the spin motion. It is based on a waveguide structure that is capable of fulfilling the Wien filter condition (E → ⊥ B →) by design. The full-wave calculations demonstrated that the waveguide RF Wien filter is able to generate high-quality RF electric and magnetic fields. In reality, mechanical tolerances and misalignments decrease the simulated field quality, and it is therefore important to consider them in the simulations. In particular, for the electric dipole moment measurement, it is important to quantify the field errors systematically. Since Monte-Carlo simulations are computationally very expensive, we discuss here an efficient surrogate modeling scheme based on the Polynomial Chaos Expansion method to compute the field quality in the presence of tolerances and misalignments and subsequently to perform the sensitivity analysis at zero additional computational cost.

  17. Application of the finite-element method and the eigenmode expansion method to investigate the periodic and spectral characteristic of discrete phase-shift fiber Bragg grating

    Science.gov (United States)

    He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun

    2017-12-01

    The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.

  18. Method development to evaluate steel fiber performance in concrete with expansive additives under restrained hardening conditions: preliminary results

    Science.gov (United States)

    Lukasenoks, A.; Cepuritis, R.

    2017-10-01

    Novel steel molds in form of a rigid cubical shell were developed in order to investigate single steel fiber pull-out resistance in concrete with expansive additive under restrained hardening conditions. The developed steel molds simulate internal (from steel fibers) and external (from friction against sub-base) restraints that hinder expansion of the concrete in a flooring slab structure installed on ground. Samples with a single hooked-end steel fiber, with and without expansive additive were manufactured and tested in the developed mold geometry. The results show that restrained concrete expansion positively affects single fiber pull-out behavior, i.e. fiber delamination resistance is increased by 29.7 % and pull-out peak load by 10.8 %.

  19. Image Denoising Using Singular Value Difference in the Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available Singular value (SV difference is the difference in the singular values between a noisy image and the original image; it varies regularly with noise intensity. This paper proposes an image denoising method using the singular value difference in the wavelet domain. First, the SV difference model is generated for different noise variances in the three directions of the wavelet transform and the noise variance of a new image is used to make the calculation by the diagonal part. Next, the single-level discrete 2-D wavelet transform is used to decompose each noisy image into its low-frequency and high-frequency parts. Then, singular value decomposition (SVD is used to obtain the SVs of the three high-frequency parts. Finally, the three denoised high-frequency parts are reconstructed by SVD from the SV difference, and the final denoised image is obtained using the inverse wavelet transform. Experiments show the effectiveness of this method compared with relevant existing methods.

  20. A Simple Method for Determining Thermal Expansion Coefficient of Solid Materials with a Computer-aided Electromagnetic Dilatometer Measuring System

    Directory of Open Access Journals (Sweden)

    Z. EZZOUINE

    2015-07-01

    Full Text Available In this study, we present a newly designed electromagnetic dilatometer with micrometer accuracy for the measurement of the coefficient of thermal expansion of a solid in the 30 °C – 96 °C temperature range .The device has a graphical user interface to view real time data measurement. Iron and copper were subjected to temperature change in the thermal expansion experiment causing them to expand linearly. The voltage delivered in the electromagnetic dilatometer system, which includes the information about linear expansion and temperature change were transferred to a computer via a data acquisition card, presented by a program created in the LabVIEW environment, and the amount of linear expansion was detected in real time. The minimal change in length of the sample that can be resolved is 5µm, which yields the sensitivity comprised between 10-4 µm and 10-5 µm. In order to calibrate the electromagnetic dilatometer, thermal expansion coefficients of copper and Iron have been measured. By this technique, the thermal expansion coefficient can be determined with an acceptable accuracy. The present results appear also to agree well with those reported previously in the literature.

  1. Existence of positive weak solutions for a class of singular elliptic equations

    Directory of Open Access Journals (Sweden)

    Li Xia

    2011-08-01

    Full Text Available In this note, we are concerned with positive solutions for a class of singular elliptic equations. Under some conditions, we obtain weak solutions for the equations by elliptic regularization method and sub-super solution method.

  2. Factorized cumulant expansion approximation method for turbulence with reacting and mixing chemical elements of type A + B → Product

    International Nuclear Information System (INIS)

    Meshram, M C

    2013-01-01

    The Lewis–Kraichnan space–time version of Hopf functional formalism is considered for the investigation of turbulence with reacting and mixing chemical elements of type A + B → Product. The equations of motion are written in Fourier space. We first define the characteristic functional (or the moments generating functional) for the joint probability distribution of the velocity vector of the flow field and the reactants’ concentration scalar fields and translate the equations of motion in terms of the differential equations for the characteristic functional. These differential equations for the characteristic functional are further written in terms of the second characteristic functional (or the cumulant generating functional). This helps us in obtaining the equations for various order cumulants. We note from these equations for cumulants the characteristic difficulty of the theory of turbulence that the (n + 1)th order cumulant C (n+1) occurs in the equation for the dynamics of nth order cumulant C n . We use the factorized cumulant expansion approximation method for the present investigation. Under this approximation an arbitrary nth order cumulant C n is expressed in terms of the lower-order cumulants C (2) , C (3) and C (n−1) and thus we obtain a closed but untruncated system of equations for the cumulants. On using the factorized fourth-cumulant approximation method a closed set of equations for the reactants’ energy spectrum functions and the reactants’ energy transfer functions are derived. These equations are solved numerically and the similarity laws of the solutions are derived analytically. The statistical quantities such as the reactants’ energy, the reactants’ enstrophy, the reactants’ scale of segregations and so on are calculated numerically and the statistical laws of these quantities are discussed. Also, the scope of this tool for investigation of turbulent phenomena not covered in the present study is discussed. (paper)

  3. CATEGORY OF SINGULARITY, SEMANTIC COMPONENTS ON THE CONCEPTUAL LEVEL (ON THE BASIS OF RUSSIAN AND ENGLISH LANGUAGES)

    OpenAIRE

    Lyudmila Alexandrovna Zapevalova; Sofia Mikhaylovna Platygina

    2015-01-01

    Purpose: defining category of singularity content components on the concept level.Methodology: The method of comparative analysis of languages is taken as the basic one; linguistic description is based on the general scientific induction and deduction methods, analysis, synthesis, classification; definition analysis if used for semantic interpretation.Results: the semantic structure of the category of singularity was analysed, on the basis of the analysis results category of singularity seman...

  4. Quantum transitions through cosmological singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  5. Economías singulares

    Directory of Open Access Journals (Sweden)

    Elvio Alccinelli

    2001-07-01

    Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.

  6. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  7. Gauge-invariance properties and singularity cancellations in a modified PQCD

    Energy Technology Data Exchange (ETDEWEB)

    Cabo, A. [CERN, Theory Division, Geneva (Switzerland); Instituto de Cibernetica, Matematica y Fisica, Group of Theoretical Physics, La Habana (Cuba); Rigol, M. [University of California, Physics Department, Davis, CA (United States)

    2006-07-15

    The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter {alpha}. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the {alpha}-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge-invariance properties. (orig.)

