Boundary element analysis of stress singularity in dissimilar metals by friction welding
International Nuclear Information System (INIS)
Chung, N. Y.; Park, C. H.
2012-01-01
Friction welded dissimilar metals are widely applied in automobiles, rolling stocks, machine tools, and various engineering fields. Dissimilar metals have several advantages over homogeneous metals, including high strength, material property, fatigue endurance, impact absorption, high reliability, and vibration reduction. Due to the increased use of these metals, understanding their behavior under stress conditions is necessary, especially the analysis of stress singularity on the interface of friction-welded dissimilar metals. To establish a strength evaluation method and a fracture criterion, it is necessary to analyze stress singularity on the interface of dissimilar metals with welded flashes by friction welding under various loads and temperature conditions. In this paper, a method analyzing stress singularity for the specimens with and without flashes set in friction welded dissimilar metals is introduced using the boundary element method. The stress singularity index (λ) and the stress singularity factor (Γ) at the interface edge are computed from the stress analysis results. The shape and flash thickness, interface length, residual stress, and load are considered in the computation. Based on these results, the variations of interface length (c) and the ratio of flash thickness (t2 t1) greatly influence the stress singularity factors at the interface edge of friction welded dissimilar metals. The stress singularity factors will be a useful fracture parameter that considers stress singularity on the interface of dissimilar metals
DEFF Research Database (Denmark)
Cutanda Henríquez, Vicente; Juhl, Peter Møller
2008-01-01
It is well known that the Boundary Element Method (BEM) in its standard version cannot readily handle situations where the calculation point is very close to a surface. These problems are found: i) when two boundary surfaces are very close together, such as in narrow gaps and thin bodies, and ii)...
Deficiency indices and singular boundary conditions in quantum mechanics
International Nuclear Information System (INIS)
Bulla, W.
1984-01-01
We consider Schroedinger operators H in L 2 (Rsup(n)), n from IN, with countably infinitely many local singularities of the potential which are separated from each other by a positive distance. It is proved that due to locality each singularity yields a separate contribution to the deficiency index of H. In the special case where the singularities are pointlike and the potential exhibits certain symmetries near these points we give an explicit construction of self-adjoint boundary conditions
Boundary singularities produced by the motion of soap films.
Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I
2014-06-10
Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.
Modified Differential Transform Method for Two Singular Boundary Values Problems
Directory of Open Access Journals (Sweden)
Yinwei Lin
2014-01-01
Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.
Singular boundary perturbations of distributed systems
DEFF Research Database (Denmark)
Pedersen, Michael
1990-01-01
Some problems arising in real-life control applications are addressed--namely, problems concerning non-smooth control inputs on the boundary of the spatial domain. The classical variational approach is extended, and sufficient conditions are given for the solutions to continuous functions of time...
Boundary triples for Schrodinger operators with singular interactions on hypersurfaces
Czech Academy of Sciences Publication Activity Database
Behrndt, J.; Langer, M.; Lotoreichik, Vladimir
2016-01-01
Roč. 7, č. 2 (2016), s. 290-302 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : boundary triple * Weyl function * Schrodinger operator * singular potential * delta-interaction * hypersurface Subject RIV: BE - Theoretical Physics
A numerical solution of a singular boundary value problem arising in boundary layer theory.
Hu, Jiancheng
2016-01-01
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.
Su, Y.; Ong, E. T.; Lee, K. H.
2002-05-01
The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).
Experimental verification of free-space singular boundary conditions in an invisibility cloak
International Nuclear Information System (INIS)
Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Zhang, Baile; Chen, Huanyang
2016-01-01
A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak. (paper)
Experimental verification of free-space singular boundary conditions in an invisibility cloak
Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile
2016-04-01
A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.
Neumann Casimir effect: A singular boundary-interaction approach
International Nuclear Information System (INIS)
Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D.
2010-01-01
Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions.
Inverse boundary element calculations based on structural modes
DEFF Research Database (Denmark)
Juhl, Peter Møller
2007-01-01
The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...
Sayevand, K.; Pichaghchi, K.
2018-04-01
In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.
Energy Technology Data Exchange (ETDEWEB)
Chen, Ke [Univ. of Liverpool (United Kingdom)
1996-12-31
We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.
Simulating a singularity-free universe outside the problem boundary in poisson
International Nuclear Information System (INIS)
Halbach, K.; Schlueter, R.
1992-01-01
An exact analytical solution developed from the Dirichlet problem exterior to a circle is employed in the magnetostatics code POISSON to provide a boundary condition option which simulates a singularity-free universe external to the problem domain. Problems with domains of large unequal extents in perpendicular directions are treated by first conformally mapping the exterior of an ellipse onto the exterior of the unit circle. Problems exhibiting symmetry in one or two planes are modeled using a semi or quarter, respectively, in conjunction with the singularity-free rest-of-universe boundary condition
Boundary singularity of Poisson and harmonic Bergman kernels
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2015-01-01
Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170
CHILES, Singularity Strength of Linear Elastic Bodies by Finite Elements Method
International Nuclear Information System (INIS)
Benzley, S.E.; Beisinger, Z.E.
1981-01-01
1 - Description of problem or function: CHILES is a finite element computer program that calculates the strength of singularities in linear elastic bodies. Plane stress, plane strain, and axisymmetric conditions are treated. Crack tip singularity problems are solved by this version of the code, but any type of integrable singularity may be properly modeled by modifying selected subroutines in the program. 2 - Method of solution: A generalized, quadrilateral finite element that includes a singular point at a corner node is incorporated in the code. The displacement formulation is used and inter-element compatibility is maintained so that monotone convergence is preserved. 3 - Restrictions on the complexity of the problem: CHILES allows three singular points to be modeled in the body being analyzed and each singular point may have coupled Mode I and II deformations. 1000 nodal points may be used
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan
-, č. 35 (2015), s. 23-50 ISSN 1126-8042 Institutional support: RVO:67985840 Keywords : higher order functional differential equations * Dirichlet boundary value problem * strong singularity Subject RIV: BA - General Mathematics http://ijpam.uniud.it/online_issue/201535/03-Mukhigulashvili.pdf
B-spline solution of a singularly perturbed boundary value problem arising in biology
International Nuclear Information System (INIS)
Lin Bin; Li Kaitai; Cheng Zhengxing
2009-01-01
We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.
Directory of Open Access Journals (Sweden)
Xiaofeng Zhang
2017-12-01
Full Text Available In this paper, we consider the existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential equations. By applying the fixed point index theorem, some new results for the existence of positive solutions are obtained. In addition, an example is presented to demonstrate the application of our main results.
Three symmetric positive solutions of fourth-order singular nonlocal boundary value problems
Directory of Open Access Journals (Sweden)
Fuyi Xu
2011-12-01
Full Text Available In this paper, we study the existence of three positive solutions of fourth-order singular nonlocal boundary value problems. We show that there exist triple symmetric positive solutions by using Leggett-Williams fixed-point theorem. The conclusions in this paper essentially extend and improve some known results.
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Půža, B.
2015-01-01
Roč. 2015, January (2015), s. 17 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : higher order nonlinear functional-differential equations * two-point right-focal boundary value problem * strong singularity Subject RIV: BA - General Mathematics Impact factor: 0.642, year: 2015 http://link.springer.com/article/10.1186%2Fs13661-014-0277-1
An introductory study of the convergence of the direct boundary element method
DEFF Research Database (Denmark)
Juhl, Peter Møller
1997-01-01
of an axisymmetric boundary element formulation is studied using linear, quadratic or superparametric elements. It is demonstrated that the rate of convergence of these formulations is reduced for calculations involving bodies with edges (geometric singularities). Two methods for improving the rate of convergence...
Muskhelishvili, N I
2011-01-01
Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem
Boundary element method for modelling creep behaviour
International Nuclear Information System (INIS)
Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora
2002-01-01
A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)
Existence and Estimates of Positive Solutions for Some Singular Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Habib Mâagli
2014-01-01
fractional boundary value problem:Dαu(x=−a(xuσ(x, x∈(0,1 with the conditions limx→0+x2−αu(x=0, u(1=0, where 1<α≤2, σ∈(−1,1, and a is a nonnegative continuous function on (0,1 that may be singular at x=0 or x=1. We also give the global behavior of such a solution.
Recent advances in boundary element methods
Manolis, GD
2009-01-01
Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).
Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin
2016-01-01
This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.
Solving Singular Two-Point Boundary Value Problems Using Continuous Genetic Algorithm
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2012-01-01
Full Text Available In this paper, the continuous genetic algorithm is applied for the solution of singular two-point boundary value problems, where smooth solution curves are used throughout the evolution of the algorithm to obtain the required nodal values. The proposed technique might be considered as a variation of the finite difference method in the sense that each of the derivatives is replaced by an appropriate difference quotient approximation. This novel approach possesses main advantages; it can be applied without any limitation on the nature of the problem, the type of singularity, and the number of mesh points. Numerical examples are included to demonstrate the accuracy, applicability, and generality of the presented technique. The results reveal that the algorithm is very effective, straightforward, and simple.
Boundary element simulation of petroleum reservoirs with hydraulically fractured wells
Pecher, Radek
The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced
Using reciprocity in Boundary Element Calculations
DEFF Research Database (Denmark)
Juhl, Peter Møller; Cutanda Henriquez, Vicente
2010-01-01
The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...... as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution...
Singular perturbations with boundary conditions and the Casimir effect in the half space
Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.
2010-06-01
We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.
Introducing the Boundary Element Method with MATLAB
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
Directory of Open Access Journals (Sweden)
V. Rukavishnikov
2014-01-01
Full Text Available The existence and uniqueness of the Rv-generalized solution for the first boundary value problem and a second order elliptic equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of a two-dimensional domain are established.
International Nuclear Information System (INIS)
Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho
1995-01-01
It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.
Boundary element method for internal axisymmetric flow
Directory of Open Access Journals (Sweden)
Gokhman Alexander
1999-01-01
Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.
9th International Conference on Boundary Elements
Wendland, W; Kuhn, G
1987-01-01
This book contains the edited versions of most of the papers presented at the 9th International Conference on Boundary Elements held at the University of Stuttgart, Germany from August 31st to September 4th, 1987, which was organized in co-operation with the Computational Mechanics Institute and GAMM (Society for Applied Mathematics and Mechanics). This Conference, as the previous ones, aimed to review the latest developments in technique and theory and point out new advanced future trends. The emphasis of the meeting was on the engineering advances versus mathematical formulations, in an effort to consolidate the basis of many new applications. Recently engineers have proposed different techniques to solve non-linear and time dependent problems and many of these formulations needed a better mathematical understanding. Furthermore, new approximate formulations have been proposed for boundary elements which appeared to work in engineering practice, but did not have a proper theoretical background. The Conferen...
Directory of Open Access Journals (Sweden)
Gai Gongqi
2011-01-01
Full Text Available Abstract This article studies the boundary value problems for the third-order nonlinear singular difference equations Δ 3 u ( i - 2 + λ a ( i f ( i , u ( i = 0 , i ∈ [ 2 , T + 2 ] , satisfying five kinds of different boundary value conditions. This article shows the existence of positive solutions for positone and semi-positone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems in a cone. MSC [2008]: 34B15; 39A10.
Large-Scale Parallel Finite Element Analysis of the Stress Singular Problems
International Nuclear Information System (INIS)
Noriyuki Kushida; Hiroshi Okuda; Genki Yagawa
2002-01-01
In this paper, the convergence behavior of large-scale parallel finite element method for the stress singular problems was investigated. The convergence behavior of iterative solvers depends on the efficiency of the pre-conditioners. However, efficiency of pre-conditioners may be influenced by the domain decomposition that is necessary for parallel FEM. In this study the following results were obtained: Conjugate gradient method without preconditioning and the diagonal scaling preconditioned conjugate gradient method were not influenced by the domain decomposition as expected. symmetric successive over relaxation method preconditioned conjugate gradient method converged 6% faster as maximum if the stress singular area was contained in one sub-domain. (authors)
Czech Academy of Sciences Publication Activity Database
Rontó, András; Samoilenko, A. M.
2007-01-01
Roč. 41, - (2007), s. 115-136 ISSN 1512-0015 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : two-point problem * functional differential equation * singular boundary problem Subject RIV: BA - General Mathematics
Czech Academy of Sciences Publication Activity Database
Escudero, C.; Hakl, Robert; Peral, I.; Torres, P.J.
2014-01-01
Roč. 37, č. 6 (2014), s. 793-807 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : singular boundary value problem * epitaxial growth * radial solution Subject RIV: BA - General Mathematics Impact factor: 0.918, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mma.2836/full
Boundary element methods for electrical engineers
POLJAK, D
2005-01-01
In the last couple of decades the Boundary Element Method (BEM) has become a well-established technique that is widely used for solving various problems in electrical engineering and electromagnetics. Although there are many excellent research papers published in the relevant literature that describe various BEM applications in electrical engineering and electromagnetics, there has been a lack of suitable textbooks and monographs on the subject. This book presents BEM in a simple fashion in order to help the beginner to understand the very basic principles of the method. It initially derives B
Hermitian boundary conditions at a Dirichlet singularity: the Marletta--Rozenblum model
International Nuclear Information System (INIS)
Berry, M V
2009-01-01
In domains B with smoothly-varying boundary conditions, points where wavefunctions are required to vanish were recently identified as 'Dirichlet singularities' (D points) where the Hamiltonian H does not define discrete eigenvalues and a scattering phase is undetermined (Berry and Dennis 2008 J. Phys. A: Math. Theor. 41 135203). This is explained (Marletta and Rozenblum 2009 J. Phys. A: Math. Theor. 42 125204) by the observation, illustrated with an exactly-solvable separable model, that a D point requires the specification of an additional parameter defining a family of self-adjoint extensions of H. Here the underlying theory is presented in an elementary way, and a D point is identified as a leak, through which current can flow into or out of B. Hermiticity seals the leak, ensuring that no current flows though the D point (as well as across the boundary of B). The solvable model is examined in detail for bound states, where B is a semidisk, and for wave reflections, where B is a half-plane. The quantization condition for a nonseparable billiard is obtained explicitly
International Nuclear Information System (INIS)
Ozgener, B.
1998-01-01
A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation
Symplectic finite element scheme: application to a driven problem with a regular singularity
Energy Technology Data Exchange (ETDEWEB)
Pletzer, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear `tent` elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs.
Symplectic finite element scheme: application to a driven problem with a regular singularity
International Nuclear Information System (INIS)
Pletzer, A.
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear 'tent' elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs
Numerical solution of singularity-perturbed two-point boundary-value problems
International Nuclear Information System (INIS)
Masenge, R.W.P.
1993-07-01
Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.
2012-10-01
A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Directory of Open Access Journals (Sweden)
Zhang Xuemei
2009-01-01
Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of as well as positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.
Directory of Open Access Journals (Sweden)
Jufang Wang
2013-01-01
Full Text Available We establish the existence of triple positive solutions of an m-point boundary value problem for the nonlinear singular second-order differential equations of mixed type with a p-Laplacian operator by Leggett-William fixed point theorem. At last, we give an example to demonstrate the use of the main result of this paper. The conclusions in this paper essentially extend and improve the known results.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sahashi, Naoki.
1996-01-01
The multiple reciprocity method (MRM) in conjunction with the boundary element method has been employed to solve one-group eigenvalue problems described by the three-dimensional (3-D) neutron diffusion equation. The domain integral related to the fission source is transformed into a series of boundary-only integrals, with the aid of the higher order fundamental solutions based on the spherical and the modified spherical Bessel functions. Since each degree of the higher order fundamental solutions in the 3-D cases has a singularity of order (1/r), the above series of boundary integrals requires additional terms which do not appear in the 2-D MRM formulation. The critical eigenvalue itself can be also described using only boundary integrals. Test calculations show that Wielandt's spectral shift technique guarantees rapid and stable convergence of 3-D MRM computations. (author)
Mixed Element Formulation for the Finite Element-Boundary Integral Method
National Research Council Canada - National Science Library
Meese, J; Kempel, L. C; Schneider, S. W
2006-01-01
A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...
Directory of Open Access Journals (Sweden)
Svatoslav Stanêk
2008-03-01
Full Text Available The paper presents an existence principle for solving a large class of nonlocal regular discrete boundary value problems with the ÃÂ†-Laplacian. Applications of the existence principle to singular discrete problems are given.
Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity.
Atroshchenko, Elena; Bordas, Stéphane P A
2015-07-08
In this paper, both singular and hypersingular fundamental solutions of plane Cosserat elasticity are derived and given in a ready-to-use form. The hypersingular fundamental solutions allow to formulate the analogue of Somigliana stress identity, which can be used to obtain the stress and couple-stress fields inside the domain from the boundary values of the displacements, microrotation and stress and couple-stress tractions. Using these newly derived fundamental solutions, the boundary integral equations of both types are formulated and solved by the boundary element method. Simultaneous use of both types of equations (approach known as the dual boundary element method (BEM)) allows problems where parts of the boundary are overlapping, such as crack problems, to be treated and to do this for general geometry and loading conditions. The high accuracy of the boundary element method for both types of equations is demonstrated for a number of benchmark problems, including a Griffith crack problem and a plate with an edge crack. The detailed comparison of the BEM results and the analytical solution for a Griffith crack and an edge crack is given, particularly in terms of stress and couple-stress intensity factors, as well as the crack opening displacements and microrotations on the crack faces and the angular distributions of stresses and couple-stresses around the crack tip.
Finite element and boundary element applications in quantum mechanics
International Nuclear Information System (INIS)
Ueta, Tsuyoshi
2003-01-01
Although this book is one of the Oxford Texts in Applied and Engineering Mathematics, we may think of it as a physics book. It explains how to solve the problem of quantum mechanics using the finite element method (FEM) and the boundary element method (BEM). Many examples analysing actual problems are also shown. As for the ratio of the number of pages of FEM and BEM, the former occupies about 80%. This is, however, reasonable reflecting the flexibility of FEM. Although many explanations of FEM and BEM exist, most are written using special mathematical expressions and numerical computation fields. However, this book is written in the 'language of physicists' throughout. I think that it is very readable and easy to understand for physicists. In the derivation of FEM and the argument on calculation accuracy, the action integral and a variation principle are used consistently. In the numerical computation of matrices, such as simultaneous equations and eigen value problems, a description of important points is also fully given. Moreover, the practical problems which become important in the electron device design field and the condensed matter physics field are dealt with as example computations, so that this book is very practical and applicable. It is characteristic and interesting that FEM is applied to solve the Schroedinger and Poisson equations consistently, and to the solution of the Ginzburg--Landau equation in superconductivity. BEM is applied to treat electric field enhancements due to surface plasmon excitations at metallic surfaces. A number of references are cited at the end of all the chapters, and this is very helpful. The description of quantum mechanics is also made appropriately and the actual application of quantum mechanics in condensed matter physics can also be surveyed. In the appendices, the mathematical foundation, such as numerical quadrature formulae and Green's functions, is conveniently described. I recommend this book to those who need to
Microlocal methods in the analysis of the boundary element method
DEFF Research Database (Denmark)
Pedersen, Michael
1993-01-01
The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...
Periodic Boundary Conditions in the ALEGRA Finite Element Code
International Nuclear Information System (INIS)
Aidun, John B.; Robinson, Allen C.; Weatherby, Joe R.
1999-01-01
This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given
Directory of Open Access Journals (Sweden)
Meiqiang Feng
2009-01-01
Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of Cld[0,1]𝕋 as well as CldΔ[0,1]𝕋 positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.
Directory of Open Access Journals (Sweden)
Nicola Ponara
2012-11-01
Full Text Available Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance with respect to the discontinuity interface are exploited. Tornberg and Engquist (Journal of Scientific Computing, 2003, 19: 527–552 proved that the use of compact support weight function is not suitable because it leads to errors that do not vanish for decreasing mesh size. They proposed the adoption of non-compact support weight functions. In the present contribution, the relationship between the Fourier transform of the weight functions and the accuracy of the regularization procedure is exploited. The proposed regularized approach was implemented in the eXtended Finite Element Method. As a three-dimensional example, we study a slender solid characterized by an inclined interface across which the displacement is discontinuous. The accuracy is evaluated for varying position of the discontinuity interfaces with respect to the underlying mesh. A procedure for the choice of the regularization parameters is proposed.
The complex variable boundary element method: Applications in determining approximative boundaries
Hromadka, T.V.
1984-01-01
The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.
Development of polygon elements based on the scaled boundary finite element method
International Nuclear Information System (INIS)
Chiong, Irene; Song Chongmin
2010-01-01
We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.
Directory of Open Access Journals (Sweden)
Suheel Abdullah Malik
2014-01-01
Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.
Directory of Open Access Journals (Sweden)
Qiying Wei
2009-01-01
Full Text Available By using the well-known Schauder fixed point theorem and upper and lower solution method, we present some existence criteria for positive solution of an -point singular -Laplacian dynamic equation on time scales with the sign changing nonlinearity. These results are new even for the corresponding differential (=ℝ and difference equations (=ℤ, as well as in general time scales setting. As an application, an example is given to illustrate the results.
Directory of Open Access Journals (Sweden)
George N. Galanis
2005-10-01
Full Text Available In this paper we prove the existence of positive solutions for the three-point singular boundary-value problem$$ -[phi _{p}(u']'=q(tf(t,u(t,quad 0
(Environmental and geophysical modeling, fracture mechanics, and boundary element methods)
Energy Technology Data Exchange (ETDEWEB)
Gray, L.J.
1990-11-09
Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.
A Novel Mesh Quality Improvement Method for Boundary Elements
Directory of Open Access Journals (Sweden)
Hou-lin Liu
2012-01-01
Full Text Available In order to improve the boundary mesh quality while maintaining the essential characteristics of discrete surfaces, a new approach combining optimization-based smoothing and topology optimization is developed. The smoothing objective function is modified, in which two functions denoting boundary and interior quality, respectively, and a weight coefficient controlling boundary quality are taken into account. In addition, the existing smoothing algorithm can improve the mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then, topology optimization is employed, and those elements are converted into other types of elements whose quality can be improved by smoothing. The practical application shows that the worst elements can be eliminated and, with the increase of weight coefficient, the average quality of boundary mesh can also be improved. Results obtained with the combined approach are compared with some common approach. It is clearly shown that it performs better than the existing approach.
Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3
Fuchs, J; Lerche, Wolfgang; Lütken, C A; Schweigert, C; Walcher, J
2001-01-01
We investigate certain fixed points in the boundary conformal field theory representation of type IIA D-branes on Gepner points of K3. They correspond geometrically to degenerate brane configurations, and physically lead to enhanced gauge symmetries on the world-volume. Non-abelian gauge groups arise if the stabilizer group of the fixed points is realized projectively, which is similar to D-branes on orbifolds with discrete torsion. Moreover, the fixed point boundary states can be resolved into several irreducible components. These correspond to bound states at threshold and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves. Thus, the BCFT fixed points appear to carry two-fold geometrical information: on the one hand they probe the boundary of the instanton moduli space on K3, on the other hand they probe discrete torsion in D-geometry.
A new methodology for fault detection in rolling element bearings using singular spectrum analysis
Directory of Open Access Journals (Sweden)
Bugharbee Hussein Al
2018-01-01
Full Text Available This paper proposes a vibration-based methodology for fault detection in rolling element bearings, which is based on pure data analysis via singular spectrum method. The method suggests building a baseline space from feature vectors made of the signals measured in the healthy/baseline bearing condition. The feature vectors are made using the Euclidean norms of the first three PC’s found for the signals measured. Then, the lagged version of any new signal corresponding to a new (possibly faulty condition is projected onto this baseline feature space in order to assess its similarity to the baseline condition. The category of a new signal vector is determined based on the Mahalanobis distance (MD of its feature vector to the baseline space. A validation of the methodology is suggested based on the results from an experimental test rig. The results obtained confirm the effective performance of the suggested methodology. It is made of simple steps and is easy to apply with a perspective to make it automatic and suitable for commercial applications.
