Analytic Evolution of Singular Distribution Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-03-01
We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.
Analytic Evolution of Singular Distribution Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Tandogan Kunkel, Asli [Old Dominion Univ., Norfolk, VA (United States)
2014-08-01
Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.
Singular cosmological evolution using canonical and ghost scalar fields
Energy Technology Data Exchange (ETDEWEB)
Nojiri, Shin' ichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D. [Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain); Oikonomou, V.K. [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Saridakis, Emmanuel N., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp, E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com, E-mail: Emmanuel_Saridakis@baylor.edu [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2015-09-01
We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.
Singular perturbation method for evolution equations in Banach spaces
International Nuclear Information System (INIS)
Mika, J.
1976-01-01
The singular perturbation method is applied to linear evolution equations in Banach spaces containing a small parameter multiplying the time derivative. Outer and inner asymptotic solutions are formulated and the sense in which they converge to the exact solution is rigorously defined. It is then shown that the sum of the two asymptotic solutions converges uniformly to the exact solution. Possible applications to various physical situations are indicated. (Auth.)
Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.
2018-01-01
In this article the dynamics of the qubits states based on solution of the time-dependent Schrödinger equation is investigated. Using the Magnus method we obtain an explicit interpolation representation for the propagator, which allows to find wave function at an arbitrary time. To illustrate the effectiveness of the approach, the population of the levels a single and two coupled qubits have been calculated by applying the Magnus propagator and the result have been compared with the numerical solution of the Schrödinger equation. As a measure of the approximation of the wave function, we calculate fidelity, which indicates proximity when the exact and approximate evolution operator acts on the initial state. We discuss the possibility of extending the developed methods to multi-qubits system, when high-speed calculation methods of the operators of evolution is particularly relevant.
Curing singularities in cosmological evolution of F(R) gravity
International Nuclear Information System (INIS)
Appleby, Stephen A.; Battye, Richard A.; Starobinsky, Alexei A.
2010-01-01
We study F(R) modified gravity models which are capable of driving the accelerating epoch of the Universe at the present time whilst not destroying the standard Big Bang and inflationary cosmology. Recent studies have shown that a weak curvature singularity with |R| → ∞ can arise generically in viable F(R) models of present dark energy (DE) signaling an internal incompleteness of these models. In this work we study how this problem is cured by adding a quadratic correction with a sufficiently small coefficient to the F(R) function at large curvatures. At the same time, this correction eliminates two more serious problems of previously constructed viable F(R) DE models: unboundedness of the mass of a scalar particle (scalaron) arising in F(R) gravity and the scalaron overabundance problem. Such carefully constructed models can also yield both an early time inflationary epoch and a late time de Sitter phase with vastly different values of R. The reheating epoch in these combined models of primordial and present dark energy is completely different from that of the old R+R 2 /6M 2 inflationary model, mainly due to the fact that values of the effective gravitational constant at low and intermediate curvatures are different for positive and negative R. This changes the number of e-folds during the observable part of inflation that results in a different value of the primordial power spectrum index
Spatial Interpolation of Rain-field Dynamic Time-Space Evolution in Hong Kong
Liu, P.; Tung, Y. K.
2017-12-01
Accurate and reliable measurement and prediction of spatial and temporal distribution of rain-field over a wide range of scales are important topics in hydrologic investigations. In this study, geostatistical treatment of precipitation field is adopted. To estimate the rainfall intensity over a study domain with the sample values and the spatial structure from the radar data, the cumulative distribution functions (CDFs) at all unsampled locations were estimated. Indicator Kriging (IK) was used to estimate the exceedance probabilities for different pre-selected cutoff levels and a procedure was implemented for interpolating CDF values between the thresholds that were derived from the IK. Different interpolation schemes of the CDF were proposed and their influences on the performance were also investigated. The performance measures and visual comparison between the observed rain-field and the IK-based estimation suggested that the proposed method can provide fine results of estimation of indicator variables and is capable of producing realistic image.
Stein, A.
1991-01-01
The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are
Numerical Quadrature of Periodic Singular Integral Equations
DEFF Research Database (Denmark)
Krenk, Steen
1978-01-01
This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally it is demonstra......This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally...... it is demonstrated how a singular integral equation with infinite support can be solved by use of the preceding formulae....
Greiner, G.; Heesterbeek, J.A.P.; Metz, J.A.J.
1994-01-01
In this paper we present a generalization of a finite dimensional singular perturbation theorem to Banach spaces. From this we obtain sufficient conditions under which a faithful simplification by a time-scale argument is justified for age-structured models of slowly growing populations. An explicit
String theory and cosmological singularities
Indian Academy of Sciences (India)
Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.
Holographic complexity and spacetime singularities
International Nuclear Information System (INIS)
Barbón, José L.F.; Rabinovici, Eliezer
2016-01-01
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Directory of Open Access Journals (Sweden)
I. Hoteit
2003-01-01
Full Text Available A singular evolutive extended Kalman (SEEK filter is used to assimilate real in situ data in a water column marine ecosystem model. The biogeochemistry of the ecosystem is described by the European Regional Sea Ecosystem Model (ERSEM, while the physical forcing is described by the Princeton Ocean Model (POM. In the SEEK filter, the error statistics are parameterized by means of a suitable basis of empirical orthogonal functions (EOFs. The purpose of this contribution is to track the possibility of using data assimilation techniques for state estimation in marine ecosystem models. In the experiments, real oxygen and nitrate data are used and the results evaluated against independent chlorophyll data. These data were collected from an offshore station at three different depths for the needs of the MFSPP project. The assimilation results show a continuous decrease in the estimation error and a clear improvement in the model behavior. Key words. Oceanography: general (ocean prediction; numerical modelling – Oceanography: biological and chemical (ecosystems and ecology
Interpolation functors and interpolation spaces
Brudnyi, Yu A
1991-01-01
The theory of interpolation spaces has its origin in the classical work of Riesz and Marcinkiewicz but had its first flowering in the years around 1960 with the pioneering work of Aronszajn, Calderón, Gagliardo, Krein, Lions and a few others. It is interesting to note that what originally triggered off this avalanche were concrete problems in the theory of elliptic boundary value problems related to the scale of Sobolev spaces. Later on, applications were found in many other areas of mathematics: harmonic analysis, approximation theory, theoretical numerical analysis, geometry of Banach spaces, nonlinear functional analysis, etc. Besides this the theory has a considerable internal beauty and must by now be regarded as an independent branch of analysis, with its own problems and methods. Further development in the 1970s and 1980s included the solution by the authors of this book of one of the outstanding questions in the theory of the real method, the K-divisibility problem. In a way, this book harvests the r...
String theory and cosmological singularities
Indian Academy of Sciences (India)
recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.
Topological resolution of gauge theory singularities
Energy Technology Data Exchange (ETDEWEB)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Topological resolution of gauge theory singularities
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Sixtus, Frederick
2009-01-01
Inhalt: Interpol - Kurzer geschichtlicher Abriss - Interpol heute - Struktur - Die Kernfunktionen Interpols Europol (oder: Europäisches Polizeiamt) - Kurzer geschichtlicher Abriss - Europol heute - Struktur Die Kontrolle Europols - Die Kernaufgaben Europols - Wie arbeiten die internationalen Polizeibehörden tatsächlich? - Vorboten einer Weltpolizei?
SPLINE, Spline Interpolation Function
International Nuclear Information System (INIS)
Allouard, Y.
1977-01-01
1 - Nature of physical problem solved: The problem is to obtain an interpolated function, as smooth as possible, that passes through given points. The derivatives of these functions are continuous up to the (2Q-1) order. The program consists of the following two subprograms: ASPLERQ. Transport of relations method for the spline functions of interpolation. SPLQ. Spline interpolation. 2 - Method of solution: The methods are described in the reference under item 10
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Monotone piecewise bicubic interpolation
International Nuclear Information System (INIS)
Carlson, R.E.; Fritsch, F.N.
1985-01-01
In a 1980 paper the authors developed a univariate piecewise cubic interpolation algorithm which produces a monotone interpolant to monotone data. This paper is an extension of those results to monotone script C 1 piecewise bicubic interpolation to data on a rectangular mesh. Such an interpolant is determined by the first partial derivatives and first mixed partial (twist) at the mesh points. Necessary and sufficient conditions on these derivatives are derived such that the resulting bicubic polynomial is monotone on a single rectangular element. These conditions are then simplified to a set of sufficient conditions for monotonicity. The latter are translated to a system of linear inequalities, which form the basis for a monotone piecewise bicubic interpolation algorithm. 4 references, 6 figures, 2 tables
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
tion that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. Keywords. Non-covariant gauges; interpolating ...
Linear interpolation of histograms
Read, A L
1999-01-01
A prescription is defined for the interpolation of probability distributions that are assumed to have a linear dependence on a parameter of the distributions. The distributions may be in the form of continuous functions or histograms. The prescription is based on the weighted mean of the inverses of the cumulative distributions between which the interpolation is made. The result is particularly elegant for a certain class of distributions, including the normal and exponential distributions, and is useful for the interpolation of Monte Carlo simulation results which are time-consuming to obtain.
Singularities in the nonisotropic Boltzmann equation
International Nuclear Information System (INIS)
Garibotti, C.R.; Martiarena, M.L.; Zanette, D.
1987-09-01
We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs
Feature displacement interpolation
DEFF Research Database (Denmark)
Nielsen, Mads; Andresen, Per Rønsholt
1998-01-01
Given a sparse set of feature matches, we want to compute an interpolated dense displacement map. The application may be stereo disparity computation, flow computation, or non-rigid medical registration. Also estimation of missing image data, may be phrased in this framework. Since the features...... often are very sparse, the interpolation model becomes crucial. We show that a maximum likelihood estimation based on the covariance properties (Kriging) show properties more expedient than methods such as Gaussian interpolation or Tikhonov regularizations, also including scale......-selection. The computational complexities are identical. We apply the maximum likelihood interpolation to growth analysis of the mandibular bone. Here, the features used are the crest-lines of the object surface....
Extension Of Lagrange Interpolation
Directory of Open Access Journals (Sweden)
Mousa Makey Krady
2015-01-01
Full Text Available Abstract In this paper is to present generalization of Lagrange interpolation polynomials in higher dimensions by using Gramers formula .The aim of this paper is to construct a polynomials in space with error tends to zero.
Calculating SPRT Interpolation Error
Filipe, E.; Gentil, S.; Lóio, I.; Bosma, R.; Peruzzi, A.
2018-02-01
Interpolation error is a major source of uncertainty in the calibration of standard platinum resistance thermometer (SPRT) in the subranges of the International Temperature Scale of 1990 (ITS-90). This interpolation error arises because the interpolation equations prescribed by the ITS-90 cannot perfectly accommodate all the SPRTs natural variations in the resistance-temperature behavior, and generates different forms of non-uniqueness. This paper investigates the type 3 non-uniqueness for fourteen SPRTs of five different manufacturers calibrated over the water-zinc subrange and demonstrates the use of the method of divided differences for calculating the interpolation error. The calculated maximum standard deviation of 0.25 mK (near 100°C) is similar to that observed in previous studies.
Simple monotonic interpolation scheme
International Nuclear Information System (INIS)
Greene, N.M.
1980-01-01
A procedure for presenting tabular data, such as are contained in the ENDF/B files, that is simpler, more general, and potentially much more compact than the present schemes used with ENDF/B is presented. The method has been successfully used for Bondarenko interpolation in a module of the AMPX system. 1 figure, 1 table
Fuzzy Interpolation and Other Interpolation Methods Used in Robot Calibrations
Directory of Open Access Journals (Sweden)
Ying Bai
2012-01-01
Full Text Available A novel interpolation algorithm, fuzzy interpolation, is presented and compared with other popular interpolation methods widely implemented in industrial robots calibrations and manufacturing applications. Different interpolation algorithms have been developed, reported, and implemented in many industrial robot calibrations and manufacturing processes in recent years. Most of them are based on looking for the optimal interpolation trajectories based on some known values on given points around a workspace. However, it is rare to build an optimal interpolation results based on some random noises, and this is one of the most popular topics in industrial testing and measurement applications. The fuzzy interpolation algorithm (FIA reported in this paper provides a convenient and simple way to solve this problem and offers more accurate interpolation results based on given position or orientation errors that are randomly distributed in real time. This method can be implemented in many industrial applications, such as manipulators measurements and calibrations, industrial automations, and semiconductor manufacturing processes.
International Nuclear Information System (INIS)
Blok, M. de; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1990-01-01
This report describes a time-interpolator with which time differences can be measured using digital and analog techniques. It concerns a maximum measuring time of 6.4 μs with a resolution of 100 ps. Use is made of Emitter Coupled Logic (ECL) and analogues of high-frequency techniques. The difficulty which accompanies the use of ECL-logic is keeping as short as possible the mutual connections and closing properly the outputs in order to avoid reflections. The digital part of the time-interpolator consists of a continuous running clock and logic which converts an input signal into a start- and stop signal. The analog part consists of a Time to Amplitude Converter (TAC) and an analog to digital converter. (author). 3 refs.; 30 figs
The Geometry of Black Hole Singularities
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2014-01-01
Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
Smooth Phase Interpolated Keying
Borah, Deva K.
2007-01-01
Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values
Geodesic fields with singularities
International Nuclear Information System (INIS)
Kafker, A.H.
1979-01-01
The question considered is whether or not a Riemannian metric can be found to make a given curve field on a closed surface into geodesics. Allowing singularities removes the restriction to Euler characteristic zero. The main results are the following: only two types of isolated singularities can occur in a geodesic field on a surface. No geodsic fields exist on a surface with Euler characteristic less than zero. If the Euler characteristic is zero, such a geodesic field can have only removable singularities. Only a limited number of geodesic fields exist on S 2 and RP 2 . A closed geodesic (perhaps made from several curves and singularities) always appears in such a field
Observational constraints on cosmological future singularities
Energy Technology Data Exchange (ETDEWEB)
Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)
2016-11-15
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)
Singular inflation from generalized equation of state fluids
Energy Technology Data Exchange (ETDEWEB)
Nojiri, S., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D., E-mail: odintsov@ieec.uab.es [Institut de Ciencies de lEspai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Cerdanyola del Valles, Barcelona (Spain); ICREA, Passeig Lluîs Companys, 23, 08010 Barcelona (Spain); National Research Tomsk State University, 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation); Oikonomou, V.K., E-mail: v.k.oikonomou1979@gmail.com [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); National Research Tomsk State University, 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation)
2015-07-30
We study models with a generalized inhomogeneous equation of state fluids, in the context of singular inflation, focusing to so-called Type IV singular evolution. In the simplest case, this cosmological fluid is described by an equation of state with constant w, and therefore a direct modification of this constant w fluid is achieved by using a generalized form of an equation of state. We investigate from which models with generalized phenomenological equation of state, a Type IV singular inflation can be generated and what the phenomenological implications of this singularity would be. We support our results with illustrative examples and we also study the impact of the Type IV singularities on the slow-roll parameters and on the observational inflationary indices, showing the consistency with Planck mission results. The unification of singular inflation with singular dark energy era for specific generalized fluids is also proposed.
Technological Singularity: What Do We Really Know?
Directory of Open Access Journals (Sweden)
Alexey Potapov
2018-04-01
Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.
Isotopy of Morin singularities
Saji, Kentaro
2015-01-01
We define an equivalence relation called A-isotopy between finitely determined map-germs, which is a strengthened version of A-equivalence. We consider the number of A-isotopy classes of equidimensional Morin singularities, and some other well-known low-dimensional singularities. We also give an application to stable perturbations of simple equi-dimensional map-germs.
Ishii, Shihoko
2014-01-01
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...
A disposition of interpolation techniques
Knotters, M.; Heuvelink, G.B.M.
2010-01-01
A large collection of interpolation techniques is available for application in environmental research. To help environmental scientists in choosing an appropriate technique a disposition is made, based on 1) applicability in space, time and space-time, 2) quantification of accuracy of interpolated
Fuzzy linguistic model for interpolation
International Nuclear Information System (INIS)
Abbasbandy, S.; Adabitabar Firozja, M.
2007-01-01
In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method
String theory and cosmological singularities
Indian Academy of Sciences (India)
time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...
Occlusion-Aware View Interpolation
Directory of Open Access Journals (Sweden)
Ince Serdar
2008-01-01
Full Text Available Abstract View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally, luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are highly objectionable, especially if they vary with viewpoint change.
BIMOND3, Monotone Bivariate Interpolation
International Nuclear Information System (INIS)
Fritsch, F.N.; Carlson, R.E.
2001-01-01
1 - Description of program or function: BIMOND is a FORTRAN-77 subroutine for piecewise bi-cubic interpolation to data on a rectangular mesh, which reproduces the monotonousness of the data. A driver program, BIMOND1, is provided which reads data, computes the interpolating surface parameters, and evaluates the function on a mesh suitable for plotting. 2 - Method of solution: Monotonic piecewise bi-cubic Hermite interpolation is used. 3 - Restrictions on the complexity of the problem: The current version of the program can treat data which are monotone in only one of the independent variables, but cannot handle piecewise monotone data
Ling, Eric
The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.
Directory of Open Access Journals (Sweden)
Gabriel Martínez-Niconoff
2012-01-01
Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.
Directory of Open Access Journals (Sweden)
Hans Schonemann
1996-12-01
Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].
The research on NURBS adaptive interpolation technology
Zhang, Wanjun; Gao, Shanping; Zhang, Sujia; Zhang, Feng
2017-04-01
In order to solve the problems of Research on NURBS Adaptive Interpolation Technology, such as interpolation time bigger, calculation more complicated, and NURBS curve step error are not easy changed and so on. This paper proposed a study on the algorithm for NURBS adaptive interpolation method of NURBS curve and simulation. We can use NURBS adaptive interpolation that calculates (xi, yi, zi). Simulation results show that the proposed NURBS curve interpolator meets the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.
The EH Interpolation Spline and Its Approximation
Directory of Open Access Journals (Sweden)
Jin Xie
2014-01-01
Full Text Available A new interpolation spline with two parameters, called EH interpolation spline, is presented in this paper, which is the extension of the standard cubic Hermite interpolation spline, and inherits the same properties of the standard cubic Hermite interpolation spline. Given the fixed interpolation conditions, the shape of the proposed splines can be adjusted by changing the values of the parameters. Also, the introduced spline could approximate to the interpolated function better than the standard cubic Hermite interpolation spline and the quartic Hermite interpolation splines with single parameter by a new algorithm.
Singularities in Free Surface Flows
Thete, Sumeet Suresh
Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental
Numerical Approaches to Spacetime Singularities
Directory of Open Access Journals (Sweden)
Beverly K. Berger
1998-05-01
Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.
The structure of singularities in nonlocal transport equations
Energy Technology Data Exchange (ETDEWEB)
Hoz, F de la [Departamento de Matematica Aplicada, Universidad del PaIs Vasco-Euskal Herriko Unibertsitatea, Escuela Universitaria de IngenierIa Tecnica Industrial, Plaza de la Casilla 3, 48012 Bilbao (Spain); Fontelos, M A [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain)
2008-05-09
We describe the structure of solutions developing singularities in the form of cusps in finite time in nonlocal transport equations of the family: {theta}{sub t}-{delta}({theta}H({theta})){sub x}-(1-{delta})H({theta}){theta}{sub x}=0, 0<={delta}<=1, where H represents the Hilbert transform. Equations of this type appear in various contexts: evolution of vortex sheets, models for quasi-geostrophic equation and evolution equations for order parameters. Equation (1) was studied, and the existence of singularities developing in finite time was proved. The structure of such singularities was, nevertheless, not described. In this paper, we will describe the geometry of the solution in the neighborhood of the singularity once it develops and the (self-similar) way in which it is approached as t {yields} t{sub 0}, where t{sub 0} is the singular time.
Phantom cosmology without Big Rip singularity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)
2012-03-23
We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.
Singularities in FLRW spacetimes
het Lam, Huibert; Prokopec, Tomislav
2017-12-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.
Temporal interpolation in Meteosat images
DEFF Research Database (Denmark)
Larsen, Rasmus; Hansen, Johan Dore; Ersbøll, Bjarne Kjær
in such animated films are perceived as being jerky due to t he low temporal sampling rate in general and missing images in particular. In order to perform a satisfactory temporal interpolation we estimate and use the optical flow corresponding to every image in the sequenc e. The estimation of the optical flow...... a threshold between clouds and land/water. The temperature maps are estimated using observations from the image sequence itself at cloud free pixels and ground temperature measurements from a series of meteor ological observation stations in Europe. The temporal interpolation of the images is bas ed on a path...... of each pixel determined by the estimated optical flow. The performance of the algorithm is illustrated by the interpolation of a sequence of Meteosat infrared images....
Quantum transitions through cosmological singularities
Energy Technology Data Exchange (ETDEWEB)
Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good Mathematics from Bad Lenses. Rajaram Nityananda. General Article Volume 19 Issue 9 September 2014 pp 787-796. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good ... Author Affiliations. Rajaram Nityananda1. Azim Premji University, PES Institute of Technology Campus, Pixel Park, B Block, Electronics City, Hosur Road (Beside NICE Road) Bangalore – 560100 ...
Indian Academy of Sciences (India)
IAS Admin
Standard presentations of optics concentrate on ideal systems made for imaging which bring all rays from a point ... One of the standard topics we study in school is the action of a spherical mirror. Figure 1 shows a set of ..... singularities of smooth maps, and the beauty of the mathematics needed to understand them, Arnold ...
CSIR Research Space (South Africa)
Roux, FS
2013-09-01
Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...
Pseudospherical surfaces with singularities
DEFF Research Database (Denmark)
Brander, David
2017-01-01
We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...
Singularities in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept
Singular potentials in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Aguilera-Navarro, V.C. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Koo, E. Ley [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica
1995-10-01
This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs.
Singularities: the Brieskorn anniversary volume
National Research Council Canada - National Science Library
Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M
1998-01-01
...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...
Identify Foot of Continental Slope by singular spectrum and fractal singularity analysis
Li, Q.; Dehler, S.
2012-04-01
Identifying the Foot of Continental Slope (FOCS) plays a critical role in the determination of exclusive economic zone (EEZ) for coastal nations. The FOCS is defined by the Law of the Sea as the point of maximum change of the slope and it is mathematically equivalent to the point which has the maximum curvature value in its vicinity. However, curvature is the second derivative and the calculation of second derivative is a high pass and noise-prone filtering procedure. Therefore, identification of FOCS with curvature analysis methods is often uncertain and erroneous because observed bathymetry profiles or interpolated raster maps commonly include high frequency noises and artifacts, observation errors, and local sharp changes. Effective low-pass filtering methods and robust FOCS indicator algorithms are highly desirable. In this approach, nonlinear singular spectral filtering and singularity FOCS-indicator methods and software tools are developed to address this requirement. The normally used Fourier domain filtering methods decompose signals into Fourier space, composed of a fixed base that depends only on the acquisition interval of the signal; the signal is required to be stationary or at least weak stationary. In contrast to that requirement, the developed singular spectral filtering method constructs orthogonal basis functions dynamically according to different signals, and it does not require the signal to be stationary or weak stationary. Furthermore, singular spectrum analysis (SSA) can assist in designing suitable filters to carefully remove high-frequency local or noise components while reserving useful global and local components according to energy distribution. Geoscientific signals, including morphological ocean bathymetry data, often demonstrate fractal or multifractal properties. With proper definition of scales in the vicinity of a certain point and related measures, it is found that 1-dimensional bathymetry profiles and 2-dimensional raster maps
Infinitesimal Structure of Singularities
Directory of Open Access Journals (Sweden)
Michael Heller
2017-02-01
Full Text Available Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals and of logic (to the intuitionistic logic. Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.
Deformations of surface singularities
Szilárd, ágnes
2013-01-01
The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
DEFF Research Database (Denmark)
Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter
2007-01-01
We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....
INTERPOL's Surveillance Network in Curbing Transnational Terrorism
Gardeazabal, Javier; Sandler, Todd
2015-01-01
This paper investigates the role that INTERPOL surveillance – the Mobile INTERPOL Network Database (MIND) and the Fixed INTERPOL Network Database (FIND) – played in the War on Terror since its inception in 2005. MIND/FIND surveillance allows countries to screen people and documents systematically at border crossings against INTERPOL databases on terrorists, fugitives, and stolen and lost travel documents. Such documents have been used in the past by terrorists to transit borders. By applyi...
A fast rank-reduction algorithm for three-dimensional seismic data interpolation
Jia, Yongna; Yu, Siwei; Liu, Lina; Ma, Jianwei
2016-09-01
Rank-reduction methods have been successfully used for seismic data interpolation and noise attenuation. However, highly intense computation is required for singular value decomposition (SVD) in most rank-reduction methods. In this paper, we propose a simple yet efficient interpolation algorithm, which is based on the Hankel matrix, for randomly missing traces. Following the multichannel singular spectrum analysis (MSSA) technique, we first transform the seismic data into a low-rank block Hankel matrix for each frequency slice. Then, a fast orthogonal rank-one matrix pursuit (OR1MP) algorithm is employed to minimize the low-rank constraint of the block Hankel matrix. In the new algorithm, only the left and right top singular vectors are needed to be computed, thereby, avoiding the complexity of computation required for SVD. Thus, we improve the calculation efficiency significantly. Finally, we anti-average the rank-reduction block Hankel matrix and obtain the reconstructed data in the frequency domain. Numerical experiments on 3D seismic data show that the proposed interpolation algorithm provides much better performance than the traditional MSSA algorithm in computational speed, especially for large-scale data processing.
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
Further holographic investigations of big bang singularities
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Netta [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Hertog, Thomas [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Horowitz, Gary T. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)
2015-07-09
We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves N=4 super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.
Further holographic investigations of big bang singularities
Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T.
2015-07-01
We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.
Quantum healing of classical singularities in power-law spacetimes
Energy Technology Data Exchange (ETDEWEB)
Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)
2007-07-07
We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.
Boundary singularities produced by the motion of soap films.
Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I
2014-06-10
Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.
Asymptotically AdS spacetimes with a timelike Kasner singularity
Energy Technology Data Exchange (ETDEWEB)
Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-07-21
Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
Potential problems with interpolating fields
Energy Technology Data Exchange (ETDEWEB)
Birse, Michael C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom)
2017-11-15
A potential can have features that do not reflect the dynamics of the system it describes but rather arise from the choice of interpolating fields used to define it. This is illustrated using a toy model of scattering with two coupled channels. A Bethe-Salpeter amplitude is constructed which is a mixture of the waves in the two channels. The potential derived from this has a strong repulsive core, which arises from the admixture of the closed channel in the wave function and not from the dynamics of the model. (orig.)
