WorldWideScience

Sample records for singular evolutive interpolated

  1. Quantum evolution across singularities

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg

    2008-01-01

    Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space)

  2. Hybrid vehicle optimal control : Linear interpolation and singular control

    NARCIS (Netherlands)

    Delprat, S.; Hofman, T.

    2015-01-01

    Hybrid vehicle energy management can be formulated as an optimal control problem. Considering that the fuel consumption is often computed using linear interpolation over lookup table data, a rigorous analysis of the necessary conditions provided by the Pontryagin Minimum Principle is conducted. For

  3. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-03-01

    We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.

  4. Systems of evolution equations and the singular perturbation method

    International Nuclear Information System (INIS)

    Mika, J.

    Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)

  5. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Tandogan Kunkel, Asli [Old Dominion Univ., Norfolk, VA (United States)

    2014-08-01

    Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.

  6. An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like

    International Nuclear Information System (INIS)

    Pierantozzi, T.; Vazquez, L.

    2005-01-01

    Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case

  7. Multivariate interpolation

    Directory of Open Access Journals (Sweden)

    Pakhnutov I.A.

    2017-04-01

    Full Text Available the paper deals with iterative interpolation methods in forms of similar recursive procedures defined by a sort of simple functions (interpolation basis not necessarily real valued. These basic functions are kind of arbitrary type being defined just by wish and considerations of user. The studied interpolant construction shows virtue of versatility: it may be used in a wide range of vector spaces endowed with scalar product, no dimension restrictions, both in Euclidean and Hilbert spaces. The choice of basic interpolation functions is as wide as possible since it is subdued nonessential restrictions. The interpolation method considered in particular coincides with traditional polynomial interpolation (mimic of Lagrange method in real unidimensional case or rational, exponential etc. in other cases. The interpolation as iterative process, in fact, is fairly flexible and allows one procedure to change the type of interpolation, depending on the node number in a given set. Linear interpolation basis options (perhaps some nonlinear ones allow to interpolate in noncommutative spaces, such as spaces of nondegenerate matrices, interpolated data can also be relevant elements of vector spaces over arbitrary numeric field. By way of illustration, the author gives the examples of interpolation on the real plane, in the separable Hilbert space and the space of square matrices with vektorvalued source data.

  8. Spatial interpolation

    NARCIS (Netherlands)

    Stein, A.

    1991-01-01

    The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are

  9. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  10. Holographic complexity and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2016-01-15

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  11. Holographic complexity and spacetime singularities

    International Nuclear Information System (INIS)

    Barbón, José L.F.; Rabinovici, Eliezer

    2016-01-01

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  12. Interpolation theory

    CERN Document Server

    Lunardi, Alessandra

    2018-01-01

    This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.

  13. A singular evolutive extended Kalman filter to assimilate real in situ data in a 1-D marine ecosystem model

    Directory of Open Access Journals (Sweden)

    I. Hoteit

    2003-01-01

    Full Text Available A singular evolutive extended Kalman (SEEK filter is used to assimilate real in situ data in a water column marine ecosystem model. The biogeochemistry of the ecosystem is described by the European Regional Sea Ecosystem Model (ERSEM, while the physical forcing is described by the Princeton Ocean Model (POM. In the SEEK filter, the error statistics are parameterized by means of a suitable basis of empirical orthogonal functions (EOFs. The purpose of this contribution is to track the possibility of using data assimilation techniques for state estimation in marine ecosystem models. In the experiments, real oxygen and nitrate data are used and the results evaluated against independent chlorophyll data. These data were collected from an offshore station at three different depths for the needs of the MFSPP project. The assimilation results show a continuous decrease in the estimation error and a clear improvement in the model behavior. Key words. Oceanography: general (ocean prediction; numerical modelling – Oceanography: biological and chemical (ecosystems and ecology

  14. Interpolation functors and interpolation spaces

    CERN Document Server

    Brudnyi, Yu A

    1991-01-01

    The theory of interpolation spaces has its origin in the classical work of Riesz and Marcinkiewicz but had its first flowering in the years around 1960 with the pioneering work of Aronszajn, Calderón, Gagliardo, Krein, Lions and a few others. It is interesting to note that what originally triggered off this avalanche were concrete problems in the theory of elliptic boundary value problems related to the scale of Sobolev spaces. Later on, applications were found in many other areas of mathematics: harmonic analysis, approximation theory, theoretical numerical analysis, geometry of Banach spaces, nonlinear functional analysis, etc. Besides this the theory has a considerable internal beauty and must by now be regarded as an independent branch of analysis, with its own problems and methods. Further development in the 1970s and 1980s included the solution by the authors of this book of one of the outstanding questions in the theory of the real method, the K-divisibility problem. In a way, this book harvests the r...

  15. Linear Methods for Image Interpolation

    OpenAIRE

    Pascal Getreuer

    2011-01-01

    We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

  16. Topological resolution of gauge theory singularities

    Science.gov (United States)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  17. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  18. Spline Interpolation of Image

    OpenAIRE

    I. Kuba; J. Zavacky; J. Mihalik

    1995-01-01

    This paper presents the use of B spline functions in various digital signal processing applications. The theory of one-dimensional B spline interpolation is briefly reviewed, followed by its extending to two dimensions. After presenting of one and two dimensional spline interpolation, the algorithms of image interpolation and resolution increasing were proposed. Finally, experimental results of computer simulations are presented.

  19. Dressing up a Kerr naked singularity

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; Nobili, L [Padua Univ. (Italy). Ist. di Fisica

    1979-06-11

    The evolution of a naked singularity surrounded by an accreting disk of matter is studied; two kinds of disks are considered: the standard thin-disk model and the thick barytropic model, for several initial conditions. It is shown that any Kerr naked singularity slows down in a finite time to a maximal Kerr black hole. The final mass, the luminosity and the time of evolution of the singularity are evaluated.

  20. SPLINE, Spline Interpolation Function

    International Nuclear Information System (INIS)

    Allouard, Y.

    1977-01-01

    1 - Nature of physical problem solved: The problem is to obtain an interpolated function, as smooth as possible, that passes through given points. The derivatives of these functions are continuous up to the (2Q-1) order. The program consists of the following two subprograms: ASPLERQ. Transport of relations method for the spline functions of interpolation. SPLQ. Spline interpolation. 2 - Method of solution: The methods are described in the reference under item 10

  1. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  2. Generalized interpolative quantum statistics

    International Nuclear Information System (INIS)

    Ramanathan, R.

    1992-01-01

    A generalized interpolative quantum statistics is presented by conjecturing a certain reordering of phase space due to the presence of possible exotic objects other than bosons and fermions. Such an interpolation achieved through a Bose-counting strategy predicts the existence of an infinite quantum Boltzmann-Gibbs statistics akin to the one discovered by Greenberg recently

  3. CMB anisotropies interpolation

    NARCIS (Netherlands)

    Zinger, S.; Delabrouille, Jacques; Roux, Michel; Maitre, Henri

    2010-01-01

    We consider the problem of the interpolation of irregularly spaced spatial data, applied to observation of Cosmic Microwave Background (CMB) anisotropies. The well-known interpolation methods and kriging are compared to the binning method which serves as a reference approach. We analyse kriging

  4. Monotone piecewise bicubic interpolation

    International Nuclear Information System (INIS)

    Carlson, R.E.; Fritsch, F.N.

    1985-01-01

    In a 1980 paper the authors developed a univariate piecewise cubic interpolation algorithm which produces a monotone interpolant to monotone data. This paper is an extension of those results to monotone script C 1 piecewise bicubic interpolation to data on a rectangular mesh. Such an interpolant is determined by the first partial derivatives and first mixed partial (twist) at the mesh points. Necessary and sufficient conditions on these derivatives are derived such that the resulting bicubic polynomial is monotone on a single rectangular element. These conditions are then simplified to a set of sufficient conditions for monotonicity. The latter are translated to a system of linear inequalities, which form the basis for a monotone piecewise bicubic interpolation algorithm. 4 references, 6 figures, 2 tables

  5. Linear Methods for Image Interpolation

    Directory of Open Access Journals (Sweden)

    Pascal Getreuer

    2011-09-01

    Full Text Available We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

  6. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  7. Feature displacement interpolation

    DEFF Research Database (Denmark)

    Nielsen, Mads; Andresen, Per Rønsholt

    1998-01-01

    Given a sparse set of feature matches, we want to compute an interpolated dense displacement map. The application may be stereo disparity computation, flow computation, or non-rigid medical registration. Also estimation of missing image data, may be phrased in this framework. Since the features...... often are very sparse, the interpolation model becomes crucial. We show that a maximum likelihood estimation based on the covariance properties (Kriging) show properties more expedient than methods such as Gaussian interpolation or Tikhonov regularizations, also including scale......-selection. The computational complexities are identical. We apply the maximum likelihood interpolation to growth analysis of the mandibular bone. Here, the features used are the crest-lines of the object surface....

  8. Extension Of Lagrange Interpolation

    Directory of Open Access Journals (Sweden)

    Mousa Makey Krady

    2015-01-01

    Full Text Available Abstract In this paper is to present generalization of Lagrange interpolation polynomials in higher dimensions by using Gramers formula .The aim of this paper is to construct a polynomials in space with error tends to zero.

  9. Black holes, singularities and predictability

    International Nuclear Information System (INIS)

    Wald, R.M.

    1984-01-01

    The paper favours the view that singularities may play a central role in quantum gravity. The author reviews the arguments leading to the conclusion, that in the process of black hole formation and evaporation, an initial pure state evolves to a final density matrix, thus signaling a breakdown in ordinary quantum dynamical evolution. Some related issues dealing with predictability in the dynamical evolution, are also discussed. (U.K.)

  10. Digital time-interpolator

    International Nuclear Information System (INIS)

    Schuller, S.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1990-01-01

    This report presents a description of the design of a digital time meter. This time meter should be able to measure, by means of interpolation, times of 100 ns with an accuracy of 50 ps. In order to determine the best principle for interpolation, three methods were simulated at the computer with a Pascal code. On the basis of this the best method was chosen and used in the design. In order to test the principal operation of the circuit a part of the circuit was constructed with which the interpolation could be tested. The remainder of the circuit was simulated with a computer. So there are no data available about the operation of the complete circuit in practice. The interpolation part however is the most critical part, the remainder of the circuit is more or less simple logic. Besides this report also gives a description of the principle of interpolation and the design of the circuit. The measurement results at the prototype are presented finally. (author). 3 refs.; 37 figs.; 2 tabs

  11. Multivariate Birkhoff interpolation

    CERN Document Server

    Lorentz, Rudolph A

    1992-01-01

    The subject of this book is Lagrange, Hermite and Birkhoff (lacunary Hermite) interpolation by multivariate algebraic polynomials. It unifies and extends a new algorithmic approach to this subject which was introduced and developed by G.G. Lorentz and the author. One particularly interesting feature of this algorithmic approach is that it obviates the necessity of finding a formula for the Vandermonde determinant of a multivariate interpolation in order to determine its regularity (which formulas are practically unknown anyways) by determining the regularity through simple geometric manipulations in the Euclidean space. Although interpolation is a classical problem, it is surprising how little is known about its basic properties in the multivariate case. The book therefore starts by exploring its fundamental properties and its limitations. The main part of the book is devoted to a complete and detailed elaboration of the new technique. A chapter with an extensive selection of finite elements follows as well a...

  12. Singular spectrum analysis, Harmonic regression and El-Nino effect ...

    Indian Academy of Sciences (India)

    42

    Keywords: Total ozone; Singular Spectrum Analysis; Spatial interpolation; Multivariate ENSO .... needed for a whole gamut of activities that contribute to the ultimate synthesis ..... −0.0009 3 + 0.0581 2 − 1.0123 + 7.3246, 2 = 0.53…

  13. Time-interpolator

    International Nuclear Information System (INIS)

    Blok, M. de; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1990-01-01

    This report describes a time-interpolator with which time differences can be measured using digital and analog techniques. It concerns a maximum measuring time of 6.4 μs with a resolution of 100 ps. Use is made of Emitter Coupled Logic (ECL) and analogues of high-frequency techniques. The difficulty which accompanies the use of ECL-logic is keeping as short as possible the mutual connections and closing properly the outputs in order to avoid reflections. The digital part of the time-interpolator consists of a continuous running clock and logic which converts an input signal into a start- and stop signal. The analog part consists of a Time to Amplitude Converter (TAC) and an analog to digital converter. (author). 3 refs.; 30 figs

  14. Interpolative Boolean Networks

    Directory of Open Access Journals (Sweden)

    Vladimir Dobrić

    2017-01-01

    Full Text Available Boolean networks are used for modeling and analysis of complex systems of interacting entities. Classical Boolean networks are binary and they are relevant for modeling systems with complex switch-like causal interactions. More descriptive power can be provided by the introduction of gradation in this model. If this is accomplished by using conventional fuzzy logics, the generalized model cannot secure the Boolean frame. Consequently, the validity of the model’s dynamics is not secured. The aim of this paper is to present the Boolean consistent generalization of Boolean networks, interpolative Boolean networks. The generalization is based on interpolative Boolean algebra, the [0,1]-valued realization of Boolean algebra. The proposed model is adaptive with respect to the nature of input variables and it offers greater descriptive power as compared with traditional models. For illustrative purposes, IBN is compared to the models based on existing real-valued approaches. Due to the complexity of the most systems to be analyzed and the characteristics of interpolative Boolean algebra, the software support is developed to provide graphical and numerical tools for complex system modeling and analysis.

  15. The Geometry of Black Hole Singularities

    Directory of Open Access Journals (Sweden)

    Ovidiu Cristinel Stoica

    2014-01-01

    Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.

  16. Non-negative Feynman endash Kac kernels in Schroedinger close-quote s interpolation problem

    International Nuclear Information System (INIS)

    Blanchard, P.; Garbaczewski, P.; Olkiewicz, R.

    1997-01-01

    The local formulations of the Markovian interpolating dynamics, which is constrained by the prescribed input-output statistics data, usually utilize strictly positive Feynman endash Kac kernels. This implies that the related Markov diffusion processes admit vanishing probability densities only at the boundaries of the spatial volume confining the process. We discuss an extension of the framework to encompass singular potentials and associated non-negative Feynman endash Kac-type kernels. It allows us to deal with a class of continuous interpolations admitted by general non-negative solutions of the Schroedinger boundary data problem. The resulting nonstationary stochastic processes are capable of both developing and destroying nodes (zeros) of probability densities in the course of their evolution, also away from the spatial boundaries. This observation conforms with the general mathematical theory (due to M. Nagasawa and R. Aebi) that is based on the notion of multiplicative functionals, extending in turn the well known Doob close-quote s h-transformation technique. In view of emphasizing the role of the theory of non-negative solutions of parabolic partial differential equations and the link with open-quotes Wiener exclusionclose quotes techniques used to evaluate certain Wiener functionals, we give an alternative insight into the issue, that opens a transparent route towards applications.copyright 1997 American Institute of Physics

  17. Smooth Phase Interpolated Keying

    Science.gov (United States)

    Borah, Deva K.

    2007-01-01

    Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

  18. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  19. Singularity-free next-to-leading order ΔS=1 renormalization group evolution and ϵ{sub K}{sup ′}/ϵ{sub K} in the Standard Model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Kitahara, Teppei [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, Karlsruhe, D-76128 (Germany); Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344 (Germany); Nierste, Ulrich; Tremper, Paul [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, Karlsruhe, D-76128 (Germany)

    2016-12-16

    The standard analytic solution of the renormalization group (RG) evolution for the ΔS=1 Wilson coefficients involves several singularities, which complicate analytic solutions. In this paper we derive a singularity-free solution of the next-to-leading order (NLO) RG equations, which greatly facilitates the calculation of ϵ{sub K}{sup ′}, the measure of direct CP violation in K→ππ decays. Using our new RG evolution and the latest lattice results for the hadronic matrix elements, we calculate the ratio ϵ{sub K}{sup ′}/ϵ{sub K} (with ϵ{sub K} quantifying indirect CP violation) in the Standard Model (SM) at NLO to ϵ{sub K}{sup ′}/ϵ{sub K}=(1.06±5.07)×10{sup −4}, which is 2.8 σ below the experimental value. We also present the evolution matrix in the high-energy regime for calculations of new physics contributions and derive easy-to-use approximate formulae. We find that the RG amplification of new-physics contributions to Wilson coefficients of the electroweak penguin operators is further enhanced by the NLO corrections: if the new contribution is generated at the scale of 1–10 TeV, the RG evolution between the new-physics scale and the electroweak scale enhances these coefficients by 50–100%. Our solution contains a term of order α{sub EM}{sup 2}/α{sub s}{sup 2}, which is numerically unimportant for the SM case but should be included in studies of high-scale new-physics.

  20. Image Interpolation with Contour Stencils

    OpenAIRE

    Pascal Getreuer

    2011-01-01

    Image interpolation is the problem of increasing the resolution of an image. Linear methods must compromise between artifacts like jagged edges, blurring, and overshoot (halo) artifacts. More recent works consider nonlinear methods to improve interpolation of edges and textures. In this paper we apply contour stencils for estimating the image contours based on total variation along curves and then use this estimation to construct a fast edge-adaptive interpolation.

  1. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  2. Observational constraints on cosmological future singularities

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)

    2016-11-15

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)

  3. Observational constraints on cosmological future singularities

    International Nuclear Information System (INIS)

    Beltran Jimenez, Jose; Lazkoz, Ruth; Saez-Gomez, Diego; Salzano, Vincenzo

    2016-01-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)

  4. Quasi interpolation with Voronoi splines.

    Science.gov (United States)

    Mirzargar, Mahsa; Entezari, Alireza

    2011-12-01

    We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

  5. Technological Singularity: What Do We Really Know?

    Directory of Open Access Journals (Sweden)

    Alexey Potapov

    2018-04-01

    Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.

  6. Asymptotic safety, singularities, and gravitational collapse

    International Nuclear Information System (INIS)

    Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz

    2011-01-01

    Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.

  7. Pixel Interpolation Methods

    OpenAIRE

    Mintěl, Tomáš

    2009-01-01

    Tato diplomová práce se zabývá akcelerací interpolačních metod s využitím GPU a architektury NVIDIA (R) CUDA TM. Grafický výstup je reprezentován demonstrační aplikací pro transformaci obrazu nebo videa s použitím vybrané interpolace. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Pro práci s obrazem a videem jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of pixel interpolation methods usi...

  8. Introduction to singularities

    CERN Document Server

    Ishii, Shihoko

    2014-01-01

    This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...

  9. Fuzzy linguistic model for interpolation

    International Nuclear Information System (INIS)

    Abbasbandy, S.; Adabitabar Firozja, M.

    2007-01-01

    In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method

  10. A disposition of interpolation techniques

    NARCIS (Netherlands)

    Knotters, M.; Heuvelink, G.B.M.

    2010-01-01

    A large collection of interpolation techniques is available for application in environmental research. To help environmental scientists in choosing an appropriate technique a disposition is made, based on 1) applicability in space, time and space-time, 2) quantification of accuracy of interpolated

  11. Contrast-guided image interpolation.

    Science.gov (United States)

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  12. Properties of kinematic singularities

    Energy Technology Data Exchange (ETDEWEB)

    Coley, A A [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Hervik, S [Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger (Norway); Lim, W C [Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); MacCallum, M A H, E-mail: aac@mathstat.dal.c, E-mail: sigbjorn.hervik@uis.n, E-mail: wclim@aei.mpg.d, E-mail: m.a.h.maccallum@qmul.ac.u [School of Mathematical Sciences, Queen Mary University of London, E1 4NS (United Kingdom)

    2009-11-07

    The locally rotationally symmetric tilted perfect fluid Bianchi type V cosmological model provides examples of future geodesically complete spacetimes that admit a 'kinematic singularity' at which the fluid congruence is inextendible but all frame components of the Weyl and Ricci tensors remain bounded. We show that for any positive integer n there are examples of Bianchi type V spacetimes admitting a kinematic singularity such that the covariant derivatives of the Weyl and Ricci tensors up to the nth order also stay bounded. We briefly discuss singularities in classical spacetimes.

  13. Interpolation for de-Dopplerisation

    Science.gov (United States)

    Graham, W. R.

    2018-05-01

    'De-Dopplerisation' is one aspect of a problem frequently encountered in experimental acoustics: deducing an emitted source signal from received data. It is necessary when source and receiver are in relative motion, and requires interpolation of the measured signal. This introduces error. In acoustics, typical current practice is to employ linear interpolation and reduce error by over-sampling. In other applications, more advanced approaches with better performance have been developed. Associated with this work is a large body of theoretical analysis, much of which is highly specialised. Nonetheless, a simple and compact performance metric is available: the Fourier transform of the 'kernel' function underlying the interpolation method. Furthermore, in the acoustics context, it is a more appropriate indicator than other, more abstract, candidates. On this basis, interpolators from three families previously identified as promising - - piecewise-polynomial, windowed-sinc, and B-spline-based - - are compared. The results show that significant improvements over linear interpolation can straightforwardly be obtained. The recommended approach is B-spline-based interpolation, which performs best irrespective of accuracy specification. Its only drawback is a pre-filtering requirement, which represents an additional implementation cost compared to other methods. If this cost is unacceptable, and aliasing errors (on re-sampling) up to approximately 1% can be tolerated, a family of piecewise-cubic interpolators provides the best alternative.

  14. Occlusion-Aware View Interpolation

    Directory of Open Access Journals (Sweden)

    Janusz Konrad

    2009-01-01

    Full Text Available View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally, luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are highly objectionable, especially if they vary with viewpoint change.

  15. Occlusion-Aware View Interpolation

    Directory of Open Access Journals (Sweden)

    Ince Serdar

    2008-01-01

    Full Text Available Abstract View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally, luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are highly objectionable, especially if they vary with viewpoint change.

  16. BIMOND3, Monotone Bivariate Interpolation

    International Nuclear Information System (INIS)

    Fritsch, F.N.; Carlson, R.E.

    2001-01-01

    1 - Description of program or function: BIMOND is a FORTRAN-77 subroutine for piecewise bi-cubic interpolation to data on a rectangular mesh, which reproduces the monotonousness of the data. A driver program, BIMOND1, is provided which reads data, computes the interpolating surface parameters, and evaluates the function on a mesh suitable for plotting. 2 - Method of solution: Monotonic piecewise bi-cubic Hermite interpolation is used. 3 - Restrictions on the complexity of the problem: The current version of the program can treat data which are monotone in only one of the independent variables, but cannot handle piecewise monotone data

  17. Nonlinear singular elliptic equations

    International Nuclear Information System (INIS)

    Dong Minh Duc.