Directory of Open Access Journals (Sweden)
Shihuang Hong
2009-01-01
Full Text Available We present sufficient conditions for the existence of at least twin or triple positive solutions of a nonlinear four-point singular boundary value problem with a p-Laplacian dynamic equation on a time scale. Our results are obtained via some new multiple fixed point theorems.
Three-dimensional wake field analysis by boundary element method
International Nuclear Information System (INIS)
Miyata, K.
1987-01-01
A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti; Lazarov, Raytcho; Lu, Xiliang; Zhou, Zhi
2016-01-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti
2016-02-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
A boundary element model for diffraction of water waves on varying water depth
Energy Technology Data Exchange (ETDEWEB)
Poulin, Sanne
1997-12-31
In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...... solely on an orthogonal polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding to those points, all matrix elements become well behaved. the boundary...
Paszyński, Maciej R.
2013-04-01
This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.
Paszyński, Maciej R.; Calo, Victor M.; Pardo, David
2013-01-01
This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.
Green's function and boundary elements of multifield materials
Qin, Qing-Hua
2007-01-01
Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.
Simulation of galvanic corrosion using boundary element method
International Nuclear Information System (INIS)
Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamaruddin; Nur Ubaidah Saidin; Abdul Aziz Mohamed; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar
2011-01-01
Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. The use of boundary element analysis system (BEASY) has allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate. This paper was present the analysis of the galvanic corrosion between Aluminium and Carbon Steel in natural sea water. The result of experimental was validated with computer simulation like BEASY program. Finally, it can conclude that the BEASY software is a very helpful tool for future planning before installing any structure, where it gives the possible CP interference on any nearby unprotected metallic structure. (Author)
8th International Conference on Boundary Element Methods
Brebbia, C
1986-01-01
The International Conference on Boundary Element Methods in Engineering was started in 1978 with the following objectives: i) To act as a focus for BE research at a time when the technique wasjust emerging as a powerful tool for engineering analysis. ii) To attract new as weIl as established researchers on Boundary Elements, in order to maintain its vitality and originality. iii) To try to relate the Boundary Element Method to other engineering techniques in an effort to help unify the field of engineering analysis, rather than to contribute to its fragmentation. These objectives were achieved during the last 7 conferences and this meeting - the eighth - has continued to be as innovative and dynamic as any ofthe previous conferences. Another important aim ofthe conference is to encourage the participation of researchers from as many different countries as possible and in this regard it is a policy of the organizers to hold the conference in different locations. It is easy to forget when working on scientific ...
Parallel Fast Multipole Boundary Element Method for crustal dynamics
International Nuclear Information System (INIS)
Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar
2010-01-01
Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
International Nuclear Information System (INIS)
Wu, Sheng-Jhih; Chu, Moody T
2017-01-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing–Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations. (paper)
The boundary element method for the solution of the multidimensional inverse heat conduction problem
International Nuclear Information System (INIS)
Lagier, Guy-Laurent
1999-01-01
This work focuses on the solution of the inverse heat conduction problem (IHCP), which consists in the determination of boundary conditions from a given set of internal temperature measurements. This problem is difficult to solve due to its ill-posedness and high sensitivity to measurement error. As a consequence, numerical regularization procedures are required to solve this problem. However, most of these methods depend on the dimension and the nature, stationary or transient, of the problem. Furthermore, these methods introduce parameters, called hyper-parameters, which have to be chosen optimally, but can not be determined a priori. So, a new general method is proposed for solving the IHCP. This method is based on a Boundary Element Method formulation, and the use of the Singular Values Decomposition as a regularization procedure. Thanks to this method, it's possible to identify and eliminate the directions of the solution where the measurement error plays the major role. This algorithm is first validated on two-dimensional stationary and one-dimensional transient problems. Some criteria are presented in order to choose the hyper-parameters. Then, the methodology is applied to two-dimensional and three-dimensional, theoretical or experimental, problems. The results are compared with those obtained by a standard method and show the accuracy of the method, its generality, and the validity of the proposed criteria. (author) [fr
Hybrid finite difference/finite element immersed boundary method.
E Griffith, Boyce; Luo, Xiaoyu
2017-12-01
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Advances in boundary elements. Vol. 1-3
International Nuclear Information System (INIS)
Brebbia, C.A.; Connor, J.J.
1989-01-01
This book contains some of the edited papers presented at the 11th Boundary Element Conference, held in Cambridge, Massachusetts, during August 1989. The papers are arranged in three different books comprising the following topics: Vol. 1: Computations and Fundamentals - comprises sections on fundamentals, adaptive techniques, error and convergence, numerical methods and computational aspects. (283 p.). Vol. 2: Field and fluid flow solutions - includes the following topics: potential problems, thermal studies, electrical and electromagnetic problems, wave propagation, acoustics and fluid flow. (484 p.). Vol. 3: Stress analysis - deals with advances in linear problems, nonlinear problems, fracture mechanics, contact mechanics, optimization, geomechanics, plates and shells, vibrations and industrial applications. (450 p). (orig./HP)
Sound source reconstruction using inverse boundary element calculations
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo
2003-01-01
Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim in this work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form suited ...... it is demonstrated that the L-curve criterion is robust with respect to the errors in a real measurement situation. In particular, it is shown that the L-curve criterion is superior to the more conventional generalized cross-validation (GCV) approach for the present tire noise studies....
Nonlinear singular elliptic equations
International Nuclear Information System (INIS)
Dong Minh Duc.
1988-09-01
We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs
National Research Council Canada - National Science Library
Eren, Hakan
2000-01-01
.... The objective of this study is, by using Boundary Element Method, to examine different shapes of reinforcement elements under unit traction and unit displacement boundary conditions in transversal...
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Zhidkov, E.P.; Konnova, S.V.
2000-01-01
For the case of spherical-symmetrical potential we have considered the convergence of the solution of singular-perturbated Schroedinger equation of the 4th order to the solution of the corresponding standard nonrelativistic Schroedinger equation by numerical and analytical methods. The questions of existence of the solutions are explored. Numerical results are given. (author)
International Nuclear Information System (INIS)
Pereira, Luis Carlos Martins
1998-06-01
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Jang, Hae-Won; Ih, Jeong-Guon
2012-04-01
The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.
Simulations of singularity dynamics in liquid crystal flows: A C finite element approach
International Nuclear Information System (INIS)
Lin Ping; Liu Chun
2006-01-01
In this paper, we present a C finite element method for a 2a hydrodynamic liquid crystal model which is simpler than existing C 1 element methods and mixed element formulation. The energy law is formally justified and the energy decay is used as a validation tool for our numerical computation. A splitting method combined with only a few fixed point iteration for the penalty term of the director field is applied to reduce the size of the stiffness matrix and to keep the stiffness matrix time-independent. The latter avoids solving a linear system at every time step and largely reduces the computational time, especially when direct linear system solvers are used. Our approach is verified by comparing its computational results with those obtained by C 1 elements and by mixed formulation. Through numerical experiments of a few other splittings and explicit-implicit strategies, we recommend a fast and reliable algorithm for this model. A number of examples are computed to demonstrate the algorithm
Essential Boundary Conditions with Straight C1 Finite Elements in Curved Domains
International Nuclear Information System (INIS)
Ferraro, N.M.; Jardin, S.C.; Luo, X.
2010-01-01
The implementation of essential boundary conditions in C1 finite element analysis requires proper treatment of both the boundary conditions on second-order differentials of the solution and the curvature of the domain boundary. A method for the imposition of essential boundary conditions using straight elements (where the elements are not deformed to approximate a curved domain) is described. It is shown that pre-multiplication of the matrix equation by the local rotation matrix at each boundary node is not the optimal transformation. The uniquely optimal transformation is found, which does not take the form of a similarity transformation due to the non-orthogonality of the transformation to curved coordinates.
Novel TMS coils designed using an inverse boundary element method
Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David
2017-01-01
In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.
Supersymmetry in singular spaces
Bergshoeff, Eric
2002-01-01
We discuss supersymmetry in spaces with a boundary, i.e. singular spaces. In particular, we discuss the situation in ten and five dimensions. In both these cases we review the construction of supersymmetric domain wall actions situated at the boundary. These domain walls act as sources inducing a
Use of the iterative solution method for coupled finite element and boundary element modeling
International Nuclear Information System (INIS)
Koteras, J.R.
1993-07-01
Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver
Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce
2009-01-01
We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry
Temperature and stress distribution in pressure vessel by the boundary element method
International Nuclear Information System (INIS)
Alujevic, A.; Apostolovic, D.
1990-01-01
The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)
Directory of Open Access Journals (Sweden)
E. Majchrzak
2008-12-01
Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.
Neukirch, Sébastien
2014-02-01
In-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible planar Kirchhoff elastic rod under large displacements and rotations. Equilibrium configurations and vibrations around these configurations are computed analytically in the incipient post-buckling regime. Of particular interest is the variation of the first mode frequency as the load is increased through the buckling threshold. The loading type is found to have a crucial importance as the first mode frequency is shown to behave singularly in the zero thickness limit in the case of prescribed axial displacement, whereas a regular behavior is found in the case of prescribed axial load. © 2013 Elsevier Ltd.
Directory of Open Access Journals (Sweden)
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
An assessment of the DORT method on simple scatterers using boundary element modelling.
Gélat, P; Ter Haar, G; Saffari, N
2015-05-07
The ability to focus through ribs overcomes an important limitation of a high-intensity focused ultrasound (HIFU) system for the treatment of liver tumours. Whilst it is important to generate high enough acoustic pressures at the treatment location for tissue lesioning, it is also paramount to ensure that the resulting ultrasonic dose on the ribs remains below a specified threshold, since ribs both strongly absorb and reflect ultrasound. The DORT (décomposition de l'opérateur de retournement temporel) method has the ability to focus on and through scatterers immersed in an acoustic medium selectively without requiring prior knowledge of their location or geometry. The method requires a multi-element transducer and is implemented via a singular value decomposition of the measured matrix of inter-element transfer functions. The efficacy of a method of focusing through scatterers is often assessed by comparing the specific absorption rate (SAR) at the surface of the scatterer, and at the focal region. The SAR can be obtained from a knowledge of the acoustic pressure magnitude and the acoustic properties of the medium and scatterer. It is well known that measuring acoustic pressures with a calibrated hydrophone at or near a hard surface presents experimental challenges, potentially resulting in increased measurement uncertainties. Hence, the DORT method is usually assessed experimentally by measuring the SAR at locations on the surface of the scatterer after the latter has been removed from the acoustic medium. This is also likely to generate uncertainties in the acoustic pressure measurement. There is therefore a strong case for assessing the efficacy of the DORT method through a validated theoretical model. The boundary element method (BEM) applied to exterior acoustic scattering problems is well-suited for such an assessment. In this study, BEM was used to implement the DORT method theoretically on locally reacting spherical scatterers, and to assess its focusing
International Nuclear Information System (INIS)
Choi, C. Y.
1997-01-01
A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis
Directory of Open Access Journals (Sweden)
Gabriel Martínez-Niconoff
2012-01-01
Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.
Influence of the non-singular stress on the crack extension and fatigue life
International Nuclear Information System (INIS)
Cheng, C.Z.; Recho, N.; Niu, Z.R.
2012-01-01
Highlights: ► BEM is combined by characteristic analysis to calculate the singular stress field. ► A new method is proposed to evaluate the full stress field at crack tip region. ► Effect of non-singular stress on the propagation direction of the fatigue crack is analyzed. ► The influence of non-singular stress on the fatigue crack life is evaluated. - Abstract: The complete elasticity stress field at a crack tip region can be presented by the sum of the singular stress and several non-singular stress terms according to the Williams asymptotic expansion theory. The non-singular stress has a non-negligible influence on the prediction of the crack extension direction and crack growth rate under the fatigue loading. A novel method combining the boundary element method and the singularity characteristic analysis is proposed here to evaluate the complete stress field at a crack tip region. In this new method, any non-singular stress term in the Williams series expansion can be evaluated according to the computational accuracy requirement. Then, a modified Paris law is introduced to predict the crack propagation under the mixed-mode loading for exploring the influence of the non-singular stress on the fatigue life duration. By comparing with the existed experimental results, the predicted crack fatigue life when the non-singular stress is taken into consideration is more accurate than the predicted ones only considering the singular stress.
Heat conduction in a plate-type fuel element with time-dependent boundary conditions
International Nuclear Information System (INIS)
Faya, A.J.G.; Maiorino, J.R.
1981-01-01
A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn
2012-01-01
This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)
Improved design of special boundary elements for T-shaped reinforced concrete walls
Ji, Xiaodong; Liu, Dan; Qian, Jiaru
2017-01-01
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.
DEFF Research Database (Denmark)
Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.
2007-01-01
A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...... independent degrees of freedom. Some test problems are considered to check the effectiveness of the proposed stacking method....
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
International Nuclear Information System (INIS)
Kim, H; Ryue, J; Thompson, D J; Müller, A D
2016-01-01
Recently, complex shaped aluminium panels have been adopted in many structures to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of interest for many years but conventional finite element and boundary element methods are not efficient to predict their performance at higher frequencies. Where the cross-sectional properties of the panels are constant in one direction, wavenumber domain numerical analysis can be applied and this becomes more suitable for panels with complex cross-sectional geometries. In this paper, a coupled wavenumber domain finite element and boundary element method is applied to predict the sound radiation from and sound transmission through a double-layered aluminium extruded panel, having a typical shape used in railway carriages. The predicted results are compared with measured ones carried out on a finite length panel and good agreement is found. (paper)
A coupled boundary element-finite difference solution of the elliptic modified mild slope equation
DEFF Research Database (Denmark)
Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.
2011-01-01
The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...
The boundary element method : errors and gridding for problems with hot spots
Kakuba, G.
2011-01-01
Adaptive gridding methods are of fundamental importance both for industry and academia. As one of the computing methods, the Boundary Element Method (BEM) is used to simulate problems whose fundamental solutions are available. The method is usually characterised as constant elements BEM or linear
Fast multipole acceleration of the MEG/EEG boundary element method
International Nuclear Information System (INIS)
Kybic, Jan; Clerc, Maureen; Faugeras, Olivier; Keriven, Renaud; Papadopoulo, Theo
2005-01-01
The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric boundary element method (BEM). It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption
The Boundary Element Method Applied to the Two Dimensional Stefan Moving Boundary Problem
1991-03-15
Unc), - ( UGt )t - (UG,,),,] - (UG), If we integrate this equation with respect to r from 0 to t - c and with respect to and ij on the region 11(r...and others. "Moving Boundary Problems in Phase Change Mod- els," SIGNUM Newsletter, 20: 8-12 (1985). 21. Stefan, J. "Ober einige Probleme der Theorie ...ier Wirmelcitung," S.-B. \\Vein. Akad. Mat. Natur., 98: 173-484 (1889). 22.-. "flber (lie Theorie der Eisbildung insbesondere fiber die lisbildung im
International Nuclear Information System (INIS)
Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.
1995-01-01
A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis
International Nuclear Information System (INIS)
Choi, Chang Yong
1999-01-01
This paper presents a study of the Dual Reciprocity Boundary Element Method (DRBEM) for the laminar heat convection problem in a concentric annulus with constant heat flux boundary condition. DRBEM is one of the most successful technique used to transform the domain integrals arising from the nonhomogeneous term of the poisson equation into equivalent boundary only integrals. This recently developed and highly efficient numerical method is tested for the solution accuracy of the fluid flow and heat transfer study in a concentric annulus. Since their exact solutions are available, DRBEM solutions are verified with different number of boundary element discretization and internal points. The results obtained in this study are discussed with the relative error percentage of velocity and temperature solutions, and potential applicability of the method for the more complicated heat convection problems with arbitrary duct geometries
E-coil: an inverse boundary element method for a quasi-static problem
International Nuclear Information System (INIS)
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez; Power, Henry
2010-01-01
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
E-coil: an inverse boundary element method for a quasi-static problem
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)
2010-06-07
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
Boundary element analysis of earthquake induced hydrodynamic pressures in a water reservoir
International Nuclear Information System (INIS)
Jablonski, A.M.
1988-11-01
The seismic analysis of concrete gravity and arch dams is affected by the hydrodynamic pressures in the water reservoir. Boundary element method (BEM) formulations are derived for the hydrodynamic pressures arising in a gravity dam-reservoir-foundation system, treating both 2- and 3-dimensional cases. The formulations are based on the respective mathematical models which are governed by two- and three-dimensional Helmholtz equations with appropriate boundary conditions. For infinite reservoirs, loss of energy due to pressure waves moving away toward infinity strongly influence response. Since it is not possible to discretize an infinite extent, the radiation damping due to outgoing waves is accounted for by incorporating special boundary conditions at the far end, and in a similar manner the loss of energy due to absorption of waves by a flexible bottom of reservoir and banks can be accounted for by a special condition along the boundaries. Numerical results are obtained and compared with available classical solutions and convergence of numerical results with the size and number of boundary elements is studied. It is concluded that the direct boundary element method is an effective tool for the evaluation of the hydrodynamic pressures in finite and infinite dam-reservoir-foundation systems subjected to harmonic-type motion, and can easily be extended to any type of random motion with fast Fourier transform techniques. 82 refs., 65 figs., 25 tabs
Multidimensional phase change problems by the dual-reciprocity boundary-element method
International Nuclear Information System (INIS)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
1999-01-01
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach provided in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available
Directory of Open Access Journals (Sweden)
Murat Ünal
2002-03-01
Full Text Available In this study, a two-dimensional software was developed by using the boundary element method, in order to model and solve the rock mechanics problems encountered in surface and underground excavations. Stability of rock wedges formed at the roof of underground excavations were investigated in detail by using this software. The behaviour of the symmetric wedge on different joint stiffnesses was studied using a modified boundary element software. Then the results obtained were discussed and compared with the analytical solution, considering the surface tractions, shear stresses (developed along the discontinuity, wedge displacements and strains (along the wedge height.
Electrostatic field in inhomogeneous dielectric media. I. Indirect boundary element method
International Nuclear Information System (INIS)
Goel, N.S.; Gang, F.; Ko, Z.
1995-01-01
A computationally fast method is presented for calculating electrostatic field in arbitrary inhomogeneous dielectric media with open boundary condition. The method involves dividing the whole space into cubical cells and then finding effective dielectric parameters for interfacial cells consisting of several dielectrics. The electrostatic problem is then solved using either the indirect boundary element method described in this paper or the so-called volume element method described in the companion paper. Both methods are tested for accuracy by comparing the numerically calculated electrostatic fields against those analytically obtained for a dielectric sphere and dielectric ellipsoid in a uniform field and for a dielectric sphere in a point charge field
Partridge, P; Boundary Elements in Fluid Dynamics
1992-01-01
This book Boundary Elements in Fluid Dynamics is the second volume of the two volume proceedings of the International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics, held in Southampton, U.K., in April 1992. The Boundary Element Method (BEM) is now fully established as an ac curate and successful technique for solving engineering problems in a wide range of fields. The success of the method is due to its advantages in data reduction, as only the boundary of the region is modelled. Thus moving boundaries may be more easily handled, which is not the case if domain methods are used. In addition, the method is easily able to model regions to extending to infinity. Fluid mechanics is traditionally one of the most challenging areas of engi neering, the simulation of fluid motion, particularly in three dimensions, is always a serious test for any numerical method, and is an area in which BEM analysis may be used taking full advantage of its special character...
Experimental validation of a boundary element solver for exterior acoustic radiation problems
Visser, Rene; Nilsson, A.; Boden, H.
2003-01-01
The relation between harmonic structural vibrations and the corresponding acoustic radiation is given by the Helmholtz integral equation (HIE). To solve this integral equation a new solver (BEMSYS) based on the boundary element method (BEM) has been implemented. This numerical tool can be used for
Stress Wave Propagation in Soils Modelled by the Boundary Element Method
DEFF Research Database (Denmark)
Rasmussen, K. M.
This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical...
Implementation aspects of the Boundary Element Method including viscous and thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2014-01-01
The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids...
In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...
Kuijpers, A.H.W.M.; Verbeek, G.; Verheij, J.W.
1997-01-01
Effective use of the Fourier series boundary element method (FBEM) for everyday applications is hindered by the significant numerical problems that have to be overcome for its implementation. In the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need to be
An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order
Nguyen-Xuan, H.; Liu, G. R.; Bordas, Stéphane; Natarajan, S.; Rabczuk, T.
2013-01-01
This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient ...
Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers
Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack
2013-01-01
Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.
Energy Technology Data Exchange (ETDEWEB)
El Shawish, Samir, E-mail: Samir.ElShawish@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Simonovski, Igor [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands)
2013-08-15
Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses.
Second-order wave diffraction by a circular cylinder using scaled boundary finite element method
International Nuclear Information System (INIS)
Song, H; Tao, L
2010-01-01
The scaled boundary finite element method (SBFEM) has achieved remarkable success in structural mechanics and fluid mechanics, combing the advantage of both FEM and BEM. Most of the previous works focus on linear problems, in which superposition principle is applicable. However, many physical problems in the real world are nonlinear and are described by nonlinear equations, challenging the application of the existing SBFEM model. A popular idea to solve a nonlinear problem is decomposing the nonlinear equation to a number of linear equations, and then solves them individually. In this paper, second-order wave diffraction by a circular cylinder is solved by SBFEM. By splitting the forcing term into two parts, the physical problem is described as two second-order boundary-value problems with different asymptotic behaviour at infinity. Expressing the velocity potentials as a series of depth-eigenfunctions, both of the 3D boundary-value problems are decomposed to a number of 2D boundary-value sub-problems, which are solved semi-analytically by SBFEM. Only the cylinder boundary is discretised with 1D curved finite-elements on the circumference of the cylinder, while the radial differential equation is solved completely analytically. The method can be extended to solve more complex wave-structure interaction problems resulting in direct engineering applications.
Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi
2018-04-01
Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.
Near shore seismic movements induced by seaquakes using the boundary element method
Institute of Scientific and Technical Information of China (English)
Manuel Carbajal-Romero; Norberto Flores-Guzmán; J.Efraín Rodríguez-Sánchez; Andriy Kryvko
2017-01-01
This study quantifies seismic amplifications in near-shore arising from seaquakes.Within the Boundary Element Method,boundary elements are used to irradiate waves and force densities obtained for each element.Huygens Principle is implemented since the diffracted waves are constructed at the boundary from which they are radiated,which is equivalent to Somigliana's theorem.Application of boundary conditions leads to a system of integral equations of the Fredholm type of second kind and zero order.Several numerical configurations are analyzed:The first is used to verify the present formulation with ideal sea floor configurations to estimate seismic amplifications.With the formulation verified,simple slope configurations are studied to estimate spectra of seismic motions.It is found that P-waves can produce seismic amplifications from 1.2 to 3.9 times the amplitude of the incident wave.SV-waves can generate seismic amplifications up to 4.5 times the incident wave.Another relevant finding is that the highest amplifications are at the shore compared to the ones at the sea floor.
Free surface simulation of a two-layer fluid by boundary element method
Directory of Open Access Journals (Sweden)
Weoncheol Koo
2010-09-01
Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.
Azis, Moh. Ivan; Kasbawati; Haddade, Amiruddin; Astuti Thamrin, Sri
2018-03-01
A boundary element method (BEM) is obtained for solving a boundary value problem of homogeneous anisotropic media governed by diffusion-convection equation. The application of the BEM is shown for two particular pollutant transport problems of Tello river and Unhas lake in Makassar Indonesia. For the two particular problems a variety of the coefficients of diffusion and the velocity components are taken. The results show that the solutions vary as the parameters change. And this suggests that one has to be careful in measuring or determining the values of the parameters.