Residues and duality for singularity categories of isolated Gorenstein singularities
Murfet, Daniel
2009-01-01
We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.
Interpolation of rational matrix functions
Ball, Joseph A; Rodman, Leiba
1990-01-01
This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...
Hybrid direct and iterative solvers for h refined grids with singularities
Paszyński, Maciej R.
2015-04-27
This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has ...
Evaluation of various interpolants available in DICE
Energy Technology Data Exchange (ETDEWEB)
Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Crozier, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-02-01
This report evaluates several interpolants implemented in the Digital Image Correlation Engine (DICe), an image correlation software package developed by Sandia. By interpolants we refer to the basis functions used to represent discrete pixel intensity data as a continuous signal. Interpolation is used to determine intensity values in an image at non - pixel locations. It is also used, in some cases, to evaluate the x and y gradients of the image intensities. Intensity gradients subsequently guide the optimization process. The goal of this report is to inform analysts as to the characteristics of each interpolant and provide guidance towards the best interpolant for a given dataset. This work also serves as an initial verification of each of the interpolants implemented.
Analysis of ECT Synchronization Performance Based on Different Interpolation Methods
Directory of Open Access Journals (Sweden)
Yang Zhixin
2014-01-01
Full Text Available There are two synchronization methods of electronic transformer in IEC60044-8 standard: impulsive synchronization and interpolation. When the impulsive synchronization method is inapplicability, the data synchronization of electronic transformer can be realized by using the interpolation method. The typical interpolation methods are piecewise linear interpolation, quadratic interpolation, cubic spline interpolation and so on. In this paper, the influences of piecewise linear interpolation, quadratic interpolation and cubic spline interpolation for the data synchronization of electronic transformer are computed, then the computational complexity, the synchronization precision, the reliability, the application range of different interpolation methods are analyzed and compared, which can serve as guide studies for practical applications.
International Nuclear Information System (INIS)
Bechlars, J.
1978-12-01
1) Integrable (L 1 ) singularities, occuring on the boundary or along the diagonal direction, and jumps along the diagonal direction do not disturb the compactness of otherwise continuous integral operator kernels. So the theory of compact operators can be applied for solving the integral equation. 2) Provided the regular parts of the kernel are sufficiently differentiable, the continuous differentiability (Cn) of the right hand side is transposed to the solution, if the kernel has no singularities or no singularities on the boundary and no jump. In the case of singularities in connection with a jump examples show, that this result is not valid in general. Therefore a second definition of smoothness has been introduced (Csup((n,α)) : continuous differentiability in the interior and 'limitation of derivatives') which can be applied in such cases and on the other side shows satisfactory error behaviour during interpolation and includes singularities from logarithms and negative powers. Provided diagonal singularities or singularities on the boundary can be asigned to Csup((n+1,α-1)) (0 2 also Csup((2,α)) (0 -2 ). This is confirmed by numerical examples. (orig./HSI) [de
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
Quantum jump from singularity to outside of black hole
Energy Technology Data Exchange (ETDEWEB)
Dündar, Furkan Semih [Physics and Mathematics Departments, Sakarya University, 54050, Sakarya (Turkey); Hajian, Kamal [School of Physics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)
2016-02-26
Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.
Differential Interpolation Effects in Free Recall
Petrusic, William M.; Jamieson, Donald G.
1978-01-01
Attempts to determine whether a sufficiently demanding and difficult interpolated task (shadowing, i.e., repeating aloud) would decrease recall for earlier-presented items as well as for more recent items. Listening to music was included as a second interpolated task. Results support views that serial position effects reflect a single process.…
Transfinite C2 interpolant over triangles
International Nuclear Information System (INIS)
Alfeld, P.; Barnhill, R.E.
1984-01-01
A transfinite C 2 interpolant on a general triangle is created. The required data are essentially C 2 , no compatibility conditions arise, and the precision set includes all polynomials of degree less than or equal to eight. The symbol manipulation language REDUCE is used to derive the scheme. The scheme is discretized to two different finite dimensional C 2 interpolants in an appendix
Interpolation of diffusion weighted imaging datasets
DEFF Research Database (Denmark)
Dyrby, Tim B; Lundell, Henrik; Burke, Mark W
2014-01-01
by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue...
An Improved Rotary Interpolation Based on FPGA
Directory of Open Access Journals (Sweden)
Mingyu Gao
2014-08-01
Full Text Available This paper presents an improved rotary interpolation algorithm, which consists of a standard curve interpolation module and a rotary process module. Compared to the conventional rotary interpolation algorithms, the proposed rotary interpolation algorithm is simpler and more efficient. The proposed algorithm was realized on a FPGA with Verilog HDL language, and simulated by the ModelSim software, and finally verified on a two-axis CNC lathe, which uses rotary ellipse and rotary parabolic as an example. According to the theoretical analysis and practical process validation, the algorithm has the following advantages: firstly, less arithmetic items is conducive for interpolation operation; and secondly the computing time is only two clock cycles of the FPGA. Simulations and actual tests have proved that the high accuracy and efficiency of the algorithm, which shows that it is highly suited for real-time applications.
Analysis of velocity planning interpolation algorithm based on NURBS curve
Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng
2017-04-01
To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.
Matching interpolation of CT faulted images based on corresponding object
International Nuclear Information System (INIS)
Chen Lingna
2005-01-01
For CT faulted images interpolation this paper presents a corresponding pint matching interpolation algorithm, which is based on object feature. Compared with the traditional interpolation algorithms, the new algorithm improves visual effect and its interpolation error. The computer experiments show that the algorithm can effectively improve the interpolation quality, especially more clear scene at the boundary. (authors)
Singular traces theory and applications
Sukochev, Fedor; Zanin, Dmitriy
2012-01-01
This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.
Dynkin graphs and quadrilateral singularities
Urabe, Tohsuke
1993-01-01
The study of hypersurface quadrilateral singularities can be reduced to the study of elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0), and therefore these notes consider, besides the topics of the title, such K3 surfaces too. The combinations of rational double points that can occur on fibers in the semi-universal deformations of quadrilateral singularities are examined, to show that the possible combinations can be described by a certain law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0) can be described by a certain law using classical Dynkin graphs appearing in the theory of semi-simple Lie groups. Further, a similar description for thecombination of singularities on plane sextic curves is given. Standard knowledge of algebraic geometry at the level of graduate students is expected. A new method based on graphs wil...
Local and nonlocal space-time singularities
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1985-01-01
The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established
Interferometric interpolation of sparse marine data
Hanafy, Sherif M.
2013-10-11
We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.
Comparison of interpolation and approximation methods for optical freeform synthesis
Voznesenskaya, Anna; Krizskiy, Pavel
2017-06-01
Interpolation and approximation methods for freeform surface synthesis are analyzed using the developed software tool. Special computer tool is developed and results of freeform surface modeling with piecewise linear interpolation, piecewise quadratic interpolation, cubic spline interpolation, Lagrange polynomial interpolation are considered. The most accurate interpolation method is recommended. Surface profiles are approximated with the square least method. The freeform systems are generated in optical design software.
Brane singularities and their avoidance
International Nuclear Information System (INIS)
Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia
2010-01-01
The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analog of perfect fluid with an arbitrary equation of state P = γρ between the 'pressure' P and the 'density' ρ, our results depend crucially on the constant fluid parameter γ. (i) For γ > -1/2, the flat brane solution suffers from a collapse singularity at a finite distance that disappears in the curved case. (ii) For γ < -1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1 < γ ≤ -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.
Singular and degenerate cauchy problems
Carroll, R.W
1976-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Traffic volume estimation using network interpolation techniques.
2013-12-01
Kriging method is a frequently used interpolation methodology in geography, which enables estimations of unknown values at : certain places with the considerations of distances among locations. When it is used in transportation field, network distanc...
Revisiting Veerman’s interpolation method
DEFF Research Database (Denmark)
Christiansen, Peter; Bay, Niels Oluf
2016-01-01
for comparison. Bulge testing and tensile testing of aluminium sheets containingelectro-chemically etched circle grids are performed to experimentally determine the forming limit of the sheet material.The forming limit is determined using (a) Veerman’s interpolation method, (b) exact Lagrangian interpolation......This article describes an investigation of Veerman’s interpolation method and its applicability for determining sheet metalformability. The theoretical foundation is established and its mathematical assumptions are clarified. An exact Lagrangianinterpolation scheme is also established...... and (c) FEsimulations. A comparison of the determined forming limits yields insignificant differences in the limit strain obtainedwith Veerman’s method or exact Lagrangian interpolation for the two sheet metal forming processes investigated. Theagreement with the FE-simulations is reasonable....
Kuu plaat : Interpol Antics. Plaadid kauplusest Lasering
2005-01-01
Heliplaatidest: "Interpol Antics", Scooter "Mind the Gap", Slide-Fifty "The Way Ahead", Psyhhoterror "Freddy, löö esimesena!", Riho Sibul "Must", Bossacucanova "Uma Batida Diferente", "Biscantorat - Sound of the spirit from Glenstal Abbey"
Interpol pidas mõttetalguid / Allan Espenberg
Espenberg, Allan
2008-01-01
Maailma kriminaalspetsialistid tulid Venemaal kokku, et valida rahvusvahelisele kriminaalpolitsei organisatsioonile Interpol uus juhtkond ning määrata kindlaks oma lähemad ja kaugemad tööülesanded
NOAA Optimum Interpolation (OI) SST V2
National Oceanic and Atmospheric Administration, Department of Commerce — The optimum interpolation (OI) sea surface temperature (SST) analysis is produced weekly on a one-degree grid. The analysis uses in situ and satellite SST's plus...
Interpolation of uniformly absolutely continuous operators
Czech Academy of Sciences Publication Activity Database
Cobos, F.; Gogatishvili, Amiran; Opic, B.; Pick, L.
2013-01-01
Roč. 286, 5-6 (2013), s. 579-599 ISSN 0025-584X R&D Projects: GA ČR GA201/08/0383 Institutional support: RVO:67985840 Keywords : uniformly absolutely continuous operators * interpolation * type of an interpolation method Subject RIV: BA - General Mathematics Impact factor: 0.658, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/ mana .201100205/full
Integration and interpolation of sampled waveforms
International Nuclear Information System (INIS)
Stearns, S.D.
1978-01-01
Methods for integrating, interpolating, and improving the signal-to-noise ratio of digitized waveforms are discussed with regard to seismic data from underground tests. The frequency-domain integration method and the digital interpolation method of Schafer and Rabiner are described and demonstrated using test data. The use of bandpass filtering for noise reduction is also demonstrated. With these methods, a backlog of seismic test data has been successfully processed
Interpolation for a subclass of H
Indian Academy of Sciences (India)
|g(zm)| ≤ c |zm − zm |, ∀m ∈ N. Thus it is natural to pose the following interpolation problem for H. ∞. : DEFINITION 4. We say that (zn) is an interpolating sequence in the weak sense for H. ∞ if given any sequence of complex numbers (λn) verifying. |λn| ≤ c ψ(zn,z. ∗ n) |zn − zn |, ∀n ∈ N,. (4) there exists a product fg ∈ H.
Calculation of electromagnetic parameter based on interpolation algorithm
International Nuclear Information System (INIS)
Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan
2015-01-01
Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment
Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI
Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.
2015-01-01
Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
International Nuclear Information System (INIS)
Chen, Yu-Zhu; Li, Wen-Du; Dai, Wu-Sheng
2017-01-01
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)
2017-12-15
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
Ambient cosmology and spacetime singularities
Antoniadis, Ignatios
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.
Singularity Theory and its Applications
Stewart, Ian; Mond, David; Montaldi, James
1991-01-01
A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.
Ambient cosmology and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)
Pan, Supriya
2018-01-01
Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.
Cachera, Marie; Le Loc'h, François
2017-08-01
The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.
Construction of Large Period Symplectic Maps by Interpolative Methods
Energy Technology Data Exchange (ETDEWEB)
Warnock, Robert; Cai, Yunhai; /SLAC; Ellison, James A.; /New Mexico U.
2009-12-17
The goal is to construct a symplectic evolution map for a large section of an accelerator, say a full turn of a large ring or a long wiggler. We start with an accurate tracking algorithm for single particles, which is allowed to be slightly non-symplectic. By tracking many particles for a distance S one acquires sufficient data to construct the mixed-variable generator of a symplectic map for evolution over S, given in terms of interpolatory functions. Two ways to find the generator are considered: (1) Find its gradient from tracking data, then the generator itself as a line integral. (2) Compute the action integral on many orbits. A test of method (1) has been made in a difficult example: a full turn map for an electron ring with strong nonlinearity near the dynamic aperture. The method succeeds at fairly large amplitudes, but there are technical difficulties near the dynamic aperture due to oddly shaped interpolation domains. For a generally applicable algorithm we propose method (2), realized with meshless interpolation methods.
MAGIC: A Tool for Combining, Interpolating, and Processing Magnetograms
Allred, Joel
2012-01-01
Transients in the solar coronal magnetic field are ultimately the source of space weather. Models which seek to track the evolution of the coronal field require magnetogram images to be used as boundary conditions. These magnetograms are obtained by numerous instruments with different cadences and resolutions. A tool is required which allows modelers to fmd all available data and use them to craft accurate and physically consistent boundary conditions for their models. We have developed a software tool, MAGIC (MAGnetogram Interpolation and Composition), to perform exactly this function. MAGIC can manage the acquisition of magneto gram data, cast it into a source-independent format, and then perform the necessary spatial and temporal interpolation to provide magnetic field values as requested onto model-defined grids. MAGIC has the ability to patch magneto grams from different sources together providing a more complete picture of the Sun's field than is possible from single magneto grams. In doing this, care must be taken so as not to introduce nonphysical current densities along the seam between magnetograms. We have designed a method which minimizes these spurious current densities. MAGIC also includes a number of post-processing tools which can provide additional information to models. For example, MAGIC includes an interface to the DA VE4VM tool which derives surface flow velocities from the time evolution of surface magnetic field. MAGIC has been developed as an application of the KAMELEON data formatting toolkit which has been developed by the CCMC.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...
Singularity: Raychaudhuri equation once again
Indian Academy of Sciences (India)
birth of the Universe in a Big Bang. Nothing could be happier and more persuasive than the observation verifying the prediction of theory. This gave rise to a general belief that singularities were inevitable in general relativity (GR) so long as the dynamics were governed by Einstein's equations and more over positive energy ...
String theory and cosmological singularities
Indian Academy of Sciences (India)
of space and time needs revision near these singularities where quantum effects of gravity become important, it is still not clear what structure could replace space ..... The dimensionful parameter μ is a Lagrange multiplier which ensures that the total number of eigenvalues is fixed. 98. Pramana – J. Phys., Vol. 69, No. 1, July ...
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Interpolation effects in tabulated interatomic potentials
Wen, M.; Whalen, S. M.; Elliott, R. S.; Tadmor, E. B.
2015-10-01
Empirical interatomic potentials are widely used in atomistic simulations due to their ability to compute the total energy and interatomic forces quickly relative to more accurate quantum calculations. The functional forms in these potentials are sometimes stored in a tabulated format, as a collection of data points (argument-value pairs), and a suitable interpolation (often spline-based) is used to obtain the function value at an arbitrary point. We explore the effect of these interpolations on the potential predictions by calculating the quasi-harmonic thermal expansion and finite-temperature elastic constant of a one-dimensional chain compared with molecular dynamics simulations. Our results show that some predictions are affected by the choice of interpolation regardless of the number of tabulated data points. Our results clearly indicate that the interpolation must be considered part of the potential definition, especially for lattice dynamics properties that depend on higher-order derivatives of the potential. This is facilitated by the Knowledgebase of Interatomic Models (KIM) project, in which both the tabulated data (‘parameterized model’) and the code that interpolates them to compute energy and forces (‘model driver’) are stored and given unique citeable identifiers. We have developed cubic and quintic spline model drivers for pair functional type models (EAM, FS, EMT) and uploaded them to the OpenKIM repository (https://openkim.org).
INTERPOL's Surveillance Network in Curbing Transnational Terrorism
Gardeazabal, Javier; Sandler, Todd
2015-01-01
Abstract This paper investigates the role that International Criminal Police Organization (INTERPOL) surveillance—the Mobile INTERPOL Network Database (MIND) and the Fixed INTERPOL Network Database (FIND)—played in the War on Terror since its inception in 2005. MIND/FIND surveillance allows countries to screen people and documents systematically at border crossings against INTERPOL databases on terrorists, fugitives, and stolen and lost travel documents. Such documents have been used in the past by terrorists to transit borders. By applying methods developed in the treatment‐effects literature, this paper establishes that countries adopting MIND/FIND experienced fewer transnational terrorist attacks than they would have had they not adopted MIND/FIND. Our estimates indicate that, on average, from 2008 to 2011, adopting and using MIND/FIND results in 0.5 fewer transnational terrorist incidents each year per 100 million people. Thus, a country like France with a population just above 64 million people in 2008 would have 0.32 fewer transnational terrorist incidents per year owing to its use of INTERPOL surveillance. This amounts to a sizeable average proportional reduction of about 30 percent.
International Nuclear Information System (INIS)
Levanony, Dana; Ori, Amos
2010-01-01
We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.
Levanony, Dana; Ori, Amos
2010-05-01
We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exemption of the INTERPOL-United States National Central Bureau (INTERPOL-USNCB) System. 16.103 Section 16.103 Judicial Administration DEPARTMENT... Privacy Act § 16.103 Exemption of the INTERPOL-United States National Central Bureau (INTERPOL-USNCB...
Lecture notes on mean curvature flow, barriers and singular perturbations
Bellettini, Giovanni
2013-01-01
The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.
Singularities and Conjugate Points in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a
Analysis of singularity in redundant manipulators
International Nuclear Information System (INIS)
Watanabe, Koichi
2000-03-01
In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)
Interpolation of quasi-Banach spaces
International Nuclear Information System (INIS)
Tabacco Vignati, A.M.
1986-01-01
This dissertation presents a method of complex interpolation for familities of quasi-Banach spaces. This method generalizes the theory for families of Banach spaces, introduced by others. Intermediate spaces in several particular cases are characterized using different approaches. The situation when all the spaces have finite dimensions is studied first. The second chapter contains the definitions and main properties of the new interpolation spaces, and an example concerning the Schatten ideals associated with a separable Hilbert space. The case of L/sup P/ spaces follows from the maximal operator theory contained in Chapter III. Also introduced is a different method of interpolation for quasi-Banach lattices of functions, and conditions are given to guarantee that the two techniques yield the same result. Finally, the last chapter contains a different, and more direct, approach to the case of Hardy spaces
Multiscale empirical interpolation for solving nonlinear PDEs
Calo, Victor M.
2014-12-01
In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.
Positivity Preserving Interpolation Using Rational Bicubic Spline
Directory of Open Access Journals (Sweden)
Samsul Ariffin Abdul Karim
2015-01-01
Full Text Available This paper discusses the positivity preserving interpolation for positive surfaces data by extending the C1 rational cubic spline interpolant of Karim and Kong to the bivariate cases. The partially blended rational bicubic spline has 12 parameters in the descriptions where 8 of them are free parameters. The sufficient conditions for the positivity are derived on every four boundary curves network on the rectangular patch. Numerical comparison with existing schemes also has been done in detail. Based on Root Mean Square Error (RMSE, our partially blended rational bicubic spline is on a par with the established methods.
Singularities formation, structure, and propagation
Eggers, J
2015-01-01
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Historical developments in singular perturbations
O'Malley, Robert E
2014-01-01
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Energy conditions and spacetime singularities
International Nuclear Information System (INIS)
Tipler, F.J.
1978-01-01
In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete
Fundamental solutions of singular SPDEs
Energy Technology Data Exchange (ETDEWEB)
Selesi, Dora, E-mail: dora@dmi.uns.ac.rs [Department of Mathematics and Informatics, University of Novi Sad (Serbia)
2011-07-15
Highlights: > Fundamental solutions of linear SPDEs are constructed. > Wick-convolution product is introduced for the first time. > Fourier transformation maps Wick-convolution into Wick product. > Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. > Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P({omega}, D) Lozenge u(x, {omega}) = A(x, {omega}) are considered, where A is a singular generalized stochastic process and P({omega}, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A Lozenge I{sup Lozenge (-1)}, where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.
Why the Singularity Cannot Happen
Modis, Theodore
2012-01-01
The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...
Fundamental solutions of singular SPDEs
International Nuclear Information System (INIS)
Selesi, Dora
2011-01-01
Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
Quantum propagation across cosmological singularities
Gielen, Steffen; Turok, Neil
2017-05-01
The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.
Flavour from partially resolved singularities
Energy Technology Data Exchange (ETDEWEB)
Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)
2006-06-15
In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.
Image coding using adaptive recursive interpolative DPCM.
Gifford, E A; Hunt, B R; Marcellin, M W
1995-01-01
A predictive image coder having minimal decoder complexity is presented. The image coder utilizes recursive interpolative DPCM in conjunction with adaptive classification, entropy-constrained trellis coded quantization, and optimal rate allocation to obtain signal-to-noise ratios (SNRs) in the range of those provided by the most advanced transform coders.
Interpolation of intermolecular potentials using Gaussian processes
Uteva, Elena; Graham, Richard S.; Wilkinson, Richard D.; Wheatley, Richard J.
2017-10-01
A procedure is proposed to produce intermolecular potential energy surfaces from limited data. The procedure involves generation of geometrical configurations using a Latin hypercube design, with a maximin criterion, based on inverse internuclear distances. Gaussian processes are used to interpolate the data, using over-specified inverse molecular distances as covariates, greatly improving the interpolation. Symmetric covariance functions are specified so that the interpolation surface obeys all relevant symmetries, reducing prediction errors. The interpolation scheme can be applied to many important molecular interactions with trivial modifications. Results are presented for three systems involving CO2, a system with a deep energy minimum (HF-HF), and a system with 48 symmetries (CH4-N2). In each case, the procedure accurately predicts an independent test set. Training this method with high-precision ab initio evaluations of the CO2-CO interaction enables a parameter-free, first-principles prediction of the CO2-CO cross virial coefficient that agrees very well with experiments.
Statistical investigation of hydraulic driven circular interpolation ...
Indian Academy of Sciences (India)
2Mechanical Education Department, Gazi University, 06500 Ankara, Turkey. 3Electrical and Electronics Engineering .... PLC (Programmable Logic Controller) set. An incremental type linear encoder with ... realize the CNC basic motions such as linear (G01) and circular interpolation (G02, G03). 2.1 CNC system. The control ...
Interpolation for a subclass of H
Indian Academy of Sciences (India)
Abstract. We introduce and characterize two types of interpolating sequences in the unit disc D of the complex plane for the class of all functions being the product of two analytic functions in D, one bounded and another regular up to the boundary of D, concretely in the Lipschitz class, and at least one of them vanishing at ...
An efficient implementation of reconfigurable interpolation rootraised ...
Indian Academy of Sciences (India)
Hence, multiplexers, shifters, and adders in the multiplier structure are reduced, which results in theimprovement of operating frequency. The number of addition operations is further reduced using programmable adders and an efficient polyphase interpolation structure is implemented to reduce the hardware cost.
Interpolation for a subclass of H∞
Indian Academy of Sciences (India)
We introduce and characterize two types of interpolating sequences in the unit disc D of the complex plane for the class of all functions being the product of two analytic functions in D , one bounded and another regular up to the boundary of D , concretely in the Lipschitz class, and at least one of them vanishing at some ...
Research on an innovative modification algorithm of NURBS curve interpolation
Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng
2017-04-01
in order to solve the problems of modification algorithm of NURBS curve interpolation, Such as interpolation time bigger, NURBS curve step error and chord error are not easy changed, and so on. A novel proposed a modification algorithm of NURBS curve interpolation. The algorithm has merits such as higher interpolation position accuracy, short processing time and so on. In this simulation, an open five-axis CNC platform based on SIEMENS 840D CNC system is developed for verifying the proposed modification algorithm of NURBS curve interpolation experimentally. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.
Mathematical models with singularities a zoo of singular creatures
Torres, Pedro J
2015-01-01
The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.
On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli
Directory of Open Access Journals (Sweden)
R. Carniel
2006-01-01
Full Text Available The well known strombolian activity at Stromboli volcano is occasionally interrupted by rarer episodes of paroxysmal activity which can lead to considerable hazard for Stromboli inhabitants and tourists. On 5 April 2003 a powerful explosion, which can be compared in size with the latest one of 1930, covered with bombs a good part of the normally tourist-accessible summit area. This explosion was not forecasted, although the island was by then effectively monitored by a dense deployment of instruments. After having tackled in a previous paper the problem of highlighting the timescale of preparation of this event, we investigate here the possibility of highlighting precursors in the volcanic tremor continuously recorded by a short period summit seismic station. We show that a promising candidate is found by examining the degree of coupling between successive singular values that result from the Singular Spectrum Analysis of the raw seismic data. We suggest therefore that possible anomalies in the time evolution of this parameter could be indicators of volcano instability to be taken into account e.g. in a bayesian eruptive scenario evaluator. Obviously, further (and possibly forward testing on other cases is needed to confirm the usefulness of this parameter.
On important precursor of singular optics (tutorial)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Differential maps, difference maps, interpolated maps, and long term prediction
International Nuclear Information System (INIS)
Talman, R.
1988-06-01
Mapping techniques may be thought to be attractive for the long term prediction of motion in accelerators, especially because a simple map can approximately represent an arbitrarily complicated lattice. The intention of this paper is to develop prejudices as to the validity of such methods by applying them to a simple, exactly solveable, example. It is shown that a numerical interpolation map, such as can be generated in the accelerator tracking program TEAPOT, predicts the evolution more accurately than an analytically derived differential map of the same order. Even so, in the presence of ''appreciable'' nonlinearity, it is shown to be impractical to achieve ''accurate'' prediction beyond some hundreds of cycles of oscillation. This suggests that the value of nonlinear maps is restricted to the parameterization of only the ''leading'' deviation from linearity. 41 refs., 6 figs
Cosmological applications of singular hypersurfaces in general relativity
Laguna-Castillo, Pablo
Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
Application of Hardy's multiquadric interpolation to hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Kansa, E.J.