    1988-09-01

    We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs

  18. Coloured phase singularities

    International Nuclear Information System (INIS)

    Berry, M.V.

    2002-01-01

    For illumination with white light, the spectra near a typical isolated phase singularity (nodal point of the component wavelengths) can be described by a universal function of position, up to linear distortion and a weak dependence on the spectrum of the source. The appearance of the singularity when viewed by a human observer is predicted by transforming the spectrum to trichromatic variables and chromaticity coordinates, and then rendering the colours, scaled to constant luminosity, on a computer monitor. The pattern far from the singularity is a white that depends on the source temperature, and the centre of the pattern is flanked by intensely coloured 'eyes', one orange and one blue, separated by red, and one of the eyes is surrounded by a bright white circle. Only a small range of possible colours appears near the singularity; in particular, there is no green. (author)

  19. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  20. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  1. Timelike naked singularity

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.; Vaz, Cenalo; Witten, Louis

    2004-01-01

    We construct a class of spherically symmetric collapse models in which a naked singularity may develop as the end state of collapse. The matter distribution considered has negative radial and tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility depends on the nature of energy distribution. Hence the causal structure of the resulting singularity depends on the nature of the mass function chosen for the cloud. We present a general model in which the naked singularity formed is timelike, neither pointlike nor null. Our work represents a step toward clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture

  2. The research on NURBS adaptive interpolation technology

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Zhang, Sujia; Zhang, Feng

    2017-04-01

    In order to solve the problems of Research on NURBS Adaptive Interpolation Technology, such as interpolation time bigger, calculation more complicated, and NURBS curve step error are not easy changed and so on. This paper proposed a study on the algorithm for NURBS adaptive interpolation method of NURBS curve and simulation. We can use NURBS adaptive interpolation that calculates (xi, yi, zi). Simulation results show that the proposed NURBS curve interpolator meets the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.

  3. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  4. COMPARISONS BETWEEN DIFFERENT INTERPOLATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. Garnero

    2014-01-01

    In the present study different algorithms will be analysed in order to spot an optimal interpolation methodology. The availability of the recent digital model produced by the Regione Piemonte with airborne LIDAR and the presence of sections of testing realized with higher resolutions and the presence of independent digital models on the same territory allow to set a series of analysis with consequent determination of the best methodologies of interpolation. The analysis of the residuals on the test sites allows to calculate the descriptive statistics of the computed values: all the algorithms have furnished interesting results; all the more interesting, notably for dense models, the IDW (Inverse Distance Weighing algorithm results to give best results in this study case. Moreover, a comparative analysis was carried out by interpolating data at different input point density, with the purpose of highlighting thresholds in input density that may influence the quality reduction of the final output in the interpolation phase.

  5. Interpolation in Spaces of Functions

    Directory of Open Access Journals (Sweden)

    K. Mosaleheh

    2006-03-01

    Full Text Available In this paper we consider the interpolation by certain functions such as trigonometric and rational functions for finite dimensional linear space X. Then we extend this to infinite dimensional linear spaces

  6. Numerical method of singular problems on singular integrals

    International Nuclear Information System (INIS)

    Zhao Huaiguo; Mou Zongze

    1992-02-01

    As first part on the numerical research of singular problems, a numerical method is proposed for singular integrals. It is shown that the procedure is quite powerful for solving physics calculation with singularity such as the plasma dispersion function. Useful quadrature formulas for some class of the singular integrals are derived. In general, integrals with more complex singularities can be dealt by this method easily

  7. Singularities in Free Surface Flows

    Science.gov (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  8. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  9. Phantom cosmology without Big Rip singularity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.

    2012-01-01

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  10. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  11. Singularities in FLRW spacetimes

    Science.gov (United States)

    het Lam, Huibert; Prokopec, Tomislav

    2017-12-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.

  12. Permanently calibrated interpolating time counter

    International Nuclear Information System (INIS)

    Jachna, Z; Szplet, R; Kwiatkowski, P; Różyc, K

    2015-01-01

    We propose a new architecture of an integrated time interval counter that provides its permanent calibration in the background. Time interval measurement and the calibration procedure are based on the use of a two-stage interpolation method and parallel processing of measurement and calibration data. The parallel processing is achieved by a doubling of two-stage interpolators in measurement channels of the counter, and by an appropriate extension of control logic. Such modification allows the updating of transfer characteristics of interpolators without the need to break a theoretically infinite measurement session. We describe the principle of permanent calibration, its implementation and influence on the quality of the counter. The precision of the presented counter is kept at a constant level (below 20 ps) despite significant changes in the ambient temperature (from −10 to 60 °C), which can cause a sevenfold decrease in the precision of the counter with a traditional calibration procedure. (paper)

  13. Quantum transitions through cosmological singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  14. Quantum transitions through cosmological singularities

    International Nuclear Information System (INIS)

    Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas; Vreys, Yannick

    2017-01-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  15. Pseudospherical surfaces with singularities

    DEFF Research Database (Denmark)

    Brander, David

    2017-01-01

    We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...

  16. Supersymmetry in singular spaces

    NARCIS (Netherlands)

    Bergshoeff, Eric

    2002-01-01

    We discuss supersymmetry in spaces with a boundary, i.e. singular spaces. In particular, we discuss the situation in ten and five dimensions. In both these cases we review the construction of supersymmetric domain wall actions situated at the boundary. These domain walls act as sources inducing a

  17. Singularities in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept

  18. Charged singularities: repulsive effects

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1980-07-01

    The repulsive phenomena which a particle experiences in the vicinity of a naked singularity are investigated in the Kerr-Newman space-time. The aim is to extend the knowledge of this fact to charged solutions and to have a direct indication of how, in these situations, the gravitational and electrostatic interactions are competing.

  19. Papapetrou's naked singularity is a strong curvature singularity

    International Nuclear Information System (INIS)

    Hollier, G.P.

    1986-01-01

    Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)

  20. Singular potentials in quantum mechanics

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Koo, E. Ley

    1995-10-01

    This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs

  1. Singularities: the Brieskorn anniversary volume

    National Research Council Canada - National Science Library

    Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M

    1998-01-01

    ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...

  2. Are naked singularities really visible

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; De Felice, F [Alberta Univ., Edmonton (Canada); Nobili, L [Padua Univ. (Italy). Ist. di Fisica

    1978-12-09

    The question whether a Kerr naked singularity is actually visible from infinity is investigated; it is shown that in fact any signal which could be emitted from the singularity is infinitely red-shifted. This implies that naked singularities would be indistinguishable from a black hole.

  3. Spatiotemporal Interpolation Methods for Solar Event Trajectories

    Science.gov (United States)

    Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

    2018-05-01

    This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

  4. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  5. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  6. Multiscale singularity trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter

    2007-01-01

    We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....

  7. Dyslexia singular brain

    International Nuclear Information System (INIS)

    Habis, M.; Robichon, F.; Demonet, J.F.

    1996-01-01

    Of late ten years, neurologists are studying the brain of the dyslectics. The cerebral imagery (NMR imaging, positron computed tomography) has allowed to confirm the anatomical particularities discovered by some of them: asymmetry default of cerebral hemispheres, size abnormally large of the white substance mass which connect the two hemispheres. The functional imagery, when visualizing this singular brain at work, allows to understand why it labors to reading. (O.M.)

  8. A Note on Cubic Convolution Interpolation

    OpenAIRE

    Meijering, E.; Unser, M.

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  9. Node insertion in Coalescence Fractal Interpolation Function

    International Nuclear Information System (INIS)

    Prasad, Srijanani Anurag

    2013-01-01

    The Iterated Function System (IFS) used in the construction of Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) depends on the interpolation data. The insertion of a new point in a given set of interpolation data is called the problem of node insertion. In this paper, the effect of insertion of new point on the related IFS and the Coalescence Fractal Interpolation Function is studied. Smoothness and Fractal Dimension of a CHFIF obtained with a node are also discussed

  10. Bayer Demosaicking with Polynomial Interpolation.

    Science.gov (United States)

    Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil

    2016-08-30

    Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.

  11. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic... of vortices: topological charge ±1 (higher order are unstable). Positive and negative vortex densities np(x, y, z) and nn(x, y, z) ⊲ Vortex density: V = np + nn ⊲ Topological charge density: T = np − nn – p. 4/24 Subfields of SSO ⊲ Homogeneous, normally...

  12. Cosmological models without singularities

    International Nuclear Information System (INIS)

    Petry, W.

    1981-01-01

    A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)

  13. Further holographic investigations of big bang singularities

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Hertog, Thomas [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Horowitz, Gary T. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)

    2015-07-09

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves N=4 super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  14. Further holographic investigations of big bang singularities

    Science.gov (United States)

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T.

    2015-07-01

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  15. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  16. Boundary singularities produced by the motion of soap films.

    Science.gov (United States)

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  17. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  18. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-07-21

    Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  19. Precipitation interpolation in mountainous areas

    Science.gov (United States)

    Kolberg, Sjur

    2015-04-01

    Different precipitation interpolation techniques as well as external drift covariates are tested and compared in a 26000 km2 mountainous area in Norway, using daily data from 60 stations. The main method of assessment is cross-validation. Annual precipitation in the area varies from below 500 mm to more than 2000 mm. The data were corrected for wind-driven undercatch according to operational standards. While temporal evaluation produce seemingly acceptable at-station correlation values (on average around 0.6), the average daily spatial correlation is less than 0.1. Penalising also bias, Nash-Sutcliffe R2 values are negative for spatial correspondence, and around 0.15 for temporal. Despite largely violated assumptions, plain Kriging produces better results than simple inverse distance weighting. More surprisingly, the presumably 'worst-case' benchmark of no interpolation at all, simply averaging all 60 stations for each day, actually outperformed the standard interpolation techniques. For logistic reasons, high altitudes are under-represented in the gauge network. The possible effect of this was investigated by a) fitting a precipitation lapse rate as an external drift, and b) applying a linear model of orographic enhancement (Smith and Barstad, 2004). These techniques improved the results only marginally. The gauge density in the region is one for each 433 km2; higher than the overall density of the Norwegian national network. Admittedly the cross-validation technique reduces the gauge density, still the results suggest that we are far from able to provide hydrological models with adequate data for the main driving force.

  20. Potential problems with interpolating fields

    Energy Technology Data Exchange (ETDEWEB)

    Birse, Michael C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom)

    2017-11-15

    A potential can have features that do not reflect the dynamics of the system it describes but rather arise from the choice of interpolating fields used to define it. This is illustrated using a toy model of scattering with two coupled channels. A Bethe-Salpeter amplitude is constructed which is a mixture of the waves in the two channels. The potential derived from this has a strong repulsive core, which arises from the admixture of the closed channel in the wave function and not from the dynamics of the model. (orig.)

  1. Residues and duality for singularity categories of isolated Gorenstein singularities

    OpenAIRE

    Murfet, Daniel

    2009-01-01

    We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.

  2. Interpolation of rational matrix functions

    CERN Document Server

    Ball, Joseph A; Rodman, Leiba

    1990-01-01

    This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...

  3. Hybrid direct and iterative solvers for h refined grids with singularities

    KAUST Repository

    Paszyński, Maciej R.

    2015-04-27

    This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.

  4. Tangled nonlinear driven chain reactions of all optical singularities

    Science.gov (United States)

    Vasil'ev, V. I.; Soskin, M. S.

    2012-03-01

    Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.

  5. Singular Poisson tensors

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1982-01-01

    The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular

  6. Evaluation of various interpolants available in DICE

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Crozier, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This report evaluates several interpolants implemented in the Digital Image Correlation Engine (DICe), an image correlation software package developed by Sandia. By interpolants we refer to the basis functions used to represent discrete pixel intensity data as a continuous signal. Interpolation is used to determine intensity values in an image at non - pixel locations. It is also used, in some cases, to evaluate the x and y gradients of the image intensities. Intensity gradients subsequently guide the optimization process. The goal of this report is to inform analysts as to the characteristics of each interpolant and provide guidance towards the best interpolant for a given dataset. This work also serves as an initial verification of each of the interpolants implemented.

  7. Analysis of ECT Synchronization Performance Based on Different Interpolation Methods

    Directory of Open Access Journals (Sweden)

    Yang Zhixin

    2014-01-01

    Full Text Available There are two synchronization methods of electronic transformer in IEC60044-8 standard: impulsive synchronization and interpolation. When the impulsive synchronization method is inapplicability, the data synchronization of electronic transformer can be realized by using the interpolation method. The typical interpolation methods are piecewise linear interpolation, quadratic interpolation, cubic spline interpolation and so on. In this paper, the influences of piecewise linear interpolation, quadratic interpolation and cubic spline interpolation for the data synchronization of electronic transformer are computed, then the computational complexity, the synchronization precision, the reliability, the application range of different interpolation methods are analyzed and compared, which can serve as guide studies for practical applications.

  8. Some observations on interpolating gauges and non-covariant gauges

    International Nuclear Information System (INIS)

    Joglekar, Satish D.

    2003-01-01

    We discuss the viability of using interpolating gauges to define the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge invariance as the interpolating parameter θ varies, depends very sensitively on the parameter variation. We do this with a gauge used by Doust. We also consider the Lagrangian path-integrals in Minkowski space for gauges with a residual gauge-invariance. We point out the necessity of inclusion of an ε-term (even) in the formal treatments, without which one may reach incorrect conclusions. We, further, point out that the ε-term can contribute to the BRST WT-identities in a non-trivial way (even as ε → 0). We point out that these contributions lead to additional constraints on Green's function that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. (author)

  9. Research on interpolation methods in medical image processing.

    Science.gov (United States)

    Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian

    2012-04-01

    Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.

  10. Naked singularities are not singular in distorted gravity

    Energy Technology Data Exchange (ETDEWEB)

    Garattini, Remo, E-mail: Remo.Garattini@unibg.it [Università degli Studi di Bergamo, Facoltà di Ingegneria, Viale Marconi 5, 24044 Dalmine (Bergamo) (Italy); I.N.F.N. – sezione di Milano, Milan (Italy); Majumder, Barun, E-mail: barunbasanta@iitgn.ac.in [Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India)

    2014-07-15

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheeler–DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  11. Naked singularities are not singular in distorted gravity

    Science.gov (United States)

    Garattini, Remo; Majumder, Barun

    2014-07-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  12. Naked singularities are not singular in distorted gravity

    International Nuclear Information System (INIS)

    Garattini, Remo; Majumder, Barun

    2014-01-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheeler–DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity

  13. Numerical Integration of a Class of Singularly Perturbed Delay Differential Equations with Small Shift

    Directory of Open Access Journals (Sweden)

    Gemechis File

    2012-01-01

    Full Text Available We have presented a numerical integration method to solve a class of singularly perturbed delay differential equations with small shift. First, we have replaced the second-order singularly perturbed delay differential equation by an asymptotically equivalent first-order delay differential equation. Then, Simpson’s rule and linear interpolation are employed to get the three-term recurrence relation which is solved easily by discrete invariant imbedding algorithm. The method is demonstrated by implementing it on several linear and nonlinear model examples by taking various values for the delay parameter and the perturbation parameter .

  14. Quantum jump from singularity to outside of black hole

    Energy Technology Data Exchange (ETDEWEB)

    Dündar, Furkan Semih [Physics and Mathematics Departments, Sakarya University, 54050, Sakarya (Turkey); Hajian, Kamal [School of Physics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-02-26

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  15. Quantum jump from singularity to outside of black hole

    International Nuclear Information System (INIS)

    Dündar, Furkan Semih; Hajian, Kamal

    2016-01-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  16. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  17. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  18. Van Hove singularities revisited

    International Nuclear Information System (INIS)

    Dzyaloshinskii, I.

    1987-07-01

    Beginning with the work of Hirsch and Scalapino the importance of ln 2 -Van Hove singularity in T c -enhancement in La 2 CuO 4 -based compounds was realized, which is nicely reviewed by Rice. However, the theoretical treatment carried out before is incomplete. Two things were apparently not paid due attention to: interplay of particle-particle and particle-hole channels and Umklapp processes. In what follows a two-dimensional weak coupling model of LaCuO 4 will be solved exactly in the ln 2 -approximation. The result in the Hubbard limit (one bare charge) is that the system is unstable at any sign of interaction. Symmetry breaking moreover is pretty peculiar. Of course, there are separate singlet superconducting pairings in the pp-channel (attraction) and SDW (repulsion) and CDW (attraction) in the ph-channel. It is natural that Umklapps produce an SDW + CDW mixture at either sign of the interaction. What is unusual is that both the pp-ph interplay and the Umklapps give rise to a monster-coherent SS + SDW + CDW mixture, again at either sign of the bare charge. In the general model where all 4 charges involved are substantially different, the system might remain metallic. A more realistic approach which takes into account dopping in La-M-Cu-O and interlayer interaction provides at least a qualitative understanding of the experimental picture. 10 refs, 5 figs

  19. Differential Interpolation Effects in Free Recall

    Science.gov (United States)

    Petrusic, William M.; Jamieson, Donald G.

    1978-01-01

    Attempts to determine whether a sufficiently demanding and difficult interpolated task (shadowing, i.e., repeating aloud) would decrease recall for earlier-presented items as well as for more recent items. Listening to music was included as a second interpolated task. Results support views that serial position effects reflect a single process.…

  20. Transfinite C2 interpolant over triangles

    International Nuclear Information System (INIS)

    Alfeld, P.; Barnhill, R.E.

    1984-01-01

    A transfinite C 2 interpolant on a general triangle is created. The required data are essentially C 2 , no compatibility conditions arise, and the precision set includes all polynomials of degree less than or equal to eight. The symbol manipulation language REDUCE is used to derive the scheme. The scheme is discretized to two different finite dimensional C 2 interpolants in an appendix

  1. Analysis of velocity planning interpolation algorithm based on NURBS curve

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.

  2. An Improved Rotary Interpolation Based on FPGA

    Directory of Open Access Journals (Sweden)

    Mingyu Gao

    2014-08-01

    Full Text Available This paper presents an improved rotary interpolation algorithm, which consists of a standard curve interpolation module and a rotary process module. Compared to the conventional rotary interpolation algorithms, the proposed rotary interpolation algorithm is simpler and more efficient. The proposed algorithm was realized on a FPGA with Verilog HDL language, and simulated by the ModelSim software, and finally verified on a two-axis CNC lathe, which uses rotary ellipse and rotary parabolic as an example. According to the theoretical analysis and practical process validation, the algorithm has the following advantages: firstly, less arithmetic items is conducive for interpolation operation; and secondly the computing time is only two clock cycles of the FPGA. Simulations and actual tests have proved that the high accuracy and efficiency of the algorithm, which shows that it is highly suited for real-time applications.

  3. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    Cosmology; Raychaudhuri equation; Universe; quantum gravity; loop quan- tum gravity ... than the observation verifying the prediction of theory. This gave .... which was now expanding, would have had a singular beginning in a hot Big Bang.

  4. Criteria for the singularity of a pairwise l1-distance matrix and their generalizations

    International Nuclear Information System (INIS)

    D'yakonov, Alexander G

    2012-01-01

    We study the singularity problem for the pairwise distance matrix of a system of points, as well as generalizations of this problem that are connected with applications to interpolation theory and with an algebraic approach to recognition problems. We obtain necessary and sufficient conditions on a system under which the dimension of the range space of polynomials of bounded degree over the columns of the distance matrix is less than the number of points in the system.

  5. Criteria for the singularity of a pairwise l{sub 1}-distance matrix and their generalizations

    Energy Technology Data Exchange (ETDEWEB)

    D' yakonov, Alexander G [M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow (Russian Federation)

    2012-06-30

    We study the singularity problem for the pairwise distance matrix of a system of points, as well as generalizations of this problem that are connected with applications to interpolation theory and with an algebraic approach to recognition problems. We obtain necessary and sufficient conditions on a system under which the dimension of the range space of polynomials of bounded degree over the columns of the distance matrix is less than the number of points in the system.

  6. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  7. Interferometric interpolation of sparse marine data

    KAUST Repository

    Hanafy, Sherif M.

    2013-10-11

    We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.

  8. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

    Science.gov (United States)

    Vedadi, Farhang; Shirani, Shahram

    2014-01-01

    A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

  9. Singular and degenerate cauchy problems

    CERN Document Server

    Carroll, R.W

    1976-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  10. NOAA Optimum Interpolation (OI) SST V2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The optimum interpolation (OI) sea surface temperature (SST) analysis is produced weekly on a one-degree grid. The analysis uses in situ and satellite SST's plus...

  11. Kuu plaat : Interpol Antics. Plaadid kauplusest Lasering

    Index Scriptorium Estoniae

    2005-01-01

    Heliplaatidest: "Interpol Antics", Scooter "Mind the Gap", Slide-Fifty "The Way Ahead", Psyhhoterror "Freddy, löö esimesena!", Riho Sibul "Must", Bossacucanova "Uma Batida Diferente", "Biscantorat - Sound of the spirit from Glenstal Abbey"

  12. Revisiting Veerman’s interpolation method

    DEFF Research Database (Denmark)

    Christiansen, Peter; Bay, Niels Oluf

    2016-01-01

    and (c) FEsimulations. A comparison of the determined forming limits yields insignificant differences in the limit strain obtainedwith Veerman’s method or exact Lagrangian interpolation for the two sheet metal forming processes investigated. Theagreement with the FE-simulations is reasonable.......This article describes an investigation of Veerman’s interpolation method and its applicability for determining sheet metalformability. The theoretical foundation is established and its mathematical assumptions are clarified. An exact Lagrangianinterpolation scheme is also established...... for comparison. Bulge testing and tensile testing of aluminium sheets containingelectro-chemically etched circle grids are performed to experimentally determine the forming limit of the sheet material.The forming limit is determined using (a) Veerman’s interpolation method, (b) exact Lagrangian interpolation...

  13. NOAA Daily Optimum Interpolation Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis constructed by combining observations from different platforms...

  14. On the singularities of solutions to singular perturbation problems

    International Nuclear Information System (INIS)

    Fruchard, A; Schaefke, R

    2005-01-01

    We consider a singularly perturbed complex first order ODE εu ' Φ(x, u, a, ε), x, u element of C, ε > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot

  15. On the singularities of solutions to singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Fruchard, A [Laboratoire de Mathematiques, Informatique et Applications, Faculte des Sciences et Techniques, Universite de Haute Alsace, 4 rue des Freres Lumiere, 68093 Mulhouse cedex (France); Schaefke, R [Departement de Mathematiques, Universite Louis Pasteur, 7 rue Rene-Descartes, 67084 Strasbourg cedex (France)

    2005-01-01

    We consider a singularly perturbed complex first order ODE {epsilon}u ' {phi}(x, u, a, {epsilon}), x, u element of C, {epsilon} > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot.