Transonic shock wave. Boundary layer interaction at a convex wall
Koren, B.; Bannink, W.J.
1984-01-01
A standard finite element procedure has been applied to the problem of transonic shock wave – boundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure
Seismic response of three-dimensional rockfill dams using the Indirect Boundary Element Method
International Nuclear Information System (INIS)
Sanchez-Sesma, Francisco J; Arellano-Guzman, Mauricio; Perez-Gavilan, Juan J; Suarez, Martha; Marengo-Mogollon, Humberto; Chaillat, Stephanie; Jaramillo, Juan Diego; Gomez, Juan; Iturraran-Viveros, Ursula; Rodriguez-Castellanos, Alejandro
2010-01-01
The Indirect Boundary Element Method (IBEM) is used to compute the seismic response of a three-dimensional rockfill dam model. The IBEM is based on a single layer integral representation of elastic fields in terms of the full-space Green function, or fundamental solution of the equations of dynamic elasticity, and the associated force densities along the boundaries. The method has been applied to simulate the ground motion in several configurations of surface geology. Moreover, the IBEM has been used as benchmark to test other procedures. We compute the seismic response of a three-dimensional rockfill dam model placed within a canyon that constitutes an irregularity on the surface of an elastic half-space. The rockfill is also assumed elastic with hysteretic damping to account for energy dissipation. Various types of incident waves are considered to analyze the physical characteristics of the response: symmetries, amplifications, impulse response and the like. Computations are performed in the frequency domain and lead to time response using Fourier analysis. In the present implementation a symmetrical model is used to test symmetries. The boundaries of each region are discretized into boundary elements whose size depends on the shortest wavelength, typically, six boundary segments per wavelength. Usually, the seismic response of rockfill dams is simulated using either finite elements (FEM) or finite differences (FDM). In most applications, commercial tools that combine features of these methods are used to assess the seismic response of the system for a given motion at the base of model. However, in order to consider realistic excitation of seismic waves with different incidence angles and azimuth we explore the IBEM.
Institute of Scientific and Technical Information of China (English)
LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun
2009-01-01
According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.
DEFF Research Database (Denmark)
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin
2017-01-01
method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....
International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics
Tseng, Kadin
1990-01-01
The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas sive parallelism. This Symposium was sponsored by United ...
Directory of Open Access Journals (Sweden)
Samira Hosseini
Full Text Available Abstract One of the main drawbacks of Element Free Galerkin (EFG method is its dependence on moving least square shape functions which don’t satisfy the Kronecker Delta property, so in this method it’s not possible to apply Dirichlet boundary conditions directly. The aim of the present paper is to discuss different aspects of three widely used methods of applying Dirichlet boundary conditions in EFG method, called Lagrange multipliers, penalty method, and coupling with finite element method. Numerical simulations are presented to compare the results of these methods form the perspective of accuracy, convergence and computational expense. These methods have been implemented in an object oriented programing environment, called INSANE, and the results are presented and compared with the analytical solutions.
Boundary element methods applied to two-dimensional neutron diffusion problems
International Nuclear Information System (INIS)
Itagaki, Masafumi
1985-01-01
The Boundary element method (BEM) has been applied to two-dimensional neutron diffusion problems. The boundary integral equation and its discretized form have been derived. Some numerical techniques have been developed, which can be applied to critical and fixed-source problems including multi-region ones. Two types of test programs have been developed according to whether the 'zero-determinant search' or the 'source iteration' technique is adopted for criticality search. Both programs require only the fluxes and currents on boundaries as the unknown variables. The former allows a reduction in computing time and memory in comparison with the finite element method (FEM). The latter is not always efficient in terms of computing time due to the domain integral related to the inhomogeneous source term; however, this domain integral can be replaced by the equivalent boundary integral for a region with a non-multiplying medium or with a uniform source, resulting in a significant reduction in computing time. The BEM, as well as the FEM, is well suited for solving irregular geometrical problems for which the finite difference method (FDM) is unsuited. The BEM also solves problems with infinite domains, which cannot be solved by the ordinary FEM and FDM. Some simple test calculations are made to compare the BEM with the FEM and FDM, and discussions are made concerning the relative merits of the BEM and problems requiring future solution. (author)
Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels
DEFF Research Database (Denmark)
Andersen, Lars; Jones, C.J.C.
2006-01-01
The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore comput...... body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM)....
International Nuclear Information System (INIS)
Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.
1985-01-01
In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)
OpenBEM - An open source Boundary Element Method software in Acoustics
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2010-01-01
OpenBEM is a collection of open source programs for solving the Helmholtz Equation using the Boundary Element Method. The collection is written in Matlab by the authors and contains codes for dealing with exterior and interior problems in two or three dimensions as well as implementation of axi...... with examples of its use. Previous research results where OpenBEM was employed will be mentioned....
Brebbia, C. A.; Futagami, T.; Tanaka, M.
The boundary-element method (BEM) in computational fluid and solid mechanics is examined in reviews and reports of theoretical studies and practical applications. Topics presented include the fundamental mathematical principles of BEMs, potential problems, EM-field problems, heat transfer, potential-wave problems, fluid flow, elasticity problems, fracture mechanics, plates and shells, inelastic problems, geomechanics, dynamics, industrial applications of BEMs, optimization methods based on the BEM, numerical techniques, and coupling.
Energy Technology Data Exchange (ETDEWEB)
Bizjak, D; Alujevic, A [Institut ' Jozef Stefan' , Ljubljana (Yugoslavia)
1988-07-01
The Complex Variable Boundary Element Method is a numerical method for solving two-dimensional problems of Laplace or Poisson type. It is based on the theory of analytic functions. This paper resumes the basic facts about the method. Application of the method to the stationary incompressible irrotational flow is carried out after that. At the end, a sample problem of flow through an abrupt area change channel is shown. (author)
An enriched finite element model with q-refinement for radiative boundary layers in glass cooling
Energy Technology Data Exchange (ETDEWEB)
Mohamed, M. Shadi [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2014-02-01
Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P{sub 1} approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analysed for glass annealing in two enclosures where the simplified P{sub 1} approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.
Bakker, Mark
2010-08-01
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1997-12-31
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)
International Nuclear Information System (INIS)
Jo, Jong Chull; Shin, Won Ky
1997-01-01
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1998-12-31
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)
Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method
International Nuclear Information System (INIS)
Wolf, J.P.; Darbre, G.R.
1984-01-01
The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction. (orig.)
Directory of Open Access Journals (Sweden)
Yichao Gao
2011-01-01
Full Text Available The dam-reservoir system is divided into the near field modeled by the finite element method, and the far field modeled by the excellent high-order doubly asymptotic open boundary (DAOB. Direct and partitioned coupled methods are developed for the analysis of dam-reservoir system. In the direct coupled method, a symmetric monolithic governing equation is formulated by incorporating the DAOB with the finite element equation and solved using the standard time-integration methods. In contrast, the near-field finite element equation and the far-field DAOB condition are separately solved in the partitioned coupled methodm, and coupling is achieved by applying the interaction force on the truncated boundary. To improve its numerical stability and accuracy, an iteration strategy is employed to obtain the solution of each step. Both coupled methods are implemented on the open-source finite element code OpenSees. Numerical examples are employed to demonstrate the performance of these two proposed methods.
International Nuclear Information System (INIS)
Young, G.A. Jr.; Najafabadi, R.; Strohmayer, W.; Baldrey, D.G.; Hamm, B.; Harris, J.; Sticht, J.; Wimmer, E.
2003-01-01
Atomistic modeling methods were employed to investigate the effects of impurity elements on the metallurgy, irradiation embrittlement, and environmentally assisted cracking of nickel-base alloys exposed to nuclear environments. Calculations were performed via ab initio atomistic modeling methods to ensure the accuracy and reliability of the results. A Griffith-type fracture criterion was used to quantitatively assess the effect of elements or element pairs on the grain boundary cohesive strength. In order of most embrittling to most strengthening, the elements are ranked as: He, Li, S, H, C, Zr, P, Fe, Mn, Nb, Cr, and B. Helium is strongly embrittling (-2.04 eV/atom lowering of the Griffith energy), phosphorus has little effect on the grain boundary (0.1 eV/atom), and boron offers appreciable strengthening (1.03 eV/atom increase in the Griffith energy). Calculations for pairs of elements (H-Li, H-B, H-C, H-P, and H-S) show little interaction on the grain boundary cohesive energy, so that for the conditions studied, linear superposition of elemental effects is a good approximation. These calculations help explain metallurgical effects (e.g. why boron can strengthen grain boundaries), irradiation embrittlement (e.g. how boron transmutation results in grain boundary embrittlement), as well as how grain boundary impurity elements can affect environmentally assisted cracking (i.e. low temperature crack propagation and stress corrosion cracking) of nickel-base alloys
Seismic response of three-dimensional topographies using a time-domain boundary element method
Janod, François; Coutant, Olivier
2000-08-01
We present a time-domain implementation for a boundary element method (BEM) to compute the diffraction of seismic waves by 3-D topographies overlying a homogeneous half-space. This implementation is chosen to overcome the memory limitations arising when solving the boundary conditions with a frequency-domain approach. This formulation is flexible because it allows one to make an adaptive use of the Green's function time translation properties: the boundary conditions solving scheme can be chosen as a trade-off between memory and cpu requirements. We explore here an explicit method of solution that requires little memory but a high cpu cost in order to run on a workstation computer. We obtain good results with four points per minimum wavelength discretization for various topographies and plane wave excitations. This implementation can be used for two different aims: the time-domain approach allows an easier implementation of the BEM in hybrid methods (e.g. coupling with finite differences), and it also allows one to run simple BEM models with reasonable computer requirements. In order to keep reasonable computation times, we do not introduce any interface and we only consider homogeneous models. Results are shown for different configurations: an explosion near a flat free surface, a plane wave vertically incident on a Gaussian hill and on a hemispherical cavity, and an explosion point below the surface of a Gaussian hill. Comparison is made with other numerical methods, such as finite difference methods (FDMs) and spectral elements.
Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V
2006-01-01
Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.
Thompson, T. B.; Meade, B. J.
2015-12-01
The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.
Interpretation of horizontal well performance in complicated systems by the boundary element method
Energy Technology Data Exchange (ETDEWEB)
Jongkittinarukorn, K.; Tiab, D. [Oklahoma Univ., School of Petroleum and Geological Engineering (United States); Escobar, F. H. [Surcolombiana Univ., Dept. of Petroleum Engineering (Colombia)
1998-12-31
A solution obtained by using the boundary element method to simulate pressure behaviour of horizontal wells in complicated reservoir-wellbore configurations is presented. Three different types of well bore and reservoir models were studied, i.e. a snake-shaped horizontal wellbore intersecting a two-layer reservoir with cross flow, a horizontal well in a three-layer reservoir with cross flow, and a vertical well intersecting a two-layer reservoir without cross flow. In each case, special attention was paid to the influence of wellbore inclination angle, the distance from the wellbore to the different boundaries and the permeability ratio. Performance of each of these types of wells are discussed. 9 refs., 18 figs.
Seismic wave propagation in non-homogeneous elastic media by boundary elements
Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank
2017-01-01
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...
A multi-region boundary element method for multigroup neutron diffusion calculations
International Nuclear Information System (INIS)
Ozgener, H.A.; Ozgener, B.
2001-01-01
For the analysis of a two-dimensional nuclear system consisting of a number of homogeneous regions (termed cells), first the cell matrices which depend solely on the material composition and geometrical dimension of the cell (hence on the cell type) are constructed using a boundary element formulation based on the multigroup boundary integral equation. For a particular nuclear system, the cell matrices are utilized in the assembly of the global system matrix in block-banded form using the newly introduced concept of virtual side. For criticality calculations, the classical fission source iteration is employed and linear system solutions are by the block Gaussian-elimination algorithm. The numerical applications show the validity of the proposed formulation both through comparison with analytical solutions and assessment of benchmark problem results against alternative methods
A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics
Brovont, Aaron D.
The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.
KIN SP: A boundary element method based code for single pile kinematic bending in layered soil
Directory of Open Access Journals (Sweden)
Stefano Stacul
2018-02-01
Full Text Available In high seismicity areas, it is important to consider kinematic effects to properly design pile foundations. Kinematic effects are due to the interaction between pile and soil deformations induced by seismic waves. One of the effect is the arise of significant strains in weak soils that induce bending moments on piles. These moments can be significant in presence of a high stiffness contrast in a soil deposit. The single pile kinematic interaction problem is generally solved with beam on dynamic Winkler foundation approaches (BDWF or using continuous models. In this work, a new boundary element method (BEM based computer code (KIN SP is presented where the kinematic analysis is preceded by a free-field response analysis. The analysis results of this method, in terms of bending moments at the pile-head and at the interface of a two-layered soil, are influenced by many factors including the soil–pile interface discretization. A parametric study is presented with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a BEM solution, for typical pile–soil relative stiffness values as a function of the pile diameter, the location of the interface of a two-layered soil and of the stiffness contrast. KIN SP results have been compared with simplified solutions in literature and with those obtained using a quasi-three-dimensional (3D finite element code.
Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report
Ahmad, Shahid
1991-01-01
An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons
On the singularities of solutions to singular perturbation problems
International Nuclear Information System (INIS)
Fruchard, A; Schaefke, R
2005-01-01
We consider a singularly perturbed complex first order ODE εu ' Φ(x, u, a, ε), x, u element of C, ε > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot
On the singularities of solutions to singular perturbation problems
Energy Technology Data Exchange (ETDEWEB)
Fruchard, A [Laboratoire de Mathematiques, Informatique et Applications, Faculte des Sciences et Techniques, Universite de Haute Alsace, 4 rue des Freres Lumiere, 68093 Mulhouse cedex (France); Schaefke, R [Departement de Mathematiques, Universite Louis Pasteur, 7 rue Rene-Descartes, 67084 Strasbourg cedex (France)
2005-01-01
We consider a singularly perturbed complex first order ODE {epsilon}u ' {phi}(x, u, a, {epsilon}), x, u element of C, {epsilon} > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot.
Boundary element and speckle photography method for solving elasto-plastic problems
International Nuclear Information System (INIS)
Hadjikov, L.; Kavardjikov, V.; Valeva, V.
1985-01-01
The stress-strain state of metal specimens in the vicinity of a stress concentrator (circular hole) is investigated in case of a quasistatic loading. The displacements are evaluated numerically by the Boundary Element Method (BEM) and they are estimated experimentally by speckle photography. The experimentally and theoretically obtained results are compared and considered. A unified method for a simultaneous employment of both techniques is suggested. The experimental and theoretical techniques complement each other which results in an enhanced capability of the method proposed. (orig.)
Resistive wall impedance of the LHC beam screen without slots calculated by boundary element method
Tsutsui, H
2002-01-01
In order to calculate the resistive wall impedance of the LHC beam screen without slots, the Boundary Element Method (BEM) is used. The result at 1 GHz is Re(ZL/L) = 6.689×10−3 Ω/m, Re(Zx/L) = 1.251 Ω/m2, Re(Zy/L) = 1.776 Ω/m2, andRe(2Z0,2 cos/kL) = −0.525 Ω/m2, assuming σ = 5.8 × 109 /Ωm.
A comparison of inverse boundary element method and near-field acoustical holography
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.
1999-01-01
An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface........ In order to verify the reconstruction process, part of the measurement data is used together with Near-Field Acoustical Holography (NAH). Estimated distributions of sound pressure and particle velocity over a plane surface obtained from the two methods are compared....
Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods
Marburg, Steffen
2008-01-01
Among numerical methods applied in acoustics, the Finite Element Method (FEM) is normally favored for interior problems whereas the Boundary Element Method (BEM) is quite popular for exterior ones. That is why this valuable reference provides a complete survey of methods for computational acoustics, namely FEM and BEM. It demonstrates that both methods can be effectively used in the complementary cases. The chapters by well-known authors are evenly balanced: 10 chapters on FEM and 10 on BEM. An initial conceptual chapter describes the derivation of the wave equation and supplies a unified approach to FEM and BEM for the harmonic case. A categorization of the remaining chapters and a personal outlook complete this introduction. In what follows, both FEM and BEM are discussed in the context of very different problems. Firstly, this comprises numerical issues, e.g. convergence, multi-frequency solutions and highly efficient methods; and secondly, solutions techniques for the particular difficulties that arise wi...
Singular perturbation of simple eigenvalues
International Nuclear Information System (INIS)
Greenlee, W.M.
1976-01-01
Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem
Ambient cosmology and spacetime singularities
International Nuclear Information System (INIS)
Antoniadis, Ignatios; Cotsakis, Spiros
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)
Ambient cosmology and spacetime singularities
Antoniadis, Ignatios
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.
Directory of Open Access Journals (Sweden)
S. Fonna
2018-06-01
Full Text Available Evaluation of rebar/reinforcing-steel corrosion for the 2004 tsunami-affected reinforced concrete (RC buildings in Aceh was conducted using half-cell potential mapping technique. However, the results only show qualitative meaning as corrosion risk rather than the corrosion itself, such as the size and location of corrosion. In this study, boundary element inverse analysis was proposed to be performed to detect rebar corrosion of the 2004 tsunami-affected structure in Aceh, using several electrical potential measurement data on the concrete surface. One RC structure in Peukan Bada, an area heavily damaged by the tsunami, was selected for the study. In 2004 the structure was submerged more than 5 m by the tsunami. Boundary element inverse analysis was developed by combining the boundary element method (BEM and particle swarm optimization (PSO. The corrosion was detected by evaluating measured and calculated electrical potential data. The measured and calculated electrical potential on the concrete surface was obtained by using a half-cell potential meter and by performing BEM, respectively. The solution candidates were evaluated by employing PSO. Simulation results show that boundary element inverse analysis successfully detected the size and location of corrosion for the case study. Compared with the actual corrosion, the error of simulation result was less than 5%. Hence, it shows that boundary element inverse analysis is very promising for further development to detect rebar corrosion. Keywords: Inverse analysis, Boundary element method, PSO, Corrosion, Reinforced concrete
Natural convection in a composite fluid-porous cavity by the boundary element method
International Nuclear Information System (INIS)
Jecl, R.; Skerget, L.
2005-01-01
The main purpose of this work is to present the use of the boundary element method (BEM) for analyzing the convective fluid flow and heat transfer in composite fluid-porous media domain when the fluid is compressible. In our case the flow is modeled by utilizing the Brinkman extended Darcy momentum equation (Brinkman model) which is commonly used when it is important to satisfy the no-slip boundary condition and when one wishes to compare flows in porous medium with those in pure fluids. The Brinkman equation reduce to the classical Navier Stokes equation for clear fluid when the permeability tends to infinity (porosity is equal to unity), i.e. when the solid matrix in the porous medium disappears and, when the permeability is finite the equation is valid for porous medium. Therefore it is possible to handle porous medium free fluid interface problems by changing the properties of the medium in the computational domain appropriately. Our goal is to widen the applicability of the computational model based on the boundary domain integral method (BDIM) which is an extension of the classical BEM. The governing equations are transformed by using the velocity-vorticity variables formulation and therefore the computation scheme is partitioned into kinematic and kinetic part. (authors)
International Nuclear Information System (INIS)
Ji, X.; Chen, Y.M.
1989-01-01
The boundary element method (BEM) is developed from the boundary integral equation method and the discretization techniques. Compared with other numerical method, BEM has been shown to be a versatile and efficient method for a wide variety of engineering problems, including the wave propagation in elastic media. The first formulation and solution of the transient elastodynamic problem by combining BEM and Laplace transform is due to Cruse. Further improvement was achieved by introducing Durbin's method instead of Papoulis method of numerical Laplace inverse transform. However, a great deal of computer time is still needed for the inverse transformation. The alternative integral transform approach is BEM combining with Fourier transform. The numerical Fourier inverse transformation is also computer time consuming, even if the fast Fourier transform is used. In the present paper, the authors use BEM combining with Fourier transform and Fourier eigen transform (FET). The new approach is very attractive in saving on computer time. This paper illustrates the application of FET to BEM of 2-dimensional transient elastodynamic problem. The example of a half plane subjected to a discontinuous boundary load is solved on ELXSI 6400 computer. The CPU time is less than one minute. If Laplace or Fourier transform is adopted, the CPU time will be more than 10 minutes
Energy Technology Data Exchange (ETDEWEB)
Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.
Direct displacement-based design of special composite RC shear walls with steel boundary elements
Directory of Open Access Journals (Sweden)
H. Kazemi
2016-06-01
Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.
Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth
2016-11-01
Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.
Directory of Open Access Journals (Sweden)
Igumnov Leonid
2015-01-01
Full Text Available The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
Directory of Open Access Journals (Sweden)
Fuyi Xu
2010-04-01
\\end{array}\\right.$$ where $1\\leq k\\leq s\\leq m-2, a_i, b_i\\in(0,+\\infty$ with $0<\\sum_{i=1}^{k}b_{i}-\\sum_{i=k+1}^{s}b_{i}<1, 0<\\sum_{i=1}^{m-2}a_{i}<1, 0<\\xi_1<\\xi_2<\\cdots<\\xi_{m-2}<\\rho(T$, $f\\in C( [0,+\\infty,[0,+\\infty$, $a(t$ may be singular at $t=0$. We show that there exist two positive solutions by using two different fixed point theorems respectively. As an application, some examples are included to illustrate the main results. In particular, our criteria extend and improve some known results.
International Nuclear Information System (INIS)
Akalin-Acar, Zeynep; Gencer, Nevzat G
2004-01-01
The forward problem of electromagnetic source imaging has two components: a numerical model to solve the related integral equations and a model of the head geometry. This study is on the boundary element method (BEM) implementation for numerical solutions and realistic head modelling. The use of second-order (quadratic) isoparametric elements and the recursive integration technique increase the accuracy in the solutions. Two new formulations are developed for the calculation of the transfer matrices to obtain the potential and magnetic field patterns using realistic head models. The formulations incorporate the use of the isolated problem approach for increased accuracy in solutions. If a personal computer is used for computations, each transfer matrix is calculated in 2.2 h. After this pre-computation period, solutions for arbitrary source configurations can be obtained in milliseconds for a realistic head model. A hybrid algorithm that uses snakes, morphological operations, region growing and thresholding is used for segmentation. The scalp, skull, grey matter, white matter and eyes are segmented from the multimodal magnetic resonance images and meshes for the corresponding surfaces are created. A mesh generation algorithm is developed for modelling the intersecting tissue compartments, such as eyes. To obtain more accurate results quadratic elements are used in the realistic meshes. The resultant BEM implementation provides more accurate forward problem solutions and more efficient calculations. Thus it can be the firm basis of the future inverse problem solutions
Singular problems in shell theory. Computing and asymptotics
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, Evariste [Institut Jean Le Rond d' Alembert, Paris (France); Millet, Olivier [La Rochelle Univ. (France). LEPTIAB; Bechet, Fabien [Metz Univ. (France). LPMM
2010-07-01
It is known that deformations of thin shells exhibit peculiarities such as propagation of singularities, edge and internal layers, piecewise quasi inextensional deformations, sensitive problems and others, leading in most cases to numerical locking phenomena under several forms, and very poor quality of computations for small relative thickness. Most of these phenomena have a local and often anisotropic character (elongated in some directions), so that efficient numerical schemes should take them in consideration. This book deals with various topics in this context: general geometric formalism, analysis of singularities, numerical computing of thin shell problems, estimates for finite element approximation (including non-uniform and anisotropic meshes), mathematical considerations on boundary value problems in connection with sensitive problems encountered for very thin shells; and others. Most of numerical computations presented here use an adaptive anisotropic mesh procedure which allows a good computation of the physical peculiarities on one hand, and the possibility to perform automatic computations (without a previous mathematical description of the singularities) on the other. The book is recommended for PhD students, postgraduates and researchers who want to improve their knowledge in shell theory and in particular in the areas addressed (analysis of singularities, numerical computing of thin and very thin shell problems, sensitive problems). The lecture of the book may not be continuous and the reader may refer directly to the chapters concerned. (orig.)