  8. Singular multiparameter dynamic equations with distributional ...

    African Journals Online (AJOL)

    In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...

  9. Building Reproducible Science with Singularity Containers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...

  10. Spectral analysis for differential operators with singularities

    Directory of Open Access Journals (Sweden)

    Vjacheslav Anatoljevich Yurko

    2004-01-01

    Full Text Available Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.

  11. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  12. Timelike Constant Mean Curvature Surfaces with Singularities

    DEFF Research Database (Denmark)

    Brander, David; Svensson, Martin

    2014-01-01

    We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...

  13. Reasons for singularity in robot teleoperation

    DEFF Research Database (Denmark)

    Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth

    2014-01-01

    In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and delay...

  14. On the genericity of spacetime singularities

    Indian Academy of Sciences (India)

    in terms of the incompleteness of non-space-like geodesics in spacetime. It is possible that such ... outside. The above discussion does not imply the absence of singularity-free solutions to Einstein's equations. ..... spherical collapse also turns out to be a stable feature as implied by the singularity theorems discussed above.

  15. The Geometry of Black Hole Singularities

    Directory of Open Access Journals (Sweden)

    Ovidiu Cristinel Stoica

    2014-01-01

    Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.

  16. Nietzsche, immortality, singularity and eternal recurrence | Olivier ...

    African Journals Online (AJOL)

    Moreover, once anything has existed, it is in a certain sense, for Nietzsche, necessary despite its temporal singularity. Therefore, to be able to rise to the task of affirming certain actions or experiences in one's own life, bestows on it not merely this kind of necessary singularity, but what he thought of as 'eternal recurrence' –

  17. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  18. Singularity is the Future of ICT Research

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... tech systems, and how in the near future. Artificial Intelligence may impact our lives, AI, Robotics, nanotechnology, mechatronics are collaborative agents of technological singularity. The singularity is already here! Think of modern houses now remotely controlled from far distances, think of e-commerce and.

  19. Development and Validation of a Three-Dimensional Diffusion Code Based on a High Order Nodal Expansion Method for Hexagonal-z Geometry

    Directory of Open Access Journals (Sweden)

    Daogang Lu

    2016-01-01

    Full Text Available A three-dimensional, multigroup, diffusion code based on a high order nodal expansion method for hexagonal-z geometry (HNHEX was developed to perform the neutronic analysis of hexagonal-z geometry. In this method, one-dimensional radial and axial spatially flux of each node and energy group are defined as quadratic polynomial expansion and four-order polynomial expansion, respectively. The approximations for one-dimensional radial and axial spatially flux both have second-order accuracy. Moment weighting is used to obtain high order expansion coefficients of the polynomials of one-dimensional radial and axial spatially flux. The partially integrated radial and axial leakages are both approximated by the quadratic polynomial. The coarse-mesh rebalance method with the asymptotic source extrapolation is applied to accelerate the calculation. This code is used for calculation of effective multiplication factor, neutron flux distribution, and power distribution. The numerical calculation in this paper for three-dimensional SNR and VVER 440 benchmark problems demonstrates the accuracy of the code. In addition, the results show that the accuracy of the code is improved by applying quadratic approximation for partially integrated axial leakage and four-order approximation for one-dimensional axial spatially flux in comparison to flat approximation for partially integrated axial leakage and quadratic approximation for one-dimensional axial spatially flux.

  20. A Method for Exploring the Link between Urban Area Expansion over Time and the Opportunity for Crime in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mofza Algahtany

    2016-10-01

    Full Text Available Urban area expansion is one of the most critical types of worldwide change, and most urban areas are experiencing increased growth in population and infrastructure development. Urban change leads to many changes in the daily activities of people living within an affected area. Many studies have suggested that urbanization and crime are related. However, they focused particularly on land uses, types of land use, and urban forms, such as the physical features of neighbourhoods, roads, shopping centres, and bus stations. Understanding the correlation between urban area expansion and crime is very important for criminologists and urban planning decision-makers. In this study, we have used satellite images to measure urban expansion over a 10-year period and tested the correlations between these expansions and the number of criminal activities within these specific areas. The results show that there is a measurable relationship between urban expansion and criminal activities. Our findings support the crime opportunity theory as one possibility, which suggests that population density and crime are conceptually related. We found the correlations are stronger where there has been greater urban growth. Many other factors that may affect crime rate are not included in this paper, such as information on the spatial details of the population, city planning, economic considerations, the distance from the city centre, neighbourhood quality, and police numbers. However, this study will be of particular interest to those who aim to use remote sensing to study patterns of crime.

  1. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  2. Singularity: Scientific containers for mobility of compute.

    Directory of Open Access Journals (Sweden)

    Gregory M Kurtzer

    Full Text Available Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  3. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method.

    Science.gov (United States)

    Zhang, Siyuan; Zhou, Shihong; Li, Huaiyong; Li, Ling

    2008-09-01

    The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.

  4. Singularity fitting in hydrodynamical calculations II

    International Nuclear Information System (INIS)

    Richtmyer, R.D.; Lazarus, R.B.

    1975-09-01

    This is the second report in a series on the development of techniques for the proper handling of singularities in fluid-dynamical calculations; the first was called Progress Report on the Shock-Fitting Project. This report contains six main results: derivation of a free-surface condition, which relates the acceleration of the surface with the gradient of the square of the sound speed just behind it; an accurate method for the early and middle stages of the development of a rarefaction wave, two orders of magnitude more accurate than a simple direct method used for comparison; the similarity theory of the collapsing free surface, where it is shown that there is a two-parameter family of self-similar solutions for γ = 3.9; the similarity theory for the outgoing shock, which takes into account the entropy increase; a ''zooming'' method for the study of the asymptotic behavior of solutions of the full initial boundary-value problem; comparison of two methods for determining the similarity parameter delta by zooming, which shows that the second method is preferred. Future reports in the series will contain discussions of the self-similar solutions for this problem, and for that of the collapsing shock, in more detail and for the full range (1, infinity) of γ; the values of certain integrals related to neutronic and thermonuclear rates near collapse; and methods for fitting shocks, contact discontinuities, interfaces, and free surfaces in two-dimensional flows

  5. Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method

    Science.gov (United States)

    Saïdou, Abdoulkary; Alidou, Mohamadou; Ousmanou, Dafounansou; Serge Yamigno, Doka

    2014-12-01

    We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential—difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.

  6. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  7. 32 CFR 1602.22 - Singular and plural.

    Science.gov (United States)

    2010-07-01

    ....22 Singular and plural. Words importing the singular number shall include the plural number, and words importing the plural number shall include the singular, except where the context clearly indicates...