  16. Integration and interpolation of sampled waveforms

    International Nuclear Information System (INIS)

    Stearns, S.D.

    1978-01-01

    Methods for integrating, interpolating, and improving the signal-to-noise ratio of digitized waveforms are discussed with regard to seismic data from underground tests. The frequency-domain integration method and the digital interpolation method of Schafer and Rabiner are described and demonstrated using test data. The use of bandpass filtering for noise reduction is also demonstrated. With these methods, a backlog of seismic test data has been successfully processed

  17. Wideband DOA Estimation through Projection Matrix Interpolation

    OpenAIRE

    Selva, J.

    2017-01-01

    This paper presents a method to reduce the complexity of the deterministic maximum likelihood (DML) estimator in the wideband direction-of-arrival (WDOA) problem, which is based on interpolating the array projection matrix in the temporal frequency variable. It is shown that an accurate interpolator like Chebyshev's is able to produce DML cost functions comprising just a few narrowband-like summands. Actually, the number of such summands is far smaller (roughly by factor ten in the numerical ...

  18. Interpolation for a subclass of H

    Indian Academy of Sciences (India)

    |g(zm)| ≤ c |zm − zm |, ∀m ∈ N. Thus it is natural to pose the following interpolation problem for H. ∞. : DEFINITION 4. We say that (zn) is an interpolating sequence in the weak sense for H. ∞ if given any sequence of complex numbers (λn) verifying. |λn| ≤ c ψ(zn,z. ∗ n) |zn − zn |, ∀n ∈ N,. (4) there exists a product fg ∈ H.

  19. Efficiently enclosing the compact binary parameter space by singular-value decomposition

    International Nuclear Information System (INIS)

    Cannon, Kipp; Hanna, Chad; Keppel, Drew

    2011-01-01

    Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.

  20. Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI

    Science.gov (United States)

    Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.

    2015-01-01

    Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085

  1. Calculation of electromagnetic parameter based on interpolation algorithm

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan

    2015-01-01

    Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment

  2. How far is it to a sudden future singularity of pressure?

    International Nuclear Information System (INIS)

    DaPbrowski, Mariusz P.; Denkiewicz, Tomasz; Hendry, Martin A.

    2007-01-01

    We discuss the constraints coming from current observations of type Ia supernovae on cosmological models which allow sudden future singularities of pressure (with the scale factor and the energy density regular). We show that such a sudden singularity may happen in the very near future (e.g. within 10x10 6 years) and its prediction at the present moment of cosmic evolution cannot be distinguished, with current observational data, from the prediction given by the standard quintessence scenario of future evolution. Fortunately, sudden future singularities are characterized by a momentary peak of infinite tidal forces only; there is no geodesic incompleteness, which means that the evolution of the universe may eventually be continued throughout until another 'more serious' singularity such as a big crunch or big rip

  3. Short time propagation of a singular wave function: Some surprising results

    Science.gov (United States)

    Marchewka, A.; Granot, E.; Schuss, Z.

    2007-08-01

    The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.

  4. Is the cosmological singularity compulsory

    International Nuclear Information System (INIS)

    Bekenstein, J.D.; Meisels, A.

    1980-01-01

    The cosmological singularity is inherent in all conventional general relativistic cosmological models. There can be no question that it is an unphysical feature; yet there does not seem to be any convervative way of eliminating it. Here we present singularity-free isotropic cosmological models which are indistinguishable from general relativistic ones at late times. They are based on the general theory of variable rest masses that we developed recently. Outside cosmology this theory simulates general relativity well. Thus it provides a framework incorporating those features which have made geneal relativity so sucessful while providing a way out of singularity dilemma. The cosmological models can be made to incorporate Dirac's large numbers hypothesis. G(now)/G(0)approx.10 -38

  5. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  6. Singularities in geodesic surface congruence

    International Nuclear Information System (INIS)

    Cho, Yong Seung; Hong, Soon-Tae

    2008-01-01

    In the stringy cosmology, we investigate singularities in geodesic surface congruences for the timelike and null strings to yield the Raychaudhuri type equations possessing correction terms associated with the novel features owing to the strings. Assuming the stringy strong energy condition, we have a Hawking-Penrose type inequality equation. If the initial expansion is negative so that the congruence is converging, we show that the expansion must pass through the singularity within a proper time. We observe that the stringy strong energy conditions of both the timelike and null string congruences produce the same inequality equation.

  7. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  8. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  9. Ambient cosmology and spacetime singularities

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  10. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  11. Singular moduli and Arakelov intersection

    International Nuclear Information System (INIS)

    Weng Lin.

    1994-05-01

    The value of the modular function j(τ) at imaginary quadratic arguments τ in the upper half plane is usually called singular moduli. In this paper, we use Arakelov intersection to give the prime factorizations of a certain combination of singular moduli, coming from the Hecke correspondence. Such a result may be considered as the degenerate one of Gross and Zagier on Heegner points and derivatives of L-series in their paper [GZ1], and is parallel to the result in [GZ2]. (author). 2 refs

  12. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    Science.gov (United States)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  13. Singularities in minimax optimization of networks

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1976-01-01

    A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used in the li......A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used...

  14. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes).

    Science.gov (United States)

    Cachera, Marie; Le Loc'h, François

    2017-08-01

    The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.

  15. MAGIC: A Tool for Combining, Interpolating, and Processing Magnetograms

    Science.gov (United States)

    Allred, Joel

    2012-01-01

    Transients in the solar coronal magnetic field are ultimately the source of space weather. Models which seek to track the evolution of the coronal field require magnetogram images to be used as boundary conditions. These magnetograms are obtained by numerous instruments with different cadences and resolutions. A tool is required which allows modelers to fmd all available data and use them to craft accurate and physically consistent boundary conditions for their models. We have developed a software tool, MAGIC (MAGnetogram Interpolation and Composition), to perform exactly this function. MAGIC can manage the acquisition of magneto gram data, cast it into a source-independent format, and then perform the necessary spatial and temporal interpolation to provide magnetic field values as requested onto model-defined grids. MAGIC has the ability to patch magneto grams from different sources together providing a more complete picture of the Sun's field than is possible from single magneto grams. In doing this, care must be taken so as not to introduce nonphysical current densities along the seam between magnetograms. We have designed a method which minimizes these spurious current densities. MAGIC also includes a number of post-processing tools which can provide additional information to models. For example, MAGIC includes an interface to the DA VE4VM tool which derives surface flow velocities from the time evolution of surface magnetic field. MAGIC has been developed as an application of the KAMELEON data formatting toolkit which has been developed by the CCMC.

  16. String wave function across a Kasner singularity

    International Nuclear Information System (INIS)

    Copeland, Edmund J.; Niz, Gustavo; Turok, Neil

    2010-01-01

    A collision of orbifold planes in 11 dimensions has been proposed as an explanation of the hot big bang. When the two planes are close to each other, the winding membranes become the lightest modes of the theory, and can be effectively described in terms of fundamental strings in a ten-dimensional background. Near the brane collision, the 11-dimensional metric is a Euclidean space times a 1+1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general Kasner background. In this paper we extend the previous classical analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with circular symmetry. The evolution across the singularity is regular, and explained in terms of the excitement of higher oscillation modes. We also show there is finite particle production and unitarity is preserved.

  17. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  18. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which .... holes appear as stacks of a large number of D-branes wrapped in internal .... results into a well-known measure factor which makes the wave function into a.

  19. Charged singularities: the causality violation

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1980-12-01

    A search is made for examples of particle trajectories which, approaching a naked singularity from infinity, make up for lost time before going back to infinity. In the Kerr-Newman metric a whole family of such trajectories is found showing that the causality violation is indeed a non-avoidable pathology.

  20. Interval matrices: Regularity generates singularity

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Shary, S.P.

    2018-01-01

    Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  1. Compression of magnetohydrodynamic simulation data using singular value decomposition

    International Nuclear Information System (INIS)

    Castillo Negrete, D. del; Hirshman, S.P.; Spong, D.A.; D'Azevedo, E.F.

    2007-01-01

    Numerical calculations of magnetic and flow fields in magnetohydrodynamic (MHD) simulations can result in extensive data sets. Particle-based calculations in these MHD fields, needed to provide closure relations for the MHD equations, will require communication of this data to multiple processors and rapid interpolation at numerous particle orbit positions. To facilitate this analysis it is advantageous to compress the data using singular value decomposition (SVD, or principal orthogonal decomposition, POD) methods. As an example of the compression technique, SVD is applied to magnetic field data arising from a dynamic nonlinear MHD code. The performance of the SVD compression algorithm is analyzed by calculating Poincare plots for electron orbits in a three-dimensional magnetic field and comparing the results with uncompressed data

  2. Computation at a coordinate singularity

    Science.gov (United States)

    Prusa, Joseph M.

    2018-05-01

    Coordinate singularities are sometimes encountered in computational problems. An important example involves global atmospheric models used for climate and weather prediction. Classical spherical coordinates can be used to parameterize the manifold - that is, generate a grid for the computational spherical shell domain. This particular parameterization offers significant benefits such as orthogonality and exact representation of curvature and connection (Christoffel) coefficients. But it also exhibits two polar singularities and at or near these points typical continuity/integral constraints on dependent fields and their derivatives are generally inadequate and lead to poor model performance and erroneous results. Other parameterizations have been developed that eliminate polar singularities, but problems of weaker singularities and enhanced grid noise compared to spherical coordinates (away from the poles) persist. In this study reparameterization invariance of geometric objects (scalars, vectors and the forms generated by their covariant derivatives) is utilized to generate asymptotic forms for dependent fields of interest valid in the neighborhood of a pole. The central concept is that such objects cannot be altered by the metric structure of a parameterization. The new boundary conditions enforce symmetries that are required for transformations of geometric objects. They are implemented in an implicit polar filter of a structured grid, nonhydrostatic global atmospheric model that is simulating idealized Held-Suarez flows. A series of test simulations using different configurations of the asymptotic boundary conditions are made, along with control simulations that use the default model numerics with no absorber, at three different grid sizes. Typically the test simulations are ∼ 20% faster in wall clock time than the control-resulting from a decrease in noise at the poles in all cases. In the control simulations adverse numerical effects from the polar

  3. Discrete Orthogonal Transforms and Neural Networks for Image Interpolation

    Directory of Open Access Journals (Sweden)

    J. Polec

    1999-09-01

    Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.

  4. Remarks on gauge variables and singular Lagrangians

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.

    1977-01-01

    The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)

  5. Singular multiparameter dynamic equations with distributional ...

    African Journals Online (AJOL)

    Singular multiparameter dynamic equations with distributional potentials on time scales. ... In this paper, we consider both singular single and several multiparameter ... multiple function which is of one sign and nonzero on the given time scale.

  6. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  7. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  8. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni

    2013-01-01

    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  9. New families of interpolating type IIB backgrounds

    Science.gov (United States)

    Minasian, Ruben; Petrini, Michela; Zaffaroni, Alberto

    2010-04-01

    We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are mathbb{T}2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either mathcal{N}=2 or mathcal{N}=1 supersymmetry. In the mathcal{N}=2 case it can be shown that the solutions are regular.

  10. Interpolation of quasi-Banach spaces

    International Nuclear Information System (INIS)

    Tabacco Vignati, A.M.

    1986-01-01

    This dissertation presents a method of complex interpolation for familities of quasi-Banach spaces. This method generalizes the theory for families of Banach spaces, introduced by others. Intermediate spaces in several particular cases are characterized using different approaches. The situation when all the spaces have finite dimensions is studied first. The second chapter contains the definitions and main properties of the new interpolation spaces, and an example concerning the Schatten ideals associated with a separable Hilbert space. The case of L/sup P/ spaces follows from the maximal operator theory contained in Chapter III. Also introduced is a different method of interpolation for quasi-Banach lattices of functions, and conditions are given to guarantee that the two techniques yield the same result. Finally, the last chapter contains a different, and more direct, approach to the case of Hardy spaces

  11. Quadratic Interpolation and Linear Lifting Design

    Directory of Open Access Journals (Sweden)

    Joel Solé

    2007-03-01

    Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.

  12. Optimized Quasi-Interpolators for Image Reconstruction.

    Science.gov (United States)

    Sacht, Leonardo; Nehab, Diego

    2015-12-01

    We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.

  13. Analysis of singularity in redundant manipulators

    International Nuclear Information System (INIS)

    Watanabe, Koichi

    2000-03-01

    In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)

  14. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  15. Positivity Preserving Interpolation Using Rational Bicubic Spline

    Directory of Open Access Journals (Sweden)

    Samsul Ariffin Abdul Karim

    2015-01-01

    Full Text Available This paper discusses the positivity preserving interpolation for positive surfaces data by extending the C1 rational cubic spline interpolant of Karim and Kong to the bivariate cases. The partially blended rational bicubic spline has 12 parameters in the descriptions where 8 of them are free parameters. The sufficient conditions for the positivity are derived on every four boundary curves network on the rectangular patch. Numerical comparison with existing schemes also has been done in detail. Based on Root Mean Square Error (RMSE, our partially blended rational bicubic spline is on a par with the established methods.

  16. Interpolation algorithm for asynchronous ADC-data

    Directory of Open Access Journals (Sweden)

    S. Bramburger

    2017-09-01

    Full Text Available This paper presents a modified interpolation algorithm for signals with variable data rate from asynchronous ADCs. The Adaptive weights Conjugate gradient Toeplitz matrix (ACT algorithm is extended to operate with a continuous data stream. An additional preprocessing of data with constant and linear sections and a weighted overlap of step-by-step into spectral domain transformed signals improve the reconstruction of the asycnhronous ADC signal. The interpolation method can be used if asynchronous ADC data is fed into synchronous digital signal processing.

  17. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    Science.gov (United States)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  18. Energy conditions and spacetime singularities

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete

  19. Multidimensional singular integrals and integral equations

    CERN Document Server

    Mikhlin, Solomon Grigorievich; Stark, M; Ulam, S

    1965-01-01

    Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals

  20. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  1. Why the Singularity Cannot Happen

    OpenAIRE

    Modis, Theodore

    2012-01-01

    The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...

  2. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  3. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  4. Do sewn up singularities falsify the Palatini cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Krakow (Poland); Stachowski, Aleksander [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Borowiec, Andrzej [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Wojnar, Aneta [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Universita di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica, Naples (Italy)

    2016-10-15

    We investigate further (cf. Borowiec et al. JCAP 1601(01):040, 2016) the Starobinsky cosmological model R + γR{sup 2} in the Palatini formalism with a Chaplygin gas and baryonic matter as a source in the context of singularities. The dynamics reduces to the 2D sewn dynamical system of a Newtonian type (a piece-wise-smooth dynamical system). We demonstrate that the presence of a sewn up freeze singularity (glued freeze type singularities) for the positive γ is, in this case, a generic feature of the early evolution of the universe. It is demonstrated that γ equal zero is a bifurcation parameter and the dynamics qualitatively changes as the γ sign is changing. On the other side for the case of negative γ instead of the big bang the sudden bounce singularity of a finite scale factor does appear and there is a generic class of bouncing solutions. While the Ω{sub γ} > 0 is favored by data only very small values of Ω{sub γ} parameter are allowed if we require agreement with the ΛCDM model. From the statistical analysis of astronomical observations, we deduce that the case of only very small negative values of Ω{sub γ} cannot be rejected. Therefore, observation data favor the universe without the ghost states (f{sup '}(R) > 0) and tachyons (f''(R) > 0). (orig.)

  5. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2014-01-01

    residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully

  6. Fast image interpolation via random forests.

    Science.gov (United States)

    Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui

    2015-10-01

    This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.

  7. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  8. Technique for image interpolation using polynomial transforms

    NARCIS (Netherlands)

    Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

    1993-01-01

    We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

  9. Mathematical models with singularities a zoo of singular creatures

    CERN Document Server

    Torres, Pedro J

    2015-01-01

    The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.

  10. Differential maps, difference maps, interpolated maps, and long term prediction

    International Nuclear Information System (INIS)

    Talman, R.

    1988-06-01

    Mapping techniques may be thought to be attractive for the long term prediction of motion in accelerators, especially because a simple map can approximately represent an arbitrarily complicated lattice. The intention of this paper is to develop prejudices as to the validity of such methods by applying them to a simple, exactly solveable, example. It is shown that a numerical interpolation map, such as can be generated in the accelerator tracking program TEAPOT, predicts the evolution more accurately than an analytically derived differential map of the same order. Even so, in the presence of ''appreciable'' nonlinearity, it is shown to be impractical to achieve ''accurate'' prediction beyond some hundreds of cycles of oscillation. This suggests that the value of nonlinear maps is restricted to the parameterization of only the ''leading'' deviation from linearity. 41 refs., 6 figs

  11. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  12. SAR image formation with azimuth interpolation after azimuth transform

    Science.gov (United States)

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  13. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  14. Naked singularity in the global structure of critical collapse spacetimes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.; Pen, U.-L.

    2003-01-01

    We examine the global structure of scalar field critical collapse spacetimes using a characteristic double-null code. It can integrate past the horizon without any coordinate problems, due to the careful choice of constraint equations used in the evolution. The limiting sequence of sub- and supercritical spacetimes presents an apparent paradox in the expected Penrose diagrams, which we address in this paper. We argue that the limiting spacetime converges pointwise to a unique limit for all r>0, but not uniformly. The r=0 line is different in the two limits. We interpret that the two different Penrose diagrams differ by a discontinuous gauge transformation. We conclude that the limiting spacetime possesses a singular event, with a future removable naked singularity

  15. Naked singularity formation in Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Ziaie, Amir Hadi; Atazadeh, Khedmat [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Tavakoli, Yaser, E-mail: am.ziaie@mail.sbu.ac.i, E-mail: k-atazadeh@sbu.ac.i, E-mail: tavakoli@ubi.p [Departamento de Fisica, Universidade da Beira Interior, Rua Marques d' Avila e Bolama, 6200 Covilha (Portugal)

    2010-04-07

    Gravitational collapse of the Brans-Dicke scalar field with non-zero potential in the presence of matter fluid obeying the barotropic equation of state, p = wrho, is studied. Utilizing the concept of the expansion parameter, it is seen that the cosmic censorship conjecture may be violated for w=-1/3 and w=-2/3 which correspond to the cosmic string and domain wall, respectively. We have shown that physically, it is the rate of collapse that governs the formation of a black hole or a naked singularity as the final fate of dynamical evolution and only for these two cases can the singularity be naked as the collapse end state. Also the weak energy condition is satisfied by the collapsing configuration.

  16. Singularities of Type-Q ABS Equations

    Directory of Open Access Journals (Sweden)

    James Atkinson

    2011-07-01

    Full Text Available The type-Q equations lie on the top level of the hierarchy introduced by Adler, Bobenko and Suris (ABS in their classification of discrete counterparts of KdV-type integrable partial differential equations. We ask what singularities are possible in the solutions of these equations, and examine the relationship between the singularities and the principal integrability feature of multidimensional consistency. These questions are considered in the global setting and therefore extend previous considerations of singularities which have been local. What emerges are some simple geometric criteria that determine the allowed singularities, and the interesting discovery that generically the presence of singularities leads to a breakdown in the global consistency of such systems despite their local consistency property. This failure to be globally consistent is quantified by introducing a natural notion of monodromy for isolated singularities.

  17. The geometry of warped product singularities

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  18. Interpolation of fuzzy data | Khodaparast | Journal of Fundamental ...

    African Journals Online (AJOL)

    Considering the many applications of mathematical functions in different ways, it is essential to have a defining function. In this study, we used Fuzzy Lagrangian interpolation and natural fuzzy spline polynomials to interpolate the fuzzy data. In the current world and in the field of science and technology, interpolation issues ...

  19. Interpolation of diffusion weighted imaging datasets

    DEFF Research Database (Denmark)

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W

    2014-01-01

    anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal......Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer...... interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical...

  20. Some splines produced by smooth interpolation

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    2018-01-01

    Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300317302746?via%3Dihub

  1. Some splines produced by smooth interpolation

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    2018-01-01

    Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www. science direct.com/ science /article/pii/S0096300317302746?via%3Dihub

  2. The dominant balance at cosmological singularities

    International Nuclear Information System (INIS)

    Cotsakis, Spiros; Barrow, John D

    2007-01-01

    We define the notion of a finite-time singularity of a vector field and then discuss a technique suitable for the asymptotic analysis of vector fields and their integral curves in the neighborhood of such a singularity. Having in mind the application of this method to cosmology, we also provide an analysis of the time singularities of an isotropic universe filled with a perfect fluid in general relativity

  3. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  4. Quadratic polynomial interpolation on triangular domain

    Science.gov (United States)

    Li, Ying; Zhang, Congcong; Yu, Qian

    2018-04-01

    In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.

  5. Trace interpolation by slant-stack migration

    International Nuclear Information System (INIS)

    Novotny, M.

    1990-01-01

    The slant-stack migration formula based on the radon transform is studied with respect to the depth steep Δz of wavefield extrapolation. It can be viewed as a generalized trace-interpolation procedure including wave extrapolation with an arbitrary step Δz. For Δz > 0 the formula yields the familiar plane-wave decomposition, while for Δz > 0 it provides a robust tool for migration transformation of spatially under sampled wavefields. Using the stationary phase method, it is shown that the slant-stack migration formula degenerates into the Rayleigh-Sommerfeld integral in the far-field approximation. Consequently, even a narrow slant-stack gather applied before the diffraction stack can significantly improve the representation of noisy data in the wavefield extrapolation process. The theory is applied to synthetic and field data to perform trace interpolation and dip reject filtration. The data examples presented prove that the radon interpolator works well in the dip range, including waves with mutual stepouts smaller than half the dominant period

  6. Image Interpolation with Geometric Contour Stencils

    Directory of Open Access Journals (Sweden)

    Pascal Getreuer

    2011-09-01

    Full Text Available We consider the image interpolation problem where given an image vm,n with uniformly-sampled pixels vm,n and point spread function h, the goal is to find function u(x,y satisfying vm,n = (h*u(m,n for all m,n in Z. This article improves upon the IPOL article Image Interpolation with Contour Stencils. In the previous work, contour stencils are used to estimate the image contours locally as short line segments. This article begins with a continuous formulation of total variation integrated over a collection of curves and defines contour stencils as a consistent discretization. This discretization is more reliable than the previous approach and can effectively distinguish contours that are locally shaped like lines, curves, corners, and circles. These improved contour stencils sense more of the geometry in the image. Interpolation is performed using an extension of the method described in the previous article. Using the improved contour stencils, there is an increase in image quality while maintaining similar computational efficiency.