Sound Radiation from a Loudspeaker Cabinet using the Boundary Element Method
DEFF Research Database (Denmark)
Fernandez Grande, Efren
had been reported, based on subjective testing. This study aims to detect the reported problem. The radiation from the cabinet is calculated using the Boundary Element Method. The analysis examines both the frequency domain and the time domain characteristics (in other words, the steady state response......, in some cases becoming clearly audible. The aim of this study is to provide a tool that can evaluate the contribution from the cabinet to the overall sound radiated by a loudspeaker. The specific case of a B&O Beolab 9 early prototype has been investigated. An influence by the cabinet of this prototype...... and the impulse response) of the loudspeaker and the cabinet. A significant influence of the cabinet has been detected, which becomes especially apparent in the time domain, during the sound decay process....
Formulation of natural convection around repository for dual reciprocity boundary element solution
International Nuclear Information System (INIS)
Vrankar, L.; Sarler, B.
1998-01-01
The disposal of high-level radioactive wastes in deep geological formations is of pronounced technological importance for nuclear safety. The understanding of related fluid flow, heat and mass transport in geological systems is of great interest. This article prepares necessary physical, mathematical and numerical fundamentals for computational modeling of related phenomena. The porous media is described by the simple Darcy law and momentum-energy coupling is due to Boussinesq approximation. The Dual Reciprocity of Boundary Element Method (DRBEM) is used for solving coupled mass, momentum and energy equations in two-dimensions for the steady buoyancy induced convection problem in an semi-infinite porous media. It is structured by weighting with the fundamental solution of the Laplace equation. The inverse multi quadrics are used in the DRBEM transformation. The solution is obtained in an iterative way.(author)
Noise source localization on tyres using an inverse boundary element method
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Saemann, E-U; Hald, J
1998-01-01
A dominating part of tyre noise is radiated from a region close to the tyre/road contact patch, where it is very difficult to measure both the tyre vibration and the acoustic near field. The approach taken in the present paper is to model the tyre and road surfaces with a Boundary Element Model...... (BEM), with unknown node vibration data on the tyre surface. The BEM model is used to calculate a set of transfer functions from the node vibrations to the sound pressure at a set of microphone positions around the tyre. By approximate inversion of the matrix of transfer functions, the surface...... from tyre noise measurements will be presented at the conference....
PARALLEL ALGORITHM FOR THREE-DIMENSIONAL STOKES FLOW SIMULATION USING BOUNDARY ELEMENT METHOD
Directory of Open Access Journals (Sweden)
D. G. Pribytok
2016-01-01
Full Text Available Parallel computing technique for modeling three-dimensional viscous flow (Stokes flow using direct boundary element method is presented. The problem is solved in three phases: sampling and construction of system of linear algebraic equations (SLAE, its decision and finding the velocity of liquid at predetermined points. For construction of the system and finding the velocity, the parallel algorithms using graphics CUDA cards programming technology have been developed and implemented. To solve the system of linear algebraic equations the implemented software libraries are used. A comparison of time consumption for three main algorithms on the example of calculation of viscous fluid motion in three-dimensional cavity is performed.
DEFF Research Database (Denmark)
Henriquez, Vicente Cutanda; Barrera Figueroa, Salvador; Juhl, Peter Møller
2008-01-01
is of particular importance to achieve a sound field that reaches both microphones with the same level and that is sufficiently uniform at the microphone positions, in order to reduce the effect of misalignment. An existing sound source has been modeled using the Boundary Element Method, and the simulations have......The project Euromet-792 aims to investigate and improve methods for secondary free-field calibration of microphones. In this framework, the comparison method is being studied at DFM in relation to the more usual substitution method of microphone calibration. The design of the sound source...... been used to modify the source and make it suitable for this kind of calibration. It has been found that a central plug, already present in the device, can be re-shaped in such a way that makes the sound field on the microphone positions more uniform, even at rather high frequencies. Measurements have...
Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method
Directory of Open Access Journals (Sweden)
Mehdi Panji
2016-08-01
Full Text Available In this paper, stress behavior of shallow tunnels under simultaneous non-uniform surface traction and symmetric gravity loading was studied using a direct boundary element method (BEM. The existing full-plane elastostatic fundamental solutions to displacement and stress fields were used and implemented in a developed algorithm. The cross-section of the tunnel was considered in circular, square, and horseshoe shapes and the lateral coefficient of the domain was assumed as unit quantity. Double-node procedure of the BEM was applied at the corners to improve the model including sudden traction changes. The results showed that the method used was a powerful tool for modeling underground openings under various external as well as internal loads. Eccentric loads significantly influenced the stress pattern of the surrounding tunnel. The achievements can be practically used in completing and modifying regulations for stability investigation of shallow tunnels.
Energy Technology Data Exchange (ETDEWEB)
Yokoi, T [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria
1997-05-27
Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.
Directory of Open Access Journals (Sweden)
Esteban Flores-Mendez
2012-01-01
Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.
Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.
2018-06-01
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.
A simple boundary element formulation for shape optimization of 2D continuous structures
International Nuclear Information System (INIS)
Luciano Mendes Bezerra; Jarbas de Carvalho Santos Junior; Arlindo Pires Lopes; Andre Luiz; Souza, A.C.
2005-01-01
For the design of nuclear equipment like pressure vessels, steam generators, and pipelines, among others, it is very important to optimize the shape of the structural systems to withstand prescribed loads such as internal pressures and prescribed or limiting referential values such as stress or strain. In the literature, shape optimization of frame structural systems is commonly found but the same is not true for continuous structural systems. In this work, the Boundary Element Method (BEM) is applied to simple problems of shape optimization of 2D continuous structural systems. The proposed formulation is based on the BEM and on deterministic optimization methods of zero and first order such as Powell's, Conjugate Gradient, and BFGS methods. Optimal characterization for the geometric configuration of 2D structure is obtained with the minimization of an objective function. Such function is written in terms of referential values (such as loads, stresses, strains or deformations) prescribed at few points inside or at the boundary of the structure. The use of the BEM for shape optimization of continuous structures is attractive compared to other methods that discretized the whole continuous. Several numerical examples of the application of the proposed formulation to simple engineering problems are presented. (authors)
A time-domain finite element boundary integral approach for elastic wave scattering
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
International Nuclear Information System (INIS)
Koteras, J.R.
1996-01-01
The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region
International Nuclear Information System (INIS)
Karlsson, L.; Norden, H.
1988-01-01
The distribution of elements and the precipitation behaviour at grain boundaries have been studied in boron containing AISI 316L and ''Mo-free AISI 316L'' type austenitic stainless steels. A combination of microanalytical techniques was used to study the boundary regions after cooling at 0.29-530 0 C/s from 800, 1075 or 1250 0 C. Tetragonal M/sub 2/B, M/sub 5/B/sub 3/ and M/sub 3/B/sub 2/, all rich in Fe, Cr and Mo, precipitated in the ''high B'' (40 ppm) AISI 316L steel whereas orthorhombic M/sub 2/B, rich in Cr and Fe was found in the ''Mo-free steel'' with 23 ppm B. In the ''high B steel'' a thin (<2nm), continuous layer, containing B, Cr, Mo and Fe and having a stoichiometry of typically M/sub 9/B, formed at boundaries after cooling at intermediate cooling rates. For both types of steels a boundary zone was found, after all heat treatments, with a composition differing significantly from the bulk composition. The differences were most marked after cooling at intermediate cooling rates. In both types of steel boundary depletion of Cr and enrichment of B and C occurred. It was found that non-equilibrium grain boundary segregation of boron can affect the precipitation behaviour by making the boundary composition enter a new phase field ''Non-equilibrium phases'' might also form. The synergistic effect of B and Mo on the boundary composition and precipitation behaviour, and the observed indications of C non-equilibrium segregation are discussed
Rayleigh-wave scattering by shallow cracks using the indirect boundary element method
International Nuclear Information System (INIS)
Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J
2009-01-01
The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks
Energy Technology Data Exchange (ETDEWEB)
De Corato, M., E-mail: marco.decorato@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Slot, J.J.M., E-mail: j.j.m.slot@tue.nl [Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Hütter, M., E-mail: m.huetter@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); D' Avino, G., E-mail: gadavino@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Maffettone, P.L., E-mail: pierluca.maffettone@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Hulsen, M.A., E-mail: m.a.hulsen@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2016-07-01
In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.
International Nuclear Information System (INIS)
Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamarudin
2011-01-01
Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. This paper presents the application of boundary element method for galvanic corrosion analysis between two different metallic materials. Aluminium (Al), and zinc (Zn) alloys were used separately coupled with the Carbon Steel (CS) in natural seawater. The measured conductivity of sea water is 30,800 μS/ cm at ambient temperature. Computer software system based on boundary element likes BEASY and ABAQUS can be used to accurately model and simulate the galvanic corrosion. However, the BEM based BEASY program will be used reasonably for predicting the galvanic current density distribution of coupled Al-CS and Zn-CS in this study. (author)
Singular dimensions of the N=2 superconformal algebras II: The twisted N=2 algebra
International Nuclear Information System (INIS)
Doerrzapf, M.; Gato-Rivera, B.
2001-01-01
We introduce a suitable adapted ordering for the twisted N=2 superconformal algebra (i.e. with mixed boundary conditions for the fermionic fields). We show that the ordering kernels for complete Verma modules have two elements and the ordering kernels for G-closed Verma modules just one. Therefore, spaces of singular vectors may be two-dimensional for complete Verma modules whilst for G-closed Verma modules they can only be one-dimensional. We give all singular vectors for the levels (1)/(2), 1, and (3)/(2) for both complete Verma modules and G-closed Verma modules. We also give explicite examples of degenerate cases with two-dimensional singular vector spaces in complete Verma modules. General expressions are conjectured for the relevant terms of all (primitive) singular vectors, i.e. for the coefficients with respect to the ordering kernel. These expressions allow to identify all degenerate cases as well as all G-closed singular vectors. They also lead to the discovery of subsingular vectors for the twisted N=2 superconformal algebra. Explicit examples of these subsingular vectors are given for the levels (1)/(2), 1, and (3)/(2). Finally, the multiplication rules for singular vector operators are derived using the ordering kernel coefficients. This sets the basis for the analysis of the twisted N=2 embedding diagrams. (orig.)
Influence of precipitating light elements on stable stratification below the core/mantle boundary
O'Rourke, J. G.; Stevenson, D. J.
2017-12-01
Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically
Computation at a coordinate singularity
Prusa, Joseph M.
2018-05-01
Coordinate singularities are sometimes encountered in computational problems. An important example involves global atmospheric models used for climate and weather prediction. Classical spherical coordinates can be used to parameterize the manifold - that is, generate a grid for the computational spherical shell domain. This particular parameterization offers significant benefits such as orthogonality and exact representation of curvature and connection (Christoffel) coefficients. But it also exhibits two polar singularities and at or near these points typical continuity/integral constraints on dependent fields and their derivatives are generally inadequate and lead to poor model performance and erroneous results. Other parameterizations have been developed that eliminate polar singularities, but problems of weaker singularities and enhanced grid noise compared to spherical coordinates (away from the poles) persist. In this study reparameterization invariance of geometric objects (scalars, vectors and the forms generated by their covariant derivatives) is utilized to generate asymptotic forms for dependent fields of interest valid in the neighborhood of a pole. The central concept is that such objects cannot be altered by the metric structure of a parameterization. The new boundary conditions enforce symmetries that are required for transformations of geometric objects. They are implemented in an implicit polar filter of a structured grid, nonhydrostatic global atmospheric model that is simulating idealized Held-Suarez flows. A series of test simulations using different configurations of the asymptotic boundary conditions are made, along with control simulations that use the default model numerics with no absorber, at three different grid sizes. Typically the test simulations are ∼ 20% faster in wall clock time than the control-resulting from a decrease in noise at the poles in all cases. In the control simulations adverse numerical effects from the polar
Over, D J; Conaway, C A; Katz, D J; Goodfellow, W D; Gregoire, D C
1997-08-01
The Frasnian-Famennian boundary is recognized as the culmination of a global mass extinction in the Late Devonian. In western New York State the boundary is a distinct horizon within a pyritic black shale bed of the upper Hanover Shale defined by the first occurrence of Palmatolepis triangularis in the absence of Frasnian conodonts. The boundary is characterized by a minor disconformity marked by a lag concentration of conodonts. Iridium at the boundary is 0.11-0.24 ng/g, two to five times background levels of <0.05 ng/g; other Ir enrichments of 0.38 ng/g and 0.49 ng/g occur within 50 cm of the conodont-constrained boundary. Numerous Ir enrichments in the boundary interval suggest extraterrestrial accretion and platinum group element (PGE) concentration at disconformities, or mobilization and concentration in organic-rich/pyritic-rich laminations from cosmic or terrestrial sources. PGE ratios of Pt/Pd and Ku/Ir at the boundary horizon approximate chondritic ratios and are suggestive of an unaltered extraterrestrial source. These values do not conclusively establish a single extraterrestrial impact as the ultimate cause of the Frasnian-Famennian mass extinction, especially given the presence of similar Ir enrichments elsewhere in the section and the absence at the boundary of microtektites and shocked mineral grains.
Rahmouni, Lyes; Adrian, Simon B.; Cools, Kristof; Andriulli, Francesco P.
2018-01-01
In this paper, we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages, in several real case scenarios, in terms of numerical stability and effectiveness when compared with other differential equation based techniques. Unfortunately, however, it is widely reported in literature that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required, for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly and classically discretized EEG forward problem operators, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several standardly used discretizations of these formulations are consistent only with an L2-framework, requiring the expansion term to be a square integrable function (i.e., in a Petrov-Galerkin scheme with expansion and testing functions). Instead, those techniques are not consistent when a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. Such a mapping allows the expansion function term to be a less regular function, thus sensibly reducing the need for mesh refinements and low-precisions handling strategies that are currently required. These more favorable mappings, however, require a different and conforming discretization, which must be suitably adapted to them. In order to appropriately fulfill this requirement, we adopt a mixed
Contreras Zazueta, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Sánchez-Alvaro, E.
2013-12-01
The seismic hazard assessment of extended developments, such as a dam, a bridge or a pipeline, needs the strong ground motion simulation taking into account the effects of surface geology. In many cases the incoming wave field can be obtained from attenuation relations or simulations for layered media using Discrete Wave Number (DWN). Sometimes there is a need to include in simulations the seismic source as well. A number of methods to solve these problems have been developed. Among them the Finite Element and Finite Difference Methods (FEM and FDM) are generally preferred because of the facility of use. Nevertheless, the analysis of realistic dynamic loading induced by earthquakes requires a thinner mesh of the entire domain to consider high frequencies. Consequently this may imply a high computational cost. The Indirect Boundary Element Method (IBEM) can also be employed. Here it is used to study the response of a site to historical seismic activity. This method is particularly suited to model wave propagation through wide areas as it requires only the meshing of boundaries. Moreover, it is well suited to represent finely the diffraction that can occur on a fault. However, the IBEM has been applied mainly to simple geometrical configurations. In this communication significant refinements of the formulation are presented. Using IBEM we can simulate wave propagation in complex geometrical configurations such as a stratified medium crossed by thin faults or having a complex topography. Two main developments are here described; one integrates the DWN method inside the IBEM in order to represent the Green's functions of stratified media with relatively low computational cost but assuming unbounded parallel flat layers, and the other is the extension of IBEM to deal with multi-regions in contact which allows more versatility with a higher computational cost compared to the first one but still minor to an equivalent FEM formulation. The two approaches are fully
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2013-01-01
are solved using extended boundary conditions that account for: i) negligible temperature fluctuations at the boundary, and ii) normal and tangential matching of the boundary’s particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers...
International Nuclear Information System (INIS)
Chiba, Gou; Tsuji, Masashi; Shimazu, Yoichiro
2001-01-01
A hierarchical domain decomposition boundary element method (HDD-BEM) that was developed to solve a two-dimensional neutron diffusion equation has been modified to deal with three-dimensional problems. In the HDD-BEM, the domain is decomposed into homogeneous regions. The boundary conditions on the common inner boundaries between decomposed regions and the neutron multiplication factor are initially assumed. With these assumptions, the neutron diffusion equations defined in decomposed homogeneous regions can be solved respectively by applying the boundary element method. This part corresponds to the 'lower level' calculations. At the 'higher level' calculations, the assumed values, the inner boundary conditions and the neutron multiplication factor, are modified so as to satisfy the continuity conditions for the neutron flux and the neutron currents on the inner boundaries. These procedures of the lower and higher levels are executed alternately and iteratively until the continuity conditions are satisfied within a convergence tolerance. With the hierarchical domain decomposition, it is possible to deal with problems composing a large number of regions, something that has been difficult with the conventional BEM. In this paper, it is showed that a three-dimensional problem even with 722 regions can be solved with a fine accuracy and an acceptable computation time. (author)
Allison, Stuart A; Xin, Yao
2005-08-15
A boundary element (BE) procedure is developed to numerically calculate the electrophoretic mobility of highly charged, rigid model macroions in the thin double layer regime based on the continuum primitive model. The procedure is based on that of O'Brien (R.W. O'Brien, J. Colloid Interface Sci. 92 (1983) 204). The advantage of the present procedure over existing BE methodologies that are applicable to rigid model macroions in general (S. Allison, Macromolecules 29 (1996) 7391) is that computationally time consuming integrations over a large number of volume elements that surround the model particle are completely avoided. The procedure is tested by comparing the mobilities derived from it with independent theory of the mobility of spheres of radius a in a salt solution with Debye-Huckel screening parameter, kappa. The procedure is shown to yield accurate mobilities provided (kappa)a exceeds approximately 50. The methodology is most relevant to model macroions of mean linear dimension, L, with 1000>(kappa)L>100 and reduced absolute zeta potential (q|zeta|/k(B)T) greater than 1.0. The procedure is then applied to the compact form of high molecular weight, duplex DNA that is formed in the presence of the trivalent counterion, spermidine, under low salt conditions. For T4 DNA (166,000 base pairs), the compact form is modeled as a sphere (diameter=600 nm) and as a toroid (largest linear dimension=600 nm). In order to reconcile experimental and model mobilities, approximately 95% of the DNA phosphates must be neutralized by bound counterions. This interpretation, based on electrokinetics, is consistent with independent studies.
International Nuclear Information System (INIS)
Shen Yongxing; Lee, Minhwan; Lee, Wonyoung; Barnett, David M; Pinsky, Peter M; Prinz, Friedrich B
2008-01-01
Electrostatic force microscopy (EFM) is a special design of non-contact atomic force microscopy used for detecting electrostatic interactions between the probe tip and the sample. Its resolution is limited by the finite probe size and the long-range characteristics of electrostatic forces. Therefore, quantitative analysis is crucial to understanding the relationship between the actual local surface potential distribution and the quantities obtained from EFM measurements. To study EFM measurements on bimetallic samples with surface potential inhomogeneities as a special case, we have simulated such measurements using the boundary element method and calculated the force component and force gradient component that would be measured by amplitude modulation (AM) EFM and frequency modulation (FM) EFM, respectively. Such analyses have been performed for inhomogeneities of various shapes and sizes, for different tip-sample separations and tip geometries, for different applied voltages, and for different media (e.g., vacuum or water) in which the experiment is performed. For a sample with a surface potential discontinuity, the FM-EFM resolution expression agrees with the literature; however, the simulation for AM-EFM suggests the existence of an optimal tip radius of curvature in terms of resolution. On the other hand, for samples with strip- and disk-shaped surface potential inhomogeneities, we have obtained quantitative expressions for the detectability size requirements as a function of experimental conditions for both AM- and FM-EFMs, which suggest that a larger tip radius of curvature is moderately favored for detecting the presence of such inhomogeneities
Directory of Open Access Journals (Sweden)
Marco Gonzalez
Full Text Available Abstract The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs. The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has become very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes.
Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method
Directory of Open Access Journals (Sweden)
Yunpeng Ma
2017-01-01
Full Text Available A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sahashi, Naoki.
1997-01-01
The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)
Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy
International Nuclear Information System (INIS)
Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.
2011-01-01
The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.
International Nuclear Information System (INIS)
Attrep, M. Jr.; Orth, C.J.; Quintana, L.R.
1994-01-01
The discovery of the iridium anomaly at the 65-Ma Cretaceous-Tertiary (K-T) extinction boundary initiated numerous investigations, including the search for the coupling of these extinctions with other astronomical events. One hypothesis is that these periodic extinctions are coupled to terrestrial impacts from cyclic swarms of comets or asteroids. The studies have focused on elucidating the conditions and causes of extinction of life at these geological boundaries using elemental abundance patterns. The authors use instrumental neutron activation methods to determine whole-rock abundances for about 40 trace and common elements in thousands of samples. The platinum group elements (iridium, gold, platinum, and osmium) and nickel are measured by radiochemical activation analysis. The authors can measure iridium at levels down to 1 picogram/gram level
Boundary element analysis of the directional sensitivity of the concentric EMG electrode.
Henneberg, K A; Plonsey, R
1993-07-01
Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick-up range. Potentials from fibers located behind the tip or along the cannula are recorded with reversed polarity compared to those located in front of the tip. Rotation of the electrode about its axis was found to alter the duration, the peak-to-peak amplitude, and the rise time of waveforms recorded from a moving dipole.
Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos
2018-05-01
A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.
International Nuclear Information System (INIS)
Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki
2011-01-01
A new method has been proposed for implementing essential boundary conditions to the Element-Free Galerkin Method (EFGM) without using the Lagrange multiplier. Furthermore, the performance of the proposed method has been investigated for a nonlinear Poisson problem. The results of computations show that, as interpolation functions become closer to delta functions, the accuracy of the solution is improved on the boundary. In addition, the accuracy of the proposed method is higher than that of the conventional EFGM. Therefore, it might be concluded that the proposed method is useful for solving the nonlinear Poisson problem. (author)
Energy Technology Data Exchange (ETDEWEB)
Namestnik, B; Skerget, L; Beadar, D [tehniska fakulteta, Maribor (Yugoslavia)
1989-07-01
The paper presents numerical method for evaluating heat transfer on two-dimensional ribbed surfaces. Governing elliptic partial differential equation is transformed to boundary integral equation, and solved by the boundary element method. Efficiency of fins is calculated from boundary heat flux balance. Several test cases have shown usefulness of the presented method. (author)
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Ooi, E H; Ang, W T; Ng, E Y K
2009-08-01
A three-dimensional boundary element model of the human eye is developed to investigate the thermal effects of eye tumor on the ocular temperature distribution. The human eye is modeled as comprising several regions which have different thermal properties. The tumor is one of these regions. The thermal effects of the tumor are simulated by taking it to have a very high metabolic heat generation and blood perfusion rate. Inside the tumor, the steady state temperature is governed by the Pennes bioheat equation. Elsewhere, in normal tissues of the eye, the temperature satisfies the Laplace's equation. To compute the temperature on the corneal surface, the surface boundary of each region is divided into triangular elements.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Miyoshi, Yoshinori; Hirose, Hideyuki
1993-01-01
A procedure is presented for the determination of geometric buckling for regular polygons. A new computation technique, the multiple reciprocity boundary element method (MRBEM), has been applied to solve the one-group neutron diffusion equation. The main difficulty in applying the ordinary boundary element method (BEM) to neutron diffusion problems has been the need to compute a domain integral, resulting from the fission source. The MRBEM has been developed for transforming this type of domain integral into an equivalent boundary integral. The basic idea of the MRBEM is to apply repeatedly the reciprocity theorem (Green's second formula) using a sequence of higher order fundamental solutions. The MRBEM requires discretization of the boundary only rather than of the domain. This advantage is useful for extensive survey analyses of buckling for complex geometries. The results of survey analyses have indicated that the general form of geometric buckling is B g 2 = (a n /R c ) 2 , where R c represents the radius of the circumscribed circle of the regular polygon under consideration. The geometric constant A n depends on the type of regular polygon and takes the value of π for a square and 2.405 for a circle, an extreme case that has an infinite number of sides. Values of a n for a triangle, pentagon, hexagon, and octagon have been calculated as 4.190, 2.281, 2.675, and 2.547, respectively
Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job
2016-01-07
Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luis Carlos Martins
1998-06-15
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
International Nuclear Information System (INIS)
Kudielka, G.