1985-10-01
Hardy's multiquadric interpolation (MQI) scheme is a global, continuously differentiable interpolation method for solving scattered data interpolation problems. It is capable of producing monotonic, extremely accurate interpolating functions, integrals, and derivatives. Derivative estimates for a variety of one and two-dimensional surfaces were obtained. MQI was then applied to the spherical blast wave problem of von Neumann. The numerical solution agreed extremely well with the exact solution. 17 refs., 3 figs., 2 tabs.
The geometry of warped product singularities
Stoica, Ovidiu Cristinel
In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.
Naked singularity formation in Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Ziaie, Amir Hadi; Atazadeh, Khedmat [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Tavakoli, Yaser, E-mail: am.ziaie@mail.sbu.ac.i, E-mail: k-atazadeh@sbu.ac.i, E-mail: tavakoli@ubi.p [Departamento de Fisica, Universidade da Beira Interior, Rua Marques d' Avila e Bolama, 6200 Covilha (Portugal)
2010-04-07
Gravitational collapse of the Brans-Dicke scalar field with non-zero potential in the presence of matter fluid obeying the barotropic equation of state, p = wrho, is studied. Utilizing the concept of the expansion parameter, it is seen that the cosmic censorship conjecture may be violated for w=-1/3 and w=-2/3 which correspond to the cosmic string and domain wall, respectively. We have shown that physically, it is the rate of collapse that governs the formation of a black hole or a naked singularity as the final fate of dynamical evolution and only for these two cases can the singularity be naked as the collapse end state. Also the weak energy condition is satisfied by the collapsing configuration.
Exact solutions and singularities in string theory
International Nuclear Information System (INIS)
Horowitz, G.T.; Tseytlin, A.A.
1994-01-01
We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail
DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH
Beni Utomo
2012-01-01
Dekomposisi Nilai Singular atau Singular Value Decomposition (SVD)merupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA).PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan ma...
Parametric Integration by Magic Point Empirical Interpolation
Gaß, Maximilian; Glau, Kathrin
2015-01-01
We derive analyticity criteria for explicit error bounds and an exponential rate of convergence of the magic point empirical interpolation method introduced by Barrault et al. (2004). Furthermore, we investigate its application to parametric integration. We find that the method is well-suited to Fourier transforms and has a wide range of applications in such diverse fields as probability and statistics, signal and image processing, physics, chemistry and mathematical finance. To illustrate th...
Parametric Integration by Magic Point Empirical Interpolation
Gaß, M., Glau, K.
2016-01-01
We derive analyticity criteria for explicit error bounds and an exponential rate of convergence of the magic point empirical interpolation method introduced by Barrault et al. (2004). Furthermore, we investigate its application to parametric integration. We find that the method is well-suited to Fourier transforms and has a wide range of applications in such diverse fields as probability and statistics, signal and image processing, physics, chemistry and mathematical finance. To illustrate th...
Some splines produced by smooth interpolation
Czech Academy of Sciences Publication Activity Database
Segeth, Karel
2018-01-01
Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www. science direct.com/ science /article/pii/S0096300317302746?via%3Dihub
Some splines produced by smooth interpolation
Czech Academy of Sciences Publication Activity Database
Segeth, Karel
2018-01-01
Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300317302746?via%3Dihub
Box graphs and singular fibers
International Nuclear Information System (INIS)
Hayashi, Hirotaka; Lawrie, Craig; Morrison, David R.; Schäfer-Nameki, Sakura
2014-01-01
We determine the higher codimension fibers of elliptically fibered Calabi-Yau fourfolds with section by studying the three-dimensional N=2 supersymmetric gauge theory with matter which describes the low energy effective theory of M-theory compactified on the associated Weierstrass model, a singular model of the fourfold. Each phase of the Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass model, and we show that these have a concise description in terms of decorated box graphs based on the representation graph of the matter multiplets, or alternatively by a class of convex paths on said graph. Transitions between phases have a simple interpretation as “flopping' of the path, and in the geometry correspond to actual flop transitions. This description of the phases enables us to enumerate and determine the entire network between them, with various matter representations for all reductive Lie groups. Furthermore, we observe that each network of phases carries the structure of a (quasi-)minuscule representation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis determines the generators of the cone of effective curves as well as the network of flop transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the box graphs we determine all fiber types in codimensions two and three, and we find new, non-Kodaira, fiber types for E 6 , E 7 and E 8
Delimiting areas of endemism through kernel interpolation.
Oliveira, Ubirajara; Brescovit, Antonio D; Santos, Adalberto J
2015-01-01
We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.
Delimiting areas of endemism through kernel interpolation.
Directory of Open Access Journals (Sweden)
Ubirajara Oliveira
Full Text Available We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE, based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.
Naked singularity, firewall, and Hawking radiation.
Zhang, Hongsheng
2017-06-21
Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.
Spacetime averaging of exotic singularity universes
International Nuclear Information System (INIS)
Dabrowski, Mariusz P.
2011-01-01
Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.
Dissipative control for singular impulsive dynamical systems
Directory of Open Access Journals (Sweden)
Li Yang
2012-04-01
Full Text Available The aim of this work is to study the dissipative control problem for singular impulsive dynamical systems. We start by introducing the impulse to the singular systems, and give the definition of the dissipation for singular impulsive dynamical systems. Then we discuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient and necessary conditions for dissipation of these systems by solving some linear matrix inequalities (LMIs. By using this method, we design a state feedback controller to make the closed-loop system dissipative. At last, we testify the feasibility of the method by a numerical example.
On local invariants of singular symplectic forms
Domitrz, Wojciech
2017-04-01
We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.
More on the initial singularity problem in gravity's rainbow cosmology
Khodadi, M.; Nozari, K.; Sepangi, H. R.
2016-12-01
Using a one-dimensional minisuperspace model with a dimensionless ratio E/E_{Pl}, we study the initial singularity problem at the quantum level for the closed rainbow cosmology with a homogeneous, isotropic classical space-time background. We derive the classical Hamiltonian within the framework of Schutz's formalism for an ideal fluid with a cosmological constant. We characterize the behavior of the system at the early stages of the universe evolution through analyzing the relevant shapes for the potential sector of the classical Hamiltonian for various matter sources, each separately modified by two rainbow functions. We show that for both rainbow universe models presented here, there is the possibility of eliminating the initial singularity by forming a potential barrier and static universe for a non-zero value of the scale factor. We investigate their quantum stability and show that for an energy-dependent space-time geometry with energies comparable with the Planck energy, the non-zero value of the scale factor may be stable. It is shown that under certain constraints the rainbow universe model filled with an exotic matter as a domain wall fluid plus a cosmological constant can result in a non-singular harmonic universe. In addition, we demonstrate that the harmonically oscillating universe with respect to the scale factor is sensitive to E/E_{Pl} and that at high energies it may become stable quantum mechanically. Through a Schrödinger-Wheeler-De Witt equation obtained from the quantization of the classical Hamiltonian, we also extract the wave packet of the universe with a focus on the early stages of the evolution. The resulting wave packet supports the existence of a bouncing non-singular universe within the context of gravity's rainbow proposal.
Image Interpolation Scheme based on SVM and Improved PSO
Jia, X. F.; Zhao, B. T.; Liu, X. X.; Song, H. P.
2018-01-01
In order to obtain visually pleasing images, a support vector machines (SVM) based interpolation scheme is proposed, in which the improved particle swarm optimization is applied to support vector machine parameters optimization. Training samples are constructed by the pixels around the pixel to be interpolated. Then the support vector machine with optimal parameters is trained using training samples. After the training, we can get the interpolation model, which can be employed to estimate the unknown pixel. Experimental result show that the interpolated images get improvement PNSR compared with traditional interpolation methods, which is agrees with the subjective quality.
Spline interpolations besides wood model widely used in lactation
Korkmaz, Mehmet
2017-04-01
In this study, for lactation curve, spline interpolations, alternative modeling passing through exactly all data points with respect to widely used Wood model applied to lactation data were be discussed. These models are linear spline, quadratic spline and cubic spline. The observed and estimated values according to spline interpolations and Wood model were given with their Error Sum of Squares and also the lactation curves of spline interpolations and widely used Wood model were shown on the same graph. Thus, the differences have been observed. The estimates for some intermediate values were done by using spline interpolations and Wood model. By using spline interpolations, the estimates of intermediate values could be made more precise. Furthermore, by using spline interpolations, the predicted values for missing or incorrect observation were very successful according to the values of Wood model. By using spline interpolations, new ideas and interpretations in addition to the information of the well-known classical analysis were shown to the investigators.
Research progress and hotspot analysis of spatial interpolation
Jia, Li-juan; Zheng, Xin-qi; Miao, Jin-li
2018-02-01
In this paper, the literatures related to spatial interpolation between 1982 and 2017, which are included in the Web of Science core database, are used as data sources, and the visualization analysis is carried out according to the co-country network, co-category network, co-citation network, keywords co-occurrence network. It is found that spatial interpolation has experienced three stages: slow development, steady development and rapid development; The cross effect between 11 clustering groups, the main convergence of spatial interpolation theory research, the practical application and case study of spatial interpolation and research on the accuracy and efficiency of spatial interpolation. Finding the optimal spatial interpolation is the frontier and hot spot of the research. Spatial interpolation research has formed a theoretical basis and research system framework, interdisciplinary strong, is widely used in various fields.
Directory of Open Access Journals (Sweden)
Elvio Alccinelli
2001-07-01
Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.
Vector fields on singular varieties
Brasselet, Jean-Paul; Suwa, Tatsuo
2009-01-01
Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.
Cold atoms in singular potentials
International Nuclear Information System (INIS)
Denschlag, J. P.
1998-09-01
We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)
Singular multiparameter dynamic equations with distributional ...
African Journals Online (AJOL)
In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...
Building Reproducible Science with Singularity Containers
CERN. Geneva
2018-01-01
Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...
Spectral analysis for differential operators with singularities
Directory of Open Access Journals (Sweden)
Vjacheslav Anatoljevich Yurko
2004-01-01
Full Text Available Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.
Timelike Constant Mean Curvature Surfaces with Singularities
DEFF Research Database (Denmark)
Brander, David; Svensson, Martin
2014-01-01
We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...
Reasons for singularity in robot teleoperation
DEFF Research Database (Denmark)
Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth
2014-01-01
In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and delay...
On the genericity of spacetime singularities
Indian Academy of Sciences (India)
in terms of the incompleteness of non-space-like geodesics in spacetime. It is possible that such ... outside. The above discussion does not imply the absence of singularity-free solutions to Einstein's equations. ..... spherical collapse also turns out to be a stable feature as implied by the singularity theorems discussed above.
Nietzsche, immortality, singularity and eternal recurrence | Olivier ...
African Journals Online (AJOL)
Moreover, once anything has existed, it is in a certain sense, for Nietzsche, necessary despite its temporal singularity. Therefore, to be able to rise to the task of affirming certain actions or experiences in one's own life, bestows on it not merely this kind of necessary singularity, but what he thought of as 'eternal recurrence' –
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
Singularity is the Future of ICT Research
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2014-06-01
Jun 1, 2014 ... tech systems, and how in the near future. Artificial Intelligence may impact our lives, AI, Robotics, nanotechnology, mechatronics are collaborative agents of technological singularity. The singularity is already here! Think of modern houses now remotely controlled from far distances, think of e-commerce and.
DEFF Research Database (Denmark)
Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel
2008-01-01
An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...
Singularity: Scientific containers for mobility of compute.
Directory of Open Access Journals (Sweden)
Gregory M Kurtzer
Full Text Available Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.
Biclustering via Sparse Singular Value Decomposition
Lee, Mihee
2010-02-16
Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.
Interpolating of climate data using R
Reinhardt, Katja
2017-04-01
Interpolation methods are used in many different geoscientific areas, such as soil physics, climatology and meteorology. Thereby, unknown values are calculated by using statistical calculation approaches applied on known values. So far, the majority of climatologists have been using computer languages, such as FORTRAN or C++, but there is also an increasing number of climate scientists using R for data processing and visualization. Most of them, however, are still working with arrays and vector based data which is often associated with complex R code structures. For the presented study, I have decided to convert the climate data into geodata and to perform the whole data processing using the raster package, gstat and similar packages, providing a much more comfortable way for data handling. A central goal of my approach is to create an easy to use, powerful and fast R script, implementing the entire geodata processing and visualization into a single and fully automated R based procedure, which allows avoiding the necessity of using other software packages, such as ArcGIS or QGIS. Thus, large amount of data with recurrent process sequences can be processed. The aim of the presented study, which is located in western Central Asia, is to interpolate wind data based on the European reanalysis data Era-Interim, which are available as raster data with a resolution of 0.75˚ x 0.75˚ , to a finer grid. Therefore, various interpolation methods are used: inverse distance weighting, the geostatistical methods ordinary kriging and regression kriging, generalized additve model and the machine learning algorithms support vector machine and neural networks. Besides the first two mentioned methods, the methods are used with influencing factors, e.g. geopotential and topography.
Nuclear data banks generation by interpolation
International Nuclear Information System (INIS)
Castillo M, J. A.
1999-01-01
Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks
Generation of nuclear data banks through interpolation
International Nuclear Information System (INIS)
Castillo M, J.A.
1999-01-01
Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, used to generate Nuclear Data Banks employing bi cubic polynomial interpolation, taking as independent variables the uranium and gadolinium percents. Two proposals were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed to obtain the interpolating polynomial and later, the corresponding linear equations system. In the solution of this system the Gaussian elimination method with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validations test, a comparison was made between the values obtained with INTPOLBI and INTERTEG (created at the Instituto de Investigaciones Electricas with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks. (Author)
Calculation of reactivity without Lagrange interpolation
International Nuclear Information System (INIS)
Suescun D, D.; Figueroa J, J. H.; Rodriguez R, K. C.; Villada P, J. P.
2015-09-01
A new method to solve numerically the inverse equation of punctual kinetics without using Lagrange interpolating polynomial is formulated; this method uses a polynomial approximation with N points based on a process of recurrence for simulating different forms of nuclear power. The results show a reliable accuracy. Furthermore, the method proposed here is suitable for real-time measurements of reactivity, with step sizes of calculations greater that Δt = 0.3 s; due to its precision can be used to implement a digital meter of reactivity in real time. (Author)
Topics in multivariate approximation and interpolation
Jetter, Kurt
2005-01-01
This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for gr
``All that Matter ... in One Big Bang ...'', &Other Cosmological Singularities
Elizalde, Emilio
2018-02-01
The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singularity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, $R^2$, $f(R)$, and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.
32 CFR 1602.22 - Singular and plural.
2010-07-01
....22 Singular and plural. Words importing the singular number shall include the plural number, and words importing the plural number shall include the singular, except where the context clearly indicates...
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Directory of Open Access Journals (Sweden)
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
Tachyon cosmology, supernovae data and the Big Brake singularity
Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Yu, Kamenshchik A.
2009-01-01
We compare the existing observational data on type Ia Supernovae with the evolutions of the universe predicted by a one-parameter family of tachyon models which we have introduced recently in paper \\cite{we-tach}. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the universe ends up in a new type of soft cosmological singularity dubbed Big Brake. This opens up yet another scenario for the future history of the universe be...
Minimal solution for inconsistent singular fuzzy matrix equations
Directory of Open Access Journals (Sweden)
M. Nikuie
2013-10-01
Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.
Air Quality Assessment Using Interpolation Technique
Directory of Open Access Journals (Sweden)
Awkash Kumar
2016-07-01
Full Text Available Air pollution is increasing rapidly in almost all cities around the world due to increase in population. Mumbai city in India is one of the mega cities where air quality is deteriorating at a very rapid rate. Air quality monitoring stations have been installed in the city to regulate air pollution control strategies to reduce the air pollution level. In this paper, air quality assessment has been carried out over the sample region using interpolation techniques. The technique Inverse Distance Weighting (IDW of Geographical Information System (GIS has been used to perform interpolation with the help of concentration data on air quality at three locations of Mumbai for the year 2008. The classification was done for the spatial and temporal variation in air quality levels for Mumbai region. The seasonal and annual variations of air quality levels for SO2, NOx and SPM (Suspended Particulate Matter have been focused in this study. Results show that SPM concentration always exceeded the permissible limit of National Ambient Air Quality Standard. Also, seasonal trends of pollutant SPM was low in monsoon due rain fall. The finding of this study will help to formulate control strategies for rational management of air pollution and can be used for many other regions.
Size-Dictionary Interpolation for Robot's Adjustment
Directory of Open Access Journals (Sweden)
Morteza eDaneshmand
2015-05-01
Full Text Available This paper describes the classification and size-dictionary interpolation of the three-dimensional data obtained by a laser scanner to be used in a realistic virtual fitting room, where automatic activation of the chosen mannequin robot, while several mannequin robots of different genders and sizes are simultaneously connected to the same computer, is also considered to make it mimic the body shapes and sizes instantly. The classification process consists of two layers, dealing, respectively, with gender and size. The interpolation procedure tries to find out which set of the positions of the biologically-inspired actuators for activation of the mannequin robots could lead to the closest possible resemblance of the shape of the body of the person having been scanned, through linearly mapping the distances between the subsequent size-templates and the corresponding position set of the bioengineered actuators, and subsequently, calculating the control measures that could maintain the same distance proportions, where minimizing the Euclidean distance between the size-dictionary template vectors and that of the desired body sizes determines the mathematical description. In this research work, the experimental results of the implementation of the proposed method on Fits.me's mannequin robots are visually illustrated, and explanation of the remaining steps towards completion of the whole realistic online fitting package is provided.
Monotonicity preserving splines using rational cubic Timmer interpolation
Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md
2017-08-01
In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.
Experimental Performance of Spatial Interpolators for Ground Water Salinity
International Nuclear Information System (INIS)
Alsaaran, Nasser A.
2005-01-01
Mapping groundwater qualities requires either sampling on a fine regular grid or spatial interpolation. The latter is usually used because the cost of the former is prohibitive. Experimental performance of five spatial interpolators for groundwater salinity was investigated using cross validation. The methods included ordinary kriging (OK), lognormal kriging, inverse distance, inverse squared distance and inverse cubed distance. The results show that OK outperformed other interpolators in terms of bias. Interpolation accuracy based on mean absolute difference criterion is relatively high for all interpolators with small difference among them. While three-dimensional surfaces produced by all inverse distance based procedures are dominated by isolated peaks and pits, surfaces produced by kriging are free from localized pits and peaks, and show areas of low groundwater salinity as elongated basins and areas of high salinity as ridges, which make regional trends easy to identify. Considering all criteria, OK was judged to be the most suitable spatial interpolator for groundwater salinity in this study. (author)
Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation
Directory of Open Access Journals (Sweden)
Hezerul Abdul Karim
2004-09-01
Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.
Singularities and Entropy in Bulk Viscosity Dark Energy Model
International Nuclear Information System (INIS)
Meng Xinhe; Dou Xu
2011-01-01
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)
Topology of singular fibers of differentiable maps
Saeki, Osamu
2004-01-01
The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.
Quantization function for attractive, singular potential tails
International Nuclear Information System (INIS)
Raab, Patrick N.
2010-01-01
The interaction between atoms and molecules with each other are deep potential wells with attractive, singular tails. Bound state energies are determined by a quantization function according to a simple quantization rule. This function is dominantly determined by the singular potential tail for near-threshold states. General expressions for the low- and high-energy contributions of the singular potential tail to the quantization function, as well as the connection to the scattering length are presented in two and three dimensions. Precise analytical expressions for the quantization function are determined for the case of potential tails proportional to -1/r 4 and -1/r 6 for three dimensions. (orig.)
DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH
Directory of Open Access Journals (Sweden)
Beni Utomo
2012-11-01
Full Text Available Dekomposisi Nilai Singular atau Singular Value Decomposition (SVDmerupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA.PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan matriks U dan Vmemuat eigenvektor yang sudah terurut dari nilai variansi terbesar ke nilai variansiterkecilnya. Variansi terbesar memiliki arti eigenvektor menangkap ciri-ciri yangpaling banyak berubah. Sifat inilah yang dipakai untuk membentuk eigenface.
Cirant, Marco
2016-11-22
Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.
Data interpolation using rational cubic Ball spline with three parameters
Karim, Samsul Ariffin Abdul
2016-11-01
Data interpolation is an important task for scientific visualization. This research introduces new rational cubic Ball spline scheme with three parameters. The rational cubic Ball will be used for data interpolation with or without true derivative values. Error estimation show that the proposed scheme works well and is a very good interpolant to approximate the function. All graphical examples are presented by using Mathematica software.
Systems and methods for interpolation-based dynamic programming
Rockwood, Alyn
2013-01-03
Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.
An Evaluation of Interpol's Cooperative-Based Counterterrorism Linkages
Todd Sandler; Daniel G. Arce; Walter Enders
2011-01-01
This paper evaluates the payback from efforts of the International Criminal Police Organization (Interpol) to coordinate proactive counterterrorism measures by its member countries to arrest terrorists and weaken their ability to conduct operations. We use Interpol arrest data and data on utilization of Interpol resources by member countries to compute counterfactual benefit measurements, which, when matched with costs, yield benefit-cost ratios. The average of these ratios is approximately 2...
Distance-two interpolation for parallel algebraic multigrid
International Nuclear Information System (INIS)
Sterck, H de; Falgout, R D; Nolting, J W; Yang, U M
2007-01-01
In this paper we study the use of long distance interpolation methods with the low complexity coarsening algorithm PMIS. AMG performance and scalability is compared for classical as well as long distance interpolation methods on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers
Indeterminacy of interpolation problems in the Stieltjes class
International Nuclear Information System (INIS)
Dyukarev, Yu M
2005-01-01
The concept of ordered families of interpolation problems in the Stieltjes class is introduced. Ordered families are used for the introduction of the concept of limiting interpolation problem in the same class. The limiting interpolation problem is proved to be soluble. A criterion for the complete indeterminacy of a limiting interpolation problem in the Stieltjes class is obtained. All solutions in the completely indeterminate case are described in terms of linear fractional transformations. General constructions are illustrated by the examples of the Stieltjes moment problem and the Nevanlinna-Pick problem in the Stieltjes class.
Algunas aclaraciones acerca del conocimiento del singular.
Directory of Open Access Journals (Sweden)
Carlos Llano Cifuentes
2013-11-01
Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.
Topological Signals of Singularities in Ricci Flow
Directory of Open Access Journals (Sweden)
Paul M. Alsing
2017-08-01
Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.
Approximate Uniqueness Estimates for Singular Correlation Matrices.
Finkbeiner, C. T.; Tucker, L. R.
1982-01-01
The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)
Stable computation of generalized singular values
Energy Technology Data Exchange (ETDEWEB)
Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)
1996-12-31
We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.
Finite conformal quantum gravity and spacetime singularities
Modesto, Leonardo; Rachwał, Lesław
2017-12-01
We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.
Electronic structure interpolation via atomic orbitals
Energy Technology Data Exchange (ETDEWEB)
Chen Mohan; Guo, G-C; He Lixin, E-mail: helx@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026 (China)
2011-08-17
We present an efficient scheme for accurate electronic structure interpolation based on systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse k-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals algorithms. We find that usually 16-25 orbitals per atom can give an accuracy of about 10 meV compared to the full ab initio calculations, and the accuracy can be systematically improved by using more atomic orbitals. The scheme is easy to implement and robust, and works equally well for metallic systems and systems with complicated band structures. Furthermore, the atomic orbitals have much better transferability than Shirley's basis and Wannier functions, which is very useful for perturbation calculations.
Pravda-Starov, Karel
2017-01-01
We study evolution equations associated to time-dependent dissipative non-selfadjoint quadratic operators. We prove that the solution operators to these non-autonomous evolution equations are given by Fourier integral operators whose kernels are Gaussian tempered distributions associated to non-negative complex symplectic linear transformations, and we derive a generalized Mehler formula for their Weyl symbols. Some applications to the study of the propagation of Gabor singularities (characte...
Geometric Singularities of the Stokes Problem
Directory of Open Access Journals (Sweden)
Nejmeddine Chorfi
2014-01-01
Full Text Available When the domain is a polygon of ℝ2, the solution of a partial differential equation is written as a sum of a regular part and a linear combination of singular functions. The purpose of this paper is to present explicitly the singular functions of Stokes problem. We prove the Kondratiev method in the case of the crack. We finish by giving some regularity results.
Singularity analysis, Hadamard products, and tree recurrences
Fill, James Allen; Flajolet, Philippe; Kapur, Nevin
2005-02-01
We present a toolbox for extracting asymptotic information on the coefficients of combinatorial generating functions. This toolbox notably includes a treatment of the effect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequence, it becomes possible to unify the analysis of a number of divide-and-conquer algorithms, or equivalently random tree models, including several classical methods for sorting, searching, and dynamically managing equivalence relations.
The role of interpolation in PVC-induced cardiomyopathy.
Olgun, Hilal; Yokokawa, Miki; Baman, Timir; Kim, Hyungjin Myra; Armstrong, William; Good, Eric; Chugh, Aman; Pelosi, Frank; Crawford, Thomas; Oral, Hakan; Morady, Fred; Bogun, Frank
2011-07-01
Frequent premature ventricular complexes (PVCs) can cause cardiomyopathy. The mechanism is not known and may be multifactorial. This study assessed the role of PVC interpolation in PVC-induced cardiomyopathy. In 51 consecutive patients (14 women, age 49 ± 15 years, ejection fraction (EF) 0.49 ± 0.14) with frequent PVCs, 24-hour Holter recordings were performed. The amount of interpolation was determined and correlated with the presence of PVC-induced cardiomyopathy. In addition, parameters measured during an electrophysiology study were correlated with the Holter findings. Fourteen of the 21 patients (67%) with cardiomyopathy had interpolated PVCs, compared with only 6 of 30 patients (20%) without PVC-induced cardiomyopathy (P PVC burden than patients without interpolation (28% ± 12% vs. 15% ± 15%; P = .002). The burden of interpolated PVCs correlated with the presence of PVC cardiomyopathy (21% ± 30% vs. 4% ± 13%; P = .008). Both PVC burden and interpolation independently predicted PVC-induced cardiomyopathy (odds ratio 1.07, 95% confidence interval 1.01 to 1.13, P = .02; and odds ratio 4.43, 95% confidence interval 1.06 to 18.48, P = .04, respectively). The presence of ventriculoatrial block at a ventricular pacing cycle length of 600 ms correlated with the presence of interpolation (P = .004). Patients with interpolation had a longer mean ventriculoatrial block cycle length than patients without interpolated PVCs (520 ± 110 ms vs. 394 ± 92 ms; P = .01). The presence of interpolated PVCs was predictive of the presence of PVC cardiomyopathy. Interpolation may play an important role in the generation of PVC-induced cardiomyopathy. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Shape Preserving Interpolation Using C2 Rational Cubic Spline
Directory of Open Access Journals (Sweden)
Samsul Ariffin Abdul Karim
2016-01-01
Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.