  7. Delimiting areas of endemism through kernel interpolation.

    Science.gov (United States)

    Oliveira, Ubirajara; Brescovit, Antonio D; Santos, Adalberto J

    2015-01-01

    We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

  8. Delimiting areas of endemism through kernel interpolation.

    Directory of Open Access Journals (Sweden)

    Ubirajara Oliveira

    Full Text Available We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE, based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

  9. Singular trajectories: space-time domain topology of developing speckle fields

    Science.gov (United States)

    Vasil'ev, Vasiliy; Soskin, Marat S.

    2010-02-01

    It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.

  10. Naked singularity, firewall, and Hawking radiation.

    Science.gov (United States)

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  11. Spacetime averaging of exotic singularity universes

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P.

    2011-01-01

    Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.

  12. On local invariants of singular symplectic forms

    Science.gov (United States)

    Domitrz, Wojciech

    2017-04-01

    We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.

  13. Coupled singular and non singular thermoelastic system and double lapalce decomposition methods

    OpenAIRE

    Hassan Gadain; Hassan Gadain

    2016-01-01

    In this paper, the double Laplace decomposition methods are applied to solve the non singular and singular one dimensional thermo-elasticity coupled system and. The technique is described and illustrated with some examples

  14. Image Interpolation Scheme based on SVM and Improved PSO

    Science.gov (United States)

    Jia, X. F.; Zhao, B. T.; Liu, X. X.; Song, H. P.

    2018-01-01

    In order to obtain visually pleasing images, a support vector machines (SVM) based interpolation scheme is proposed, in which the improved particle swarm optimization is applied to support vector machine parameters optimization. Training samples are constructed by the pixels around the pixel to be interpolated. Then the support vector machine with optimal parameters is trained using training samples. After the training, we can get the interpolation model, which can be employed to estimate the unknown pixel. Experimental result show that the interpolated images get improvement PNSR compared with traditional interpolation methods, which is agrees with the subjective quality.

  15. Interpolation functions and the Lions-Peetre interpolation construction

    International Nuclear Information System (INIS)

    Ovchinnikov, V I

    2014-01-01

    The generalization of the Lions-Peetre interpolation method of means considered in the present survey is less general than the generalizations known since the 1970s. However, our level of generalization is sufficient to encompass spaces that are most natural from the point of view of applications, like the Lorentz spaces, Orlicz spaces, and their analogues. The spaces φ(X 0 ,X 1 ) p 0 ,p 1 considered here have three parameters: two positive numerical parameters p 0 and p 1 of equal standing, and a function parameter φ. For p 0 ≠p 1 these spaces can be regarded as analogues of Orlicz spaces under the real interpolation method. Embedding criteria are established for the family of spaces φ(X 0 ,X 1 ) p 0 ,p 1 , together with optimal interpolation theorems that refine all the known interpolation theorems for operators acting on couples of weighted spaces L p and that extend these theorems beyond scales of spaces. The main specific feature is that the function parameter φ can be an arbitrary natural functional parameter in the interpolation. Bibliography: 43 titles

  16. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  17. Papapetrou's naked singularity is a strong curvature singularity

    Energy Technology Data Exchange (ETDEWEB)

    Hollier, G.P.

    1986-11-01

    Following Papapetrou (1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)), a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture.

  18. Research progress and hotspot analysis of spatial interpolation

    Science.gov (United States)

    Jia, Li-juan; Zheng, Xin-qi; Miao, Jin-li

    2018-02-01

    In this paper, the literatures related to spatial interpolation between 1982 and 2017, which are included in the Web of Science core database, are used as data sources, and the visualization analysis is carried out according to the co-country network, co-category network, co-citation network, keywords co-occurrence network. It is found that spatial interpolation has experienced three stages: slow development, steady development and rapid development; The cross effect between 11 clustering groups, the main convergence of spatial interpolation theory research, the practical application and case study of spatial interpolation and research on the accuracy and efficiency of spatial interpolation. Finding the optimal spatial interpolation is the frontier and hot spot of the research. Spatial interpolation research has formed a theoretical basis and research system framework, interdisciplinary strong, is widely used in various fields.

  19. The Semantics of Plurals: A Defense of Singularism

    Science.gov (United States)

    Florio, Salvatore

    2010-01-01

    In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…

  20. Stable singularities in string theory

    International Nuclear Information System (INIS)

    Aspinwall, P.S.; Morrison, D.R.; Gross, M.

    1996-01-01

    We study a topological obstruction of a very stringy nature concerned with deforming the target space of an N=2 non-linear σ-model. This target space has a singularity which may be smoothed away according to the conventional rules of geometry, but when one studies the associated conformal field theory one sees that such a deformation is not possible without a discontinuous change in some of the correlation functions. This obstruction appears to come from torsion in the homology of the target space (which is seen by deforming the theory by an irrelevant operator). We discuss the link between this phenomenon and orbifolds with discrete torsion as studied by Vafa and Witten. (orig.). With 3 figs

  1. Economías singulares

    Directory of Open Access Journals (Sweden)

    Elvio Alccinelli

    2001-07-01

    Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.

  2. Coulomb branches with complex singularities

    Science.gov (United States)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  3. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  4. Building Reproducible Science with Singularity Containers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...

  5. Reasons for singularity in robot teleoperation

    DEFF Research Database (Denmark)

    Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth

    2014-01-01

    In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and dela...

  6. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  7. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order

    OpenAIRE

    Nguyen-Xuan, H.; Liu, G. R.; Bordas, Stéphane; Natarajan, S.; Rabczuk, T.

    2013-01-01

    This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient ...

  8. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  9. Biclustering via Sparse Singular Value Decomposition

    KAUST Repository

    Lee, Mihee

    2010-02-16

    Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.

  10. One dimensional systems with singular perturbations

    International Nuclear Information System (INIS)

    Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P

    2011-01-01

    This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.

  11. Noncrossing timelike singularities of irrotational dust collapse

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)

  12. Generation of nuclear data banks through interpolation

    International Nuclear Information System (INIS)

    Castillo M, J.A.

    1999-01-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, used to generate Nuclear Data Banks employing bi cubic polynomial interpolation, taking as independent variables the uranium and gadolinium percents. Two proposals were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed to obtain the interpolating polynomial and later, the corresponding linear equations system. In the solution of this system the Gaussian elimination method with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validations test, a comparison was made between the values obtained with INTPOLBI and INTERTEG (created at the Instituto de Investigaciones Electricas with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks. (Author)

  13. Nuclear data banks generation by interpolation

    International Nuclear Information System (INIS)

    Castillo M, J. A.

    1999-01-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks

  14. Calculation of reactivity without Lagrange interpolation

    International Nuclear Information System (INIS)

    Suescun D, D.; Figueroa J, J. H.; Rodriguez R, K. C.; Villada P, J. P.

    2015-09-01

    A new method to solve numerically the inverse equation of punctual kinetics without using Lagrange interpolating polynomial is formulated; this method uses a polynomial approximation with N points based on a process of recurrence for simulating different forms of nuclear power. The results show a reliable accuracy. Furthermore, the method proposed here is suitable for real-time measurements of reactivity, with step sizes of calculations greater that Δt = 0.3 s; due to its precision can be used to implement a digital meter of reactivity in real time. (Author)

  15. Solving the Schroedinger equation using Smolyak interpolants

    International Nuclear Information System (INIS)

    Avila, Gustavo; Carrington, Tucker Jr.

    2013-01-01

    In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased

  16. Topics in multivariate approximation and interpolation

    CERN Document Server

    Jetter, Kurt

    2005-01-01

    This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for gr

  17. ``All that Matter ... in One Big Bang ...'', &Other Cosmological Singularities

    Science.gov (United States)

    Elizalde, Emilio

    2018-02-01

    The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singularity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, $R^2$, $f(R)$, and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.

  18. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  19. Tachyon cosmology, supernovae data, and the big brake singularity

    International Nuclear Information System (INIS)

    Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Kamenshchik, A. Yu.

    2009-01-01

    We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard ΛCDM model.

  20. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  1. Air Quality Assessment Using Interpolation Technique

    Directory of Open Access Journals (Sweden)

    Awkash Kumar

    2016-07-01

    Full Text Available Air pollution is increasing rapidly in almost all cities around the world due to increase in population. Mumbai city in India is one of the mega cities where air quality is deteriorating at a very rapid rate. Air quality monitoring stations have been installed in the city to regulate air pollution control strategies to reduce the air pollution level. In this paper, air quality assessment has been carried out over the sample region using interpolation techniques. The technique Inverse Distance Weighting (IDW of Geographical Information System (GIS has been used to perform interpolation with the help of concentration data on air quality at three locations of Mumbai for the year 2008. The classification was done for the spatial and temporal variation in air quality levels for Mumbai region. The seasonal and annual variations of air quality levels for SO2, NOx and SPM (Suspended Particulate Matter have been focused in this study. Results show that SPM concentration always exceeded the permissible limit of National Ambient Air Quality Standard. Also, seasonal trends of pollutant SPM was low in monsoon due rain fall. The finding of this study will help to formulate control strategies for rational management of air pollution and can be used for many other regions.

  2. Randomized interpolative decomposition of separated representations

    Science.gov (United States)

    Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory

    2015-01-01

    We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

  3. Size-Dictionary Interpolation for Robot's Adjustment

    Directory of Open Access Journals (Sweden)

    Morteza eDaneshmand

    2015-05-01

    Full Text Available This paper describes the classification and size-dictionary interpolation of the three-dimensional data obtained by a laser scanner to be used in a realistic virtual fitting room, where automatic activation of the chosen mannequin robot, while several mannequin robots of different genders and sizes are simultaneously connected to the same computer, is also considered to make it mimic the body shapes and sizes instantly. The classification process consists of two layers, dealing, respectively, with gender and size. The interpolation procedure tries to find out which set of the positions of the biologically-inspired actuators for activation of the mannequin robots could lead to the closest possible resemblance of the shape of the body of the person having been scanned, through linearly mapping the distances between the subsequent size-templates and the corresponding position set of the bioengineered actuators, and subsequently, calculating the control measures that could maintain the same distance proportions, where minimizing the Euclidean distance between the size-dictionary template vectors and that of the desired body sizes determines the mathematical description. In this research work, the experimental results of the implementation of the proposed method on Fits.me's mannequin robots are visually illustrated, and explanation of the remaining steps towards completion of the whole realistic online fitting package is provided.

  4. Quantum cosmology and late-time singularities

    International Nuclear Information System (INIS)

    Kamenshchik, A Yu

    2013-01-01

    The development of dark energy models has stimulated interest to cosmological singularities, which differ from the traditional Big Bang and Big Crunch singularities. We review a broad class of phenomena connected with soft cosmological singularities in classical and quantum cosmology. We discuss the classification of singularities from the geometrical point of view and from the point of view of the behavior of finite size objects, crossing such singularities. We discuss in some detail quantum and classical cosmology of models based on perfect fluids (anti-Chaplygin gas and anti-Chaplygin gas plus dust), of models based on the Born–Infeld-type fields and of the model of a scalar field with a potential inversely proportional to the field itself. We dwell also on the phenomenon of the phantom divide line crossing in the scalar field models with cusped potentials. Then we discuss the Friedmann equations modified by quantum corrections to the effective action of the models under considerations and the influence of such modification on the nature and the existence of soft singularities. We review also quantum cosmology of models, where the initial quantum state of the universe is presented by the density matrix (mixed state). Finally, we discuss the exotic singularities arising in the braneworld cosmological models. (topical review)

  5. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    International Nuclear Information System (INIS)

    Meng Xinhe; Dou Xu

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)

  6. Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation

    Directory of Open Access Journals (Sweden)

    Hezerul Abdul Karim

    2004-09-01

    Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.

  7. Systems and methods for interpolation-based dynamic programming

    KAUST Repository

    Rockwood, Alyn

    2013-01-03

    Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.

  8. Systems and methods for interpolation-based dynamic programming

    KAUST Repository

    Rockwood, Alyn

    2013-01-01

    Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.

  9. Initial singularity and pure geometric field theories

    Science.gov (United States)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  10. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...... solely on an orthogonal polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding to those points, all matrix elements become well behaved. the boundary...

  11. Transmutation of singularities in optical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Tyc, Tomas [Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: tomtyc@physics.muni.cz

    2008-11-15

    We propose a method for eliminating a class of singularities in optical media where the refractive index goes to zero or infinity at one or more isolated points. Employing transformation optics, we find a refractive index distribution equivalent to the original one that is nonsingular but shows a slight anisotropy. In this way, the original singularity is 'transmuted' into another, weaker type of singularity where the permittivity and permeability tensors are discontinuous at one point. The method is likely to find applications in designing and improving optical devices by making them easier to implement or to operate in a broad band of the spectrum.

  12. Quantum dress for a naked singularity

    Directory of Open Access Journals (Sweden)

    Marc Casals

    2016-09-01

    Full Text Available We investigate semiclassical backreaction on a conical naked singularity space–time with a negative cosmological constant in (2+1-dimensions. In particular, we calculate the renormalized quantum stress–energy tensor for a conformally coupled scalar field on such naked singularity space–time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak cosmic censorship.

  13. Singular mean-filed games

    KAUST Repository

    Cirant, Marco; Gomes, Diogo A.; Pimentel, Edgard A.; Sá nchez-Morgado, Hé ctor

    2016-01-01

    Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.

  14. Singular mean-filed games

    KAUST Repository

    Cirant, Marco

    2016-11-22

    Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.

  15. Distance-two interpolation for parallel algebraic multigrid

    International Nuclear Information System (INIS)

    Sterck, H de; Falgout, R D; Nolting, J W; Yang, U M

    2007-01-01

    In this paper we study the use of long distance interpolation methods with the low complexity coarsening algorithm PMIS. AMG performance and scalability is compared for classical as well as long distance interpolation methods on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers

  16. Comparison of Interpolation Methods as Applied to Time Synchronous Averaging

    National Research Council Canada - National Science Library

    Decker, Harry

    1999-01-01

    Several interpolation techniques were investigated to determine their effect on time synchronous averaging of gear vibration signals and also the effects on standard health monitoring diagnostic parameters...

  17. A comparison of linear interpolation models for iterative CT reconstruction.

    Science.gov (United States)

    Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric

    2016-12-01

    Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects

  18. Singularities in cosmologies with interacting fluids

    International Nuclear Information System (INIS)

    Cotsakis, Spiros; Kittou, Georgia

    2012-01-01

    We study the dynamics near finite-time singularities of flat isotropic universes filled with two interacting but otherwise arbitrary perfect fluids. The overall dynamical picture reveals a variety of asymptotic solutions valid locally around the spacetime singularity. We find the attractor of all solutions with standard decay, and for ‘phantom’ matter asymptotically at early times. We give a number of special asymptotic solutions describing universes collapsing to zero size and others ending at a big rip singularity. We also find a very complicated singularity corresponding to a logarithmic branch point that resembles a cyclic universe, and give an asymptotic local series representation of the general solution in the neighborhood of infinity.

  19. Singularities: the state of the art

    International Nuclear Information System (INIS)

    Clarke, C.J.S.; Schmidt, B.G.

    1977-01-01

    A brief, but precise and unified account is given of the results that have been rigorously established at the time of writing concerning the existence and nature of singularities in classical relativity. (author)

  20. Algunas aclaraciones acerca del conocimiento del singular.

    Directory of Open Access Journals (Sweden)

    Carlos Llano Cifuentes

    2013-11-01

    Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.

  1. Topological Signals of Singularities in Ricci Flow

    Directory of Open Access Journals (Sweden)

    Paul M. Alsing

    2017-08-01

    Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.

  2. Stable computation of generalized singular values

    Energy Technology Data Exchange (ETDEWEB)

    Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.

  3. On Borel singularities in quantum field theory

    International Nuclear Information System (INIS)

    Chadha, S.; Olesen, P.

    1977-10-01

    The authors consider the effective one-loop Lagrangian in a constant electric field. It is shown that perturbation theory behaves as n factorial giving rise to singularities in the Borel plane. Comparing with the known exact result it is shown how to integrate these singularities. It is suggested that renormalons in QED and QCD should be integrated in a similar way. A speculation is made on a possible interpretation of this integration. (Auth.)

  4. Singularity theorems from weakened energy conditions

    International Nuclear Information System (INIS)

    Fewster, Christopher J; Galloway, Gregory J

    2011-01-01

    We establish analogues of the Hawking and Penrose singularity theorems based on (a) averaged energy conditions with exponential damping; (b) conditions on local stress-energy averages inspired by the quantum energy inequalities satisfied by a number of quantum field theories. As particular applications, we establish singularity theorems for the Einstein equations coupled to a classical scalar field, which violates the strong energy condition, and the nonminimally coupled scalar field, which also violates the null energy condition.

  5. Shape-based grey-level image interpolation

    International Nuclear Information System (INIS)

    Keh-Shih Chuang; Chun-Yuan Chen; Ching-Kai Yeh

    1999-01-01

    The three-dimensional (3D) object data obtained from a CT scanner usually have unequal sampling frequencies in the x-, y- and z-directions. Generally, the 3D data are first interpolated between slices to obtain isotropic resolution, reconstructed, then operated on using object extraction and display algorithms. The traditional grey-level interpolation introduces a layer of intermediate substance and is not suitable for objects that are very different from the opposite background. The shape-based interpolation method transfers a pixel location to a parameter related to the object shape and the interpolation is performed on that parameter. This process is able to achieve a better interpolation but its application is limited to binary images only. In this paper, we present an improved shape-based interpolation method for grey-level images. The new method uses a polygon to approximate the object shape and performs the interpolation using polygon vertices as references. The binary images representing the shape of the object were first generated via image segmentation on the source images. The target object binary image was then created using regular shape-based interpolation. The polygon enclosing the object for each slice can be generated from the shape of that slice. We determined the relative location in the source slices of each pixel inside the target polygon using the vertices of a polygon as the reference. The target slice grey-level was interpolated from the corresponding source image pixels. The image quality of this interpolation method is better and the mean squared difference is smaller than with traditional grey-level interpolation. (author)

  6. Naked singularities and cosmic censorship: comment on the current situation

    International Nuclear Information System (INIS)

    Seifert, H.J.

    1979-01-01

    The current discussion is mainly concerned with how, or indeed, whether space-times possessing naked singularities can be ruled out as being too unrealistic or not being singular at all. The present position is summarized, with references, under the following headings: the Hawking-Penrose existence theorems, hydrodynamical singularities and the strength of naked singularities. (UK)

  7. Interpolation from Grid Lines: Linear, Transfinite and Weighted Method

    DEFF Research Database (Denmark)

    Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen

    2017-01-01

    When two sets of line scans are acquired orthogonal to each other, intensity values are known along the lines of a grid. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid l...

  8. Shape Preserving Interpolation Using C2 Rational Cubic Spline

    Directory of Open Access Journals (Sweden)

    Samsul Ariffin Abdul Karim

    2016-01-01

    Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.

  9. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    Although the primary input data of climate interpolations are usually meteorological data, other related (independent) variables are frequently incorporated in the interpolation process. One such variable is elevation, which is known to have a strong influence on climate. This research investigates the potential of 4 additional ...

  10. An efficient interpolation filter VLSI architecture for HEVC standard

    Science.gov (United States)

    Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang

    2015-12-01

    The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.

  11. Some observations on interpolating gauges and non-covariant gauges

    Indian Academy of Sciences (India)

    We discuss the viability of using interpolating gauges to define the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...

  12. Convergence of trajectories in fractal interpolation of stochastic processes

    International Nuclear Information System (INIS)

    MaIysz, Robert

    2006-01-01

    The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation

  13. Improved Interpolation Kernels for Super-resolution Algorithms

    DEFF Research Database (Denmark)

    Rasti, Pejman; Orlova, Olga; Tamberg, Gert

    2016-01-01

    Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial guess...... when their original interpolation kernel is replaced by the ones introduced in this work....

  14. Scalable Intersample Interpolation Architecture for High-channel-count Beamformers

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Nikolov, Svetoslav I; Jensen, Jørgen Arendt

    2011-01-01

    Modern ultrasound scanners utilize digital beamformers that operate on sampled and quantized echo signals. Timing precision is of essence for achieving good focusing. The direct way to achieve it is through the use of high sampling rates, but that is not economical, so interpolation between echo...... samples is used. This paper presents a beamformer architecture that combines a band-pass filter-based interpolation algorithm with the dynamic delay-and-sum focusing of a digital beamformer. The reduction in the number of multiplications relative to a linear perchannel interpolation and band-pass per......-channel interpolation architecture is respectively 58 % and 75 % beamformer for a 256-channel beamformer using 4-tap filters. The approach allows building high channel count beamformers while maintaining high image quality due to the use of sophisticated intersample interpolation....

  15. Fractional Delayer Utilizing Hermite Interpolation with Caratheodory Representation

    Directory of Open Access Journals (Sweden)

    Qiang DU

    2018-04-01

    Full Text Available Fractional delay is indispensable for many sorts of circuits and signal processing applications. Fractional delay filter (FDF utilizing Hermite interpolation with an analog differentiator is a straightforward way to delay discrete signals. This method has a low time-domain error, but a complicated sampling module than the Shannon sampling scheme. A simplified scheme, which is based on Shannon sampling and utilizing Hermite interpolation with a digital differentiator, will lead a much higher time-domain error when the signal frequency approaches the Nyquist rate. In this letter, we propose a novel fractional delayer utilizing Hermite interpolation with Caratheodory representation. The samples of differential signal are obtained by Caratheodory representation from the samples of the original signal only. So, only one sampler is needed and the sampling module is simple. Simulation results for four types of signals demonstrate that the proposed method has significantly higher interpolation accuracy than Hermite interpolation with digital differentiator.

  16. Cosmologies with quasiregular singularities. II. Stability considerations

    International Nuclear Information System (INIS)

    Konkowski, D.A.; Helliwell, T.M.