2001-07-01
Frasassi Cave have always been lower in d18O and higher in d13C compared to Soreq Cave. This indicates lower temperatures and a higher portion of C4 type vegetation in the Frasassi area compared to Israel. The agreement of the two records demonstrates that calcite deposits in caves are ideal recorders to global climatic changes. Investigation of the Jurassic/Cretaceous Boundary in Central Italy, the Jurassic/Cretaceous (J-K) boundary has not been satisfactory defined yet. Among others, various boundary definitions have been proposed at the Bosso River Gorge in the Marche region of Northern Italy: by calcareous nanofossils (at 329 m), calpionellids (at 334.1 m) and magnetostratigraphy (at 318 m). A large impact structure near Morokweng in South Africa was recently radiometrically dated to 144.7±1.9 Ma, which is indistinguishable from the stratigraphic age of the J-K boundary (144.2±2.6 Ma). A possible link between the impact event and the J-K boundary might be manifested in form of stratigraphic and geochemical features across the boundary, such as sudden stable-isotope shifts and spheroidal element anomalies. A set of 110 samples spanning about 40 m across the boundary was investigated for stable isotope ratios, and trace element content was determined in the corresponding decarbonated samples. d13C and d18O hardly vary but show a significant decrease at 333.5 m, which is close to the boundary-definition based upon calpionellids (at 334.1 m). Trace element abundances of Fe, Co, Ni, and Cr show remarkable enrichments very close to the boundary as defined by calcareous nanofossils (at 329 m). Another minor anomaly is noticeable at 333.5 m for Ir and Cr. Thus, the present data might be interpreted to hint - not to confirm - the presence of an impactoclastic layer at the Bosso River Gorge. (author)
Quantum propagation across cosmological singularities
Gielen, Steffen; Turok, Neil
2017-05-01
The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.
Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T
2018-01-01
In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.
Directory of Open Access Journals (Sweden)
Pavel A. Akimov
2017-12-01
Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.
Quantum evolution across singularities
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg
2008-01-01
Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space)
Ishii, Shihoko
2014-01-01
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...
A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors
Directory of Open Access Journals (Sweden)
Einar M. Rønquist
1984-04-01
Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.
International Nuclear Information System (INIS)
Washizu, Masao; Tanabe, Yoshio.
1986-01-01
In a system handling the electromagnetic waves of large power such as the cavity resonator for a high energy accelerator and the high frequency heater for a nuclear fusion apparatus, the margin in the thermal and mechanical design of a wave guide system cannot be taken large, accordingly, the detailed analysis of electromagnetic waves is required. When the analysis in a general form is carried out, boundary element method may be a useful method of solution. This time, the authors carried out the formulation of steady electromagnetic wave problems by boundary element method, and it was shown that the formulation was able to be carried out under the physically clear boundary condition also in this case, and especially in the case of a perfect conductor system, a very simple form was obtained. In this paper, first, the techniques of formulation in a general case, and next, as a special case, the formulation for a perfect conductor system are described. Taking the analysis of the cavity resonators of cylindrical and rectangular parallelepiped forms as examples, the comparison with the analytical solution was carried out. (Kako, I.)
Trace element patterns at a non-marine cretaceous-tertiary boundary
Gilmore, J.S.; Knight, J.D.; Orth, C.J.; Pillmore, C.L.; Tschudy, R.H.
1984-01-01
At the fossil-pollen-defined Cretaceous-Tertiary boundary in the Raton Basin of New Mexico and Colorado, an iridium abundance anomaly and excess scandium, titanium, and chromium are associated with a thin ash or dust fallout bed (now kaolinitic clay) that was preserved in freshwater coal swamps. ?? 1984 Nature Publishing Group.
Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.
2017-01-01
We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective core mass during both hydrogen and helium burning phases. Stars with $M
A Hamiltonian-based derivation of Scaled Boundary Finite Element Method for elasticity problems
International Nuclear Information System (INIS)
Hu Zhiqiang; Lin Gao; Wang Yi; Liu Jun
2010-01-01
The Scaled Boundary Finite Method (SBFEM) is a semi-analytical solution approach for solving partial differential equation. For problem in elasticity, the governing equations can be obtained by mechanically based formulation, Scaled-boundary-transformation-based formulation and principle of virtual work. The governing equations are described in the frame of Lagrange system and the unknowns are displacements. But in the solution procedure, the auxiliary variables are introduced and the equations are solved in the state space. Based on the observation that the duality system to solve elastic problem proposed by W.X. Zhong is similar to the above solution approach, the discretization of the SBFEM and the duality system are combined to derive the governing equations in the Hamilton system by introducing the dual variables in this paper. The Precise Integration Method (PIM) used in Duality system is also an efficient method for the solution of the governing equations of SBFEM in displacement and boundary stiffness matrix especially for the case which results some numerical difficulties in the usually uses the eigenvalue method. Numerical examples are used to demonstrate the validity and effectiveness of the PIM for solution of boundary static stiffness.
Properties of kinematic singularities
Energy Technology Data Exchange (ETDEWEB)
Coley, A A [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Hervik, S [Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger (Norway); Lim, W C [Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); MacCallum, M A H, E-mail: aac@mathstat.dal.c, E-mail: sigbjorn.hervik@uis.n, E-mail: wclim@aei.mpg.d, E-mail: m.a.h.maccallum@qmul.ac.u [School of Mathematical Sciences, Queen Mary University of London, E1 4NS (United Kingdom)
2009-11-07
The locally rotationally symmetric tilted perfect fluid Bianchi type V cosmological model provides examples of future geodesically complete spacetimes that admit a 'kinematic singularity' at which the fluid congruence is inextendible but all frame components of the Weyl and Ricci tensors remain bounded. We show that for any positive integer n there are examples of Bianchi type V spacetimes admitting a kinematic singularity such that the covariant derivatives of the Weyl and Ricci tensors up to the nth order also stay bounded. We briefly discuss singularities in classical spacetimes.
Directory of Open Access Journals (Sweden)
Tongchun Li
2015-01-01
element is proposed to solve the safety factor of local discontinuous rock mass. Slope system is divided into several continuous bodies and local discontinuous interface boundaries. Each block is treated as a partition of the system and contacted by discontinuous joints. The displacements of blocks are chosen as basic variables and the rigid displacements in the centroid of blocks are chosen as motion variables. The contact forces on interface boundaries and the rigid displacements to the centroid of each body are chosen as mixed variables and solved iteratively using the interface boundary equations. Flexibility matrix is formed through PFE according to the contact states of nodal pairs and spring flexibility is used to reflect the influence of weak structural plane so that nonlinear iteration is only limited to the possible contact region. With cohesion and friction coefficient reduced gradually, the states of all nodal pairs at the open or slip state for the first time are regarded as failure criterion, which can decrease the effect of subjectivity in determining safety factor. Examples are used to verify the validity of the proposed method.
Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.
2009-08-01
A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.
Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries
International Nuclear Information System (INIS)
Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B.
2014-01-01
X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described
Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries
Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B.
2014-01-01
X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.
International Nuclear Information System (INIS)
Wang, P; Becker, A A; Jones, I A; Glover, A T; Benford, S D; Vloeberghs, M
2009-01-01
A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller; Barrera Figueroa, Salvador
2009-01-01
Secondary calibration of microphones in free field is performed by placing the microphone under calibration in an anechoic chamber with a sound source, and exposing it to a controlled sound field. A calibrated microphone is also measured as a reference. While the two measurements are usually made...... apart to avoid acoustic interaction. As a part of the project Euromet-792, aiming to investigate and improve methods for secondary free-field calibration of microphones, a sound source suitable for simultaneous secondary free-field calibration has been designed using the Boundary Element Method...... of the Danish Fundamental Metrology Institute (DFM). The design and verification of the source are presented in this communication....
International Nuclear Information System (INIS)
Berry, M.V.
2002-01-01
For illumination with white light, the spectra near a typical isolated phase singularity (nodal point of the component wavelengths) can be described by a universal function of position, up to linear distortion and a weak dependence on the spectrum of the source. The appearance of the singularity when viewed by a human observer is predicted by transforming the spectrum to trichromatic variables and chromaticity coordinates, and then rendering the colours, scaled to constant luminosity, on a computer monitor. The pattern far from the singularity is a white that depends on the source temperature, and the centre of the pattern is flanked by intensely coloured 'eyes', one orange and one blue, separated by red, and one of the eyes is surrounded by a bright white circle. Only a small range of possible colours appears near the singularity; in particular, there is no green. (author)
Ling, Eric
The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.
International Nuclear Information System (INIS)
Goswami, Rituparno; Joshi, Pankaj S.; Vaz, Cenalo; Witten, Louis
2004-01-01
We construct a class of spherically symmetric collapse models in which a naked singularity may develop as the end state of collapse. The matter distribution considered has negative radial and tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility depends on the nature of energy distribution. Hence the causal structure of the resulting singularity depends on the nature of the mass function chosen for the cloud. We present a general model in which the naked singularity formed is timelike, neither pointlike nor null. Our work represents a step toward clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture
Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor
2010-08-01
Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms
Holographic subregion complexity for singular surfaces
Energy Technology Data Exchange (ETDEWEB)
Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2017-10-15
Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)
Directory of Open Access Journals (Sweden)
Hans Schonemann
1996-12-01
Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].
Numerical method of singular problems on singular integrals
International Nuclear Information System (INIS)
Zhao Huaiguo; Mou Zongze
1992-02-01
As first part on the numerical research of singular problems, a numerical method is proposed for singular integrals. It is shown that the procedure is quite powerful for solving physics calculation with singularity such as the plasma dispersion function. Useful quadrature formulas for some class of the singular integrals are derived. In general, integrals with more complex singularities can be dealt by this method easily
Schmitz, Birger; Andersson, Per; Dahl, Jeremy
1988-01-01
Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.
International Nuclear Information System (INIS)
Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.
2010-01-01
Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.
International Nuclear Information System (INIS)
Xu, Kai-Jiang; Pan, Xiao-Min; Li, Ren-Xian; Sheng, Xin-Qing
2017-01-01
In optical trapping applications, the optical force should be investigated within a wide range of parameter space in terms of beam configuration to reach the desirable performance. A simple but reliable way of conducting the related investigation is to evaluate optical forces corresponding to all possible beam configurations. Although the optical force exerted on arbitrarily shaped particles can be well predicted by boundary element method (BEM), such investigation is time costing because it involves many repetitions of expensive computation, where the forces are calculated from the equivalent surface currents. An algorithm is proposed to alleviate the difficulty by exploiting our previously developed skeletonization framework. The proposed algorithm succeeds in reducing the number of repetitions. Since the number of skeleton beams is always much less than that of beams in question, the computation can be very efficient. The proposed algorithm is accurate because the skeletonization is accuracy controllable. - Highlights: • A fast and accurate algorithm is proposed in terms of boundary element method to reduce the number of repetitions of computing the optical forces from the equivalent currents. • The algorithm is accuracy controllable because the accuracy of the associated rank-revealing process is well-controlled. • The accelerate rate can reach over one thousand because the number of skeleton beams can be very small. • The algorithm can be applied to other methods, e.g., FE-BI.
A non-reflecting boundary for use in a finite element beam model of a railway track
Yang, Jiannan; Thompson, David J.
2015-02-01
Some beam-like structures such as a railway track are effectively infinite in nature. Analytical solutions exist for simple structures but numerical methods like the finite element (FE) method are often employed to study more complicated problems. However, when the FE method is used for structures of infinite extent it is essential to introduce artificial boundaries to limit the area of computation. Here, a non-reflecting boundary is developed using a damped tapered tip for application in a finite element model representing an infinite supported beam. The FE model of the tapered tip is validated against an analytical model based on Bessel functions. The reflection characteristics of the FE tapered tip are quantified using a wave/FE superposition method. It is shown that the damped tapered tip is much more effective than its constant counterpart and achieves reduction of the model size. The damped tapered tip is applied to a simple FE railway track model and good agreement is found when its point mobility is compared with an analytical infinite track model.
A Nash-Hörmander iteration and boundary elements for the Molodensky problem
DEFF Research Database (Denmark)
Costea, Adrian; Gimperlein, Heiko; Stephan, Ernst P.
2014-01-01
evaluation of the Hessian of the gravitational potential on the surface, using a representation in terms of a hypersingular integral.Aboundary element method is used to solve the exterior problem. Numerical results compare the error between the approximation and the exact solution in a model problem....
Directory of Open Access Journals (Sweden)
Shaogan Ye
2017-01-01
Full Text Available Low noise axial piston pumps become the rapid increasing demand in modern hydraulic fluid power systems. This paper proposes a systematic approach to simulate the vibroacoustic characteristics of an axial piston pump using a hybrid lumped parameters/finite element/boundary element (LP/FE/BE model, and large amount of experimental work was performed to validate the model. The LP model was developed to calculate the excitation forces and was validated by a comparison of outlet flow ripples. The FE model was developed to calculate the vibration of the pump, in which the modeling of main friction pairs using different spring elements was presented in detail, and the FE model was validated using experimental modal analysis and measured vibrations. The BE model was used to calculate the noise emitted from the pump, and a measurement of sound pressure level at representative field points in a hemianechoic chamber was conducted to validate the BE model. Comparisons between the simulated and measured results show that the developed LP/FE/BE model is effective in capturing the vibroacoustic characteristics of the pump. The presented approach can be extended to other types of fluid power components and contributes to the development of quieter fluid power systems.
Singularities in Free Surface Flows
Thete, Sumeet Suresh
Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental
Subsonic flow past three-dimensional localised heating elements in boundary layers
Energy Technology Data Exchange (ETDEWEB)
Aljohani, A F [Department of Mathematics, Faculty of Science, University of Tabuk (Saudi Arabia); Gajjar, J S B, E-mail: j.gajjar@manchester.ac.uk [School of Mathematics, University of Manchester, Manchester M13 9PL (United Kingdom)
2017-12-15
The problem of subsonic flow past three-dimensional micro-electro-mechanical-type (MEMS-type) heating elements placed on a flat surface, where the MEMS devices have hump-shaped surfaces, is investigated using the triple-deck theory. The compressible Navier–Stokes equations supplemented by the energy equation are considered in the limit when the Reynolds number is large. The dimensions of the MEMS devices considered are such that the flow perturbations are governed by the three-dimensional subsonic triple-deck equations formulated with the aid of method of matched expansions. The linear analysis of these equations is presented and our results provide an insight into how the MEMS heating elements may be used to positively control the local flow properties. (paper)
Energy Technology Data Exchange (ETDEWEB)
Loewe, Konrad
2016-10-18
The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy
Directory of Open Access Journals (Sweden)
Zhenqing Wang
2018-05-01
Full Text Available A high-order finite difference method was used to simulate the hypersonic flow field over a blunt cone with different height roughness elements. The unsteady flow field induced by pulse disturbances was analyzed and compared with that under continuous disturbances. The temporal and spatial evolution characteristics of disturbances in the boundary layer were investigated and the propagation of different disturbance modes in the boundary layer was researched through the fast Fourier transform (FFT method. The effect of the roughness element on the receptivity characteristic of the hypersonic boundary layer under pulse entropy disturbances was explored. The results showed that the different mode disturbances near roughness in the boundary layer were enlarged in the upstream half of the roughness element and suppressed in the downstream half. However, the effect of roughness weakened gradually as the disturbance frequency increased in the boundary layer. A phenomenon of mode competition in the downstream region of the roughness element exited. As the disturbances propagated downstream, the fundamental mode gradually became the dominant mode. A certain promotion effect on the mode competition was induced by the roughness element and the effect was enhanced with the increase in the roughness element height.
Singularities in FLRW spacetimes
het Lam, Huibert; Prokopec, Tomislav
2017-12-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.
Hamanaka, Ryo; Yamaoka, Satoshi; Anh, Tuan Nguyen; Tominaga, Jun-Ya; Koga, Yoshiyuki; Yoshida, Noriaki
2017-11-01
Although many attempts have been made to simulate orthodontic tooth movement using the finite element method, most were limited to analyses of the initial displacement in the periodontal ligament and were insufficient to evaluate the effect of orthodontic appliances on long-term tooth movement. Numeric simulation of long-term tooth movement was performed in some studies; however, neither the play between the brackets and archwire nor the interproximal contact forces were considered. The objectives of this study were to simulate long-term orthodontic tooth movement with the edgewise appliance by incorporating those contact conditions into the finite element model and to determine the force system when the space is closed with sliding mechanics. We constructed a 3-dimensional model of maxillary dentition with 0.022-in brackets and 0.019 × 0.025-in archwire. Forces of 100 cN simulating sliding mechanics were applied. The simulation was accomplished on the assumption that bone remodeling correlates with the initial tooth displacement. This method could successfully represent the changes in the moment-to-force ratio: the tooth movement pattern during space closure. We developed a novel method that could simulate the long-term orthodontic tooth movement and accurately determine the force system in the course of time by incorporating contact boundary conditions into finite element analysis. It was also suggested that friction is progressively increased during space closure in sliding mechanics. Copyright © 2017. Published by Elsevier Inc.
Heumann, Holger; Rapetti, Francesca
2017-04-01
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.
Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements
Ho, Y. K.; Liu, C. H.
2012-04-01
Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.
Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.
2018-02-01
We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with Meffects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools - MESA-Web, MESA-Docker, pyMESA, and mesastar.org - to enhance MESA's education and research impact.
International Nuclear Information System (INIS)
Hwang, I.T.; Ting, K.
1987-01-01
Dynamic response of liquid storage tanks considering the hydrodynamic interactions due to earthquake ground motion has been extensively studied. Several finite element procedures, such as Balendra et. al. (1982) and Haroun (1983), have been devoted to investigate the dynamic interaction between the deformable wall of the tank and the liquid. Further, if the geometry of the storage tank can not be described by axi-symmetric case, the tank wall and the fluid domain must be discretized by three dimensional finite elements to investigate the fluid-structure-interactions. Thus, the need of large computer memory and expense of vast computer time usually make this analysis impractical. To demonstrate the accuracy and reliability of the solution technique developed herein, the dynamic behavior of ground-supported, deformed, cylindrical tank with incompressible fluid conducted by Haroun (1983) are analyzed. Good correlations of hydrodynamic pressure distribution between the computed results with the referenced solutions are noted. The fluid compressibility significantly affects the hydrodynamic pressures of the liquid-tank-interactions and the work which is done on this discussion is still little attention. Thus, the influences of the compressibility of the liquid on the reponse of the liquid storage due to ground motion are then drawn. By the way, the complex-valued frequency response functions for hydrodynamic forces of Haroun's problem are also displayed. (orig./GL)
Ghannam, Khaled
The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the
International Nuclear Information System (INIS)
Zhang Chen; Lu Hong; Hua Ning; Tang Xue-Zheng; Tang Fa-Kuan; Shou Guo-Fa; Xia Ling; Ma Ping
2013-01-01
A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso—cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HT c ·SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology. (general)
Li, Qiang; Popov, Valentin L.
2018-03-01
Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.
Implementation of a boundary element method to solve for the near field effects of an array of WECs
Oskamp, J. A.; Ozkan-Haller, H. T.
2010-12-01
When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.
Min, J. B.; Reddy, T. S. R.; Bakhle, M. A.; Coroneos, R. M.; Stefko, G. L.; Provenza, A. J.; Duffy, K. P.
2018-01-01
Accurate prediction of the blade vibration stress is required to determine overall durability of fan blade design under Boundary Layer Ingestion (BLI) distorted flow environments. Traditional single blade modeling technique is incapable of representing accurate modeling for the entire rotor blade system subject to complex dynamic loading behaviors and vibrations in distorted flow conditions. A particular objective of our work was to develop a high-fidelity full-rotor aeromechanics analysis capability for a system subjected to a distorted inlet flow by applying cyclic symmetry finite element modeling methodology. This reduction modeling method allows computationally very efficient analysis using a small periodic section of the full rotor blade system. Experimental testing by the use of the 8-foot by 6-foot Supersonic Wind Tunnel Test facility at NASA Glenn Research Center was also carried out for the system designated as the Boundary Layer Ingesting Inlet/Distortion-Tolerant Fan (BLI2DTF) technology development. The results obtained from the present numerical modeling technique were evaluated with those of the wind tunnel experimental test, toward establishing a computationally efficient aeromechanics analysis modeling tool facilitating for analyses of the full rotor blade systems subjected to a distorted inlet flow conditions. Fairly good correlations were achieved hence our computational modeling techniques were fully demonstrated. The analysis result showed that the safety margin requirement set in the BLI2DTF fan blade design provided a sufficient margin with respect to the operating speed range.
Phase Singularities and Termination of Spiral Wave Reentry
National Research Council Canada - National Science Library
Eason, James
2001-01-01
In order to elucidate the mechanisms by which a strong shock terminates reentrant wavefronts, we employed phase analysis techniques to study phase singularity dynamics in a finite element model of cardiac tissue...
Directory of Open Access Journals (Sweden)
Lyakhovich Leonid
2017-01-01
Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.
Rare earth elements in pore waters from Cabo Friós western boundary upwelling system
Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.
2015-12-01
Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.
Pseudospherical surfaces with singularities
DEFF Research Database (Denmark)
Brander, David
2017-01-01
We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...
Singularities in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept
Charged singularities: repulsive effects
Energy Technology Data Exchange (ETDEWEB)
De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia
1980-07-01
The repulsive phenomena which a particle experiences in the vicinity of a naked singularity are investigated in the Kerr-Newman space-time. The aim is to extend the knowledge of this fact to charged solutions and to have a direct indication of how, in these situations, the gravitational and electrostatic interactions are competing.
Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic Plateau
Directory of Open Access Journals (Sweden)
A. Dommergue
2012-11-01
Full Text Available Gaseous elemental mercury (Hg^{0} was investigated in the troposphere and in the interstitial air extracted from the snow at Dome Concordia station (alt. 3320 m on the Antarctic Plateau during January 2009. Measurements and modeling studies showed evidence of a very dynamic and daily cycling of Hg^{0} inside the mixing layer with a range of values from 0.2 ng m^{−3} up to 2.3 ng m^{−3}. During low solar irradiation periods, fast Hg^{0} oxidation processes in a confined layer were suspected. Unexpectedly high Hg^{0} concentrations for such a remote place were measured under higher solar irradiation due to snow photochemistry. We suggest that a daily cycling of reemission/oxidation occurs during summer within the mixing layer at Dome Concordia. Hg^{0} concentrations showed a negative correlation with ozone mixing ratios, which contrasts with atmospheric mercury depletion events observed during the Arctic spring. Unlike previous Antarctic studies, we think that atmospheric Hg^{0} removal may not be the result of advection processes. The daily and dramatic Hg^{0} losses could be a consequence of surface or snow induced oxidation pathways. It remains however unclear whether halogens are involved. The cycling of other oxidants should be investigated together with Hg species in order to clarify the complex reactivity on the Antarctic plateau.
Papapetrou's naked singularity is a strong curvature singularity
International Nuclear Information System (INIS)
Hollier, G.P.
