Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has ...
Fiedler, B.; Schimming, R.
A formal power series ansatz is used to obtain a convergence proof that the fourth-order gravitational field equations proposed by Treder (1977) with a linear combination of Bach's (1921) tensor and Einstein's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and nonflat in some neighborhood of the center of symmetry. Conformal invariance is attained by means of a scalar gauge field.
Stability of naked singularity arising in gravitational collapse of Type ...
Indian Academy of Sciences (India)
to choose the velocity function and rest of the initial data so that the end state of collapse is either a black hole (BH) or a naked singularity (NS). This result is significant for two reasons: (1) It produces a substantially 'big' initial data set which under gravitational collapse results into a naked singularity. (2) Type I matter fields.
Geodesic fields with singularities
International Nuclear Information System (INIS)
Kafker, A.H.
1979-01-01
The question considered is whether or not a Riemannian metric can be found to make a given curve field on a closed surface into geodesics. Allowing singularities removes the restriction to Euler characteristic zero. The main results are the following: only two types of isolated singularities can occur in a geodesic field on a surface. No geodsic fields exist on a surface with Euler characteristic less than zero. If the Euler characteristic is zero, such a geodesic field can have only removable singularities. Only a limited number of geodesic fields exist on S 2 and RP 2 . A closed geodesic (perhaps made from several curves and singularities) always appears in such a field
International Nuclear Information System (INIS)
Fiedler, B.; Schimming, R.
1983-01-01
The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)
Energy Technology Data Exchange (ETDEWEB)
Fiedler, B.; Schimming, R.
1983-01-01
The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry.
Stability of naked singularity arising in gravitational collapse of Type ...
Indian Academy of Sciences (India)
big' ... data in spherically symmetric gravitational collapse for Type I matter fields. ... data. In §2, we briefly summarize the analysis given in [3] and state the conditions on the initial data under which the collapse will lead to a naked singularity.
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
International Nuclear Information System (INIS)
Chen, Yu-Zhu; Li, Wen-Du; Dai, Wu-Sheng
2017-01-01
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)
2017-12-15
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
Fiedler, B.; Guenther, M.
Fiedler and Schimming (1983) proved that the fourth order gravitational field equations with a linear combination of Bach's and Einstein's tensors on the left-hand side, which were proposed by Treder, admit static centrally symmetric solutions which are analytical and non-flat in some neighbourhood of the centre of symmetry. The existence of these solutions, known at first only in a small neighbourhood of r = 0 (r radius), can now be extended to intervals 0 ≤ r ≤ α with arbitrarily large α.
International Nuclear Information System (INIS)
Tevikyan, R.V.
1986-01-01
This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory
Two-Sided Gravitational Mirror: Sealing off Curvature Singularities
Davidson, Aharon; Yellin, Ben
2011-01-01
A gravitational mirror is a non-singular finite redshift surface which bounces all incident null geodesics. While a white mirror (outward bouncing) resembles 't Hooft's brick wall, a black mirror (inward bouncing) offers a novel mechanism for sealing off curvature singularities. The geometry underlying a two-sided mirror is characterized by a single signature change, to be contrasted with the signature flip which governs the black hole geometry. To demonstrate the phenomenon analytically, we ...
Quantum gravitational collapse: non-singularity and non-locality
International Nuclear Information System (INIS)
Greenwood, Eric; Stojkovic, Dejan
2008-01-01
We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.
Second-order singular pertubative theory for gravitational lenses
Alard, C.
2018-03-01
The extension of the singular perturbative approach to the second order is presented in this paper. The general expansion to the second order is derived. The second-order expansion is considered as a small correction to the first-order expansion. Using this approach, it is demonstrated that in practice the second-order expansion is reducible to a first order expansion via a re-definition of the first-order pertubative fields. Even if in usual applications the second-order correction is small the reducibility of the second-order expansion to the first-order expansion indicates a potential degeneracy issue. In general, this degeneracy is hard to break. A useful and simple second-order approximation is the thin source approximation, which offers a direct estimation of the correction. The practical application of the corrections derived in this paper is illustrated by using an elliptical NFW lens model. The second-order pertubative expansion provides a noticeable improvement, even for the simplest case of thin source approximation. To conclude, it is clear that for accurate modelization of gravitational lenses using the perturbative method the second-order perturbative expansion should be considered. In particular, an evaluation of the degeneracy due to the second-order term should be performed, for which the thin source approximation is particularly useful.
Vector fields on singular varieties
Brasselet, Jean-Paul; Suwa, Tatsuo
2009-01-01
Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.
Schubert, G.; Anderson, J. D.
2013-12-01
Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.
Topological Field Theory of the Initial Singularity of Space-Time
Bogdanoff, I
2000-01-01
Here we suggest a possible resolution of the initial space-time singularity. In this novel approach, the initial singularity of space-time corresponds to a 0 size singular gravitational instanton, characterised by a Riemannian metric configuration (++++) in dimension D = 4. Associated with the 0 scale of space-time, the initial singularity is thus not considered in terms of divergences of physical fields but can be resolved in terms of topological field symmetries and associated invariants (in particular the first Donaldson invariant ). In this perspective, we here introduce a new topological invariant, associated with 0 scale, of the form Z = Tr (-1)s which we call "singularity invariant".
Gravitational field of Schwarzschild soliton
Directory of Open Access Journals (Sweden)
Musavvir Ali
2015-01-01
Full Text Available The aim of this paper is to study the gravitational field of Schwarzschild soliton. Use of characteristic of λ-tensor is given to determine the kinds of gravitational fields. Through the cases of two and three dimension for Schwarzschild soliton, the Gaussian curvature is expressed in terms of eigen values of the characteristic equation.
The earth's gravitational field
Digital Repository Service at National Institute of Oceanography (India)
Ramprasad, T.
offset by this centrifugal force, reducing its weight. This effect is smallest at the poles, where the gravitational force and the centrifugal force are orthogonal, and largest at the equator. This effect on its own would result in a range of values... buoyancy force which reduces the apparent strength of gravity (as measured by an object's weight). The magnitude of the effect depends on air density (and hence air pressure). The gravitational effects of the Moon and the Sun (also the cause...
Stability of naked singularity arising in gravitational collapse of Type ...
Indian Academy of Sciences (India)
... )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set ...
A class of interiors for Vaidya's radiating metric: singularity-free gravitational collapse
International Nuclear Information System (INIS)
Fayos, F; Torres, R
2008-01-01
In order to study gravitational collapse we introduce a class of stellar models which neither stabilize nor bounce. In these models all the energy conditions are fulfilled, however the collapsing stars radiate away their matter avoiding the formation of singularities. We discuss the viability of such a collapse and its implications in the resolution of the singularity issue. We also examine the possibility of living in a singularity-free locally open or flat FLRW universe satisfying all the energy conditions
An electric field in a gravitational field
International Nuclear Information System (INIS)
Harpaz, Amos
2005-01-01
The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation
Gravitational Field of Spherical Branes
Gogberashvili, Merab
The warped solution of Einstein's equations corresponding to the spherical brane in five-dimensional AdS is considered. This metric represents interiors of black holes on both sides of the brane and can provide gravitational trapping of physical fields on the shell. It is found that the analytic form of the coordinate transformations from the Schwarzschild to co-moving frame that exists only in five dimensions. It is shown that in the static coordinates active gravitational mass of the spherical brane, in agreement with Tolman's formula, is negative, i.e. such objects are gravitationally repulsive.
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Dotti, Gustavo; Gleiser, Reinaldo J [Facultad de Matematica, AstronomIa y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)
2009-11-07
The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation partial deriv{sup 2}PSI{sub z} /partial derivt{sup 2} +HPSI{sub z} =0, where H= -partial deriv{sup 2} /partial derivx{sup 2} + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field PSI{sub z} is singular at r{sub s} = -6M/(l - 1)(l +2), with l being the mode harmonic number. The equation PSI{sub z} obeys is also singular, since V has a second-order pole at r{sub s}. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and r{sub s} < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then r{sub s} > 0, and the singularity appears in the relevant range of r (0 < r < infinity). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, PSI-circumflex, that is a regular function of the metric perturbation for any value of M. The relation of PSI-circumflex to PSI{sub z} is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that PSI-circumflex and PSI{sub z} obey are related as a supersymmetric pair of quantum Hamiltonians H and H-circumflex. For M < 0,H-circumflex has a regular potential and a unique self-adjoint extension in a domain D defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of H-circumflex in D, and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for
DEFF Research Database (Denmark)
Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel
2008-01-01
An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...
Forces in electromagnetic field and gravitational field
Weng, Zihua
2008-01-01
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
Energy Technology Data Exchange (ETDEWEB)
Bedjaoui, Nabil [LMFA and INSSET, Universite de Picardie Jules Verne, 48 rue Raspail, 02100 St Quentin (France); LeFloch, Philippe G [Laboratoire Jacques-Louis Lions and Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris (France); Martin-Garcia, Jose M [Institut d' Astrophysique de Paris and Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie, 98bis Boulevard Arago, 75014 Paris (France); Novak, Jerome, E-mail: Bedjaoui@u-picardie.f, E-mail: pgLeFloch@gmail.co, E-mail: Garcia@iap.f, E-mail: Jerome.Novak@obspm.f [Laboratoire Univers et Theories, Observatoire de Paris and Centre National de la Recherche Scientifique, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France)
2010-12-21
Within the framework of the scalar-tensor models of gravitation and by relying on analytical and numerical techniques, we establish the existence of a class of spherically symmetric spacetimes containing a naked singularity. Our result relies on and extends a work by Christodoulou on the existence of naked singularities for the Einstein-scalar field equations. We establish that a key parameter in Christodoulou's construction couples to the Brans-Dicke field and becomes a dynamical variable, which enlarges and modifies the phase space of solutions. We recover analytically many properties first identified by Christodoulou, in particular the loss of regularity (especially at the center), and then investigate numerically the properties of these spacetimes.
Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions
International Nuclear Information System (INIS)
Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.
1979-01-01
Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given
On gravitational waves in Born-Infeld inspired non-singular cosmologies
Energy Technology Data Exchange (ETDEWEB)
Jiménez, Jose Beltrán [Aix-Marseille Université, Université de Toulon, CNRS, CPT, Marseille (France); Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Olmo, Gonzalo J. [Depto. de Física Teórica and IFIC, Universidad de Valencia—CSIC, Calle Dr. Moliner 50, Burjassot 46100, Valencia (Spain); Rubiera-Garcia, Diego, E-mail: jose.beltran@uam.es, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)
2017-10-01
We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Hydrodynamics, fields and constants in gravitational theory
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-01-01
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.
The dimensional dependence of naked singularity formation in spherical gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Giambo, Roberto [Dipartimento di Matematica e Informatica, Universita di Camerino, 62032 Camerino (Italy); Quintavalle, Sara [International School of Advanced Studies, Universita di Camerino, 62032 Camerino (Italy)
2008-07-21
The complete spectrum of the endstates-naked singularities or black holes-of gravitational collapse is analyzed for a wide class of N-dimensional spacetimes in spherical symmetry, which includes and generalizes the dust solutions and the case of vanishing radial stresses. The final fate of the collapse is shown to be fully determined by the local behavior of a single scalar function and by the dimension N of the spacetime. In particular, the 'critical' behavior of the N = 4 spacetimes, where a sort of phase transition from the black hole to the naked singularity can occur, is still present if N = 5 but does not occur if N > 5, independently of the initial data of the collapse. Physically, the results turn out to be related to the kinematical properties of the considered solutions.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
On the field theoretic description of gravitation
Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.
2008-01-01
Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the
Superconductor in a weak static gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)
2017-08-15
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)
An investigation of singular Lagrangians as field systems
International Nuclear Information System (INIS)
Rabei, E.M.
1995-07-01
The link between the treatment of singular Lagrangians as field systems and the general approach is studied. It is shown that singular Lagrangians as field systems are always in exact agreement with the general approach. Two examples and the singular Lagrangian with zero rank Hessian matrix are studied. The equations of motion in the field systems are equivalent to the equations which contain acceleration, and the constraints are equivalent to the equations which do not contain acceleration in the general approach treatment. (author). 10 refs
Gravitational field of massive point particle in general relativity
International Nuclear Information System (INIS)
Fiziev, P.P.
2003-10-01
Using various gauges of the radial coordinate we give a description of the static spherically symmetric space-times with point singularity at the center and vacuum outside the singularity. We show that in general relativity (GR) there exist infinitely many such solutions to the Einstein equations which are physically different and only some of them describe the gravitational field of a single massive point particle. In particular, we show that the widespread Hilbert's form of Schwarzschild solution does not solve the Einstein equations with a massive point particle's stress-energy tensor. Novel normal coordinates for the field and a new physical class of gauges are proposed, in this way achieving a correct description of a point mass source in GR. We also introduce a gravitational mass defect of a point particle and determine the dependence of the solutions on this mass defect. In addition we give invariant characteristics of the physically and geometrically different classes of spherically symmetric static space-times created by one point mass. (author)
Invariants in electromagnetic and gravitational adjoint fields
Weng, Zihua
2008-01-01
The paper discusses the impact of adjoint fields on the conservation laws in the gravitational field and electromagnetic field, by means of the characteristics of octonions. When the adjoint field can not be neglected, it will cause the predictions to departure slightly from the conservation laws, which include mass continuity equation, charge continuity equation, and conservation of spin. The adjoint field of electromagnetic field has an effect on conservation of mass, and that of gravitatio...
Physical optics in a uniform gravitational field
Hacyan, Shahen
2012-01-01
The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.
Fields generated by sums and products of singular moduli
Faye, Bernadette; Riffaut, Antonin
2017-01-01
We show that the field $\\mathbb{Q}(x,y)$, generated by two singular moduli~$x$ and~$y$, is generated by their sum ${x+y}$, unless~$x$ and~$y$ are conjugate over~$\\mathbb{Q}$, in which case ${x+y}$ generates a subfield of degree at most~$2$. We obtain a similar result for the product of two singular moduli.
Neutron stars, magnetic fields, and gravitational waves
International Nuclear Information System (INIS)
Lamb, F.K.
2001-01-01
The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the
Relativity in Combinatorial Gravitational Fields
Directory of Open Access Journals (Sweden)
Mao Linfan
2010-04-01
Full Text Available A combinatorial spacetime $(mathscr{C}_G| uboverline{t}$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.
Relativity in Combinatorial Gravitational Fields
Directory of Open Access Journals (Sweden)
Mao L.
2010-07-01
Full Text Available A combinatorial spacetime ( C G j t is a smoothly combinatorial manifold C underlying a graph G evolving on a time vector t . As we known, Einstein’s general relativity is suit- able for use only in one spacetime. What is its disguise in a combinatorial spacetime ? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equa- tion in such model. For finding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law in a combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi- solutions of generalized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical for- mations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in R 3 . Otherwise, our theory is only an approximate theory and endless forever.
Gravitation Field Dynamics in Jeans Theory
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description ...
Gravitational fields on a noncommutative space
International Nuclear Information System (INIS)
Nair, V.P.
2003-01-01
Noncommutative three-dimensional gravity can be described in terms of a noncommutative Chern-Simons theory. We extend this structure and also propose an action for gravitational fields on an even-dimensional noncommutative space. The action is worked out in some detail for fields on a noncommutative CP 2 and on S 4
Polarization singularity anarchy in three dimensional ellipse fields
Freund, Isaac
2004-11-01
Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.
Effect of the Earth's gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1988-01-01
We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed
Interaction of plane gravitational and electromagnetic waves in an external gravitational field
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Interaction of gravitational and electromagnetic waves in an external gravitational field for two classes of metric gravitation theories is considered. As a result conditions for resonance interaction are determined, and possibility of continuous amplification of plane electromagnetic wave with plane gravitational wave is shown
Singular cosmological evolution using canonical and ghost scalar fields
Energy Technology Data Exchange (ETDEWEB)
Nojiri, Shin' ichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D. [Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain); Oikonomou, V.K. [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Saridakis, Emmanuel N., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp, E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com, E-mail: Emmanuel_Saridakis@baylor.edu [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2015-09-01
We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.
Generalization of Einstein's gravitational field equations
Moulin, Frédéric
2017-12-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.
Chameleon scalar fields in relativistic gravitational backgrounds
International Nuclear Information System (INIS)
Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza
2009-01-01
We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)
Hidden singularities in non-abelian gauge fields
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1978-01-01
It is shown that the potential (and field) of a non-abelian gauge theory is not well determined when it has a singular point. When this is the cause, it is important to specify the regularization procedure used to give a precise definition of physical quantities at the singularity at any stage of the computation. The fact that a certain A sub(μ) (associated with the given regularization) represents the vacuum when F sub(μν) is a zero distribution not only on the global space but also in all its projections to arbitrary subspaces is discussed. The example used as a base for the discussion is A vetor = i (sigma vetor Λ r vetor / r 2 ). For this example it is shown that different regularizations give the same field in the global space but they give different distributions when projected to subspaces containing the singular point [pt
Gravitational radiation from preheating with many fields
International Nuclear Information System (INIS)
Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier
2010-01-01
Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields
Gravitational radiation from preheating with many fields
Energy Technology Data Exchange (ETDEWEB)
Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier, E-mail: giblinj@kenyon.edu, E-mail: larry@gravity.phys.uwm.edu, E-mail: siemens@gravity.phys.uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin — Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)
2010-08-01
Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.
Spatial Behaviour of Singularities in Fractal- and Gaussian Speckle Fields
DEFF Research Database (Denmark)
Angelsky, Oleg V.; Maksimyak, Alexander P.; Maksimyak, Peter P.
2009-01-01
Peculiarities of the spatial behaviour of the dislocation lines resulting from scattering of coherent radiation from random and fractal rough surfaces are studied. The technique of optical correlation is proposed for diagnostics of phase singularities in a complex speckle field by comparing...
Singularity analysis of potential fields to enhance weak anomalies
Chen, G.; Cheng, Q.; Liu, T.
2013-12-01
Geoanomalies generally are nonlinear, non-stationary and weak, especially in the land cover areas, however, the traditional methods of geoanomaly identification are usually based on linear theory. In past two decades, many power-law function models have been developed based on fractal concept in mineral exploration and mineral resource assessment, such that the density-area (C-A) model and spectrum-area model (S-A) suggested by Qiuming Cheng have played important roles in extracting geophysical and geochemical anomalies. Several power-law relationships are evident in geophysical potential fields, such as field value-distance, power spectrum-wave number as well as density-area models. The singularity index based on density-area model involves the first derivative transformation of the measure. Hence, we introduce the singularity analysis to develop a novel high-pass filter for extracting gravity and magnetic anomalies with the advantage of scale invariance. Furthermore, we suggest that the statistics of singularity indices can provide a new edge detection scheme for the gravity or magnetic source bodies. Meanwhile, theoretical magnetic anomalies are established to verify these assertions. In the case study from Nanling mineral district in south China and Qikou Depression in east China, compared with traditional geophysical filtering methods including multiscale wavelet analysis and total horizontal gradient methods, the singularity method enhances and extracts the weak anomalies caused by buried magmatic rocks more effectively, and provides more distinct boundary information of rocks. Moreover, the singularity mapping results have good correspondence relationship with both the outcropping rocks and known mineral deposits to support future mineral resource exploration. The singularity method based on fractal analysis has potential to be a new useful theory and technique for processing gravity and magnetic anomaly data.
Singular points in moduli spaces of Yang-Mills fields
International Nuclear Information System (INIS)
Ticciati, R.
1984-01-01
This thesis investigates the metric dependence of the moduli spaces of Yang-Mills fields of an SU(2) principal bundle P with chern number -1 over a four-dimensional, simply-connected, oriented, compact smooth manifold M with positive definite intersection form. The purpose of this investigation is to suggest that the surgery class of the moduli space of irreducible connections is, for a generic metric, a Z 2 topological invariant of the smooth structure on M. There are three main parts. The first two parts are local analysis of singular points in the moduli spaces. The last part is global. The first part shows that the set of metrics for which the moduli space of irreducible connections has only non-degenerate singularities has codimension at least one in the space of all metrics. The second part shows that, for a one-parameter family of moduli spaces in a direction transverse to the set of metrics for which the moduli spaces have singularities, passing through a non-degenerate singularity of the simplest type changes the moduli space by a cobordism. The third part shows that generic one-parameter families of metrics give rise to six-dimensional manifolds, the corresponding family of moduli spaces of irreducible connections. It is shown that when M is homeomorphic to S 4 the six-dimensional manifold is a proper cobordism, thus establishing the independence of the surgery class of the moduli space on the metric on M
Effect of Earth gravitational field on the detection of gravitational waves
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1987-01-01
Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested
Singularity theory and N = 2 superconformal field theories
International Nuclear Information System (INIS)
Warner, N.P.
1989-01-01
The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs
Casimir apparatuses in a weak gravitational field
DEFF Research Database (Denmark)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero
2009-01-01
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...
Theory of microemulsions in a gravitational field
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
Singular gauge fields in inclusive and differential cross sections
International Nuclear Information System (INIS)
Ore, F.R. Jr.; Sterman, G.
1981-01-01
We study differential and inclusive cross sections for the creation of massless fermions in the presence of a static external non-Abelian field A/sub c1/. We calculate to all orders in A/sub cl/ the correction to the quantum cross section which is suppressed by one power of the energy. Corrections of this type are found to be important even at high energy for sufficiently exclusive cross sections if the classical field has singularities along a line. Their contribution to inclusive cross sections, on the other hand, remains small at high energies
Stationary two-variable gravitational vortex fields
International Nuclear Information System (INIS)
Koppel, A.
1974-01-01
Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru
Large Field Inflation and Gravitational Entropy
DEFF Research Database (Denmark)
Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion
2016-01-01
species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with $N$ scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....
Large field inflation and gravitational entropy
Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion; Sloth, Martin S.
2016-02-01
Large field inflation can be sensitive to perturbative and nonperturbative quantum corrections that spoil slow roll. A large number N of light species in the theory, which occur in many string constructions, can amplify these problems. One might even worry that in a de Sitter background, light species will lead to a violation of the covariant entropy bound at large N . If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem when we correctly renormalize models with many light species, taking the physical Planck scale to be Mpl 2≳N MUV2 , where MUV is the cutoff for the quantum field theory coupled to semiclassical quantum gravity. The number of light species then cancels out of the gravitational entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with N scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong coupling scale for the axion dynamics, we show that it is not in general the cutoff of 4d semiclassical gravity. After renormalizing the two point function of the inflaton, we note that it is also controlled by scales much below the cutoff. We revisit N -flation and Kachru-Kallosh-Linde-Trivedi-type compactifications in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it.
New Effects of the Interaction of Gravitational and Magnetic Fields
Krechet, V. G.; Ushurko, V. B.; Rodichev, S. V.
2017-11-01
Within the framework of GRT, properties of stationary distributions of self-gravitating magnetic fields are considered under the condition that a vortex component is present in the gravitational field. It is shown that in this case, cylindrically symmetric configurations of the considered fields always lead to the formation of a wormhole geometry. The properties of such formations are investigated.
Symmetries in tetrad theories. [of gravitational fields and general relativity
Chinea, F. J.
1988-01-01
The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.
Improved gravitation field algorithm and its application in hierarchical clustering.
Directory of Open Access Journals (Sweden)
Ming Zheng
Full Text Available BACKGROUND: Gravitation field algorithm (GFA is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. METHOD: An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. RESULTS: Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm and SA (simulated annealing. Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved.
Strong-field physics with singular light beams
Zürch, M.; Kern, C.; Hansinger, P.; Dreischuh, A.; Spielmann, Ch.
2012-10-01
Light beams carrying a point singularity with a screw-type phase distribution are associated with an optical vortex. The corresponding momentum flow leads to an orbital angular momentum of the photons. The study of optical vortices has led to applications such as particle micro-manipulation, imaging, interferometry, quantum information and high-resolution microscopy and lithography. Recent analyses showed that transitions forbidden by selection rules seem to be allowed when using optical vortex beams. To exploit these intriguing new applications, it is often necessary to shorten the wavelength by nonlinear frequency conversion. However, during the conversion the optical vortices tend to break up. Here we show that optical vortices can be generated in the extreme ultraviolet (XUV) region using high-harmonic generation. The singularity impressed on the fundamental beam survives the highly nonlinear process. Vortices in the XUV region have the same phase distribution as the driving field, which is in contradiction to previous findings, where multiplication of the momentum by the harmonic order is expected. This approach opens the way for several applications based on vortex beams in the XUV region.
Gravitational consequences of modern field theories
Horowitz, Gary T.
1989-01-01
Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.