    1985-01-01

    The stability properties of a class of spacetimes with quasiregular singularities is discussed. Quasiregular singularities are the end points of incomplete, inextendible geodesics at which the Riemann tensor and its derivatives remain at least bounded in all parallel-propagated orthonormal (PPON) frames; observers approaching such a singularity would find that their world lines come to an end in a finite proper time. The Taub-NUT (Newman-Unti-Tamburino)-type cosmologies investigated are R 1 x T 3 and R 3 x S 1 flat Kasner spacetimes, the two-parameter family of spatially homogeneous but anisotropic Bianchi type-IX Taub-NUT spacetimes, and an infinite-dimensional family of Einstein-Rosen-Gowdy spacetimes studied by Moncrief. The behavior of matter near the quasiregular singularity in each of these spacetimes is explored through an examination of the behavior of the stress-energy tensors and scalars for conformally coupled and minimally coupled, massive and massless scalar waves as observed in both coordinate and PPON frames. A conjecture is postulated concerning the stability of the nature of the singularity in these spacetimes. The conjecture for a Taub-NUT-type background spacetime is that if a test-field stress-energy tensor evaluated in a PPON frame mimics the behavior of the Riemann tensor components which indicate a particular type of singularity (quasiregular, nonscalar curvature, or scalar curvature), then a complete nonlinear backreaction calculation, in which the fields are allowed to influence the geometry, would show that this type of singularity actually occurs. Evidence supporting the conjecture is presented for spacetimes whose symmetries are unchanged when fields with the same symmetries are added

  17. The role of self-similarity in singularities of partial differential equations

    International Nuclear Information System (INIS)

    Eggers, Jens; Fontelos, Marco A

    2009-01-01

    We survey rigorous, formal and numerical results on the formation of point-like singularities (or blow-up) for a wide range of evolution equations. We use a similarity transformation of the original equation with respect to the blow-up point, such that self-similar behaviour is mapped to the fixed point of a dynamical system. We point out that analysing the dynamics close to the fixed point is a useful way of characterizing the singularity, in that the dynamics frequently reduces to very few dimensions. As far as we are aware, examples from the literature either correspond to stable fixed points, low-dimensional centre-manifold dynamics, limit cycles or travelling waves. For each 'class' of singularity, we give detailed examples. (invited article)

  18. Stability of stationary states of non-local equations with singular interaction potentials

    KAUST Repository

    Fellner, Klemens

    2011-04-01

    We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.

  19. Shocks and finite-time singularities in Hele-Shaw flow

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, Razvan [Los Alamos National Laboratory; Wiegmann, P [UNIV OF MONTREAL; Lee, S-y [UNIV OF CHICAGO

    2008-01-01

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most generic (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.

  20. The role of singular values in single copy entanglement manipulations and unambiguous state discrimination

    International Nuclear Information System (INIS)

    Uzdin, Raam

    2014-01-01

    Unambiguous (non-orthogonal) state discrimination (USD) has a fundamental importance in quantum information and quantum cryptography. Various aspects of two-state and multiple-state USD are studied here using singular value decomposition of the evolution operator that describes a given state discriminating system. In particular, we relate the minimal angle between states to the ratio of the minimal and maximal singular values. This is supported by a simple geometrical picture in two-state USD. Furthermore, by studying the singular vectors population we find that the minimal angle between input vectors in multiple-state USD is always larger than the minimal angle in two-state USD in the same system. As an example we study what pure states can be probabilistically transformed into maximally entangled pure states in a given system . (paper)

  1. Computing Diffeomorphic Paths for Large Motion Interpolation.

    Science.gov (United States)

    Seo, Dohyung; Jeffrey, Ho; Vemuri, Baba C

    2013-06-01

    In this paper, we introduce a novel framework for computing a path of diffeomorphisms between a pair of input diffeomorphisms. Direct computation of a geodesic path on the space of diffeomorphisms Diff (Ω) is difficult, and it can be attributed mainly to the infinite dimensionality of Diff (Ω). Our proposed framework, to some degree, bypasses this difficulty using the quotient map of Diff (Ω) to the quotient space Diff ( M )/ Diff ( M ) μ obtained by quotienting out the subgroup of volume-preserving diffeomorphisms Diff ( M ) μ . This quotient space was recently identified as the unit sphere in a Hilbert space in mathematics literature, a space with well-known geometric properties. Our framework leverages this recent result by computing the diffeomorphic path in two stages. First, we project the given diffeomorphism pair onto this sphere and then compute the geodesic path between these projected points. Second, we lift the geodesic on the sphere back to the space of diffeomerphisms, by solving a quadratic programming problem with bilinear constraints using the augmented Lagrangian technique with penalty terms. In this way, we can estimate the path of diffeomorphisms, first, staying in the space of diffeomorphisms, and second, preserving shapes/volumes in the deformed images along the path as much as possible. We have applied our framework to interpolate intermediate frames of frame-sub-sampled video sequences. In the reported experiments, our approach compares favorably with the popular Large Deformation Diffeomorphic Metric Mapping framework (LDDMM).

  2. Functions with disconnected spectrum sampling, interpolation, translates

    CERN Document Server

    Olevskii, Alexander M

    2016-01-01

    The classical sampling problem is to reconstruct entire functions with given spectrum S from their values on a discrete set L. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets L the exponential system with frequencies in L forms a frame in the space L^2(S). The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in S and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum S and the discrete set L play a crucial role in these problems. After an elementary introduction, the authors give a new presentation of classical results due to Beurling, Kahane, and Landau. The main part of the book focuses on recent progress in the area, such as construction of universal sampling sets, high-dimensional and non-analytic phenomena. The reader will see how methods of harmonic and complex analysis interplay with various important concepts in different areas, ...

  3. Spatiotemporal video deinterlacing using control grid interpolation

    Science.gov (United States)

    Venkatesan, Ragav; Zwart, Christine M.; Frakes, David H.; Li, Baoxin

    2015-03-01

    With the advent of progressive format display and broadcast technologies, video deinterlacing has become an important video-processing technique. Numerous approaches exist in the literature to accomplish deinterlacing. While most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies and even dedicated video-processing hardware in display units has allowed higher quality but also more computationally intense deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in video to select different deinterlacing methods for various spatiotemporal regions. We introduce a family of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on peak signal-to-noise ratio, other visual quality metrics, and simple perception-based subjective evaluations conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on the visual performance.

  4. Generalized teleparallel cosmology and initial singularity crossing

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg [Center for Theoretical Physics, the British University in Egypt, Suez Desert Road, Sherouk City 11837 (Egypt)

    2017-02-01

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. The milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.

  5. Research of Cubic Bezier Curve NC Interpolation Signal Generator

    Directory of Open Access Journals (Sweden)

    Shijun Ji

    2014-08-01

    Full Text Available Interpolation technology is the core of the computer numerical control (CNC system, and the precision and stability of the interpolation algorithm directly affect the machining precision and speed of CNC system. Most of the existing numerical control interpolation technology can only achieve circular arc interpolation, linear interpolation or parabola interpolation, but for the numerical control (NC machining of parts with complicated surface, it needs to establish the mathematical model and generate the curved line and curved surface outline of parts and then discrete the generated parts outline into a large amount of straight line or arc to carry on the processing, which creates the complex program and a large amount of code, so it inevitably introduce into the approximation error. All these factors affect the machining accuracy, surface roughness and machining efficiency. The stepless interpolation of cubic Bezier curve controlled by analog signal is studied in this paper, the tool motion trajectory of Bezier curve can be directly planned out in CNC system by adjusting control points, and then these data were put into the control motor which can complete the precise feeding of Bezier curve. This method realized the improvement of CNC trajectory controlled ability from the simple linear and circular arc to the complex project curve, and it provides a new way for economy realizing the curve surface parts with high quality and high efficiency machining.

  6. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  7. Shape-based interpolation of multidimensional grey-level images

    International Nuclear Information System (INIS)

    Grevera, G.J.; Udupa, J.K.

    1996-01-01

    Shape-based interpolation as applied to binary images causes the interpolation process to be influenced by the shape of the object. It accomplishes this by first applying a distance transform to the data. This results in the creation of a grey-level data set in which the value at each point represents the minimum distance from that point to the surface of the object. (By convention, points inside the object are assigned positive values; points outside are assigned negative values.) This distance transformed data set is then interpolated using linear or higher-order interpolation and is then thresholded at a distance value of zero to produce the interpolated binary data set. In this paper, the authors describe a new method that extends shape-based interpolation to grey-level input data sets. This generalization consists of first lifting the n-dimensional (n-D) image data to represent it as a surface, or equivalently as a binary image, in an (n + 1)-dimensional [(n + 1)-D] space. The binary shape-based method is then applied to this image to create an (n + 1)-D binary interpolated image. Finally, this image is collapsed (inverse of lifting) to create the n-D interpolated grey-level data set. The authors have conducted several evaluation studies involving patient computed tomography (CT) and magnetic resonance (MR) data as well as mathematical phantoms. They all indicate that the new method produces more accurate results than commonly used grey-level linear interpolation methods, although at the cost of increased computation

  8. Radioanatomy of the singular nerve canal

    Energy Technology Data Exchange (ETDEWEB)

    Muren, C. [Dept. of Diagnostic Radiology, Sabbatsbergs Hospital, Stockholm (Sweden); Wadin, K. [University Hospital, Uppsala (Sweden); Dimopoulos, P. [University Hospital, Uppsala (Sweden)

    1991-08-01

    The singular canal conveys vestibular nerve fibers from the ampulla of the posterior semicircular canal to the posteroinferior border of the internal auditory meatus. Radiographic identification of this anatomic structure helps to distinguish it from a fracture. It is also a landmark in certain surgical procedures. Computed tomography (CT) examinations of deep-frozen temporal bone specimens were compared with subsequently prepared plastic casts of these bones, showing good correlation between the anatomy and the images. The singular canal and its variable anatomy were studied in CT examinations of 107 patients. The singular canal could be identified, in both the axial and in the coronal planes. Its point of entry into the internal auditory meatus varied considerably. (orig.)

  9. Enveloping branes and brane-world singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios; Cotsakis, Spiros [CERN-Theory Division, Department of Physics, Geneva 23 (Switzerland); Klaoudatou, Ifigeneia [University of the Aegean, Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, Samos (Greece)

    2014-12-01

    The existence of envelopes is studied for systems of differential equations in connection with the method of asymptotic splittings which allows one to determine the singularity structure of the solutions. The result is applied to brane-worlds consisting of a 3-brane in a five-dimensional bulk, in the presence of an analog of a bulk perfect fluid parameterizing a generic class of bulk matter. We find that all flat brane solutions suffer from a finite-distance singularity contrary to previous claims. We then study the possibility of avoiding finite-distance singularities by cutting the bulk and gluing regular solutions at the position of the brane. Further imposing physical conditions such as finite Planck mass on the brane and positive energy conditions on the bulk fluid, excludes, however, this possibility as well. (orig.)

  10. Global embeddings for branes at toric singularities

    CERN Document Server

    Balasubramanian, Vijay; Braun, Volker; García-Etxebarria, Iñaki

    2012-01-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) (dP0)^3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  11. Holographic subregion complexity for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2017-10-15

    Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)

  12. Singularity hypotheses a scientific and philosophical assessment

    CERN Document Server

    Moor, James; Søraker, Johnny; Steinhart, Eric

    2012-01-01

    Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.

  13. Singularities in four-body final-state amplitudes

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1978-01-01

    Like three-body amplitudes, four-body amplitudes have subenergy threshold singularities over and above total-energy singularities. In the four-body problem we encounter a new type of subenergy singularity besides the usual two- and three-body subenergy threshold singularities. This singularity will be referred to as ''independent-pair threshold singularity'' and involves pair-subenergy threshold singularities in each of the two independent pair subenergies in four-body final states. We also study the particularly interesting case of resonant two- and three-body interactions in the four-body isobar model and the rapid (singular) dependence of the isobar amplitudes they generate in the four-body phase space. All these singularities are analyzed in the multiple-scattering formalism and it is shown that they arise from the ''next-to-last'' rescattering and hence may be represented correctly by an approximate amplitude which has that rescattering

  14. On Multiple Interpolation Functions of the -Genocchi Polynomials

    Directory of Open Access Journals (Sweden)

    Jin Jeong-Hee

    2010-01-01

    Full Text Available Abstract Recently, many mathematicians have studied various kinds of the -analogue of Genocchi numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their interpolation functions, "Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–112, 2009.", Kim defined new generating functions of -Genocchi, -Euler polynomials, and their interpolation functions. In this paper, we give another definition of the multiple Hurwitz type -zeta function. This function interpolates -Genocchi polynomials at negative integers. Finally, we also give some identities related to these polynomials.

  15. Spectral interpolation - Zero fill or convolution. [image processing

    Science.gov (United States)

    Forman, M. L.

    1977-01-01

    Zero fill, or augmentation by zeros, is a method used in conjunction with fast Fourier transforms to obtain spectral spacing at intervals closer than obtainable from the original input data set. In the present paper, an interpolation technique (interpolation by repetitive convolution) is proposed which yields values accurate enough for plotting purposes and which lie within the limits of calibration accuracies. The technique is shown to operate faster than zero fill, since fewer operations are required. The major advantages of interpolation by repetitive convolution are that efficient use of memory is possible (thus avoiding the difficulties encountered in decimation in time FFTs) and that is is easy to implement.

  16. Steady State Stokes Flow Interpolation for Fluid Control

    DEFF Research Database (Denmark)

    Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert

    2012-01-01

    — suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...

  17. C1 Rational Quadratic Trigonometric Interpolation Spline for Data Visualization

    Directory of Open Access Journals (Sweden)

    Shengjun Liu

    2015-01-01

    Full Text Available A new C1 piecewise rational quadratic trigonometric spline with four local positive shape parameters in each subinterval is constructed to visualize the given planar data. Constraints are derived on these free shape parameters to generate shape preserving interpolation curves for positive and/or monotonic data sets. Two of these shape parameters are constrained while the other two can be set free to interactively control the shape of the curves. Moreover, the order of approximation of developed interpolant is investigated as O(h3. Numeric experiments demonstrate that our method can construct nice shape preserving interpolation curves efficiently.

  18. Cosmological singularity theorems for f ( R ) gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Alani, Ivo [Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina); Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar [Instituto de Matemáticas Luis Santaló (IMAS), Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina)

    2016-05-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  19. Cosmological singularity theorems for f ( R ) gravity theories

    International Nuclear Information System (INIS)

    Alani, Ivo; Santillán, Osvaldo P.

    2016-01-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T ij −( g ij /2) T ) k i k j ≥ 0 for any generic unit time like field k i ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  20. Endpoint singularities in unintegrated parton distributions

    CERN Document Server

    Hautmann, F

    2007-01-01

    We examine the singular behavior from the endpoint region x -> 1 in parton distributions unintegrated in both longitudinal and transverse momenta. We identify and regularize the singularities by using the subtraction method, and compare this with the cut-off regularization method. The counterterms for the distributions with subtractive regularization are given in coordinate space by compact all-order expressions in terms of eikonal-line operators. We carry out an explicit calculation at one loop for the unintegrated quark distribution. We discuss the relation of the unintegrated parton distributions in subtractive regularization with the ordinary parton distributions.

  1. Characteristic classes, singular embeddings, and intersection homology.

    Science.gov (United States)

    Cappell, S E; Shaneson, J L

    1987-06-01

    This note announces some results on the relationship between global invariants and local topological structure. The first section gives a local-global formula for Pontrjagin classes or L-classes. The second section describes a corresponding decomposition theorem on the level of complexes of sheaves. A final section mentions some related aspects of "singular knot theory" and the study of nonisolated singularities. Analogous equivariant analogues, with local-global formulas for Atiyah-Singer classes and their relations to G-signatures, will be presented in a future paper.

  2. Cosmic censorship and the strengths of singularities

    International Nuclear Information System (INIS)

    Newman, R.P.

    1986-01-01

    This paper considers the principal definitions concerning limiting curvature strength on geodesics, and on non-spacelike geodesics in particular. They are formulated in terms of focussing conditions. Two definitions suggest themselves, and these are given in terms of a concept of a generalized Jacobi field. An historical survey is presented on some important developments concerning examples of naked singularities. The historical context is recalled in which these models, and cosmic censorship in general, have arisen. It is the author's opinion that one can expect to obtain theoretical limitations on the strengths of any naked singularities which do occur

  3. Chiral properties of baryon interpolating fields

    International Nuclear Information System (INIS)

    Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.

    2008-01-01

    We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)

  4. MODIS Snow Cover Recovery Using Variational Interpolation

    Science.gov (United States)

    Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.

  5. Comparison of two fractal interpolation methods

    Science.gov (United States)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has

  6. Interpolation-Based Condensation Model Reduction Part 1: Frequency Window Reduction Method Application to Structural Acoustics

    National Research Council Canada - National Science Library

    Ingel, R

    1999-01-01

    ... (which require derivative information) interpolation functions as well as standard Lagrangian functions, which can be linear, quadratic or cubic, have been used to construct the interpolation windows...

  7. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  8. Efficient Algorithms and Design for Interpolation Filters in Digital Receiver

    Directory of Open Access Journals (Sweden)

    Xiaowei Niu

    2014-05-01

    Full Text Available Based on polynomial functions this paper introduces a generalized design method for interpolation filters. The polynomial-based interpolation filters can be implemented efficiently by using a modified Farrow structure with an arbitrary frequency response, the filters allow many pass- bands and stop-bands, and for each band the desired amplitude and weight can be set arbitrarily. The optimization coefficients of the interpolation filters in time domain are got by minimizing the weighted mean squared error function, then converting to solve the quadratic programming problem. The optimization coefficients in frequency domain are got by minimizing the maxima (MiniMax of the weighted mean squared error function. The degree of polynomials and the length of interpolation filter can be selected arbitrarily. Numerical examples verified the proposed design method not only can reduce the hardware cost effectively but also guarantee an excellent performance.

  9. A Meshfree Quasi-Interpolation Method for Solving Burgers’ Equation

    Directory of Open Access Journals (Sweden)

    Mingzhu Li

    2014-01-01

    Full Text Available The main aim of this work is to consider a meshfree algorithm for solving Burgers’ equation with the quartic B-spline quasi-interpolation. Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations and overcome the ill-conditioning problem resulting from using the B-spline as a global interpolant. The numerical scheme is presented, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative of the dependent variable. Compared to other numerical methods, the main advantages of our scheme are higher accuracy and lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.

  10. [Multimodal medical image registration using cubic spline interpolation method].

    Science.gov (United States)

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  11. Interpolating and sampling sequences in finite Riemann surfaces

    OpenAIRE

    Ortega-Cerda, Joaquim

    2007-01-01

    We provide a description of the interpolating and sampling sequences on a space of holomorphic functions on a finite Riemann surface, where a uniform growth restriction is imposed on the holomorphic functions.

  12. Illumination estimation via thin-plate spline interpolation.

    Science.gov (United States)

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  13. Fast image interpolation for motion estimation using graphics hardware

    Science.gov (United States)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  14. 3D Medical Image Interpolation Based on Parametric Cubic Convolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.

  15. Interpolation and sampling in spaces of analytic functions

    CERN Document Server

    Seip, Kristian

    2004-01-01

    The book is about understanding the geometry of interpolating and sampling sequences in classical spaces of analytic functions. The subject can be viewed as arising from three classical topics: Nevanlinna-Pick interpolation, Carleson's interpolation theorem for H^\\infty, and the sampling theorem, also known as the Whittaker-Kotelnikov-Shannon theorem. The book aims at clarifying how certain basic properties of the space at hand are reflected in the geometry of interpolating and sampling sequences. Key words for the geometric descriptions are Carleson measures, Beurling densities, the Nyquist rate, and the Helson-Szegő condition. The book is based on six lectures given by the author at the University of Michigan. This is reflected in the exposition, which is a blend of informal explanations with technical details. The book is essentially self-contained. There is an underlying assumption that the reader has a basic knowledge of complex and functional analysis. Beyond that, the reader should have some familiari...

  16. Energy-Driven Image Interpolation Using Gaussian Process Regression

    Directory of Open Access Journals (Sweden)

    Lingling Zi

    2012-01-01

    Full Text Available Image interpolation, as a method of obtaining a high-resolution image from the corresponding low-resolution image, is a classical problem in image processing. In this paper, we propose a novel energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm, each interpolated pixel is predicted by a combination of two information sources: first is a statistical model adopted to mine underlying information, and second is an energy computation technique used to acquire information on pixel properties. We further demonstrate that our algorithm can not only achieve image interpolation, but also reduce noise in the original image. Our experiments show that the proposed algorithm can achieve encouraging performance in terms of image visualization and quantitative measures.

  17. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Sorriso-Valvo, L.; De Vita, G. [IMIP-CNR, U.O.S. LICRYL di Cosenza, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Kazachenko, M. D.; Krucker, S.; Welsch, B. T.; Fisher, G. H. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley 94720, California (United States); Primavera, L.; Servidio, S.; Lepreti, F.; Carbone, V. [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Vecchio, A., E-mail: sorriso@fis.unical.it [INGV, Sede di Cosenza, Ponte P. Bucci, Cubo 30C, I-87036 Rende (Italy)

    2015-03-01

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  18. Identifying Initial Condition in Degenerate Parabolic Equation with Singular Potential

    Directory of Open Access Journals (Sweden)

    K. Atifi

    2017-01-01

    Full Text Available A hybrid algorithm and regularization method are proposed, for the first time, to solve the one-dimensional degenerate inverse heat conduction problem to estimate the initial temperature distribution from point measurements. The evolution of the heat is given by a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is based on a hybrid genetic algorithm (married genetic with descent method type gradient. Some numerical experiments are given.

  19. Spatial interpolation of point velocities in stream cross-section

    Directory of Open Access Journals (Sweden)

    Hasníková Eliška

    2015-03-01

    Full Text Available The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller-type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models.

  20. The Convergence Acceleration of Two-Dimensional Fourier Interpolation

    Directory of Open Access Journals (Sweden)

    Anry Nersessian

    2008-07-01

    Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.

  1. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  2. Singular continuous spectrum for palindromic Schroedinger operators

    International Nuclear Information System (INIS)

    Hof, A.; Knill, O.; Simon, B.

    1995-01-01

    We give new examples of discrete Schroedinger operators with potentials taking finitely many values that have purely singular continuous spectrum. If the hull X of the potential is strictly ergodic, then the existence of just one potential x in X for which the operator has no eigenvalues implies that there is a generic set in X for which the operator has purely singular continuous spectrum. A sufficient condition for the existence of such an x is that there is a z element of X that contains arbitrarily long palindromes. Thus we can define a large class of primitive substitutions for which the operators are purely singularly continuous for a generic subset in X. The class includes well-known substitutions like Fibonacci, Thue-Morse, Period Doubling, binary non-Pisot and ternary non-Pisot. We also show that the operator has no absolutely continuous spectrum for all x element of X if X derives from a primitive substitution. For potentials defined by circle maps, x n =l J (θ 0 +nα), we show that the operator has purely singular continuous spectrum for a generic subset in X for all irrational α and every half-open interval J. (orig.)

  3. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  4. Mobile communications technology: The singular factor responsible ...