1986-01-01
Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)
Watanabe, M
2003-01-01
Elemental segregation to two types of boundaries in a low-alloy steel were studied by X-ray mapping using scanning transmission electron microscopy (STEM). To quantify the acquired X-ray maps, the zeta-factor method was applied, and then the compositional maps and the thickness map were obtained. Based on these quantified maps, further information about the analytical sensitivity of solute-element detection and the spatial resolution of segregation analysis were extracted. Furthermore, maps of the number of excess atoms on the boundary were also calculated from the compositional and thickness maps. It was concluded that Cr, Ni and Mo are co-segregated on the prior-austenite grain boundary and only Ni was segregated on the lath boundary. (orig.)
Singular potentials in quantum mechanics
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Koo, E. Ley
1995-10-01
This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs
Energy Technology Data Exchange (ETDEWEB)
Sarler, B [Institut Jozef Stefan, Ljubljana (Yugoslavia)
1987-07-01
The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)
Jiang, Nan; Emberly, Eldon; Cuvier, Olivier; Hart, Craig M
2009-07-01
Insulator elements play a role in gene regulation that is potentially linked to nuclear organization. Boundary element-associated factors (BEAFs) 32A and 32B associate with hundreds of sites on Drosophila polytene chromosomes. We hybridized DNA isolated by chromatin immunoprecipitation to genome tiling microarrays to construct a genome-wide map of BEAF binding locations. A distinct difference in the association of 32A and 32B with chromatin was noted. We identified 1,820 BEAF peaks and found that more than 85% were less than 300 bp from transcription start sites. Half are between head-to-head gene pairs. BEAF-associated genes are transcriptionally active as judged by the presence of RNA polymerase II, dimethylated histone H3 K4, and the alternative histone H3.3. Forty percent of these genes are also associated with the polymerase negative elongation factor NELF. Like NELF-associated genes, most BEAF-associated genes are highly expressed. Using quantitative reverse transcription-PCR, we found that the expression levels of most BEAF-associated genes decrease in embryos and cultured cells lacking BEAF. These results provide an unexpected link between BEAF and transcription, suggesting that BEAF plays a role in maintaining most associated promoter regions in an environment that facilitates high transcription levels.
Dodig, H.
2017-11-01
This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.
Singularities: the Brieskorn anniversary volume
National Research Council Canada - National Science Library
Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M
1998-01-01
...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...
Supersymmetric quantum mechanics under point singularities
International Nuclear Information System (INIS)
Uchino, Takashi; Tsutsui, Izumi
2003-01-01
We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed
String theory and cosmological singularities
Indian Academy of Sciences (India)
Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.
Holographic complexity and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2016-01-15
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Are naked singularities really visible
Energy Technology Data Exchange (ETDEWEB)
Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; De Felice, F [Alberta Univ., Edmonton (Canada); Nobili, L [Padua Univ. (Italy). Ist. di Fisica
1978-12-09
The question whether a Kerr naked singularity is actually visible from infinity is investigated; it is shown that in fact any signal which could be emitted from the singularity is infinitely red-shifted. This implies that naked singularities would be indistinguishable from a black hole.
Holographic complexity and spacetime singularities
International Nuclear Information System (INIS)
Barbón, José L.F.; Rabinovici, Eliezer
2016-01-01
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Singular continuous spectrum for palindromic Schroedinger operators
International Nuclear Information System (INIS)
Hof, A.; Knill, O.; Simon, B.
1995-01-01
We give new examples of discrete Schroedinger operators with potentials taking finitely many values that have purely singular continuous spectrum. If the hull X of the potential is strictly ergodic, then the existence of just one potential x in X for which the operator has no eigenvalues implies that there is a generic set in X for which the operator has purely singular continuous spectrum. A sufficient condition for the existence of such an x is that there is a z element of X that contains arbitrarily long palindromes. Thus we can define a large class of primitive substitutions for which the operators are purely singularly continuous for a generic subset in X. The class includes well-known substitutions like Fibonacci, Thue-Morse, Period Doubling, binary non-Pisot and ternary non-Pisot. We also show that the operator has no absolutely continuous spectrum for all x element of X if X derives from a primitive substitution. For potentials defined by circle maps, x n =l J (θ 0 +nα), we show that the operator has purely singular continuous spectrum for a generic subset in X for all irrational α and every half-open interval J. (orig.)
DEFF Research Database (Denmark)
Andersen, Lars; Nielsen, Søren R. K.
2003-01-01
The paper deals with the boundary element method formulation of the steady-state wave propagation through elastic media due to a source moving with constant velocity. The Greens' function for the three-dimensional full-space is formulated in a local frame of reference following the source...... is approximated, but the error which is introduced in this way is insignificant. Numerical examples are given for a moving rectangular load on an elastic half-space. The result from a boundary element code based on the derived Green's function are compared with a semi-analytic solution....
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
Deformations of surface singularities
Szilárd, ágnes
2013-01-01
The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...
On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory
Vandommelen, Leon L.; Cowley, Stephen J.
1989-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
On the Lagrangian description of unsteady boundary-layer separation. I - General theory
Van Dommelen, Leon L.; Cowley, Stephen J.
1990-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
DEFF Research Database (Denmark)
Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter
2007-01-01
We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....
International Nuclear Information System (INIS)
Habis, M.; Robichon, F.; Demonet, J.F.
1996-01-01
Of late ten years, neurologists are studying the brain of the dyslectics. The cerebral imagery (NMR imaging, positron computed tomography) has allowed to confirm the anatomical particularities discovered by some of them: asymmetry default of cerebral hemispheres, size abnormally large of the white substance mass which connect the two hemispheres. The functional imagery, when visualizing this singular brain at work, allows to understand why it labors to reading. (O.M.)
Dirac operator on spaces with conical singularities
International Nuclear Information System (INIS)
Chou, A.W.
1982-01-01
The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained
Further holographic investigations of big bang singularities
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Netta [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Hertog, Thomas [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Horowitz, Gary T. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)
2015-07-09
We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves N=4 super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.
Further holographic investigations of big bang singularities
Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T.
2015-07-01
We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.
Energy Technology Data Exchange (ETDEWEB)
Alleon, G. [EADS-CCR, 31 - Blagnac (France); Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E. [Cerfacs, 31 - Toulouse (France)
2003-07-01
The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)
International Nuclear Information System (INIS)
Alleon, G.; Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E.
2003-01-01
The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)
Tang, Zhanqi; Jiang, Nan
2018-05-01
This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.
Legan, M. A.; Blinov, V. A.; Larichkin, A. Yu; Novoselov, A. N.
2017-10-01
Experimental study of hydraulic fracturing of thick-walled cylinders with a central circular hole was carried out using the machine that creates a high oil pressure. Experiments on the compression fracture of the solid cylinders by diameter and rectangular parallelepipeds perpendicular to the ends were carried out with a multipurpose test machine Zwick / Roell Z100. Samples were made of GF-177 material based on cement. Ultimate stresses in the material under study were determined for three types of stress state: under compression, with a pure shear on the surface of the hole under frecking conditions and under a compound stress state under conditions of diametral compression of a solid cylinder. The value of the critical stress intensity factor of GF-177 material was obtained. The modeling of the fracturing process taking into account the inhomogeneity of the stress state near the hole was carried out using the boundary elements method (in the variant of the fictitious load method) and the gradient fracture criterion. Calculation results of the ultimate pressure were compared with values obtained analytically on the basis of the Lame solution and with experimental data.
Design of a Double Anode Magnetron Injection Gun for Q-band Gyro-TWT Using Boundary Element Method
Li, Zhiliang; Feng, Jinjun; Liu, Bentian
2018-04-01
This paper presents a novel design code for double anode magnetron injection guns (MIGs) in gyro-devices based on boundary element method (BEM). The physical and mathematical models were constructed, and then the code using BEM for MIG's calculation was developed. Using the code, a double anode MIG for a Q-band gyrotron traveling-wave tube (gyro-TWT) amplifier operating in the circular TE01 mode at the fundamental cyclotron harmonic was designed. In order to verify the reliability of this code, velocity spread and guiding center radius of the MIG simulated by the BEM code were compared with these from the commonly used EGUN code, showing a reasonable agreement. Then, a Q-band gyro-TWT was fabricated and tested. The testing results show that the device has achieved an average power of 5kW and peak power ≥ 150 kW at a 3% duty cycle within bandwidth of 2 GHz, and maximum output peak power of 220 kW, with a corresponding saturated gain of 50.9 dB and efficiency of 39.8%. This paper demonstrates that the BEM code can be used as an effective approach for analysis of electron optics system in gyro-devices.
International Nuclear Information System (INIS)
Rocchi-Tavares, Miriam
1992-01-01
The objective of this research thesis is to model the sustentation (or aerodynamic levitation) of a drop by a fluid flowing through a porous plate. More precisely, the author developed a general calculation tool to solve the Stokes problem by using the boundary element method. The author reports the calculation of stresses at the surface of a solid body moving in an infinite medium, in order to validate the calculation tool before its extension to more complex problems. Then, the model is developed to describe the deformation of a fluid mass moving in another fluid. The surrounding environment is either infinite or limited by a plane wall which can be impervious or crossed by an ambient fluid. Then, the author addresses the study of the evolution of the surface of a drop moving in an infinite medium, analyses the behaviour of a fluid mass at the vicinity of a plane, infinite and impervious wall. The last part addresses the sustentation of a deformable fluid body above a porous plane wall crossed by another fluid [fr
Energy Technology Data Exchange (ETDEWEB)
Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)
2009-06-21
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
International Nuclear Information System (INIS)
Salinas, F S; Lancaster, J L; Fox, P T
2009-01-01
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
Salinas, F. S.; Lancaster, J. L.; Fox, P. T.
2009-06-01
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
Sun, Qiang; Wu, Guo Xiong
2013-03-01
A mathematical model and a numerical solution procedure are developed to simulate flow field through a 3D permeable vessel with multibranches embedded in a solid tumour. The model is based on Poisseuille's law for the description of the flow through the vessels, Darcy's law for the fluid field inside the tumour interstitium, and Starling's law for the flux transmitted across the vascular walls. The solution procedure is based on a coupled method, in which the finite difference method is used for the flow in the vessels and the boundary element method is used for the flow in the tumour. When vessels meet each other at a junction, the pressure continuity and mass conservation are imposed at the junction. Three typical representative structures within the tumour vasculature, symmetrical dichotomous branching, asymmetrical bifurcation with uneven radius of daughter vessels and trifurcation, are investigated in detail as case studies. These results have demonstrated the features of tumour flow environment by the pressure distributions and flow velocity field. Copyright © 2012 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-01-01
Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.
Directory of Open Access Journals (Sweden)
Fabrício Ribeiro Bueno
Full Text Available Here, the Dual Reciprocity Boundary Element Method is used to solve the 3D Pennes Bioheat Equation, which together with a Genetic Algorithm, produces an inverse model capable of obtaining the location and the size of a tumour, having as data input the temperature distribution measured on the skin surface. Given that the objective function, which is solved inversely, involves the DRBEM (Dual Reciprocity Boundary Element Method the Genetic Algorithm in its usual form becomes slower, in such a way that it was necessary to develop functions based the solution history in order that the process becomes quicker and more accurate. Results for 8 examples are presented including cases with convection and radiation boundary conditions. Cases involving noise in the readings of the equipment are also considered. This technique is intended to assist health workers in the diagnosis of tumours.
Sirenko, Kostyantyn; Liu, Meilin; Bagci, Hakan
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing
Sosa-Montes de Oca, Claudia; de Lange, Gert J.|info:eu-repo/dai/nl/073930962; Martínez-Ruiz, Francisca; Rodríguez-Tovar, Francisco J.
2018-01-01
A high-resolution analysis of the distribution of major and trace elements across a Cretaceous/Paleogene boundary (KPgB) was done using Laser Ablation-Inductivity Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and was compared with traditional distinct sampling and analysis. At the Agost site (SE
The exotic heat-trace asymptotics of a regular-singular operator revisited
Vertman, Boris
2013-01-01
We discuss the exotic properties of the heat-trace asymptotics for a regular-singular operator with general boundary conditions at the singular end, as observed by Falomir, Muschietti, Pisani and Seeley as well as by Kirsten, Loya and Park. We explain how their results alternatively follow from the general heat kernel construction by Mooers, a natural question that has not been addressed yet, as the latter work did not elaborate explicitly on the singular structure of the heat trace expansion...
Singular Spectrum Near a Singular Point of Friedrichs Model Operators of Absolute Type
International Nuclear Information System (INIS)
Iakovlev, Serguei I.
2006-01-01
In L 2 (R) we consider a family of self adjoint operators of the Friedrichs model: A m =|t| m +V. Here |t| m is the operator of multiplication by the corresponding function of the independent variable t element of R, and (perturbation) is a trace-class integral operator with a continuous Hermitian kernel ν(t,x) satisfying some smoothness condition. These absolute type operators have one singular point of order m>0. Conditions on the kernel ν(t,x) are found guaranteeing the absence of the point spectrum and the singular continuous one of such operators near the origin. These conditions are actually necessary and sufficient. They depend on the finiteness of the rank of a perturbation operator and on the order of singularity. The sharpness of these conditions is confirmed by counterexamples
CSIR Research Space (South Africa)
Roux, FS
2013-09-01
Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic... of vortices: topological charge ±1 (higher order are unstable). Positive and negative vortex densities np(x, y, z) and nn(x, y, z) ⊲ Vortex density: V = np + nn ⊲ Topological charge density: T = np − nn – p. 4/24 Subfields of SSO ⊲ Homogeneous, normally...
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
Tsiveriotis, K.; Brown, R. A.
1993-01-01
A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.
Elasticity problems in domains with nonsmooth boundaries
International Nuclear Information System (INIS)
Esparza, David
2001-01-01
In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter ε related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section, and show that the strongest singularity is associated with the 'triangular' cross-section, and is generated by a non-axisymmetric load. We then analyse the stress distribution near a thin conical inclusion which is allowed to slide freely along its axis. We derive the representation for the stress singularity exponent for the case of a circular conical inclusion whose elastic properties differ from those of the medium. In the last chapter we study the stress distribution in the vicinity of a thin 'coated' conical inclusion. We show that a soft thin coating (perfectly bonded to the inclusion and the surrounding material) can be replaced by a so-called linear interface at which the normal displacement is discontinuous, and the stresses are proportional to the 'jump' in the normal displacement across the coating. We analyse the effect of the properties of the coating on the stress singularity exponent and compare the results with those for a perfectly bonded
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
Spectral asymptotics for nonsmooth singular Green operators
DEFF Research Database (Denmark)
Grubb, Gerd
2014-01-01
is a singular Green operator. It is well-known in smooth cases that when G is of negative order −t on a bounded domain, its eigenvalues ors-numbers have the behavior (*)s j (G) ∼ cj −t/(n−1) for j → ∞, governed by the boundary dimension n − 1. In some nonsmooth cases, upper estimates (**)s j (G) ≤ Cj −t/(n−1...
Directory of Open Access Journals (Sweden)
Palomo, I.
1994-04-01
Full Text Available The abundant spherules present in the Cretaceous-Tertiary boundary layer at Caravaca are diagenetically transformed to potassium feldspar. Before our study no possible relicts of the precursor material had been reported. but in this paper we describe the presence of cores in these spherules that could represent a relict of the Â«unknown precursorÂ». These cores are made up of C mixed with Si. Mg. AL Cr. Ca among other elements. Laser Ablation System analysis also reveals an enrichment in pe;E could suggest an extraterrestrial origin for this material. PI. Pd and Ir do not show a chondritic ratio: however. asevere modification of their concentration could be expected during the early diagenetic processes.Las esférulas existentes en la lámina de sedimento del tránsito Cretácico-Terciario de la sección de Caravaca han sido transformadas diagenéticamente a feldespato potásico. En este trabajo se describe la existencia de núcleos encontrados en el interior de las esférulas. los cuales' pueden representar relictos del material precursor. Dichos núcleos están constituidos por C. Si. Mg, AL Cr y Ca entre otros elementos. Se pone de relieve, por vez primera, su notable enriquecimiento en elementos del grupo del platino, cuyas relaciones no condríticas pueden ser debidas a la existencia de importantes modificaciones en su concentración inicial causadas por los procesos diagenéticos y por la existencia de materia orgánica.
Wang, Jiancheng; Xie, Zhouqing; Wang, Feiyue; Kang, Hui
2017-12-15
Gaseous elemental mercury (GEM) in the marine boundary layer (MBL), and dissolved gaseous mercury (DGM) in surface seawater of the Southern Ocean were measured in the austral summer from December 13, 2014 to February 1, 2015. GEM concentrations in the MBL ranged from 0.4 to 1.9ngm -3 (mean±standard deviation: 0.9±0.2ngm -3 ), whereas DGM concentrations in surface seawater ranged from 7.0 to 75.9pgL -1 (mean±standard deviation: 23.7±13.2pgL -1 ). The occasionally observed low GEM in the MBL suggested either the occurrence of atmospheric mercury depletion in summer, or the transport of GEM-depleted air from the Antarctic Plateau. Elevated GEM concentrations in the MBL and DGM concentrations in surface seawater were consistently observed in the ice-covered region of the Ross Sea implying the influence of the sea ice environment. Diminishing sea ice could cause more mercury evasion from the ocean to the air. Using the thin film gas exchange model, the air-sea fluxes of gaseous mercury in non-ice-covered area during the study period were estimated to range from 0.0 to 6.5ngm -2 h -1 with a mean value of 1.5±1.8ngm -2 h -1 , revealing GEM (re-)emission from the East Southern Ocean in summer. Copyright © 2017 Elsevier B.V. All rights reserved.
Böhnke, Frank; Scheunemann, Christian; Semmelbauer, Sebastian
2018-05-01
The propagation of traveling waves along the basilar membrane is studied in a 3D finite element model of the cochlea using single and two-tone stimulation. The advantage over former approaches is the consideration of viscous-thermal boundary layer damping which makes the usual but physically unjustified assumption of Rayleigh damping obsolete. The energy loss by viscous boundary layer damping is 70 dB lower than the actually assumed power generation by outer hair cells. The space-time course with two-tone stimulation shows the traveling waves and the periodicity of the beat frequency f2 - f1.
Residues and duality for singularity categories of isolated Gorenstein singularities
Murfet, Daniel
2009-01-01
We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.
Singularly perturbed Burger-Huxley equation: Analytical solution ...
African Journals Online (AJOL)
The work presented considers the initial boundary value problem for nonlinear singularly perturbed time dependent Burger- Huxley equation. The equation contains two terms with nonlinearities, the cubic term and the advection term. Generally, the severe difficulties of two types encounter in solving this problem. The first ...
International Nuclear Information System (INIS)
Ringwelski, S; Gabbert, U
2010-01-01
A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element–boundary element model is derived by introducing coupling conditions at the fluid–fluid and fluid–structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural–acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element–boundary element model shows a good agreement
Directory of Open Access Journals (Sweden)
John A. DeRuntz Jr.
2005-01-01
Full Text Available The numerical solution of underwater shock fluid – structure interaction problems using boundary element/finite element techniques became tractable through the development of the family of Doubly Asymptotic Approximations (DAA. Practical implementation of the method has relied on the so-called augmentation of the DAA equations. The fluid and structural systems are respectively coupled by the structural acceleration vector in the surface normal direction on the right hand side of the DAA equations, and the total pressure applied to the structural equations on its right hand side. By formally solving for the acceleration vector from the structural system and substituting it into its place in the DAA equations, the augmentation introduces a term involving the inverse of the structural mass matrix. However there exist at least two important classes of problems in which the structural mass matrix is singular. This paper develops a method to carry out the augmentation for such problems using a generalized inverse technique.
Solutions of dissimilar material singularity and contact problems
International Nuclear Information System (INIS)
Yang, Y.
2003-09-01
Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)
International Nuclear Information System (INIS)
Littlejohn, R.G.
1982-01-01
The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular
Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming
1990-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
International Nuclear Information System (INIS)
Schmid, G.; Willms, G.; Huh, Y.; Gibhardt, M.
1988-12-01
SSI 2D/3D is a computer programm to calculate dynamic stiffness matrices for soil-structure-interaction problems in frequency domain. It is applicable to two- or three-dimensional situations. The present report is a detailed manual for the use of the computer code written in FORTRAN 77. In addition it gives a survey of the possibilities of the Boundary Element Method applied to dynamic problems in infinite domains. (orig.) [de
Tangled nonlinear driven chain reactions of all optical singularities
Vasil'ev, V. I.; Soskin, M. S.
2012-03-01
Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.
Naked singularities are not singular in distorted gravity
Energy Technology Data Exchange (ETDEWEB)
Garattini, Remo, E-mail: Remo.Garattini@unibg.it [Università degli Studi di Bergamo, Facoltà di Ingegneria, Viale Marconi 5, 24044 Dalmine (Bergamo) (Italy); I.N.F.N. – sezione di Milano, Milan (Italy); Majumder, Barun, E-mail: barunbasanta@iitgn.ac.in [Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India)
2014-07-15
We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheeler–DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.
Naked singularities are not singular in distorted gravity
Garattini, Remo; Majumder, Barun
2014-07-01
We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.
Naked singularities are not singular in distorted gravity
International Nuclear Information System (INIS)
Garattini, Remo; Majumder, Barun
2014-01-01
We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheeler–DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity
Exact Asymptotic Expansion of Singular Solutions for the (2+1-D Protter Problem
Directory of Open Access Journals (Sweden)
Lubomir Dechevski
2012-01-01
Full Text Available We study three-dimensional boundary value problems for the nonhomogeneous wave equation, which are analogues of the Darboux problems in ℝ2. In contrast to the planar Darboux problem the three-dimensional version is not well posed, since its homogeneous adjoint problem has an infinite number of classical solutions. On the other hand, it is known that for smooth right-hand side functions there is a uniquely determined generalized solution that may have a strong power-type singularity at one boundary point. This singularity is isolated at the vertex of the characteristic light cone and does not propagate along the cone. The present paper describes asymptotic expansion of the generalized solutions in negative powers of the distance to this singular point. We derive necessary and sufficient conditions for existence of solutions with a fixed order of singularity and give a priori estimates for the singular solutions.
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Singularity resolution in quantum gravity
International Nuclear Information System (INIS)
Husain, Viqar; Winkler, Oliver
2004-01-01
We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity
Van Hove singularities revisited
International Nuclear Information System (INIS)
Dzyaloshinskii, I.
1987-07-01
Beginning with the work of Hirsch and Scalapino the importance of ln 2 -Van Hove singularity in T c -enhancement in La 2 CuO 4 -based compounds was realized, which is nicely reviewed by Rice. However, the theoretical treatment carried out before is incomplete. Two things were apparently not paid due attention to: interplay of particle-particle and particle-hole channels and Umklapp processes. In what follows a two-dimensional weak coupling model of LaCuO 4 will be solved exactly in the ln 2 -approximation. The result in the Hubbard limit (one bare charge) is that the system is unstable at any sign of interaction. Symmetry breaking moreover is pretty peculiar. Of course, there are separate singlet superconducting pairings in the pp-channel (attraction) and SDW (repulsion) and CDW (attraction) in the ph-channel. It is natural that Umklapps produce an SDW + CDW mixture at either sign of the interaction. What is unusual is that both the pp-ph interplay and the Umklapps give rise to a monster-coherent SS + SDW + CDW mixture, again at either sign of the bare charge. In the general model where all 4 charges involved are substantially different, the system might remain metallic. A more realistic approach which takes into account dopping in La-M-Cu-O and interlayer interaction provides at least a qualitative understanding of the experimental picture. 10 refs, 5 figs
International Nuclear Information System (INIS)
Kulich, N.V.; Nemtsev, V.A.