  8. Laplacian growth, elliptic growth, and singularities of the Schwarz potential

    Science.gov (United States)

    Lundberg, Erik

    2011-04-01

    The Schwarz function has played an elegant role in understanding and in generating new examples of exact solutions to the Laplacian growth (or 'Hele-Shaw') problem in the plane. The guiding principle in this connection is the fact that 'non-physical' singularities in the 'oil domain' of the Schwarz function are stationary, and the 'physical' singularities obey simple dynamics. We give an elementary proof that the same holds in any number of dimensions for the Schwarz potential, introduced by Khavinson and Shapiro (1989 Technical Report TRITA-MAT-1989-36 Royal Institute of Technology, Stockholm). An extension is also given for the so-called elliptic growth problem by defining a generalized Schwarz potential. New exact solutions are constructed, and we solve inverse problems of describing the driving singularities of a given flow. We demonstrate, by example, how {C}^n-techniques can be used to locate the singularity set of the Schwarz potential. One of our methods is to prolong available local extension theorems by constructing 'globalizing families'.

  9. Laplacian growth, elliptic growth, and singularities of the Schwarz potential

    International Nuclear Information System (INIS)

    Lundberg, Erik

    2011-01-01

    The Schwarz function has played an elegant role in understanding and in generating new examples of exact solutions to the Laplacian growth (or 'Hele-Shaw') problem in the plane. The guiding principle in this connection is the fact that 'non-physical' singularities in the 'oil domain' of the Schwarz function are stationary, and the 'physical' singularities obey simple dynamics. We give an elementary proof that the same holds in any number of dimensions for the Schwarz potential, introduced by Khavinson and Shapiro (1989 Technical Report TRITA-MAT-1989-36 Royal Institute of Technology, Stockholm). An extension is also given for the so-called elliptic growth problem by defining a generalized Schwarz potential. New exact solutions are constructed, and we solve inverse problems of describing the driving singularities of a given flow. We demonstrate, by example, how C n -techniques can be used to locate the singularity set of the Schwarz potential. One of our methods is to prolong available local extension theorems by constructing 'globalizing families'.

  10. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  11. Over-deterministic method: The influence of rounding numbers on the accuracy of the values of williams’ expansion terms

    Czech Academy of Sciences Publication Activity Database

    Růžička, V.; Malíková, Lucie; Seitl, Stanislav

    2017-01-01

    Roč. 11, č. 42 (2017), s. 128-135 ISSN 1971-8993 R&D Projects: GA ČR GA17-01589S Institutional support: RVO:68081723 Keywords : Over-deterministic * Fracture mechanics * Rounding numbers * Stress field * Williams’ expansion Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  12. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    International Nuclear Information System (INIS)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 0 C and 600 0 C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 mpa, an ultimate tensile strength of 1050 mpa, a compressive yield strength of at least 2% offset of at least 675 mpa, and an elongation of at lea 25% over 25.4 mm/sec. To provide this article with the improv thermal expansion, the uranium alloy billet is heated to 630 0 C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article

  13. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  14. Exponential variational expansion in relative coordinates for highly accurate bound state calculations in four-body systems

    Science.gov (United States)

    Harris, Frank E.; Frolov, Alexei M.; Smith, Vedene H.

    2003-11-01

    Exponential variational expansions in relative coordinates are considered for four-body systems. All matrix elements needed for bound-state calculations are expressed as linear combinations of fifth- and sixth-order derivatives of a basic four-body integral. Computation of the basic four-body integral and its derivatives is performed directly, i.e., without any use of the branch tracking in the complex plane that is required in the Fromm/Hill approach, and by methods that take into account the termwise singularities of the formulas. The final computational procedure is relatively simple, physically transparent, and numerically stable. The methods are illustrated with sample data that show the importance of a singularity-canceling approach and that the increased precision thereby made possible permits more accurate wave function optimization than heretofore.

  15. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Science.gov (United States)

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  16. Singular Null Hypersurfaces in General Relativity

    International Nuclear Information System (INIS)

    Dray, T

    2006-01-01

    Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of

  17. Topology of singular fibers of differentiable maps

    CERN Document Server

    Saeki, Osamu

    2004-01-01

    The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.

  18. Quantization function for attractive, singular potential tails

    International Nuclear Information System (INIS)

    Raab, Patrick N.

    2010-01-01

    The interaction between atoms and molecules with each other are deep potential wells with attractive, singular tails. Bound state energies are determined by a quantization function according to a simple quantization rule. This function is dominantly determined by the singular potential tail for near-threshold states. General expressions for the low- and high-energy contributions of the singular potential tail to the quantization function, as well as the connection to the scattering length are presented in two and three dimensions. Precise analytical expressions for the quantization function are determined for the case of potential tails proportional to -1/r 4 and -1/r 6 for three dimensions. (orig.)

  19. DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH

    Directory of Open Access Journals (Sweden)

    Beni Utomo

    2012-11-01

    Full Text Available Dekomposisi Nilai Singular atau Singular Value Decomposition (SVDmerupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA.PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan matriks U dan Vmemuat eigenvektor yang sudah terurut dari nilai variansi terbesar ke nilai variansiterkecilnya. Variansi terbesar memiliki arti eigenvektor menangkap ciri-ciri yangpaling banyak berubah. Sifat inilah yang dipakai untuk membentuk eigenface.

  20. Singular mean-filed games

    KAUST Repository

    Cirant, Marco

    2016-11-22

    Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.

  1. Quantum singular-value decomposition of nonsparse low-rank matrices

    Science.gov (United States)

    Rebentrost, Patrick; Steffens, Adrian; Marvian, Iman; Lloyd, Seth

    2018-01-01

    We present a method to exponentiate nonsparse indefinite low-rank matrices on a quantum computer. Given access to the elements of the matrix, our method allows one to determine the singular values and their associated singular vectors in time exponentially faster in the dimension of the matrix than known classical algorithms. The method extends to non-Hermitian and nonsquare matrices via matrix embedding. Moreover, our method preserves the phase relations between the singular spaces allowing for efficient algorithms that require operating on the entire singular-value decomposition of a matrix. As an example of such an algorithm, we discuss the Procrustes problem of finding a closest isometry to a given matrix.