Fukushima, Toshio
2016-12-01
We present a method to integrate the gravitational field for general three-dimensional objects. By adopting the spherical polar coordinates centred at the evaluation point as the integration variables, we numerically compute the volume integral representation of the gravitational potential and of the acceleration vector. The variable transformation completely removes the algebraic singularities of the original integrals. The comparison with exact solutions reveals around 15 digits accuracy of the new method. Meanwhile, the six digit accuracy of the integrated gravitational field is realized by around 106 evaluations of the integrand per evaluation point, which costs at most a few seconds at a PC with Intel Core i7-4600U CPU running at 2.10 GHz clock. By using the new method, we show the gravitational field of a grand design spiral arm structure as an example. The computed gravitational field shows not only spiral shaped details but also a global feature composed of a thick oblate spheroid and a thin disc. The developed method is directly applicable to the electromagnetic field computation by means of Coulomb's law, the Biot-Savart law, and their retarded extensions. Sample FORTRAN 90 programs and test results are electronically available.
Misner, Charles W; Wheeler, John Archibald
2017-01-01
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...
Difference of observability between classical electromagnetic and gravitational gauge fields
International Nuclear Information System (INIS)
Asorey, M.; Boya, L.J.
1979-01-01
An analysis of the observability of the classical electromagnetic gauge field based in its quantum effects shows that this is physically determined up to equivalences. By contrast a similar analysis of the gravitational gauge field from Einstein's General Relativity theory shows that this field is univocally determined by the trajectories of material particles provided they feel only that gravitational field, and its proper gravitational and quantum effects are negligible. This difference of observability in both kinds of gauge fields is caused by the attachment of the gravitational field in the Einstein theory to the space-time, and this difference must be taken into account to formulate unified gauge theories with both kinds of fields. (author)
Microcanonical functional integral for the gravitational field
International Nuclear Information System (INIS)
Brown, J.D.; York, J.W. Jr.
1993-01-01
The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function
Dark sector impact on gravitational collapse of an electrically charged scalar field
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)
2015-11-04
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
Abstract. The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravit- omagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...
Gravitational time dilation and length contraction in fields exterior to ...
African Journals Online (AJOL)
Here, we use our new metric tensor exterior to a massiv3e oblate spheroid to study the gravitational phenomena of time dilation and length contraction. It turns out most profoundly that, the above phenomena hold good in the gravitational field exterior to an oblate spheroid. We then use the oblate spheroidal Earth to ...
Influence of tides on the gravitational field of Jupiter
International Nuclear Information System (INIS)
Gavrilov, S.V.; Zharkov, V.N.; Leont'ev, V.V.
1975-01-01
The influence of tides on the gravitational field of giant planets is considered quantitatively. The ''gravitational noise'' due to tides can affect the determination of J 8 and J 10 for Jupiter. Tidal sounding of the giant planets is suggested. (author)
Theory of gravitational-inertial field of universe. 2
International Nuclear Information System (INIS)
Davtyan, O.K.
1978-01-01
Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)
Particle production in time-dependent gravitational fields the expanding mass shell
Hossenfelder, S; Greiner, W; Hossenfelder, Sabine; Schwarz, Dominik J.; Greiner, Walter
2003-01-01
We compute the production of particles from the gravitational field of an expanding mass shell. Contrary to the situation of Hawking radiation and the production of cosmological perturbations during cosmological inflation, the example of an expanding mass shell has no horizon and no singularity. We apply the method of `ray-tracing', first introduced by Hawking, and calculate the energy spectrum of the produced particles. The result depends on three parameters: the expansion velocity of the mass shell, its radius, and its mass. Contrary to the situation of a collapsing mass shell, the energy spectrum is non-thermal. Invoking time reversal we reproduce Hawking's thermal spectrum in a certain limit.
Responses of the Brans-Dicke field due to gravitational collapses
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong-il; Yeom, Dong-han, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)
2010-10-21
We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around {omega} {approx} -1.5. If the Brans-Dicke coupling is greater than -1.5, the T{sub uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T{sub vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.
Possible alterations of the gravitational field in a superconductor
Ummarino, G. A.
2000-01-01
In this paper I calculate the possible alteration of the gravitational field in a superconductor by using the time-dependent Ginzburg-Landau equations (TDGL). I compare the behaviour of a high-Tc superconductor (HTCS) like YBa_2Cu_3O_7 (YBCO) with a classical low-Tc superconductor (LTCS) like Pb. Finally, I discuss what values of the parameters characterizing a superconductor can enhance the reduction of gravitational field.
International Nuclear Information System (INIS)
Vo Van On
2009-01-01
In this paper, based on the Vector model for gravitational field we show some interesting consequence from Newton's modified expression of gravitational force: dividing the space into regions around galaxies, maximal sire of stable galaxies. (author)
On tidal phenomena in a strong gravitational field
International Nuclear Information System (INIS)
Mashoon, B.
1975-01-01
A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center
Relativistic gravitation from massless systems of scalar and vector fields
International Nuclear Information System (INIS)
Fonseca Teixeira, A.F. da.
1979-01-01
Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt
Gravitational radiation resistance, radiation damping and field fluctuations
International Nuclear Information System (INIS)
Schaefer, G.
1981-01-01
Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)
Tolman temperature gradients in a gravitational field
Santiago, Jessica; Visser, Matt
2018-01-01
Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...
Excitations of the gravitational field-I
International Nuclear Information System (INIS)
Novello, M.
1978-01-01
The geometry of spacetime is treated as a stochastic variable. Fluctuations induce a deviation from Einstein's system of equations for the average geometry. A model is presented to deal with the fluctuations by expanding the perturbations on a series in the average geometry. As a consequence, some qualitatively new features appear. The influences on galaxy formation and on the propagation of gravitational waves are analyzed [pt
Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...
Indian Academy of Sciences (India)
field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.
Non-singular string-cosmologies from exact conformal field theories
International Nuclear Information System (INIS)
Vega, H.J. de; Larsen, A.L.; Sanchez, N.
2001-01-01
Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation
Gravitational waves from self-ordering scalar fields
Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan
2009-01-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...
Gravitational Collapse of Massless Fields in an Expanding Universe
Directory of Open Access Journals (Sweden)
Yoo Chul-Moon
2018-01-01
Full Text Available Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. The initial data is constructed for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. The difference of the late time expansion law of the lattice universe depending on the final fate of the gravitational collapse is discussed.
Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...
Indian Academy of Sciences (India)
crucial especially in the magnetic field measurement of longer and long-lived coro- nal structures. The negligence of this factor causes a large amount of uncertainty in the estimation of magnetic field. This result is very important in keeping with the view of the evolution of kink waves in gravitationally stratified coronal loops.
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
Similarly, according to general relativity, the mass current produces the gravitomagnetic field just as the electric current produces the magnetic field [1]. Although Maxwell [2] himself has noticed the possibility of formulating the theory of gravitation in a form corresponding to the electromagnetic equations, the theoretical.
Kamenshchik, A. Yu.
2018-03-01
We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.
On energy-momentum tensors of gravitational field
International Nuclear Information System (INIS)
Nikishov, A.I.
2001-01-01
The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru
Using Jupiter's gravitational field to probe the Jovian convective dynamo.
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-03-23
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.
Axisymmetric plasma equilibrium in gravitational and magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Krasheninnikov, S. I., E-mail: skrash@mechanics.ucsd.edu [University of California San Diego (United States); Catto, P. J. [Massachusetts Institute of Technology, Plasma Science and Fusion Center (United States)
2015-12-15
Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of topologically disconnected regions of the magnetic flux surfaces where plasma occupies just one of these regions. Special dependences of the plasma temperature and density on the magnetic flux are used which allow the solution of the Grad–Shafranov equation in a separable form permitting analytic treatment. It is found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilibrium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial plane.
Generalization of Einstein's gravitational field equations
International Nuclear Information System (INIS)
Moulin, Frederic
2017-01-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)
Generalization of Einstein's gravitational field equations
Energy Technology Data Exchange (ETDEWEB)
Moulin, Frederic [Ecole Normale Superieure Paris-Saclay, Departement de Physique, Cachan (France)
2017-12-15
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)
Gravitational gauge fields and the cosmological constant
International Nuclear Information System (INIS)
Pagels, H.R.
1984-01-01
We describe field theories for which the action is completely independent of the metric and connection of the space-time manifold. The metric in our approach is no more a fundamental field than a hadron field is a fundamental field in QCD. The fundamental fields in the action are O(5) gauge fields and combinations of these fields are interpreted as the metric and connection so that conventional general relativity is obtained. Remarkably, all renormalizable matter actions for scalar, spinor, and Yang-Mills gauge fields can be made metric independent. Significantly, we find a new elementary invariance of the action which implies the cosmological constant must vanish. Finally, we discuss the quantum theory resulting from these ideas
Hyperunified field theory and gravitational gauge-geometry duality
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.
Hyperunified field theory and gravitational gauge-geometry duality
International Nuclear Information System (INIS)
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
and examine whether bound orbits are possible or not. This study will be of relevance to the structure formation because it gives some idea about the behaviour of the particles. (created at the early universe) in the gravitational field of the domain walls. Our paper is organized as follows: The basic equations are constructed ...
Gravitational Field of Ultrarelativistic Objects with Angular Momentum
International Nuclear Information System (INIS)
Fursaev, Dmitri V
2006-01-01
A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant
Equations of motion for cross term modified gravitational field equations
Energy Technology Data Exchange (ETDEWEB)
Mueller, V. (Akademie der Wissenschaften der DDR, Potsdam-Babelsberg. Zentralinstitut fuer Astrophysik)
1982-01-01
As proposed by Treder, possible consequences of a unitary field theory may be described phenomenologically by additional cross terms in Einstein's equations. The violation of the weak principle of equivalence and potential observable effects are discussed in deriving hydrodynamic EIH equations. Conclusions on gravitational instabilities follow in the quasistatic approximation.
Relativistic motion of spinning particles in a gravitational field
International Nuclear Information System (INIS)
Chicone, C.; Mashhoon, B.; Punsly, B.
2005-01-01
The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
Axially symmetric, stationary gravitational field equations and pseudospherical surfaces
International Nuclear Information System (INIS)
Tomimatsu, Akira.
1981-04-01
For axially symmetric, stationary gravitational field equations, a new Lax pair of the inverse scattering method is presented from a geometrical point of view. The metric coefficient e sup(2γ) (= -g sub(rho rho)g sub(tt)sup(-1)) is taken as the basic field variable, which satisfies an equation describing pseudospherical surfaces, i.e., surfaces of constant negative Gaussian curvature. The equations for other metric coefficients are also discussed. (author)
International Nuclear Information System (INIS)
Tao Fuzhen; He Zhiqiang
1983-01-01
If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)
On quantum field theory in gravitational background
International Nuclear Information System (INIS)
Haag, R.; Narnhofer, H.; Stein, U.
1984-02-01
We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)
Gravitational descendants in symplectic field theory
Fabert, O.
2011-01-01
It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic
Evaluation of debonding strength of single lap joint by the intensity of singular stress field
Miyazaki, Tatsujiro; Noda, Nao-Aki
2017-05-01
In this paper, the similarity of the singular stress field of the single lap joint (SLJ) is discussed to evaluate the debonding fracture by the intensity of the singular stress field (ISSF). The practical method is proposed for analyzing the ISSF for the SLJ. The analysis method focuses on the FEM stress at the interface end by applying the same mesh pattern to the unknown and reference models. It is found that the independent technique useful for the bonded plate and butt joint cannot be applied to the SLJ because the singular stress field of the SLJ consists of two singular stress terms. The FEM stress is divided to two FEM stresses by applying the unknown and reference models to different minimum element sizes. Then, the practicality of the present method is examined by applying to the previous tensile test results of the SLJ composed of the aluminum alloy and the epoxy resin. The ISSFs for the SLJ were calculated by changing the adhesive thickness t 2 and the overlap length l 2. In the case of the SLJ with 225 mm in total length and 7 mm in adherend thickness, it was found that the similar singular stress fields are formed in the range of 0.15 mm ≤ t 2 ≤ 0.9mm and 15 mm ≤ l 2 ≤ 50 mm. It is shown that the critical ISSFs at the fracture are constant in the range.
Electromagnetic field of a rotating closed singular magnetic flux-line
International Nuclear Information System (INIS)
Rupertsberger, H.
1982-01-01
The electromagnetic field due to the rotation of a circular singular magnetic flux-line is calculated. Averaging the resulting electric field over the period of rotation it is shown that by this procedure neither a static Coulumb charge nor an electric dipole moment can be generated. (Author)
Gravitational field of compact objects in general relativity
Boshkayev, Kuantay; Quevedo, Hernando; Ruffini, Remo
2012-09-01
We study some exact and approximate solutions of Einstein’s equations that can be used to describe the gravitational field of astrophysical compact objects in the limiting case of slow rotation and slight deformation. First, we show that none of the standard models obtained by using Fock’s method can be used as an interior source for the approximate exterior Kerr solution. We then use Fock’s method to derive a generalized interior solution, and also an exterior solution that turns out to be equivalent to the exterior Hartle-Thorne approximate solution that, in turn, is equivalent to an approximate limiting case of the exact Quevedo-Mashhoon solution. As a result we obtain an analytic approximate solution that describes the interior and exterior gravitational field of a slowly rotating and slightly deformed astrophysical object.
Gravitation Field Calculations on a Dynamic Lattice by Distributed Computing
Mähönen, Petri; Punkka, Veikko
A new method of calculating numerically time evolution of a gravitational field in General Relatity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.
Gravitational field calculations on a dynamic lattice by distributed computing.
Mähönen, P.; Punkka, V.
A new method of calculating numerically time evolution of a gravitational field in general relativity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.
Canonical quantum theory of gravitational field with higher derivatives
International Nuclear Information System (INIS)
Kawasaki, Shoichiro; Kimura, Tadahiko; Kitago, Koichi.
1981-01-01
A renormalizable gravitational theory with higher derivatives is canonically quantized in the Landau gauge. Field equations and various equal-time commutation relations are explicitly given. The main results obtained in this work are 1) the equal-time commutation relations involving b sub(μ) exhibit the tensor-like behaviour and 2) the theory has the 16-dimensional Poincare-like superalgebra. These results are just the same as those discovered by Nakanishi in the Einstein case. (author)
Improved routing strategy based on gravitational field theory
Song, Hai-Quan; Guo, Jin
2015-10-01
Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase, and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently. Project supported by the Technology and Development Research Project of China Railway Corporation (Grant No. 2012X007-D) and the Key Program of Technology and Development Research Foundation of China Railway Corporation (Grant No. 2012X003-A).
Coupling non-gravitational fields with simplicial spacetimes
International Nuclear Information System (INIS)
McDonald, Jonathan R; Miller, Warner A
2010-01-01
The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in the Regge calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of the coupling source to the lattice in RC.
Singular surfaces in the open field line region of a diverted tokamak
International Nuclear Information System (INIS)
Reiman, A.
1995-05-01
The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents
Primordial gravitational waves from axion-gauge fields dynamics
International Nuclear Information System (INIS)
Dimastrogiovanni, Emanuela; Fasiello, Matteo; Fujita, Tomohiro
2017-01-01
Inspired by the chromo-natural inflation model of Adshead and Wyman, we reshape its scalar content to relax the tension with current observational bounds. Besides an inflaton, the setup includes a spectator sector in which an axion and SU(2) gauge fields are coupled via a Chern-Simons-type term. The result is a viable theory endowed with an alternative production mechanism for gravitational waves during inflation. The gravitational wave signal sourced by the spectator fields can be much larger than the contribution from standard vacuum fluctuations, it is distinguishable from the latter on the basis of its chirality and, depending on the theory parameters values, also its tilt. This production process breaks the well-known relation between the tensor-to-scalar ratio and the energy scale of inflation. As a result, even if the Hubble rate is itself too small for the vacuum to generate a tensor amplitude detectable by upcoming experiments, this model still supports observable gravitational waves.
Reconstructing the gravitational field of the local Universe
Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem; Jasche, Jens
2018-03-01
Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables - the Newtonian potential, acceleration and curvature - over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of generic tests of gravity and are capable of constraining specific classes of model for which they have special significance. Finally, we investigate the improvements afforded by upcoming galaxy surveys.
Radiation reaction force and unification of electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Lo, C.Y.; Goldstein, G.R.; Napier, A.
1981-04-01
A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration
Singularity structure of the two-point function in quantum field theory in curved spacetime, II
International Nuclear Information System (INIS)
Fulling, S.A.; Narcowich, F.J.; Wald, R.M.
1981-01-01
We prove that, for a massive, scalar, quantum field in a wide class of static spacetimes, the two-point function has singularity structure of the Hadamard form. In particular, this implies that the point-splitting renormalization prescription is well defined in these spacetimes. As a corollary of this result and a previous result of Fulling, Sweeny, and Wald, we show that in an arbitrary globally hyperbolic spacetime there always exists a large class of states for which the singular part of the two-point function has the Hadamard form. In addition, we prove that, for a closed universe which is both initially and finally static, the S-matrix exists
Ortiz, Néstor; Sarbach, Olivier
2018-01-01
We analyze the stability of the Cauchy horizon associated with a globally naked, shell-focussing singularity arising from the complete gravitational collapse of a spherical dust cloud. In a previous work, we have studied the dynamics of spherical test scalar fields on such a background. In particular, we proved that such fields cannot develop any divergences which propagate along the Cauchy horizon. In the present work, we extend our analysis to the more general case of test fields without symmetries and to linearized gravitational perturbations with odd parity. To this purpose, we first consider test fields possessing a divergence-free stress-energy tensor satisfying the dominant energy condition, and we prove that a suitable energy norm is uniformly bounded in the domain of dependence of the initial slice. In particular, this result implies that free-falling observers co-moving with the dust particles measure a finite energy of the field, even as they cross the Cauchy horizon at points lying arbitrarily close to the central singularity. Next, for the case of Klein–Gordon fields, we derive point-wise bounds from our energy estimates which imply that the scalar field cannot diverge at the Cauchy horizon, except possibly at the central singular point. Finally, we analyze the behaviour of odd-parity, linear gravitational and dust perturbations of the collapsing spacetime. Similarly to the scalar field case, we prove that the relevant gauge-invariant combinations of the metric perturbations stay bounded away from the central singularity, implying that no divergences can propagate in the vacuum region. Our results are in accordance with previous numerical studies and analytic work in the self-similar case.
Classical particles with spin in electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Amorim, R.M. de.
1977-02-01
Following a review of several problems connected with classical particles with intrinsic angular momentum are reproduced the Frenkel equations (with the condition S sup(μν)U sub(ν)=0) by means of a holonomic variational principle, and have related them to Bargann, Michel and Tededgie equations. The treatment is then generalized to the case in wich S sup(μν)U sub(ν)=0 and the resulting equation coincide in the linearized limit with those obtained by Suttorp and de Groot. Also, by using variational principles, the generalizations to Frenkel equations are obtained, as well as to those of Suttorp and de Groot when electromagnetic and gravitational interactions are considered. Finally, those equations are analysed according to a scheme proposed by Oliveira and Tiommo where the gravitational interactions are described by gravielectric and gravimagnetic fields. The analogies in these equations of motion between the gravitational and eletromagnetic interactions, in the case in which the particle has a giromagnetic factor g=1, are shown. The last results complete a previous study by wald. (Author) [pt
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1986-01-01
This paper studies the interaction of a weak gravitational wave and the electromagnetic field of a neutron star from the point of view of two theories: the linear variant of the field theory of gravitation and the general theory of relativity. The obtained solutions are used to analyze the possibilities of establishing experimentally which of the two theories describes reality adequately
Hawking radiation of a vector field and gravitational anomalies
International Nuclear Information System (INIS)
Murata, Keiju; Miyamoto, Umpei
2007-01-01
Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed
Gravitational field equations on and off a 3-brane world
International Nuclear Information System (INIS)
Aliev, A N; Guemruekcueoglu, A E
2004-01-01
The effective gravitational field equations on and off a 3-brane world possessing a Z 2 mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss-Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighbourhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We rederive the SMS effective gravitational field equations on a 3-brane and generalize the off-brane equations to the case where there is an arbitrary energy-momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor W ij , constructed from the 'electric' part of the bulk Riemann tensor. We also present the evolution equations for the tensor W ij , as well as for the corresponding 'magnetic' part of the bulk curvature. These equations involve terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk
International Nuclear Information System (INIS)
Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.
1989-12-01
Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs
Primordial magnetic fields from a non-singular bouncing cosmology
International Nuclear Information System (INIS)
Membiela, Federico Agustín
2014-01-01
Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f 2 (ϕ)F μν F μν (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>−ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f 2 (ϕ)F 2 -instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials
Primordial magnetic fields from a non-singular bouncing cosmology
Energy Technology Data Exchange (ETDEWEB)
Membiela, Federico Agustín, E-mail: membiela@mdp.edu.ar [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud, 150, Rio de Janeiro (Brazil); Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, 7600 Mar del Plata (Argentina)
2014-08-15
Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f{sup 2}(ϕ)F{sub μν}F{sup μν} (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>−ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f{sup 2}(ϕ)F{sup 2}-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.
Topological geons with self-gravitating phantom scalar field
Kratovitch, P. V.; Potashov, I. M.; Tchemarina, Ju V.; Tsirulev, A. N.
2017-12-01
A topological geon is the quotient manifold M/Z 2 where M is a static spherically symmetric wormhole having the reflection symmetry with respect to its throat. We distinguish such asymptotically at solutions of the Einstein equations according to the form of the time-time metric function by using the quadrature formulas of the so-called inverse problem for self-gravitating spherically symmetric scalar fields. We distinguish three types of geon spacetimes and illustrate them by simple examples. We also study possible observational effects associated with bounded geodesic motion near topological geons.
Non-singular bounce scenarios in loop quantum cosmology and the effective field description
International Nuclear Information System (INIS)
Cai, Yi-Fu; Wilson-Ewing, Edward
2014-01-01
A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models
5th International School on Field Theory and Gravitation
Following the philosophy that the International School on Field Theory and Gravitation must be held each three years in different Brazilian Universities and, if possible, in different brazilian states, the next meeting will take place at Physics Institute of Universidade Federal do Mato Grosso, UFMT, Cuiabá city on April, 20-24/2009 very close to the beautiful Pantanal and Chapada dos Guimarães area. The goal of the meeting is to promote a greater integration among many physicists from the local university, UFMT, Co-organizing institutions in Brasil and foreign countries such as Canada, USA, Italy, China, England, Swiss, Spain, Brazil and others; to stimulate the organization of scientific events in our physics Institute and thus contributing to local research activities; to exhibit different fields of physics and to stimulate new lines of theoretical research and technological developments in the Universidade Federal do Mato Grosso, UFMT. Finally, we make efforts to promote the development of advanced studies, taking it to the present core of research in a strong process of affirmation of new lines of theoretical studies in our Physics Institute. To this, we invite colleagues, collaborators, researchers, students, and friends to attend this fifth edition of International School on Field Theory and gravitation-2009.
Gravitation field algorithm and its application in gene cluster
Directory of Open Access Journals (Sweden)
Zheng Ming
2010-09-01
Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.
Determining Symmetry Properties of Gravitational Fields of Terrestrial Group Planets
Directory of Open Access Journals (Sweden)
R.A. Kascheev
2016-09-01
Full Text Available Numerous models of gravity fields of the Solar system bodies have been constructed recently owing to successful space missions. These models are sets of harmonic coefficients of gravity potential expansion in series of spherical functions, which is Laplace series. The sets of coefficients are different in quantity of numerical parameters, sources and composition of the initial observational data, methods to obtain and process them, and, consequently, in a variety of properties and accuracy characteristics. For this reason, the task of comparison of different models of celestial bodies considered in the paper is of interest and relevant. The main purpose of this study is comparison of the models of gravitational potential of the Earth, Moon, Mars, and Venus with the quantitative criteria of different types of symmetries developed by us. It is assumed that some particular symmetry of the density distribution function of the planetary body causes similar symmetry of its gravitational potential. The symmetry of gravitational potential, in its turn, imposes additional conditions (restrictions, which must be satisfied by the harmonic coefficients. The paper deals with seven main types of symmetries: central, axial, two symmetries specular relative to the equatorial planes and prime meridian, as well as three rotational symmetries (at π angle around the coordinate system axes. According to the results of calculations carried out for the Earth, Moon, Mars, and Venus, the values of the criteria vary considerably for different types of symmetries and for different planets. It means that the specific value of each criterion corresponding to a particular celestial body is indicative of the properties and internal structure characteristics of the latter and, therefore, it can be used as a tool for comparative planetology. On the basis of the performed calculations, it is possible to distinguish two groups of celestial bodies having similar properties of
Quantum Hall states and conformal field theory on a singular surface
Can, T.; Wiegmann, P.