Visualizing and Understanding the Components of Lagrange and Newton Interpolation
Yang, Yajun; Gordon, Sheldon P.
2016-01-01
This article takes a close look at Lagrange and Newton interpolation by graphically examining the component functions of each of these formulas. Although interpolation methods are often considered simply to be computational procedures, we demonstrate how the components of the polynomial terms in these formulas provide insight into where these…
An efficient interpolation filter VLSI architecture for HEVC standard
Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang
2015-12-01
The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
We discuss the viability of using interpolating gauges to deﬁne the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition deﬁning term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...
Algorithm for applying interpolation in digital signal processing ...
African Journals Online (AJOL)
Software-defined radios and test equipment use a variety of digital signal processing techniques to improve system performance. Interpolation is one technique that can be used to increase the sample rate of digital signals. In this work, we illustrated interpolation in the time domain by writing appropriate codes using ...
Interpolation of fuzzy data | Khodaparast | Journal of Fundamental ...
African Journals Online (AJOL)
In the current world and in the field of science and technology, interpolation issues are also of a fuzzy type, it has many scientific applications in developmental work, medical issues, imaging, engineering software and graphics. Therefore, in this article we intend to investigate Interpolation of fuzzy data in order to apply fuzzy ...
Selection of an Appropriate Interpolation Method for Rainfall Data In ...
African Journals Online (AJOL)
There are many interpolation methods in use with various limitations and likelihood of errors. This study applied five interpolation methods to existing rainfall data in central Nigeria to determine the most appropriate method that returned the best prediction of rainfall at an ungauged site. The methods include the inverse ...
Optimal interpolation schemes for particle tracking in turbulence
van Hinsberg, M.A.T.; ten Thije Boonkkamp, J.H.M.; Toschi, F.; Clercx, H.J.H.
2013-01-01
An important aspect in numerical simulations of particle-laden turbulent flows is the interpolation of the flow field needed for the computation of the Lagrangian trajectories. The accuracy of the interpolation method has direct consequences for the acceleration spectrum of the fluid particles and
EFEKTIFITAS PERANAN INTERPOL DALAM MENANGULANGI JARINGAN NARKOTIKA DI INDONESIA
RICHARD LIU, VINSENSIUS
2013-01-01
Penelitian ini bertujuan untuk mengetahui dan menjelaskan efektifitas peran Interpol didalam penanggulangan jaringan narkotika di Indonesia, Startegi Interpol dalam menangani jaringan narkotika internasional di Indonesia, dan sikap Pemerintah Indonesia dalam menanggulangi jaringan narkotika Internasional. Penulis membatasi penelitian ini dalam kurun waktu 3 tahun yaitu 2009-2011 Tipe penelitian yang penulis gunakan untuk mencapai tujuan penelitian adalah tipe penelitian deskriptif. Tekn...
A FRACTAL-BASED STOCHASTIC INTERPOLATION SCHEME IN SUBSURFACE HYDROLOGY
The need for a realistic and rational method for interpolating sparse data sets is widespread. Real porosity and hydraulic conductivity data do not vary smoothly over space, so an interpolation scheme that preserves irregularity is desirable. Such a scheme based on the properties...
Input variable selection for interpolating high-resolution climate ...
African Journals Online (AJOL)
Although the primary input data of climate interpolations are usually meteorological data, other related (independent) variables are frequently incorporated in the interpolation process. One such variable is elevation, which is known to have a strong influence on climate. This research investigates the potential of 4 additional ...
Steady State Stokes Flow Interpolation for Fluid Control
DEFF Research Database (Denmark)
Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert
2012-01-01
Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...
The Use of Wavelets in Image Interpolation: Possibilities and Limitations
Directory of Open Access Journals (Sweden)
M. Grgic
2007-12-01
Full Text Available Discrete wavelet transform (DWT can be used in various applications, such as image compression and coding. In this paper we examine how DWT can be used in image interpolation. Afterwards proposed method is compared with two other traditional interpolation methods. For the case of magnified image achieved by interpolation, original image is unknown and there is no perfect way to judge the magnification quality. Common approach is to start with an original image, generate a lower resolution version of original image by downscaling, and then use different interpolation methods to magnify low resolution image. After that original and magnified images are compared to evaluate difference between them using different picture quality measures. Our results show that comparison of image interpolation methods depends on downscaling technique, image contents and quality metric. For fair comparison all these parameters need to be considered.
Interpolation from Grid Lines: Linear, Transfinite and Weighted Method
DEFF Research Database (Denmark)
Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen
2017-01-01
When two sets of line scans are acquired orthogonal to each other, intensity values are known along the lines of a grid. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid...... of transfinite method close to grid lines, and the stability of the linear method. We perform an extensive evaluation of the three interpolation methods across a range of upsampling rates for two data sets. Depending on the upsampling rate, we show significant difference in the performance of the three methods....... We find that the transfinite interpolation works well for small upsampling rates and the proposed weighted interpolation method performs very well for all relevant upsampling rates....
Scalable Intersample Interpolation Architecture for High-channel-count Beamformers
DEFF Research Database (Denmark)
Tomov, Borislav Gueorguiev; Nikolov, Svetoslav I; Jensen, Jørgen Arendt
2011-01-01
Modern ultrasound scanners utilize digital beamformers that operate on sampled and quantized echo signals. Timing precision is of essence for achieving good focusing. The direct way to achieve it is through the use of high sampling rates, but that is not economical, so interpolation between echo...... samples is used. This paper presents a beamformer architecture that combines a band-pass filter-based interpolation algorithm with the dynamic delay-and-sum focusing of a digital beamformer. The reduction in the number of multiplications relative to a linear perchannel interpolation and band-pass per......-channel interpolation architecture is respectively 58 % and 75 % beamformer for a 256-channel beamformer using 4-tap filters. The approach allows building high channel count beamformers while maintaining high image quality due to the use of sophisticated intersample interpolation....
Interpolator for numerically controlled machine tools
Bowers, Gary L.; Davenport, Clyde M.; Stephens, Albert E.
1976-01-01
A digital differential analyzer circuit is provided that depending on the embodiment chosen can carry out linear, parabolic, circular or cubic interpolation. In the embodiment for parabolic interpolations, the circuit provides pulse trains for the X and Y slide motors of a two-axis machine to effect tool motion along a parabolic path. The pulse trains are generated by the circuit in such a way that parabolic tool motion is obtained from information contained in only one block of binary input data. A part contour may be approximated by one or more parabolic arcs. Acceleration and initial velocity values from a data block are set in fixed bit size registers for each axis separately but simultaneously and the values are integrated to obtain the movement along the respective axis as a function of time. Integration is performed by continual addition at a specified rate of an integrand value stored in one register to the remainder temporarily stored in another identical size register. Overflows from the addition process are indicative of the integral. The overflow output pulses from the second integration may be applied to motors which position the respective machine slides according to a parabolic motion in time to produce a parabolic machine tool motion in space. An additional register for each axis is provided in the circuit to allow "floating" of the radix points of the integrand registers and the velocity increment to improve position accuracy and to reduce errors encountered when the acceleration integrand magnitudes are small when compared to the velocity integrands. A divider circuit is provided in the output of the circuit to smooth the output pulse spacing and prevent motor stall, because the overflow pulses produced in the binary addition process are spaced unevenly in time. The divider has the effect of passing only every nth motor drive pulse, with n being specifiable. The circuit inputs (integrands, rates, etc.) are scaled to give exactly n times the
Stability of stationary states of non-local equations with singular interaction potentials
Fellner, Klemens
2011-04-01
We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.
Shocks and finite-time singularities in Hele-Shaw flow
Energy Technology Data Exchange (ETDEWEB)
Teodorescu, Razvan [Los Alamos National Laboratory; Wiegmann, P [UNIV OF MONTREAL; Lee, S-y [UNIV OF CHICAGO
2008-01-01
Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most generic (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.
Functions with disconnected spectrum sampling, interpolation, translates
Olevskii, Alexander M
2016-01-01
The classical sampling problem is to reconstruct entire functions with given spectrum S from their values on a discrete set L. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets L the exponential system with frequencies in L forms a frame in the space L^2(S). The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in S and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum S and the discrete set L play a crucial role in these problems. After an elementary introduction, the authors give a new presentation of classical results due to Beurling, Kahane, and Landau. The main part of the book focuses on recent progress in the area, such as construction of universal sampling sets, high-dimensional and non-analytic phenomena. The reader will see how methods of harmonic and complex analysis interplay with various important concepts in different areas, ...
Spatiotemporal video deinterlacing using control grid interpolation
Venkatesan, Ragav; Zwart, Christine M.; Frakes, David H.; Li, Baoxin
2015-03-01
With the advent of progressive format display and broadcast technologies, video deinterlacing has become an important video-processing technique. Numerous approaches exist in the literature to accomplish deinterlacing. While most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies and even dedicated video-processing hardware in display units has allowed higher quality but also more computationally intense deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in video to select different deinterlacing methods for various spatiotemporal regions. We introduce a family of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on peak signal-to-noise ratio, other visual quality metrics, and simple perception-based subjective evaluations conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on the visual performance.
Rainfall variation by geostatistical interpolation method
Directory of Open Access Journals (Sweden)
Glauber Epifanio Loureiro
2013-08-01
Full Text Available This article analyses the variation of rainfall in the Tocantins-Araguaia hydrographic region in the last two decades, based upon the rain gauge stations of the ANA (Brazilian National Water Agency HidroWeb database for the years 1983, 1993 and 2003. The information was systemized and treated with Hydrologic methods such as method of contour and interpolation for ordinary kriging. The treatment considered the consistency of the data, the density of the space distribution of the stations and the periods of study. The results demonstrated that the total volume of water precipitated annually did not change significantly in the 20 years analyzed. However, a significant variation occurred in its spatial distribution. By analyzing the isohyet it was shown that there is a displacement of the precipitation at Tocantins Baixo (TOB of approximately 10% of the total precipitated volume. This displacement can be caused by global change, by anthropogenic activities or by regional natural phenomena. However, this paper does not explore possible causes of the displacement.
Spatial interpolation mthods for integrating Newton's equation
International Nuclear Information System (INIS)
Gueron, S.; Shalloway, D.
1996-01-01
Numerical integration of Newton's equation in multiple dimensions plays an important role in many fields such as biochemistry and astrophysics. Currently, some of the most important practical questions in these areas cannot be addressed because the large dimensionality of the variable space and complexity of the required force evaluations precludes integration over sufficiently large time intervals. Improving the efficiency of algorithms for this purpose is therefore of great importance. Standard numerical integration schemes (e.g., leap-frog and Runge-Kutta) ignore the special structure of Newton's equation that, for conservative systems, constrains the force to be the gradient of a scalar potential. We propose a new class of open-quotes spatial interpolationclose quotes (SI) integrators that exploit this property by interpolating the force in space rather than (as with standard methods) in time. Since the force is usually a smoother function of space than of time, this can improve algorithmic efficiency and accuracy. In particular, an SI integrator solves the one- and two-dimensional harmonic oscillators exactly with one force evaluation per step. A simple type of time-reversible SI algorithm is described and tested. Significantly improved performance is achieved on one- and multi-dimensional benchmark problems. 19 refs., 4 figs., 1 tab
Clustering metagenomic sequences with interpolated Markov models
Directory of Open Access Journals (Sweden)
Kelley David R
2010-11-01
Full Text Available Abstract Background Sequencing of environmental DNA (often called metagenomics has shown tremendous potential to uncover the vast number of unknown microbes that cannot be cultured and sequenced by traditional methods. Because the output from metagenomic sequencing is a large set of reads of unknown origin, clustering reads together that were sequenced from the same species is a crucial analysis step. Many effective approaches to this task rely on sequenced genomes in public databases, but these genomes are a highly biased sample that is not necessarily representative of environments interesting to many metagenomics projects. Results We present SCIMM (Sequence Clustering with Interpolated Markov Models, an unsupervised sequence clustering method. SCIMM achieves greater clustering accuracy than previous unsupervised approaches. We examine the limitations of unsupervised learning on complex datasets, and suggest a hybrid of SCIMM and supervised learning method Phymm called PHYSCIMM that performs better when evolutionarily close training genomes are available. Conclusions SCIMM and PHYSCIMM are highly accurate methods to cluster metagenomic sequences. SCIMM operates entirely unsupervised, making it ideal for environments containing mostly novel microbes. PHYSCIMM uses supervised learning to improve clustering in environments containing microbial strains from well-characterized genera. SCIMM and PHYSCIMM are available open source from http://www.cbcb.umd.edu/software/scimm.
Research of Cubic Bezier Curve NC Interpolation Signal Generator
Directory of Open Access Journals (Sweden)
Shijun Ji
2014-08-01
Full Text Available Interpolation technology is the core of the computer numerical control (CNC system, and the precision and stability of the interpolation algorithm directly affect the machining precision and speed of CNC system. Most of the existing numerical control interpolation technology can only achieve circular arc interpolation, linear interpolation or parabola interpolation, but for the numerical control (NC machining of parts with complicated surface, it needs to establish the mathematical model and generate the curved line and curved surface outline of parts and then discrete the generated parts outline into a large amount of straight line or arc to carry on the processing, which creates the complex program and a large amount of code, so it inevitably introduce into the approximation error. All these factors affect the machining accuracy, surface roughness and machining efficiency. The stepless interpolation of cubic Bezier curve controlled by analog signal is studied in this paper, the tool motion trajectory of Bezier curve can be directly planned out in CNC system by adjusting control points, and then these data were put into the control motor which can complete the precise feeding of Bezier curve. This method realized the improvement of CNC trajectory controlled ability from the simple linear and circular arc to the complex project curve, and it provides a new way for economy realizing the curve surface parts with high quality and high efficiency machining.
Spatial interpolation of monthly mean air temperature data for Latvia
Aniskevich, Svetlana
2016-04-01
Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Singularity hypotheses a scientific and philosophical assessment
Moor, James; Søraker, Johnny; Steinhart, Eric
2012-01-01
Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.
Holographic subregion complexity for singular surfaces
Energy Technology Data Exchange (ETDEWEB)
Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2017-10-15
Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)
Computing singularly perturbed differential equations
Chatterjee, Sabyasachi; Acharya, Amit; Artstein, Zvi
2018-02-01
A computational tool for coarse-graining nonlinear systems of ordinary differential equations in time is discussed. Three illustrative model examples are worked out that demonstrate the range of capability of the method. This includes the averaging of Hamiltonian as well as dissipative microscopic dynamics whose 'slow' variables, defined in a precise sense, can often display mixed slow-fast response as in relaxation oscillations, and dependence on initial conditions of the fast variables. Also covered is the case where the quasi-static assumption in solid mechanics is violated. The computational tool is demonstrated to capture all of these behaviors in an accurate and robust manner, with significant savings in time. A practically useful strategy for accurately initializing short bursts of microscopic runs for the evolution of slow variables is integral to our scheme, without the requirement that the slow variables determine a unique invariant measure of the microscopic dynamics.
Singular vectors for the WN algebras
Ridout, David; Siu, Steve; Wood, Simon
2018-03-01
In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.
Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness
Matt, Michael Andreas
2012-01-01
Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron
INTERPOL DVI best-practice standards--An overview.
Sweet, David
2010-09-10
A description of the International Criminal Police Organization and its role in disaster victim identification is provided along with a summary of the standards developed and circulated to responders in INTERPOL member countries (188 throughout the world) to insure evidence-based DVI practices. Following the INTERPOL-mediated DVI response in 2005 to the SE Asia tsunami, many lessons learned have been recorded. Based on these current standards, INTERPOL's approach to DVI reflects a modern approach and philosophy. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Four-Point n-Ary Interpolating Subdivision Schemes
Directory of Open Access Journals (Sweden)
Ghulam Mustafa
2013-01-01
Full Text Available We present an efficient and simple algorithm to generate 4-point n-ary interpolating schemes. Our algorithm is based on three simple steps: second divided differences, determination of position of vertices by using second divided differences, and computation of new vertices. It is observed that 4-point n-ary interpolating schemes generated by completely different frameworks (i.e., Lagrange interpolant and wavelet theory can also be generated by the proposed algorithm. Furthermore, we have discussed continuity, Hölder regularity, degree of polynomial generation, polynomial reproduction, and approximation order of the schemes.
Nonsingular Einsteinian Cosmology: How Galactic Momentum Prevents Cosmic Singularities
Directory of Open Access Journals (Sweden)
Kenneth J. Epstein
2013-01-01
Full Text Available It is shown how Einstein's equation can account for the evolution of the universe without an initial singularity and can explain the inflation epoch as a momentum dominated era in which energy from matter and radiation drove extremely accelerated expansion of space. It is shown how an object with momentum loses energy to the expanding universe and how this energy can contribute to accelerated spatial expansion more effectively than vacuum energy, because virtual particles, the source of vacuum energy, can have negative energy, which can cancel any positive energy from the vacuum. Radiation and matter with momentum have positive but decreasing energy in the expanding universe, and the energy lost by them can contribute to accelerated spatial expansion between galactic clusters, making dark energy a classical effect that can be explained by general relativity without quantum mechanics, and, as (13 and (15 show, without an initial singularity or a big bang. This role of momentum, which was overlooked in the Standard Cosmological Model, is the basis of a simpler model which agrees with what is correct in the old model and corrects what is wrong with it.
Cosmological singularity theorems for f ( R ) gravity theories
Energy Technology Data Exchange (ETDEWEB)
Alani, Ivo [Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina); Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar [Instituto de Matemáticas Luis Santaló (IMAS), Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina)
2016-05-01
In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.
Cosmological singularity theorems for f ( R ) gravity theories
International Nuclear Information System (INIS)
Alani, Ivo; Santillán, Osvaldo P.
2016-01-01
In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T ij −( g ij /2) T ) k i k j ≥ 0 for any generic unit time like field k i ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.
MODIS Snow Cover Recovery Using Variational Interpolation
Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.
2017-12-01
Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.
Interaction of two singular Lissajous lines in free space.
Chen, Haitao; Gao, Zenghui; Wang, Wanqing
2017-05-20
The interaction of two singular Lissajous lines emergent from a polychromatic vector beam is studied. It is shown that singular Lissajous lines disappear with propagation; meanwhile Lissajous singularities take place. The handedness reversal, the changes in the shape of Lissajous figures, and the degree of polarization of Lissajous singularities, as well as the creation and annihilation of a single singularity, may appear by varying the control parameters. In addition, the transformation of the shape of line h=0, the creation and annihilation of pairs of Lissajous singularities not only with opposite topological charge and same handedness, but also with same degree of polarization, take place with propagation.
National Research Council Canada - National Science Library
Ingel, R
1999-01-01
... (which require derivative information) interpolation functions as well as standard Lagrangian functions, which can be linear, quadratic or cubic, have been used to construct the interpolation windows...
Efficient Algorithms and Design for Interpolation Filters in Digital Receiver
Directory of Open Access Journals (Sweden)
Xiaowei Niu
2014-05-01
Full Text Available Based on polynomial functions this paper introduces a generalized design method for interpolation filters. The polynomial-based interpolation filters can be implemented efficiently by using a modified Farrow structure with an arbitrary frequency response, the filters allow many pass- bands and stop-bands, and for each band the desired amplitude and weight can be set arbitrarily. The optimization coefficients of the interpolation filters in time domain are got by minimizing the weighted mean squared error function, then converting to solve the quadratic programming problem. The optimization coefficients in frequency domain are got by minimizing the maxima (MiniMax of the weighted mean squared error function. The degree of polynomials and the length of interpolation filter can be selected arbitrarily. Numerical examples verified the proposed design method not only can reduce the hardware cost effectively but also guarantee an excellent performance.
Analysis of Spatial Interpolation in the Material-Point Method
DEFF Research Database (Denmark)
Andersen, Søren; Andersen, Lars
2010-01-01
This paper analyses different types of spatial interpolation for the material-point method The interpolations include quadratic elements and cubic splines in addition to the standard linear shape functions usually applied. For the small-strain problem of a vibrating bar, the best results...... are obtained using quadratic elements. It is shown that for more complex problems, the use of partially negative shape functions is inconsistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations...... of field quantities The properties of different interpolation functions are analysed using numerical examples, including the classical cantil-evered beam problem....
[Multimodal medical image registration using cubic spline interpolation method].
He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan
2007-12-01
Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.
Nonlinear interpolation fractal classifier for multiple cardiac arrhythmias recognition
Energy Technology Data Exchange (ETDEWEB)
Lin, C.-H. [Department of Electrical Engineering, Kao-Yuan University, No. 1821, Jhongshan Rd., Lujhu Township, Kaohsiung County 821, Taiwan (China); Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)], E-mail: eechl53@cc.kyu.edu.tw; Du, Y.-C.; Chen Tainsong [Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)
2009-11-30
This paper proposes a method for cardiac arrhythmias recognition using the nonlinear interpolation fractal classifier. A typical electrocardiogram (ECG) consists of P-wave, QRS-complexes, and T-wave. Iterated function system (IFS) uses the nonlinear interpolation in the map and uses similarity maps to construct various data sequences including the fractal patterns of supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. Grey relational analysis (GRA) is proposed to recognize normal heartbeat and cardiac arrhythmias. The nonlinear interpolation terms produce family functions with fractal dimension (FD), the so-called nonlinear interpolation function (NIF), and make fractal patterns more distinguishing between normal and ill subjects. The proposed QRS classifier is tested using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Compared with other methods, the proposed hybrid methods demonstrate greater efficiency and higher accuracy in recognizing ECG signals.
PSPLINE: Princeton Spline and Hermite cubic interpolation routines
McCune, Doug
2017-10-01
PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge- invariance as the interpolating ...
Comparing interpolation schemes in dynamic receive ultrasound beamforming
DEFF Research Database (Denmark)
Kortbek, Jacob; Andresen, Henrik; Nikolov, Svetoslav
2005-01-01
conventional B-mode imaging and linear interpolation, the difference in mean SLMLR is 6.2 dB. With polynomial interpolation the ratio is in the range 6.2 dB to 0.3 dB using 2nd to 5th order polynomials, and with FIR interpolation the ratio is in the range 5.8 dB to 0.1 dB depending on the filter design....... The SNR is between 21 dB and 45 dB with the polynomial interpolation and between 37 dB and 43 dB with FIR filtering. In the synthetic aperture imaging modality the difference in mean SLMLRrangesfrom14dBto33dBand6dBto31dBforthe polynomial and FIR filtering schemes respectively. By using a proper...
A Meshfree Quasi-Interpolation Method for Solving Burgers’ Equation
Directory of Open Access Journals (Sweden)
Mingzhu Li
2014-01-01
Full Text Available The main aim of this work is to consider a meshfree algorithm for solving Burgers’ equation with the quartic B-spline quasi-interpolation. Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations and overcome the ill-conditioning problem resulting from using the B-spline as a global interpolant. The numerical scheme is presented, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative of the dependent variable. Compared to other numerical methods, the main advantages of our scheme are higher accuracy and lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.
Rhie-Chow interpolation in strong centrifugal fields
Bogovalov, S. V.; Tronin, I. V.
2015-10-01
Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.
Interpolating and sampling sequences in finite Riemann surfaces
Ortega-Cerda, Joaquim
2007-01-01
We provide a description of the interpolating and sampling sequences on a space of holomorphic functions on a finite Riemann surface, where a uniform growth restriction is imposed on the holomorphic functions.
Interpol: An R package for preprocessing of protein sequences.
Heider, Dominik; Hoffmann, Daniel
2011-06-17
Most machine learning techniques currently applied in the literature need a fixed dimensionality of input data. However, this requirement is frequently violated by real input data, such as DNA and protein sequences, that often differ in length due to insertions and deletions. It is also notable that performance in classification and regression is often improved by numerical encoding of amino acids, compared to the commonly used sparse encoding. The software "Interpol" encodes amino acid sequences as numerical descriptor vectors using a database of currently 532 descriptors (mainly from AAindex), and normalizes sequences to uniform length with one of five linear or non-linear interpolation algorithms. Interpol is distributed with open source as platform independent R-package. It is typically used for preprocessing of amino acid sequences for classification or regression. The functionality of Interpol widens the spectrum of machine learning methods that can be applied to biological sequences, and it will in many cases improve their performance in classification and regression.
Application Of Laplace Interpolation In The Analysis Of Geopotential ...
African Journals Online (AJOL)
difference) method can be applied to regions of high data gradients without distortions and smoothing. However, by itself, this method is not convenient for the interpolation of geophysical data, which often consists of regions of widely variable ...
Identifying Initial Condition in Degenerate Parabolic Equation with Singular Potential
Directory of Open Access Journals (Sweden)
K. Atifi
2017-01-01
Full Text Available A hybrid algorithm and regularization method are proposed, for the first time, to solve the one-dimensional degenerate inverse heat conduction problem to estimate the initial temperature distribution from point measurements. The evolution of the heat is given by a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is based on a hybrid genetic algorithm (married genetic with descent method type gradient. Some numerical experiments are given.
Singular Linear Differential Equations in Two Variables
Braaksma, B.L.J.; Put, M. van der
2008-01-01
The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no
A singularity theorem based on spatial averages
Indian Academy of Sciences (India)
Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating ...
Supersymmetric quantum mechanics under point singularities
International Nuclear Information System (INIS)
Uchino, Takashi; Tsutsui, Izumi
2003-01-01
We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed
Resolving curvature singularities in holomorphic gravity
Mantz, C.L.M.; Prokopec, T.
2011-01-01
We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature
Classical resolution of singularities in dilaton cosmologies
Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK
2005-01-01
For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to
Mobile communications technology: The singular factor responsible ...
African Journals Online (AJOL)
This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...
Polynomial computation of Hankel singular values
Kwakernaak, H.