  2. Machine vision for timber grading singularities detection and applications

    Science.gov (United States)

    Hittawe, Mohamad Mazen; Sidibé, Désiré; Beya, Ouadi; Mériaudeau, Fabrice

    2017-11-01

    This article deals with machine vision techniques applied to timber grading singularities. Timber used for architectural purposes must satisfy certain mechanical requirements, and, therefore, must be mechanically graded to ensure the manufacturer that the product complies with the requirements. However, the timber material has many singularities, such as knots, cracks, and presence of juvenile wood, which influence its mechanical behavior. Thus, identifying those singularities is of great importance. We address the problem of timber defects segmentation and classification and propose a method to detect timber defects such as cracks and knots using a bag-of-words approach. Extensive experimental results show that the proposed methods are efficient and can improve grading machines performances. We also propose an automated method for the detection of transverse knots, which allows the computation of knot depth ratio (KDR) images. Finally, we propose a method for the detection of juvenile wood regions based on tree rings detection and the estimation of the tree's pith. The experimental results show that the proposed methods achieve excellent results for knots detection, with a recall of 0.94 and 0.95 on two datasets, as well as for KDR image computation and juvenile timber detection.

  3. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    Science.gov (United States)

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2017-12-09

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  4. Asymptotic Solutions of Singular Perturbed Problems with an Instable Spectrum of the Limiting Operator

    Directory of Open Access Journals (Sweden)

    Burkhan T. Kalimbetov

    2012-01-01

    Full Text Available The regularization method is applied for the construction of algorithm for an asymptotical solution for linear singular perturbed systems with the irreversible limit operator. The main idea of this method is based on the analysis of dual singular points of investigated equations and passage in the space of the larger dimension, what reduces to study of systems of first-order partial differential equations with incomplete initial data.

  5. Virtual Assisted Self Interviewing (VASI): An Expansion of Survey Data Collection Methods to the Virtual Worlds by Means of VDCI

    OpenAIRE

    Mark W. Bell; Edward Castronova; Gert G. Wagner

    2009-01-01

    Changes in communication technology have allowed for the expansion of data collection modes in survey research. The proliferation of the computer has allowed the creation of web and computer assisted auto-interview data collection modes. Virtual worlds are a new application of computer technology that once again expands the data collection modes by VASI (Virtual Assisted Self Interviewing). The Virtual Data Collection Interface (VDCI) developed at Indiana University in collaboration with the ...

  6. Algunas aclaraciones acerca del conocimiento del singular.

    Directory of Open Access Journals (Sweden)

    Carlos Llano Cifuentes

    2013-11-01

    Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.

  7. Technological Singularity: What Do We Really Know?

    Directory of Open Access Journals (Sweden)

    Alexey Potapov

    2018-04-01

    Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.

  8. Approximate Uniqueness Estimates for Singular Correlation Matrices.

    Science.gov (United States)

    Finkbeiner, C. T.; Tucker, L. R.

    1982-01-01

    The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)

  9. Stable computation of generalized singular values

    Energy Technology Data Exchange (ETDEWEB)

    Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.

  10. Finite conformal quantum gravity and spacetime singularities

    Science.gov (United States)

    Modesto, Leonardo; Rachwał, Lesław

    2017-12-01

    We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.

  11. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    Science.gov (United States)

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  12. Multiscale singular value manifold for rotating machinery fault diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Lu, BaoChun; Zhang, Deng Feng [School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing (United States)

    2017-01-15

    Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time domain. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is proposed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is superior in rotating machinery fault diagnosis.

  13. Inverse Kinematics and Singularity Analysis for a 3-DOF Hybrid-Driven Cable-Suspended Parallel Robot

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2012-10-01

    Full Text Available This paper addresses the kinematics and graphical representation of the singularity configuration of a hybrid-driven cable-suspended parallel robot (HDCPR with three translational degrees of freedom (DOFs. Applying the closed-loop vector method and geometric methodology, inverse kinematics of the HDCPR needed for singularity analysis is performed. For the sake of singularity condition calculation within the reachable workspace, the procedure utilizing analytical methodology and gradual search algorithm is presented. Simulation results demonstrate the validity of the kinematics and singularity analysis developed.

  14. Plasmonic resonance scattering from silver nanowire illuminated by tightly focused singular beam.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2010-08-15

    We investigate scattering features of tightly focused singular beams by placing a cylindrical nanowire in the vicinity of a line phase singularity. Applying an illumination wavelength corresponding to silver cylinder plasmonic resonance, we compare the scattering response with that of a perfect conductor. The rigorous modeling employs a 2D version of the Richards-Wolf focusing method and the source model technique. It is found that a cylinder with a plasmonic resonance produces a strong scattering response by deflecting the power flow toward the optical singularity region, where otherwise the power approaches zero.

  15. Adaptive Control of the Chaotic System via Singular System Approach

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2014-01-01

    Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.

  16. Canard solutions of two-dimensional singularly perturbed systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xianfeng [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: chenxf@sjtu.edu.cn; Yu Pei [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Applied Mathematics, University of Western Ontario London, Ont., N6A 5B7 (Canada); Han Maoan [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Weijiang [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2005-02-01

    In this paper, some new lemmas on asymptotic analysis are established. We apply an asymptotic method to study generalized two-dimensional singularly perturbed systems with one parameter, whose critical manifold has an m-22 th-order degenerate extreme point. Certain sufficient conditions are obtained for the existence of canard solutions, which are the extension and correction of some existing results. Finally, one numerical example is given.

  17. Biplot and Singular Value Decomposition Macros for Excel©

    OpenAIRE

    Lipkovich, Ilya A.; Smith, Eric P.

    2002-01-01

    The biplot display is a graph of row and column markers obtained from data that forms a two-way table. The markers are calculated from the singular value decomposition of the data matrix. The biplot display may be used with many multivariate methods to display relationships between variables and objects. It is commonly used in ecological applications to plot relationships between species and sites. This paper describes a set of Excel macros that may be used to draw a biplot display based ...

  18. Cosmological solutions and finite time singularities in Finslerian geometry

    Science.gov (United States)

    Paul, Nupur; de, S. S.; Rahaman, Farook

    2018-03-01

    We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.

  19. Singular solitons of generalized Camassa-Holm models

    International Nuclear Information System (INIS)

    Tian Lixin; Sun Lu

    2007-01-01

    Two generalizations of the Camassa-Holm system associated with the singular analysis are proposed for Painleve integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painleve property, Painleve-Baecklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived

  20. Cosmological singularity theorems for f ( R ) gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Alani, Ivo [Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina); Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar [Instituto de Matemáticas Luis Santaló (IMAS), Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina)

    2016-05-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  1. Leading singularities and off-shell conformal integrals

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, James; Duhr, Claude; Eden, Burkhard; Heslop, Paul; Pennington, Jeffrey; Smirnov, Vladimir A.

    2013-08-29

    The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certain limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.

  2. Cosmological singularity theorems for f ( R ) gravity theories

    International Nuclear Information System (INIS)

    Alani, Ivo; Santillán, Osvaldo P.