2017-12-01
In Can et al (2016 Phys. Rev. Lett. 117), quantum Hall states on singular surfaces were shown to possess an emergent conformal symmetry. In this paper, we develop this idea further and flesh out details on the emergent conformal symmetry in holomorphic adiabatic states, which we define in the paper. We highlight the connection between the universal features of geometric transport of quantum Hall states and holomorphic dimension of primary fields in conformal field theory. In parallel we compute the universal finite-size corrections to the free energy of a critical system on a hyperbolic sphere with conical and cusp singularities, thus extending the result of Cardy and Peschel for critical systems on a flat cone (Cardy and Peschel 1988 Nucl. Phys. B 300 377–92), and the known results for critical systems on polyhedra and flat branched Riemann surfaces.
International Nuclear Information System (INIS)
Baxter, Mathew; Van Gorder, Robert A
2013-01-01
We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)
Phase singularities and energy fluxes of a noncanonical vortex dipole Airy beam in the far field
Cheng, Ke; You, Yunqi; Zhong, Xianqiong
2015-10-01
Based on the vector angular spectrum representation and stationary phase method, analytical far-field vectorial expressions of a noncanonical vortex dipole Airy beam, namely, a pair of noncanonical vortices with opposite charges embedded in an Airy beam are derived and used to investigate the phase singularities and energy flux distributions of the corresponding beam in the far-field regime, where the noncanonical characteristic of vortex is stressed. It is shown that the noncanonical strength, off-axis distance, and aperture coefficient affect the position and number of phase singularities, and the motion, creation, and annihilation of phase singularities are found by adjusting these parameters. For a low aperture coefficient, the energy flux distributions exhibit different numbers and orientations of lobes by varying the noncanonical strength. With increasing aperture coefficient, the symmetries of lobes are broken, and the energy flux distributions gradually become ellipses and the directions of their major axes vary with different noncanonical strengths. Finally, the energy flux distributions of an Airy beam carrying a single noncanonical vortex are discussed and compared.
Local bulk S-matrix elements and conformal field theory singularities
Gary, Michael; Penedones, Joao
2009-01-01
We give a procedure for deriving certain bulk S-matrix elements from corresponding boundary correlators. These are computed in the plane wave limit, via an explicit construction of certain boundary sources that give bulk wavepackets. A critical role is played by a specific singular behavior of the lorentzian boundary correlators. It is shown in examples how correlators derived from the bulk supergravity exhibit the appropriate singular structure, and reproduce the corresponding S-matrix elements. This construction thus provides a nontrivial test for whether a given boundary conformal field theory can reproduce bulk physics, and where it does, supplies a prescription to extract bulk S-matrix elements in the plane wave limit.
Discreteness of space from GUP in a weak gravitational field
Directory of Open Access Journals (Sweden)
Soumen Deb
2016-04-01
Full Text Available Quantum gravity effects modify the Heisenberg's uncertainty principle to a generalized uncertainty principle (GUP. Earlier work showed that the GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. Similarly, corrections to the Klein–Gordon and the Dirac equations, gave rise to length, area and volume quantizations. These results suggest a fundamental granular structure of space. In this work, it is investigated how spacetime curvature and gravity might influence this discreteness of space. In particular, by adding a weak gravitational background field to the above three quantum equations, it is shown that quantization of lengths, areas and volumes continue to hold. However, it should be noted that the nature of this new quantization is quite complex and under proper limits, it reduces to cases without gravity. These results suggest that quantum gravity effects are universal.
Dynamics of a bubble rising in gravitational field
Directory of Open Access Journals (Sweden)
De Bernardis Enrico
2016-03-01
Full Text Available The rising motion in free space of a pulsating spherical bubble of gas and vapour driven by the gravitational force, in an isochoric, inviscid liquid is investigated. The liquid is at rest at the initial time, so that the subsequent flow is irrotational. For this reason, the velocity field due to the bubble motion is described by means of a potential, which is represented through an expansion based on Legendre polynomials. A system of two coupled, ordinary and nonlinear differential equations is derived for the vertical position of the bubble center of mass and for its radius. This latter equation is a modified form of the Rayleigh-Plesset equation, including a term proportional to the kinetic energy associated to the translational motion of the bubble.
Rainbow scattering in the gravitational field of a compact object
Dolan, Sam R.; Stratton, Tom
2017-06-01
We study the elastic scattering of a planar wave in the curved spacetime of a compact object such as a neutron star, via a heuristic model: a scalar field impinging upon a spherically symmetric uniform density star of radius R and mass M . For R rc, there instead arises a stationary point in the deflection function which creates a caustic and rainbow scattering. As in nuclear rainbow scattering, there is an Airy-type oscillation on a Rutherford-like cross section, followed by a shadow zone. We show that, for R ˜3.5 G M /c2, the rainbow angle lies close to 180°, and thus there arises enhanced backscattering and glory. We explore possible implications for gravitational wave astronomy and dark matter models.
Gravitational waves in bouncing cosmologies from gauge field production
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, Ido, E-mail: ido.bendayan@gmail.com [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Be' er-Sheva 8410500 (Israel)
2016-09-01
We calculate the gravitational waves (GW) spectrum produced in various Early Universe scenarios from gauge field sources, thus generalizing earlier inflationary calculations to bouncing cosmologies. We consider generic couplings between the gauge fields and the scalar field dominating the energy density of the Universe. We analyze the requirements needed to avoid a backreaction that will spoil the background evolution. When the scalar is coupled only to F F-tilde term, the sourced GW spectrum is exponentially enhanced and parametrically the square of the vacuum fluctuations spectrum, P {sup s} {sub T} ∼ (P {sup v} {sub T} ){sup 2}, giving an even bluer spectrum than the standard vacuum one. When the scalar field is also coupled to F {sup 2} term, the amplitude is still exponentially enhanced, but the spectrum can be arbitrarily close to scale invariant (still slightly blue), n {sub T} ∼> 0, that is distinguishable form the slightly red inflationary one. Hence, we have a proof of concept of observable GW on CMB scales in a bouncing cosmology.
Interior sound field control using generalized singular value decomposition in the frequency domain.
Pasco, Yann; Gauthier, Philippe-Aubert; Berry, Alain; Moreau, Stéphane
2017-01-01
The problem of controlling a sound field inside a region surrounded by acoustic control sources is considered. Inspired by the Kirchhoff-Helmholtz integral, the use of double-layer source arrays allows such a control and avoids the modification of the external sound field by the control sources by the approximation of the sources as monopole and radial dipole transducers. However, the practical implementation of the Kirchhoff-Helmholtz integral in physical space leads to large numbers of control sources and error sensors along with excessive controller complexity in three dimensions. The present study investigates the potential of the Generalized Singular Value Decomposition (GSVD) to reduce the controller complexity and separate the effect of control sources on the interior and exterior sound fields, respectively. A proper truncation of the singular basis provided by the GSVD factorization is shown to lead to effective cancellation of the interior sound field at frequencies below the spatial Nyquist frequency of the control sources array while leaving the exterior sound field almost unchanged. Proofs of concept are provided through simulations achieved for interior problems by simulations in a free field scenario with circular arrays and in a reflective environment with square arrays.
Einstein's equations of motion in the gravitational field of an oblate ...
African Journals Online (AJOL)
In an earlier paper we derived Einstein's geometrical gravitational field equations for the metric tensor due to an oblate spheroidal massive body. In this paper we derive the corresponding Einstein's equations of motion for a test particle of nonzero rest mass in the gravitational field exterior to a homogeneous oblate ...
On the possibility of a fourth test of general relativity in earth's gravitational field
International Nuclear Information System (INIS)
Zhang Yuan-zhong.
1981-03-01
In the paper the possibility for a fourth test of general relativity (i.e. relativistic time delay) in Earth's gravitational field is discussed. The effects of Earth's gravitational field on an interferometer and a resonant cavity are calculated by means of both two definitions of physical length. (author)
Tridimensional analysis of gravitational and magnetic fields of Terek-Caspian trough
Kerimov, I. A.; Abubakarova, E. A.; Badaev, S. V.
2017-10-01
The results of the tridimensional analysis of the gravitational and magnetic fields of the Terek-Caspian trough are presented in this article. Various transformations of the region’s gravitational and magnetic fields (separation into components, calculation of higher derivatives, measurement of statistical characteristics, tracing of the anomaly axes, etc.) were performed. The morphology of the gravitational and magnetic fields was investigated, the characteristics of the anomalous geophysical fields were outlined and the relationship between various field characteristics and the features of the fault-block tectonics of the trough was analyzed.
Probing Strong-field General Relativity with Gravitational Waves
Pretorius, Frans
We are on the verge of a new era in astrophysics as a world-wide effort to observe the universe with gravitational waves takes hold---ground based laser interferometers (Hz to kHz), pulsar timing (micro to nano Hz), measurements of polarization of the cosmic microwave background (sub-nano Hz), and the planned NASA/ESA mission LISA (.1 mHz to .1 Hz). This project will study the theoretical nature of gravitational waves (GWs) emitted by two sources in the LISA band, namely supermassive-black-hole (SMBH) binary mergers, and extreme-mass-ratio-inspirals (EMRI's)---the merger of a stellar mass black hole, neutron star, or white dwarf with a SMBH. The primary goal will be to ascertain how well LISA, by observing these sources, could answer the following related questions about the fundamental nature of strong-field gravity: Does Einstein's theory of general relativity (GR) describe the geometry of black holes in the universe? What constraints can GW observations of SMBH mergers and EMRIs place on alternative theories of gravity? If there are deviations from GR, are there statistics that could give indications of a deviation if sources are detected using a search strategy based solely on GR waveforms? The primary reasons for focusing on LISA sources to answer these questions are (a) binary SMBH mergers could be detected by LISA with exquisitely high signal-to- noise, allowing enough parameters of the system to be accurately extracted to perform consistency checks of the underlying theory, (b) EMRIs will spend numerous orbits close to the central black hole, and thus will be quite sensitive to even small near-horizon deviations from GR. One approach to develop the requisite knowledge and tools to answer these questions is to study a concrete, theoretically viable alternative to GR. We will focus on the dynamical variant of Chern-Simons modified gravity (CSMG), which is interesting for several reasons, chief among which are (1) that CSMG generically arises in both string
The gravitational and electromagnetic fields in a space-time with torsion
International Nuclear Information System (INIS)
Oancea, S.
1992-01-01
The equation of gravitational and electromagnetic field in a space-time with torsion are discussed. In a particular case the equations that define the metric and electromagnetic field are obtained. (Author)
Biswas, Sounak; Damle, Kedar
2018-02-01
A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.
Gravitational Waves from Abelian Gauge Fields and Cosmic Strings at Preheating
Dufaux, Jean-Francois; Garcia-Bellido, Juan
2010-01-01
Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space, and show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearence of new peaks at characteristic frequencies that are related to...
Massive and mass-less Yang-Mills and gravitational fields
Veltman, M.J.G.; Dam, H. van
1970-01-01
Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in
Energy-momentum tensor of the gravitational field for material spheres
International Nuclear Information System (INIS)
Sokolov, S.N.
1990-01-01
Density of the energy-momentum tensor of a gravitational field which can be defined in the general relativity theory with the help of ideas of the relativistic gravitational theory is found for the case of material spheres. A relationship of this quantity with the Riemann tensor R αβγδ is discussed
Normalization of Gravitational Acceleration Models
Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.
2011-01-01
Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.
Gravitation, black holes and space-time physics
International Nuclear Information System (INIS)
Ullmann, V.
1986-01-01
A wide range of questions relating to the general theory of relativity, the physics of gravitation and space-time are discussed, including the relations between gravitation and the other fields of physics, mainly electromagnetism and the special theory of relativity, Einstein general relativity theory - the consequences of the principle of equivalence, the physics of curved space-time, equations of the gravitation fields, properties of gravitational energy and gravitational waves, the properties are analysed of certain significant solutions of Einstein field equations, causality and the global structure of space-time, horizons, the problem of space-time singularities, etc. The physics of black holes is discussed in detail as the extreme manifestation of gravitation also the problem of the structure and development of the universe with regard to present relativistic cosmology. Finally discussed is Mach principle, the quantizing of the field of gravitation and the problems of unified theories of the field. (V.U.)
Constraints on Gravitational Scaling Dimensions from Non-Local Effective Field Equations
Hamber, H W; Hamber, Herbert W.; Williams, Ruth M.
2006-01-01
Quantum corrections to the classical field equations, induced by a scale dependent gravitational constant, are analyzed in the case of the static isotropic metric. The requirement of general covariance for the resulting non-local effective field equations puts severe restrictions on the nature of the solutions that can be obtained. In general the existence of vacuum solutions to the effective field equations restricts the value of the gravitational scaling exponent $\
Continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
Arminjon, Mayeul
2016-01-01
An alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes' thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton's second law. This implies Einstein's geodesic motion for free particles only in a constant gravitational field. In this work, equations governing the dynamics of a continuous medium subjected to gravitational and non-gravitational forces are derived. Then, the case where the non-gravitational force is the Lorentz force is investigated. The gravitational modification of Maxwell's equations is obtained under the requirement that a charged continuous medium, subjected to the Lorentz force, obeys the equation derived for continuum dynamics under external forces. These Maxwell equations are shown to be consistent with the dynamics of a "free" photon, and thus with the geometrical optics of this theory. However, these equations do not imply local charge conservation, except for a constant gravitational field.
New exact solution for the exterior gravitational field of a charged spinning mass
International Nuclear Information System (INIS)
Chamorro, A.; Manko, V.S.; Denisova, T.E.
1991-01-01
An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly
Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach
International Nuclear Information System (INIS)
Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R
2015-01-01
Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)
New exact solution for the exterior gravitational field of a spinning mass
International Nuclear Information System (INIS)
Manko, V.S.
1990-01-01
An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravitational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented
Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario
Directory of Open Access Journals (Sweden)
Asuka Ito
2017-08-01
Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.
Singularities in K-space and multi-brane solutions in cubic string field theory
Hata, Hiroyuki; Kojita, Toshiko
2013-02-01
In a previous paper [arXiv:1111.2389], we studied the multi-brane solutions in cubic string field theory by focusing on the topological nature of the "winding number" {N} which counts the number of branes. We found that {N} can be non-trivial owing to the singularity from the zero-eigenvalue of K of the KBc algebra, and that solutions carrying integer {N} and satisfying the EOM in the strong sense is possible only for {N} = 0 , ±1. In this paper, we extend the construction of multi-brane solutions to | {N} | ≥ 2. The solutions with N = ±2ismadepossiblebythefactthatthecorrelatorisinvariantunderatransformation exchanging K with 1 /K and hence K = ∞ eigenvalue plays the same role as K = 0. We further propose a method of constructing solutions with | {N} | ≥ 3 by expressing the eigenvalue space of K as a sum of intervals where the construction for | {N} | ≤ 2 is applicable.
The gravitational field of an infinite flat slab
International Nuclear Information System (INIS)
Fulling, S A; Bouas, J D; Carter, H B
2015-01-01
We study Einstein's equations with a localized plane-symmetric source, with close attention to gauge freedom/fixing and to listing all physically distinct solutions. In the vacuum regions there are only two qualitatively different solutions, one curved and one flat; in addition, on each of the two sides there is a free parameter describing how the slab is embedded into the vacuum region. Surprisingly, for a generic slab source the solution must be curved on one side and flat on the other. We treat infinitely thin slabs in full detail and indicate how thick slabs can increase the variety of external geometry pairs. Positive energy density seems to force external geometries with curvature singularities at some distance from the slab; we speculate that such singularities occur in regions where the solution cannot be physically relevant anyway. (invited comment)
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
An exact solution of Einstein's equations is found describing the gravitational ﬁeld of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.
Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate
Acedo, Luis; Tung, Michael M.
2012-01-01
The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…
A New Detector for Perturbations in Gravitational Field
Directory of Open Access Journals (Sweden)
Smirnov V. N.
2008-04-01
Full Text Available The paper presents design, principles of operation, and examples of registrations carried out by original device developed and constructed by V. N. Smirnov. The device manifested the possibility to register very weak gravitational perturbations of non-seismic kind both from celestial bodies and from the internal processed in the terrestrial globe.
Gravitating Yang--Mills fields in all dimensions
Radu, Eugen; Tchrakian, D. H.
2009-01-01
A classification of gravitating Yang--Mills systems in all dimensions is presented. These systems are set up so that they support finite energy solutions. Both regular and black hole solutions are considered, the former being the limit of the latter for vanishing event horizon radius. Special attention is paid to systems necessarily involving higher order Yang--Mills curvature terms, along with the option of incorporating higher order terms in the Riemann curvature. The scope here is restrict...
On the effects of gravitational fields on the electrical properties of matter
International Nuclear Information System (INIS)
Opat, G.I.
1993-01-01
A discussion of the electrical state of a conducting solid in a static gravitational field is presented. The analysis of the stress-gravitational force balance inside the solid is complicated, however, outside the solid, in the evanescent electron field, the analysis of such a balance simplifies greatly. As a consequence of this external analysis, an expression for the electric field external to the body is presented which includes the direct effect of gravity on the electrons, as well as the indirect effect due to the stress induced by gravity acting on the bulk solid. Such fields are an important determinant of the gravitational motion of charged particles within metallic shields. 4 refs., 1 fig
Evans, J. D.; Palhares Junior, I. L.; Oishi, C. M.
2017-12-01
We characterise the stress singularity of the Oldroyd-B, Phan-Thien-Tanner (PTT), and Giesekus viscoelastic models in steady planar stick-slip flows. For both PTT and Giesekus models in the presence of a solvent viscosity, the asymptotics show that the velocity field is Newtonian dominated near to the singularity at the join of the stick and slip surfaces. Polymer stress boundary layers are present at both the stick and slip surfaces. By integrating along streamlines, we verify the polymer stress behavior of r-4/11 for PTT and r-5/16 for Giesekus, where r is the radial distance from the singularity. These asymptotic results for PTT and Giesekus do not hold in the limit of vanishing quadratic stress terms for Oldroyd-B. However, we can consider the Oldroyd-B model in the fixed kinematics of a prescribed Newtonian velocity field. In contrast to PTT and Giesekus, this is not the correct balance for the momentum equation but does allow insight into the behavior of the Oldroyd-B equations near the singularity. A three-region asymptotic structure is again apparent with now a polymer stress singularity of r-4/5. The high Weissenberg boundary layer equations are found to manifest themselves at the stick surface and are of thickness r3/2. At the slip surface, dominant balance between the upper convected stress and rate-of-strain terms gives a slip boundary layer of thickness r2. The solution of the slip boundary layer shows that the polymer stress is now singular along the slip surface. These results are supported through numerical integration along streamlines of the Oldroyd-B equations in a Newtonian velocity field. The Oldroyd-B model thus extends the point singularity at the join of the stick and slip surfaces to the whole of slip surface. As such, it does not have a physically meaningful solution in a Newtonian velocity field. We would expect a similar stress behavior for this model in the true viscoelastic velocity field.
Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure
International Nuclear Information System (INIS)
Lim, S.C.
1983-05-01
It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)
Singular twisting moment in a cracked thin plate under an electric current flow and a magnetic field
International Nuclear Information System (INIS)
Shindo, Yasuhide; Tamura, Hitoshi
1988-01-01
This paper deals with the electromagneto-elastic problem of an elastic conducting thin plate containing a through crack under a uniform electric current flow and a constant magnetic field. The current flow is disturbed by the presence of the crack and a twisting moment is caused by the interaction between the magnetic field and the disturbed current. Two problems concerning the electric current density field and the electromagneto-elastic field are formulated by means of integral transform techniques and reduced to two pairs of dual integral equations. These integral equations are solved exactly, and the singular current densities, the displacement of the crack surface and the singular moments near the crack tip are expressed in closed forms. (author)
International Nuclear Information System (INIS)
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-01-01
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
A model of Saturn inferred from its measured gravitational field
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
We present an interior model of Saturn with an ice-rock core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. The shape of Saturn’s 1 bar surface is irregular and determined fully self-consistently by the required equilibrium condition. While the ice-rock core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. The Saturnian model is constrained by its known mass, its known equatorial and polar radii, and its known zonal gravitational coefficients, J 2n , n = 1, 2, 3. The model produces an ice-rock core with equatorial radius 0.203 R S, where R S is the equatorial radius of Saturn at the 1-bar pressure surface; the core density ρ c = 10388.1 kgm‑3 corresponding to 13.06 Earth masses; and an analytical expression describing the Saturnian irregular shape of the 1-bar pressure level. The model also predicts the values of the higher-order gravitational coefficients, J 8, J 10 and J 12, for the hydrostatic Saturn and suggests that Saturn’s convective dynamo operates in the metallic region approximately defined by 0.2 R S < r e < 0.7 R S, where r e denotes the equatorial radial distance from the Saturnian center of figure.
Chruściel, Piotr T.; Delay, Erwann; Klinger, Paul
2018-02-01
We use an elliptic system of equations with complex coefficients for a set of complex-valued tensor fields as a tool to construct infinite-dimensional families of non-singular stationary black holes, real-valued Lorentzian solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–Chern–Simons-f(R) equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.
Dimensional reduction of the spinning string in a background gravitational field
McKeon, D. G. C.
2003-08-01
The superfield and equivalent component field formulations of the N = 1 spinning string in the presence of a background gravitational field are given. It is shown how dimensional reduction of this spinning string gives rise to an N = 2 spinning particle with global 0(2) symmetry. A distinction between different versions of the action for the N = 2 spinning particle is noted.
Gravitational Acceleration and the Curvature Distortion of Spacetime
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2012-07-01
Full Text Available The Crothers solution to the Einstein vacuum field consists of a denumerable infinity of Schwarzschild-like metrics that are non-singular everywhere except at the point mass itself. When the point-mass distortion from the Planck vacuum (PV theory is inserted into the Crothers calculations, the combination yields a composite model that is phys- ically transparent. The resulting static gravitational field using the Crothers metrics is calculated and compared to the Newtonian gravitational field and the gravitational field associated with the black hole model.
Gravitational Field effects on the Decoherence Process and the Quantum Speed Limit.
Dehdashti, Sh; Avazzadeh, Z; Xu, Z; Shen, J Q; Mirza, B; Wang, H
2017-11-08
In this paper we use spinor transformations under local Lorentz transformations to investigate the curvature effect on the quantum-to-classical transition, described in terms of the decoherence process and of the quantum speed limit. We find that gravitational fields (introduced adopting the Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect of the Earth's gravitational field, characterized by the Rindler space-time, on the same particle. We find that the effect of the Earth's gravitational field on the decoherence process and quantum speed limit is very small, except when the mean speed of the quantum particle is comparable to the speed of light.
Sun, Qi; Fu, Shujun
2017-09-20
Fringe orientation is an important feature of fringe patterns and has a wide range of applications such as guiding fringe pattern filtering, phase unwrapping, and abstraction. Estimating fringe orientation is a basic task for subsequent processing of fringe patterns. However, various noise, singular and obscure points, and orientation data degeneration lead to inaccurate calculations of fringe orientation. Thus, to deepen the understanding of orientation estimation and to better guide orientation estimation in fringe pattern processing, some advanced gradient-field-based orientation estimation methods are compared and analyzed. At the same time, following the ideas of smoothing regularization and computing of bigger gradient fields, a regularized singular-value decomposition (RSVD) technique is proposed for fringe orientation estimation. To compare the performance of these gradient-field-based methods, quantitative results and visual effect maps of orientation estimation are given on simulated and real fringe patterns that demonstrate that the RSVD produces the best estimation results at a cost of relatively less time.
Field of a charged particle in a scalar-tensor theory of gravitation
Reddy, D. R. K.; Vidyasagar, T.; Satyanarayana, B.
2012-11-01
Field equations in the scalar-tensor theory of gravitation, proposed by Saez and Ballester (Phys. Lett. A 113: 467, 1986), are obtained for a static charged point mass with the aid of a spherically symmetric metric. A closed form exact solution of the field equations is presented and may be considered as describing the field due to a charged mass point at the origin surrounded by a scalar-tensor field.
Models for Quarks and Elementary Particles. Part III: What is the Nature of the Gravitational Field?
Directory of Open Access Journals (Sweden)
Neumann U. K. W.