    African Journals Online (AJOL)

    This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...

  5. Diamagnetism of quantum gases with singular potentials

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Savoie, Baptiste

    2010-01-01

    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is analytic with respect to the chemical potential and the intensity of the external magnetic...

  6. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  7. A singularity theorem based on spatial averages

    Indian Academy of Sciences (India)

    journal of. July 2007 physics pp. 31–47. A singularity theorem based on spatial ... In this paper I would like to present a result which confirms – at least partially – ... A detailed analysis of how the model fits in with the .... Further, the statement that the spatial average ...... Financial support under grants FIS2004-01626 and no.

  8. Symmetries and singularities in Hamiltonian systems

    International Nuclear Information System (INIS)

    Miranda, Eva

    2009-01-01

    This paper contains several results concerning the role of symmetries and singularities in the mathematical formulation of many physical systems. We concentrate in systems which find their mathematical model on a symplectic or Poisson manifold and we present old and new results from a global perspective.

  9. Singular interactions supported by embedded curves

    International Nuclear Information System (INIS)

    Kaynak, Burak Tevfik; Turgut, O Teoman

    2012-01-01

    In this work, singular interactions supported by embedded curves on Riemannian manifolds are discussed from a more direct and physical perspective, via the heat kernel approach. We show that the renormalized problem is well defined, the ground state is finite and the corresponding wavefunction is positive. The renormalization group invariance of the model is also discussed. (paper)

  10. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.

    2011-01-01

    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  11. Classical resolution of singularities in dilaton cosmologies

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to

  12. Normal forms of Hopf-zero singularity

    International Nuclear Information System (INIS)

    Gazor, Majid; Mokhtari, Fahimeh

    2015-01-01

    The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative–nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov–Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov–Takens singularities. Despite this, the normal form computations of Bogdanov–Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative–nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto–Sivashinsky equations to demonstrate the applicability of our results. (paper)

  13. Normal forms of Hopf-zero singularity

    Science.gov (United States)

    Gazor, Majid; Mokhtari, Fahimeh

    2015-01-01

    The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative-nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov-Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov-Takens singularities. Despite this, the normal form computations of Bogdanov-Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative-nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto-Sivashinsky equations to demonstrate the applicability of our results.

  14. A Systolic Architecture for Singular Value Decomposition,

    Science.gov (United States)

    1983-01-01

    Presented at the 1 st International Colloquium on Vector and Parallel Computing in Scientific Applications, Paris, March 191J Contract N00014-82-K.0703...Gene Golub. Private comunication . given inputs x and n 2 , compute 2 2 2 2 /6/ G. H. Golub and F. T. Luk : "Singular Value I + X1 Decomposition

  15. Sporadic simple groups and quotient singularities

    International Nuclear Information System (INIS)

    Cheltsov, I A; Shramov, C A

    2013-01-01

    We show that if a faithful irreducible representation of a central extension of a sporadic simple group with centre contained in the commutator subgroup gives rise to an exceptional (resp. weakly exceptional but not exceptional) quotient singularity, then that simple group is the Hall-Janko group (resp. the Suzuki group)

  16. Singularity is the Future of ICT Research

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... innovation if the black race are not to be left one hundred years ... aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori ..... An overview of models of technological singularity ... the Singularity—representing a profound and disruptive transformation in.

  17. Survey: interpolation methods for whole slide image processing.

    Science.gov (United States)

    Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T

    2017-02-01

    Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. Comparing interpolation schemes in dynamic receive ultrasound beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Andresen, Henrik; Nikolov, Svetoslav

    2005-01-01

    In medical ultrasound interpolation schemes are of- ten applied in receive focusing for reconstruction of image points. This paper investigates the performance of various interpolation scheme by means of ultrasound simulations of point scatterers in Field II. The investigation includes conventional...... B-mode imaging and synthetic aperture (SA) imaging using a 192-element, 7 MHz linear array transducer with λ pitch as simulation model. The evaluation consists primarily of calculations of the side lobe to main lobe ratio, SLMLR, and the noise power of the interpolation error. When using...... conventional B-mode imaging and linear interpolation, the difference in mean SLMLR is 6.2 dB. With polynomial interpolation the ratio is in the range 6.2 dB to 0.3 dB using 2nd to 5th order polynomials, and with FIR interpolation the ratio is in the range 5.8 dB to 0.1 dB depending on the filter design...

  19. Surface interpolation with radial basis functions for medical imaging

    International Nuclear Information System (INIS)

    Carr, J.C.; Beatson, R.K.; Fright, W.R.

    1997-01-01

    Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill

  20. Generalized Parton Distributions and their Singularities

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin

    2011-04-01

    A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.

  1. São Carlos Workshop on Real and Complex Singularities

    CERN Document Server

    Ruas, Maria

    2007-01-01

    The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.

  2. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    solutions of singularly perturbed nonlinear differential equations. ... for solving generalized Burgers-Huxley equation but this equation is not singularly ...... Solitary waves solutions of the generalized Burger Huxley equations, Journal of.

  3. EDITORIAL: The plurality of optical singularities

    Science.gov (United States)

    Berry, Michael; Dennis, Mark; Soskin, Marat

    2004-05-01

    This collection of papers arose from an Advanced Research Workshop on Singular Optics, held at the Bogolyubov Institute in Kiev, Ukraine, during 24-28 June 2003. The workshop was generously financed by NATO, with welcome additional support from Institute of Physics Publishing and the National Academy of Sciences of Ukraine. There had been two previous international meetings devoted to singular optics, in Crimea in 1997 and 2000, reflecting the strong involvement of former Soviet Union countries in this research. Awareness of singular optics is growing within the wider optics community, indicated by symposia on the subject at several general optics meetings. As the papers demonstrate, the field of singular optics has reached maturity. Although the subject originated in an observation on ultrasound, it has been largely theory-driven until recently. Now, however, there is close contact between theory and experiment, and we speculate that this is one reason for its accelerated development. To single out particular papers for mention here would be invidious, and since the papers speak for themselves it is not necessary to describe them all. Instead, we will confine ourselves to a brief description of the main areas included in singular optics, to illustrate the broad scope of the subject. Optical vortices are lines of phase singularity: nodal lines where the intensity of the light, represented by a complex scalar field, vanishes. The subject has emerged from flatland, where the vortices are points characterized by topological charges, into the much richer world of vortex lines in three dimensions. By combining Laguerre-Gauss or Bessel beams, or reflecting light from plates with spiral steps, intricate arrangements can be generated, with vortices that are curved, looped, knotted, linked or braided. With light whose state of polarization varies with position, different singularities occur, associated with the vector nature of light. These are also lines, on which the

  4. 5-D interpolation with wave-front attributes

    Science.gov (United States)

    Xie, Yujiang; Gajewski, Dirk

    2017-11-01

    Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that

  5. An integral conservative gridding--algorithm using Hermitian curve interpolation.

    Science.gov (United States)

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-11-07

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

  6. An integral conservative gridding-algorithm using Hermitian curve interpolation

    International Nuclear Information System (INIS)

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-01-01

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

  7. On Weakly Singular Versions of Discrete Nonlinear Inequalities and Applications

    Directory of Open Access Journals (Sweden)

    Kelong Cheng

    2014-01-01

    Full Text Available Some new weakly singular versions of discrete nonlinear inequalities are established, which generalize some existing weakly singular inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.

  8. THE EXT RACORPOREAL FERTILIZATION TECHNOLOGIES AND THE SINGULARITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    S. V. Denysenko

    2013-05-01

    Full Text Available The peculiarities of modern medicine development connected with the technological and informative singularity are analyzed. The risks of realization of extracorporeal fertilization are examined from positions of development of informative singularity. The warning problems of origin of singularity are discussed on t h e base of t h e newest technologies development.

  9. On the nature of naked singularities in Vaidya spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, I.H. (Aligarh Muslim Univ. (India). Dept. of Physics); Joshi, P.S. (Tata Inst. of Fundamental Research, Bombay (India))

    1989-11-01

    The Vaidya-Papapetrou model containing a naked singularity is analysed for outgoing causal geodesics joining the singularity. The curvature growth along these trajectories is examined to show that this is a strong curvature singularity, providing a counter-example to certain forms of cosmic censorship hypotheses. (author).

  10. On the nature of naked singularities in Vaidya spacetimes

    International Nuclear Information System (INIS)

    Dwivedi, I.H.

    1989-01-01

    The Vaidya-Papapetrou model containing a naked singularity is analysed for outgoing causal geodesics joining the singularity. The curvature growth along these trajectories is examined to show that this is a strong curvature singularity, providing a counter-example to certain forms of cosmic censorship hypotheses. (author)

  11. 7 CFR 1200.50 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.50 Section 1200.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING....50 Words in the singular form. Words in this subpart in the singular form shall be deemed to import...

  12. 7 CFR 900.1 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.1 Section 900.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  13. 7 CFR 900.20 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.20 Section 900.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... § 900.20 Words in the singular form. Words in this subpart in the singular form shall be deemed to...

  14. 7 CFR 900.36 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.36 Section 900.36 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Marketing Orders § 900.36 Words in the singular form. Words in this subpart in the singular form shall be...

  15. 7 CFR 900.100 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.100 Section 900.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  16. 7 CFR 46.1 - Words in singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Words in singular form. 46.1 Section 46.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Words in singular form. Words in this part in the singular form shall be deemed to import the plural...

  17. 7 CFR 900.50 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.50 Section 900.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  18. 7 CFR 61.1 - Words in singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Words in singular form. 61.1 Section 61.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Words in singular form. Words used in the regulations in this subpart in the singular form shall be...

  19. Singularities and the geometry of spacetime

    Science.gov (United States)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove

  20. Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem

    International Nuclear Information System (INIS)

    Pan, Yu; James, Matthew R.; Miao, Zibo; Amini, Nina H.; Ugrinovskii, Valery

    2015-01-01

    Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)

  1. Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps with prescribed singular fibers

    OpenAIRE

    Kalmar, Boldizsar

    2006-01-01

    We give a Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of -1 codimensional stable maps with prescribed singular fibers.

  2. Study on Scattered Data Points Interpolation Method Based on Multi-line Structured Light

    International Nuclear Information System (INIS)

    Fan, J Y; Wang, F G; W, Y; Zhang, Y L

    2006-01-01

    Aiming at the range image obtained through multi-line structured light, a regional interpolation method is put forward in this paper. This method divides interpolation into two parts according to the memory format of the scattered data, one is interpolation of the data on the stripes, and the other is interpolation of data between the stripes. Trend interpolation method is applied to the data on the stripes, and Gauss wavelet interpolation method is applied to the data between the stripes. Experiments prove regional interpolation method feasible and practical, and it also promotes the speed and precision

  3. A FAST MORPHING-BASED INTERPOLATION FOR MEDICAL IMAGES: APPLICATION TO CONFORMAL RADIOTHERAPY

    Directory of Open Access Journals (Sweden)

    Hussein Atoui

    2011-05-01

    Full Text Available A method is presented for fast interpolation between medical images. The method is intended for both slice and projective interpolation. It allows offline interpolation between neighboring slices in tomographic data. Spatial correspondence between adjacent images is established using a block matching algorithm. Interpolation of image intensities is then carried out by morphing between the images. The morphing-based method is compared to standard linear interpolation, block-matching-based interpolation and registrationbased interpolation in 3D tomographic data sets. Results show that the proposed method scored similar performance in comparison to registration-based interpolation, and significantly outperforms both linear and block-matching-based interpolation. This method is applied in the context of conformal radiotherapy for online projective interpolation between Digitally Reconstructed Radiographs (DRRs.

  4. Friedmann-like cosmological models without singularity

    International Nuclear Information System (INIS)

    Kuchowicz, B.

    1978-01-01

    The Einstein-Cartan theory of gravitation ('general relativity with spin') provides a specific spin-spin contact interaction of matter, in addition to the usual long-range gravity. This new interaction enables us to prevent singularities in cosmological models. it is shown how this mechanism works in the case when the standard Einstein-Cartan equations are valid at a micro-physical level, and some spin-spin terms remain from the averaging procedure for randomly distributed spins. In contrast with the case of aligned spin distributions, it is possible to take over the isotropic and spatially homogeneous (i.e., Friedmannian) models into the Einstein-Cartan theory. These models can be made free from singularity, thanks to the self-interaction of spinning fluid. (author)

  5. Singularities in the general theory of relativity

    International Nuclear Information System (INIS)

    Treder, H.J.

    1980-01-01

    'Regular solutions of Einstein's equations' mean very different things. In the case of the empty-space equations, Rsub(ik) = o, such solutions must be metrics gsub(ik)(xsup(l)) without additionaly singular 'field sources' (Einstein's 'Particle problem'). However the 'phenomenological matter' is defined by the Einstein equations Rsub(ik) - 1/2gsub(ik)R = -kappaTsub(ik) itselves. Therefore if 10 regular functions gsub(ik)(xsup(l)) are given (which the inequalities of Lorentz-signature fulfil) then these gsub(ik) define 10 functions Tsub(ik)(xsup(l)) without singularities. But, the matter-tensor Tsub(ik) must fulfil the two inequalities T >= o, T 0 0 >= 1/2 T only and therefore the Einstein-equations with 'phenomenological matter' mean the two inequalities R >= o, R 0 0 <= o which are incompatible with a permanently regular metric with Lorentz-signature, generally. (author)

  6. Singularity theory and equivariant symplectic maps

    CERN Document Server

    Bridges, Thomas J

    1993-01-01

    The monograph is a study of the local bifurcations of multiparameter symplectic maps of arbitrary dimension in the neighborhood of a fixed point.The problem is reduced to a study of critical points of an equivariant gradient bifurcation problem, using the correspondence between orbits ofa symplectic map and critical points of an action functional. New results onsingularity theory for equivariant gradient bifurcation problems are obtained and then used to classify singularities of bifurcating period-q points. Of particular interest is that a general framework for analyzing group-theoretic aspects and singularities of symplectic maps (particularly period-q points) is presented. Topics include: bifurcations when the symplectic map has spatial symmetry and a theory for the collision of multipliers near rational points with and without spatial symmetry. The monograph also includes 11 self-contained appendices each with a basic result on symplectic maps. The monograph will appeal to researchers and graduate student...

  7. Dirac operator on spaces with conical singularities

    International Nuclear Information System (INIS)

    Chou, A.W.

    1982-01-01

    The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained

  8. Singular tachyon kinks from regular profiles

    International Nuclear Information System (INIS)

    Copeland, E.J.; Saffin, P.M.; Steer, D.A.

    2003-01-01

    We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately

  9. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    Science.gov (United States)

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  10. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    Science.gov (United States)

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  11. The technological singularity and exponential medicine

    OpenAIRE

    Iraj Nabipour; Majid Assadi

    2016-01-01

    The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested th...

  12. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  13. Singular reduction of Nambu-Poisson manifolds

    Science.gov (United States)

    Das, Apurba

    The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.

  14. Constraint theory, singular lagrangians and multitemporal dynamics

    International Nuclear Information System (INIS)

    Lusanna, L.

    1988-01-01

    Singular Lagrangians and constraint theory permeate theoretical physics, as shown by the relevance of gauge theories, string models and general relativity. Their study used finite---dimensional models as a guide to develop the theory, but their main use was in classical field theory, due to the necessity of understanding their quantization. The covariant quantization of singular Lagrangians led to the BRST approach and to the theory of the effective action. On the other hand their phase---space formulation, culminated with the BFV approach for first class, second class and reducible constraints. It, in turn, gave new insights in the theory of singular Lagrangians and constraints and in their cohomological aspects. However the Hamiltonian approach to field theory is highly nontrivial, is open to criticism due to its problems with locality, geometry and manifest covariance and its canonical quantization has still to be developed, because there is no proof of the renormalizability of the Schroedinger representation of field theory. This paper discusses how, notwithstanding these developments, there is still a big amount of ambiguity at every level of the theory

  15. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  16. Singular surfaces in the open field line region of a diverted tokamak

    International Nuclear Information System (INIS)

    Reiman, A.

    1995-05-01

    The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents

  17. Interpolant tree automata and their application in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2016-01-01

    This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way in this ......This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way...... clause verification problems indicates that the combination of interpolant tree automaton with abstract interpretation gives some increase in the power of the verification tool, while sometimes incurring a performance overhead....

  18. Interpolation of vector fields from human cardiac DT-MRI

    International Nuclear Information System (INIS)

    Yang, F; Zhu, Y M; Rapacchi, S; Robini, M; Croisille, P; Luo, J H

    2011-01-01

    There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.

  19. Inoculating against eyewitness suggestibility via interpolated verbatim vs. gist testing.

    Science.gov (United States)

    Pansky, Ainat; Tenenboim, Einat

    2011-01-01

    In real-life situations, eyewitnesses often have control over the level of generality in which they choose to report event information. In the present study, we adopted an early-intervention approach to investigate to what extent eyewitness memory may be inoculated against suggestibility, following two different levels of interpolated reporting: verbatim and gist. After viewing a target event, participants responded to interpolated questions that required reporting of target details at either the verbatim or the gist level. After 48 hr, both groups of participants were misled about half of the target details and were finally tested for verbatim memory of all the details. The findings were consistent with our predictions: Whereas verbatim testing was successful in completely inoculating against suggestibility, gist testing did not reduce it whatsoever. These findings are particularly interesting in light of the comparable testing effects found for these two modes of interpolated testing.

  20. Interpolation-free scanning and sampling scheme for tomographic reconstructions

    International Nuclear Information System (INIS)

    Donohue, K.D.; Saniie, J.

    1987-01-01

    In this paper a sampling scheme is developed for computer tomography (CT) systems that eliminates the need for interpolation. A set of projection angles along with their corresponding sampling rates are derived from the geometry of the Cartesian grid such that no interpolation is required to calculate the final image points for the display grid. A discussion is presented on the choice of an optimal set of projection angles that will maintain a resolution comparable to a sampling scheme of regular measurement geometry, while minimizing the computational load. The interpolation-free scanning and sampling (IFSS) scheme developed here is compared to a typical sampling scheme of regular measurement geometry through a computer simulation

  1. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    Science.gov (United States)

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  2. Image interpolation used in three-dimensional range data compression.

    Science.gov (United States)

    Zhang, Shaoze; Zhang, Jianqi; Huang, Xi; Liu, Delian

    2016-05-20

    Advances in the field of three-dimensional (3D) scanning have made the acquisition of 3D range data easier and easier. However, with the large size of 3D range data comes the challenge of storing and transmitting it. To address this challenge, this paper presents a framework to further compress 3D range data using image interpolation. We first use a virtual fringe-projection system to store 3D range data as images, and then apply the interpolation algorithm to the images to reduce their resolution to further reduce the data size. When the 3D range data are needed, the low-resolution image is scaled up to its original resolution by applying the interpolation algorithm, and then the scaled-up image is decoded and the 3D range data are recovered according to the decoded result. Experimental results show that the proposed method could further reduce the data size while maintaining a low rate of error.

  3. Importance of interpolation and coincidence errors in data fusion

    Science.gov (United States)

    Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana

    2018-02-01

    The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  4. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  5. Estimating monthly temperature using point based interpolation techniques

    Science.gov (United States)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  6. Multi-dimensional cubic interpolation for ICF hydrodynamics simulation

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Yabe, Takashi.

    1991-04-01

    A new interpolation method is proposed to solve the multi-dimensional hyperbolic equations which appear in describing the hydrodynamics of inertial confinement fusion (ICF) implosion. The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly improved, by assuming the continuities of the second and the third spatial derivatives in addition to the physical value and the first derivative. These derivatives are derived from the given physical equation. In order to evaluate the new method, Zalesak's example is tested, and we obtain successfully good results. (author)

  7. Oversampling of digitized images. [effects on interpolation in signal processing

    Science.gov (United States)

    Fischel, D.

    1976-01-01

    Oversampling is defined as sampling with a device whose characteristic width is greater than the interval between samples. This paper shows why oversampling should be avoided and discusses the limitations in data processing if circumstances dictate that oversampling cannot be circumvented. Principally, oversampling should not be used to provide interpolating data points. Rather, the time spent oversampling should be used to obtain more signal with less relative error, and the Sampling Theorem should be employed to provide any desired interpolated values. The concepts are applicable to single-element and multielement detectors.

  8. Scientific data interpolation with low dimensional manifold model

    Science.gov (United States)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  9. Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR

    Directory of Open Access Journals (Sweden)

    Maria Cristina Floreno

    1996-05-01

    Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.

  10. Scientific data interpolation with low dimensional manifold model

    International Nuclear Information System (INIS)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

    2017-01-01

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  11. Singular Spectrum Near a Singular Point of Friedrichs Model Operators of Absolute Type

    International Nuclear Information System (INIS)

    Iakovlev, Serguei I.

    2006-01-01

    In L 2 (R) we consider a family of self adjoint operators of the Friedrichs model: A m =|t| m +V. Here |t| m is the operator of multiplication by the corresponding function of the independent variable t element of R, and (perturbation) is a trace-class integral operator with a continuous Hermitian kernel ν(t,x) satisfying some smoothness condition. These absolute type operators have one singular point of order m>0. Conditions on the kernel ν(t,x) are found guaranteeing the absence of the point spectrum and the singular continuous one of such operators near the origin. These conditions are actually necessary and sufficient. They depend on the finiteness of the rank of a perturbation operator and on the order of singularity. The sharpness of these conditions is confirmed by counterexamples

  12. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    Science.gov (United States)

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  13. On gravitational waves in Born-Infeld inspired non-singular cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, Jose Beltrán [Aix-Marseille Université, Université de Toulon, CNRS, CPT, Marseille (France); Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Olmo, Gonzalo J. [Depto. de Física Teórica and IFIC, Universidad de Valencia—CSIC, Calle Dr. Moliner 50, Burjassot 46100, Valencia (Spain); Rubiera-Garcia, Diego, E-mail: jose.beltran@uam.es, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)

    2017-10-01

    We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.

  14. Non-singular Brans–Dicke collapse in deformed phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, S.M.M., E-mail: mrasouli@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Ziaie, A.H., E-mail: ah_ziaie@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G. C., Evin, 19839 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman (Iran, Islamic Republic of); Jalalzadeh, S., E-mail: shahram.jalalzadeh@unila.edu.br [Federal University of Latin-American Integration, Technological Park of Itaipu PO box 2123, Foz do Iguaçu-PR, 85867-670 (Brazil); Moniz, P.V., E-mail: pmoniz@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal)

    2016-12-15

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  15. Non-singular Brans–Dicke collapse in deformed phase space

    International Nuclear Information System (INIS)

    Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V.