    2016-01-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T ij −( g ij /2) T ) k i k j ≥ 0 for any generic unit time like field k i ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  3. Heat transfer characteristics of UF6 in a container heated from outer surface. Pt. 1. Thermal hydraulic analysis method taking account of phase change and volume expansion

    International Nuclear Information System (INIS)

    Wataru, Masumi; Gomi, Yoshio; Yamakawa, Hidetsugu; Tsumune, Daisuke

    1995-01-01

    Natural UF6 is transported in a steel container from foreign countries to the enrichment plant in Japan. If the container meets fire accident, it is heated by fire (800degC) and rupture of the container may occur. For the safety point of view, it is necessary to know whether rupture occurs or not. Because UF6 has a radiological and chemical hazards, it is difficult to perform a demonstration test with UF6. So thermal calculation method has to be developed. The rupture is caused by UF6 gaseous pressure or volume expansion of liquid UF6. To know time history of internal pressure and temperature distribution in the container, it is important to evaluate thermal phenomena of UF6. When UF6 is heated, it changes from solid to liquid or gas at low temperature (64degC) and then its volume expands little by little. In this study, thermal calculation method has been developed taking phase change and thermal expansion of UF6 into account. In the calculation, a two-dimensional model is adopted and natural convection of liquid UF6 is analyzed. As a result of this study, numerical solutions have been obtained taking phase change and volume expansion into account. (author)

  4. Prompt form of relativistic equations of motion in a model of singular lagrangian formalism

    International Nuclear Information System (INIS)

    Gajda, R.P.; Duviryak, A.A.; Klyuchkovskij, Yu.B.

    1983-01-01

    The purpose of the paper is to develope the way of transition from equations of motion in singular lagrangian formalism to three-dimensional equations of Newton type in the prompt form of dynamics in the framework of c -2 parameter expansion (s. c. quasireltativistic approaches), as well as to find corresponding integrals of motion. The first quasirelativistifc approach for Dominici, Gomis, Longhi model was obtained and investigated

  5. Short distance singularities and automatic O(a) improvement. The cases of the chiral condensate and the topological susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Collaboration: European Twisted Mass Collaboration

    2014-12-15

    Short-distance singularities in lattice correlators can modify their Symanzik expansion by leading to additional O(a) lattice artifacts. At the example of the chiral condensate and the topological susceptibility, we show how to account for these lattice artifacts for Wilson twisted mass fermions and show that the property of automatic O(a) improvement is preserved at maximal twist.

  6. Short distance singularities and automatic O(a) improvement: the cases of the chiral condensate and the topological susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [NIC, DESY,Platanenallee 6, Zeuthen, 15738 (Germany); Adam Mickiewicz University, Faculty of Physics,Umultowska 85, Poznan, 61-614 (Poland); Garcia-Ramos, Elena [NIC, DESY,Platanenallee 6, Zeuthen, 15738 (Germany); Humboldt Universität zu Berlin,Newtonstrasse 15, Berlin, 12489 (Germany); Jansen, Karl [NIC, DESY,Platanenallee 6, Zeuthen, 15738 (Germany)

    2015-04-10

    Short-distance singularities in lattice correlators can modify their Symanzik expansion by leading to additional O(a) lattice artifacts. At the example of the chiral condensate and the topological susceptibility, we show how to account for these lattice artifacts for Wilson twisted mass fermions and show that the property of automatic O(a) improvement is preserved at maximal twist.

  7. A Singular Finite Element on the Mixed-Mode Bimaterial Interfacial Cracks

    Science.gov (United States)

    Yao, W. A.; Hu, X. F.

    2012-07-01

    A singular finite element is presented to study the mixed-mode Dugdale-model-based bimaterial interfacial cracks. Firstly, the bimaterial interfacial crack problem is led into the symplectic space, and the symplectic dual equation is obtained and solved analytically. The cohesive stresses of the Dugdale model are treated as special solutions. Subsequently, the analytical solution is employed to develop a novel singular finite element, which depicts accurately the characteristic of displacements and singular stress fields near the crack tip. Finally, combining the singular finite element and conventional finite element method, the length of plastic zone, crack tip opening, and/or sliding displacement can be solved by iteration. Numerical examples are given to illustrate the validity of the present method.

  8. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion

    International Nuclear Information System (INIS)

    Yu Mingzhou; Lin Jianzhong; Jin Hanhui; Jiang Ying

    2011-01-01

    The closure of moment equations for nanoparticle coagulation due to Brownian motion in the entire size regime is performed using a newly proposed method of moments. The equations in the free molecular size regime and the continuum plus near-continuum regime are derived separately in which the fractal moments are approximated by three-order Taylor-expansion series. The moment equations for coagulation in the entire size regime are achieved by the harmonic mean solution and the Dahneke’s solution. The results produced by the quadrature method of moments (QMOM), the Pratsinis’s log-normal moment method (PMM), the sectional method (SM), and the newly derived Taylor-expansion moment method (TEMOM) are presented and compared in accuracy and efficiency. The TEMOM method with Dahneke’s solution produces the most accurate results with a high efficiency than other existing moment models in the entire size regime, and thus it is recommended to be used in the following studies on nanoparticle dynamics due to Brownian motion.

  9. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion

    Science.gov (United States)

    Yu, Mingzhou; Lin, Jianzhong; Jin, Hanhui; Jiang, Ying

    2011-05-01

    The closure of moment equations for nanoparticle coagulation due to Brownian motion in the entire size regime is performed using a newly proposed method of moments. The equations in the free molecular size regime and the continuum plus near-continuum regime are derived separately in which the fractal moments are approximated by three-order Taylor-expansion series. The moment equations for coagulation in the entire size regime are achieved by the harmonic mean solution and the Dahneke's solution. The results produced by the quadrature method of moments (QMOM), the Pratsinis's log-normal moment method (PMM), the sectional method (SM), and the newly derived Taylor-expansion moment method (TEMOM) are presented and compared in accuracy and efficiency. The TEMOM method with Dahneke's solution produces the most accurate results with a high efficiency than other existing moment models in the entire size regime, and thus it is recommended to be used in the following studies on nanoparticle dynamics due to Brownian motion.

  10. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    Science.gov (United States)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  11. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, R.; Zahran, M.A.; Fan Engui

    2004-05-31

    A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found.

  12. Biplot and Singular Value Decomposition Macros for Excel©

    Directory of Open Access Journals (Sweden)

    Ilya A. Lipkovich

    2002-06-01

    Full Text Available The biplot display is a graph of row and column markers obtained from data that forms a two-way table. The markers are calculated from the singular value decomposition of the data matrix. The biplot display may be used with many multivariate methods to display relationships between variables and objects. It is commonly used in ecological applications to plot relationships between species and sites. This paper describes a set of Excel macros that may be used to draw a biplot display based on results from principal components analysis, correspondence analysis, canonical discriminant analysis, metric multidimensional scaling, redundancy analysis, canonical correlation analysis or canonical correspondence analysis. The macros allow for a variety of transformations of the data prior to the singular value decomposition and scaling of the markers following the decomposition.