2008-07-01
Full Text Available The first two parts of this article series dealt with the questions: What is a quark? and What is mass? While the present models lead to a physical idea of the mass, the geometrical theory of the general relativity only shows the effect of mass. From the physical idea of mass, from the idea of the resultant vector (EV as electric flux and from the ideas relating to the magnetic monopole (MMP it follows that the gravitational field is an electrical field. The share of the electrical gravitational flux on the entire electrical flux of a quark is determined from Newton’s empirical gravitational constant G . The superposition of the < fluxes of two quark collectives produces the gravitational force effect between two quark collectives. Gravitational fields reach infinitely far according to our current ideas. Connected with the quark oscillations hinted in the Parts I and II this results in the idea of the < - < flux spreading with infinite speed, having enormous consequences.
Using Jupiter’s gravitational field to probe the Jovian convective dynamo
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-01-01
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472
Factorization of the relativistic Pauli equation in the presence of a gravitational field
International Nuclear Information System (INIS)
Melek, M.
1988-08-01
Attention is called to a possible solution to the problem of the ambiguity in the numerical coefficient of the correction term (h/2π R) that occurs in the Klein-Gordon and relativistic Pauli equations in the presence of a gravitational field. This solution is based on the possibility of factorizing the relativistic Pauli equation for the propagator of the spin 1/2 particle, defined by a path integral, to obtain the Dirac equation in the presence of a gravitational field. (author). 6 refs
Thermal corrections to the Casimir energy in a general weak gravitational field
Nazari, Borzoo
2016-12-01
We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.
Choi, Nari; Han, Jongmin
2018-04-01
In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O (3) sigma model coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider radially symmetric solutions. There appear three important constants: a positive parameter a representing a scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonnegative integer N2 representing the total anti-string number. The values of the products aN1 , aN2 ∈ [ 0 , ∞) play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we provide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously known results.
The Effect of the Free Surface on the Singular Stress Field at the Fatigue Crack Front
Directory of Open Access Journals (Sweden)
Oplt Tomáš
2017-11-01
Full Text Available Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation between Poisson’s ratio and the angle between crack front and free surface.
Electromagnetic-gravitational conversion cross sections in external electromagnetic fields
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.
1994-09-01
The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs
The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.
Newton\\'s equation of motion in the gravitational field of an oblate ...
African Journals Online (AJOL)
In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...
Equations of motion for anisotropic nonlinear elastic continuum in gravitational field
International Nuclear Information System (INIS)
Sokolov, S.N.
1994-01-01
Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs
International Nuclear Information System (INIS)
Zhu Chunhua; Zha Chaozheng
2005-01-01
The detection of a particle in electromagnetic plus gravitational fields is investigated. We obtain a set of quantum nondemolition variables. The continuous measurements of these nondemolition parameters are analyzed in the framework of restricted path integral formalism. We manipulate the corresponding propagators, and deduce the probabilities associated with the possible measurement outputs.
DEFORMATION OF SEMI BOUNDED DROP OF MAGNETIC FLUID IN MAGNETIC AND GRAVITATIONAL FIELDS
Directory of Open Access Journals (Sweden)
V. G. Bashtovoi
2014-01-01
Full Text Available The regularities of semi bounded magnetic fluid drop deformation at simultaneous influence of magnetic and gravitational fields have been established theoretically and experimentally in the paper. The role of each factor in formation and deformation of the drop has been determined and direct proportions for calculation of its geometrical parameters have been obtained in the paper.
Post-Newtonian (and higher order) observational constraints on gravitation field theories
International Nuclear Information System (INIS)
Nordtvedt, K.
1982-01-01
The empirically confirmed premise that gravity is a metric theory is accepted. The general class of all Lagrangian-based metric field theories of gravity is considered. A collection of observational tests of gravitational phenomena which points to a specific metric theory of gravity and rules out alternatives is created
Self-Interaction of an electric dipole in the gravitational field
International Nuclear Information System (INIS)
Leaute, B.; Linet, B.
1983-01-01
We consider an electric dipole at rest in a weak gravitational field. We determine the electric self-force and the electric self-torque on the dipole, using a lagrangian method at the post-Newtonian approximation of general relativity [fr
Note on the evolution of the gravitational potential in Rastall scalar field theories
International Nuclear Information System (INIS)
Fabris, J.C.; Hamani Daouda, M.; Piattella, O.F.
2012-01-01
We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the Newtonian gauge, is possible only for γ=1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows to consider the case γ≠1.
Palatnik, Dmitriy
2002-01-01
In this note one suggests a possibility of direct observation of the $\\theta$-parameter, introduced in the Born--Infeld theory of electroweak and gravitational fields, developed in quant-ph/0202024. Namely, one may treat $\\theta$ as a universal constant, responsible for correction to the Coulomb and Newton laws, allowing direct interaction between electrical charges and masses.
Stochastic quantization and gauge-fixing of the linearized gravitational field
International Nuclear Information System (INIS)
Hueffel, H.; Rumpf, H.
1984-01-01
Due to the indefiniteness of the Euclidean gravitational action the Parisi-Wu stochastic quantization scheme fails in the case of the gravitational field. Therefore we apply a recently proposed modification of stochastic quantization that works in Minkowski space and preserves all the advantages of the original Parisi-Wu method; in particular no gauge-fixing is required. Additionally stochastic gauge-fixing may be introduced and is also studied in detail. The graviton propagators obtained with and without stochastic gauge-fixing all exhibit a noncausal contribution, but apart from this effect the gauge-invariant quantities are the same as those of standard quantization. (Author)
Some consequences of the law of local energy conservation in the gravitational field
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
2001-01-01
At gravitational interactions of bodies and particles there appears the defect of masses, i.e. the energy yields since the bodies (or particles) are attracted. It is shown that this changing of the effective mass of the body (or the particle) in the external gravitational field leads to changes of the measurement units: velocity and length (relative to the standard measurement units). The expression describing the advance of the perihelion of the planet (the Mercury) has been obtained. This expression is mathematically identical to Einstein's equation for the advance of the perihelion of the Mercury
Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy
2018-01-01
Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
Canonical quantum theory of gravitational field with higher derivatives, 2
International Nuclear Information System (INIS)
Kawasaki, Shoichiro; Kimura, Tadahiko
1982-01-01
The asymptotic fields in a canonically quantized graviational field with higher derivatives are analyzed. A possible mechanism of the recovery of the physical S-matrix unitarity is discussed. The constraint nabla sub(μ)(B sup(μν) + (Beta /α)g sup(μν)B) = 0 due to the Bianchi identity on R sub(μν) is treated by Dirac's method. (author)
Quantum fields on manifolds: PCT and gravitationally induced thermal states
International Nuclear Information System (INIS)
Sewell, G.L.
1982-01-01
We formulate an axiomatic scheme, designed to provide a framework for a general, rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal's extension of Schwarzchild space-time, as well as Minkowski space-time. The scheme is an adaptation of Wightman's to this class of manifolds. We infer from it that, given an arbitrary field (in general, interacting) on a manifold X, the restriction of the field to a certain open submanifold X/sup( + ), whose boundaries are event horizons, satisfies the Kubo--Martin--Schwinger (KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof of a generalized Hawking--Unruh effect. Further, in cases where the field enjoys a certain PCT symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to these results is an analogue, that we prove, of the Bisognano--Wichmann theorem [J. Math. Phys. 17, (1976), Theorem 1]. We also construct an alternative scheme by replacing a regularity condition at an event horizon by the assumption that the field in X/sup( + ) is in a ground, rather then a thermal, state. We show that, in this case, the observables in X/sup( + ) are uncorrelated to those in its causal complement, X/sup( - ), and thus that the event horizons act as physical barriers. Finally, we argue that the choice between the two schemes must be dictated by the prevailing conditions governing the state of the field
A possible gravitational origin of the Higgs field in the standard model
International Nuclear Information System (INIS)
Flato, M.
1988-01-01
A standard model for weak and electromagnetic interactions with the inclusion of a partially quantized gravitational field g={g αβ } is considered. The imposition of the causality condition on g αβ reduces them to the form g αβ (x)=Ω(x)g αβ (x) where Ω(x) is a scalar quantum field and g αβ (x) is a dynamical c-number metric. Expressing Ω as a local function of some other scalar field φ, whose kinetic term has the conventional form, we get Ω(x)=-4/3G 0 :φ 2 (x): where G 0 is the Newton constant. The gravitational action integral S(g,φ) for g αβ and φ fields admits the spontaneous symmetry breaking. This implies that in the standard model with gravitational field included the scalar graviton field φ may play the role of Higgs field and may generate the masses of W and Z bosons, leptons and quarks. This shows that gravity may be responsible for all particle masses of the standard model. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Cesare, Marco de, E-mail: marco.de_cesare@kcl.ac.uk; Sakellariadou, Mairi, E-mail: mairi.sakellariadou@kcl.ac.uk
2017-01-10
We study the expansion of the Universe using an effective Friedmann equation obtained from the dynamics of GFT (Group Field Theory) isotropic condensates. The evolution equations are classical, with quantum correction terms to the Friedmann equation given in the form of effective fluids coupled to the emergent classical background. The occurrence of a bounce, which resolves the initial spacetime singularity, is shown to be a general property of the model. A promising feature of this model is the occurrence of an era of accelerated expansion, without the need to introduce an inflaton field with an appropriately chosen potential. We discuss possible viability issues of this scenario as an alternative to inflation.
International Nuclear Information System (INIS)
Drechsler, W.; Havas, P.; Rosenblum, A.
1984-01-01
In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g
Charged Tori in Spherical Gravitational and Dipolar Magnetic Fields
Czech Academy of Sciences Publication Activity Database
Slaný, P.; Kovář, J.; Stuchlík, Z.; Karas, Vladimír
2013-01-01
Roč. 205, č. 1 (2013), 3/1-3/16 ISSN 0067-0049 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : accretion * accretion disks * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 14.137, year: 2013
Canonical quantum theory of gravitational field with higher derivatives, 3
International Nuclear Information System (INIS)
Kawasaki, Shoichiro; Kimura, Tadahiko
1983-01-01
A formulation which is invariant under an additional BRS transformation with nilpotency of order two is presented for the canonical theory of the renormalizable quantum gravity with higher derivatives. The canonical quantization is carried out and various equal time (anti-) commutation relations are derived. The asymptotic fields are reanalyzed. The physical particle contents are just the same as those obtained in previous papers. (author)
Zhdanov, V.; Stashko, O.
2016-12-01
We study exact special solutions of the joint system of Einstein equations and scalar field equations with a non-zero self-interaction potential, which describe spherically symmetric static configurations. The space-time is asymptotically flat with a naked singularity at the center. The testbody motion is analyzed; we found conditions for existence of non-connected regions of stable circular orbits. We show the existence of static trajectories of particles that hang above the configuration.
International Nuclear Information System (INIS)
Burinskii, A.
2015-01-01
The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system
Gravitation: Field theory par excellence Newton, Einstein, and beyond
International Nuclear Information System (INIS)
Yilmaz, H.
1984-01-01
Newtonian gravity satifies the two principles of equivalence m/sub i/ = m/sub p/ (the passive principle) and m/sub a/ = m/sub p/ (the active principle). A relativistic gauge field concept in D = s+1 dimensional curved-space will, in general, violate these two principles as in m/sub p/ = αm/sub i/, m/sub a/ = lambdam/sub p/ where α = D: 3 and lambda measures the presence of the field stress-energy t/sup ν//sub μ/ in the field equations. It is shown that α = 1, lambda = 0 corresponds to general relativity and α = 1, lambda = 1 to the theory of the author. It is noted that the correspondence limit of general relativity is not Newton's theory but a theory suggested by Robert Hooke a few years before Newton published his in Principia. The gauge is independent of the two principles but had to do with local special relativistic correspondence and compatibility with quantum mechanics. It is shown that unless α = 1, lambda = 1 the generalized theory cannot predict correctly many observables effects, including the 532'' per century Newtonian part in Mercury's perihelion advance
Parametrized post-Newtonian approximation and Rastall's gravitational field equations
International Nuclear Information System (INIS)
Smalley, L.L.
1978-01-01
The parametrized post-Newtonian (PPN) approximation is generalized to accomodate Rastall's modification of Einstein's theory of gravity, which allows nonzero divergence of the energy-momentum tensor. Rastall's theory is then shown to have consistent field equations, gauge conditions, and the correct Newtonian limit of the equations of motion. The PPN parameters are obtained and shown to agree experimentally with those for the Einstein theory. In light of the nonzero divergence condition, integral conservation laws are investigated and shown to yield conserved energy-momentum and angular-momentum. We conclude that the above generalization of metric theories, within the PPN framework, is a natural extension of the concept of metric theories
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory/SOKENDAI, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2017-10-01
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.
Reversible wavefront shaping between Gaussian and Airy beams by mimicking gravitational field
Wang, Xiangyang; Liu, Hui; Sheng, Chong; Zhu, Shining
2018-02-01
In this paper, we experimentally demonstrate reversible wavefront shaping through mimicking gravitational field. A gradient-index micro-structured optical waveguide with special refractive index profile was constructed whose effective index satisfying a gravitational field profile. Inside the waveguide, an incident broad Gaussian beam is firstly transformed into an accelerating beam, and the generated accelerating beam is gradually changed back to a Gaussian beam afterwards. To validate our experiment, we performed full-wave continuum simulations that agree with the experimental results. Furthermore, a theoretical model was established to describe the evolution of the laser beam based on Landau’s method, showing that the accelerating beam behaves like the Airy beam in the small range in which the linear potential approaches zero. To our knowledge, such a reversible wavefront shaping technique has not been reported before.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
Directory of Open Access Journals (Sweden)
Gabriel Martínez-Niconoff
2012-01-01
Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.
Horizon quantum fuzziness for non-singular black holes
Giugno, Andrea; Giusti, Andrea; Helou, Alexis
2018-03-01
We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.
International Nuclear Information System (INIS)
Stachel, J.
1977-01-01
A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)
Deviation and precession effects in the field of a weak gravitational wave
Bini, Donato; Geralico, Andrea; Ortolan, Antonello
2017-05-01
Deviation and precession effects of a bunch of spinning particles in the field of a weak gravitational plane wave are studied according to the Mathisson-Papapetrou-Dixon (MPD) model. Before the passage of the wave the particles are at rest with an associated spin vector aligned along a given direction with constant magnitude. The interaction with the gravitational wave causes the particles to keep moving on the 2-plane orthogonal to the direction of propagation of the wave, with the transverse spin vector undergoing oscillations around the initial orientation. The transport equations for both the deviation vector and spin vector between two neighboring world lines of such a congruence are then solved by a suitable extension of the MPD model off the spinning particle's world line. In order to obtain measurable physical quantities a "laboratory" is set up by constructing a Fermi coordinate system attached to a reference world line. The exact transformation between TT coordinates and Fermi coordinates is derived too.
Directory of Open Access Journals (Sweden)
Marco de Cesare
2017-01-01
Full Text Available We study the expansion of the Universe using an effective Friedmann equation obtained from the dynamics of GFT (Group Field Theory isotropic condensates. The evolution equations are classical, with quantum correction terms to the Friedmann equation given in the form of effective fluids coupled to the emergent classical background. The occurrence of a bounce, which resolves the initial spacetime singularity, is shown to be a general property of the model. A promising feature of this model is the occurrence of an era of accelerated expansion, without the need to introduce an inflaton field with an appropriately chosen potential. We discuss possible viability issues of this scenario as an alternative to inflation.
Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory
International Nuclear Information System (INIS)
Noui, Karim
2007-01-01
In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function
Singularities and the geometry of spacetime
Hawking, Stephen
2014-11-01
The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field
Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.
2015-10-01
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Analytical Solutions of the Gravitational Field Equations in de Sitter and Anti-de Sitter Spacetimes
Da Rocha, R.; Capelas Oliveira, E.
2009-01-01
The generalized Laplace partial differential equation, describing gravitational fields, is investigated in de Sitter spacetime from several metric approaches—such as the Riemann, Beltrami, Börner-Dürr, and Prasad metrics—and analytical solutions of the derived Riccati radial differential equations are explicitly obtained. All angular differential equations trivially have solutions given by the spherical harmonics and all radial differential equations can be written as Riccati ordinary differential equations, which analytical solutions involve hypergeometric and Bessel functions. In particular, the radial differential equations predict the behavior of the gravitational field in de Sitter and anti-de Sitter spacetimes, and can shed new light on the investigations of quasinormal modes of perturbations of electromagnetic and gravitational fields in black hole neighborhood. The discussion concerning the geometry of de Sitter and anti-de Sitter spacetimes is not complete without mentioning how the wave equation behaves on such a background. It will prove convenient to begin with a discussion of the Laplace equation on hyperbolic space, partly since this is of interest in itself and also because the wave equation can be investigated by means of an analytic continuation from the hyperbolic space. We also solve the Laplace equation associated to the Prasad metric. After introducing the so called internal and external spaces—corresponding to the symmetry groups SO(3,2) and SO(4,1) respectively—we show that both radial differential equations can be led to Riccati ordinary differential equations, which solutions are given in terms of associated Legendre functions. For the Prasad metric with the radius of the universe independent of the parametrization, the internal and external metrics are shown to be of AdS-Schwarzschild-like type, and also the radial field equations arising are shown to be equivalent to Riccati equations whose solutions can be written in terms of
A Multi-layered Model for the Shape, Zonal Winds and Gravitational Field of Jupiter
Schubert, G.; Zhang, K.; Kong, D.
2016-12-01
We have developed a three-dimensional, finite-element, multi-layered, non-spheroidal model of Jupiter consisting of an inner core, a metallic dynamo region and an outer molecular electrically insulating envelope. Different polytropic equations of state are used in the metallic and molecular regions. The zonal winds are on cylinders parallel to the rotation axis and are confined within the molecular envelope by magnetic braking. The effect of rotational distortion is fully accounted for; it is not treated as simply a small perturbation on a spherically symmetric state. The model determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter. It produces the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 with an accuracy of a few percent. The variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted Jupiter is also determined. Different cases, ranging from a deep wind profile to a very shallow profile, are considered. The model enables accurate interpretation of the zonal gravitational coefficients expected from the Juno mission.
Dynamical and gravitational instability of an oscillating-field dark energy and dark matter
International Nuclear Information System (INIS)
Johnson, Matthew C.; Kamionkowski, Marc
2008-01-01
Coherent oscillations of a scalar field can mimic the behavior of a perfect fluid with an equation-of-state parameter determined by the properties of the potential, possibly driving accelerated expansion in the early Universe (inflation) and/or in the Universe today (dark energy) or behaving as dark matter. We consider the growth of inhomogeneities in such a field, mapping the problem to that of two coupled anharmonic oscillators. We provide a simple physical argument that oscillating fields with a negative equation-of-state parameter possess a large-scale dynamical instability to growth of inhomogeneities. This instability renders these models unsuitable for explaining cosmic acceleration. We then consider the gravitational instability of oscillating fields in potentials that are close to, but not precisely, harmonic. We use these results to show that if axions make up the dark matter, then the small-scale cutoff in the matter power spectrum is around 10 -15 M + .
Is it possible to test directly general relativity in the gravitational field of the Moon?
International Nuclear Information System (INIS)
Iorio, Lorenzo
2002-01-01
In this paper the possibility of directly measuring some general relativistic effects in the gravitational field of the Moon via selenodetic missions, with particular emphasis on the future Japanese SELENE mission, is investigated. For a typical selenodetic orbital configuration the post-Newtonian Lense-Thirring gravitomagnetic and Einstein's gravitoelectric effects on the satellite orbits are calculated and compared with the present-day orbit accuracy of lunar missions. It turns out that for SELENE's Main Orbiter, at present, the gravitoelectric periselenium shift, which is the largest general relativistic effect, is one or two orders of magnitude smaller than the experimental sensitivity
Normalization and Implementation of Three Gravitational Acceleration Models
Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.; Gottlieb, Robert G.
2016-01-01
Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the real universe is that gravitational fields are sensitive to the asphericity of their generating central bodies. The gravitational potential of an aspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities that must be removed to generalize the method and solve for any possible orbit, including polar orbits. Samuel Pines, Bill Lear, and Robert Gottlieb developed three unique algorithms to eliminate these singularities. This paper documents the methodical normalization of two of the three known formulations for singularity-free gravitational acceleration (namely, the Lear and Gottlieb algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre polynomials and Associated Legendre Functions (ALFs) for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-10-01
Full Text Available In this article, we formulate solutions to Einstein's geometrical field equations derived using our new approach. Our field equations exterior and interior to the mass distribution have only one unknown function determined by the mass or pressure distribution. Our obtained solutions yield the unknown function as generalizations of Newton's gravitational scalar potential. Thus, our solution puts Einstein's geometrical theory of gravity on same footing with Newton's dynamical theory; with the dependence of the field on one and only one unknown function comparable to Newton's gravitational scalar potential. Our results in this article are of much significance as the Sun and planets in the solar system are known to be more precisely oblate spheroidal in geometry. The oblate spheroidal geometries of these bodies have effects on their gravitational fields and the motions of test particles and photons in these fields.
Energy Technology Data Exchange (ETDEWEB)
Peters, Thomas; Klessen, Ralf S.; Federrath, Christoph; Smith, Rowan J. [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Schleicher, Dominik R. G. [Institut fuer Astrophysik, Georg-August-Universitaet, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Sur, Sharanya, E-mail: tpeters@physik.uzh.ch [Raman Research Institute, C. V. Raman Avenue, Sadashivnagar, Bangalore 560080 (India)
2012-12-01
Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = k{rho}{sup {Gamma}}, with both sub-isothermal exponents {Gamma} < 1 and super-isothermal exponents {Gamma} > 1. We find significant differences between these two cases. For {Gamma} > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales corresponding to the eddy-turnover time at the viscous scale. For {Gamma} < 1, on the other hand, pressure support is not sufficient for the formation of such a core. Gravitational contraction proceeds much more rapidly and the flow develops very strong shocks, creating a network of intersecting sheets and extended filaments. The resulting magnetic field lines are very coherent and exhibit a considerable degree of order. Nevertheless, even under these conditions we still find exponential growth of the magnetic energy density in the kinematic regime.
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
Spinning gravitating objects in the effective field theory in the post-Newtonian scheme
International Nuclear Information System (INIS)
Levi, Michele; Steinhoff, Jan
2015-01-01
We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.
International Nuclear Information System (INIS)
Chrusciel, P.T.
1985-01-01
It is shown, that the interpretation of the Einstein energy-momentum ''pseudo-tensor'',''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field, is consistent with a geometric hamiltonian analysis. It is also shown, that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. It is explained why the ADM and the von Freud energy expressions are the same, for asymptotically flat space-times
International Nuclear Information System (INIS)
Chrusciel, P.T.
1983-09-01
It is shown that the interpretation of the Einstein energy-momentum ''pseudo-tensor'', ''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field is consistent with a geometric Hamiltonian analysis. It is also shown that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. (author)
Fluctuations of the gravitational field generated by a random population of extended substructures
Peñarrubia, Jorge
2018-02-01
A large population of extended substructures generates a stochastic gravitational field that is fully specified by the function p(F), which defines the probability that a tracer particle experiences a force F within the interval F, F+d{F}. This paper presents a statistical technique for deriving the spectrum of random fluctuations directly from the number density of substructures with known mass and size functions. Application to the subhalo population found in cold dark matter simulations of Milky Way sized haloes shows that, while the combined force distribution is governed by the most massive satellites, the fluctuations of the tidal field are completely dominated by the smallest and most abundant subhaloes. In light of this result, we discuss observational experiments that may be sufficiently sensitive to Galactic tidal fluctuations to probe the `dark' low end of the subhalo mass function and constrain the particle mass of warm and ultralight axion dark matter models.
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
The expected spins of gravitational wave sources with isolated field binary progenitors
Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.
2018-01-01
We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.
Improved mapping of planetary gravitational field with an electrostatic accelerometer/gradiometer
Foulon, Bernard; Huynh, Phuong-Anh; Liorzou, Francoise; Christophe, Bruno; Hardy, Emilie; Boulanger, Damien; Lebat, Vincent; Perrot, Eddy
2015-04-01
ONERA has a proven record spanning several years in developing the most accurate accelerometers for geodesy missions. They are still operational in the GRACE mission and their successors for the GRACE-FO mission will fly in 2017. Finally, the GOCE mission has shown the benefit of using a gradiometer for the direct measurement of the gravity field. Now, ONERA proposes a new accelerometer design, MicroSTAR, for interplanetary missions. This design based on the same technology as for the GRACE and GOCE space missions, with the notable addition of a bias rejection system, has a reduced mass and consumption. The accelerometer is embarked on Uranus Pathfinder (mission proposal for Cosmic M4) as up-scope instrument to achieve two scientific objectives: 1) to determine the gravity fields of Uranus and the satellites, allowing for a better understanding of the planet interior composition, 2) to test gravity at the largest possible length scales to search for deviations from General Relativity. The success of using accelerometer for geodesy mission could be imported in the planetary science field. The poster details the accuracy which can be achieved on the gravity potential field according to different accelerometer configurations. It describes the instrument and its integration inside an interplanetary probe. Finally, it explains the benefit of using this electrostatic accelerometer complementary to radio science technology for improved planetary gravitational field measurements.