    2016-01-01

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  16. Fundamental relativistic rotator: Hessian singularity and the issue of the minimal interaction with electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bratek, Lukasz, E-mail: lukasz.bratek@ifj.edu.pl [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskego 152, PL-31342 Krakow (Poland)

    2011-05-13

    There are two relativistic rotators with Casimir invariants of the Poincare group being fixed parameters. The particular models of spinning particles were studied in the past both at the classical and quantum level. Recently, a minimal interaction with electromagnetic field has been considered. We show that the dynamical systems can be uniquely singled out from among other relativistic rotators by the unphysical requirement that the Hessian referring to the physical degrees of freedom should be singular. Closely related is the fact that the equations of free motion are not independent, making the evolution indeterminate. We show that the Hessian singularity cannot be removed by the minimal interaction with the electromagnetic field. By making use of a nontrivial Hessian null space, we show that a single constraint appears in the external field for consistency of the equations of motion with the Hessian singularity. The constraint imposes unphysical limitation on the initial conditions and admissible motions. We discuss the mechanism of appearance of unique solutions in external fields on an example of motion in the uniform magnetic field. We give a simple model to illustrate that similarly constrained evolution cannot be determinate in arbitrary fields.

  17. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  18. Biased motion vector interpolation for reduced video artifacts.

    NARCIS (Netherlands)

    2011-01-01

    In a video processing system where motion vectors are estimated for a subset of the blocks of data forming a video frame, and motion vectors are interpolated for the remainder of the blocks of the frame, a method includes determining, for at least at least one block of the current frame for which a

  19. A Note on Interpolation of Stable Processes | Nassiuma | Journal of ...

    African Journals Online (AJOL)

    Interpolation procedures tailored for gaussian processes may not be applied to infinite variance stable processes. Alternative techniques suitable for a limited set of stable case with index α∈(1,2] were initially studied by Pourahmadi (1984) for harmonizable processes. This was later extended to the ARMA stable process ...

  20. Analysis of Spatial Interpolation in the Material-Point Method

    DEFF Research Database (Denmark)

    Andersen, Søren; Andersen, Lars

    2010-01-01

    are obtained using quadratic elements. It is shown that for more complex problems, the use of partially negative shape functions is inconsistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations...

  1. Fast interpolation for Global Positioning System (GPS) satellite orbits

    OpenAIRE

    Clynch, James R.; Sagovac, Christopher Patrick; Danielson, D. A. (Donald A.); Neta, Beny

    1995-01-01

    In this report, we discuss and compare several methods for polynomial interpolation of Global Positioning Systems ephemeris data. We show that the use of difference tables is more efficient than the method currently in use to construct and evaluate the Lagrange polynomials.

  2. Interpolation in computing science : the semantics of modularization

    NARCIS (Netherlands)

    Renardel de Lavalette, Gerard R.

    2008-01-01

    The Interpolation Theorem, first formulated and proved by W. Craig fifty years ago for predicate logic, has been extended to many other logical frameworks and is being applied in several areas of computer science. We give a short overview, and focus on the theory of software systems and modules. An

  3. Parallel optimization of IDW interpolation algorithm on multicore platform

    Science.gov (United States)

    Guan, Xuefeng; Wu, Huayi

    2009-10-01

    Due to increasing power consumption, heat dissipation, and other physical issues, the architecture of central processing unit (CPU) has been turning to multicore rapidly in recent years. Multicore processor is packaged with multiple processor cores in the same chip, which not only offers increased performance, but also presents significant challenges to application developers. As a matter of fact, in GIS field most of current GIS algorithms were implemented serially and could not best exploit the parallelism potential on such multicore platforms. In this paper, we choose Inverse Distance Weighted spatial interpolation algorithm (IDW) as an example to study how to optimize current serial GIS algorithms on multicore platform in order to maximize performance speedup. With the help of OpenMP, threading methodology is introduced to split and share the whole interpolation work among processor cores. After parallel optimization, execution time of interpolation algorithm is greatly reduced and good performance speedup is achieved. For example, performance speedup on Intel Xeon 5310 is 1.943 with 2 execution threads and 3.695 with 4 execution threads respectively. An additional output comparison between pre-optimization and post-optimization is carried out and shows that parallel optimization does to affect final interpolation result.

  4. LIP: The Livermore Interpolation Package, Version 1.6

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, F. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-04

    This report describes LIP, the Livermore Interpolation Package. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since it is a general-purpose package that need not be restricted to equation of state data, which uses variables ρ (density) and T (temperature).

  5. Interpolation decoding method with variable parameters for fractal image compression

    International Nuclear Information System (INIS)

    He Chuanjiang; Li Gaoping; Shen Xiaona

    2007-01-01

    The interpolation fractal decoding method, which is introduced by [He C, Yang SX, Huang X. Progressive decoding method for fractal image compression. IEE Proc Vis Image Signal Process 2004;3:207-13], involves generating progressively the decoded image by means of an interpolation iterative procedure with a constant parameter. It is well-known that the majority of image details are added at the first steps of iterations in the conventional fractal decoding; hence the constant parameter for the interpolation decoding method must be set as a smaller value in order to achieve a better progressive decoding. However, it needs to take an extremely large number of iterations to converge. It is thus reasonable for some applications to slow down the iterative process at the first stages of decoding and then to accelerate it afterwards (e.g., at some iteration as we need). To achieve the goal, this paper proposed an interpolation decoding scheme with variable (iteration-dependent) parameters and proved the convergence of the decoding process mathematically. Experimental results demonstrate that the proposed scheme has really achieved the above-mentioned goal

  6. Functional Commutant Lifting and Interpolation on Generalized Analytic Polyhedra

    Czech Academy of Sciences Publication Activity Database

    Ambrozie, Calin-Grigore

    2008-01-01

    Roč. 34, č. 2 (2008), s. 519-543 ISSN 0362-1588 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : intertwining lifting * interpolation * analytic functions Subject RIV: BA - General Mathematics Impact factor: 0.327, year: 2008

  7. Interpolation solution of the single-impurity Anderson model

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1990-10-01

    The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs

  8. Interpolant Tree Automata and their Application in Horn Clause Verification

    Directory of Open Access Journals (Sweden)

    Bishoksan Kafle

    2016-07-01

    Full Text Available This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way in this paper. The role of an interpolant tree automaton is to provide a generalisation of a spurious counterexample during refinement, capturing a possibly infinite set of spurious counterexample traces. In our approach these traces are then eliminated using a transformation of the Horn clauses. We compare this approach with two other methods; one of them uses interpolant tree automata in an algorithm for trace abstraction and refinement, while the other uses abstract interpretation over the domain of convex polyhedra without the generalisation step. Evaluation of the results of experiments on a number of Horn clause verification problems indicates that the combination of interpolant tree automaton with abstract interpretation gives some increase in the power of the verification tool, while sometimes incurring a performance overhead.

  9. Two-dimensional interpolation with experimental data smoothing

    International Nuclear Information System (INIS)

    Trejbal, Z.

    1989-01-01

    A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs

  10. Data interpolation for vibration diagnostics using two-variable correlations

    International Nuclear Information System (INIS)

    Branagan, L.

    1991-01-01

    This paper reports that effective machinery vibration diagnostics require a clear differentiation between normal vibration changes caused by plant process conditions and those caused by degradation. The normal relationship between vibration and a process parameter can be quantified by developing the appropriate correlation. The differences in data acquisition requirements between dynamic signals (vibration spectra) and static signals (pressure, temperature, etc.) result in asynchronous data acquisition; the development of any correlation must then be based on some form of interpolated data. This interpolation can reproduce or distort the original measured quantity depending on the characteristics of the data and the interpolation technique. Relevant data characteristics, such as acquisition times, collection cycle times, compression method, storage rate, and the slew rate of the measured variable, are dependent both on the data handling and on the measured variable. Linear and staircase interpolation, along with the use of clustering and filtering, provide the necessary options to develop accurate correlations. The examples illustrate the appropriate application of these options

  11. Recent developments in free-viewpoint interpolation for 3DTV

    NARCIS (Netherlands)

    Zinger, S.; Do, Q.L.; With, de P.H.N.

    2012-01-01

    Current development of 3D technologies brings 3DTV within reach for the customers. We discuss in this article the recent advancements in free-viewpoint interpolation for 3D video. This technology is still a research topic and many efforts are dedicated to creation, evaluation and improvement of new

  12. A temporal interpolation approach for dynamic reconstruction in perfusion CT

    International Nuclear Information System (INIS)

    Montes, Pau; Lauritsch, Guenter

    2007-01-01

    This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes

  13. Twitch interpolation technique in testing of maximal muscle strength

    DEFF Research Database (Denmark)

    Bülow, P M; Nørregaard, J; Danneskiold-Samsøe, B

    1993-01-01

    The aim was to study the methodological aspects of the muscle twitch interpolation technique in estimating the maximal force of contraction in the quadriceps muscle utilizing commercial muscle testing equipment. Six healthy subjects participated in seven sets of experiments testing the effects...

  14. Limiting reiteration for real interpolation with slowly varying functions

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Opic, Bohumír; Trebels, W.

    2005-01-01

    Roč. 278, 1-2 (2005), s. 86-107 ISSN 0025-584X R&D Projects: GA ČR(CZ) GA201/01/0333 Institutional research plan: CEZ:AV0Z10190503 Keywords : real interpolation * K-functional * limiting reiteration Subject RIV: BA - General Mathematics Impact factor: 0.465, year: 2005

  15. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    Science.gov (United States)

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  16. Blind Authentication Using Periodic Properties ofInterpolation

    Czech Academy of Sciences Publication Activity Database

    Mahdian, Babak; Saic, Stanislav

    2008-01-01

    Roč. 3, č. 3 (2008), s. 529-538 ISSN 1556-6013 R&D Projects: GA ČR GA102/08/0470 Institutional research plan: CEZ:AV0Z10750506 Keywords : image forensics * digital forgery * image tampering * interpolation detection * resampling detection Subject RIV: IN - Informatics, Computer Science Impact factor: 2.230, year: 2008

  17. Interpolation Inequalities and Spectral Estimates for Magnetic Operators

    Science.gov (United States)

    Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael

    2018-05-01

    We prove magnetic interpolation inequalities and Keller-Lieb-Thir-ring estimates for the principal eigenvalue of magnetic Schr{\\"o}dinger operators. We establish explicit upper and lower bounds for the best constants and show by numerical methods that our theoretical estimates are accurate.

  18. Spectral asymptotics for nonsmooth singular Green operators

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2014-01-01

    is a singular Green operator. It is well-known in smooth cases that when G is of negative order −t on a bounded domain, its eigenvalues ors-numbers have the behavior (*)s j (G) ∼ cj −t/(n−1) for j → ∞, governed by the boundary dimension n − 1. In some nonsmooth cases, upper estimates (**)s j (G) ≤ Cj −t/(n−1...

  19. Singularity spectrum of self-organized criticality

    International Nuclear Information System (INIS)

    Canessa, E.

    1992-10-01

    I introduce a simple continuous probability theory based on the Ginzburg-Landau equation that provides for the first time a common analytical basis to relate and describe the main features of two seemingly different phenomena of condensed-matter physics, namely self-organized criticality and multifractality. Numerical support is given by a comparison with reported simulation data. Within the theory the origin of self-organized critical phenomena is analysed in terms of a nonlinear singularity spectrum different form the typical convex shape due to multifractal measures. (author). 29 refs, 5 figs

  20. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  1. The Singularity May Never Be Near

    OpenAIRE

    Walsh, Toby

    2017-01-01

    There is both much optimisim and pessimism around artificial intelligence (AI) today. The optimists are investing millions of dollars, and even in some cases billions of dollars into AI. The pessimists, on the other hand, predict that AI will end many things: jobs, warfare, and even the human race. Both the optimists and the pessimists often appeal to the idea of a technological singularity, a point in time where machine intelligence starts to run away, and a new, more in- telligent “species”...

  2. Compacted dimensions and singular plasmonic surfaces

    Science.gov (United States)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  3. Research on Electronic Transformer Data Synchronization Based on Interpolation Methods and Their Error Analysis

    Directory of Open Access Journals (Sweden)

    Pang Fubin

    2015-09-01

    Full Text Available In this paper the origin problem of data synchronization is analyzed first, and then three common interpolation methods are introduced to solve the problem. Allowing for the most general situation, the paper divides the interpolation error into harmonic and transient interpolation error components, and the error expression of each method is derived and analyzed. Besides, the interpolation errors of linear, quadratic and cubic methods are computed at different sampling rates, harmonic orders and transient components. Further, the interpolation accuracy and calculation amount of each method are compared. The research results provide theoretical guidance for selecting the interpolation method in the data synchronization application of electronic transformer.

  4. Higher-order glass-transition singularities in systems with short-ranged attractive potentials

    International Nuclear Information System (INIS)

    Goetze, W; Sperl, M

    2003-01-01

    Within the mode-coupling theory for the evolution of structural relaxation, the A 4 -glass-transition singularities are identified for systems of particles interacting with a hard-sphere repulsion complemented by different short-ranged potentials: Baxter's singular potential regularized by a large-wavevector cut-off, a model for the Asakura-Oosawa depletion attraction, a triangular potential, a Yukawa attraction, and a square-well potential. The regular potentials yield critical packing fractions, critical Debye-Waller factors, and critical amplitudes very close to each other. The elastic moduli and the particle localization lengths for corresponding states of the Yukawa system and the square-well system may differ by up to 20 and 10%, respectively

  5. Solving Singular Two-Point Boundary Value Problems Using Continuous Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2012-01-01

    Full Text Available In this paper, the continuous genetic algorithm is applied for the solution of singular two-point boundary value problems, where smooth solution curves are used throughout the evolution of the algorithm to obtain the required nodal values. The proposed technique might be considered as a variation of the finite difference method in the sense that each of the derivatives is replaced by an appropriate difference quotient approximation. This novel approach possesses main advantages; it can be applied without any limitation on the nature of the problem, the type of singularity, and the number of mesh points. Numerical examples are included to demonstrate the accuracy, applicability, and generality of the presented technique. The results reveal that the algorithm is very effective, straightforward, and simple.

  6. Beyond the singularity of the 2-D charged black hole

    International Nuclear Information System (INIS)

    Giveon, Amit; Rabinovici, Eliezer; Sever, Amit

    2003-01-01

    Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)

  7. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  8. Logarithmic of mass singularities theorem in non massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Mares G, R.; Luna, H.

    1997-01-01

    We give an explicit example of the use of dimensional regularization to calculate in a unified approach, all the ultraviolet, infrared and mass singularities, by considering the LMS (logarithms of mass singularities) theorem in the frame of massless QED (Quantum electrodynamics). In the calculation of the divergent part of the cross section, all singularities are found to cancel provided soft and hard photon emission are both taken into account. (Author)

  9. Singular vectors of Malikov-Fagin-Fux in topological theories

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1993-01-01

    Coincidence of singular vectors in relation to the sl(2) Katza-Mudi algebra and the algebra of the N=2 (twisted) supersymmetry is established. On the base of the Kazama-Suzuki simplest model is obtained a representation for the sl(2) currents in terms of an interacting with mater gravitation. From the Malikov-Fagin-Fux formulae for the sl(2) singular currents is obtained the general expression for singular vectors in topological theories

  10. Observer-dependent sign inversions of polarization singularities.

    Science.gov (United States)

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  11. Transmutation of planar media singularities in a conformal cloak.

    Science.gov (United States)

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  12. Deficiency indices and singular boundary conditions in quantum mechanics

    International Nuclear Information System (INIS)

    Bulla, W.

    1984-01-01

    We consider Schroedinger operators H in L 2 (Rsup(n)), n from IN, with countably infinitely many local singularities of the potential which are separated from each other by a positive distance. It is proved that due to locality each singularity yields a separate contribution to the deficiency index of H. In the special case where the singularities are pointlike and the potential exhibits certain symmetries near these points we give an explicit construction of self-adjoint boundary conditions

  13. Naked singularities in self-similar spherical gravitational collapse

    International Nuclear Information System (INIS)

    Ori, A.; Piran, T.

    1987-01-01

    We present general-relativistic solutions of self-similar spherical collapse of an adiabatic perfect fluid. We show that if the equation of state is soft enough (Γ-1<<1), a naked singularity forms. The singularity resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hypothesis will hold

  14. 7 CFR 900.80 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.80 Section 900.80....C. 608b(b) and 7 U.S.C. 608e Covering Fruits, Vegetables, and Nuts § 900.80 Words in the singular form. Words in this subpart in the singular form shall be deemed to import the plural, and vice versa...

  15. Quantum singularities in the FRW universe revisited

    International Nuclear Information System (INIS)

    Letelier, Patricio S.; Pitelli, Joao Paulo M.

    2010-01-01

    The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=(1/3)ρ in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied, and it is shown that the energy conditions are violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the nonsingular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of nonnormalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.

  16. Finite-time singularity signature of hyperinflation

    Science.gov (United States)

    Sornette, D.; Takayasu, H.; Zhou, W.-X.

    2003-07-01

    We present a novel analysis extending the recent work of Mizuno et al. (Physica A 308 (2002) 411) on the hyperinflations of Germany (1920/1/1-1923/11/1), Hungary (1945/4/30-1946/7/15), Brazil (1969-1994), Israel (1969-1985), Nicaragua (1969-1991), Peru (1969-1990) and Bolivia (1969-1985). On the basis of a generalization of Cagan's model of inflation based on the mechanism of “inflationary expectation” of positive feedbacks between realized growth rate and people's expected growth rate, we find that hyperinflations can be characterized by a power law singularity culminating at a critical time tc. Mizuno et al.'s double-exponential function can be seen as a discrete time-step approximation of our more general non-linear ODE formulation of the price dynamics which exhibits a finite-time singular behavior. This extension of Cagan's model, which makes natural the appearance of a critical time tc, has the advantage of providing a well-defined end of the clearly unsustainable hyperinflation regime. We find an excellent and reliable agreement between theory and data for Germany, Hungary, Peru and Bolivia. For Brazil, Israel and Nicaragua, the super-exponential growth seems to be already contaminated significantly by the existence of a cross-over to a stationary regime.

  17. Consideration on Singularities in Learning Theory and the Learning Coefficient

    Directory of Open Access Journals (Sweden)

    Miki Aoyagi

    2013-09-01

    Full Text Available We consider the learning coefficients in learning theory and give two new methods for obtaining these coefficients in a homogeneous case: a method for finding a deepest singular point and a method to add variables. In application to Vandermonde matrix-type singularities, we show that these methods are effective. The learning coefficient of the generalization error in Bayesian estimation serves to measure the learning efficiency in singular learning models. Mathematically, the learning coefficient corresponds to a real log canonical threshold of singularities for the Kullback functions (relative entropy in learning theory.

  18. Identification of discrete chaotic maps with singular points

    Directory of Open Access Journals (Sweden)

    P. G. Akishin

    2001-01-01

    Full Text Available We investigate the ability of artificial neural networks to reconstruct discrete chaotic maps with singular points. We use as a simple test model the Cusp map. We compare the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet Neural Network. The numerical scheme for the accurate determination of a singular point is also developed. We show that combining a neural network with the numerical algorithm for the determination of the singular point we are able to accurately approximate discrete chaotic maps with singularities.

  19. Numerical investigation of stress singularities in cracked bimaterial body

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, Lucie; Hutař, Pavel

    2008-01-01

    Roč. 385-387, - (2008), s. 125-128 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /7./. Seoul, 09.09.2008-11.09.2008] R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GP106/06/P239; GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : bimaterial interface * stress singularity exponent * corner singularity * vertex singularity * general singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. The road to singularities, and the roses on the way

    International Nuclear Information System (INIS)

    Collins, C.B.

    1978-01-01

    A survey of current investigations of space-time singularities is given. The different approaches adopted by various research schools is discussed, and an analogy is drawn between this study and the mounting of an expedition that sets out on a long trail of discovery. A heuristic discussion is given of the latest classification of singularities and some brief comments are made on how physically relevant each type of singularity is. Roughly speaking, it seems that the milder types (at which quantities remain well behaved) are pathological cases, whereas the crude 'big-bang' type of singularity is more generic. (author)

  1. Can non-commutativity resolve the big-bang singularity?

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)

    2004-08-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)

  2. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    International Nuclear Information System (INIS)

    Baker, G.; Siegel, M.; Tanveer, S.

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab

  3. Building Input Adaptive Parallel Applications: A Case Study of Sparse Grid Interpolation

    KAUST Repository

    Murarasu, Alin; Weidendorfer, Josef

    2012-01-01

    bring a substantial contribution to the speedup. By identifying common patterns in the input data, we propose new algorithms for sparse grid interpolation that accelerate the state-of-the-art non-specialized version. Sparse grid interpolation

  4. DATASPACE - A PROGRAM FOR THE LOGARITHMIC INTERPOLATION OF TEST DATA

    Science.gov (United States)

    Ledbetter, F. E.

    1994-01-01

    Scientists and engineers work with the reduction, analysis, and manipulation of data. In many instances, the recorded data must meet certain requirements before standard numerical techniques may be used to interpret it. For example, the analysis of a linear visoelastic material requires knowledge of one of two time-dependent properties, the stress relaxation modulus E(t) or the creep compliance D(t), one of which may be derived from the other by a numerical method if the recorded data points are evenly spaced or increasingly spaced with respect to the time coordinate. The problem is that most laboratory data are variably spaced, making the use of numerical techniques difficult. To ease this difficulty in the case of stress relaxation data analysis, NASA scientists developed DATASPACE (A Program for the Logarithmic Interpolation of Test Data), to establish a logarithmically increasing time interval in the relaxation data. The program is generally applicable to any situation in which a data set needs increasingly spaced abscissa values. DATASPACE first takes the logarithm of the abscissa values, then uses a cubic spline interpolation routine (which minimizes interpolation error) to create an evenly spaced array from the log values. This array is returned from the log abscissa domain to the abscissa domain and written to an output file for further manipulation. As a result of the interpolation in the log abscissa domain, the data is increasingly spaced. In the case of stress relaxation data, the array is closely spaced at short times and widely spaced at long times, thus avoiding the distortion inherent in evenly spaced time coordinates. The interpolation routine gives results which compare favorably with the recorded data. The experimental data curve is retained and the interpolated points reflect the desired spacing. DATASPACE is written in FORTRAN 77 for IBM PC compatibles with a math co-processor running MS-DOS and Apple Macintosh computers running MacOS. With

  5. Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side

    Science.gov (United States)

    Amirjanyan, A. A.; Sahakyan, A. V.

    2017-08-01

    A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.