  13. Quantum Coherent States and Path Integral Method to Stochastically Determine the Anisotropic Volume Expansion in Lithiated Silicon Nanowires

    Directory of Open Access Journals (Sweden)

    Donald C. Boone

    2017-10-01

    Full Text Available This computational research study will analyze the multi-physics of lithium ion insertion into a silicon nanowire in an attempt to explain the electrochemical kinetics at the nanoscale and quantum level. The electron coherent states and a quantum field version of photon density waves will be the joining theories that will explain the electron-photon interaction within the lithium-silicon lattice structure. These two quantum particles will be responsible for the photon absorption rate of silicon atoms that are hypothesized to be the leading cause of breaking diatomic silicon covalent bonds that ultimately leads to volume expansion. It will be demonstrated through the combination of Maxwell stress tensor, optical amplification and path integrals that a stochastic analyze using a variety of Poisson distributions that the anisotropic expansion rates in the <110>, <111> and <112> orthogonal directions confirms the findings ascertained in previous works made by other research groups. The computational findings presented in this work are similar to those which were discovered experimentally using transmission electron microscopy (TEM and simulation models that used density functional theory (DFT and molecular dynamics (MD. The refractive index and electric susceptibility parameters of lithiated silicon are interwoven in the first principle theoretical equations and appears frequently throughout this research presentation, which should serve to demonstrate the importance of these parameters in the understanding of this component in lithium ion batteries.

  14. Analysis of scintigrams by singular value decomposition (SVD) technique

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S.E.; Liewendahl, B.K. (Helsinki Univ. (Finland). Dept. of Physics)

    1994-05-01

    The singular value decomposition (SVD) method is presented as a potential tool for analyzing gamma camera images. Mathematically image analysis is a study of matrixes as the standard scintigram is a digitized matrix presentation of the recorded photon fluence from radioactivity of the object. Each matrix element (pixel) consists of a number, which equals the detected counts of the object position. The analysis of images can be reduced to the analysis of the singular values of the matrix decomposition. In the present study the clinical usefulness of SVD was tested by analyzing two different kinds of scintigrams: brain images by single photon emission tomography (SPET), and liver and spleen planar images. It is concluded that SVD can be applied to the analysis of gamma camera images, and that it provides an objective method for interpretation of clinically relevant information contained in the images. In image filtering, SVD provides results comparable to conventional filtering. In addition, the study of singular values can be used for semiquantitation of radionuclide images as exemplified by brain SPET studies and liver-spleen planar studies. (author).

  15. Homogeneous Solutions of Stationary Navier-Stokes Equations with Isolated Singularities on the Unit Sphere. I. One Singularity

    Science.gov (United States)

    Li, Li; Li, YanYan; Yan, Xukai

    2018-03-01

    We classify all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south pole, parameterize them as a two dimensional surface with boundary, and analyze their pressure profiles near the north pole. Then we prove that there is a curve of (-1)-homogeneous axisymmetric solutions with nonzero swirl, having the same smoothness property, emanating from every point of the interior and one part of the boundary of the solution surface. Moreover we prove that there is no such curve of solutions for any point on the other part of the boundary. We also establish asymptotic expansions for every (-1)-homogeneous axisymmetric solutions in a neighborhood of the singular point on the unit sphere.

  16. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  17. Measurement method of compressibility and thermal expansion coefficients for density standard liquid at 2329 kg/m3 based on hydrostatic suspension principle

    Science.gov (United States)

    Wang, Jintao; Liu, Ziyong; Xu, Changhong; Li, Zhanhong

    2014-07-01

    The accurate measurement on the compressibility and thermal expansion coefficients of density standard liquid at 2329kg/m3 (DSL-2329) plays an important role in the quality control for silicon single crystal manufacturing. A new method is developed based on hydrostatic suspension principle in order to determine the two coefficients with high measurement accuracy. Two silicon single crystal samples with known density are immersed into a sealed vessel full of DSL-2329. The density of liquid is adjusted with varying liquid temperature and static pressure, so that the hydrostatic suspension of two silicon single crystal samples is achieved. The compression and thermal expansion coefficients are then calculated by using the data of temperature and static pressure at the suspension state. One silicon single crystal sample can be suspended at different state, as long as the liquid temperature and static pressure function linearly according to a certain mathematical relationship. A hydrostatic suspension experimental system is devised with the maximal temperature control error ±50 μK; Silicon single crystal samples can be suspended by adapting the pressure following the PID method. By using the method based on hydrostatic suspension principle, the two key coefficients can be measured at the same time, and measurement precision can be improved due to avoiding the influence of liquid surface tension. This method was further validated experimentally, where the mixture of 1, 2, 3-tribromopropane and 1,2-dibromoethane is used as DSL-2329. The compressibility and thermal expansion coefficients were measured, as 8.5×10-4 K-1 and 5.4×1010 Pa-1, respectively.

  18. Planar ESPAR Array Design with Nonsymmetrical Pattern by Means of Finite-Element Method, Domain Decomposition, and Spherical Wave Expansion

    Directory of Open Access Journals (Sweden)

    Jesús García

    2012-01-01

    Full Text Available The application of a 3D domain decomposition finite-element and spherical mode expansion for the design of planar ESPAR (electronically steerable passive array radiator made with probe-fed circular microstrip patches is presented in this work. A global generalized scattering matrix (GSM in terms of spherical modes is obtained analytically from the GSM of the isolated patches by using rotation and translation properties of spherical waves. The whole behaviour of the array is characterized including all the mutual coupling effects between its elements. This procedure has been firstly validated by analyzing an array of monopoles on a ground plane, and then it has been applied to synthesize a prescribed radiation pattern optimizing the reactive loads connected to the feeding ports of the array of circular patches by means of a genetic algorithm.

  19. Preconditioning for Singular Perturbation Problems.

    Science.gov (United States)

    1986-08-01

    methods for the solution of (1.1) - see (181, [19]. Almost all iterative methods, including the multigrid methods [14] can be cast in the framework of a...techniques", SIAM J. Numer. Anal., Ser. B. 2, 1 (1964). (14] McCormick, S. F., ed., " Multigrid Methods ", SIAM series on Frontiers of Applied Mathematics 5

  20. Analytical study for singular system of transistor circuits

    Directory of Open Access Journals (Sweden)

    Devendra Kumar

    2014-06-01

    Full Text Available In this paper, we propose a user friendly algorithm based on homotopy analysis transform method for solving observer design in generalized state space or singular system of transistor circuits. The homotopy analysis transform method is an innovative adjustment in Laplace transform method and makes the calculation much simpler. The effectiveness of technique is described and illustrated with an example. The obtained results are in a good agreement with the existing ones in open literature and it is shown that the scheme proposed here is robust, efficient, easy to implement and computationally very attractive.