Magnetic field mapping of the UCNTau magneto-gravitational trap: design study
Energy Technology Data Exchange (ETDEWEB)
Libersky, Matthew Murray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-09-04
The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.
Connecting solutions in open string field theory with singular gauge transformations
Czech Academy of Sciences Publication Activity Database
Erler, Theodore; Maccaferri, C.
2012-01-01
Roč. 2012, č. 4 (2012), 1-40 ISSN 1126-6708 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : tachyon condensation * string field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP04%282012%29107
Astronomers Use X-Rays To Probe Gravitational Field Of A Neutron Star
2002-06-01
With NASA's Chandra X-ray Observatory, astronomers have detected features that may be the first direct evidence of the effect of gravity on radiation from a neutron star. This finding, if confirmed, could enable scientists to measure the gravitational field of neutron stars and determine whether they contain exotic forms of matter not seen on Earth. A team led by George Pavlov of Penn State University in University Park observed 1E 1207.4-5209, a neutron star in the center of a supernova remnant about 7,000 light years from Earth. The results were presented on June 6, 2002, at the American Astronomical Society in Albuquerque, NM. Pavlov's group found two dips, or absorption features, in the spectrum of X-rays from the star. If these dips are due to the absorption of X-rays near the star by helium ions in a strong magnetic field, they indicate that the gravitational field reduces the energies of X-rays escaping from near the surface of a neutron star. "This interpretation is consistent with the data," said Pavlov, "but the features may be a blend of many other features. More precise measurements, preferably with Chandra's grating spectrometer, are needed." "These absorption features may be the first evidence of the effect of gravity on radiation near the surface of an isolated neutron star," said Pavlov. "This is particularly important because it would allow us to set limits on the type of matter that comprises this star." Neutron stars are formed when a massive star runs out of fuel and its core collapses. A supernova explosion occurs and the collapsed core is compressed to a hot object about 12 miles in diameter, with a thin atmosphere of hydrogen and possibly heavier ions in a gravitational field 100 billion times as strong as Earth's. These objects, which have a density of more than 1 billion tons per teaspoonful, are called neutron stars because they have been thought to be composed mostly of neutrons. Although neutron stars have been studied extensively for
Dark matter cosmic string in the gravitational field of a black hole
Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek
2018-03-01
We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.
Cosmological applications of singular hypersurfaces in general relativity
Laguna-Castillo, Pablo
Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.
Time of flight and range of the motion of a projectile in a constant gravitational field
Directory of Open Access Journals (Sweden)
P. A. Karkantzakos
2009-01-01
Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Feng, Jinglang; Hou, Xiyun
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Figueroa, Daniel G; Torrentí, Francisco
2016-01-01
During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying non-perturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GW). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons $W^\\pm$ and $Z$. We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and post-inflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents however, only a tiny fraction of the inflationary energy. Consequently, th...
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Energy Technology Data Exchange (ETDEWEB)
Feng, Jinglang; Hou, Xiyun, E-mail: jinglang@nju.edu.cn, E-mail: silence@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, 210093 (China)
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Improved model of the Earth's gravitational field: GEM-T1
International Nuclear Information System (INIS)
Marsh, J.G.; Lerch, F.J.; Christodoulidis, D.C.
1987-07-01
Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Energy Technology Data Exchange (ETDEWEB)
Hashino, Katsuya, E-mail: hashino@jodo.sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kakizaki, Mitsuru, E-mail: kakizaki@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kanemura, Shinya, E-mail: kanemu@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ko, Pyungwon, E-mail: pko@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of); Matsui, Toshinori, E-mail: matsui@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of)
2017-03-10
We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2017-03-01
Full Text Available We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
Christophe, B.; Lebat, V.; Foulon, B.; Liorzou, F.; Perrot, E.; Boulanger, D.; Hardy, E.
2014-12-01
ONERA has developed since several years the most accurate accelerometers for the geodesy mission. The accelerometers are still operational in the GRACE mission. Their successors for the GRACE-FO mission are under manufacturing and will fly in 2017. Finally, the GOCE mission has proved the interest of gradiometer for a direct measurement of the gravity field.Now, ONERA proposes a new design of accelerometer, MicroSTAR, for interplanetary mission. It inherits of the same technology but with reduced mass and consumption. It has been proposed in several missions towards outer planets in order to test the deviation to the relativity general over large distance to the sun (with the addition of a bias rejection system). But the same instrument could be interesting to improve our knowledge of the planetary gravitational potential field, allowing a better understanding of the planet interior composition. The success of using accelerometer for geodesy mission could be imported in the planetary science.The paper will present the accuracy achievable on the gravity potential field according to different accelerometer configurations (one accelerometer, one gradiometer arm or a complete 3-axis gradiometer). Then, the instrument will be described and the integration of the instrument inside an interplanetary probe will be evoked.
Referent control of the orientation of posture and movement in the gravitational field.
Mullick, Aditi A; Turpin, Nicolas A; Hsu, Szu-Chen; Subramanian, Sandeep K; Feldman, Anatol G; Levin, Mindy F
2018-02-01
This study addresses the question of how posture and movement are oriented with respect to the direction of gravity. It is suggested that neural control levels coordinate spatial thresholds at which multiple muscles begin to be activated to specify a referent body orientation (RO) at which muscle activity is minimized. Under the influence of gravity, the body is deflected from the RO to an actual orientation (AO) until the emerging muscle activity and forces begin to balance gravitational forces and maintain body stability. We assumed that (1) during quiet standing on differently tilted surfaces, the same RO and thus AO can be maintained by adjusting activation thresholds of ankle muscles according to the surface tilt angle; (2) intentional forward body leaning results from monotonic ramp-and-hold shifts in the RO; (3) rhythmic oscillation of the RO about the ankle joints during standing results in body swaying. At certain sway phases, the AO and RO may transiently overlap, resulting in minima in the activity of multiple muscles across the body. EMG kinematic patterns of the 3 tasks were recorded and explained based on the RO concept that implies that these patterns emerge due to referent control without being pre-programmed. We also confirmed the predicted occurrence of minima in the activity of multiple muscles at specific body configurations during swaying. Results re-affirm previous rejections of model-based computational theories of motor control. The role of different descending systems in the referent control of posture and movement in the gravitational field is considered.
Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect
Okawa, Hirotada; Cardoso, Vitor
2014-11-01
Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.
Linear spin-zero quantum fields in external gravitational and scalar fields
International Nuclear Information System (INIS)
Kay, B.S.
1977-11-01
A general formalism for quantizing the covariant Klein Gordon equation in an arbitrary globally hyperbolic space-time is presented. It is argued that much of the conceptual confusion surrounding ''quantum field theory in curved space-time'' has been caused by the misapplication of a quantization procedure (the single representation formalism) which is really only suitable for quantizing stationary systems. Drawing on a close analogy with time-dependent external field problems in flat space-time, it is argued for the introduction of a new quantization procedure: the many vacuum formalism which accommodates non-stationary situations. In the many vacuum formalism, a whole family of different representations of the field algebra plays a role and dynamics is necessarily described in terms of isomorphisms between different algebras rather than automorphisms of a single algebra. It is shown how this many vacuum approach gives physically sensible results in the flat space-time case. In the curved space-time case, corresponding well defined formalism is obtained relying on rigorous results established in I. A principal feature is that a different vacuum state is obtained for each choice of Cauchy surface together with a choice of lapse and shift functions on that surface. Several questions-mathematical and interpretational- raised by the scheme are discussed
Naked singularity formation in Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Ziaie, Amir Hadi; Atazadeh, Khedmat [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Tavakoli, Yaser, E-mail: am.ziaie@mail.sbu.ac.i, E-mail: k-atazadeh@sbu.ac.i, E-mail: tavakoli@ubi.p [Departamento de Fisica, Universidade da Beira Interior, Rua Marques d' Avila e Bolama, 6200 Covilha (Portugal)
2010-04-07
Gravitational collapse of the Brans-Dicke scalar field with non-zero potential in the presence of matter fluid obeying the barotropic equation of state, p = wrho, is studied. Utilizing the concept of the expansion parameter, it is seen that the cosmic censorship conjecture may be violated for w=-1/3 and w=-2/3 which correspond to the cosmic string and domain wall, respectively. We have shown that physically, it is the rate of collapse that governs the formation of a black hole or a naked singularity as the final fate of dynamical evolution and only for these two cases can the singularity be naked as the collapse end state. Also the weak energy condition is satisfied by the collapsing configuration.
Linear spin-zero quantum fields in external gravitational and scalar fields
International Nuclear Information System (INIS)
Kay, B.S.
1977-10-01
Mathematically rigorous results are given on the quantization of the covariant Klein-Gordon field with an external stationary scalar interaction in a stationary curved space-time. It is shown how, following Segal, Weinless etc., the problem reduces to finding a ''one-particle structure'' for the corresponding classical system. The main result is an existence theorem for such a one-particle structure for a precisely specified class of stationary space-times. Byproducts of our approach are (1)a discussion of when the equal-time hypersurfaces in a given stationary space-time are Cauchy; (2)a proof that when a one-particle structure exists it is unique a result of general interest for the quantization of linear systems; (3)a modification and extension of the methods of Chernoff [3] for proving the essential self-adjointness of ceratin partial differential operators
Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube
Directory of Open Access Journals (Sweden)
Flaviane C. F. Venditti
2015-01-01
Full Text Available The orbital dynamics around irregular shaped bodies is an actual topic in astrodynamics, because celestial bodies are not perfect spheres. When it comes to small celestial bodies, like asteroids and comets, it is even more import to consider the nonspherical shape. The gravitational field around them may generate trajectories that are different from Keplerian orbits. Modeling an irregular body can be a hard task, especially because it is difficult to know the exact shape when observing it from the Earth, due to their small sizes and long distances. Some asteroids have been observed, but it is still a small amount compared to all existing asteroids in the Solar System. An approximation of their shape can be made as a sum of several known geometric shapes. Some three-dimensional figures have closed equations for the potential and, in this work, the formulation of a cube is considered. The results give the mappings showing the orbits that are less perturbed and then have a good potential to be used by spacecrafts that need to minimize station-keeping maneuvers. Points in the orbit that minimizes the perturbations are found and they can be used for constellations of nanosatellites.
Analysis of network traffic flow dynamics based on gravitational field theory
International Nuclear Information System (INIS)
Liu Gang; Li Yong-Shu; Zhang Xi-Ping
2013-01-01
For further research on the gravity mechanism of the routing protocol in complex networks, we introduce the concept of routing awareness depth, which is represented by ρ. On this basis, we define the calculation formula of the gravity of the transmission route for the packet, and propose a routing strategy based on the gravitational field of the node and the routing awareness depth. In order to characterize the efficiency of the method, we introduce an order parameter, ζ, to measure the throughput of the network by the critical value of phase transition from free flow to congestion, and use the node betweenness centrality, B, to test the transmission efficiency of the network and congestion distribution. We simulate the network transmission performance under different values of the routing awareness depth, ρ. Simulation results show that if the value of the routing awareness depth ρ is too small, then the gravity of the route is composed of the attraction of very few nodes on the route, which cannot improve the capacity of the network effectively. If the value of the routing awareness depth ρ is greater than the network's average distance 〈l〉, then the capacity of the network may be improved greatly and no longer change with the sustainable increment of routing awareness depth ρ, and the routing strategy performance enters into a constant state. Moreover, whatever the value of the routing awareness depth ρ, our algorithm always effectively balances the distribution of the betweenness centrality and realizes equal distribution of the network load
The Newton constant and gravitational waves in some vector field adjusting mechanisms
Santillán, Osvaldo P.; Scornavacche, Marina
2017-10-01
At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]-[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant GN in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant GN or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω=ck. In [3] the authors have presented a model suggesting that the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.
On the Interpretation of the Redshift in a Static Gravitational Field
Okun, Lev Borisovich; Telegdi, Valentine Louis
2000-01-01
The classical phenomenon of the redshift of light in a static gravitational potential, usually called the gravitational redshift, is described in the literature essentially in two ways: on the one hand the phenomenon is explained through the behaviour of clocks which run the faster the higher they are located in the potential, whereas the energy and frequency of the propagating photon do not change with height. The light thus appears to be redshifted relative to the frequency of the clock. On the other hand the phenomenon is alternatively discussed (even in some authoritative texts) in terms of an energy loss of a photon as it overcomes the gravitational attraction of the massive body. This second approach operates with notions such as the "gravitational mass" or the "potential energy" of a photon and we assert that it is misleading. We do not claim to present any original ideas or to give a comprehensive review of the subject, our goal being essentially a pedagogical one.
The Newton constant and gravitational waves in some vector field adjusting mechanisms
Energy Technology Data Exchange (ETDEWEB)
Santillán, Osvaldo P. [IMAS (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com [Departamento de Física, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2017-10-01
At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting that the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.
Gravitational radiation fields in teleparallel equivalent of general relativity and their energies
Gamal, G. L. Nashed
2010-11-01
We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energy—momentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space—time is carried out using the flux of the gravitational energy—momentum.
A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG
Energy Technology Data Exchange (ETDEWEB)
Wilson, Michelle L.; Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, Physics Division L-210, 7000 East Avenue, Livermore, CA 94550 (United States); Momcheva, Ivelina G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Williams, Kurtis A. [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX, 75428 (United States); Keeton, Charles R. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)
2016-12-20
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z {sub grp} ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z {sub grp} < 0.6. The groups have radial velocity dispersions of 60 ≤ σ {sub grp} ≤ 1200 km s{sup −1} with a median of 350 km s{sup −1}. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ∼85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ {sub grp}, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive ( σ {sub grp} ≥ 500 km s{sup −1}) group or group candidate projected within 2′ of the lens.
International Nuclear Information System (INIS)
Bleyer, U.; Muecket, J.P.
1980-01-01
In general the Birkhoff theorem is violated in non-Einsteinian theories of gravitation. We show for theories in which the dynamical equations do not follow from the field equations that time-dependent vacuum solutions are needed in order to join nonstatic spherically symmetric incoherent matter distributions. It is shown for Treder's tetrad theories that such vacuum solutions exist and a continuous and unique junction is possible. In generalization of these results we consider the problem in what theories of gravitation the dynamical equations do not follow from the field equations. This consideration leads to non-Einsteinian theories like bimetric theories or Treder's tetrad theories containing supplementary geometrical quantities which are not dynamical variables of the theory. (author)
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available Here, we present a profound and complete analytical solution to Einstein's gravitational field equations exterior to astrophysically real or hypothetical time varying distributions of mass or pressure within regions of spherical geometry. The single arbitrary function $f$ in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein's gravitational field equations tends out to be a generalization of Newton's gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration.
Osmaston, Miles F.
2013-09-01
the means for displacing its local density exist; that, we show, is the nature of gravitational action and brings gravitation into the electromagnetic family of forces. Under (B) the particle mass is measured by the aether-sucking capability of its vortex, positiveonly gravitation being because the outward-diminishing force developed by each makes mutual convergence at any given point the statistically prevalent expectation. This activity maintains a radial aether (charge) density gradient - the Gravity-Electric (G-E) Field - around and within any gravitationally retained assemblage. So Newton's is an incomplete description of gravitation; the corresponding G-E field is an inseparable facet of the action. The effect on c of that charge density gradient yields gravitational lensing. We find that G-E field action on plasma is astronomically ubiquitous. This strictly radial outward force on ions has the property of increasing the orbital angular momentum of material, by moving it outwards, but at constant tangential velocity. Spiral galaxies no longer require Cold Dark Matter (CDM) to explain this. The force (maybe 30 V.m-1 at solar surface) has comprehensive relevance to the high orbital a.m. achieved during solar planet formation, to their prograde spins and to exoplanet observations. The growth of high-mass stars is impossible if radiation pressure rules, whereas G-E field repulsion is low during dust-opaque infall, driving their prodigious mass loss rates when infall ceases and the star establishes an ionized environment. Its biggest force-effect (~1012 V.m-1) is developed at neutron stars, where it is likely the force of supernova explosions, and leads to a fertile model for pulsars and the acceleration of 1019 eV extreme-energy cosmic rays. Our only directly observed measure of the G-E field is recorded at about 1 V.m-1 in the ionosphere-to-Earth electric potential. And temporary local changes of ionosphere electron density, monitored by radio and satellite, have
Energy Technology Data Exchange (ETDEWEB)
Treder, H.J.
1975-08-01
A unified field theory of gravitation is formulated in which the field equations correspond to the Einstein equations of general relativity in the same way as electromagnetic bi-wave equations correspond to the Maxwell equations. The metric is a linear functional of an Einsteinian long-range potential and of a subatomic short-range potential. The quanta of the field are rest-massless gravitons and tensor bosons. It is suggested that the Compton wave length of heavy gravitons is given by the Planck length. (JFP)
International Nuclear Information System (INIS)
Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz
2017-01-01
It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)
Caldwell, R. R.; Devulder, C.
2018-01-01
We present a toy model of an axion gauge field inflation scenario that yields viable density and gravitational wave spectra. The scenario consists of an axionic inflaton in a steep potential that is effectively flattened by a coupling to a collection of non-Abelian gauge fields. The model predicts a blue-tilted gravitational wave spectrum that is dominated by one circular polarization, resulting in unique observational targets for cosmic microwave background and gravitational wave experiments. The handedness of the gravitational wave spectrum is incorporated in a model of leptogenesis through the axial-gravitational anomaly; assuming electroweak sphaeleron processes convert the lepton asymmetry into baryons, we predict an approximate lower bound on the tensor-to-scalar ratio r ˜3 - 4 ×10-2 for models that also explain the matter-antimatter asymmetry of the Universe.
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
On the genericity of spacetime singularities
Indian Academy of Sciences (India)
the framework of a general spacetime without any symmetry conditions, in terms of the overall behaviour of .... We now outline the basic idea and the chain of logic behind the proof of a typical singularity theorem ..... a detailed investigation of the dynamics of gravitational collapse within the frame- work of Einstein's theory.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian [Mainz Univ. (Germany). Inst. fuer Physik
2017-09-01
The following topics are dealt with: Maxwell's equations together with their symmetry and covariance, the Maxwell theory as classical field theory, simple applications of Maxwell's theory, local gauge theories, classical field theory of gravitation. (HSI)
On the Energy of Rotating Gravitational Waves
Mashhoon, Bahram; McClune, James C.; Chavez, Enrique; Quevedo, Hernando
1996-01-01
A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.
Singular Null Hypersurfaces in General Relativity
International Nuclear Information System (INIS)
Dray, T
2006-01-01
test particles in such a spacetime, in an initial attempt to outline a framework for the detection of impulsive gravitational waves. Subsequent chapters describe the singular null hypersurfaces obtained by boosting isolated gravitational sources, building on the work of Aichelburg and Sexl, and by colliding impulsive waves, building on the work of Khan and Penrose. In between, the special case of spherical symmetry is considered, both with and without collisions. There is also a short chapter discussing the effect of replacing GR by alternative theories of gravity, and an appendix which briefly summarizes the non-null case. The references are reasonably complete, from Synge and Penrose to the recent work of the authors. However, there are a few relatively minor errors and omissions. For instance, the results in chapter 3 about shells of matter in both Schwarzschild and Reissner-Nordstroem geometries are presented without reference or derivation. And I was disappointed to see that my own work with 't Hooft on the horizon shift due to the impulsive wave of a massless particle at the horizon of a Schwarzschild black hole-a direct generalization of the work by Aichelburg and Sexl-is not mentioned. But none of these minor complaints detracts from my appreciation of having a complete discussion of singular null hypersurfaces all in one place. The three fundamental papers which started this area of research all appeared at essentially the same time, 35 years ago; it is high time there was a unified presentation of the entire field. This book fills that need admirably, and could serve as the core of a graduate seminar for students having already taken a course in general relativity, or as a reference. My copy will have a treasured place in my library. References Penrose R 1972 The geometry of impulsive gravitational waves General Relativity: Papers in Honour of J L Synge ed L O Raifeartaigh (Oxford: Clarendon) pp 101-30 Aichelburg P C and Sexl R U 1971 On the gravitational
International Nuclear Information System (INIS)
Balakin, A.B.; Murzakhanov, Z.G.; Grunskaya, L.V.
1994-01-01
A proposal on the experimental detection of extremely low-frequency variations of the electromagnetic Earth field at the gravitational-wave frequency and method for correlation processing results of the experiments are described. 14 refs
Behera, Harihar
2017-12-01
Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c_g (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields.
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
Yasenev, S. O.
2016-12-01
The problem of determining the dynamic shapes of planetary satellites becomes important today. The goal of this paper is to analyze the physical properties of satellites which are referred to planetoids. An analysis of planetary satellites as self-gravitating structures is performed, and parameters of their dynamic shapes are determined.
Czech Academy of Sciences Publication Activity Database
Mazanec, Karel; Bobálová, Janette
2008-01-01
Roč. 102, č. 15 (2008), s728-s729 ISSN 1803-2389. [Meeting on Chemistry and Life /4./. Brno, 09.09.2008-11.09.2008] R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational FFF * MALDI MS * starch Subject RIV: CB - Analytical Chemistry , Separation
Nath, G.; Vishwakarma, J. P.
2016-11-01
Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John
2017-10-01
The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.
Finite conformal quantum gravity and spacetime singularities
Modesto, Leonardo; Rachwał, Lesław
2017-12-01
We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.
Theory of gravitational interactions
Gasperini, Maurizio
2017-01-01
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...
Wu, Yue-Liang
2017-10-01
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincaré symmetry P(1,5)=SO(1,5)⋉P 1,5 as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated. Supported by National Science Foundation of China (NSFC) (11690022, 11475237, 11121064) and Strategic Priority Research Program of the Chinese
Multifractal singular value decomposition (MSVD) for extraction of marine gravity anomaly
LYU, Wenchao; Zhu, Benduo; Qiu, Yan
2015-04-01
The concept of singularity is used for characterizing different types of nonlinear natural processes, including volcanic eruptions, faults, cloud formation, landslides, rainfall, hurricanes, flooding, earthquakes, wildfires, oil fields and mineralization. The singularity often results in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval.The marine gravitation field has multi-fractal features, which show different scale invariant properties in region and local field. The SVD can be used in geophysical data processing for signal and noise separation, radar processing for enhancing weak signals in vertical seismic profiles (VSP). It has also been used in multi component seismic polarization filters and evaluating the amount of wavy reflections in ground-penetrating radar (GPR) images of base surge deposits. With the SVD, a matrix X can be decomposed to a series of eigenvalues. The eigenvalues conformed fractal or multi-fractal distribution described with the power-law function. The multi-fractal SVD can be used for feature extraction and anomaly identification for marine gravity investigation.This paper aims to analyze the marine gravitation data using the SVD and multifractal methods. This paper will also aim to more clearly define the spatial relationship between marine mineralization and the deep geological structures in the field by extracting the marine gravitation information at a particular frequency to provide valuable in depth evidence for predicting new deposits and deep tectonic.
Gravitational collapse of a magnetized fermion gas with finite temperature
Energy Technology Data Exchange (ETDEWEB)
Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)
2013-07-15
We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)
On important precursor of singular optics (tutorial)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Carmeli, Moshe
2000-01-01
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory.There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups
Bianchi Type-II String Cosmological Model with Magnetic Field in Scalar-tensor Theory of Gravitation
Sharma, N. K.; Singh, J. K.
2015-03-01
The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of scalar-tensor theory of gravitation formulated by Saez and Ballester (Phys. Lett. A 113:467, 1986). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) string cosmological model is obtained in this theory. Some physical and kinematical properties of the model are also discussed.
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a
Doyen, G.; Drakova, D.