1992-01-01
A revised and improved version of a polynomial algorithm is presented. It was published by N.J. Young (1990) for the computation of the singular values and vectors of the Hankel operator defined by a linear time-invariant system with a rotational transfer matrix. Tentative numerical experiments
Singular Nonlinear H∞ Optimal Control Problem
Schaft, A.J. van der
1996-01-01
The theory of nonlinear H∞ optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for
Ray tracing in anisotropic media with singularities
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav
2001-01-01
Roč. 145, č. 1 (2001), s. 265-276 ISSN 0956-540X R&D Projects: GA ČR GA205/00/1350 Institutional research plan: CEZ:AV0Z3012916 Keywords : anisotropic media * ray tracing * singularities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.366, year: 2001
Inverting dedevelopment: geometric singularity theory in embryology
Bookstein, Fred L.; Smith, Bradley R.
2000-10-01
The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.
On the genericity of spacetime singularities
Indian Academy of Sciences (India)
the framework of a general spacetime without any symmetry conditions, in terms of the overall behaviour of .... We now outline the basic idea and the chain of logic behind the proof of a typical singularity theorem ..... a detailed investigation of the dynamics of gravitational collapse within the frame- work of Einstein's theory.
'Footballs', conical singularities, and the Liouville equation
International Nuclear Information System (INIS)
Redi, Michele
2005-01-01
We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints
Comparison Searching Process of Linear, Binary and Interpolation Algorithm
Rahim, Robbi; Nurarif, Saiful; Ramadhan, Mukhlis; Aisyah, Siti; Purba, Windania
2017-12-01
Searching is a process that cannot be issued for a transaction and communication process, many search algorithms that can be used to facilitate the search, linear, binary, and interpolation algorithms are some searching algorithms that can be utilized, the comparison of the three algorithms is performed by testing to search data with different length with pseudo process approach, and the result achieved that the interpolation algorithm is slightly faster than the other two algorithms.
Considerations Related to Interpolation of Experimental Data Using Piecewise Functions
Directory of Open Access Journals (Sweden)
Stelian Alaci
2016-12-01
Full Text Available The paper presents a method for experimental data interpolation by means of a piecewise function, the points where the form of the function changes being found simultaneously with the other parameters utilized in an optimization criterion. The optimization process is based on defining the interpolation function using a single expression founded on the Heaviside function and regarding the optimization function as a generalised infinitely derivable function. The exemplification of the methodology is made via a tangible example.
Data interpolation in the definition of management zones
Schenatto, Kelyn; Universidade Tecnológica Federal do Paraná; Souza, Eduardo Godoy; Universidade Estadual do Oeste do Paraná; Bazzi, Claudio Leones; Universidade Tecnológica Federal do Paraná; Bier, Vanderlei Arthur; Universidade Estadual do Oeste do Paraná; Betzek, Nelson Miguel; Universidade Tecnológica Federal do Paraná; Gavioli, Alan; Universidade Tecnológica Federal do Paraná
2016-01-01
Precision agriculture (PA) comprises the use of management zones (MZs). Sample data are usually interpolated to define MZs. Current research checks whether there is a need for data interpolation by evaluating the quality of MZs by five indices – variance reduction (VR), fuzzy performance index (FPI), modified partition entropy index (MPE), Kappa index and the cluster validation index (CVI), of which the latter has been focused in current assay. Soil texture, soil resistance to penetration, el...
Survey: interpolation methods for whole slide image processing.
Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T
2017-02-01
Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Generalized Parton Distributions and their Singularities
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin
2011-04-01
A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.
São Carlos Workshop on Real and Complex Singularities
Ruas, Maria
2007-01-01
The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.
A Note on Inclusion Intervals of Matrix Singular Values
Cui, Shu-Yu; Tian, Gui-Xian
2012-01-01
We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.
Analysis of Interpolation Methods in the Image Reconstruction Tasks
Directory of Open Access Journals (Sweden)
V. T. Nguyen
2017-01-01
Full Text Available The article studies the interpolation methods used for image reconstruction. These methods were also implemented and tested with several images to estimate their effectiveness.The considered interpolation methods are a nearest-neighbor method, linear method, a cubic B-spline method, a cubic convolution method, and a Lanczos method. For each method were presented an interpolation kernel (interpolation function and a frequency response (Fourier transform.As a result of the experiment, the following conclusions were drawn:- the nearest neighbor algorithm is very simple and often used. With using this method, the reconstructed images contain artifacts (blurring and haloing;- the linear method is quickly and easily performed. It also reduces some visual distortion caused by changing image size. Despite the advantages using this method causes a large amount of interpolation artifacts, such as blurring and haloing;- cubic B-spline method provides smoothness of reconstructed images and eliminates apparent ramp phenomenon. But in the interpolation process a low-pass filter is used, and a high frequency component is suppressed. This will lead to fuzzy edge and false artificial traces;- cubic convolution method offers less distortion interpolation. But its algorithm is more complicated and more execution time is required as compared to the nearest-neighbor method and the linear method;- using the Lanczos method allows us to achieve a high-definition image. In spite of the great advantage the method requires more execution time as compared to the other methods of interpolation.The result obtained not only shows a comparison of the considered interpolation methods for various aspects, but also enables users to select an appropriate interpolation method for their applications.It is advisable to study further the existing methods and develop new ones using a number of methods
5-D interpolation with wave-front attributes
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that
Singularities and the geometry of spacetime
Hawking, Stephen
2014-11-01
The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove
Stability of naked singularity arising in gravitational collapse of Type ...
Indian Academy of Sciences (India)
... )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set ...
THE EXT RACORPOREAL FERTILIZATION TECHNOLOGIES AND THE SINGULARITY PROBLEMS
Directory of Open Access Journals (Sweden)
S. V. Denysenko
2013-05-01
Full Text Available The peculiarities of modern medicine development connected with the technological and informative singularity are analyzed. The risks of realization of extracorporeal fertilization are examined from positions of development of informative singularity. The warning problems of origin of singularity are discussed on t h e base of t h e newest technologies development.
Positive solutions for higher order singular p-Laplacian boundary ...
Indian Academy of Sciences (India)
of positive solutions for sublinear 2m-th order singular p-Laplacian BVPs on closed interval. Keywords. Positive solution; singular BVPs; sufficient and necessary conditions; p-Laplacian equations. 1. Introduction. In this paper, we are concerned with higher order singular p-Laplacian boundary value problems. ⎧. ⎨. ⎩.
Kalmar, Boldizsar
2006-01-01
We give a Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of -1 codimensional stable maps with prescribed singular fibers.
von-Neumann stability and singularity resolution in loop quantized Schwarzschild black hole
Yonika, Alec; Khanna, Gaurav; Singh, Parampreet
2018-02-01
Though loop quantization of several spacetimes has exhibited existence of a bounce via an explicit evolution of states using numerical simulations, the question about the way central singularity is resolved in the black hole interior has remained open. The quantum Hamiltonian constraint in loop quantization turns out to be a finite difference equation whose stability is important to understand to gain insights on the viability of the underlying quantization and resulting physical implications. We take first steps towards addressing these issues for a loop quantization of the Schwarzschild interior recently given by Corichi and Singh. Von-Neumann stability analysis is performed using separability of solutions as well as a full two dimensional quantum difference equation. This results in a stability condition for black holes which have a very large mass compared to the Planck mass. For black holes of smaller masses evidence of numerical instability is found. In addition, stability analysis for macroscopic black holes leads to a constraint on the choice of the allowed states in numerical evolution. States which are not sharply peaked in accordance with this constraint result in instabilities. With the caveat of using kinematical norm, sharply peaked Gaussian states are evolved using the quantum difference equation and singularity resolution is obtained. A bounce is found for one of the triad variables, but for the other triad variable singularity resolution amounts to a non-singular passage through the zero volume. States are found to be peaked at the classical trajectory for a long time before and after the singularity resolution, and retain their semi-classical character across the zero volume. Our main result is that quantum bounce occurs in loop quantized Schwarzschild interior at least for macroscopic black holes. Instability of small black holes which can be a result of using kinematical norm nevertheless signifies the need of further understanding of the
Singular electrostatic energy of nanoparticle clusters
Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.
2016-02-01
The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h . We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c (h ) , together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.
Spectral asymptotics for nonsmooth singular Green operators
DEFF Research Database (Denmark)
Grubb, Gerd
2014-01-01
Singular Green operators G appear typically as boundary correction terms in resolvents for elliptic boundary value problems on a domain Ω ⊂ ℝ n , and more generally they appear in the calculus of pseudodifferential boundary problems. In particular, the boundary term in a Krein resolvent formula...... is a singular Green operator. It is well-known in smooth cases that when G is of negative order −t on a bounded domain, its eigenvalues ors-numbers have the behavior (*)s j (G) ∼ cj −t/(n−1) for j → ∞, governed by the boundary dimension n − 1. In some nonsmooth cases, upper estimates (**)s j (G) ≤ Cj −t/(n−1...
Singular tachyon kinks from regular profiles
International Nuclear Information System (INIS)
Copeland, E.J.; Saffin, P.M.; Steer, D.A.
2003-01-01
We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately
Spatial interpolation methods for monthly rainfalls and temperatures in Basilicata
Directory of Open Access Journals (Sweden)
Ferrara A
2008-12-01
Full Text Available Spatial interpolated climatic data on grids are important as input in forest modeling because climate spatial variability has a direct effect on productivity and forest growth. Maps of climatic variables can be obtained by different interpolation methods depending on data quality (number of station, spatial distribution, missed data etc. and topographic and climatic features of study area. In this paper four methods are compared to interpolate monthly rainfall at regional scale: 1 inverse distance weighting (IDW; 2 regularized spline with tension (RST; 3 ordinary kriging (OK; 4 universal kriging (UK. Besides, an approach to generate monthly surfaces of temperatures over regions of complex terrain and with limited number of stations is presented. Daily data were gathered from 1976 to 2006 period and then gaps in the time series were filled in order to obtain monthly mean temperatures and cumulative precipitation. Basic statistics of monthly dataset and analysis of relationship of temperature and precipitation to elevation were performed. A linear relationship was found between temperature and altitude, while no relationship was found between rainfall and elevation. Precipitations were then interpolated without taking into account elevation. Based on root mean squared error for each month the best method was ranked. Results showed that universal kriging (UK is the best method in spatial interpolation of rainfall in study area. Then cross validation was used to compare prediction performance of tree different variogram model (circular, spherical, exponential using UK algorithm in order to produce final maps of monthly precipitations. Before interpolating temperatures were referred to see level using the calculated lapse rate and a digital elevation model (DEM. The result of interpolation with RST was then set to originally elevation with an inverse procedure. To evaluate the quality of interpolated surfaces a comparison between interpolated and
Method of rotations for bilinear singular integrals
Czech Academy of Sciences Publication Activity Database
Diestel, G.; Grafakos, L.; Honzík, Petr; Zengyan, S.; Terwilleger, E.
2011-01-01
Roč. 3, - (2011), s. 99-107 ISSN 1938-9787. [Analysis, Mathematical Physics and Applications. Ixtapa, 01.03.2010-05.03.2010] R&D Projects: GA AV ČR KJB100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : bilinear singular integrals * bilinear Hilbert transform * Fourier multipliers Subject RIV: BA - General Mathematics http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.cma/1298670006&page=record
Non-singular spiked harmonic oscillator
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Guardiola, R.
1990-01-01
A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)
Space-time singularities in Weyl manifolds
Energy Technology Data Exchange (ETDEWEB)
Lobo, I.P. [CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Barreto, A.B.; Romero, C. [Universidade Federal da Paraiba, Departamento de Fisica, C. Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame. (orig.)
The technological singularity and exponential medicine
Iraj Nabipour; Majid Assadi
2016-01-01
The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested th...
Singular reduction of Nambu-Poisson manifolds
Das, Apurba
The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.
A FAST MORPHING-BASED INTERPOLATION FOR MEDICAL IMAGES: APPLICATION TO CONFORMAL RADIOTHERAPY
Directory of Open Access Journals (Sweden)
Hussein Atoui
2011-05-01
Full Text Available A method is presented for fast interpolation between medical images. The method is intended for both slice and projective interpolation. It allows offline interpolation between neighboring slices in tomographic data. Spatial correspondence between adjacent images is established using a block matching algorithm. Interpolation of image intensities is then carried out by morphing between the images. The morphing-based method is compared to standard linear interpolation, block-matching-based interpolation and registrationbased interpolation in 3D tomographic data sets. Results show that the proposed method scored similar performance in comparison to registration-based interpolation, and significantly outperforms both linear and block-matching-based interpolation. This method is applied in the context of conformal radiotherapy for online projective interpolation between Digitally Reconstructed Radiographs (DRRs.
Singular spectrum analysis and its applications in mapping mantle seismic structure
Dokht, Ramin M. H.; Gu, Yu Jeffrey; Sacchi, Mauricio D.
2017-03-01
Seismic discontinuities are fundamental to the understanding of mantle composition and dynamics. Their depths and impedance contrasts are generally determined using secondary phases such as SS precursors and P-to-S converted waves. However, analysing and interpreting these weak signals often suffer from incomplete data coverage, high noise levels and interfering seismic arrivals, especially near tectonically complex regions such as subduction zones. To overcome these pitfalls, we adopt a singular spectrum analysis (SSA) method to remove random noise, reconstruct missing traces and enhance the robustness of SS precursors and P-to-S conversions from mantle seismic discontinuities. Our method takes advantage of the predictability of time series in the frequency-space domain and performs rank reduction using a singular value decomposition of the trajectory matrix. We apply SSA to synthetic record sections as well as the observations of (1) SS precursors beneath the northwestern Pacific subduction zones, and (2) P-to-S converted waves from southwestern Canada. In comparison with raw or interpolated data, the SSA enhanced seismic sections exhibit greater resolution due to the suppression of random noise (which reduces signal amplitude during standard averaging procedures) through rank reduction. SSA also enables an effective separation of the SS precursors from the postcursors of S-wave core diffractions. This method will greatly benefit future analyses of weak crustal and mantle seismic phases, especially when data coverages are less than ideal.
Data interpolation in the definition of management zones
Directory of Open Access Journals (Sweden)
Kelyn Schenatto
2016-01-01
Full Text Available Precision agriculture (PA comprises the use of management zones (MZs. Sample data are usually interpolated to define MZs. Current research checks whether there is a need for data interpolation by evaluating the quality of MZs by five indices – variance reduction (VR, fuzzy performance index (FPI, modified partition entropy index (MPE, Kappa index and the cluster validation index (CVI, of which the latter has been focused in current assay. Soil texture, soil resistance to penetration, elevation and slope in an experimental area of 15.5 ha were employed as attributes to the generation of MZ, correlating them with data of soybean yield from 2011-2012 and 2012-2013 harvests. Data interpolation prior to MZs generation is important to achieve MZs as a smoother contour and for a greater reduction in data variance. The Kriging interpolator had the best performance. CVI index proved to be efficient in choosing MZs, with a less subjective decision on the best interpolator or number of MZs.
Research on the DDA Precision Interpolation Algorithm for Continuity of Speed and Acceleration
Directory of Open Access Journals (Sweden)
Kai Sun
2014-05-01
Full Text Available The interpolation technology is critical to performance of CNC and industrial robots; this paper proposes a new precision interpolation algorithm based on analysis of root cause in speed and acceleration. To satisfy continuity of speed and acceleration in interpolation process, this paper describes, respectively, variable acceleration precision interpolation of two stages and three sections. Testing shows that CNC system can be enhanced significantly by using the new fine interpolation algorithm in this paper.
Singular surfaces in the open field line region of a diverted tokamak
International Nuclear Information System (INIS)
Reiman, A.
1995-05-01
The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents
Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes
Saini, Sahil; Singh, Parampreet
2018-03-01
We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.
Importance of interpolation and coincidence errors in data fusion
Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana
2018-02-01
The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.
Interpolation of vector fields from human cardiac DT-MRI
Yang, F.; Zhu, Y. M.; Rapacchi, S.; Luo, J. H.; Robini, M.; Croisille, P.
2011-03-01
There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.
Interpolant tree automata and their application in Horn clause verification
DEFF Research Database (Denmark)
Kafle, Bishoksan; Gallagher, John Patrick
2016-01-01
This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way in this ......This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way...... clause verification problems indicates that the combination of interpolant tree automaton with abstract interpretation gives some increase in the power of the verification tool, while sometimes incurring a performance overhead....
Interpolation of vector fields from human cardiac DT-MRI
International Nuclear Information System (INIS)
Yang, F; Zhu, Y M; Rapacchi, S; Robini, M; Croisille, P; Luo, J H
2011-01-01
There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.
Discrete Sine Transform-Based Interpolation Filter for Video Compression
Directory of Open Access Journals (Sweden)
MyungJun Kim
2017-11-01
Full Text Available Fractional pixel motion compensation in high-efficiency video coding (HEVC uses an 8-point filter and a 7-point filter, which are based on the discrete cosine transform (DCT, for the 1/2-pixel and 1/4-pixel interpolations, respectively. In this paper, discrete sine transform (DST-based interpolation filters (DST-IFs are proposed for fractional pixel motion compensation in terms of coding efficiency improvement. Firstly, a performance of the DST-based interpolation filters (DST-IFs using 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations is compared with that of the DCT-based IFs (DCT-IFs using 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively, for fractional pixel motion compensation. Finally, the DST-IFs using 12-point and 11-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively, are proposed only for bi-directional motion compensation in terms of the coding efficiency. The 8-point and 7-point DST-IF methods showed average Bjøntegaard Delta (BD-rate reductions of 0.7% and 0.3% in the random access (RA and low delay B (LDB configurations, respectively, in HEVC. The 12-point and 11-point DST-IF methods showed average BD-rate reductions of 1.4% and 1.2% in the RA and LDB configurations for the Luma component, respectively, in HEVC.
Ardema, M. D.
1979-01-01
Singular perturbation techniques are studied for dealing with singular arc problems by analyzing a relatively low-order but otherwise general system. This system encompasses many flight mechanic problems including Goddard's problem and a version of the minimum time-to-climb problem. Boundary layer solutions are constructed which are stable and reach the outer solution in a finite time. A uniformly valid composite solution is then formed from the reduced and boundary layer solutions. The value of the approximate solution is that it is relatively easy to obtain and does not involve singular arcs. To illustrate the utility of the results, the technique is used to obtain an approximate solution of a simplified version of the aircraft minimum time-to-climb problem.
Gribov ambiguities at the Landau-maximal Abelian interpolating gauge
Energy Technology Data Exchange (ETDEWEB)
Pereira, Antonio D.; Sobreiro, Rodrigo F. [UFF-Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)
2014-08-15
In a previous work, we presented a new method to account for the Gribov ambiguities in non-Abelian gauge theories. The method consists on the introduction of an extra constraint which directly eliminates the infinitesimal Gribov copies without the usual geometric approach. Such strategy allows one to treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply this method to a gauge which interpolates among the Landau and maximal Abelian gauges. The result is a local and power counting renormalizable action, free of infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon propagator is derived. (orig.)
An adaptive interpolation scheme for molecular potential energy surfaces
Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa
2016-08-01
The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.
Scientific data interpolation with low dimensional manifold model
International Nuclear Information System (INIS)
Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.
2017-01-01
Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.
Scientific data interpolation with low dimensional manifold model
Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley
2018-01-01
We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.
Holographic curvature perturbations in a cosmology with a space-like singularity
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Elisa G.M. [Department of Physics, McGill University,3600 University St., Montréal, QC, H3A 2T8 (Canada); Brandenberger, Robert [Department of Physics, McGill University,3600 University St., Montréal, QC, H3A 2T8 (Canada); Institute for Theoretical Studies, ETH Zürich,Clausiusstr. 47, Zürich, CH-8092 (Switzerland)
2016-07-19
We study the evolution of cosmological perturbations in an anti-de-Sitter (AdS) bulk through a cosmological singularity by mapping the dynamics onto the boundary conformal fields theory by means of the AdS/CFT correspondence. We consider a deformed AdS space-time obtained by considering a time-dependent dilaton which induces a curvature singularity in the bulk at a time which we call t=0, and which asymptotically approaches AdS both for large positive and negative times. The boundary field theory becomes free when the bulk curvature goes to infinity. Hence, the evolution of the fluctuations is under better controle on the boundary than in the bulk. To avoid unbounded particle production across the bounce it is necessary to smooth out the curvature singularity at very high curvatures. We show how the bulk cosmological perturbations can be mapped onto boundary gauge field fluctuations. We evolve the latter and compare the spectrum of fluctuations on the infrared scales relevant for cosmological observations before and after the bounce point. We find that the index of the power spectrum of fluctuations is the same before and after the bounce.
Non-singular Brans–Dicke collapse in deformed phase space
Energy Technology Data Exchange (ETDEWEB)
Rasouli, S.M.M., E-mail: mrasouli@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Ziaie, A.H., E-mail: ah_ziaie@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G. C., Evin, 19839 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman (Iran, Islamic Republic of); Jalalzadeh, S., E-mail: shahram.jalalzadeh@unila.edu.br [Federal University of Latin-American Integration, Technological Park of Itaipu PO box 2123, Foz do Iguaçu-PR, 85867-670 (Brazil); Moniz, P.V., E-mail: pmoniz@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal)
2016-12-15
We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.
On gravitational waves in Born-Infeld inspired non-singular cosmologies
Energy Technology Data Exchange (ETDEWEB)
Jiménez, Jose Beltrán [Aix-Marseille Université, Université de Toulon, CNRS, CPT, Marseille (France); Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Olmo, Gonzalo J. [Depto. de Física Teórica and IFIC, Universidad de Valencia—CSIC, Calle Dr. Moliner 50, Burjassot 46100, Valencia (Spain); Rubiera-Garcia, Diego, E-mail: jose.beltran@uam.es, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)
2017-10-01
We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
Non-singular Brans–Dicke collapse in deformed phase space
International Nuclear Information System (INIS)
Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V.
2016-01-01
We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.
The Singularity May Never Be Near
Walsh, Toby
2017-01-01
There is both much optimisim and pessimism around artificial intelligence (AI) today. The optimists are investing millions of dollars, and even in some cases billions of dollars into AI. The pessimists, on the other hand, predict that AI will end many things: jobs, warfare, and even the human race. Both the optimists and the pessimists often appeal to the idea of a technological singularity, a point in time where machine intelligence starts to run away, and a new, more in- telligent “species”...
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Clifford wavelets, singular integrals, and Hardy spaces
Mitrea, Marius
1994-01-01
The book discusses the extensions of basic Fourier Analysis techniques to the Clifford algebra framework. Topics covered: construction of Clifford-valued wavelets, Calderon-Zygmund theory for Clifford valued singular integral operators on Lipschitz hyper-surfaces, Hardy spaces of Clifford monogenic functions on Lipschitz domains. Results are applied to potential theory and elliptic boundary value problems on non-smooth domains. The book is self-contained to a large extent and well-suited for graduate students and researchers in the areas of wavelet theory, Harmonic and Clifford Analysis. It will also interest the specialists concerned with the applications of the Clifford algebra machinery to Mathematical Physics.
A Note on Interpolation of Stable Processes | Nassiuma | Journal of ...
African Journals Online (AJOL)
Interpolation procedures tailored for gaussian processes may not be applied to infinite variance stable processes. Alternative techniques suitable for a limited set of stable case with index α∈(1,2] were initially studied by Pourahmadi (1984) for harmonizable processes. This was later extended to the ARMA stable process ...
The Grand Tour via Geodesic Interpolation of 2-frames
Asimov, Daniel; Buja, Andreas
1994-01-01
Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane. One of the original inspirations for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends to walk around the sculpture, viewing it from many different angles. A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes. Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path. In computer implementations, 2-dimensional orthogonal projections are specified by two 1-dimensional projections which map to the horizontal and vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs of orthonormal projection vectors. This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for constructing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in a natural Riemannian geometry.
Functional Commutant Lifting and Interpolation on Generalized Analytic Polyhedra
Czech Academy of Sciences Publication Activity Database
Ambrozie, Calin-Grigore
2008-01-01
Roč. 34, č. 2 (2008), s. 519-543 ISSN 0362-1588 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : intertwining lifting * interpolation * analytic functions Subject RIV: BA - General Mathematics Impact factor: 0.327, year: 2008
Geometries and interpolations for symmetric positive definite matrices
DEFF Research Database (Denmark)
Feragen, Aasa; Fuster, Andrea
2017-01-01
In this survey we review classical and recently proposed Riemannian metrics and interpolation schemes on the space of symmetric positive definite (SPD) matrices. We perform simulations that illustrate the problem of tensor fattening not only in the usually avoided Frobenius metric, but also...
Robust control, multidimensional systems and multivariable Nevanlinna-Pick interpolation
Ball, J.A.; ter Horst, S.
2010-01-01
The connection between the standard $H^\\infty$-problem in control theory and Nevanlinna-Pick interpolation in operator theory was established in the 1980s, and has led to a fruitful cross-pollination between the two fields since. In the meantime, research in $H^\\infty$-control theory has moved on to
Quantitative analysis of the reconstruction performance of interpolants
Lansing, Donald L.; Park, Stephen K.
1987-01-01
The analysis presented provides a quantitative measure of the reconstruction or interpolation performance of linear, shift-invariant interpolants. The performance criterion is the mean square error of the difference between the sampled and reconstructed functions. The analysis is applicable to reconstruction algorithms used in image processing and to many types of splines used in numerical analysis and computer graphics. When formulated in the frequency domain, the mean square error clearly separates the contribution of the interpolation method from the contribution of the sampled data. The equations provide a rational basis for selecting an optimal interpolant; that is, one which minimizes the mean square error. The analysis has been applied to a selection of frequently used data splines and reconstruction algorithms: parametric cubic and quintic Hermite splines, exponential and nu splines (including the special case of the cubic spline), parametric cubic convolution, Keys' fourth-order cubic, and a cubic with a discontinuous first derivative. The emphasis in this paper is on the image-dependent case in which no a priori knowledge of the frequency spectrum of the sampled function is assumed.
LIP: The Livermore Interpolation Package, Version 1.6
Energy Technology Data Exchange (ETDEWEB)
Fritsch, F. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-01-04
This report describes LIP, the Livermore Interpolation Package. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since it is a general-purpose package that need not be restricted to equation of state data, which uses variables ρ (density) and T (temperature).