  1. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  2. Geometrical shock dynamics, formation of singularities and topological bifurcations of converging shock fronts

    Science.gov (United States)

    Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco

    2014-11-01

    We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.

  3. Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems

    CERN Document Server

    Burban, Igor

    2017-01-01

    In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \\mathbb{k} x,y,z/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.

  4. Propagation-inside-layer-expansion method combined with physical optics for scattering by coated cylinders, a rough layer, and an object below a rough surface.

    Science.gov (United States)

    Bourlier, Christophe; Pinel, Nicolas; Kubické, Gildas

    2013-09-01

    In this article, the fields scattered by coated cylinders, a rough layer, and an object below a rough surface are computed by the efficient propagation-inside-layer-expansion (PILE) method combined with the physical optics (PO) approximation to accelerate the calculation of the local interactions on the non-illuminated scatterer, which is assumed to be perfectly conducting. The PILE method is based on the method of moments, and the impedance matrix of the two scatterers is then inverted by blocks from a Taylor series expansion of the inverse of the Schur complement. Its main interest is that it is rigorous, with a simple formulation and a straightforward physical interpretation. In addition, one of the advantages of PILE is to be able to hybridize methods (rigorous or asymptotic) valid for a single scatterer. Then, in high frequencies, the hybridization with PO allows us to significantly reduce the complexity in comparison to a direct lower-upper inversion of the impedance matrix of the two scatterers without loss in accuracy.

  5. Singularity hypotheses a scientific and philosophical assessment

    CERN Document Server

    Moor, James; Søraker, Johnny; Steinhart, Eric

    2012-01-01

    Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.

  6. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  7. Holographic subregion complexity for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2017-10-15

    Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)

  8. Singular and degenerate cauchy problems

    CERN Document Server

    Carroll, R.W

    1976-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  9. Removal of apparent singularity in grid computations

    International Nuclear Information System (INIS)

    Jakubovics, J.P.

    1993-01-01

    A self-consistency test for magnetic domain wall models was suggested by Aharoni. The test consists of evaluating the ratio S = var-epsilon wall /var-epsilon wall , where var-epsilon wall is the wall energy, and var-epsilon wall is the integral of a certain function of the direction cosines of the magnetization, α, β, γ over the volume occupied by the domain wall. If the computed configuration is a good approximation to one corresponding to an energy minimum, the ratio is close to 1. The integrand of var-epsilon wall contains terms that are inversely proportional to γ. Since γ passes through zero at the centre of the domain wall, these terms have a singularity at these points. The integral is finite and its evaluation does not usually present any problems when the direction cosines are known in terms of continuous functions. In many cases, significantly better results for magnetization configurations of domain walls can be obtained by computations using finite element methods. The direction cosines are then only known at a set of discrete points, and integration over the domain wall is replaced by summation over these points. Evaluation of var-epsilon wall becomes inaccurate if the terms in the summation are taken to be the values of the integrand at the grid points, because of the large contribution of points close to where γ changes sign. The self-consistency test has recently been generalised to a larger number of cases. The purpose of this paper is to suggest a method of improving the accuracy of the evaluation of integrals in such cases. Since the self-consistency test has so far only been applied to two-dimensional magnetization configurations, the problem and its solution will be presented for that specific case. Generalisation to three or more dimensions is straight forward

  10. Singular vectors for the WN algebras

    Science.gov (United States)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  11. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  12. On spherically symmetric shear-free perfect fluid configurations (neutral and charged). II. Equation of state and singularities

    International Nuclear Information System (INIS)

    Sussman, R.A.

    1988-01-01

    Geometrical and physical properties of the solutions derived and classified in Part I [J. Math. Phys. 28, 1118 (1987)] are examined in detail. It is shown how the imposition of zero shear restricts the possible choices of equations of state. Two types of singular boundaries arising in these solutions are examined by verifying the local behavior of causal curves approaching these boundaries. For this purpose, a criterion due to C. J. S. Clarke (private communication) is given, allowing one to test the completeness of arbitrary accelerated timelike curves in terms of their acceleration and proper time. One of these boundaries is a spacelike singularity at which causal curves terminate as pressure diverges but matter-energy and charge densities remain finite. At the other boundary, which is timelike if the expansion Θ is finite, proper volume of local fluid elements vanishes as all state variables diverge but causal curves are complete. If Θ diverges at this boundary, a null singularity arises as the end product of the collapse of a two-sphere generated by a given class of timelike curves. The gravitational collapse of bounded spheres matched to a Schwarzschild or Reissner--Nordstroem exterior is also examined in detail. It is shown that the spacelike singularity mentioned above could be naked under certain parameter choices. Solutions presenting the other boundary produce very peculiar black holes in which the ''surface'' of the sphere collapses into the above mentioned null singularity, while the ''interior'' fluid layers avoid this singularity and evolve towards their infinite future

  13. Interaction of two singular Lissajous lines in free space.

    Science.gov (United States)

    Chen, Haitao; Gao, Zenghui; Wang, Wanqing

    2017-05-20

    The interaction of two singular Lissajous lines emergent from a polychromatic vector beam is studied. It is shown that singular Lissajous lines disappear with propagation; meanwhile Lissajous singularities take place. The handedness reversal, the changes in the shape of Lissajous figures, and the degree of polarization of Lissajous singularities, as well as the creation and annihilation of a single singularity, may appear by varying the control parameters. In addition, the transformation of the shape of line h=0, the creation and annihilation of pairs of Lissajous singularities not only with opposite topological charge and same handedness, but also with same degree of polarization, take place with propagation.

  14. Maslov indices, Poisson brackets, and singular differential forms

    Science.gov (United States)

    Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.

    2014-06-01

    Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.

  15. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  16. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G'/G)-expansion method including the generalized Riccati equation

    Science.gov (United States)

    Tala-Tebue, E.; Tsobgni-Fozap, D. C.; Kenfack-Jiotsa, A.; Kofane, T. C.

    2014-06-01

    Using the Jacobi elliptic functions and the alternative ( G'/ G-expansion method including the generalized Riccati equation, we derive exact soliton solutions for a discrete nonlinear electrical transmission line in (2+1) dimension. More precisely, these methods are general as they lead us to diverse solutions that have not been previously obtained for the nonlinear electrical transmission lines. This study seeks to show that it is not often necessary to transform the equation of the network into a well-known differential equation before finding its solutions. The solutions obtained by the current methods are generalized periodic solutions of nonlinear equations. The shape of solutions can be well controlled by adjusting the parameters of the network. These exact solutions may have significant applications in telecommunication systems where solitons are used to codify or for the transmission of data.