1986-01-01
The analytical solution to the problem on the stationary temperature field in an infinite structural element of rectangular profile characteristic of the conjugation points of a vessel and a tube sheet of a heat exchanger (or of a finned surface) at the third-kind boundary conditions has been obtained by the methods of the complex variable function theory. With the help of the obtained analytical dependences the calculations of the given element of the design and the comparison with the known data have been conducted. The proposed analytical solution can be effectively used in calculations of temperature fields in finned surfaces and structural elements of the power equipment of the considered profile and the method is applied for solution of the like problems
Singularity: Raychaudhuri equation once again
Indian Academy of Sciences (India)
Cosmology; Raychaudhuri equation; Universe; quantum gravity; loop quan- tum gravity ... than the observation verifying the prediction of theory. This gave .... which was now expanding, would have had a singular beginning in a hot Big Bang.
International Nuclear Information System (INIS)
Smith, R.A.
1975-06-01
The design evaluation of toroidal field coils on the Princeton Large Torus (PLT), the Poloidal Diverter Experiment (PDX) and the Tokamak Fusion Test Reactor (TFTR) has been performed by structural analysis with the finite element method. The technique employed has been simplified with supplementary computer programs that are used to generate the input data for the finite element computer program. Significant automation has been provided by computer codes in three areas of data input. These are the definition of coil geometry by a mesh of node points, the definition of finite elements via the node points and the definition of the node point force/displacement boundary conditions. The computer programs by name that have been used to perform the above functions are PDXNODE, ELEMENT and PDXFORC. The geometric finite element modeling options for toroidal field coils provided by PDXNODE include one-fourth or one-half symmetric sections of circular coils, oval shaped coils or dee-shaped coils with or without a beveled wedging surface. The program ELEMENT which defines the finite elements for input to the finite element computer code can provide considerable time and labor savings when defining the model of coils of non-uniform cross-section or when defining the model of coils whose material properties are different in the R and THETA directions due to the laminations of alternate epoxy and copper windings. The modeling features provided by the program ELEMENT have been used to analyze the PLT and the TFTR toroidal field coils with integral support structures. The computer program named PDXFORC is described. It computes the node point forces in a model of a toroidal field coil from the vector crossproduct of the coil current and the magnetic field. The model can be of one-half or one-fourth symmetry to be consistent with the node model defined by PDXNODE, and the magnetic field is computed from toroidal or poloidal coils
Polarization singularities of the object field of skin surface
International Nuclear Information System (INIS)
Angelsky, O V; Ushenko, A G; Ushenko, Yu A; Ushenko, Ye G
2006-01-01
The paper deals with the investigation of formation mechanisms of laser radiation polarization structure scattered by an optically thin surface layer of human skin in two registration zones: a boundary field and a far zone of Fraunhofer diffraction. The conditions of forming polarization singularities by such an object in the scattered radiation field have been defined. Statistical and fractal polarization structure of object fields of physiologically normal and pathologically changed skin has been studied. It has been shown that polarization singularities of radiation scattered by physiologically normal skin samples have a fractal coordinate structure. It is characteristic for fields of pathologically changed skin to have a statistical coordinate structure of polarization singularities in all diffraction zones
International Nuclear Information System (INIS)
Vasil'ev, Vasilii I; Soskin, M S
2013-01-01
A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium — neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in a chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)
Directory of Open Access Journals (Sweden)
Shao Yan-Lin
2014-12-01
Full Text Available This paper presents some of the efforts by the authors towards numerical prediction of springing of ships. A time-domain Higher Order Boundary Element Method (HOBEM based on cubic shape function is first presented to solve a complete second-order problem in terms of wave steepness and ship motions in a consistent manner. In order to avoid high order derivatives on the body surfaces, e.g. mj-terms, a new formulation of the Boundary Value Problem in a body-fixed coordinate system has been proposed instead of traditional formulation in inertial coordinate system. The local steady flow effects on the unsteady waves are taken into account. Double-body flow is used as the basis flow which is an appropriate approximation for ships with moderate forward speed. This numerical model was used to estimate the complete second order wave excitation of springing of a displacement ship at constant forward speeds.
Sirenko, Kostyantyn
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.
DEFF Research Database (Denmark)
Qing, Hai
2013-01-01
Two-dimensional finite element (FE) simulations of the deformation and damage evolution of Silicon–Carbide (SiC) particle reinforced aluminum alloy composite including interphase are carried out for different microstructures and particle volume fractions of the composites. A program is developed...... for the automatic generation of 2D micromechanical FE-models with randomly distributed SiC particles. In order to simulate the damage process in aluminum alloy matrix and SiC particles, a damage parameter based on the stress triaxial indicator and the maximum principal stress criterion based elastic brittle damage...... model are developed within Abaqus/Standard Subroutine USDFLD, respectively. An Abaqus/Standard Subroutine MPC, which allows defining multi-point constraints, is developed to realize the symmetric boundary condition (SBC) and periodic boundary condition (PBC). A series of computational experiments...
Local and nonlocal space-time singularities
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1985-01-01
The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established
Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing
2017-03-01
Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.
Czech Academy of Sciences Publication Activity Database
Lejček, Pavel; Šandera, P.; Horníková, J.; Řehák, Petr; Pokluda, J.
2017-01-01
Roč. 52, č. 10 (2017), s. 5822-5834 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144; GA MŠk(CZ) LQ1601 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : grain boundary segregation * segregation enthalpy * intergranular fracture * strengthening/embrittling energy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.599, year: 2016
Singular value correlation functions for products of Wishart random matrices
International Nuclear Information System (INIS)
Akemann, Gernot; Kieburg, Mario; Wei, Lu
2013-01-01
We consider the product of M quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalizes the classical Wishart–Laguerre Gaussian unitary ensemble with M = 1. In this paper, we first compute the joint probability distribution for the singular values of the product matrix when the matrix size N and the number M are fixed but arbitrary. This leads to a determinantal point process which can be realized in two different ways. First, it can be written as a one-matrix singular value model with a non-standard Jacobian, or second, for M ⩾ 2, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer G-function. For both formulations, we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of the hypergeometric and Meijer G-functions, generalizing the Laguerre polynomials for M = 1. Our investigation was motivated from applications in telecommunication of multi-layered scattering multiple-input and multiple-output channels. We present the ergodic mutual information for finite-N for such a channel model with M − 1 layers of scatterers as an example. (paper)
Electronic and elemental properties of the Cu{sub 2}ZnSn(S,Se){sub 4} surface and grain boundaries
Energy Technology Data Exchange (ETDEWEB)
Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B. [IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Hts., New York 10598 (United States)
2014-01-20
X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.
International Nuclear Information System (INIS)
Wolf, J.P.; Darbre, G.R.
1985-01-01
The computational procedure of the so-called truncated indirect boundary-element method is derived. The latter, which is non-local in space and time, represents a rigorous generally applicable procedure for taking into account a layered halfspace in a non-linear soil-structure interaction analysis. As an example, the non-linear soil-structure interaction analysis of a structure embedded in a halfspace with partial uplift of the basement and separation of the side wall is investigated. (orig.)
International Nuclear Information System (INIS)
St John, C.M.; Sanjeevan, K.
1991-12-01
The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs
A Schwarz alternating procedure for singular perturbation problems
Energy Technology Data Exchange (ETDEWEB)
Garbey, M. [Universit Claude Bernard Lyon, Villeurbanne (France); Kaper, H.G. [Argonne National Lab., IL (United States)
1994-12-31
The authors show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and transition layers. They give sharp estimates for the optimal position of the domain boundaries and present convergence rates of the algorithm for various second-order singular perturbation problems. The splitting of the operator is domain-dependent, and the iterative solution of each subproblem is based on a modified asymptotic expansion of the operator. They show that this asymptotic-induced method leads to a family of efficient massively parallel algorithms and report on implementation results for a turning-point problem and a combustion problem.
Is the cosmological singularity compulsory
International Nuclear Information System (INIS)
Bekenstein, J.D.; Meisels, A.
1980-01-01
The cosmological singularity is inherent in all conventional general relativistic cosmological models. There can be no question that it is an unphysical feature; yet there does not seem to be any convervative way of eliminating it. Here we present singularity-free isotropic cosmological models which are indistinguishable from general relativistic ones at late times. They are based on the general theory of variable rest masses that we developed recently. Outside cosmology this theory simulates general relativity well. Thus it provides a framework incorporating those features which have made geneal relativity so sucessful while providing a way out of singularity dilemma. The cosmological models can be made to incorporate Dirac's large numbers hypothesis. G(now)/G(0)approx.10 -38
International Nuclear Information System (INIS)
Tsuji, Masashi; Chiba, Gou
2000-01-01
A hierarchical domain decomposition boundary element method (HDD-BEM) for solving the multiregion neutron diffusion equation (NDE) has been fully parallelized, both for numerical computations and for data communications, to accomplish a high parallel efficiency on distributed memory message passing parallel computers. Data exchanges between node processors that are repeated during iteration processes of HDD-BEM are implemented, without any intervention of the host processor that was used to supervise parallel processing in the conventional parallelized HDD-BEM (P-HDD-BEM). Thus, the parallel processing can be executed with only cooperative operations of node processors. The communication overhead was even the dominant time consuming part in the conventional P-HDD-BEM, and the parallelization efficiency decreased steeply with the increase of the number of processors. With the parallel data communication, the efficiency is affected only by the number of boundary elements assigned to decomposed subregions, and the communication overhead can be drastically reduced. This feature can be particularly advantageous in the analysis of three-dimensional problems where a large number of processors are required. The proposed P-HDD-BEM offers a promising solution to the deterioration problem of parallel efficiency and opens a new path to parallel computations of NDEs on distributed memory message passing parallel computers. (author)
Propagation of singularities for linearised hybrid data impedance tomography
Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim
2018-02-01
For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)
2017-12-15
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
Singularities in geodesic surface congruence
International Nuclear Information System (INIS)
Cho, Yong Seung; Hong, Soon-Tae
2008-01-01
In the stringy cosmology, we investigate singularities in geodesic surface congruences for the timelike and null strings to yield the Raychaudhuri type equations possessing correction terms associated with the novel features owing to the strings. Assuming the stringy strong energy condition, we have a Hawking-Penrose type inequality equation. If the initial expansion is negative so that the congruence is converging, we show that the expansion must pass through the singularity within a proper time. We observe that the stringy strong energy conditions of both the timelike and null string congruences produce the same inequality equation.
Singularity Theory and its Applications
Stewart, Ian; Mond, David; Montaldi, James
1991-01-01
A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.
Singular moduli and Arakelov intersection
International Nuclear Information System (INIS)
Weng Lin.
1994-05-01
The value of the modular function j(τ) at imaginary quadratic arguments τ in the upper half plane is usually called singular moduli. In this paper, we use Arakelov intersection to give the prime factorizations of a certain combination of singular moduli, coming from the Hecke correspondence. Such a result may be considered as the degenerate one of Gross and Zagier on Heegner points and derivatives of L-series in their paper [GZ1], and is parallel to the result in [GZ2]. (author). 2 refs
Existence of weak solutions to a nonlinear reaction-diffusion system with singular sources
Directory of Open Access Journals (Sweden)
Ida de Bonis
2017-09-01
Full Text Available We discuss the existence of a class of weak solutions to a nonlinear parabolic system of reaction-diffusion type endowed with singular production terms by reaction. The singularity is due to a potential occurrence of quenching localized to the domain boundary. The kind of quenching we have in mind is due to a twofold contribution: (i the choice of boundary conditions, modeling in our case the contact with an infinite reservoir filled with ready-to-react chemicals and (ii the use of a particular nonlinear, non-Lipschitz structure of the reaction kinetics. Our working techniques use fine energy estimates for approximating non-singular problems and uniform control on the set where singularities are localizing.
Singularities in minimax optimization of networks
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1976-01-01
A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used in the li......A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used...
Singular perturbations introduction to system order reduction methods with applications
Shchepakina, Elena; Mortell, Michael P
2014-01-01
These lecture notes provide a fresh approach to investigating singularly perturbed systems using asymptotic and geometrical techniques. It gives many examples and step-by-step techniques, which will help beginners move to a more advanced level. Singularly perturbed systems appear naturally in the modelling of many processes that are characterized by slow and fast motions simultaneously, for example, in fluid dynamics and nonlinear mechanics. This book’s approach consists in separating out the slow motions of the system under investigation. The result is a reduced differential system of lesser order. However, it inherits the essential elements of the qualitative behaviour of the original system. Singular Perturbations differs from other literature on the subject due to its methods and wide range of applications. It is a valuable reference for specialists in the areas of applied mathematics, engineering, physics, biology, as well as advanced undergraduates for the earlier parts of the book, and graduate stude...
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Directory of Open Access Journals (Sweden)
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
Directory of Open Access Journals (Sweden)
Yong Cheng
2017-01-01
Full Text Available The hydroelastic behaviour of a pontoon-type VLFS subjected to unsteady external loads in wave condition is investigated in the context of the time-domain modal expansion theory, in which the boundary element method (BEM based on time domain Kelvin sources is used for hydrodynamic forces and the finite element method (FEM is adopted for solving the deflections of the VLFS. In this analysis, the interpolation-tabulation scheme is applied to assess rapidly and accurately the free-surface Green function in finite water depth, and the boundary integral equation of a quarter VLFS model is further established taking advantage of symmetry of flow field and structure. The VLFS is modelled as an equivalent solid plate based on the Mindlin plate theory. The coupled plate-water model is performed to determine the wave-induced responses and transient behaviour under external loads such as a huge mass impact onto the structure and moving loads of an airplane, respectively. These results are verified with existing numerical results and experimental test. Then, the developed numerical tools are used in the study of the combined action taking into account of the mass drop/airplane landing as well as forward or reverse incident wave action. The deflections of the runway, the time history of vertical positions and the trajectory of the airplane are also presented through a systematic time-domain simulation, which illustrates the usefulness of the presently developed numerical solutions.
String theory and cosmological singularities
Indian Academy of Sciences (India)
recent times, string theory is providing new perspectives of such singularities which .... holes appear as stacks of a large number of D-branes wrapped in internal .... results into a well-known measure factor which makes the wave function into a.
Charged singularities: the causality violation
Energy Technology Data Exchange (ETDEWEB)
De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia
1980-12-01
A search is made for examples of particle trajectories which, approaching a naked singularity from infinity, make up for lost time before going back to infinity. In the Kerr-Newman metric a whole family of such trajectories is found showing that the causality violation is indeed a non-avoidable pathology.
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Singular multiparameter dynamic equations with distributional ...
African Journals Online (AJOL)
Singular multiparameter dynamic equations with distributional potentials on time scales. ... In this paper, we consider both singular single and several multiparameter ... multiple function which is of one sign and nonzero on the given time scale.
Pan, Supriya
2018-01-01
Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.
Analysis of singularity in redundant manipulators
International Nuclear Information System (INIS)
Watanabe, Koichi
2000-03-01
In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)
International Nuclear Information System (INIS)
Yuuki, R.; Ejima, K.
1991-01-01
In this study, three-dimensional boundary element elastostatic analysis is carried out on various surface crack problems. The present BEM uses a Mindlin's solution as well as a Kelvin's solution as a fundamental solution. So we can obtain accurate solutions for a surface crack just before or after a penetration. The obtained solutions for various shapes of surface cracks are stored as the data base, based on the influence function method. We develop the surface crack extension analysis system using the stress intensity factor data base and also the fatigue crack growth law. Our system seems to be useful especially for the analysis of the surface crack just before or after the penetration and also under the residual stresses
International Nuclear Information System (INIS)
Olschewski, J.; Stein, E.; Wagner, W.; Wetjen, D.
1981-01-01
This paper is a first step in the development of thermodynamically consistent material equations for inelastic materials, such as polycrystalline rock salt. In this context it is of particular importance to reduce the number and the structure of the internal variables, in order to allow for a fit with available experimental data. As an example this is demonstrated in detail in the case of the so-called dislocation model. As physical non-linearities and in addition also geometrical non-linearities lead to an inhomogeneous deformation - and stress state even in the case of simple samples, boundary value problems have to be studied, in order to test the material equations. For this purpose the finite element method has been used. (orig./HP) [de
Oomori, H; Imura, S; Gesso, H
1992-04-01
To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.
Ichihashi, K; Imura, S; Oomori, H; Gesso, H
1994-11-01
We compared the biomechanical characteristics of bipolar and unipolar hemiarthroplasty on the proximal migration of the outer head by determining the von Mises stress distribution and acetabular (outer head) displacement with clinical assessment of hemiarthroplasty in 75 patients. This analysis used the two-dimensional finite element method, which incorporated boundary friction layers on both the inner and outer bearings of the prosthesis. Acetabular reaming increased stress within the pelvic bone and migration of the outer head. A combination of the acetabular reaming and bone transplantation increased the stress within the pelvic bone and grafted bone, and caused outer head migration. These findings were supported by clinical results. Although the bipolar endoprosthesis was biomechanically superior to the unipolar endoprosthesis, migration of the outer head still occurred. The bipolar endoprosthesis appeared to be indicated in cases of a femoral neck fracture or of avascular necrosis in the femoral head, but its use in cases of osteoarthritis in the hip required caution.
Boundary cross theorem in dimension 1 with singularities
International Nuclear Information System (INIS)
Viet-Anh Nguyen; Pflug, P.
2007-04-01
Let D and G be copies of the open unit disc in C, let A (resp. B) be a measurable subset of ∂D (resp. ∂G), let W be the 2-fold cross ((D union A) x B) union (A x (B union G)), and let M be a relatively closed subset of W. Suppose in addition that A and B are of positive one-dimensional Lebesgue measure and that M is fiberwise polar (resp. fiberwise discrete) and that M intersection (A x B) = φ. We determine the 'envelope of holomorphy' W/M-circumflex of W/M in the sense that any function locally bounded on W/M, measurable on A x B, and separately holomorphic on ((A x G) union (D x B)) / M 'extends' to a function holomorphic on W/M-circumflex. (author)
Energy conditions and spacetime singularities
International Nuclear Information System (INIS)
Tipler, F.J.
1978-01-01
In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete
Multidimensional singular integrals and integral equations
Mikhlin, Solomon Grigorievich; Stark, M; Ulam, S
1965-01-01
Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals
Fundamental solutions of singular SPDEs
International Nuclear Information System (INIS)
Selesi, Dora
2011-01-01
Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.
Why the Singularity Cannot Happen
Modis, Theodore
2012-01-01
The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...
Black holes, singularities and predictability
International Nuclear Information System (INIS)
Wald, R.M.
1984-01-01
The paper favours the view that singularities may play a central role in quantum gravity. The author reviews the arguments leading to the conclusion, that in the process of black hole formation and evaporation, an initial pure state evolves to a final density matrix, thus signaling a breakdown in ordinary quantum dynamical evolution. Some related issues dealing with predictability in the dynamical evolution, are also discussed. (U.K.)
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
Asymptotically AdS spacetimes with a timelike Kasner singularity
Energy Technology Data Exchange (ETDEWEB)
Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-07-21
Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
Mathematical models with singularities a zoo of singular creatures
Torres, Pedro J
2015-01-01
The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.
On important precursor of singular optics (tutorial)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Connection conditions and the spectral family under singular potentials
International Nuclear Information System (INIS)
Tsutsui, Izumi; Fueloep, Tamas; Cheon, Taksu
2003-01-01
To describe a quantum system whose potential is divergent at one point, one must provide proper connection conditions for the wavefunctions at the singularity. Generalizing the scheme used for point interactions in one dimension, we present a set of connection conditions which are well defined even if the wavefunctions and/or their derivatives are divergent at the singularity. Our generalized scheme covers the entire U(2) family of quantizations (self-adjoint Hamiltonians) admitted for the singular system. We use this scheme to examine the spectra of the Coulomb potential V(x)=-e 2 vertical bar x vertical bar and the harmonic oscillator with square inverse potential V(x)=(mω 2 /2)x 2 +g/x 2 , and thereby provide a general perspective for these models which have previously been treated with restrictive connection conditions resulting in conflicting spectra. We further show that, for any parity invariant singular potential V(-x)=V(x), the spectrum is determined solely by the eigenvalues of the characteristic matrix U element of U(2)
Li, Li; Li, YanYan; Yan, Xukai
2018-03-01
We classify all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south pole, parameterize them as a two dimensional surface with boundary, and analyze their pressure profiles near the north pole. Then we prove that there is a curve of (-1)-homogeneous axisymmetric solutions with nonzero swirl, having the same smoothness property, emanating from every point of the interior and one part of the boundary of the solution surface. Moreover we prove that there is no such curve of solutions for any point on the other part of the boundary. We also establish asymptotic expansions for every (-1)-homogeneous axisymmetric solutions in a neighborhood of the singular point on the unit sphere.
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
Topological resolution of gauge theory singularities
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Topological resolution of gauge theory singularities
Energy Technology Data Exchange (ETDEWEB)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Singularities of Type-Q ABS Equations
Directory of Open Access Journals (Sweden)
James Atkinson
2011-07-01
Full Text Available The type-Q equations lie on the top level of the hierarchy introduced by Adler, Bobenko and Suris (ABS in their classification of discrete counterparts of KdV-type integrable partial differential equations. We ask what singularities are possible in the solutions of these equations, and examine the relationship between the singularities and the principal integrability feature of multidimensional consistency. These questions are considered in the global setting and therefore extend previous considerations of singularities which have been local. What emerges are some simple geometric criteria that determine the allowed singularities, and the interesting discovery that generically the presence of singularities leads to a breakdown in the global consistency of such systems despite their local consistency property. This failure to be globally consistent is quantified by introducing a natural notion of monodromy for isolated singularities.
The geometry of warped product singularities
Stoica, Ovidiu Cristinel
In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.
Singularity fitting in hydrodynamical calculations II
International Nuclear Information System (INIS)
Richtmyer, R.D.; Lazarus, R.B.
1975-09-01
This is the second report in a series on the development of techniques for the proper handling of singularities in fluid-dynamical calculations; the first was called Progress Report on the Shock-Fitting Project. This report contains six main results: derivation of a free-surface condition, which relates the acceleration of the surface with the gradient of the square of the sound speed just behind it; an accurate method for the early and middle stages of the development of a rarefaction wave, two orders of magnitude more accurate than a simple direct method used for comparison; the similarity theory of the collapsing free surface, where it is shown that there is a two-parameter family of self-similar solutions for γ = 3.9; the similarity theory for the outgoing shock, which takes into account the entropy increase; a ''zooming'' method for the study of the asymptotic behavior of solutions of the full initial boundary-value problem; comparison of two methods for determining the similarity parameter delta by zooming, which shows that the second method is preferred. Future reports in the series will contain discussions of the self-similar solutions for this problem, and for that of the collapsing shock, in more detail and for the full range (1, infinity) of γ; the values of certain integrals related to neutronic and thermonuclear rates near collapse; and methods for fitting shocks, contact discontinuities, interfaces, and free surfaces in two-dimensional flows
The dominant balance at cosmological singularities
International Nuclear Information System (INIS)
Cotsakis, Spiros; Barrow, John D
2007-01-01
We define the notion of a finite-time singularity of a vector field and then discuss a technique suitable for the asymptotic analysis of vector fields and their integral curves in the neighborhood of such a singularity. Having in mind the application of this method to cosmology, we also provide an analysis of the time singularities of an isotropic universe filled with a perfect fluid in general relativity
Exact solutions and singularities in string theory
International Nuclear Information System (INIS)
Horowitz, G.T.; Tseytlin, A.A.
1994-01-01
We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail
Dressing up a Kerr naked singularity
Energy Technology Data Exchange (ETDEWEB)
Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; Nobili, L [Padua Univ. (Italy). Ist. di Fisica
1979-06-11
The evolution of a naked singularity surrounded by an accreting disk of matter is studied; two kinds of disks are considered: the standard thin-disk model and the thick barytropic model, for several initial conditions. It is shown that any Kerr naked singularity slows down in a finite time to a maximal Kerr black hole. The final mass, the luminosity and the time of evolution of the singularity are evaluated.