2015-08-01
We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle-wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources (massive particles). The final world model treated here contains only gravonons and a scalar matter field. The gravonons are localized in the environment of the massive particles which generate them. The solution of the Schrödinger equation for the world model yields matter fields which are localized in the 4 dimensional subspace. The localization has the following properties: (i) There is a chooser mechanism for the selection of the localization site. (ii) The chooser selects one site on the basis of minor energy differences and differences in the gravonon structure between the sites, which at present cannot be controlled experimentally and therefore let the choice appear statistical. (iii) The changes from one localization site to a neighbouring one take place in a telegraph-signal like manner. (iv) The times at which telegraph like jumps occur depend on subtleties of the gravonon structure which at present cannot be controlled experimentally and therefore let the telegraph-like jumps appear statistical. (v) The fact that the dynamical law acts in the configuration space of fields living in 11 dimensional spacetime lets the events observed in 4 dimensional spacetime appear non-local. In this way the phenomenology of CQM is obtained without the need of introducing the process of collapse and a probabilistic interpretation of the wave function. Operators defining observables need not be introduced. All experimental findings are explained in a deterministic way as a consequence of the time development of the wave
Brane singularities and their avoidance
International Nuclear Information System (INIS)
Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia
2010-01-01
The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analog of perfect fluid with an arbitrary equation of state P = γρ between the 'pressure' P and the 'density' ρ, our results depend crucially on the constant fluid parameter γ. (i) For γ > -1/2, the flat brane solution suffers from a collapse singularity at a finite distance that disappears in the curved case. (ii) For γ < -1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1 < γ ≤ -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.
A gravitational entropy proposal
International Nuclear Information System (INIS)
Clifton, Timothy; Tavakol, Reza; Ellis, George F R
2013-01-01
We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)
Initial conditions and the structure of the singularity in pre-big-bang cosmology
Feinstein, A.; Kunze, K.E.; Vazquez-Mozo, M.A.
2000-01-01
We propose a picture, within the pre-big-bang approach, in which the universe emerges from a bath of plane gravitational and dilatonic waves. The waves interact gravitationally breaking the exact plane symmetry and lead generically to gravitational collapse resulting in a singularity with the
Dong, D,; Gross, R.S.; Dickey, J.
1996-01-01
Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Nath, Gorakh
Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is express in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The medium is assumed to be under a gravitational field due to heavy nucleus at the origin (Roche Model). The unsteady model of Roche consists of a dusty gas distributed with spherical symmetry around a nucleus having large mass It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the heavy nucleus. The density of the ambient medium is taken to be constant. Our analysis reveals that after inclusion of gravitational field effect surprisingly the shock strength increases and remarkable difference can be found in the distribution of flow variables. The effects of the variation of the heat transfer parameters, the gravitational parameter and non-idealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is found that the shock strength is increased with an increase in the value of gravitational parameter. Further, it is investigated that the presence of gravitational field increases the
Theory of gravitational interactions
Gasperini, Maurizio
2013-01-01
This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be o...
Energy Technology Data Exchange (ETDEWEB)
Treder, H.J.
1976-10-01
The generally covariant Lagrangian density G = R + 2kappaL/sub matter/ of the Hamiltonian principle in general relativity, formulated by Einstein and Hilbert, can be interpreted as a functional of the potentials g/sub ik/ and Phi of the gravitational and matter fields. In this general relativistic interpretation, the Riemann-Christoffel form Gamma/sub kl//sup i/ = (/sub kl//sup i/) for the coefficients Gamma/sub kl//sup i/ of the affine connections is postulated a priori. Alternatively, one can interpret the Lagrangian G as a functional of Phi, g/sub ik/, and the coefficients Gamma/sub kl//sup i/. Then the Gamma/sub kl//sup i/ are determined by the Palatini equations. From these equations and from the symmetry Gamma/sub kl//sup i/ = Gamma/sub kl//sup i/ for all matter fields with deltaL/deltaGamma = 0 the Christoffel symbols again result. However, for Dirac's bispinor fields, deltaL/deltaGamma becomes dependent on the Dirac current, essentially with a coupling factor approx.kappadirac constant. In this case, the Palatini equations define a new transport rule for the spinor fields, according to which a second universal interaction results for the Dirac spinors, besides Einstein's gravitation. The generally covariant Dirac wave equations become the general relativistic nonlinear Heisenberg wave equations, and the second universal interaction is given by a Fermi-like interaction term of the V-A type. The geometrically induced Fermi constant is, however, very small and of the order 10/sup -81/erg cm/sup 3/.
Indian Academy of Sciences (India)
We present a broad overview of the emerging field of gravitational-wave astronomy. Although gravitational waves have not been directly de- tected yet, the worldwide scientific community is engaged in an exciting search for these elusive waves. Once detected, they will open up a new observational window to the Universe.
Nath, G.; Vishwakarma, J. P.
2016-06-01
The propagation of a strong spherical shock wave in a dusty gas with or without self-gravitational effects is investigated in the case of isothermal and adiabatic flows. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equilibrium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. Non-similarity solutions are obtained and the effects of variations of the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas, and the presence of self-gravitational field on the flow variables are investigated at given times. Our analysis reveals that after inclusion of gravitational field effects surprisingly the shock strength increases and remarkable differences are found in the distribution of flow variables. An increase in time also, increases the shock strength. Further, it is investigated that the consideration of isothermal flow increases the shock strength, and removes the singularity in the density distribution. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the inner contact surface and the shock surface is reduced. The shock waves in self-gravitating dusty gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, star formation and shocks in stellar explosion, nuclear explosion, in industry, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry of vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating media. The obtained solutions are applicable for
Gravitational catalysis of merons in Einstein-Yang-Mills theory
Canfora, Fabrizio; Oh, Seung Hun; Salgado-Rebolledo, Patricio
2017-10-01
We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis, allowing λ to be different from its usual value of 1 /2 . In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meron-like configurations can also be constructed by considering warped products of the three-sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named "gravitational catalysis of merons".
Stavroulakis N.
2008-01-01
The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the p...
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2008-04-01
Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.
Directory of Open Access Journals (Sweden)
Andréa Borges Leão
2009-10-01
article establishes a possible dialogue between the comprehensive approach of the sociologist Nathalie Heinich and the science of literary works designed by Pierre Bourdieu. Keywords: Literary field. Singularity. Literary authorship. Author’s right. Literary institutions.
Gao, Xian; Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi
2011-11-18
We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most general single-field inflation model with second-order field equations. It is shown that the most general cubic action for the tensor perturbation h(ij) is composed only of two contributions, one with two spacial derivatives and the other with one time derivative on each h(ij). The former is essentially identical to the cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could open a new clue to the identification of inflationary gravitational waves in observations of cosmic microwave background anisotropies as well as direct detection experiments.
Testing fundamental physics with gravitational waves
CERN. Geneva
2017-01-01
The landmark detection of gravitational waves (GWs) has opened a new era in physics, giving access to the hitherto unexplored strong-gravity regime, where spacetime curvature is extreme and the relevant speed is close to the speed of light. In parallel to its countless astrophysical applications, this discovery can have also important implications for fundamental physics. In this context, I will discuss some outstanding, cross-cutting problems that can be finally investigated in the GW era: the nature of black holes and of spacetime singularities, the limits of classical gravity, the existence of extra light fields, and the effects of dark matter near compact objects. Future GW measurements will provide unparalleled tests of quantum-gravity effects at the horizon scale, exotic compact objects, ultralight dark matter, and of general relativity in the strong-field regime.
Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity
Energy Technology Data Exchange (ETDEWEB)
Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk
2017-01-10
We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.
A new formula of the Gravitational Curvature for the prism
Grazia D'Urso, Maria
2017-04-01
Gravitational Curvatures (GC) are the components of the third-order gravitational tensor and physically represent the rate of change of the gravity gradient. While scalar, vector and second-order tensor quantities of the Earth's gravitational field have extensively been studied and their properties have been well understood [1], the first successful terrestrial measurements of the third-order vertical gravitational gradients have been recently performed in [2] by atom interferometry sensors in laboratory environment. Possible benefits of the airborne third-order gravitational gradients for exploration geophysics are discussed in [3] while Brieden et al. (2010) [4] have proposed a new satellite mission called OPTical Interferometry for global Mass change detection from space (OPTIMA) sensing the third-order gravitational gradients in space. Moreover, exploitation of GC for modelling the Earth's gravitational field has been object of recent studies [5-7]. We extend the approach presented by the author in previous papers [8-10] by evaluating the algebraic expression of the third-order gravitational tensor for a prism. Comparisons with previous results [11-12] are also included. [1] Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin [2] Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001 [3] Di Francesco D, Meyer T, Christensen A, FitzGerald D (2009) Gravity gradiometry - today and tomorrow. In: 11th SAGA Biennial technical meeting and exhibition, 13-18 September 2009, Switzerland, pp 80-83 [4] Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA - novelties and benefit. In: Geotechnologien science report No. 17, Potsdam, pp 134-139 [5] Šprlák M, Novák P (2015) Integral
International Nuclear Information System (INIS)
Nakazawa, K.; Ida, S.; Nakagawa, Y.
1989-01-01
We have investigated the validity of the two-body (free-space) approximation in the collisional problem between two Keplerian particles, i.e. two particles revolving in the solar gravitational field, by a perturbation method based on Hill's equation. When the deviation of the nearest distance between two particles from that of the three-body problem is sufficiently small, we have found the radius r cr of the sphere of the two-body approximation, within which an orbit can be well described by a solution to the two-body problem. The result is very useful in numerically evaluating the collisional rate between Keplerian particles, which is essential for the study of the planetary accumulation; it enables us to stop the three-body numerical calculation at r=r cr and reduce the considerable computation time
Adel Sharaf, M.; El-Sayed Awad, M.; Banaja, M. A.
1987-05-01
Economical and stable recurrence formulae for the Earth's zonal potential and its gradient for the KS regularized theory are established for any number N of the zonal harmonic coefficient. A general recursive computational algorithm based on these formulae is also established for the initial value problem of the KS theory for the prediction of artificial satellites in the Earth's gravitational field with axial symmetry. Applications of the algorithm for the problem of the final state prediction are illustrated by numerical examples of three test orbits each for two geopotential models corresponding to N = 2 and N = 36. A final state of any desired accuracy is obtained for each case study, a result which shows the flexibility of the algorithm.
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Olivia [National College of Iasi (Romania); Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al.I. Cuza' ' Iasi, Project IDEI, Iasi (Romania); Werner-Heisenberg-Institute, Max-Planck-Institute for Physics, Munich (Germany); Leibniz University of Hannover, Institute for Theoretical Physics (Germany); Ruchin, Vyacheslav
2017-03-15
Using double 2 + 2 and 3 + 1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3 + 1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2 + 2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach. (orig.)
PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)
2016-11-01
The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.
International Nuclear Information System (INIS)
Accioly, A.J.
1988-01-01
A theory of nonminimal coupling of electromagnetism and gravitation in the framework of Riomannian geometry is constructed. As a consequence the main difficulties concerning the Einstein-Maxwell theory are cleared away. The theory works as a kind of correction to the Einstein-Maxwell one for regions with strong curvature and for times much greater than the Planck time. A Reissner-Nordstroem-type solution is exhibited and comments are made on a parameter which somewhat resembles the ''Schwarzschild radius''. A mechanism of charge creation via nonminimal coupling is also discussed. We calculate the propagation of photons in a Robertson-Walker background and find that the effect of the nonminimal coupling in this case may be to deviate the photon from the null geodesics, increasing its velocity beyond the flat-space value. Taking into account this results, the observed isotropy of the background radiation can be explained in a simple way, regardless of any assumption about the state of the Universe prior to the Planck time. (author) [pt
Actuality of the Einstein theory of gravitation
International Nuclear Information System (INIS)
Ivanenko, D.D.
1982-01-01
Problems of actuality of the Einstein theory of gravitation are lightened. The great Einstein theory of gravitation is shown to remain a reliable base of understanding of modern physical world pattern and its inevitable further inexhaustible precising. The main GRT difficulties are enumirated: determination of reference systems, presence of singularities in the theory, absence of consistent determination of the gravity energy, impossibility of accounting the relations between atomic, gravitational and cosmological characteristics. The attention is paid to gauge, twistor problems and to unified interaction theory. The great contribution of the soviet science in the theory of gravitation is stressed
International Nuclear Information System (INIS)
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek
2014-01-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Kundu, Prasun K.
2017-11-01
In a comment published several years ago in this journal, Mitra [J. Math. Phys. 50, 042502 (2009)] has claimed to prove that a neutral point particle in general relativity as described by the Schwarzschild metric must have zero gravitational mass, i.e., the mass parameter M0 of a Schwarzschild black hole necessarily vanishes. It is shown that the purported proof is incorrect. The error stems from a basic misunderstanding of the mathematical description of coordinate volume element in a differentiable manifold.
The Geometry of Black Hole Singularities
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2014-01-01
Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.
Listening music of gravitation
International Nuclear Information System (INIS)
Anon.
2001-01-01
Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru
Sterenborg, G.; Simons, F. J.; Welch, E.; Morrow, E.; Mitrovica, J. X.
2013-12-01
Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) has yielded tremendous insights into the spatio-temporal changes of mass redistribution in the Earth system. Such changes occur on widely varying spatial and temporal scales and take place both on Earth's surface, e.g., atmospheric mass fluctuations and the exchange of water, snow and ice, as well as in its interior, e.g., glacial isostatic adjustment and earthquakes. Each of these processes causes changes in the Earth's gravitational potential field which GRACE observes. One example is the Antarctic and Greenland ice mass changes inferred from GRACE observations of the changing geopotential as well as the associated time rate of change of its degree 2 and 4 zonal harmonics observed by satellite laser ranging. Deforming the Earth's surface and interior both co- and post-seismically, with some of the deformation permanent, earthquakes can affect the geopotential at a spatial scale up to thousands of kilometers and at temporal scales from seconds to months. Traditional measurements of earthquakes, e.g., by seismometers, GPS and inSAR, observe the co- and post-seismic surface displacements and are invaluable in understanding earthquake triggering mechanisms, slip distributions, rupture dynamics and slow post-seismic changes. Space-based observations of geopotential changes can add a whole new dimension to this as such observations are also sensitive to changes in the Earth's interior, over a larger area affected by the earthquake, over longer timescales, beyond that of Earth's longest period normal mode, and because they have global sensitivity including over sparsely instrumented oceanic domains. We use a joint seismic and gravitational normal-mode formalism to quantify changes in the gravitational potential due to different types of earthquakes, comparing them to predictions from dislocation models. We discuss the inverse problem of estimating the source parameters of large earthquakes
Nath, G.
2013-10-01
Similarity solutions are obtained for one-dimensional unsteady isothermal flow of a dusty gas behind a spherical shock wave with time dependent energy input. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained, and the viscous stress and heat conduction of the mixture are negligible. The medium is taken to be under the influence of the gravitational field due to a heavy nucleus at the origin (Roche model). The total energy of the flow-field behind the shock is increasing. The effects of an increase in the mass concentration of solid particles, the ratio of the density of the solid particles to the initial density of the gas, the gravitational parameter (or shock Mach number), and the parameter of non-idealness of the gas in the mixture, are investigated. It is shown that due to presence of gravitational field the isothermal compressibility of the medium and the flow-variables increases and the shock strength decreases. A comparison has also been made between the medium with and without gravitational field. The shock waves in dusty medium can be important for description of star formation, shocks in supernova explosions, etc.
International Nuclear Information System (INIS)
Levi, Michele; Steinhoff, Jan
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation
Dremova, G. N.; Dremov, V. V.; Tutukov, A. V.
2014-05-01
The formation of hypervelocity stars due to the dynamical capture of one component of a closebinary system by the gravitational field of a supermassive black hole (SMBH) is modeled. The mass of the black hole was varied between 106 and 109 M ⊙. In the model, the problem was considered first as a three-body problem (stage I) and then as an N-body problem (stage II). In the first stage, the effect of the inclination of the internal close-binary orbit (the motion of the components about the center of mass of the binary system) relative to the plane of the external orbit (the motion of the close binary around the SMBH) on the velocity with which one of the binary components is ejected was assessed. The initial binary orbits were generated randomly, with 10 000 orbits considered for each external orbit with a fixed pericenter distance r p . Analysis of the results obtained in the first stage of the modeling enables determination of the binary-orbit orientations that are the most favorable for high-velocity ejection, and estimation of the largest possible ejection velocities V max. The boundaries of the region of stellar disruption derived from the balance of tidal forces and self-gravitation are discussed using V max- r p plots, which generalize the results of the first stage of the modeling. Since a point-mass representation does not enable predictions about the survival of stars during close passages by a SMBH, there is the need for a second stage of the modeling, in which the tidal influence of the SMBH is considered. An approach treating a star like a structured finite object containing N bodies ( N = 4000) enables the derivation of more accurate limits for the zone of efficient acceleration of hypervelocity stars and the formulation of conditions for the tidal disruption of stars.
Twisting gravitational waves and eigenvector fields for SL(2,C on an infinite jet
Directory of Open Access Journals (Sweden)
J. D. Finley III
2000-07-01
Full Text Available A system of coupled vector-field-valued partial differential equations is presented, the solutions to which would determine two coupled, infinite-dimensional vector-field realizations of the group SL(2,C. While the general solution is (partially presented, the complicated nature of that solution is deplored, and the hope expressed that someone can replace it by something much more natural. The physical origins of the problem are briefly described. The problem arises out of searches for Backlund transforms of a system of PDE's that describe twisting, Petrov type N solutions of Einstein's vacuum field equations.
Perihelic shift of planets due to the gravitational field of the charged Sun
International Nuclear Information System (INIS)
Teli, M.T.; Palaskar, D.
1984-01-01
The perihelic shift of planets due to the charged Sun is calculated. The results when compared with experimental shifts suggest that the planets Mercury, Venus and Icarus do not possess self-electromagnetic fields
The importance of gravitational self-field effects in binary systems with compact objects
International Nuclear Information System (INIS)
Rudolph, E.; Boerner, G.
1978-01-01
The attraction force of two massive bodies connected by a rod is calculated in a post-post-Newtonian approximation. As far as is known to the authors this is the first calculation in such an order of approximation. Although the result already shows a complicated field-field interaction Newton's attraction force M 1 /M 2 /R 2 is reproduced as the leading term in powers of 1/R. (author)
Critical Effects in Gravitational Collapse
International Nuclear Information System (INIS)
Chmaj, T.
2000-01-01
The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole
São Carlos Workshop on Real and Complex Singularities
Ruas, Maria
2007-01-01
The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.
Fukushima, Toshio
2017-06-01
Reviewed are recently developed methods of the numerical integration of the gravitational field of general two- or three-dimensional bodies with arbitrary shape and mass density distribution: (i) an axisymmetric infinitely-thin disc (Fukushima 2016a, MNRAS, 456, 3702), (ii) a general infinitely-thin plate (Fukushima 2016b, MNRAS, 459, 3825), (iii) a plane-symmetric and axisymmetric ring-like object (Fukushima 2016c, AJ, 152, 35), (iv) an axisymmetric thick disc (Fukushima 2016d, MNRAS, 462, 2138), and (v) a general three-dimensional body (Fukushima 2016e, MNRAS, 463, 1500). The key techniques employed are (a) the split quadrature method using the double exponential rule (Takahashi and Mori, 1973, Numer. Math., 21, 206), (b) the precise and fast computation of complete elliptic integrals (Fukushima 2015, J. Comp. Appl. Math., 282, 71), (c) Ridder's algorithm of numerical differentiaion (Ridder 1982, Adv. Eng. Softw., 4, 75), (d) the recursive computation of the zonal toroidal harmonics, and (e) the integration variable transformation to the local spherical polar coordinates. These devices succesfully regularize the Newton kernel in the integrands so as to provide accurate integral values. For example, the general 3D potential is regularly integrated as Φ (\\vec{x}) = - G \\int_0^∞ ( \\int_{-1}^1 ( \\int_0^{2π} ρ (\\vec{x}+\\vec{q}) dψ ) dγ ) q dq, where \\vec{q} = q (√{1-γ^2} cos ψ, √{1-γ^2} sin ψ, γ), is the relative position vector referred to \\vec{x}, the position vector at which the potential is evaluated. As a result, the new methods can compute the potential and acceleration vector very accurately. In fact, the axisymmetric integration reproduces the Miyamoto-Nagai potential with 14 correct digits. The developed methods are applied to the gravitational field study of galaxies and protoplanetary discs. Among them, the investigation on the rotation curve of M33 supports a disc-like structure of the dark matter with a double-power-law surface
International Nuclear Information System (INIS)
Buchbinder, I.L.; Mistchuk, B.R.; Pershin, V.D.
1996-01-01
The problem of anomaly at the generalized canonical quantization (BFV -quantization) of bosonic string coupled to background fields is considered. The equation for symbol of anomaly operator is obtained. The general solution of this equation is found and the arbitrariness in general form of anomaly is investigated. (orig.)
1993-06-01
technique [381. Since the technique is self starting, it is used to start the Adams-Moulton method. This technique predicts the orbit ahead using a fifth...quadrant determination [8]. declination = sin-’f ( J (4.3.2-1) right ascension = tan-’ (xi (4.3.2-2) 69 LUNAR GRAWrrATIONAL FIELD ESTEMATION AND SATELI
Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory
Directory of Open Access Journals (Sweden)
Matthew T. Aadne
2017-02-01
Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.
Gravitational time dilation and spectral shift in the field of a massive ...
African Journals Online (AJOL)
In this paper, we derive expressions for the time dilation and spectral shift in terms of proper time and proper frequency in the field of a massive oblate spheroidal body using an approximate value of gμ. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 97-100 ...
Remark on the gravitational field produced by an infinite straight string
International Nuclear Information System (INIS)
Francisco, G.; Matsas, G.E.A.
1989-01-01
The results predicted by Newtonian gravity and general relativity are compared regarding the field produced by an infinite gauge string with constant density λ. A simple gedankenexperiment is suggested to stress the remarkable differences between these two theories. The existence of the usual Newtonian limit is discussed in this case
Propagation property of the non-paraxial vector Lissajous singularity beams in free space
Chen, Haitao; Gao, Zenghui
2016-12-01
The analytic expressions for the free-space propagation of paraxial and non-paraxial vector Lissajous singularity beams are derived, and used to compare the propagation property of a Lissajous singularity carried by paraxial and non-paraxial vector beams in free space. It is found that the creation of a single Lissajous singularity, the creation and annihilation of pairs Lissajous singularities may take place for the both cases. However, after the annihilation of a pair of singularities, no Lissajous singularities appear in the output field for non-paraxial vector Lissajous singularity beams, which is different from the paraxial vector Lissajous singularity beams.
Cosmological solutions and finite time singularities in Finslerian geometry
Paul, Nupur; de, S. S.; Rahaman, Farook
2018-03-01
We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.
Isotopy of Morin singularities
Saji, Kentaro
2015-01-01
We define an equivalence relation called A-isotopy between finitely determined map-germs, which is a strengthened version of A-equivalence. We consider the number of A-isotopy classes of equidimensional Morin singularities, and some other well-known low-dimensional singularities. We also give an application to stable perturbations of simple equi-dimensional map-germs.
Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole
International Nuclear Information System (INIS)
Iftikhar, Sehrish; Sharif, M.
2015-01-01
We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole
International Nuclear Information System (INIS)
Souza Alves, Marcelo de.
1990-03-01
Some general aspects on field theories in curved space-time and a introduction to conformal symmetry are presented.The behavior of the physical systems under Weyl transformations is discussed. The quantization of such systems are performed through the functional integration method. The regularization in curved space-time is also discussed. An application of this analysis in String theories is made. 42 refs
Virtual gravitational dipoles: The key for the understanding of the Universe?
Hajdukovic, Dragan Slavkov
2014-01-01
Before the end of this decade, three competing experiments (ALPHA, AEGIS and GBAR) will discover if atoms of antihydrogen fall up or down. We wonder what the major changes in astrophysics and cosmology would be if it is experimentally confirmed that antimatter falls upwards. The key point is: If antiparticles have negative gravitational charge, the quantum vacuum, well established in the Standard Model of Particles and Fields, contains virtual gravitational dipoles. The main conclusions are: (1) the physical vacuum enriched with gravitational dipoles is compatible with a cyclic universe alternatively dominated by matter and antimatter, without initial singularity and without need for cosmic inflation; (2) the virtual dipoles might explain the phenomena usually attributed to dark matter and dark energy. While what we have presented is still far from a complete theory, hopefully it can stimulate a radically different and potentially important way of thinking.
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Ishii, Shihoko
2014-01-01
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
Energy Technology Data Exchange (ETDEWEB)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: chanc@email.arizona.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-10-20
We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.
Rindler-Daller, Tanja; Li, Bohua; Shapiro, Paul
2017-01-01
We consider an alternative dark matter candidate to WIMP-CDM, ultralight bosonic dark matter (m >=10-22 eV) described by a complex scalar field (SFDM). In a ΛSFDM universe, SFDM starts relativistic, evolving from a maximal stiff equation of state to radiation-like, before becoming nonrelativistic at late times. The SFDM particle parameters, mass and selfinteraction coupling strength, are therefore constrained by cosmological observables, esp. Neff, the effective number of neutrino species during BBN, and the redshift of matter-radiation equality. Furthermore, since the energy density contributed by the stochastic gravitational wave background (SGWB) from inflation is amplified during the stiff phase, this makes possible the detection of this SGWB at high frequencies by current experiments, e.g. aLIGO/Virgo and eLISA. We show that, for SFDM particle parameters that satisfy those cosmological constraints, the amplified SGWB is detectable by aLIGO, for values of tensor-to-scalar ratio r currently allowed by CMB polarization measurements, for a broad range of possible reheat temperatures. A nondetection by aLIGO O1 would provide a new kind of cosmological constraint on SFDM. Also, a wider range of parameters and reheat temperatures will be probed by aLIGO O5.