Interpolation decoding method with variable parameters for fractal image compression
International Nuclear Information System (INIS)
He Chuanjiang; Li Gaoping; Shen Xiaona
2007-01-01
The interpolation fractal decoding method, which is introduced by [He C, Yang SX, Huang X. Progressive decoding method for fractal image compression. IEE Proc Vis Image Signal Process 2004;3:207-13], involves generating progressively the decoded image by means of an interpolation iterative procedure with a constant parameter. It is well-known that the majority of image details are added at the first steps of iterations in the conventional fractal decoding; hence the constant parameter for the interpolation decoding method must be set as a smaller value in order to achieve a better progressive decoding. However, it needs to take an extremely large number of iterations to converge. It is thus reasonable for some applications to slow down the iterative process at the first stages of decoding and then to accelerate it afterwards (e.g., at some iteration as we need). To achieve the goal, this paper proposed an interpolation decoding scheme with variable (iteration-dependent) parameters and proved the convergence of the decoding process mathematically. Experimental results demonstrate that the proposed scheme has really achieved the above-mentioned goal
Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation
Gordon, Sheldon P.; Yang, Yajun
2017-01-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…
Improved Interpolation Kernels for Super-resolution Algorithms
DEFF Research Database (Denmark)
Rasti, Pejman; Orlova, Olga; Tamberg, Gert
2016-01-01
Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial gue...
On some interpolation properties in locally convex spaces
Energy Technology Data Exchange (ETDEWEB)
Pater, Flavius [Department of Mathematics, Politehnica University of Timişoara, 300004 Timişoara (Romania)
2015-03-10
The aim of this paper is to introduce the notion of interpolation between locally convex spaces, the real method, and to present some elementary results in this setting. This represents a generalization from the Banach spaces framework to the locally convex spaces sequentially complete one, where the operators acting on them are locally bounded.
Twitch interpolation technique in testing of maximal muscle strength
DEFF Research Database (Denmark)
Bülow, P M; Nørregaard, J; Danneskiold-Samsøe, B
1993-01-01
The aim was to study the methodological aspects of the muscle twitch interpolation technique in estimating the maximal force of contraction in the quadriceps muscle utilizing commercial muscle testing equipment. Six healthy subjects participated in seven sets of experiments testing the effects...
Voluntary activation of trapezius measured with twitch interpolation
DEFF Research Database (Denmark)
Taylor, Janet L; Olsen, Henrik Baare; Sjøgaard, Gisela
2009-01-01
This study investigated the feasibility of measuring voluntary activation of the trapezius muscle with twitch interpolation. Subjects (n=8) lifted the right shoulder or both shoulders against fixed force transducers. Stimulation of the accessory nerve in the neck was used to evoke maximal twitche...
Spatial interpolation quality assessments for soil sensor transect datasets
Near-ground geophysical soil sensors provide extremely valuable information for precision agriculture applications. Indeed, their readings can be used as proxy for many soil parameters. Typically, leave-one-out (loo) cross-validation (CV) of spatial interpolation of sensor data returns overly optimi...
Interpolation on sparse Gauss-Chebyshev grids in higher dimensions
F. Sprengel
1998-01-01
textabstractIn this paper, we give a unified approach to error estimates for interpolation on sparse Gauss--Chebyshev grids for multivariate functions from Besov--type spaces with dominating mixed smoothness properties. The error bounds obtained for this method are almost optimal for the considered
Multivariable operator-valued Nevanlinna-Pick interpolation: a survey
Ball, J.A.; ter Horst, S.|info:eu-repo/dai/nl/298809877
2010-01-01
The theory of Nevanlinna-Pick and Carathéodory-Fejér interpolation for matrix- and operator-valued Schur class functions on the unit disk is now well established. Recent work has produced extensions of the theory to a variety of multivariable settings, including the ball and the polydisk (both
Interpolation solution of the single-impurity Anderson model
International Nuclear Information System (INIS)
Kuzemsky, A.L.
1990-10-01
The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs
Blind Authentication Using Periodic Properties ofInterpolation
Czech Academy of Sciences Publication Activity Database
Mahdian, Babak; Saic, Stanislav
2008-01-01
Roč. 3, č. 3 (2008), s. 529-538 ISSN 1556-6013 R&D Projects: GA ČR GA102/08/0470 Institutional research plan: CEZ:AV0Z10750506 Keywords : image forensics * digital forgery * image tampering * interpolation detection * resampling detection Subject RIV: IN - Informatics, Computer Science Impact factor: 2.230, year: 2008
Limiting reiteration for real interpolation with slowly varying functions
Czech Academy of Sciences Publication Activity Database
Gogatishvili, Amiran; Opic, Bohumír; Trebels, W.
2005-01-01
Roč. 278, 1-2 (2005), s. 86-107 ISSN 0025-584X R&D Projects: GA ČR(CZ) GA201/01/0333 Institutional research plan: CEZ:AV0Z10190503 Keywords : real interpolation * K-functional * limiting reiteration Subject RIV: BA - General Mathematics Impact factor: 0.465, year: 2005
Interpol: An R package for preprocessing of protein sequences
Directory of Open Access Journals (Sweden)
Heider Dominik
2011-06-01
Full Text Available Abstract Background Most machine learning techniques currently applied in the literature need a fixed dimensionality of input data. However, this requirement is frequently violated by real input data, such as DNA and protein sequences, that often differ in length due to insertions and deletions. It is also notable that performance in classification and regression is often improved by numerical encoding of amino acids, compared to the commonly used sparse encoding. Results The software "Interpol" encodes amino acid sequences as numerical descriptor vectors using a database of currently 532 descriptors (mainly from AAindex, and normalizes sequences to uniform length with one of five linear or non-linear interpolation algorithms. Interpol is distributed with open source as platform independent R-package. It is typically used for preprocessing of amino acid sequences for classification or regression. Conclusions The functionality of Interpol widens the spectrum of machine learning methods that can be applied to biological sequences, and it will in many cases improve their performance in classification and regression.
Beyond the singularity of the 2-D charged black hole
International Nuclear Information System (INIS)
Giveon, Amit; Rabinovici, Eliezer; Sever, Amit
2003-01-01
Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)
Pursell-Shanks type theorems for fewnomial singularities
International Nuclear Information System (INIS)
Khimshiashvili, G.
2006-04-01
We discuss certain situations in which the analytic isomorphism class of an isolated hypersurface singularity is determined by the Lie algebra of derivations of its moduli algebra. Our main attention is given to singularities defined by polynomials with the number of monomials equal to the number of variables. In this context, we indicate several classes of singularities which are classified by the associated Lie algebras. In particular, it is shown that this takes place for isolated singularities defined by binomials in two variables with the Milnor number not less than 7, which implies that simple singularities with Milnor number not less than 7 can be classified by the associated Lie algebras. Similar results are obtained for several other classes of isolated hypersurfaces singularities. A number of related results and open problems are also presented. (author)
Accuracy of stream habitat interpolations across spatial scales
Sheehan, Kenneth R.; Welsh, Stuart A.
2013-01-01
Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
Quantum singularities in the FRW universe revisited
International Nuclear Information System (INIS)
Letelier, Patricio S.; Pitelli, Joao Paulo M.
2010-01-01
The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=(1/3)ρ in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied, and it is shown that the energy conditions are violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the nonsingular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of nonnormalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.
Electricity consumption forecasting using singular spectrum analysis
Directory of Open Access Journals (Sweden)
Moisés Lima de Menezes
2015-01-01
Full Text Available El Análisis Espectral Singular (AES es una técnica no paramétrica que permite la descomposición de una serie de tiempo en una componente de señal y otra de ruido. De este modo, AES es una técnica útil para la extracción de la tendencia, la suavización y el filtro una serie de tiempo. En este artículo se investiga el efecto sobre el desempeño los modelos de Holt-Winters y de Box & Jenkins al ser aplicados a una serie de tiempo filtrada por AES. Tres diferentes metodologías son evaluadas con el enfoque de AES: Análisis de Componentes Principales (ACP, análisis de conglomerados y análisis gráfico de vectores singulares. Con el fin de ilustrar y comparar dichas metodologías, en este trabajo también se presentaron los principales resultados de un experimento computacional para el consumo residencial mensual de electricidad en Brasil.
Identification of discrete chaotic maps with singular points
Directory of Open Access Journals (Sweden)
P. G. Akishin
2001-01-01
Full Text Available We investigate the ability of artificial neural networks to reconstruct discrete chaotic maps with singular points. We use as a simple test model the Cusp map. We compare the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet Neural Network. The numerical scheme for the accurate determination of a singular point is also developed. We show that combining a neural network with the numerical algorithm for the determination of the singular point we are able to accurately approximate discrete chaotic maps with singularities.
Metric dimensional reduction at singularities with implications to Quantum Gravity
Stoica, Ovidiu Cristinel
2014-08-01
A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity.
Numerical investigation of stress singularities in cracked bimaterial body
Czech Academy of Sciences Publication Activity Database
Náhlík, Luboš; Šestáková, Lucie; Hutař, Pavel
2008-01-01
Roč. 385-387, - (2008), s. 125-128 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /7./. Seoul, 09.09.2008-11.09.2008] R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GP106/06/P239; GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : bimaterial interface * stress singularity exponent * corner singularity * vertex singularity * general singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics
Can non-commutativity resolve the big-bang singularity?
Energy Technology Data Exchange (ETDEWEB)
Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)
2004-08-01
A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)
A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow
International Nuclear Information System (INIS)
Baker, G.; Siegel, M.; Tanveer, S.
1995-01-01
We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab
A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow
Baker, Gregory; Siegel, Michael; Tanveer, Saleh
1995-01-01
We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.
Amirjanyan, A. A.; Sahakyan, A. V.
2017-08-01
A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.
A vida singular de um jovem militante
Directory of Open Access Journals (Sweden)
Áurea Maria Guimarães
2012-01-01
Full Text Available Esse artigo é fruto de uma pesquisa realizada no período de 2007 a 2010, junto a jovens militantes da cidade de Campinas, com o objetivo de compreender as diferentes maneiras que conduziam esses jovens tanto a reproduzir um modelo de vida quanto a criar outras possibilidades de militância na relação com esse modelo. Entre as histórias orais de vida narradas por jovens que militavam em diferentes grupos ou instituições, escolhi a vida de Biula, representante do movimento estudantil secundarista, procurando evidenciar que a singularidade desta vida, como também e a de outros jovens, estava conectada à problematização que faziam no interior de certas práticas, histórica e culturalmente constituídas, possibilitando a criação de novas formas de subjetivação nas quais se modificava a experiência que tinham deles mesmos na relação com os seus heróis ou modelos de referência. Palavras-chave: história oral – transcriação – heróis – resistência - processos de singularização. THE SINGULAR LIFE OF A YOUNG MILITANT ABSTRACT This article is the result of a research carried out from 2007 to 2010 with young militants in the city of Campinas, aiming to understand the different ways which conducted these youngsters to both reproduce a life model and create other possibilities of militancy in the relationship with this model. Among oral stories narrated by young militants from different groups or institutions, I have chosen the life of Biula, a representative of the secondary students’ movement, trying to show that the singularity of this life and other youngsters’ lives was connected to the problematization they promoted within certain practices, historically and culturally built, thus enabling the creation of new subjectification modes in which the experience they had of themselves in the relationship with their heroes or reference models has changed. Key words: oral history - transcreation – heroes
Mega-History and the 21st century singularity puzzle
Directory of Open Access Journals (Sweden)
Akop P. Nazaretyan
2015-06-01
Full Text Available A series of calculations carried out independently by the Australian, Russian and American re- searchers have demonstrated that a crucial global polyfurcation is expected near the middle of the 21st century. This result is drawn by extrapolating into the future the logarithmic acceleration law, which involves the phase transitions in the evolution of biosphere and anthroposphere. The paper investigates the palliatives of the planetary civilization beyond the big evolutionary Singularity in the context of Mega-history and complexity theory worldviews. It gives the mathematical deduction a universal ground and besides, helps involve some recent discoveries in psychology and cultural anthropology to tracing the forecasting attractors and scenarios. The destiny of the Earth (as well as any other planetary civilization may conclusively depend on whether or not the intellectual ac- tor succeeds in developing his inner regulation to balance the potentially unlimited developments in technological power. Particularly, this includes overcoming the macro-group identities, religious and quasi-religious ideologies, which always suggest a friend-or-foe discrimination matrix.
Time-Frequency Signal Representations Using Interpolations in Joint-Variable Domains
2016-06-14
frequently encountered in various radar applications. Data interpolators play a unique role in TF signal representations under missing samples. When...applied in the instantaneous autocorrelation domain over the time variable, the low-pass filter characteristic underlying linear interpolators lends...itself to cross-terms reduction in the ambiguity domain. This is in contrast to interpolation performed over the lag variable or a direct interpolation
Singular Instantons and Painlevé VI
Muñiz Manasliski, Richard
2016-06-01
We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU_2 on S^4, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (P_VI}) and we will give an explicit expression of the map between instantons and solutions to P_{VI}. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S^4. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.
Generalized decomposition methods for singular oscillators
International Nuclear Information System (INIS)
Ramos, J.I.
2009-01-01
Generalized decomposition methods based on a Volterra integral equation, the introduction of an ordering parameter and a power series expansion of the solution in terms of the ordering parameter are developed and used to determine the solution and the frequency of oscillation of a singular, nonlinear oscillator with an odd nonlinearity. It is shown that these techniques provide solutions which are free from secularities if the unknown frequency of oscillation is also expanded in power series of the ordering parameter, require that the nonlinearities be analytic functions of their arguments, and, at leading-order, provide the same frequency of oscillation as two-level iterative techniques, the homotopy perturbation method if the constants that appear in the governing equation are expanded in power series of the ordering parameter, and modified artificial parameter - Linstedt-Poincare procedures.
The technological singularity and exponential medicine
Directory of Open Access Journals (Sweden)
Iraj Nabipour
2016-01-01
Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.
Spectral singularities and zero energy bound states
Energy Technology Data Exchange (ETDEWEB)
Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)
2011-08-15
Single particle scattering around zero energy is re-analysed in view of recent experiments with ultra-cold atoms, nano-structures and nuclei far from the stability valley. For non-zero orbital angular momentum the low energy scattering cross section exhibits dramatic changes depending on the occurrence of either a near resonance or a bound state or the situation in between, that is a bound state at zero energy. Such state is singular in that it has an infinite scattering length, behaves for the eigenvalues but not for the eigenfunctions as an exceptional point and has no pole in the scattering function. These results should be observable whenever the interaction or scattering length can be controlled. (authors)
LINTAB, Linear Interpolable Tables from any Continuous Variable Function
International Nuclear Information System (INIS)
1988-01-01
1 - Description of program or function: LINTAB is designed to construct linearly interpolable tables from any function. The program will start from any function of a single continuous variable... FUNKY(X). By user input the function can be defined, (1) Over 1 to 100 X ranges. (2) Within each X range the function is defined by 0 to 50 constants. (3) At boundaries between X ranges the function may be continuous or discontinuous (depending on the constants used to define the function within each X range). 2 - Method of solution: LINTAB will construct a table of X and Y values where the tabulated (X,Y) pairs will be exactly equal to the function (Y=FUNKY(X)) and linear interpolation between the tabulated pairs will be within any user specified fractional uncertainty of the function for all values of X within the requested X range
Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.
Ratliff, Bradley M; LaCasse, Charles F; Tyo, J Scott
2009-05-25
Microgrid polarimeters are composed of an array of micro-polarizing elements overlaid upon an FPA sensor. In the past decade systems have been designed and built in all regions of the optical spectrum. These systems have rugged, compact designs and the ability to obtain a complete set of polarimetric measurements during a single image capture. However, these systems acquire the polarization measurements through spatial modulation and each measurement has a varying instantaneous field-of-view (IFOV). When these measurements are combined to estimate the polarization images, strong edge artifacts are present that severely degrade the estimated polarization imagery. These artifacts can be reduced when interpolation strategies are first applied to the intensity data prior to Stokes vector estimation. Here we formally study IFOV error and the performance of several bilinear interpolation strategies used for reducing it.
Comparison of interpolation methods for raster images scaling
Directory of Open Access Journals (Sweden)
Trubakov A.O.
2017-03-01
Full Text Available The article is devoted to the problem of efficient scaling of raster images. We consider some negative effects, related with scaling of raster images. Besides, we consider an analysis of several methods that are used to increase sizes of ras-ter images. Among them are nearest neighbor algorithm, bilinear interpolation, bicubic interpolation. We consider our research methodology, and then we tell about result of algorithms comparison. We use two criteria: quality of output images and performance of algorithms. Due to this research we can tell some recommendations on the choice of algo-rithms for increment of raster images. It is useful because there is no single universal algorithm for efficient solution to the problem.
Runoff Interpolation and Budyko Framework over 300 Catchments across China
Qiu, Ning
2017-04-01
The Budyko hypothesis illustrates that mean annual evapotranspiration is largely determined by precipitation and potential evapotranspiration, which can be adopted to estimate mean annual actual evapotranspiration. In this study Fu's equation derived from the Budyko hypothesis is firstly tested by using mean annual streamflow and meteorological data of over 300 hydrological stations from ten main basins in China. Result shows that significant differences yield in the application of Fu's equation among basins. Secondly, the relationship between the single parameterωin Fu's equation and climatic and human factors was built to reveal the time variation of it. Meanwhile, the spacial structure characteristic of the regionalized variable ω was analyzed including spatial autocorrelation and locality. Then a stochastic interpolation scheme based on geostatistical interpolation, adding a constraint of global water balance in river system, is developed to mapping ω and runoff, aimed to predict runoff of elements of target partition of main basins and compare to the results computed by using Budyko hypothesis.
Dynamic Stability Analysis Using High-Order Interpolation
Directory of Open Access Journals (Sweden)
Juarez-Toledo C.
2012-10-01
Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.
Interpolation spaces in the resolution of ill-posed problems
International Nuclear Information System (INIS)
Logon, T.B.
1995-11-01
A number of applied problems connected with the interpretation of geophysical data leads to the resolution of ill-posed problems of the form A x = y δ , where A is an integral operator and y δ - some measurements. In the resolution of these problems by the Tikhonov's variational method, the choice of the stabilizing functional is crucial and needs some a-priori informations about the exact solution. Here the norm of the interpolation spaces X θ,q, which depends on two parameters 0 < θ < 1, 1 ≤ q < ∞ is proposed as a stabilizing functional. The a-priori information about the exact solution is characterized by its membership in one of the interpolation spaces. (author). 9 refs
Interpolated Sounding and Gridded Sounding Value-Added Products
Energy Technology Data Exchange (ETDEWEB)
Jensen, M. P. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Toto, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States)
2016-03-01
Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25 and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.
A parameterization of observer-based controllers: Bumpless transfer by covariance interpolation
DEFF Research Database (Denmark)
Stoustrup, Jakob; Komareji, Mohammad
2009-01-01
This paper presents an algorithm to interpolate between two observer-based controllers for a linear multivariable system such that the closed loop system remains stable throughout the interpolation. The method interpolates between the inverse Lyapunov functions for the two original state feedbacks...
2010-01-01
... Executive Order 12425 Designating Interpol as a Public International Organization Entitled To Enjoy Certain... Order 13524 of December 16, 2009 EO 13524 Amending Executive Order 12425 Designating Interpol as a... Organization (INTERPOL), it is hereby ordered that Executive Order 12425 of June 16, 1983, as amended, is...
On reliability of singular-value decomposition in attractor reconstruction
International Nuclear Information System (INIS)
Palus, M.; Dvorak, I.
1990-12-01
Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs
K3-fibered Calabi-Yau threefolds II, singular fibers
Hunt, Bruce
1999-01-01
In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.
Stability of naked singularity arising in gravitational collapse of Type ...
Indian Academy of Sciences (India)
to choose the velocity function and rest of the initial data so that the end state of collapse is either a black hole (BH) or a naked singularity (NS). This result is significant for two reasons: (1) It produces a substantially 'big' initial data set which under gravitational collapse results into a naked singularity. (2) Type I matter fields.
A numerical method for solving singular De`s
Energy Technology Data Exchange (ETDEWEB)
Mahaver, W.T.
1996-12-31
A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.
The Notion of 'Singularity' in the Work of Gilles Deleuze
DEFF Research Database (Denmark)
Borum, Peter
2017-01-01
In Deleuze, singularity replaces generality in the economy of thought. A Deleuzian singularity is an event, but the notion comprises the effectuation of the event into form. The triptych émission–distribution–répartition itself distributes the dimensions of the passage from form-giving event...
Reliable finite element methods for self-adjoint singular perturbation ...
African Journals Online (AJOL)
It is well known that the standard finite element method based on the space Vh of continuous piecewise linear functions is not reliable in solving singular perturbation problems. It is also known that the solution of a two-point boundaryvalue singular perturbation problem admits a decomposition into a regular part and a finite ...
Singular Differential Equations and g-Drazin Invertible Operators
Directory of Open Access Journals (Sweden)
Alrazi Abdeljabbar
2016-01-01
Full Text Available We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.
Singular Differential Equations and g-Drazin Invertible Operators
Abdeljabbar, Alrazi; Tran, Trung Dinh
2016-01-01
We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.
Periodic solutions to second-order indefinite singular equations
Czech Academy of Sciences Publication Activity Database
Hakl, Robert; Zamora, M.
2017-01-01
Roč. 263, č. 1 (2017), s. 451-469 ISSN 0022-0396 Institutional support: RVO:67985840 Keywords : degree theory * indefinite singularity * periodic solution * singular differential equation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.988, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022039617301134
Some BMO estimates for vector-valued multilinear singular integral ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
the multilinear operator related to some singular integral operators is obtained. The main purpose of this paper is to establish the BMO end-point estimates for some vector-valued multilinear operators related to certain singular integral operators. First, let us introduce some notations [10,16]. Throughout this paper, Q = Q(x,r).
Infinite derivative gravity : non-singular cosmology & blackhole solutions
Mazumdar, Anupam
2017-01-01
Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and
A Note on Inclusion Intervals of Matrix Singular Values
Directory of Open Access Journals (Sweden)
Shu-Yu Cui
2012-01-01
Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.
The Metaphysics and Epistemology of Singular Terms | Borg ...
African Journals Online (AJOL)
Can we draw apart questions of what it is to be a singular term (a metaphysical issue) from questions about how we tell when some expression is a singular term (an epistemological matter)? Prima facie, it might seem we can't: language, as a man-made edifice, might seem to prohibit such a distinction, and, indeed, some ...
Dynamics of Learning in MLP: Natural Gradient and Singularity Revisited.
Amari, Shun-Ichi; Ozeki, Tomoko; Karakida, Ryo; Yoshida, Yuki; Okada, Masato
2018-01-01
The dynamics of supervised learning play a main role in deep learning, which takes place in the parameter space of a multilayer perceptron (MLP). We review the history of supervised stochastic gradient learning, focusing on its singular structure and natural gradient. The parameter space includes singular regions in which parameters are not identifiable. One of our results is a full exploration of the dynamical behaviors of stochastic gradient learning in an elementary singular network. The bad news is its pathological nature, in which part of the singular region becomes an attractor and another part a repulser at the same time, forming a Milnor attractor. A learning trajectory is attracted by the attractor region, staying in it for a long time, before it escapes the singular region through the repulser region. This is typical of plateau phenomena in learning. We demonstrate the strange topology of a singular region by introducing blow-down coordinates, which are useful for analyzing the natural gradient dynamics. We confirm that the natural gradient dynamics are free of critical slowdown. The second main result is the good news: the interactions of elementary singular networks eliminate the attractor part and the Milnor-type attractors disappear. This explains why large-scale networks do not suffer from serious critical slowdowns due to singularities. We finally show that the unit-wise natural gradient is effective for learning in spite of its low computational cost.
One Critical Case in Singularly Perturbed Control Problems
Sobolev, Vladimir
2017-02-01
The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.
Singularity is the future of ICT research | Osuagwu | West African ...
African Journals Online (AJOL)
Proponents of the singularity call the event an "intelligence explosion" which is a key factor of the Singularity where super-intelligence design successive generations of increasingly powerful minds. The originator of the term – Vernor Vinge - and popularized by Ray Kurzwei has proposed that Artificial Intelligence, human ...
Direct Trajectory Interpolation on the Surface using an Open CNC
Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe
2014-01-01
International audience; Free-form surfaces are used for many industrial applications from aeronautical parts, to molds or biomedical implants. In the common machining process, computer-aided manufacturing (CAM) software generates approximated tool paths because of the limitation induced by the input tool path format of the industrial CNC. Then, during the tool path interpolation, marks on finished surfaces can appear induced by non smooth feedrate planning. Managing the geometry of the tool p...
Interpolated pressure laws in two-fluid simulations and hyperbolicity
Helluy, Philippe; Jung, Jonathan
2014-01-01
We consider a two-fluid compressible flow. Each fluid obeys a stiffened gas pressure law. The continuous model is well defined without considering mixture regions. However, for numerical applications it is often necessary to consider artificial mixtures, because the two-fluid interface is diffused by the numerical scheme. We show that classic pressure law interpolations lead to a non-convex hyperbolicity domain and failure of well-known numerical schemes. We propose a physically relevant pres...
The modal surface interpolation method for damage localization
Pina Limongelli, Maria
2017-05-01
The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).
Image interpolation via graph-based Bayesian label propagation.
Xianming Liu; Debin Zhao; Jiantao Zhou; Wen Gao; Huifang Sun
2014-03-01
In this paper, we propose a novel image interpolation algorithm via graph-based Bayesian label propagation. The basic idea is to first create a graph with known and unknown pixels as vertices and with edge weights encoding the similarity between vertices, then the problem of interpolation converts to how to effectively propagate the label information from known points to unknown ones. This process can be posed as a Bayesian inference, in which we try to combine the principles of local adaptation and global consistency to obtain accurate and robust estimation. Specially, our algorithm first constructs a set of local interpolation models, which predict the intensity labels of all image samples, and a loss term will be minimized to keep the predicted labels of the available low-resolution (LR) samples sufficiently close to the original ones. Then, all of the losses evaluated in local neighborhoods are accumulated together to measure the global consistency on all samples. Moreover, a graph-Laplacian-based manifold regularization term is incorporated to penalize the global smoothness of intensity labels, such smoothing can alleviate the insufficient training of the local models and make them more robust. Finally, we construct a unified objective function to combine together the global loss of the locally linear regression, square error of prediction bias on the available LR samples, and the manifold regularization term. It can be solved with a closed-form solution as a convex optimization problem. Experimental results demonstrate that the proposed method achieves competitive performance with the state-of-the-art image interpolation algorithms.