  17. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees,...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. Two types of pressure fluctuations can be considered. - 'Local ' fluctuations: They are associated to the unsteadiness downstream from the singularity. These fluctuations may be characterized by frequency spectra, correlation length and phase lags. These parameters are used to calculate forces on the walls of the circuit. - 'Acoustic' fluctuations: The singularity acts as an acoustical source; its frequency spectrum and the acoustical transfer function of the circuit are needed to evaluate the acoustical level at any point. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T.: - On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic idea initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. - On the other hand, characteristics of several singularities have been measured: (i) Intercorrelation spectra of local pressure fluctuations. (ii) Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit). (Auth.)

  18. dS/CFT and the operator product expansion

    Science.gov (United States)

    Chatterjee, Atreya; Lowe, David A.

    2017-09-01

    Global conformal invariance determines the form of two- and three-point functions of quasiprimary operators in a conformal field theory and generates nontrivial relations between terms in the operator product expansion. These ideas are generalized to the principal and complementary series representations, which play an important role in the conjectured dS/CFT correspondence. The conformal partial wave expansions are constructed for these representations, which in turn determine the operator product expansion. This leads us to conclude that conformal field theories containing such representations have essential singularities, so they cannot be realized as conventional field theories.

  19. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  20. A singularity theorem based on spatial averages

    Indian Academy of Sciences (India)

    Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating ...

  1. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  2. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.

    2011-01-01

    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  3. Classical resolution of singularities in dilaton cosmologies

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to

  4. Mobile communications technology: The singular factor responsible ...

    African Journals Online (AJOL)

    This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...

  5. Polynomial computation of Hankel singular values

    NARCIS (Netherlands)

    Kwakernaak, H.

    1992-01-01

    A revised and improved version of a polynomial algorithm is presented. It was published by N.J. Young (1990) for the computation of the singular values and vectors of the Hankel operator defined by a linear time-invariant system with a rotational transfer matrix. Tentative numerical experiments

  6. Singular Nonlinear H∞ Optimal Control Problem

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1996-01-01

    The theory of nonlinear H∞ optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for

  7. Ray tracing in anisotropic media with singularities

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2001-01-01

    Roč. 145, č. 1 (2001), s. 265-276 ISSN 0956-540X R&D Projects: GA ČR GA205/00/1350 Institutional research plan: CEZ:AV0Z3012916 Keywords : anisotropic media * ray tracing * singularities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.366, year: 2001

  8. Inverting dedevelopment: geometric singularity theory in embryology

    Science.gov (United States)

    Bookstein, Fred L.; Smith, Bradley R.

    2000-10-01

    The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.

  9. On the genericity of spacetime singularities

    Indian Academy of Sciences (India)

    the framework of a general spacetime without any symmetry conditions, in terms of the overall behaviour of .... We now outline the basic idea and the chain of logic behind the proof of a typical singularity theorem ..... a detailed investigation of the dynamics of gravitational collapse within the frame- work of Einstein's theory.

  10. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  11. Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes

    Science.gov (United States)

    Saini, Sahil; Singh, Parampreet

    2018-03-01

    We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.

  12. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates

    Science.gov (United States)

    Czakó, Gábor; Szalay, Viktor; Császár, Attila G.; Furtenbacher, Tibor

    2005-01-01

    Two methods are developed, when solving the related time-independent Schrödinger equation (TISE), to cope with the singular terms of the vibrational kinetic energy operator of a triatomic molecule given in orthogonal internal coordinates. The first method provides a mathematically correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear combinations of functions of a three-dimensional nondirect-product basis, where basis functions are formed by coupling Bessel-DVR functions, where DVR stands for discrete variable representation, depending on distance-type coordinates and Legendre polynomials depending on angle bending. In the second method one of the singular terms related to a distance-type coordinate, deemed to be unimportant for spectroscopic applications, is given no special treatment. Here the basis set is obtained by taking the direct product of a one-dimensional DVR basis with a two-dimensional nondirect-product basis, the latter formed by coupling Bessel-DVR functions and Legendre polynomials. With the basis functions defined, matrix representations of the TISE are set up and solved numerically to obtain the vibrational energy levels of H3+. The numerical calculations show that the first method treating all singularities is computationally inefficient, while the second method treating properly only the singularities having physical importance is quite efficient.

  13. São Carlos Workshop on Real and Complex Singularities

    CERN Document Server

    Ruas, Maria

    2007-01-01

    The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.

  14. A Note on Inclusion Intervals of Matrix Singular Values

    OpenAIRE

    Cui, Shu-Yu; Tian, Gui-Xian

    2012-01-01

    We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  15. New travelling wave solutions of the (1 + 1-dimensional cubic nonlinear Schrodinger equation using novel (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2016-06-01

    Full Text Available In this paper, the novel (G′/G-expansion method is applied to construct exact travelling wave solutions of the cubic nonlinear Schrodinger equation. This technique is straightforward and simple to use, and gives more new general solutions than the other existing methods. Various types of solitary and periodic wave solutions of this equation are derived. The obtained results may be helpful to describe the wave propagation in soliton physics, such as soliton propagation in optical fibers, modulus instability in plasma physics, etc. and provided us the firm mathematical foundation in soliton physics or any varied instances. Furthermore, three-dimensional modules plot of the solutions are also given to visualize the dynamics of the equation.

  16. Exact Solutions of the Time Fractional BBM-Burger Equation by Novel (G′/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Muhammad Shakeel

    2014-01-01

    Full Text Available The fractional derivatives are used in the sense modified Riemann-Liouville to obtain exact solutions for BBM-Burger equation of fractional order. This equation can be converted into an ordinary differential equation by using a persistent fractional complex transform and, as a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions are attained. The performance of the method is reliable, useful, and gives newer general exact solutions with more free parameters than the existing methods. Numerical results coupled with the graphical representation completely reveal the trustworthiness of the method.

  17. Singular Initial Value Problem for Certain Classes of Systems of Ordinary Differential Equations

    Directory of Open Access Journals (Sweden)

    Josef Diblík

    2013-01-01

    dimension of the set of initial data generating such solutions is estimated. An asymptotic behavior of solutions is determined as well and relevant asymptotic formulas are derived. The method of functions defined implicitly and the topological method (Ważewski's method are used in the proofs. The results generalize some previous ones on singular initial value problems for differential equations.

  18. B-spline solution of a singularly perturbed boundary value problem arising in biology

    International Nuclear Information System (INIS)

    Lin Bin; Li Kaitai; Cheng Zhengxing

    2009-01-01

    We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.

  19. Precision of total energy and orbital energies with the expansion method for the optimized effective Kohn-Sham potential

    NARCIS (Netherlands)

    Rohr, D.; Gritsenko, O.V.; Baerends, E.J.

    2006-01-01

    For functionals that depend on the Kohn-Sham orbitals, the optimized effective potential method (OEP) of density functional theory (DFT) seeks a lowest energy solution by finding that particular local potential v

  20. Stability of naked singularity arising in gravitational collapse of Type ...

    Indian Academy of Sciences (India)

    ... )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set ...