String theory and cosmological singularities
Indian Academy of Sciences (India)
time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...
Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations
International Nuclear Information System (INIS)
Jones, T.C.
1979-01-01
Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored
Classical field theory on electrodynamics, non-abelian gauge theories and gravitation
Scheck, Florian
2018-01-01
Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary...
International Nuclear Information System (INIS)
Singh, Kangujam Priyokumar; Dewri, Mukunda; Singh, Koijam Manihar
2016-01-01
On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further. (paper)
Conservation laws and gravitational radiation
International Nuclear Information System (INIS)
Rastall, P.
1977-01-01
A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
New Kimberly C.B.
2003-01-01
Full Text Available Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories.
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
Historical developments in singular perturbations
O'Malley, Robert E
2014-01-01
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Quantum gravity removes classical singularities and shortens the life of black holes
International Nuclear Information System (INIS)
Frolov, V.P.; Vilkovisky, G.A.
1982-01-01
One of the fundamental problems in classical General Relativity is what is to be done with singularities which inevitably arise in the theoretical description of the massive body (or total Universe) collapse. Although the singularities arising as a result of the gravitational collapse are believed to be hidden under event horizons and thus are not visible to an external observer, their very existence means the crisis of the classical gravitational physics. It is generally believed that the proper account of quantum effects may cure this disease. The aim of the present work is to show that it really happens, and quantum gravity does remove classical singularities. (Auth.)
Ling, Eric
The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.
Gravitational collapse with decaying vacuum energy
Indian Academy of Sciences (India)
star always lead to a black hole as opposed to a naked singularity? It was Chandrasekhar. [6] who first proposed that a star more massive than about 1.4 solar masses cannot end up as a white dwarf. Unfortunately he did not pursue other possibilities further, and the studies of gravitational collapse had to wait for about three ...
Blossfeld, Mathis
2015-01-01
In 2007, the Global Geodetic Observing System (GGOS) was installed as a full component of the International Association of Geodesy (IAG). One primary goal of GGOS is the integration of geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. Thereby, GGOS is based on the data and services of the IAG. Besides the combination of different geodetic techniques, also the common estimation of the station coordinates (TRF), Earth Orientation Parameters (EOP) and coefficients of the Earth's gravitational field (Stokes coefficients) is necessary in order to reach this goal. However, the combination of all geometric and gravimetric observation techniques is not yet fully realized. A major step towards the GGOS idea of parameter integration would be the understanding of the existing correlations between the above mentioned fundamental geodetic parameter groups. This topic is the major objective of this thesis. One possibility to study the interactions is the use of Satellite Laser Ranging (SLR) in an intertechnique combination with Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI) or the intra-technique combination of multiple SLR-tracked satellites. SLR plays a key role in this thesis since it is the unique technique which is sensitive to all parameter groups and allows an integrated parameter estimation with very high accuracy. The present work is based on five first-author publications which are supplemented by four co-author publications. In this framework, for the first time an extensive discussion of a refined global Terrestrial Reference Frame (TRF) estimation procedure, the estimation of so-called Epoch Reference Frames (ERFs) is presented. In contrast to the conventional linear station motion model, the ERFs provide frequently estimated station coordinates and Earth Orientation Parameters (EOP) which allow to approximate not modeled non-linear station motions very accurately
Directory of Open Access Journals (Sweden)
Hans Schonemann
1996-12-01
Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].
The 'gravitating' tensor in the dualistic theory
International Nuclear Information System (INIS)
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
Numerical Approaches to Spacetime Singularities
Directory of Open Access Journals (Sweden)
Beverly K. Berger
1998-05-01
Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.
Quantum propagation across cosmological singularities
Gielen, Steffen; Turok, Neil
2017-05-01
The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.
Flavour from partially resolved singularities
Energy Technology Data Exchange (ETDEWEB)
Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)
2006-06-15
In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Energy Technology Data Exchange (ETDEWEB)
Behera, Harihar [BIET Higher Secondary School, Physics Department, Dhenkanal, Odisha (India)
2017-12-15
Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c{sub g} (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields. (orig.)
El-Nabulsi, Rami Ahmad
2018-03-01
Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.
A numerical method for singular boundary value problem of ordinary differential equation
International Nuclear Information System (INIS)
He Qibing
1992-12-01
A numerical method, regularizing method, is suggested to treat the singular boundary problem of ordinary differential equation that is raised from controlled nuclear fusion science and other fields owing to their singular physical mechanism. This kind of singular boundary problem has been successfully solved by special treatment near the singular points and using difference method. This method overcomes difficulties in numerical calculation due to the singularity. The convergence results and numerical test are also given
Meidam, Jeroen; Tsang, Ka Wa; Goldstein, Janna; Agathos, Michalis; Ghosh, Archisman; Haster, Carl-Johan; Raymond, Vivien; Samajdar, Anuradha; Schmidt, Patricia; Smith, Rory; Blackburn, Kent; Del Pozzo, Walter; Field, Scott E.; Li, Tjonnie; Pürrer, Michael; Van Den Broeck, Chris; Veitch, John; Vitale, Salvatore
2018-02-01
Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of tests consists of allowing for parametrized deformations away from GR in the template waveform models and then constraining the size of the deviations, as was done for the detected signals in previous work. In this paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what extent deviations from GR can be constrained as information from an increasing number of detections is combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.
International Nuclear Information System (INIS)
Bondi, H.
1979-01-01
In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)
Laboratory generation of gravitational waves
International Nuclear Information System (INIS)
Pinto, I.M.; Rotoli, G.
1988-01-01
The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation
Deng, Xiao-Le; Shen, Wen-Bin
2018-01-01
The forward modeling of the topographic effects of the gravitational parameters in the gravity field is a fundamental topic in geodesy and geophysics. Since the gravitational effects, including for instance the gravitational potential (GP), the gravity vector (GV) and the gravity gradient tensor (GGT), of the topographic (or isostatic) mass reduction have been expanded by adding the gravitational curvatures (GC) in geoscience, it is crucial to find efficient numerical approaches to evaluate these effects. In this paper, the GC formulas of a tesseroid in Cartesian integral kernels are derived in 3D/2D forms. Three generally used numerical approaches for computing the topographic effects (e.g., GP, GV, GGT, GC) of a tesseroid are studied, including the Taylor Series Expansion (TSE), Gauss-Legendre Quadrature (GLQ) and Newton-Cotes Quadrature (NCQ) approaches. Numerical investigations show that the GC formulas in Cartesian integral kernels are more efficient if compared to the previously given GC formulas in spherical integral kernels: by exploiting the 3D TSE second-order formulas, the computational burden associated with the former is 46%, as an average, of that associated with the latter. The GLQ behaves better than the 3D/2D TSE and NCQ in terms of accuracy and computational time. In addition, the effects of a spherical shell's thickness and large-scale geocentric distance on the GP, GV, GGT and GC functionals have been studied with the 3D TSE second-order formulas as well. The relative approximation errors of the GC functionals are larger with the thicker spherical shell, which are the same as those of the GP, GV and GGT. Finally, the very-near-area problem and polar singularity problem have been considered by the numerical methods of the 3D TSE, GLQ and NCQ. The relative approximation errors of the GC components are larger than those of the GP, GV and GGT, especially at the very near area. Compared to the GC formulas in spherical integral kernels, these new GC
New aspects in interaction of gravitational waves
International Nuclear Information System (INIS)
Ciobanu, Brandusa
2004-01-01
The results obtained from the previous works indicate a new way to study the interaction of the gravitational waves. In the present paper we will consider the following approaches: - the Maxwell type equations for gravitational field shall be considered as describing a gravitational wave in a linear approximation; - the Maxwell type equations for gravitational field shall be written again in the associated metric system of plane monochromatic gravitational wave. Then, the new equations will describe the interaction of two gravitational waves; - the wave equations in the associated metric shall be obtained for the gravito-electric field and gravito-magnetic field. As a conclusion we can note the following: - the vacuum, as viewed by the considered metric system, behaves like a dielectric anisotropic 'medium' in the presence of the mass associated to the gravitational wave. It is possible to define the gravitational permittivity and the gravitational permeability for the dielectric anisotropic medium; -the anisotropy of the gravitational field as reflected in the expression of metric system induced an anisotropy of the vacuum; - it is satisfied the property of Dicke, according to which, the gravitational permittivity tensor is equal to the gravitational permeability tensor. Also, in the present paper it was shown that in the weak field approximation, the gravitational equations of Maxwell type in space-time with gravitational wave reduce to the equations by gravitational permittivity and permeability help. In the same approximation it was obtained the wave equation for the gravito-electric field in the presence of the metric system. Analysing this equation, it results that it does not describe a free gravitational wave. In such a context, the first term corresponds to an interaction between the gravitational displacement current induced by the gravitational wave and the 'medium' by the metric system. The second term indicates an interaction between the 'gravitational
Observational constraints on cosmological future singularities
Energy Technology Data Exchange (ETDEWEB)
Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)
2016-11-15
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja
2017-01-01
We consider an alternative to WIMP cold dark matter (CDM), ultralight bosonic dark matter (m≥10-22 eV) described by a complex scalar field (SFDM), of which the comoving particle number density is conserved after particle production during standard reheating (w=p/ρ=0). In a ΛSFDM universe, SFDM starts relativistic, evolving from stiff (w=1) to radiation-like (w=1/3), before becoming nonrelativistic at late times (w=0). Thus, before the familiar radiation-dominated phase, there is an even earlier phase of stiff-SFDM-domination, during which the expansion rate is higher than in ΛCDM. The transitions between these phases, determined by SFDM particle mass m, and coupling strength λ, of a quartic self-interaction, are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during BBN, and zeq, the redshift of matter-radiation equality. Furthermore, since the homogeneous energy density contributed by the stochastic gravitational wave background (SGWB) from inflation is amplified during the stiff phase, relative to the other components, the SGWB can contribute a radiation-like component large enough to affect these observables. This same amplification makes possible detection of this SGWB at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo, eLISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by aLIGO, for values of tensor-to-scalar ratio r currently allowed by CMB polarization measurements, for a broad range of possible reheat temperatures Tre. For a given r, if SFDM parameters marginally satisfy cosmological constraints (maximizing total SGWB energy density), the SGWB is maximally detectable when modes that reenter the horizon when reheating ends have frequencies in the 10-50 Hz aLIGO band today. For example, if r=0.01, the maximally detectable model for (λ/(mc2)2, m)=(10-18 eV-1cm3, 8×10-20 eV) has Tre=104 GeV, for
Singularities in FLRW spacetimes
het Lam, Huibert; Prokopec, Tomislav
2017-12-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.
Indian Academy of Sciences (India)
While black holes are (almost) being detected and are increasingly used to model high energy astrophysical phenomena, naked singularities have turned into a topic of active discussion, aimed at understanding their structure and implications. Recent developments here are reviewed, indicating future directions.
Singularities in Free Surface Flows
Thete, Sumeet Suresh
Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental
International Nuclear Information System (INIS)
Levi, Michele; Steinhoff, Jan
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper
Platonic gravitating skyrmions
International Nuclear Information System (INIS)
Ioannidou, Theodora; Kleihaus, Burkhard; Kunz, Jutta
2006-01-01
We construct globally regular gravitating skyrmions, which possess only discrete symmetries. In particular, we present tetrahedral and cubic skyrmions. The SU(2) Skyrme field is parametrized by an improved harmonic map ansatz. Consistency then requires also a restricted ansatz for the metric. The numerical solutions obtained within this approximation are compared to those obtained in dilaton gravity
Alternative equations of gravitation
International Nuclear Information System (INIS)
Pinto Neto, N.
1983-01-01
It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt
Gravitation radiation observations
Glass, E. N.
2017-01-01
The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Dodelson, Scott
2017-01-01
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
Holographic subregion complexity for singular surfaces
Energy Technology Data Exchange (ETDEWEB)
Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2017-10-15
Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good Mathematics from Bad Lenses. Rajaram Nityananda. General Article Volume 19 Issue 9 September 2014 pp 787-796. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good ... Author Affiliations. Rajaram Nityananda1. Azim Premji University, PES Institute of Technology Campus, Pixel Park, B Block, Electronics City, Hosur Road (Beside NICE Road) Bangalore – 560100 ...
Indian Academy of Sciences (India)
IAS Admin
Standard presentations of optics concentrate on ideal systems made for imaging which bring all rays from a point ... One of the standard topics we study in school is the action of a spherical mirror. Figure 1 shows a set of ..... singularities of smooth maps, and the beauty of the mathematics needed to understand them, Arnold ...
CSIR Research Space (South Africa)
Roux, FS
2013-09-01
Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...
Pseudospherical surfaces with singularities
DEFF Research Database (Denmark)
Brander, David
2017-01-01
We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...
Singularities in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept
Gravitational waves and antennas
CERN. Geneva
2003-01-01
Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...
Ohanian, Hans C
2013-01-01
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...
De Angelis, L.; Alpeggiani, F.; Di Falco, Andrea; Kuipers, L.
2017-01-01
Phase singularities can be created and annihilated, but always in pairs. With optical near-field measurements, we track singularities in random waves as a function of wavelength, and discover correlations between creation and annihilation events.
Czech Academy of Sciences Publication Activity Database
Plocková, Jana; Chmelík, Josef
2001-01-01
Roč. 918, č. 2 (2001), s. 361-370 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Institutional research plan: CEZ:AV0Z4031919 Keywords : field-flow fractionation * field programming * flow-rate gradients Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.793, year: 2001
Singular potentials in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Aguilera-Navarro, V.C. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Koo, E. Ley [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica
1995-10-01
This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs.
Directory of Open Access Journals (Sweden)
Manzano Ana I
2012-03-01
Full Text Available Abstract Background Biological systems respond to changes in both the Earth's magnetic and gravitational fields, but as experiments in space are expensive and infrequent, Earth-based simulation techniques are required. A high gradient magnetic field can be used to levitate biological material, thereby simulating microgravity and can also create environments with a reduced or an enhanced level of gravity (g, although special attention should be paid to the possible effects of the magnetic field (B itself. Results Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to five environments with different levels of effective gravity and magnetic field strengths. The environments included levitation, i.e. simulated μg* (close to 0 g* at B = 10.1 T, intermediate g* (0.1 g* at B = 14.7 T and enhanced gravity levels (1.9 g* at B = 14.7 T and 2 g* at B = 10.1 T plus an internal 1 g* control (B = 16.5 T. The asterisk denotes the presence of the background magnetic field, as opposed to the effective gravity environments in the absence of an applied magnetic field, created using a Random Position Machine (simulated μg and a Large Diameter Centrifuge (2 g. Microarray analysis indicates that changes in the overall gene expression of cultured cells exposed to these unusual environments barely reach significance using an FDR algorithm. However, it was found that gravitational and magnetic fields produce synergistic variations in the steady state of the transcriptional profile of plants. Transcriptomic results confirm that high gradient magnetic fields (i.e. to create μg* and 2 g* conditions have a significant effect, mainly on structural, abiotic stress genes and secondary metabolism genes, but these subtle gravitational effects are only observable using clustering methodologies. Conclusions A detailed microarray dataset analysis, based on clustering of similarly expressed genes (GEDI software, can detect underlying global
Metric dimensional reduction at singularities with implications to Quantum Gravity
Stoica, Ovidiu Cristinel
2014-08-01
A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity.
Singularities: the Brieskorn anniversary volume
National Research Council Canada - National Science Library
Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M
1998-01-01
...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...
Chen, Shao-Guang
According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further
String theory and cosmological singularities
Indian Academy of Sciences (India)
Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.
Holographic complexity and spacetime singularities
International Nuclear Information System (INIS)
Barbón, José L.F.; Rabinovici, Eliezer
2016-01-01
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Singular vectors for the WN algebras
Ridout, David; Siu, Steve; Wood, Simon
2018-03-01
In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.
Zschocke, Sven
2016-05-01
High-precision astrometry on sub-micro-arcsecond level in angular resolution requires accurate determination of the trajectory of a light-signal from the celestial light source through the gravitational field of the Solar System toward the observer. In this investigation the light trajectory in the gravitational field of N moving bodies is determined in the 1.5 post-Newtonian approximation. In the approach presented two specific issues of particular importance are accounted for: (1) According to the recommendations of International Astronomical Union, the metric of the Solar System is expressed in terms of intrinsic mass-multipoles and intrinsic spin-multipoles of the massive bodies, allowing for arbitrary shape, inner structure and rotational motion of the massive bodies of the Solar System. (2) The Solar System bodies move along arbitrary world lines which can later be specified by Solar System ephemeris. The presented analytical solution for light trajectory is a primary requirement for extremely high-precision astrometry on sub-micro-arcsecond level of accuracy and associated massive computations in astrometric data reduction. An estimation of the numerical magnitude for time delay and light deflection of the leading multipoles is given.
Infinitesimal Structure of Singularities
Directory of Open Access Journals (Sweden)
Michael Heller
2017-02-01
Full Text Available Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals and of logic (to the intuitionistic logic. Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.
Deformations of surface singularities
Szilárd, ágnes
2013-01-01
The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...
DEFF Research Database (Denmark)
Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter
2007-01-01
We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....
On the gravitational radiation formula
International Nuclear Information System (INIS)
Schaefer, G.; Dehnen, H.
1980-01-01
For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)
Moratto, Valdemar; Kremer, Gilberto M
2015-05-01
In this work we study an r-species mixture of gases within the relativistic kinetic theory point of view. We use the relativistic covariant Boltzmann equation and incorporate the Schwarzschild metric. The method of solution of the Boltzmann equation is a combination of the Chapman-Enskog and Grad representations. The thermodynamic four-fluxes are expressed as functions of the thermodynamic forces so the generalized expressions for the Navier-Stokes, Fick, and Fourier laws are obtained. The constitutive equations for the diffusion and heat four-fluxes of the mixture are functions of thermal and diffusion generalized forces which depend on the acceleration and the gravitational potential gradient. While this dependence is of relativistic nature for the thermal force, this is not the case for the diffusion forces. We show also that the matrix of diffusion coefficients is symmetric, implying that the thermal-diffusion equals the diffusion-thermal effect, proving the Onsager reciprocity relations. The entropy four-flow of the mixture is also expressed in terms of the thermal and diffusion generalized forces, so its dependence on the acceleration and gravitational potential gradient is also determined.
Memory effect for impulsive gravitational waves
Zhang, P.-M.; Duval, C.; Horvathy, P. A.
2018-03-01
Impulsive gravitational plane waves, which have a δ-function singularity on a hypersurface, can be obtained by squeezing smooth plane gravitational waves with a Gaussian profile. They exhibit (as do their smooth counterparts) the velocity memory effect: after the wave has passed, particles initially at rest move apart with non-vanishing constant transverse velocity. A new effect is that, unlike the smooth case, (i) the velocities of particles originally at rest jump, (ii) the spacetime trajectories become discontinuous along the (lightlike) propagation direction of the wave.
Dynamics of a self-gravitating neutron source
Energy Technology Data Exchange (ETDEWEB)
Paret, D. Manreza [Departamento de Física General, Facultad de Física, Universidad de la Habana, San Lázaro y L, CP-10400, La Habana (Cuba); Martínez, A. Pérez; Rey, A. Ulacia [Departamento de Física Teórica, Instituto de Cibernética, Matemática y Física, ICIMAF, Calle E No-309 Vedado, CP-10400, La Habana (Cuba); Sussman, Roberto A., E-mail: dmanreza@fisica.uh.cu, E-mail: aurora@icmf.inf.cu, E-mail: alain@icmf.inf.cu, E-mail: sussman@nucleares.unam.mx [Departamento de Gravitación y Teorías de Campo, Instituto de Ciencias Nucleares, ICN, Universidad Autónoma de México UNAM, DF. 04510 (Mexico)
2010-03-01
We examine the dynamics of a self-gravitating magnetized neutron gas as a source of a Bianchi I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations can be expressed as a dynamical system in a 4-dimensional phase space. Numerical solutions of this system reveal the emergence of a point-like singularity as the final evolution state for a large class of physically motivated initial conditions. Besides the theoretical interest of studying this source in a fully general relativistic context, the resulting idealized model could be helpful in understanding the collapse of local volume elements of a neutron gas in the critical conditions that would prevail in the center of a compact object.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Lämmerzahl, Claus; di Virgilio, Angela
2016-06-01
100 years after the invention of General Relativity (GR) and 110 years after the development of Special Relativity (SR) we have to state that until now no single experiment or observation allows any doubt about the validity of these theories within the accuracy of the available data. Tests of GR can be divided into three categories: (i) test of the foundations of GR, (ii) tests of the consequences of GR, and (iii) test of the interplay between GR and quantum mechanics. In the first category, we have tests of the Einstein Equivalence Principle and the structure of the Newton axioms, in the second category we have effects like the gravitational redshift, light defection, gravitational time delay, the perihelion shift, the gravitomagnetic effects as the Lense-Thirring and Schiff effect, and gravitational waves. Tests of the effects of gravity on quantum systems are a first step towards experiments searching for a quantum gravity theory. In this paper, we also highlight practical applications in positioning, geodesy, and the International Atomic Time. After 100 years, GR can now definitely be regarded also as practical and applied science.
Directory of Open Access Journals (Sweden)
T. Reubelt
2003-01-01
Full Text Available An algorithm for the (kinematic orbit analysis of a Low Earth Orbiting (LEO GPS tracked satellite to determine the spherical harmonic coefficients of the terrestrial gravitational field is presented. A contribution to existing long wavelength gravity field models is expected since the kinematic orbit of a LEO satellite can nowadays be determined with very high accuracy in the range of a few centimeters. To demonstrate the applicability of the proposed method, first results from the analysis of real CHAMP Rapid Science (dynamic Orbits (RSO and kinematic orbits are illustrated. In particular, we take advantage of Newton’s Law of Motion which balances the acceleration vector and the gradient of the gravitational potential with respect to an Inertial Frame of Reference (IRF. The satellite’s acceleration vector is determined by means of the second order functional of Newton’s Interpolation Formula from relative satellite ephemeris (baselines with respect to the IRF. Therefore the satellite ephemeris, which are normally given in a Body fixed Frame of Reference (BRF have to be transformed into the IRF. Subsequently the Newton interpolated accelerations have to be reduced for disturbing gravitational and non-gravitational accelerations in order to obtain the accelerations caused by the Earth’s gravitational field. For a first insight in real data processing these reductions have been neglected. The gradient of the gravitational potential, conventionally expressed in vector-valued spherical harmonics and given in a Body Fixed Frame of Reference, must be transformed from BRF to IRF by means of the polar motion matrix, the precession-nutation matrices and the Greenwich Siderial Time Angle (GAST. The resulting linear system of equations is solved by means of a least squares adjustment in terms of a Gauss-Markov model in order to estimate the spherical harmonics coefficients of the Earth’s gravitational field.Key words. space gravity spectroscopy
An overview of gravitational physiology
Miquel, Jaime; Souza, Kenneth A.
1991-01-01
The focus of this review is on the response of humans and animals to the effects of the near weightless condition occurring aboard orbiting spacecraft. Gravity is an omnipresent force that has been a constant part of our lives and of the evolution of all living species. Emphasis is placed on the general mechanisms of adaptation to altered gravitational fields and vectors, i.e., both hypo- and hypergravity. A broad literature review of gravitational biology was conducted and the general state of our knowledge in this area is discussed. The review is specifically targeted at newcomers to the exciting and relatively new area of space and gravitational biology.
Gravitational consequences of a broken Lorentz symmetry
International Nuclear Information System (INIS)
Tartaglia, A.
1987-01-01
The paper shows that breaking the Lorentz symmetry in the tangent space generates, at least in two examples, short-range gravitational repulsion. This can avoid the singularities usually present in the general relativistic theory of gravity. Different possible breaking mechanisms are presented, finally remarking that the non-Lorentz-preserving co-ordinate transformations in the tangent space do indeed form a Lie group whose Lie algebra is neither simple nor semi-simple
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...