Construction of fractal surfaces by recurrent fractal interpolation curves
International Nuclear Information System (INIS)
Yun, Chol-hui; O, Hyong-chol; Choi, Hui-chol
2014-01-01
A method to construct fractal surfaces by recurrent fractal curves is provided. First we construct fractal interpolation curves using a recurrent iterated functions system (RIFS) with function scaling factors and estimate their box-counting dimension. Then we present a method of construction of wider class of fractal surfaces by fractal curves and Lipschitz functions and calculate the box-counting dimension of the constructed surfaces. Finally, we combine both methods to have more flexible constructions of fractal surfaces
Singular Null Hypersurfaces in General Relativity
International Nuclear Information System (INIS)
Dray, T
2006-01-01
Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of
Accurate interpolation of 3D fields in charged particle optics.
Horák, Michal; Badin, Viktor; Zlámal, Jakub
2018-03-29
Standard 3D interpolation polynomials often suffer from numerical errors of the calculated field and lack of node points in the 3D solution. We introduce a novel method for accurate and smooth interpolation of arbitrary electromagnetic fields in the vicinity of the optical axis valid up to 90% of the bore radius. Our method combines Fourier analysis and Gaussian wavelet interpolation and provides the axial multipole field functions and their derivatives analytically. The results are accurate and noiseless, usually up to the 5th derivative. This is very advantageous for further applications, such as accurate particle tracing, and evaluation of aberration coefficients and other optical properties. The proposed method also enables studying the strength and orientation of all multipole field components. To illustrate the capabilities of the proposed algorithm, we present three examples: a magnetic lens with a hole in the polepiece, a saturated magnetic lens with an elliptic polepiece, and an electrostatic 8-electrode multipole. Copyright © 2018 Elsevier B.V. All rights reserved.
Importance of interpolation and coincidence errors in data fusion
Directory of Open Access Journals (Sweden)
S. Ceccherini
2018-02-01
Full Text Available The complete data fusion (CDF method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.
A Direct Coarray Interpolation Approach for Direction Finding
Directory of Open Access Journals (Sweden)
Tao Chen
2017-09-01
Full Text Available Sparse arrays have gained considerable attention in recent years because they can resolve more sources than the number of sensors. The coprime array can resolve O ( M N sources with only O ( M + N sensors, and is a popular sparse array structure due to its closed-form expressions for array configuration and the reduction of the mutual coupling effect. However, because of the existence of holes in its coarray, the performance of subspace-based direction of arrival (DOA estimation algorithms such as MUSIC and ESPRIT is limited. Several coarray interpolation approaches have been proposed to address this issue. In this paper, a novel DOA estimation approach via direct coarray interpolation is proposed. By using the direct coarray interpolation, the reshaping and spatial smoothing operations in coarray-based DOA estimation are not needed. Compared with existing approaches, the proposed approach can achieve a better accuracy with lower complexity. In addition, an improved angular resolution capability is obtained by using the proposed approach. Numerical simulations are conducted to validate the effectiveness of the proposed approach.
Interpolation of daily rainfall using spatiotemporal models and clustering
Militino, A. F.
2014-06-11
Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.
Workshop on Singularities in Geometry, Topology, Foliations and Dynamics
Lê, Dung; Oka, Mutsuo; Snoussi, Jawad
2017-01-01
This book features state-of-the-art research on singularities in geometry, topology, foliations and dynamics and provides an overview of the current state of singularity theory in these settings. Singularity theory is at the crossroad of various branches of mathematics and science in general. In recent years there have been remarkable developments, both in the theory itself and in its relations with other areas. The contributions in this volume originate from the “Workshop on Singularities in Geometry, Topology, Foliations and Dynamics”, held in Merida, Mexico, in December 2014, in celebration of José Seade’s 60th Birthday. It is intended for researchers and graduate students interested in singularity theory and its impact on other fields.
Complexity, Analysis and Control of Singular Biological Systems
Zhang, Qingling; Zhang, Xue
2012-01-01
Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...
Detection of Singularities in Fingerprint Images Using Linear Phase Portraits
Ram, Surinder; Bischof, Horst; Birchbauer, Josef
abstract The performance of fingerprint recognition depends heavily on the reliable extraction of singularities. Common algorithms are based on a Poinc’are Index estimation. These algorithms are only robust when certain heuristics and rules are applied. In this chapter we present a model-based approach for the detection of singular points. The presented method exploits the geometric nature of linear differential equation systems. Our method is robust against noise in the input image and is able to detect singularities even if they are partly occluded. The algorithm proceeds by fitting linear phase portraits at each location of a sliding window and then analyses its parameters. Using a well-established mathematical background, our algorithm is able to decide if a singular point is existent. Furthermore, the parameters can be used to classify the type of the singular point into whorls, deltas and loops.
On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.
Solé, Ricard; Amor, Daniel R; Valverde, Sergi
2016-01-01
It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.
On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.
Directory of Open Access Journals (Sweden)
Ricard Solé
Full Text Available It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.
3rd Singularity Theory Meeting of Northeast region & the Brazil-Mexico 2nd Meeting on Singularities
Neto, Aurélio; Mond, David; Saia, Marcelo; Snoussi, Jawad; BMMS 2/NBMS 3; ENSINO; Singularities and foliations geometry, topology and applications
2018-01-01
This proceedings book brings selected works from two conferences, the 2nd Brazil-Mexico Meeting on Singularity and the 3rd Northeastern Brazilian Meeting on Singularities, that were hold in Salvador, in July 2015. All contributions were carefully peer-reviewed and revised, and cover topics like Equisingularity, Topology and Geometry of Singularities, Topological Classification of Singularities of Mappings, and more. They were written by mathematicians from several countries, including Brazil, Spain, Mexico, Japan and the USA, on relevant topics on Theory of Singularity, such as studies on deformations, Milnor fibration, foliations, Catastrophe theory, and myriad applications. Open problems are also introduced, making this volume a must-read both for graduate students and active researchers in this field.
International Nuclear Information System (INIS)
Garcia-Santos, J. M.; Cejudo, J.
2002-01-01
In contrast to conventional computed tomography (CT), helical CT requires the application of interpolators to achieve image reconstruction. This is because the projections processed by the computer are not situated in the same plane. Since the introduction of helical CT. a number of interpolators have been designed in the attempt to maintain the thickness of the reconstructed section as close as possible to the thickness of the X-ray beam. The purpose of this article is to discuss the function of these interpolators, stressing the advantages and considering the possible inconveniences of high-grade curved interpolators with respect to standard linear interpolators. (Author) 7 refs
PREFACE: Singular interactions in quantum mechanics: solvable models
Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir
2005-06-01
editors study a toy model of a decay under the influence of a time-periodic δ potential. E Demiralp describes the spectrum of a spherical harmonic oscillator amended with a concentric family of δ-shell interactions. Another of the editors presents an isoperimetric problem for point interactions arranged at vertices of a polygon. W Huddell and R Hughes show how singular perturbations of a one-dimensional Dirac operator can be approximated by regular potentials, and J Brasche constructs a family of Hamiltonians in which the singular interaction has a more complicated support, namely a Brownian path. Finally, B Pavlov and I Antoniou apply the singular perturbation technique to another classical Hamiltonian, that of a generalized Friedrichs model; no matter that the unperturbed observable is called momentum in their paper. The three papers in the following group are distinguished by the fact that they consider systems which are fully or partially periodic. F Bentosela and M Tater analyse scattering on a crystalline `slab' modelled by point interactions distributed periodically on a finite number of parallel plates. E de Prunelé studies evolution of wavepackets in crystal models of different geometries, and M Avdonin et al discuss a simple model of a spin-dependent scattering on a one-dimensional array of quantum dots. The next group of papers is devoted to a topic which was untouched at the time of the aforementioned first edition, namely quantum graphs, which became a subject of interest after numerous applications of such systems to semiconductor, carbon and other nanostructures. Most contributions here deal with the `usual' model in which the Hamiltonian is a Schrödinger operator supported by the graph. P Kuchment describes spectral properties of such graphs, in particular periodic ones and those with decorations. S Albeverio and K Pankrashkin present a modification of Krein's formula which is suitable for constructing Hamiltonians of quantum graphs using boundary
Energy Technology Data Exchange (ETDEWEB)
Dotti, Gustavo; Gleiser, Reinaldo J [Facultad de Matematica, AstronomIa y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)
2009-11-07
The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation partial deriv{sup 2}PSI{sub z} /partial derivt{sup 2} +HPSI{sub z} =0, where H= -partial deriv{sup 2} /partial derivx{sup 2} + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field PSI{sub z} is singular at r{sub s} = -6M/(l - 1)(l +2), with l being the mode harmonic number. The equation PSI{sub z} obeys is also singular, since V has a second-order pole at r{sub s}. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and r{sub s} < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then r{sub s} > 0, and the singularity appears in the relevant range of r (0 < r < infinity). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, PSI-circumflex, that is a regular function of the metric perturbation for any value of M. The relation of PSI-circumflex to PSI{sub z} is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that PSI-circumflex and PSI{sub z} obey are related as a supersymmetric pair of quantum Hamiltonians H and H-circumflex. For M < 0,H-circumflex has a regular potential and a unique self-adjoint extension in a domain D defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of H-circumflex in D, and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for
Study on the algorithm for Newton-Rapson iteration interpolation of NURBS curve and simulation
Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng
2017-04-01
In order to solve the problems of Newton-Rapson iteration interpolation method of NURBS Curve, Such as interpolation time bigger, calculation more complicated, and NURBS curve step error are not easy changed and so on. This paper proposed a study on the algorithm for Newton-Rapson iteration interpolation method of NURBS curve and simulation. We can use Newton-Rapson iterative that calculate (xi, yi, zi). Simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.
Propagation property of the non-paraxial vector Lissajous singularity beams in free space
Chen, Haitao; Gao, Zenghui
2016-12-01
The analytic expressions for the free-space propagation of paraxial and non-paraxial vector Lissajous singularity beams are derived, and used to compare the propagation property of a Lissajous singularity carried by paraxial and non-paraxial vector beams in free space. It is found that the creation of a single Lissajous singularity, the creation and annihilation of pairs Lissajous singularities may take place for the both cases. However, after the annihilation of a pair of singularities, no Lissajous singularities appear in the output field for non-paraxial vector Lissajous singularity beams, which is different from the paraxial vector Lissajous singularity beams.
Terminal singularities, Milnor numbers, and matter in F-theory
Arras, Philipp; Grassi, Antonella; Weigand, Timo
2018-01-01
We initiate a systematic investigation of F-theory on elliptic fibrations with singularities which cannot be resolved without breaking the Calabi-Yau condition, corresponding to Q-factorial terminal singularities. It is the purpose of this paper to elucidate the physical origin of such non-crepant singularities in codimension two and to systematically analyze F-theory compactifications containing such singularities. The singularities reflect the presence of localized matter states from wrapped M2-branes which are not charged under any massless gauge potential. We identify a class of Q-factorial terminal singularities on elliptically fibered Calabi-Yau threefolds for which we can compute the number of uncharged localized hypermultiplets in terms of their associated Milnor numbers. These count the local complex deformations of the singularities. The resulting six-dimensional spectra are shown to be anomaly-free. We exemplify this in a variety of cases, including models with non-perturbative gauge groups with both charged and uncharged localized matter. The underlying mathematics will be discussed further in a forthcoming publication.
Solutions of dissimilar material singularity and contact problems
International Nuclear Information System (INIS)
Yang, Y.
2003-09-01
Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)
Singular Dimensions of theN= 2 Superconformal Algebras. I
Dörrzapf, Matthias; Gato-Rivera, Beatriz
Verma modules of superconfomal algebras can have singular vector spaces with dimensions greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce the concept of adapted orderings on superconformal algebras. We prove several general results on the ordering kernels associated to the adapted orderings and show that the size of an ordering kernel implies an upper limit for the dimension of a singular vector space. We apply this method to the topological N= 2 algebra and obtain the maximal dimensions of the singular vector spaces in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29 in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular vectors at level 1. Finally, by using the topological twists and the spectral flows, we also obtain the maximal dimensions of the singular vector spaces for the Neveu-Schwarz N= 2 algebra (0, 1 or 2) and for the Ramond N= 2 algebra (0, 1, 2 or 3).
An investigation of singular Lagrangians as field systems
International Nuclear Information System (INIS)
Rabei, E.M.
1995-07-01
The link between the treatment of singular Lagrangians as field systems and the general approach is studied. It is shown that singular Lagrangians as field systems are always in exact agreement with the general approach. Two examples and the singular Lagrangian with zero rank Hessian matrix are studied. The equations of motion in the field systems are equivalent to the equations which contain acceleration, and the constraints are equivalent to the equations which do not contain acceleration in the general approach treatment. (author). 10 refs
Singularity Preserving Numerical Methods for Boundary Integral Equations
Kaneko, Hideaki (Principal Investigator)
1996-01-01
In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.
Repulsive and attractive timelike singularities in vacuum cosmologies
International Nuclear Information System (INIS)
Miller, B.D.
1979-01-01
Spherically symmetric cosmologies whose big bang is partially spacelike and partially timelike are constrained to occur only in the presence of certain types of matter, and in such cosmologies the timelike part of the big bang is a negative-mass singularity. In this paper examples are given of cylindrically symmetric cosmologies whose big bang is partially spacelike and partially timelike. These cosmologies are vacuum. In some of them, the timelike part of the big bang is clearly a (generalized) negative-mass singularity, while in others it is a (generalized) positive-mass singularity
Finger image quality based on singular point localization
DEFF Research Database (Denmark)
Wang, Jinghua; Olsen, Martin A.; Busch, Christoph
2014-01-01
Singular points are important global features of fingerprints and singular point localization is a crucial step in biometric recognition. Moreover the presence and position of the core point in a captured fingerprint sample can reflect whether the finger is placed properly on the sensor. Therefore...... and analyze the importance of singular points on biometric accuracy. The experiment is based on large scale databases and conducted by relating the measured quality of a fingerprint sample, given by the positions of core points, to the biometric performance. The experimental results show the positions of core...
Singularity fitting in hydrodynamical calculations II
International Nuclear Information System (INIS)
Richtmyer, R.D.; Lazarus, R.B.
1975-09-01
This is the second report in a series on the development of techniques for the proper handling of singularities in fluid-dynamical calculations; the first was called Progress Report on the Shock-Fitting Project. This report contains six main results: derivation of a free-surface condition, which relates the acceleration of the surface with the gradient of the square of the sound speed just behind it; an accurate method for the early and middle stages of the development of a rarefaction wave, two orders of magnitude more accurate than a simple direct method used for comparison; the similarity theory of the collapsing free surface, where it is shown that there is a two-parameter family of self-similar solutions for γ = 3.9; the similarity theory for the outgoing shock, which takes into account the entropy increase; a ''zooming'' method for the study of the asymptotic behavior of solutions of the full initial boundary-value problem; comparison of two methods for determining the similarity parameter delta by zooming, which shows that the second method is preferred. Future reports in the series will contain discussions of the self-similar solutions for this problem, and for that of the collapsing shock, in more detail and for the full range (1, infinity) of γ; the values of certain integrals related to neutronic and thermonuclear rates near collapse; and methods for fitting shocks, contact discontinuities, interfaces, and free surfaces in two-dimensional flows
Singular perturbation in the physical sciences
Neu, John C
2015-01-01
This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we "see" how a mathematical pattern fits a physical problem is like "hitting the ball." Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutions of the equations their geometric and physical content. Through analysis, we come to sense directly the shape and feel of phenomena. The book is structured into a main text of fundamental ideas and a subtext of problems with detailed solutions. Roughly speaking, the former is the initial contact between mathematics and p...
Singular limits in thermodynamics of viscous fluids
Feireisl, Eduard
2017-01-01
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...
Evaluation of Nonlinear Methods for Interpolation of Catchment-Scale
Coleman, M. L.; Niemann, J. D.
2008-12-01
Soil moisture acts as a key state variable in interactions between the atmosphere and land surface, strongly influencing radiation and precipitation partitioning and thus many components of the hydrologic cycle. Despite its importance as a state variable, measuring soil moisture patterns with adequate spatial resolutions over useful spatial extents remains a significant challenge due to both physical and economic constraints. For this reason, ancillary data, such as topographic attributes, have been employed as process proxies and predictor variables for soil moisture. Most methods that have been used to estimate soil moisture from ancillary variables assume that soil moisture is linearly dependent on these variables. However, unsaturated zone water transport is typically modeled as a nonlinear function of the soil moisture state. While that fact does not necessarily imply nonlinear relationships with the ancillary variables, there is some evidence suggesting nonlinear methods may be more efficient than linear methods for interpolating soil moisture from ancillary data. Therefore, this work investigates the value of nonlinear estimation techniques, namely conditional density estimation, support vector machines, and a spatial artificial neural network, for interpolating soil moisture patterns from sparse measurements and ancillary data. The set of candidate predictor variables in this work includes simple and compound terrain attributes calculated from digital elevation models and, in some cases, soil texture data. The initial task in the interpolation procedure is the selection of the most effective predictor variables. Given the possibility of nonlinear relationships, mutual information is used to quantify relationships between candidate variables and soil moisture and ultimately to select the most efficient ancillary data as predictor variables. After selecting a subset of the potential ancillary data variables for use, the nonlinear estimation techniques are
Using dynamical interpolation to map high-resolution altimeter data in the Western Mediterranean Sea
Roge, M.; Morrow, R.; Gerald, D.
2016-12-01
The main oceanographic objective of the future SWOT mission is to characterize the ocean mesoscale and submesoscale circulation by observing the fine range of ocean dynamics (from 15-300 km). However it will not capture the time evolution of short mesoscale signals. Despite the very high spatial resolution of the future satellite, the temporal resolution is not sufficient to track the evolution of the small, rapid features (exact repeat cycle of 21 days, with near repeats around 5-10 days, depending on the latitude). High resolution SWOT sea surface height snapshots alone will not allow us to follow the dynamics of ocean variability at these scales, such as the formation and evolution of small eddies. Here, we investigate a means to reconstruct the missing SSH signal in time between two satellite revisits. We use a shallow water quasi-geostrophic model developed by Ubelmann et al (2015). Based on potential vorticity conservation, it dynamically advects the SSH field, assuming that the quasi-geostrophic dynamics are principally captured by the first baroclinic mode. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given improved results. Here we test this model in the Western Mediterranean Sea, where the first radius of deformation of Rossby is small (5-15 km), where the dynamics have a strong topographic control and strong spatial and seasonal variability. In this region, the technique provides a small improvement over linear interpolation in the coastal boundary current systems. The simple dynamical model is missing some physical mechanisms, needed to correctly represent the mesoscale circulation in this region, including a significant barotropic mode. We investigate modifications to the 1.5 layer model in this regional study, to include a topographic-beta effect and small-scale dissipation and an extension to a two-layer model. The results show an improved performance compared to simple linear
Motion compensated frame interpolation with a symmetric optical flow constraint
DEFF Research Database (Denmark)
Rakêt, Lars Lau; Roholm, Lars; Bruhn, Andrés
2012-01-01
We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function...... with current state-of-the-art methods. Finally we show that the scheme can be implemented on graphics hardware such that it be- comes possible to double the frame rate of 640 × 480 video footage at 30 fps, i.e. to perform frame doubling in realtime....
Data mining techniques in sensor networks summarization, interpolation and surveillance
Appice, Annalisa; Fumarola, Fabio; Malerba, Donato
2013-01-01
Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data.
Optimal interpolation method for intercomparison of atmospheric measurements.
Ridolfi, Marco; Ceccherini, Simone; Carli, Bruno
2006-04-01
Intercomparison of atmospheric measurements is often a difficult task because of the different spatial response functions of the experiments considered. We propose a new method for comparison of two atmospheric profiles characterized by averaging kernels with different vertical resolutions. The method minimizes the smoothing error induced by the differences in the averaging kernels by exploiting an optimal interpolation rule to map one profile into the retrieval grid of the other. Compared with the techniques published so far, this method permits one to retain the vertical resolution of the less-resolved profile involved in the intercomparison.
Interpolation in numerical optimization. [by cubic spline generation
Hall, K. R.; Hull, D. G.
1975-01-01
The present work discusses the generation of the cubic-spline interpolator in numerical optimization methods which use a variable-step integrator with step size control based on local relative truncation error. An algorithm for generating the cubic spline with successive over-relaxation is presented which represents an improvement over that given by Ralston and Wilf (1967). Rewriting the code reduces the number of N-vectors from eight to one. The algorithm is formulated in such a way that the solution of the linear system set up yields the first derivatives at the nodal points. This method is as accurate as other schemes but requires the minimum amount of storage.
A Bidirectional Flow Joint Sobolev Gradient for Image Interpolation
Directory of Open Access Journals (Sweden)
Yi Zhan
2013-01-01
Full Text Available An energy functional with bidirectional flow is presented to sharpen image by reducing its edge width, which performs a forward diffusion in brighter lateral on edge ramp and backward diffusion that proceeds in darker lateral. We first consider the diffusion equations as L2 gradient flows on integral functionals and then modify the inner product from L2 to a Sobolev inner product. The experimental results demonstrate that our model efficiently reconstructs the real image, leading to a natural interpolation with reduced blurring, staircase artifacts and preserving better the texture features of image.
Timescape: a simple space-time interpolation geostatistical Algorithm
Ciolfi, Marco; Chiocchini, Francesca; Gravichkova, Olga; Pisanelli, Andrea; Portarena, Silvia; Scartazza, Andrea; Brugnoli, Enrico; Lauteri, Marco
2016-04-01
Environmental sciences include both time and space variability in their datasets. Some established tools exist for both spatial interpolation and time series analysis alone, but mixing space and time variability calls for compromise: Researchers are often forced to choose which is the main source of variation, neglecting the other. We propose a simple algorithm, which can be used in many fields of Earth and environmental sciences when both time and space variability must be considered on equal grounds. The algorithm has already been implemented in Java language and the software is currently available at https://sourceforge.net/projects/timescapeglobal/ (it is published under GNU-GPL v3.0 Free Software License). The published version of the software, Timescape Global, is focused on continent- to Earth-wide spatial domains, using global longitude-latitude coordinates for samples localization. The companion Timescape Local software is currently under development ad will be published with an open license as well; it will use projected coordinates for a local to regional space scale. The basic idea of the Timescape Algorithm consists in converting time into a sort of third spatial dimension, with the addition of some causal constraints, which drive the interpolation including or excluding observations according to some user-defined rules. The algorithm is applicable, as a matter of principle, to anything that can be represented with a continuous variable (a scalar field, technically speaking). The input dataset should contain position, time and observed value of all samples. Ancillary data can be included in the interpolation as well. After the time-space conversion, Timescape follows basically the old-fashioned IDW (Inverse Distance Weighted) interpolation Algorithm, although users have a wide choice of customization options that, at least partially, overcome some of the known issues of IDW. The three-dimensional model produced by the Timescape Algorithm can be
Hörmander spaces, interpolation, and elliptic problems
Mikhailets, Vladimir A; Malyshev, Peter V
2014-01-01
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hörmander function spaces. This theory was constructed by the authors in a number of papers published in 2005-2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a
Stochastic interpolation model of the medial superior olive neural circuit
Czech Academy of Sciences Publication Activity Database
Šanda, Pavel; Maršálek, P.
2012-01-01
Roč. 1434, JAN 24 (2012), s. 257-265 ISSN 0006-8993. [International Workshop on Neural Coding. Limassol, 29.10.2010-03.11.2010] R&D Projects: GA ČR(CZ) GAP103/11/0282 Grant - others:GA MPO(CZ) FR-TI3/869 Institutional research plan: CEZ:AV0Z50110509 Keywords : coincidence detection * directional hearing * interaural time delay * sound azimuth * interpolation model Subject RIV: FH - Neurology Impact factor: 2.879, year: 2012
Trends in Continuity and Interpolation for Computer Graphics.
Gonzalez Garcia, Francisco
2015-01-01
In every computer graphics oriented application today, it is a common practice to texture 3D models as a way to obtain realistic material. As part of this process, mesh texturing, deformation, and visualization are all key parts of the computer graphics field. This PhD dissertation was completed in the context of these three important and related fields in computer graphics. The article presents techniques that improve on existing state-of-the-art approaches related to continuity and interpolation in texture space (texturing), object space (deformation), and screen space (rendering).
Gravity Aided Navigation Precise Algorithm with Gauss Spline Interpolation
Directory of Open Access Journals (Sweden)
WEN Chaobin
2015-01-01
Full Text Available The gravity compensation of error equation thoroughly should be solved before the study on gravity aided navigation with high precision. A gravity aided navigation model construction algorithm based on research the algorithm to approximate local grid gravity anomaly filed with the 2D Gauss spline interpolation is proposed. Gravity disturbance vector, standard gravity value error and Eotvos effect are all compensated in this precision model. The experiment result shows that positioning accuracy is raised by 1 times, the attitude and velocity accuracy is raised by 1～2 times and the positional error is maintained from 100~200 m.
Singular perturbation for nonlinear boundary-value problems
Directory of Open Access Journals (Sweden)
Rina Ling
1979-01-01
studied. The problem is a model arising in nuclear energy distribution. For large values of the parameter, the differential equations are of the singular-perturbation type and approximations are constructed by the method of matched asymptotic expansions.
A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints
Energy Technology Data Exchange (ETDEWEB)
de Leon, M. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); de Diego, D.M. [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, 28040 Madrid (Spain)
1997-06-01
We construct a constraint algorithm for singular Lagrangian systems subjected to nonholonomic constraints which generalizes that of Dirac for constrained Hamiltonian systems. {copyright} {ital 1997 American Institute of Physics.}
A singular value sensitivity approach to robust eigenstructure assignment
DEFF Research Database (Denmark)
Søgaard-Andersen, Per; Trostmann, Erik; Conrad, Finn
1986-01-01
A design technique for improving the feedback properties of multivariable state feedback systems designed using eigenstructure assignment is presented. Based on a singular value analysis of the feedback properties a design parameter adjustment procedure is outlined. This procedure allows...
Quantum gravitational collapse: non-singularity and non-locality
International Nuclear Information System (INIS)
Greenwood, Eric; Stojkovic, Dejan
2008-01-01
We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.
A singularity-free WEC-respecting time machine
Krasnikov, S. V.
1997-01-01
A time machine (TM) is constructed whose creating in contrast to all TMs known so far requires neither singularities, nor violation of the weak energy condition (WEC). The spacetime exterior to the TM closely resembles the Friedmann universe.
Pulses in singularly perturbed reaction-diffusion systems
Veerman, Frederik Willem Johan
2013-01-01
In this thesis, the existence and stability of pulse solutions in two-component, singularly perturbed reaction-diffusion systems is analysed using dynamical systems techniques. New phenomena in very general types of systems emerge when geometrical techniques are applied.