  6. Metric dimensional reduction at singularities with implications to Quantum Gravity

    International Nuclear Information System (INIS)

    Stoica, Ovidiu Cristinel

    2014-01-01

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained

  7. Effect of interpolation on parameters extracted from seating interface pressure arrays

    OpenAIRE

    Michael Wininger, PhD; Barbara Crane, PhD, PT

    2015-01-01

    Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pre...

  8. Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data

    International Nuclear Information System (INIS)

    Casa, L D C; Krueger, P S

    2013-01-01

    Unstructured three-dimensional fluid velocity data were interpolated using Gaussian radial basis function (RBF) interpolation. Data were generated to imitate the spatial resolution and experimental uncertainty of a typical implementation of defocusing digital particle image velocimetry. The velocity field associated with a steadily rotating infinite plate was simulated to provide a bounded, fully three-dimensional analytical solution of the Navier–Stokes equations, allowing for robust analysis of the interpolation accuracy. The spatial resolution of the data (i.e. particle density) and the number of RBFs were varied in order to assess the requirements for accurate interpolation. Interpolation constraints, including boundary conditions and continuity, were included in the error metric used for the least-squares minimization that determines the interpolation parameters to explore methods for improving RBF interpolation results. Even spacing and logarithmic spacing of RBF locations were also investigated. Interpolation accuracy was assessed using the velocity field, divergence of the velocity field, and viscous torque on the rotating boundary. The results suggest that for the present implementation, RBF spacing of 0.28 times the boundary layer thickness is sufficient for accurate interpolation, though theoretical error analysis suggests that improved RBF positioning may yield more accurate results. All RBF interpolation results were compared to standard Gaussian weighting and Taylor expansion interpolation methods. Results showed that RBF interpolation improves interpolation results compared to the Taylor expansion method by 60% to 90% based on the average squared velocity error and provides comparable velocity results to Gaussian weighted interpolation in terms of velocity error. RMS accuracy of the flow field divergence was one to two orders of magnitude better for the RBF interpolation compared to the other two methods. RBF interpolation that was applied to

  9. Mega-History and the 21st century singularity puzzle

    Directory of Open Access Journals (Sweden)

    Akop P. Nazaretyan

    2015-06-01

    Full Text Available A series of calculations carried out independently by the Australian, Russian and American re- searchers have demonstrated that a crucial global polyfurcation is expected near the middle of the 21st century. This result is drawn by extrapolating into the future the logarithmic acceleration law, which involves the phase transitions in the evolution of biosphere and anthroposphere. The paper investigates the palliatives of the planetary civilization beyond the big evolutionary Singularity in the context of Mega-history and complexity theory worldviews. It gives the mathematical deduction a universal ground and besides, helps involve some recent discoveries in psychology and cultural anthropology to tracing the forecasting attractors and scenarios. The destiny of the Earth (as well as any other planetary civilization may conclusively depend on whether or not the intellectual ac- tor succeeds in developing his inner regulation to balance the potentially unlimited developments in technological power. Particularly, this includes overcoming the macro-group identities, religious and quasi-religious ideologies, which always suggest a friend-or-foe discrimination matrix.

  10. A vida singular de um jovem militante

    Directory of Open Access Journals (Sweden)

    Áurea Maria Guimarães

    2012-01-01

    Full Text Available Esse artigo é fruto de uma pesquisa realizada no período de 2007 a 2010, junto a jovens militantes da cidade de Campinas, com o objetivo de compreender as diferentes maneiras que conduziam esses jovens tanto a reproduzir um modelo de vida quanto a criar outras possibilidades de militância na relação com esse modelo. Entre as histórias orais de vida narradas por jovens que militavam em diferentes grupos ou instituições, escolhi a vida de Biula, representante do movimento estudantil secundarista, procurando evidenciar que a singularidade desta vida, como também e a de outros jovens, estava conectada à problematização que faziam no interior de certas práticas, histórica e culturalmente constituídas, possibilitando a criação de novas formas de subjetivação nas quais se modificava a experiência que tinham deles mesmos na relação com os seus heróis ou modelos de referência. Palavras-chave: história oral – transcriação – heróis – resistência - processos de singularização.   THE SINGULAR LIFE OF A YOUNG MILITANT ABSTRACT   This article is the result of a research carried out from 2007 to 2010 with   young militants in the city of Campinas, aiming to understand the different ways which conducted these youngsters to both reproduce a life model and create other possibilities of militancy in the relationship with this model. Among oral stories narrated by young militants from different groups or institutions, I have chosen the life of Biula, a representative of the secondary students’ movement, trying to show that the singularity of this life and other youngsters’ lives was connected to the problematization they promoted within certain practices, historically and culturally built, thus enabling the creation of new subjectification modes in which the experience they had of themselves in the relationship with their heroes or reference models has changed. Key words: oral history -  transcreation – heroes

  11. Efficient GPU-based texture interpolation using uniform B-splines

    NARCIS (Netherlands)

    Ruijters, D.; Haar Romenij, ter B.M.; Suetens, P.

    2008-01-01

    This article presents uniform B-spline interpolation, completely contained on the graphics processing unit (GPU). This implies that the CPU does not need to compute any lookup tables or B-spline basis functions. The cubic interpolation can be decomposed into several linear interpolations [Sigg and

  12. A parameterization of observer-based controllers: Bumpless transfer by covariance interpolation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Komareji, Mohammad

    2009-01-01

    This paper presents an algorithm to interpolate between two observer-based controllers for a linear multivariable system such that the closed loop system remains stable throughout the interpolation. The method interpolates between the inverse Lyapunov functions for the two original state feedback...

  13. Dynamic Stability Analysis Using High-Order Interpolation

    Directory of Open Access Journals (Sweden)

    Juarez-Toledo C.

    2012-10-01

    Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.

  14. LINTAB, Linear Interpolable Tables from any Continuous Variable Function

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of program or function: LINTAB is designed to construct linearly interpolable tables from any function. The program will start from any function of a single continuous variable... FUNKY(X). By user input the function can be defined, (1) Over 1 to 100 X ranges. (2) Within each X range the function is defined by 0 to 50 constants. (3) At boundaries between X ranges the function may be continuous or discontinuous (depending on the constants used to define the function within each X range). 2 - Method of solution: LINTAB will construct a table of X and Y values where the tabulated (X,Y) pairs will be exactly equal to the function (Y=FUNKY(X)) and linear interpolation between the tabulated pairs will be within any user specified fractional uncertainty of the function for all values of X within the requested X range

  15. Single image interpolation via adaptive nonlocal sparsity-based modeling.

    Science.gov (United States)

    Romano, Yaniv; Protter, Matan; Elad, Michael

    2014-07-01

    Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.

  16. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.

    Science.gov (United States)

    Ratliff, Bradley M; LaCasse, Charles F; Tyo, J Scott

    2009-05-25

    Microgrid polarimeters are composed of an array of micro-polarizing elements overlaid upon an FPA sensor. In the past decade systems have been designed and built in all regions of the optical spectrum. These systems have rugged, compact designs and the ability to obtain a complete set of polarimetric measurements during a single image capture. However, these systems acquire the polarization measurements through spatial modulation and each measurement has a varying instantaneous field-of-view (IFOV). When these measurements are combined to estimate the polarization images, strong edge artifacts are present that severely degrade the estimated polarization imagery. These artifacts can be reduced when interpolation strategies are first applied to the intensity data prior to Stokes vector estimation. Here we formally study IFOV error and the performance of several bilinear interpolation strategies used for reducing it.

  17. Bi-local baryon interpolating fields with two flavors

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrasinovic, V. [Belgrade University, Institute of Physics, Pregrevica 118, Zemun, P.O. Box 57, Beograd (RS); Chen, Hua-Xing [Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China)

    2011-02-15

    We construct bi-local interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We use the restrictions following from the Pauli principle to derive relations/identities among the baryon operators with identical quantum numbers. Such relations that follow from the combined spatial, Dirac, color, and isospin Fierz transformations may be called the (total/complete) Fierz identities. These relations reduce the number of independent baryon operators with any given spin and isospin. We also study the Abelian and non-Abelian chiral transformation properties of these fields and place them into baryon chiral multiplets. Thus we derive the independent baryon interpolating fields with given values of spin (Lorentz group representation), chiral symmetry (U{sub L}(2) x U{sub R}(2) group representation) and isospin appropriate for the first angular excited states of the nucleon. (orig.)

  18. Kriging for interpolation of sparse and irregularly distributed geologic data

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K.

    1986-12-31

    For many geologic problems, subsurface observations are available only from a small number of irregularly distributed locations, for example from a handful of drill holes in the region of interest. These observations will be interpolated one way or another, for example by hand-drawn stratigraphic cross-sections, by trend-fitting techniques, or by simple averaging which ignores spatial correlation. In this paper we consider an interpolation technique for such situations which provides, in addition to point estimates, the error estimates which are lacking from other ad hoc methods. The proposed estimator is like a kriging estimator in form, but because direct estimation of the spatial covariance function is not possible the parameters of the estimator are selected by cross-validation. Its use in estimating subsurface stratigraphy at a candidate site for geologic waste repository provides an example.

  19. The modal surface interpolation method for damage localization

    Science.gov (United States)

    Pina Limongelli, Maria

    2017-05-01

    The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).

  20. Reconstruction of reflectance data using an interpolation technique.

    Science.gov (United States)

    Abed, Farhad Moghareh; Amirshahi, Seyed Hossein; Abed, Mohammad Reza Moghareh

    2009-03-01

    A linear interpolation method is applied for reconstruction of reflectance spectra of Munsell as well as ColorChecker SG color chips from the corresponding colorimetric values under a given set of viewing conditions. Hence, different types of lookup tables (LUTs) have been created to connect the colorimetric and spectrophotometeric data as the source and destination spaces in this approach. To optimize the algorithm, different color spaces and light sources have been used to build different types of LUTs. The effects of applied color datasets as well as employed color spaces are investigated. Results of recovery are evaluated by the mean and the maximum color difference values under other sets of standard light sources. The mean and the maximum values of root mean square (RMS) error between the reconstructed and the actual spectra are also calculated. Since the speed of reflectance reconstruction is a key point in the LUT algorithm, the processing time spent for interpolation of spectral data has also been measured for each model. Finally, the performance of the suggested interpolation technique is compared with that of the common principal component analysis method. According to the results, using the CIEXYZ tristimulus values as a source space shows priority over the CIELAB color space. Besides, the colorimetric position of a desired sample is a key point that indicates the success of the approach. In fact, because of the nature of the interpolation technique, the colorimetric position of the desired samples should be located inside the color gamut of available samples in the dataset. The resultant spectra that have been reconstructed by this technique show considerable improvement in terms of RMS error between the actual and the reconstructed reflectance spectra as well as CIELAB color differences under the other light source in comparison with those obtained from the standard PCA technique.

  1. Direct Trajectory Interpolation on the Surface using an Open CNC

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; Free-form surfaces are used for many industrial applications from aeronautical parts, to molds or biomedical implants. In the common machining process, computer-aided manufacturing (CAM) software generates approximated tool paths because of the limitation induced by the input tool path format of the industrial CNC. Then, during the tool path interpolation, marks on finished surfaces can appear induced by non smooth feedrate planning. Managing the geometry of the tool p...

  2. Image interpolation via graph-based Bayesian label propagation.

    Science.gov (United States)

    Xianming Liu; Debin Zhao; Jiantao Zhou; Wen Gao; Huifang Sun

    2014-03-01

    In this paper, we propose a novel image interpolation algorithm via graph-based Bayesian label propagation. The basic idea is to first create a graph with known and unknown pixels as vertices and with edge weights encoding the similarity between vertices, then the problem of interpolation converts to how to effectively propagate the label information from known points to unknown ones. This process can be posed as a Bayesian inference, in which we try to combine the principles of local adaptation and global consistency to obtain accurate and robust estimation. Specially, our algorithm first constructs a set of local interpolation models, which predict the intensity labels of all image samples, and a loss term will be minimized to keep the predicted labels of the available low-resolution (LR) samples sufficiently close to the original ones. Then, all of the losses evaluated in local neighborhoods are accumulated together to measure the global consistency on all samples. Moreover, a graph-Laplacian-based manifold regularization term is incorporated to penalize the global smoothness of intensity labels, such smoothing can alleviate the insufficient training of the local models and make them more robust. Finally, we construct a unified objective function to combine together the global loss of the locally linear regression, square error of prediction bias on the available LR samples, and the manifold regularization term. It can be solved with a closed-form solution as a convex optimization problem. Experimental results demonstrate that the proposed method achieves competitive performance with the state-of-the-art image interpolation algorithms.

  3. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  4. Dual Vector Spaces and Physical Singularities

    Science.gov (United States)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  5. Branes at Singularities in Type 0 String Theory

    OpenAIRE

    Alishahiha, M; Brandhuber, A; Oz, Y

    1999-01-01

    We consider Type 0B D3-branes placed at conical singularities and analyze in detail the conifold singularity. We study the non supersymmetric gauge theories on their worldvolume and their conjectured dual gravity descriptions. In the ultraviolet the solutions exhibit a logarithmic running of the gauge coupling. In the infrared we find confining solutions and IR fixed points.

  6. Eigenstructure of of singular systems. Perturbation analysis of simple eigenvalues

    OpenAIRE

    García Planas, María Isabel; Tarragona Romero, Sonia

    2014-01-01

    The problem to study small perturbations of simple eigenvalues with a change of parameters is of general interest in applied mathematics. After to introduce a systematic way to know if an eigenvalue of a singular system is simple or not, the aim of this work is to study the behavior of a simple eigenvalue of singular linear system family

  7. Singularities of elastic scattering amplitude by long-range potentials

    International Nuclear Information System (INIS)

    Kvitsinsky, A.A.; Komarov, I.V.; Merkuriev, S.P.

    1982-01-01

    The angular peculiarities and the zero energy singularities of the elastic scattering amplitude by a long-range potential are described. The singularities of the elastic (2 → 2) scattering amplitude for a system of three Coulomb particles are considered [ru

  8. Singularly perturbed volterra integro-differential equations | Bijura ...

    African Journals Online (AJOL)

    Several investigations have been made on singularly perturbed integral equations. This paper aims at presenting an algorithm for the construction of asymptotic solutions and then provide a proof asymptotic correctness to singularly perturbed systems of Volterra integro-differential equations. Mathematics Subject

  9. Non-uniqueness of the source for singular gauge fields

    International Nuclear Information System (INIS)

    Lanyi, G.; Pappas, R.

    1977-01-01

    It is shown that the singular Wu-Yang solution for SU(2) gauge fields may be interpreted as due to a point source at the origin. However, the electric or magnetic nature of the source depends on whether one approaches the singularity by means of a 'smeared' potential or a 'smeared' field strength. (Auth.)

  10. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... Abstract. This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen- eralized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and based on the relation between solitary wave solution and homoclinic orbits of the ...

  11. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  12. Some BMO estimates for vector-valued multilinear singular integral ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the multilinear operator related to some singular integral operators is obtained. The main purpose of this paper is to establish the BMO end-point estimates for some vector-valued multilinear operators related to certain singular integral operators. First, let us introduce some notations [10,16]. Throughout this paper, Q = Q(x,r).

  13. Infinite derivative gravity : non-singular cosmology & blackhole solutions

    NARCIS (Netherlands)

    Mazumdar, Anupam

    2017-01-01

    Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and

  14. A Note on Inclusion Intervals of Matrix Singular Values

    Directory of Open Access Journals (Sweden)

    Shu-Yu Cui

    2012-01-01

    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  15. Simpson's neutrino and the singular see-saw

    International Nuclear Information System (INIS)

    Allen, T.J.; Johnson, R.; Ranfone, S.; Schechter, J.; Walle, J.W.F.

    1991-01-01

    The authors of this paper derive explicit forms for the neutrino and lepton mixing-matrices which describe the generic singular see-saw model. The dependence on the hierarchy parameter is contrasted with the non-singular case. Application is made to Simpson's 17 keV neutrino

  16. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs

  17. One Critical Case in Singularly Perturbed Control Problems

    Science.gov (United States)

    Sobolev, Vladimir

    2017-02-01

    The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.

  18. 7 CFR 1200.1 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.1 Section 1200.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Governing Proceedings To Formulate and Amend an Order § 1200.1 Words in the singular form. Words in this...

  19. Periodic solutions to second-order indefinite singular equations

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2017-01-01

    Roč. 263, č. 1 (2017), s. 451-469 ISSN 0022-0396 Institutional support: RVO:67985840 Keywords : degree theory * indefinite singularity * periodic solution * singular differential equation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.988, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022039617301134

  20. Non-singular cosmologies in the conformally invariant gravitation theory

    International Nuclear Information System (INIS)

    Kembhavi, A.K.

    1976-01-01

    It is shown that in the framework of a conformally invariant gravitation theory, the singularity which is present in some anisotropic universes in general relativity is due to a wrong choice of conformal frame. Frames exist in which these models can be made singularity free. (author)

  1. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.

    1996-12-31

    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  2. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  3. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  4. Importance of interpolation and coincidence errors in data fusion

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2018-02-01

    Full Text Available The complete data fusion (CDF method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  5. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.

    2014-06-11

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  6. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.; Ugarte, M. D.; Goicoa, T.; Genton, Marc G.

    2014-01-01

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  7. Global sensitivity analysis using sparse grid interpolation and polynomial chaos

    International Nuclear Information System (INIS)

    Buzzard, Gregery T.

    2012-01-01

    Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.

  8. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    Science.gov (United States)

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  9. Stereo matching and view interpolation based on image domain triangulation.

    Science.gov (United States)

    Fickel, Guilherme Pinto; Jung, Claudio R; Malzbender, Tom; Samadani, Ramin; Culbertson, Bruce

    2013-09-01

    This paper presents a new approach for stereo matching and view interpolation problems based on triangular tessellations suitable for a linear array of rectified cameras. The domain of the reference image is initially partitioned into triangular regions using edge and scale information, aiming to place vertices along image edges and increase the number of triangles in textured regions. A region-based matching algorithm is then used to find an initial disparity for each triangle, and a refinement stage is applied to change the disparity at the vertices of the triangles, generating a piecewise linear disparity map. A simple post-processing procedure is applied to connect triangles with similar disparities generating a full 3D mesh related to each camera (view), which are used to generate new synthesized views along the linear camera array. With the proposed framework, view interpolation reduces to the trivial task of rendering polygonal meshes, which can be done very fast, particularly when GPUs are employed. Furthermore, the generated views are hole-free, unlike most point-based view interpolation schemes that require some kind of post-processing procedures to fill holes.

  10. On removing interpolation and resampling artifacts in rigid image registration.

    Science.gov (United States)

    Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce

    2013-02-01

    We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.

  11. Singular Null Hypersurfaces in General Relativity

    International Nuclear Information System (INIS)

    Dray, T

    2006-01-01

    Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of

  12. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  13. Managing focal fields of vector beams with multiple polarization singularities.

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  14. Workshop on Singularities in Geometry, Topology, Foliations and Dynamics

    CERN Document Server

    Lê, Dung; Oka, Mutsuo; Snoussi, Jawad

    2017-01-01

    This book features state-of-the-art research on singularities in geometry, topology, foliations and dynamics and provides an overview of the current state of singularity theory in these settings. Singularity theory is at the crossroad of various branches of mathematics and science in general. In recent years there have been remarkable developments, both in the theory itself and in its relations with other areas. The contributions in this volume originate from the “Workshop on Singularities in Geometry, Topology, Foliations and Dynamics”, held in Merida, Mexico, in December 2014, in celebration of José Seade’s 60th Birthday. It is intended for researchers and graduate students interested in singularity theory and its impact on other fields.

  15. Cusp singularities in f(R) gravity: pros and cons

    International Nuclear Information System (INIS)

    Chen, Pisin; Yeom, Dong-han

    2015-01-01

    We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvature singularity that can be interpreted by a firewall

  16. Fold points and singularity induced bifurcation in inviscid transonic flow

    International Nuclear Information System (INIS)

    Marszalek, Wieslaw

    2012-01-01

    Transonic inviscid flow equation of elliptic–hyperbolic type when written in terms of the velocity components and similarity variable results in a second order nonlinear ODE having several features typical of differential–algebraic equations rather than ODEs. These features include the fold singularities (e.g. folded nodes and saddles, forward and backward impasse points), singularity induced bifurcation behavior and singularity crossing phenomenon. We investigate the above properties and conclude that the quasilinear DAEs of transonic flow have interesting properties that do not occur in other known quasilinear DAEs, for example, in MHD. Several numerical examples are included. -- Highlights: ► A novel analysis of inviscid transonic flow and its similarity solutions. ► Singularity induced bifurcation, singular points of transonic flow. ► Projection method, index of transonic flow DAEs, linearization via matrix pencil.

  17. Crack initiation criteria for singular stress concentrations Part I: A universal assessment of singular stress concentrations

    Czech Academy of Sciences Publication Activity Database

    Knésl, Zdeněk; Klusák, Jan; Náhlík, Luboš

    2007-01-01

    Roč. 14, č. 6 (2007), s. 399-408 ISSN 1802-1484 R&D Projects: GA ČR(CZ) GA101/05/0320; GA ČR GA101/05/0227 Institutional research plan: CEZ:AV0Z20410507 Keywords : fracture mechanics * stability criteria * singular stress concentrations * crack initiation * critical stress Subject RIV: JL - Materials Fatigue, Friction Mechanics

  18. Phantom dark energy and cosmological solutions without the Big Bang singularity

    International Nuclear Information System (INIS)

    Baushev, A.N.

    2010-01-01

    The hypothesis is rapidly gaining popularity that the dark energy pervading our universe is extra-repulsive (-p>ρ). The density of such a substance (usually called phantom energy) grows with the cosmological expansion and may become infinite in a finite time producing a Big Rip. In this Letter we analyze the late stages of the universe evolution and demonstrate that the presence of the phantom energy in the universe is not enough in itself to produce the Big Rip. This singularity occurrence requires the fulfillment of some additional, rather strong conditions. A more probable outcome of the cosmological evolution is the decay of the phantom field into 'normal' matter. The second, more intriguing consequence of the presence of the phantom field is the possibility to introduce a cosmological scenario that does not contain a Big Bang. In the framework of this model the universe eternally expands, while its density and other physical parameters oscillate over a wide range, never reaching the Plank values. Thus, the universe evolution has no singularities at all.

  19. On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.

    Directory of Open Access Journals (Sweden)

    Ricard Solé

    Full Text Available It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.

  20. On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.

    Science.gov (United States)

    Solé, Ricard; Amor, Daniel R; Valverde, Sergi

    2016-01-01

    It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.