Probing gravitation with pulsars
Kramer, Michael
2013-03-01
Radio pulsars are fascinating and extremely useful objects. Despite our on-going difficulties in understanding the details of their emission physics, they can be used as precise cosmic clocks in a wide-range of experiments - in particular for probing gravitational physics. While the reader should consult the contributions to these proceedings to learn more about this exciting field of discovering, exploiting and understanding pulsars, we will concentrate here on on the usage of pulsars as gravity labs.
Cold atoms in singular potentials
International Nuclear Information System (INIS)
Denschlag, J. P.
1998-09-01
We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Sumanta, E-mail: sumanta@iucaa.in [IUCAA, Post Bag 4, Ganeshkhind, Pune University Campus, 411 007, Pune (India); SenGupta, Soumitra, E-mail: tpssg@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, 700032, Kolkata (India)
2015-11-18
We have derived effective gravitational field equations on a lower dimensional hypersurface (known as a brane), placed in a higher dimensional bulk spacetime for both Einstein and f(R) gravity theories. We have started our analysis on the n-dimensional bulk from which the effective field equations on a (n-1)-dimensional brane have been obtained by imposing Z{sub 2} symmetry. Subsequently, we have arrived at the effective equations in (n-2) dimensions starting from the effective equations for (n-1)-dimensional brane. This analysis has been carried out and is used to obtain the effective field equations for an (n-m)-dimensional brane, embedded in a n-dimensional bulk. Having obtained the effective field equations in Einstein gravity, we have subsequently generalized the effective field equation for an (n-m)-dimensional brane which is embedded in the n-dimensional bulk spacetime endowed with f(R) gravity. We have also presented applications of our results in the context of Einstein and f(R) gravity. In both cases we have discussed static spherically symmetric vacuum solutions as well as solutions in a cosmological context. Implications are also discussed.
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
Directory of Open Access Journals (Sweden)
Metin SALTIK
1996-03-01
Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.
On the initial singularity problem in rainbow cosmology
Energy Technology Data Exchange (ETDEWEB)
Santos, Grasiele [Dipartimento di Fisica, Università ' ' La Sapienza' ' , P.le A. Moro 2, Roma, 00185 (Italy); Gubitosi, Giulia [Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ United Kingdom (United Kingdom); Amelino-Camelia, Giovanni, E-mail: grasiele.dossantos@icranet.org, E-mail: g.gubitosi@imperial.ac.uk, E-mail: giovanni.amelino-camelia@roma1.infn.it [Dipartimento di Fisica, Università ' ' La Sapienza' ' and Sez. Roma1 INFN, P.le A. Moro 2, Roma, 00185 (Italy)
2015-08-01
It has been recently claimed that the initial singularity might be avoided in the context of rainbow cosmology, where one attempts to account for quantum-gravitational corrections through an effective-theory description based on an energy-dependent ('rainbow') spacetime metric. We here scrutinize this exciting hypothesis much more in depth than previous analyses. In particular, we take into account all requirements for singularity avoidance, while previously only a subset of these requirements had been considered. Moreover, we show that the implications of a rainbow metric for thermodynamics are more significant than previously appreciated. Through the analysis of two particularly meaningful examples of rainbow metrics we find that our concerns are not merely important conceptually, but actually change in quantitatively significant manner the outcome of the analysis. Notably we only find examples where the singularity is not avoided, though one can have that in the regime where our semi-classical picture is still reliable the approach to the singularity is slowed down when compared to the standard classical scenario. We conclude that the study of rainbow metrics provides tantalizing hints of singularity avoidance but is inconclusive, since some key questions remain to be addressed just when the scale factor is very small, a regime which, as here argued, cannot be reliably described by an effective rainbow-metric picture.
Workshop on Singularities in Geometry, Topology, Foliations and Dynamics
Lê, Dung; Oka, Mutsuo; Snoussi, Jawad
2017-01-01
This book features state-of-the-art research on singularities in geometry, topology, foliations and dynamics and provides an overview of the current state of singularity theory in these settings. Singularity theory is at the crossroad of various branches of mathematics and science in general. In recent years there have been remarkable developments, both in the theory itself and in its relations with other areas. The contributions in this volume originate from the “Workshop on Singularities in Geometry, Topology, Foliations and Dynamics”, held in Merida, Mexico, in December 2014, in celebration of José Seade’s 60th Birthday. It is intended for researchers and graduate students interested in singularity theory and its impact on other fields.
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).
International Nuclear Information System (INIS)
Ustaszewski, M. E.; Pfiffner, A.; Hampel, A.; Ustaszewski, M. E.
2008-01-01
Along the flanks of several valleys in the Swiss Alps, well-preserved fault scarps occur between 1900 and 2400 m altitude, which reveal uplift of the valley-side block relative to the mountain-side block. The height of these uphill-facing scarps varies between 0.5 m and more than 10 m along strike of the fault traces, which usually trend parallel to the valley axes. The formation of the scarps is generally attributed either to tectonic movements or gravitational slope instabilities. Here we combine field data and numerical experiments to show that the scarps may be of composite origin, i.e. that tectonic and gravitational processes as well as postglacial differential uplift may have contributed to their formation. Tectonic displacement may occur as the fault scarps run parallel to older tectonic faults. The tectonic component seems, however, to be minor as the studied valleys lack seismic activity. A large gravitational component, which is feasible owing to the steep dip of the schistosity and lithologic boundaries in the studied valleys, is indicated by the uneven morphology of the scarps, which is typical of slope movements. Postglacial differential uplift of the valley floor with respect to the summits provides a third feasible mechanism for scarp formation, as the scarps are postglacial in age and occur on the flanks of valleys that were filled with ice during the last glacial maximum. Finite-element experiments show that postglacial unloading and rebound can initiate slip on steeply dipping pre-existing weak zones and explain part of the observed scarp height. From our field and modelling results we conclude that the formation of uphill-facing scarps is primarily promoted by a steeply dipping schistosity striking parallel to the valley axes and, in addition, by mechanically weaker rocks in the valley with respect to the summits. Our findings imply that the identification of surface expressions related to active faults can be hindered by similar morphologic
A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226
Mooley, K. P.; Frail, D. A.; Myers, S. T.; Kulkarni, S. R.; Hotokezaka, K.; Singer, L. P.; Horesh, A.; Kasliwal, M. M.; Cenko, S. B.; Hallinan, G.
2018-04-01
We apply a newly developed on-the-fly mosaicing technique on the Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW151226. In three epochs between 1.5 and 6 months post-merger, we observed a 100 deg2 region, with more than 80% of the survey region having an rms sensitivity of better than 150 μJy/beam, in the northern hemisphere with a merger containment probability of 10%. The data were processed in near real time and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1029 erg s‑1 Hz‑1. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW170817 and radio follow-up in future gravitational wave observing runs.
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
African Journals Online (AJOL)
The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...
3rd Singularity Theory Meeting of Northeast region & the Brazil-Mexico 2nd Meeting on Singularities
Neto, Aurélio; Mond, David; Saia, Marcelo; Snoussi, Jawad; BMMS 2/NBMS 3; ENSINO; Singularities and foliations geometry, topology and applications
2018-01-01
This proceedings book brings selected works from two conferences, the 2nd Brazil-Mexico Meeting on Singularity and the 3rd Northeastern Brazilian Meeting on Singularities, that were hold in Salvador, in July 2015. All contributions were carefully peer-reviewed and revised, and cover topics like Equisingularity, Topology and Geometry of Singularities, Topological Classification of Singularities of Mappings, and more. They were written by mathematicians from several countries, including Brazil, Spain, Mexico, Japan and the USA, on relevant topics on Theory of Singularity, such as studies on deformations, Milnor fibration, foliations, Catastrophe theory, and myriad applications. Open problems are also introduced, making this volume a must-read both for graduate students and active researchers in this field.
International Nuclear Information System (INIS)
Zschocke, Sven; Soffel, Michael H
2014-01-01
High precision astrometry, space missions and certain tests of General Relativity, require the knowledge of the metric tensor of the solar system, or more generally, of a gravitational system of N extended bodies. Presently, the metric of arbitrarily shaped, rotating, oscillating and arbitrarily moving N bodies of finite extension is only known for the case of slowly moving bodies in the post-Newtonian approximation, while the post-Minkowskian metric for arbitrarily moving celestial objects is known only for pointlike bodies with mass-monopoles and spin-dipoles. As one more step towards the aim of a global metric for a system of N arbitrarily shaped and arbitrarily moving massive bodies in post-Minkowskian approximation, two central issues are on the scope of our investigation. (i) We first consider one extended body with full multipole structure in uniform motion in some suitably chosen global reference system. For this problem a co-moving inertial system of coordinates can be introduced where the metric, outside the body, admits an expansion in terms of Damour–Iyer moments. A Poincaré transformation then yields the corresponding metric tensor in the global system in post-Minkowskian approximation. (ii) It will be argued why the global metric, exact to post-Minkowskian order, can be obtained by means of an instantaneous Poincaré transformation for the case of pointlike mass-monopoles and spin-dipoles in arbitrary motion. (paper)
Residues and duality for singularity categories of isolated Gorenstein singularities
Murfet, Daniel
2009-01-01
We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.
Possible role of torsion in gravitational theories
International Nuclear Information System (INIS)
Nieh, H.T.
1983-01-01
Torsion is of interest in an indirect way, in that it has the potential of being an important ingredient in a future successful quantum theory of gravitation. Einstein's theory of gravitation, despite its simplicity and elegance, and its successes in large-scale gravitational phenomena, can only be regarded as a macroscopic classical theory. It is a non-renormalizable quantum field theory, and, therefore, lacks the status of a good microscopic theory. It is the search for a successful quantum field theory of gravitation that poses as one of the great challenges to theoretical physics today. (Auth.)
International Nuclear Information System (INIS)
Johnson, C.R.
1985-01-01
We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field
Gravitational-wave mediated preheating
Directory of Open Access Journals (Sweden)
Stephon Alexander
2015-04-01
Full Text Available We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.
Influence of the non-singular stress on the crack extension and fatigue life
International Nuclear Information System (INIS)
Cheng, C.Z.; Recho, N.; Niu, Z.R.
2012-01-01
Highlights: ► BEM is combined by characteristic analysis to calculate the singular stress field. ► A new method is proposed to evaluate the full stress field at crack tip region. ► Effect of non-singular stress on the propagation direction of the fatigue crack is analyzed. ► The influence of non-singular stress on the fatigue crack life is evaluated. - Abstract: The complete elasticity stress field at a crack tip region can be presented by the sum of the singular stress and several non-singular stress terms according to the Williams asymptotic expansion theory. The non-singular stress has a non-negligible influence on the prediction of the crack extension direction and crack growth rate under the fatigue loading. A novel method combining the boundary element method and the singularity characteristic analysis is proposed here to evaluate the complete stress field at a crack tip region. In this new method, any non-singular stress term in the Williams series expansion can be evaluated according to the computational accuracy requirement. Then, a modified Paris law is introduced to predict the crack propagation under the mixed-mode loading for exploring the influence of the non-singular stress on the fatigue life duration. By comparing with the existed experimental results, the predicted crack fatigue life when the non-singular stress is taken into consideration is more accurate than the predicted ones only considering the singular stress.
String theory and cosmological singularities
Indian Academy of Sciences (India)
recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.
Gravitational collapse in higher-dimensional charged-Vaidya space ...
Indian Academy of Sciences (India)
Abstract. We analyze here the gravitational collapse of higher-dimensional charged-Vaidya space- time. We show that singularities arising in a charged null fluid in higher dimension are always naked violating at least strong cosmic censorship hypothesis (CCH), though not necessarily weak CCH. We show that earlier ...
Classical Calculations of Scattering Signatures from a Gravitational ...
Indian Academy of Sciences (India)
Abstract. Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angu- lar and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scat- tering and absorption cross sections ...
Space-time singularities in Weyl manifolds
Energy Technology Data Exchange (ETDEWEB)
Lobo, I.P. [CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Barreto, A.B.; Romero, C. [Universidade Federal da Paraiba, Departamento de Fisica, C. Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame. (orig.)
International Nuclear Information System (INIS)
Shabbir, Ghulam; Khan, Suhail
2010-01-01
In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times. (general)
Testing Gravitational Physics with Space-based Gravitational-wave Observations
Baker, John G.
2011-01-01
Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.
On the cosmological gravitational waves and cosmological distances
Belinski, V. A.; Vereshchagin, G. V.
2018-03-01
We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.
Cirant, Marco
2016-11-22
Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.
Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams
Haitao, Chen; Gao, Zenghui; Wang, Wanqing
2017-06-01
The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.
International Nuclear Information System (INIS)
Pinto Neto, A.
1987-01-01
A new theoretical model for active galaxy nuclei which describes the continuous spectrum of rest massless particles (photons, neutrinos and gravitons) in the frequency range from radiofrequency to gamma ray frequency, is presented. The model consists in a black hole gas interacting with a background gravitacional field. The previously models proposed for active galaxy nuclei are exposured. Whole theoretical fundaments based on Einstein general relativity theory for defining and studying singularity properties (black holes) are also presented. (M.C.K.) [pt
Astrometric and Timing Effects of Gravitational Waves from Localized Sources
Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall
1998-01-01
A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...
Classical resolution of black hole singularities via wormholes
Energy Technology Data Exchange (ETDEWEB)
Olmo, Gonzalo J. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Rubiera-Garcia, D. [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Sanchez-Puente, A. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain)
2016-03-15
In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature. (orig.)
International Nuclear Information System (INIS)
Lerche, I.; Low, B.C.
1977-01-01
A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)
Nath, G.
2016-01-01
Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under the influence of a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal gas and small solid particles, in which solid particles are uniformly distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The medium is assumed to be under the influence of a gravitational field due to central mass ( bar{m} ) at the origin (Roche Model). It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the central mass. The initial density of the ambient medium is taken to be always constant. The effects of the variation of the gravitational parameter and nonidealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is shown that due to an increase in the gravitational parameter the compressibility of the medium at any point in the flow-field behind the shock decreases and all other flow variables and the shock strength are increased. Further, it is found that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the piston and the shock surface is reduced. The shock waves in dusty gas under the influence of a
Solutions of dissimilar material singularity and contact problems
International Nuclear Information System (INIS)
Yang, Y.
2003-09-01
Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
Czech Academy of Sciences Publication Activity Database
Klokočník, Jaroslav; Kostelecký, J.
2015-01-01
Roč. 8, č. 6 (2015), s. 3515-3522 ISSN 1866-7511 Institutional support: RVO:67985815 Keywords : gravity disturbance (anomaly) * Marussi tensor * invariants of the gravity field Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.224, year: 2014
Czech Academy of Sciences Publication Activity Database
Klokočník, Jaroslav; Kostelecký, J.; Pešek, I.; Novák, P.; Wagner, C. A.; Sebera, Josef
2010-01-01
Roč. 1, č. 1 (2010), s. 71-83 ISSN 1869-9510 Grant - others:ESA(XE) ESA-PECS project no. 98056 Institutional research plan: CEZ:AV0Z10030501 Keywords : impact craters * gravity field model EGM2008 * second radial derivatives Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Interaction of cosmic strings with gravitational waves
International Nuclear Information System (INIS)
Frolov, V.P.; Garfinkle, D.
1990-01-01
We find solutions of Einstein's equation representing a gravitational wave interacting with a cosmic-string traveling wave. The motion of test cosmic strings in the gravitational field of a cosmic-string traveling wave is also examined. A solution representing traveling waves on several parallel cosmic strings is also found
Holographic entanglement entropy and gravitational anomalies
Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.
2014-01-01
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal
Piecewise flat gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)
2011-04-07
We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.
Gravitational radiation from dust
International Nuclear Information System (INIS)
Isaacson, R.A.; Welling, J.S.; Winicour, J.
1985-01-01
A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems
Czech Academy of Sciences Publication Activity Database
Janoušková, Jana; Budinská, Marcela; Plocková, Jana; Chmelík, Josef
2001-01-01
Roč. 914, 1-2 (2001), s. 183-187 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Grant - others:Copernicus(BE) ERB3512-PL979070 Institutional research plan: CEZ:AV0Z4031919 Keywords : field-flow fractionation * optimization * flow-rate gradients Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.793, year: 2001
Gravitational perfect fluid collapse in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-08-15
The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)
Singular traces theory and applications
Sukochev, Fedor; Zanin, Dmitriy
2012-01-01
This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.
Dynkin graphs and quadrilateral singularities
Urabe, Tohsuke
1993-01-01
The study of hypersurface quadrilateral singularities can be reduced to the study of elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0), and therefore these notes consider, besides the topics of the title, such K3 surfaces too. The combinations of rational double points that can occur on fibers in the semi-universal deformations of quadrilateral singularities are examined, to show that the possible combinations can be described by a certain law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0) can be described by a certain law using classical Dynkin graphs appearing in the theory of semi-simple Lie groups. Further, a similar description for thecombination of singularities on plane sextic curves is given. Standard knowledge of algebraic geometry at the level of graduate students is expected. A new method based on graphs wil...
Casolari, S; Roda, B; Mirasoli, M; Zangheri, M; Patrono, D; Reschiglian, P; Roda, A
2013-01-07
A "Point-Of-Care-Testing" (POCT) system relies on portable and simply operated self-standing analytical devices. To fulfill diagnostic requirements, the POCT system should provide highly sensitive simultaneous detection of several biomarkers of the pathology of interest (multiplexing) in a short assay time. One of the main unsolved issues in POCT device development is the integration of pre-analytical sample preparation procedures in the miniaturized device. In this work, an integrated POCT system based on gravitational field-flow fractionation (GrFFF) and chemiluminescence (CL) detection is presented for the on-line sample pre-analytical treatment and/or clean-up and analysis of biological fluids. As a proof of principle for the new GrFFF-CL POCT system, the automatic on-line analysis of plasma alkaline phosphatase activity, a biomarker of obstructive liver diseases and bone disorders, starting from whole blood samples was developed. The GrFFF-CL POCT system was able to give quantitative results on blood samples from control and patients with low sample volume (0.5 μL) and reagent consumption, short analysis time (10 minutes), high reproducibility and with a linear range of 50-1400 IU L(-1). The system can be easily applied to on-line prepare plasma from whole blood for other clinical biomarkers and for other assay formats, based on immunoassay or DNA hybridization.
Interaction of gravitational waves with superconductors
Energy Technology Data Exchange (ETDEWEB)
Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)
2017-06-15
Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
On the relativistic generalization of Newton's gravitation theory. Part 2
International Nuclear Information System (INIS)
Donev, S.
1985-01-01
It is shown that a generalization of Newton's gravitation theory to time-dependent gravitational fields by analogy with relativistic electrodynamics leads to negative density of the gravitational field energy. A new system of nonlinear field equations is proposed and briefly discussed. Newton's theory is obtained as a linear static approximation. The density of the field energy is kept positive and well defined. Linear and nonlinear waves out of field sources are admitted. The theory thus obtained is not considered to be satisfactory since it does not describe in a natural way the light ray's deflection in an external gravitational field
Local and nonlocal space-time singularities
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1985-01-01
The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established
The Rotational and Gravitational Effect of Earthquakes
Gross, Richard
2000-01-01
The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.
Acceleration of low energy charged particles by gravitational waves
Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.
2005-01-01
The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.
General Relativity and Gravitation
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
General relativity and gravitational waves
Weber, Johanna
1961-01-01
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta
Gravitational anomaly and transport phenomena.
Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco
2011-07-08
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.
Directory of Open Access Journals (Sweden)
Lijing Shao
2017-10-01
Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
Non linear photons: a non singular cosmological solution
International Nuclear Information System (INIS)
Alves, G.A.
1986-01-01
The validity of equivalence principle as principle of minimum coupling between field interactions, is discussed. The non minimum coupling between vector field and gravitational field, and some consequences of this coupling are analysed. Starting from spherical symmetry metric, the coupled field equations, obtaining exact solutions and interpreting these solutions, are solved. (M.C.K.) [pt
Simple Analytic Models of Gravitational Collapse
Energy Technology Data Exchange (ETDEWEB)
Adler, R.
2005-02-09
Most general relativity textbooks devote considerable space to the simplest example of a black hole containing a singularity, the Schwarzschild geometry. However only a few discuss the dynamical process of gravitational collapse, by which black holes and singularities form. We present here two types of analytic models for this process, which we believe are the simplest available; the first involves collapsing spherical shells of light, analyzed mainly in Eddington-Finkelstein coordinates; the second involves collapsing spheres filled with a perfect fluid, analyzed mainly in Painleve-Gullstrand coordinates. Our main goal is pedagogical simplicity and algebraic completeness, but we also present some results that we believe are new, such as the collapse of a light shell in Kruskal-Szekeres coordinates.
Press, W. H.; Thorne, K. S.
1972-01-01
The significance of experimental evidence for gravitational waves is considered for astronomy. Properties, generation, and astrophysical sources of the waves are discussed. Gravitational wave receivers and antennas are described. A review of the Weber experiment is presented.
Underdevelopment’s gravitation
Directory of Open Access Journals (Sweden)
Marin Dinu
2013-09-01
Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.
Prevention of gravitational collapse
International Nuclear Information System (INIS)
Moffat, J.W.; Taylor, J.G.
1981-01-01
We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)
Towards the bounce inflationary gravitational wave
Energy Technology Data Exchange (ETDEWEB)
Li, Hai-Guang; Cai, Yong [University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Piao, Yun-Song [University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)
2016-12-15
In the bounce inflation scenario, the inflation is singularity-free, while the advantages of inflation are preserved. We analytically calculate the power spectrum of its primordial gravitational waves (GWs), and show a universal result including the physics of the bounce phase. The spectrum acquires a cutoff at large scale, while the oscillation around the cutoff scale is quite drastic, which is determined by the details of bounce. Our work highlights that the primordial GWs at large scale may encode the physics of the bounce ever happened at about ∝60 efolds before inflation. (orig.)
Non-Euclidean Geometry and Gravitation
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2006-04-01
Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.
The Gravitational-Wave Physics
Cai, Rong-Gen; Cao, Zhoujian; Guo, Zong-Kuan; Wang, Shao-Jiang; Yang, Tao
2017-01-01
The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined wit...
Detection of gravitational radiation
International Nuclear Information System (INIS)
Holten, J.W. van
1994-01-01
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
High energy gravitational scattering: a numerical study
Marchesini, Giuseppe
2008-01-01
The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.
Ambient cosmology and spacetime singularities
Antoniadis, Ignatios
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.
Singularity Theory and its Applications
Stewart, Ian; Mond, David; Montaldi, James
1991-01-01
A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.
Ambient cosmology and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)
Fundamentals of interferometric gravitational wave detectors
Saulson, Peter R
2017-01-01
LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...
PREFACE: The Sixth International Conference on Gravitation & Cosmology
Date, Ghanashyam; Souradeep, Tarun
2008-07-01
The sixth International Conference on Gravitation & Cosmology (ICGC-2007) was organized at IUCAA, Pune, 17-21 December 2007. This series of international meetings, held every four years under the auspices of the Indian Association for General Relativity and Gravitation (IAGRG), has now spanned two decades. Previous ICGC meetings were held at Cochin University of Science and Technology (2004), Indian Institute of Technology, Kharagpur (2000), IUCAA, Pune (1995), Physical Research Laboratory, Ahmedabad (1991) & Goa (1987). These meetings have broad international participation and feature leading experts in the field of Cosmology, gravitational waves and quantum gravity. The frontier of research in Gravitation and Cosmology has seen remarkable progress in the past decades. On the theoretical front, black holes and cosmological singularities continue to challenge and attract quantum gravity researchers. The quest for the detection of Gravitational waves and the promise of gravitational wave astronomy continues to grow and breakthroughs of the past couple of years indicate that numerical relativity is catching up too. The past few years have also seen very ambitious experimental efforts to verify general relativity as the theory of gravitation. Cosmology has been veritably transformed into a precision science with the tremendous improvement in the quantity and quality of cosmological observations. The exquisite measurements not only allow refinement of the cosmological model parameters but have begun to allow observational tests of underlying fundamental assumptions and hunt for subtle deviations that could be the key to understanding the early universe. The sixth meeting brought together active scientists from all over the globe to present the state of the art at the frontiers of research. It also offered younger Indian researchers an opportunity for interaction with experts from within India and abroad. The meeting was attended by over 160 participants. The scientific
Singularity and dynamics on discontinuous vector fields
Luo, Albert CJ
2006-01-01
This book discussed fundamental problems in dynamics, which extensively exist in engineering, natural and social sciences. The book presented a basic theory for the interactions among many dynamical systems and for a system whose motions are constrained naturally or artificially. The methodology and techniques presented in this book are applicable to discontinuous dynamical systems in physics, engineering and control. In addition, they may provide useful tools to solve non-traditional dynamics in biology, stock market and internet network et al, which cannot be easily solved by the traditional