Propagation of singularities for linearised hybrid data impedance tomography
DEFF Research Database (Denmark)
Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim
2017-01-01
For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non...
Object detection with a multistatic array using singular value decomposition
Hallquist, Aaron T.; Chambers, David H.
2014-07-01
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.
Statistical analysis of effective singular values in matrix rank determination
Konstantinides, Konstantinos; Yao, Kung
1988-01-01
A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.
Geometric singular perturbation analysis of systems with friction
DEFF Research Database (Denmark)
Bossolini, Elena
This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter...... use a Poincaré compactiﬁcation to study the system near inﬁnity. At inﬁnity, the critical manifold loses hyperbolicity with an exponential rate. We use an adaptation of the blow-up method to recover the hyperbolicity. This enables the identiﬁcation of a new attracting manifold, that organises...... singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the non-unique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We...
Singularities of robot mechanisms numerical computation and avoidance path planning
Bohigas, Oriol; Ros, Lluís
2017-01-01
This book presents the singular configurations associated with a robot mechanism, together with robust methods for their computation, interpretation, and avoidance path planning. Having such methods is essential as singularities generally pose problems to the normal operation of a robot, but also determine the workspaces and motion impediments of its underlying mechanical structure. A distinctive feature of this volume is that the methods are applicable to nonredundant mechanisms of general architecture, defined by planar or spatial kinematic chains interconnected in an arbitrary way. Moreover, singularities are interpreted as silhouettes of the configuration space when seen from the input or output spaces. This leads to a powerful image that explains the consequences of traversing singular configurations, and all the rich information that can be extracted from them. The problems are solved by means of effective branch-and-prune and numerical continuation methods that are of independent interest in themselves...
Through the big bang: Continuing Einstein's equations beyond a cosmological singularity
Koslowski, Tim A.; Mercati, Flavio; Sloan, David
2018-03-01
All measurements are comparisons. The only physically accessible degrees of freedom (DOFs) are dimensionless ratios. The objective description of the universe as a whole thus predicts only how these ratios change collectively as one of them is changed. Here we develop a description for classical Bianchi IX cosmology implementing these relational principles. The objective evolution decouples from the volume and its expansion degree of freedom. We use the relational description to investigate both vacuum dominated and quiescent Bianchi IX cosmologies. In the vacuum dominated case the relational dynamical system predicts an infinite amount of change of the relational DOFs, in accordance with the well known chaotic behaviour of Bianchi IX. In the quiescent case the relational dynamical system evolves uniquely though the point where the decoupled scale DOFs predict the big bang/crunch. This is a non-trivial prediction of the relational description; the big bang/crunch is not the end of physics - it is instead a regular point of the relational evolution. Describing our solutions as spacetimes that satisfy Einstein's equations, we find that the relational dynamical system predicts two singular solutions of GR that are connected at the hypersurface of the singularity such that relational DOFs are continuous and the orientation of the spatial frame is inverted.
Conamhna, Oisín A. P. Mac
2008-12-01
The supergravity description of various configurations of supersymmetric M-fivebranes wrapped on calibrated cycles of special holonomy manifolds is studied. The description is provided by solutions of eleven-dimensional supergravity which interpolate smoothly between a special holonomy manifold and an event horizon with Anti-de Sitter geometry. For known examples of Anti-de Sitter solutions, the associated special holonomy metric is derived. One explicit Anti-de Sitter solution of M-theory is so treated for fivebranes wrapping each of the following cycles: Kähler cycles in Calabi-Yau two, three- and four-folds; special lagrangian cycles in three- and four-folds; associative three- and co-associative four-cycles in G 2 manifolds; complex lagrangian four-cycles in Sp(2) manifolds; and Cayley four-cycles in Spin(7) manifolds. In each case, the associated special holonomy metric is singular, and is a hyperbolic analogue of a known metric. The analogous known metrics are respectively: Eguchi-Hanson, the resolved conifold and the four-fold resolved conifold; the deformed conifold, and the Stenzel four-fold metric; the Bryant-Salamon-Gibbons-Page-Pope G 2 metrics on an {mathbb{R}^4} bundle over S 3, and an {mathbb{R}^3} bundle over S 4 or {mathbb{CP}^2} ; the Calabi hyper-Kähler metric on {T^*mathbb{CP}^2} ; and the Bryant-Salamon-Gibbons-Page-Pope Spin(7) metric on an {mathbb{R}^4} bundle over S 4. By the AdS/CFT correspondence, a conformal field theory is associated to each of the new singular special holonomy metrics, and defines the quantum gravitational physics of the resolution of their singularities.
Two-Sided Gravitational Mirror: Sealing off Curvature Singularities
Davidson, Aharon; Yellin, Ben
2011-01-01
A gravitational mirror is a non-singular finite redshift surface which bounces all incident null geodesics. While a white mirror (outward bouncing) resembles 't Hooft's brick wall, a black mirror (inward bouncing) offers a novel mechanism for sealing off curvature singularities. The geometry underlying a two-sided mirror is characterized by a single signature change, to be contrasted with the signature flip which governs the black hole geometry. To demonstrate the phenomenon analytically, we ...
Wave-breaking and generic singularities of nonlinear hyperbolic equations
International Nuclear Information System (INIS)
Pomeau, Yves; Le Berre, Martine; Guyenne, Philippe; Grilli, Stephan
2008-01-01
Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the numerical results. This shows the power of the analysis by methods using generic concepts of nonlinear science. (open problem)
Uniqueness of singular solution of semilinear elliptic equation
Indian Academy of Sciences (India)
Nonhomogeneous semilinear elliptic equation; positive solutions; asymptotic behavior; singular ... a removable singular point of a solution of equation (1.1), the existence of the derivatives of the solution depends on the 'blow up' ..... On the other hand, for 0 <ε
Singularity confinement for maps with the Laurent property
International Nuclear Information System (INIS)
Hone, A.N.W.
2007-01-01
The singularity confinement test is very useful for isolating integrable cases of discrete-time dynamical systems, but it does not provide a sufficient criterion for integrability. Quite recently a new property of the bilinear equations appearing in discrete soliton theory has been noticed: The iterates of such equations are Laurent polynomials in the initial data. A large class of non-integrable mappings of the plane are presented which both possess this Laurent property and have confined singularities
Resonance scattering and singularities of the scattering function
Energy Technology Data Exchange (ETDEWEB)
Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation)
2010-05-15
Recent studies of transport phenomena with complex potentials are explained by generic square root singularities of spectrum and eigenfunctions of non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that such singularities produce a significant effect upon the pole behaviour of the scattering matrix, and more significantly upon the associated residues. This mechanism explains why by proper choice of the system parameters the resonance cross section is increased drastically in one channel and suppressed in the other channel. (authors)
Multifractal signal reconstruction based on singularity power spectrum
International Nuclear Information System (INIS)
Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning
2016-01-01
Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.
Modified Differential Transform Method for Two Singular Boundary Values Problems
Directory of Open Access Journals (Sweden)
Yinwei Lin
2014-01-01
Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.
Averaging approximation to singularly perturbed nonlinear stochastic wave equations
Lv, Yan; Roberts, A. J.
2012-06-01
An averaging method is applied to derive effective approximation to a singularly perturbed nonlinear stochastic damped wave equation. Small parameter ν > 0 characterizes the singular perturbation, and να, 0 ⩽ α ⩽ 1/2, parametrizes the strength of the noise. Some scaling transformations and the martingale representation theorem yield the effective approximation, a stochastic nonlinear heat equation, for small ν in the sense of distribution.
Classical resolution of black hole singularities via wormholes
Energy Technology Data Exchange (ETDEWEB)
Olmo, Gonzalo J. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Rubiera-Garcia, D. [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Sanchez-Puente, A. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain)
2016-03-15
In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature. (orig.)
Fields generated by sums and products of singular moduli
Faye, Bernadette; Riffaut, Antonin
2017-01-01
We show that the field $\\mathbb{Q}(x,y)$, generated by two singular moduli~$x$ and~$y$, is generated by their sum ${x+y}$, unless~$x$ and~$y$ are conjugate over~$\\mathbb{Q}$, in which case ${x+y}$ generates a subfield of degree at most~$2$. We obtain a similar result for the product of two singular moduli.
Image re-sampling detection through a novel interpolation kernel.
Hilal, Alaa
2018-03-27
Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.
3D Interpolation Method for CT Images of the Lung
Directory of Open Access Journals (Sweden)
Noriaki Asada
2003-06-01
Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.
THE EFFECT OF STIMULUS ANTICIPATION ON THE INTERPOLATED TWITCH TECHNIQUE
Directory of Open Access Journals (Sweden)
Duane C. Button
2008-12-01
Full Text Available The objective of this study was to investigate the effect of expected and unexpected interpolated stimuli (IT during a maximum voluntary contraction on quadriceps force output and activation. Two groups of male subjects who were either inexperienced (MI: no prior experience with IT tests or experienced (ME: previously experienced 10 or more series of IT tests received an expected or unexpected IT while performing quadriceps isometric maximal voluntary contractions (MVCs. Measurements included MVC force, quadriceps and hamstrings electromyographic (EMG activity, and quadriceps inactivation as measured by the interpolated twitch technique (ITT. When performing MVCs with the expectation of an IT, the knowledge or lack of knowledge of an impending IT occurring during a contraction did not result in significant overall differences in force, ITT inactivation, quadriceps or hamstrings EMG activity. However, the expectation of an IT significantly (p < 0.0001 reduced MVC force (9.5% and quadriceps EMG activity (14.9% when compared to performing MVCs with prior knowledge that stimulation would not occur. While ME exhibited non-significant decreases when expecting an IT during a MVC, MI force and EMG activity significantly decreased 12.4% and 20.9% respectively. Overall, ME had significantly (p < 0.0001 higher force (14.5% and less ITT inactivation (10.4% than MI. The expectation of the noxious stimuli may account for the significant decrements in force and activation during the ITT
An interpolation boundary treatment for the Lattice Boltzmann method
Deladisma, Marnico D.; Smith, Marc K.
2003-11-01
A new boundary condition for the Lattice Boltzmann method based on bounce-back and spatial interpolations is presented. The boundary condition allows for the placement of a boundary at any position between nodes and tracks the exact position of that boundary. Multi-dimensional interpolation of streaming and bounce-back particle distribution functions from surrounding boundary nodes is used to solve for new distribution values. This allows more information from surrounding nodes to be incorporated into the boundary treatment calculation. Calculations of flow within a 2D rotating annulus (with and without an obstacle placed in the flow) using the present boundary condition are compared with calculations done with the commercial CFD solver Fluent. Results show that the boundary condition is accurate and robust for these cases. The boundary condition also allows for moving boundaries and is easily extended to 3D, which facilitates the simulation of moving 3D particles. The new boundary condition will allow a Lattice Boltzmann simulation of a rotating wall vessel bioreactor with freely suspended tissue constructs whose length scale is about 1 cm.
Color Orchestra: Ordering Color Palettes for Interpolation and Prediction.
Phan, Huy; Fu, Hongbo; Chan, Antoni
2017-04-25
Color theme or color palette can deeply influence the quality and the feeling of a photograph or a graphical design. Although color palettes may come from different sources such as online crowd-sourcing, photographs and graphical designs, in this paper, we consider color palettes extracted from fine art collections, which we believe to be an abundant source of stylistic and unique color themes. We aim to capture color styles embedded in these collections by means of statistical models and to build practical applications upon these models. As artists often use their personal color themes in their paintings, making these palettes appear frequently in the dataset, we employed density estimation to capture the characteristics of palette data. Via density estimation, we carried out various predictions and interpolations on palettes, which led to promising applications such as photo-style exploration, real-time color suggestion, and enriched photo recolorization. It was, however, challenging to apply density estimation to palette data as palettes often come as unordered sets of colors, which make it difficult to use conventional metrics on them. To this end, we developed a divide-and-conquer sorting algorithm to rearrange the colors in the palettes in a coherent order, which allows meaningful interpolation between color palettes. To confirm the performance of our model, we also conducted quantitative experiments on datasets of digitized paintings collected from the Internet and received favorable results.
Interpolated Sounding and Gridded Sounding Value-Added Products
Energy Technology Data Exchange (ETDEWEB)
Toto, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jensen, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-01
Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25 and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.The INTERPOLATEDSONDE VAP, a continuous time-height grid of relative humidity-corrected sounding data, is intended to provide input to higher-order products, such as the Merged Soundings (MERGESONDE; Troyan 2012) VAP, which extends INTERPOLATEDSONDE by incorporating model data. The INTERPOLATEDSONDE VAP also is used to correct gaseous attenuation of radar reflectivity in products such as the KAZRCOR VAP.
Interpolation methods for creating a scatter radiation exposure map
Energy Technology Data Exchange (ETDEWEB)
Gonçalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Gomes, Celio S.; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F. [Universidade do Estado do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Física
2017-07-01
A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)
Sparsity-Based Spatial Interpolation in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Yan Yao
2011-02-01
Full Text Available In wireless sensor networks, due to environmental limitations or bad wireless channel conditions, not all sensor samples can be successfully gathered at the sink. In this paper, we try to recover these missing samples without retransmission. The missing samples estimation problem is mathematically formulated as a 2-D spatial interpolation. Assuming the 2-D sensor data can be sparsely represented by a dictionary, a sparsity-based recovery approach by solving for l1 norm minimization is proposed. It is shown that these missing samples can be reasonably recovered based on the null space property of the dictionary. This property also points out the way to choose an appropriate sparsifying dictionary to further reduce the recovery errors. The simulation results on synthetic and real data demonstrate that the proposed approach can recover the missing data reasonably well and that it outperforms the weighted average interpolation methods when the data change relatively fast or blocks of samples are lost. Besides, there exists a range of missing rates where the proposed approach is robust to missing block sizes.
Sparsity-based spatial interpolation in wireless sensor networks.
Guo, Di; Qu, Xiaobo; Huang, Lianfen; Yao, Yan
2011-01-01
In wireless sensor networks, due to environmental limitations or bad wireless channel conditions, not all sensor samples can be successfully gathered at the sink. In this paper, we try to recover these missing samples without retransmission. The missing samples estimation problem is mathematically formulated as a 2-D spatial interpolation. Assuming the 2-D sensor data can be sparsely represented by a dictionary, a sparsity-based recovery approach by solving for l(1) norm minimization is proposed. It is shown that these missing samples can be reasonably recovered based on the null space property of the dictionary. This property also points out the way to choose an appropriate sparsifying dictionary to further reduce the recovery errors. The simulation results on synthetic and real data demonstrate that the proposed approach can recover the missing data reasonably well and that it outperforms the weighted average interpolation methods when the data change relatively fast or blocks of samples are lost. Besides, there exists a range of missing rates where the proposed approach is robust to missing block sizes.
Interpolation methods for creating a scatter radiation exposure map
International Nuclear Information System (INIS)
Gonçalves, Elicardo A. de S.; Gomes, Celio S.; Lopes, Ricardo T.; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F.
2017-01-01
A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)
A New Interpolation Approach for Linearly Constrained Convex Optimization
Espinoza, Francisco
2012-08-01
In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.
Removal of apparent singularity in grid computations
International Nuclear Information System (INIS)
Jakubovics, J.P.
1993-01-01
A self-consistency test for magnetic domain wall models was suggested by Aharoni. The test consists of evaluating the ratio S = var-epsilon wall /var-epsilon wall , where var-epsilon wall is the wall energy, and var-epsilon wall is the integral of a certain function of the direction cosines of the magnetization, α, β, γ over the volume occupied by the domain wall. If the computed configuration is a good approximation to one corresponding to an energy minimum, the ratio is close to 1. The integrand of var-epsilon wall contains terms that are inversely proportional to γ. Since γ passes through zero at the centre of the domain wall, these terms have a singularity at these points. The integral is finite and its evaluation does not usually present any problems when the direction cosines are known in terms of continuous functions. In many cases, significantly better results for magnetization configurations of domain walls can be obtained by computations using finite element methods. The direction cosines are then only known at a set of discrete points, and integration over the domain wall is replaced by summation over these points. Evaluation of var-epsilon wall becomes inaccurate if the terms in the summation are taken to be the values of the integrand at the grid points, because of the large contribution of points close to where γ changes sign. The self-consistency test has recently been generalised to a larger number of cases. The purpose of this paper is to suggest a method of improving the accuracy of the evaluation of integrals in such cases. Since the self-consistency test has so far only been applied to two-dimensional magnetization configurations, the problem and its solution will be presented for that specific case. Generalisation to three or more dimensions is straight forward
Singular vectors, predictability and ensemble forecasting for weather and climate
International Nuclear Information System (INIS)
Palmer, T N; Zanna, Laure
2013-01-01
The local instabilities of a nonlinear dynamical system can be characterized by the leading singular vectors of its linearized operator. The leading singular vectors are perturbations with the greatest linear growth and are therefore key in assessing the system’s predictability. In this paper, the analysis of singular vectors for the predictability of weather and climate and ensemble forecasting is discussed. An overview of the role of singular vectors in informing about the error growth rate in numerical models of the atmosphere is given. This is followed by their use in the initialization of ensemble weather forecasts. Singular vectors for the ocean and coupled ocean–atmosphere system in order to understand the predictability of climate phenomena such as ENSO and meridional overturning circulation are reviewed and their potential use to initialize seasonal and decadal forecasts is considered. As stochastic parameterizations are being implemented, some speculations are made about the future of singular vectors for the predictability of weather and climate for theoretical applications and at the operational level. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (review)
Symmetry breaking and singularity structure in Bose-Einstein condensates
Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.
2012-08-01
We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.
Curing Black Hole Singularities with Local Scale Invariance
Directory of Open Access Journals (Sweden)
Predrag Dominis Prester
2016-01-01
Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.
Double parton scattering singularity in one-loop integrals
Gaunt, Jonathan R.; Stirling, W. James
2011-06-01
We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the `two-parton GPD' framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the `double PDF' framework of Snigirev.
Chen, Xiangdong; He, Liwen; Jeon, Gwanggil; Jeong, Jechang
2014-05-01
In this paper, we present a novel color image demosaicking algorithm based on a directional weighted interpolation method and gradient inverse-weighted filter-based refinement method. By applying a directional weighted interpolation method, the missing center pixel is interpolated, and then using the nearest neighboring pixels of the pre-interpolated pixel within the same color channel, the accuracy of interpolation is refined using a five-point gradient inverse weighted filtering method we proposed. The refined interpolated pixel values can be used to estimate the other missing pixel values successively according to the correlation inter-channels. Experimental analysis of images revealed that our proposed algorithm provided superior performance in terms of both objective and subjective image quality compared to conventional state-of-the-art demosaicking algorithms. Our implementation has very low complexity and is therefore well suited for real-time applications.
Broer, Henk W.; Kaper, Tasso J.; Krupa, Martin
2013-01-01
The cusp singularity-a point at which two curves of fold points meet-is a prototypical example in Takens' classification of singularities in constrained equations, which also includes folds, folded saddles, folded nodes, among others. In this article, we study cusp singularities in singularly
Study on the Algorithm for Real-time Interpolation of NURBS Curve and Simulation
Hui Jizhuang; Wei Fangsheng; Gao Kai
2013-01-01
In the paper, In order to meet the needs of high-speed and high- accuracy computerized numerical control machining and guarantee the smooth running in the interpolation processing, A NURBS curve calculation based on adaptive acceleration and deceleration control of look-ahead s-shaped for the real-time interpolation is presented in this paper. The algorithm has merits such as higher position accuracy, short processing time, no variation and so on. Through dynamic path simulation and interpol...
Ho, Yuk-Fan; Ling, Wing-Kuen; Reiss, Joshua; Yu, Xinghuo
2011-01-01
It is well known that second order lowpass interpolative sigma delta modulators (SDMs) may suffer from instability and limit cycle problems when the magnitudes of the input signals are at large and at intermediate levels, respectively. In order to solve these problems, we propose to replace the second order lowpass interpolative SDMs to a specific class of second order bandpass interpolative SDMs with the natural frequencies of the loop filters very close to zero. The global stability propert...
Energy Technology Data Exchange (ETDEWEB)
Cao, Yi; Zhou, Hui; Li, Baokun [Jiangnan University, Province (China); Shen, Long [Shanghai University, Shanghai (China)
2011-02-15
This paper presents a new principle and method of kinematics to analyze the singularity of Stewart-Gough parallel manipulators and addresses the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulators for special orientations. Based on the kinematic relationship of a rigid body, a necessary and sufficient condition that three velocities of three non-collinear points in a moving rigid body can determine a screw motion is addressed and some typical singular configurations of the 6-3 Stewart-Gough parallel manipulators are also addressed in detail. With the above-mentioned condition, a symbolic analytical polynomial expression of degree three in the moving platform position parameters, representing the position-singularity locus of the 6-3 Stewart-Gough manipulators for special orientations, is derived: and the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulator for these special orientations is investigated at length. It is shown that position-singularity loci of the 6-3 Stewart-Gough parallel manipulator for these special orientations will be a plane and a hyperbolic paraboloid, even three intersecting planes.
ANGELO-LAMBDA, Covariance matrix interpolation and mathematical verification
International Nuclear Information System (INIS)
Kodeli, Ivo
2007-01-01
1 - Description of program or function: The codes ANGELO-2.3 and LAMBDA-2.3 are used for the interpolation of the cross section covariance data from the original to a user defined energy group structure, and for the mathematical tests of the matrices, respectively. The LAMBDA-2.3 code calculates the eigenvalues of the matrices (both for the original or the converted) and lists them accordingly into positive and negative matrices. This verification is strongly recommended before using any covariance matrices. These versions of the two codes are the extended versions of the previous codes available in the Packages NEA-1264 - ZZ-VITAMIN-J/COVA. They were specifically developed for the purposes of the OECD LWR UAM benchmark, in particular for the processing of the ZZ-SCALE5.1/COVA-44G cross section covariance matrix library retrieved from the SCALE-5.1 package. Either the original SCALE-5.1 libraries or the libraries separated into several files by Nuclides can be (in principle) processed by ANGELO/LAMBDA codes, but the use of the one-nuclide data is strongly recommended. Due to large deviations of the correlation matrix terms from unity observed in some SCALE5.1 covariance matrices, the previous more severe acceptance condition in the ANGELO2.3 code was released. In case the correlation coefficients exceed 1.0, only a warning message is issued, and coefficients are replaced by 1.0. 2 - Methods: ANGELO-2.3 interpolates the covariance matrices to a union grid using flat weighting. LAMBDA-2.3 code includes the mathematical routines to calculate the eigenvalues of the covariance matrices. 3 - Restrictions on the complexity of the problem: The algorithm used in ANGELO is relatively simple, therefore the interpolations involving energy group structure which are very different from the original (e.g. large difference in the number of energy groups) may not be accurate. In particular in the case of the MT=1018 data (fission spectra covariances) the algorithm may not be
An inverse problem for space and time fractional evolution equation ...
African Journals Online (AJOL)
We consider an inverse problem for a space and time fractional evolution equation, interpolating the heat and wave equations, with an involution. Existence and uniqueness results for the given problem are obtained via the method of separation of variables. Key words: Inverse problem, fractional, fractional evolution ...
Directory of Open Access Journals (Sweden)
Mathieu Lepot
2017-10-01
Full Text Available A thorough review has been performed on interpolation methods to fill gaps in time-series, efficiency criteria, and uncertainty quantifications. On one hand, there are numerous available methods: interpolation, regression, autoregressive, machine learning methods, etc. On the other hand, there are many methods and criteria to estimate efficiencies of these methods, but uncertainties on the interpolated values are rarely calculated. Furthermore, while they are estimated according to standard methods, the prediction uncertainty is not taken into account: a discussion is thus presented on the uncertainty estimation of interpolated/extrapolated data. Finally, some suggestions for further research and a new method are proposed.
Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation
DEFF Research Database (Denmark)
Fyhn, Karsten; Duarte, Marco F.; Jensen, Søren Holdt
2015-01-01
We propose new compressive parameter estimation algorithms that make use of polar interpolation to improve the estimator precision. Our work extends previous approaches involving polar interpolation for compressive parameter estimation in two aspects: (i) we extend the formulation from real non...... to attain good estimation precision and keep the computational complexity low. Our numerical experiments show that the proposed algorithms outperform existing approaches that either leverage polynomial interpolation or are based on a conversion to a frequency-estimation problem followed by a super...... interpolation increases the estimation precision....
Directory of Open Access Journals (Sweden)
Mingjian Sun
2015-01-01
Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.
A numerical method for singular boundary value problem of ordinary differential equation
International Nuclear Information System (INIS)
He Qibing
1992-12-01
A numerical method, regularizing method, is suggested to treat the singular boundary problem of ordinary differential equation that is raised from controlled nuclear fusion science and other fields owing to their singular physical mechanism. This kind of singular boundary problem has been successfully solved by special treatment near the singular points and using difference method. This method overcomes difficulties in numerical calculation due to the singularity. The convergence results and numerical test are also given
Perbaikan Metode Penghitungan Debit Sungai Menggunakan Cubic Spline Interpolation
Directory of Open Access Journals (Sweden)
Budi I. Setiawan
2007-09-01
Full Text Available Makalah ini menyajikan perbaikan metode pengukuran debit sungai menggunakan fungsi cubic spline interpolation. Fungi ini digunakan untuk menggambarkan profil sungai secara kontinyu yang terbentuk atas hasil pengukuran jarak dan kedalaman sungai. Dengan metoda baru ini, luas dan perimeter sungai lebih mudah, cepat dan tepat dihitung. Demikian pula, fungsi kebalikannnya (inverse function tersedia menggunakan metode. Newton-Raphson sehingga memudahkan dalam perhitungan luas dan perimeter bila tinggi air sungai diketahui. Metode baru ini dapat langsung menghitung debit sungaimenggunakan formula Manning, dan menghasilkan kurva debit (rating curve. Dalam makalah ini dikemukaan satu canton pengukuran debit sungai Rudeng Aceh. Sungai ini mempunyai lebar sekitar 120 m dan kedalaman 7 m, dan pada saat pengukuran mempunyai debit 41 .3 m3/s, serta kurva debitnya mengikuti formula: Q= 0.1649 x H 2.884 , dimana Q debit (m3/s dan H tinggi air dari dasar sungai (m.
Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia
Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.
2018-03-01
The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.