Chanthawara, Krittidej; Kaennakham, Sayan; Toutip, Wattana
2016-02-01
The methodology of Dual Reciprocity Boundary Element Method (DRBEM) is applied to the convection-diffusion problems and investigating its performance is our first objective of the work. Seven types of Radial Basis Functions (RBF); Linear, Thin-plate Spline, Cubic, Compactly Supported, Inverse Multiquadric, Quadratic, and that proposed by [12], were closely investigated in order to numerically compare their effectiveness drawbacks etc. and this is taken as our second objective. A sufficient number of simulations were performed covering as many aspects as possible. Varidated against both exacts and other numerical works, the final results imply strongly that the Thin-Plate Spline and Linear type of RBF are superior to others in terms of both solutions' quality and CPU-time spent while the Inverse Multiquadric seems to poorly yield the results. It is also found that DRBEM can perform relatively well at moderate level of convective force and as anticipated becomes unstable when the problem becomes more convective-dominated, as normally found in all classical mesh-dependence methods.
Energy Technology Data Exchange (ETDEWEB)
Masuda, S.; Kasahara, Y.; Ashidate, I. [NKK Corp., Tokyo (Japan)
1996-12-31
In a high-speed boat of a type using hydrofoils, lifting force increases in proportion to square of its length, while displacement is proportional to the third power. Therefore, an idea has come up that speed of a large boat may be increased by combining the hydrofoils with a submerged body. In other words, the idea is to levitate a ship by using composite support consisting of buoyancy of the submerged body and lifting force caused by the hydrofoils. Insufficiency of the lifting force may be complemented by the buoyancy of the submerged body which increases in an equivalent rate as that in the displacement. However, combining a submerged body with hydrofoils render a problem that lifting force for hydrofoils decreases because of interactions among the submerged body, hydrofoils, and free surface. Therefore, assuming a model of a submerged body with a length of 85 m cruising at 40 kt, analysis was given on decrease in lifting force for hydrofoils due to interactions between the submerged and lifting body and free surface by using the boundary element method. As a result, it was verified that the lifting force for the hydrofoils decreases as a result of creation of a flow that decreases effective angle of attach of the hydrofoils. It was also made clear that making the submerging depth greater reduces the decrease in the lifting force. 9 refs., 14 figs., 1 tab.
Naked singularity, firewall, and Hawking radiation.
Zhang, Hongsheng
2017-06-21
Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.
Spacetime averaging of exotic singularity universes
International Nuclear Information System (INIS)
Dabrowski, Mariusz P.
2011-01-01
Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.
On local invariants of singular symplectic forms
Domitrz, Wojciech
2017-04-01
We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.
Pullback attractors for a singularly nonautonomous plate equation
Directory of Open Access Journals (Sweden)
Vera Lucia Carbone
2011-06-01
Full Text Available We consider the family of singularly nonautonomous plate equations with structural damping $$ u_{tt} + a(t,xu_t - Delta u_t + (-Delta^2 u + lambda u = f(u, $$ in a bounded domain $Omega subset mathbb{R}^n$, with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in $H^2_0(Omega imes L^2(Omega$ and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.
Coupled singular and non singular thermoelastic system and double lapalce decomposition methods
Hassan Gadain; Hassan Gadain
2016-01-01
In this paper, the double Laplace decomposition methods are applied to solve the non singular and singular one dimensional thermo-elasticity coupled system and. The technique is described and illustrated with some examples
On the trial functions in nested element method
International Nuclear Information System (INIS)
Altiparmakov, D.V.
1985-01-01
The R-function method is applied to the multidimensional steady-state neutron diffusion equation. Using a variational principle the nested element approximation is formulated. Trial functions taking into account the geometrical shape of material regions are constructed. The influence of both the surrounding regions and the corner singularities at the external boundary is incorporated into the approximate solution. Benchmark calculations show that such an approximation can yield satisfactory results. Moreover, in the case of complex geometry, the presented approach would result in a significant reduction of the number of unknowns compared to other methods
On a non classical oblique derivative problem for parabolic singular integro-differential operators
International Nuclear Information System (INIS)
Nguyen Minh Chuong; Le Quang Trung
1989-10-01
In this paper an oblique derivative problem for parabolic singular integro-differential operators was studied. In this problem the direction of the derivative may be tangent to the boundary of the domain. By the large parameter method theorems of existence and uniqueness of solutions of the problem were obtained. (author). 10 refs
Periodic solutions to singular second order differential equations: the repulsive case
Czech Academy of Sciences Publication Activity Database
Hakl, Robert; Torres, P.J.; Zamora, M.
2012-01-01
Roč. 39, č. 2 (2012), s. 199-220 ISSN 1230-3429 Institutional support: RVO:67985840 Keywords : singular nonlinear boundary value problem * positive solutions * periodic solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2012
Papapetrou's naked singularity is a strong curvature singularity
Energy Technology Data Exchange (ETDEWEB)
Hollier, G.P.
1986-11-01
Following Papapetrou (1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)), a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture.
The Semantics of Plurals: A Defense of Singularism
Florio, Salvatore
2010-01-01
In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…
Stable singularities in string theory
International Nuclear Information System (INIS)
Aspinwall, P.S.; Morrison, D.R.; Gross, M.
1996-01-01
We study a topological obstruction of a very stringy nature concerned with deforming the target space of an N=2 non-linear σ-model. This target space has a singularity which may be smoothed away according to the conventional rules of geometry, but when one studies the associated conformal field theory one sees that such a deformation is not possible without a discontinuous change in some of the correlation functions. This obstruction appears to come from torsion in the homology of the target space (which is seen by deforming the theory by an irrelevant operator). We discuss the link between this phenomenon and orbifolds with discrete torsion as studied by Vafa and Witten. (orig.). With 3 figs
Directory of Open Access Journals (Sweden)
Elvio Alccinelli
2001-07-01
Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.
Quantum transitions through cosmological singularities
Energy Technology Data Exchange (ETDEWEB)
Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
Coulomb branches with complex singularities
Argyres, Philip C.; Martone, Mario
2018-06-01
We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.
Quantum transitions through cosmological singularities
International Nuclear Information System (INIS)
Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas; Vreys, Yannick
2017-01-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
Building Reproducible Science with Singularity Containers
CERN. Geneva
2018-01-01
Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...
Reasons for singularity in robot teleoperation
DEFF Research Database (Denmark)
Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth
2014-01-01
In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and dela...
The Geometry of Black Hole Singularities
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2014-01-01
Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.
Singularities in the nonisotropic Boltzmann equation
International Nuclear Information System (INIS)
Garibotti, C.R.; Martiarena, M.L.; Zanette, D.
1987-09-01
We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs
Cold atoms in singular potentials
International Nuclear Information System (INIS)
Denschlag, J. P.
1998-09-01
We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)
DEFF Research Database (Denmark)
Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel
2008-01-01
An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...
Energy Technology Data Exchange (ETDEWEB)
Weber, Wilhelm
2010-07-01
Cracks, which trace back to damaging during the manufacturing process, are often the origin of the failure of structures. The collapse of safety-relevant parts results in perilous situations for human beings. Therefore, the fracture mechanical assessment of these structures becomes more important in the dimensioning process. For this purpose numerical tools are required. In presence of cyclic loading conditions fatigue crack propagation is very critical, because crack growth occurs for lower stresses compared to static loadings. Due to the non-linear nature of crack growth an incremental procedure has to be applied for the simulation of crack propagation. Each increment starts with a complete stress analysis including the determination of the fracture mechanical parameters along the crack front. Then, the 3D crack growth criterion is evaluated for the calculation of the crack extension and the kink angle. Finally, the discretization is adjusted to the new crack geometry for the next incremental loop. For the stress analysis the boundary element method (BEM) in terms of the collocation technique is applied. The BEM has been proven as an efficient numerical tool for stress concentration problems. Moreover, the modification of the mesh during the simulation of crack propagation is easier by using boundary elements compared to volume orientated methods. By the application of the adaptive cross approximation the numerical complexity of the stress analysis is reduced significantly. In the framework of the dual discontinuity method the discontinuities of the displacements and the tractions are used directly as primary variables at the crack. Therewith 3D crack surface contact using a penalty formulation is taken into account for the forst time within this work. The simulation of crack growth is implemented in the framework of a predictor-corrector-scheme. This method ensures high accuracy with respect to the location and shape of the numerically determined crack fronts
Biclustering via Sparse Singular Value Decomposition
Lee, Mihee
2010-02-16
Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.
One dimensional systems with singular perturbations
International Nuclear Information System (INIS)
Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P
2011-01-01
This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.
Noncrossing timelike singularities of irrotational dust collapse
International Nuclear Information System (INIS)
Liang, E.P.T.
1979-01-01
Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)
Conformally-flat, non-singular static metric in infinite derivative gravity
Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam
2018-06-01
In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.
Kalinchuk, Viktor; Lopatnikov, Evgeny; Astakhov, Anatoly
2018-06-01
Gaseous elemental mercury (Hg 0 ) is a prolific and persistent contaminant in the atmosphere. Atmospheric concentrations of Hg 0 were determined from 17 September to 7 October 2015 in the northwest Sea of Japan aboard the Russian research vessel Professor Gagarinsky. Simultaneous measurements of Hg 0 concentrations were performed 2 m and 20 m above the sea surface using automatic Hg 0 analysers RA-915M and RA-915+, respectively. Concentrations ranged from 0.3 to 25.9 ng/m 3 (n = 5207) and from 0.3 to 27.8 ng/m 3 (n = 4415), with medians of 1.7 and 1.6 ng/m 3 , respectively. Elevated Hg 0 was observed during three episodes from 19 to 22 September, likely caused by one or more of the following factors: 1) atmospheric transport of Hg 0 from the west and south-west (from N. Korea, China, and the Yellow Sea region); 2) Hg 0 emission from the sea due to pollution by water from the Tumannaya River; or 3) underwater geological activities. Increased Hg 0 concentration was observed during periods when air masses flowed from the south, and low concentrations were observed when air masses came from the north. A daytime increase of Hg 0 concentrations at a height of 2 m occurred simultaneously with decreasing Hg 0 at a height of 20 m. These diurnal variations suggest that two contrasting processes occur during the daytime in the marine boundary layer (MBL): Hg 0 emission from the sea surface and Hg 0 oxidation in the MBL by active halogens formed by photolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
A. Kazakov
2016-12-01
Full Text Available The paper discusses a nonlinear parabolic equation describing the process of heat conduction for the case of the power dependence of the heat conductivity factor on temperature. Besides heat distribution in space, it describes filtration of a polytropic gas in a porous medium, whereupon, in the English-language literature, this equation is generally referred to as the porous medium equation. A distinctive feature of this equation is the degeneration of its parabolic type when the required function becomes zero, whereupon the equation acquires some properties typical of first-order equations. Particularly, in some cases, it proves possible to substantiate theorems of the existence and uniqueness of heat-wave (filtration-wave type solutions for it. This paper proves a theorem of the existence and uniqueness of the solution to the problem of the motion of a heat wave with a specified front in the instance of two independent variables. At that, since the front has the form of a closed plane curve, a transition t o the polar coordinate system is performed. The solution is constructed in the form of a series, a constructible recurrent procedure for calculating its coefficients being proposed. The series convergence is proved by the majorant method. A boundary-element-based computation algorithm in the form of a computer program has been developed and implemented to solve the problem under study. Test examples are considered, the calculations made by a program designed by the authors being compared with the truncated series. A good agreement of the obtained results has been established.
Minimal solution for inconsistent singular fuzzy matrix equations
Directory of Open Access Journals (Sweden)
M. Nikuie
2013-10-01
Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.
Energy Technology Data Exchange (ETDEWEB)
Heras Celemin, M. R.
2008-07-01
The R and D activities for the scientific-technological singular strategic Project on Bio climatic Architecture and Solar Cooling PSE-ARFRISOL are being carried out from November 2005 to December 2010. This project aims to demonstrate that bio climatic architecture and low-temperature solar energy are the appropriate basic elements for climatization of future buildings. (Author) 12 refs.
Thermodynamic Bethe ansatz for boundary sine-Gordon model
International Nuclear Information System (INIS)
Lee, Taejun; Rim, Chaiho
2003-01-01
(R-channel) TBA is elaborated to find the effective central charge dependence on the boundary parameters for the massless boundary sine-Gordon model with the coupling constant (8π)/β 2 =1+λ with λ a positive integer. Numerical analysis of the massless boundary TBA demonstrates that at an appropriate boundary parameter range (cusp point) there exists a singularity crossing phenomena and this effect should be included in TBA to have the right behavior of the effective central charge
Quantum cosmology and late-time singularities
International Nuclear Information System (INIS)
Kamenshchik, A Yu
2013-01-01
The development of dark energy models has stimulated interest to cosmological singularities, which differ from the traditional Big Bang and Big Crunch singularities. We review a broad class of phenomena connected with soft cosmological singularities in classical and quantum cosmology. We discuss the classification of singularities from the geometrical point of view and from the point of view of the behavior of finite size objects, crossing such singularities. We discuss in some detail quantum and classical cosmology of models based on perfect fluids (anti-Chaplygin gas and anti-Chaplygin gas plus dust), of models based on the Born–Infeld-type fields and of the model of a scalar field with a potential inversely proportional to the field itself. We dwell also on the phenomenon of the phantom divide line crossing in the scalar field models with cusped potentials. Then we discuss the Friedmann equations modified by quantum corrections to the effective action of the models under considerations and the influence of such modification on the nature and the existence of soft singularities. We review also quantum cosmology of models, where the initial quantum state of the universe is presented by the density matrix (mixed state). Finally, we discuss the exotic singularities arising in the braneworld cosmological models. (topical review)
Initial singularity and pure geometric field theories
Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.
2018-01-01
In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.
Transmutation of singularities in optical instruments
Energy Technology Data Exchange (ETDEWEB)
Tyc, Tomas [Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: tomtyc@physics.muni.cz
2008-11-15
We propose a method for eliminating a class of singularities in optical media where the refractive index goes to zero or infinity at one or more isolated points. Employing transformation optics, we find a refractive index distribution equivalent to the original one that is nonsingular but shows a slight anisotropy. In this way, the original singularity is 'transmuted' into another, weaker type of singularity where the permittivity and permeability tensors are discontinuous at one point. The method is likely to find applications in designing and improving optical devices by making them easier to implement or to operate in a broad band of the spectrum.
Quantum dress for a naked singularity
Directory of Open Access Journals (Sweden)
Marc Casals
2016-09-01
Full Text Available We investigate semiclassical backreaction on a conical naked singularity space–time with a negative cosmological constant in (2+1-dimensions. In particular, we calculate the renormalized quantum stress–energy tensor for a conformally coupled scalar field on such naked singularity space–time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak cosmic censorship.
Cirant, Marco; Gomes, Diogo A.; Pimentel, Edgard A.; Sá nchez-Morgado, Hé ctor
2016-01-01
Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.
Cirant, Marco
2016-11-22
Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.
Energy Technology Data Exchange (ETDEWEB)
Sarler, B; Alujevic, A [Univerza B. Kardelja, Institut ' Jozef Stefan' , Ljubljana (Yugoslavia)
1988-07-01
The basic principles of self-adaptive algorithm for treatment of transient nonlinear nonhomogeneous radial heat flow, based on direct Boundary Element method formulation, are presented. The indicators of discretization error are developed, together with binary-tree strategy for manipulation with time domain mesh, assuring automatic optimisation of calculation procedure with respect to predetermined error. The developed method is particularly suitable for use in a spectrum of extremely nonlinear cases, occurring in thermal analyses of reactor components.(author)
Energy Technology Data Exchange (ETDEWEB)
Kramberger, J; Potrc, I [Tehniska fakulteta, Maribor (Yugoslavia)
1989-07-01
Apart from being exposed to the primary loading of internal pressure and steady temperature field, the reactor pressure vessel is also subject to various thermal transients (thermal shocks). Theoretical and experimental stress analyses show that severe material stresses occur in the nozzle area of the pressure vessel which may lead to defects (cracks). It has been our aim to evaluate these stresses by the use of the Boundary Element method. (author)
Tomar, S.K.
2002-01-01
It is well known that elliptic problems when posed on non-smooth domains, develop singularities. We examine such problems within the framework of spectral element methods and resolve the singularities with exponential accuracy.
Singularities in cosmologies with interacting fluids
International Nuclear Information System (INIS)
Cotsakis, Spiros; Kittou, Georgia
2012-01-01
We study the dynamics near finite-time singularities of flat isotropic universes filled with two interacting but otherwise arbitrary perfect fluids. The overall dynamical picture reveals a variety of asymptotic solutions valid locally around the spacetime singularity. We find the attractor of all solutions with standard decay, and for ‘phantom’ matter asymptotically at early times. We give a number of special asymptotic solutions describing universes collapsing to zero size and others ending at a big rip singularity. We also find a very complicated singularity corresponding to a logarithmic branch point that resembles a cyclic universe, and give an asymptotic local series representation of the general solution in the neighborhood of infinity.
Singularities: the state of the art
International Nuclear Information System (INIS)
Clarke, C.J.S.; Schmidt, B.G.
1977-01-01
A brief, but precise and unified account is given of the results that have been rigorously established at the time of writing concerning the existence and nature of singularities in classical relativity. (author)
Technological Singularity: What Do We Really Know?
Directory of Open Access Journals (Sweden)
Alexey Potapov
2018-04-01
Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.
Algunas aclaraciones acerca del conocimiento del singular.
Directory of Open Access Journals (Sweden)
Carlos Llano Cifuentes
2013-11-01
Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.
Topological Signals of Singularities in Ricci Flow
Directory of Open Access Journals (Sweden)
Paul M. Alsing
2017-08-01
Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.
Asymptotic safety, singularities, and gravitational collapse
International Nuclear Information System (INIS)
Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz
2011-01-01
Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.
Stable computation of generalized singular values
Energy Technology Data Exchange (ETDEWEB)
Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)
1996-12-31
We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.
On Borel singularities in quantum field theory
International Nuclear Information System (INIS)
Chadha, S.; Olesen, P.
1977-10-01
The authors consider the effective one-loop Lagrangian in a constant electric field. It is shown that perturbation theory behaves as n factorial giving rise to singularities in the Borel plane. Comparing with the known exact result it is shown how to integrate these singularities. It is suggested that renormalons in QED and QCD should be integrated in a similar way. A speculation is made on a possible interpretation of this integration. (Auth.)
Singularity theorems from weakened energy conditions
International Nuclear Information System (INIS)
Fewster, Christopher J; Galloway, Gregory J
2011-01-01
We establish analogues of the Hawking and Penrose singularity theorems based on (a) averaged energy conditions with exponential damping; (b) conditions on local stress-energy averages inspired by the quantum energy inequalities satisfied by a number of quantum field theories. As particular applications, we establish singularity theorems for the Einstein equations coupled to a classical scalar field, which violates the strong energy condition, and the nonminimally coupled scalar field, which also violates the null energy condition.
Efficiently enclosing the compact binary parameter space by singular-value decomposition
International Nuclear Information System (INIS)
Cannon, Kipp; Hanna, Chad; Keppel, Drew
2011-01-01
Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.
Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations
International Nuclear Information System (INIS)
Civalek, Omer; Acar, Mustafa Hilmi
2007-01-01
The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results
Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities
Paszyńska, Anna; Jopek, Konrad; Banaś, Krzysztof; Paszyński, Maciej; Gurgul, Piotr; Lenerth, Andrew; Nguyen, Donald; Pingali, Keshav; Dalcind, Lisandro; Calo, Victor M.
2015-01-01
This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.
Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities
Paszyńska, Anna
2015-06-01
This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.
Observational constraints on cosmological future singularities
Energy Technology Data Exchange (ETDEWEB)
Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)
2016-11-15
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)
Observational constraints on cosmological future singularities
International Nuclear Information System (INIS)
Beltran Jimenez, Jose; Lazkoz, Ruth; Saez-Gomez, Diego; Salzano, Vincenzo
2016-01-01
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)
Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure
Pestrenin, V. M.; Pestrenina, I. V.
2017-03-01
The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.
Naked singularities and cosmic censorship: comment on the current situation
International Nuclear Information System (INIS)
Seifert, H.J.
1979-01-01
The current discussion is mainly concerned with how, or indeed, whether space-times possessing naked singularities can be ruled out as being too unrealistic or not being singular at all. The present position is summarized, with references, under the following headings: the Hawking-Penrose existence theorems, hydrodynamical singularities and the strength of naked singularities. (UK)
Townsend, Alan R.; Porder, Stephen
2011-03-01
can (and ultimately must) learn to capture and re-use P in human and animal wastes. And, as Carpenter and Bennett highlight, inequities in P availability across world regions are not just a problem, they are an opportunity: transfers from P-rich to P-poor regions could simultaneously reduce environmental and food security risks. Above all, Carpenter and Bennett's analyses highlight the need for new management strategies that better target not only P's environmental risks, but also recognize the element's standing as an irreplaceable resource. Human society has been built from the massive alteration of four global biogeochemical cycles (C, N, H2O and P). We can replace carbon-based fuels, plant legumes in lieu of Haber-Bosch-based N fixation, and the rain will still fall. But for P, there is neither substitute nor renewal. Without an almost closed loop between fertilizer application, food consumption, and waste management, society could solve the remainder of the environmental threats Rockström and colleagues identify, and still be facing a bleak future. References Carpenter S R and Bennett E M 2011 Reconsideration of the planetary boundary for phosphorus Environ. Res. Lett. 6 014009 Childers C L, Corman J, Edwards M and Elser J J 2011 Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle BioScience 61 117-24 Cordell D, Drangert J-O and White S 2009 The story of phosphorus: Global food security and food for thought global Environmental Change 19 292-305 Diamond J 2005 Collapse: How Societies Choose to Fail or Succeed (New York: Viking) Engelhardt H T and Caplan A L (ed) 1987 Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology (New York: Cambridge University Press) Filippelli G M 2008 The global phosphorus cycle: Past, present, and future Elements 4 89-95 Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P and Sutton M
Removal of apparent singularity in grid computations
International Nuclear Information System (INIS)
Jakubovics, J.P.
1993-01-01
A self-consistency test for magnetic domain wall models was suggested by Aharoni. The test consists of evaluating the ratio S = var-epsilon wall /var-epsilon wall , where var-epsilon wall is the wall energy, and var-epsilon wall is the integral of a certain function of the direction cosines of the magnetization, α, β, γ over the volume occupied by the domain wall. If the computed configuration is a good approximation to one corresponding to an energy minimum, the ratio is close to 1. The integrand of var-epsilon wall contains terms that are inversely proportional to γ. Since γ passes through zero at the centre of the domain wall, these terms have a singularity at these points. The integral is finite and its evaluation does not usually present any problems when the direction cosines are known in terms of continuous functions. In many cases, significantly better results for magnetization configurations of domain walls can be obtained by computations using finite element methods. The direction cosines are then only known at a set of discrete points, and integration over the domain wall is replaced by summation over these points. Evaluation of var-epsilon wall becomes inaccurate if the terms in the summation are taken to be the values of the integrand at the grid points, because of the large contribution of points close to where γ changes sign. The self-consistency test has recently been generalised to a larger number of cases. The purpose of this paper is to suggest a method of improving the accuracy of the evaluation of integrals in such cases. Since the self-consistency test has so far only been applied to two-dimensional magnetization configurations, the problem and its solution will be presented for that specific case. Generalisation to three or more dimensions is straight forward
Adaptive finite element method for shape optimization
Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco
2012-01-01
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Zemlyanova, A. Y.
2013-03-08
A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings. The boundaries of the crack and the interface between semi-planes are subjected to a curvature-dependent surface tension. The resulting system of six singular integro-differential equations is reduced to the system of three Fredholm equations. It is shown that the introduction of the curvature-dependent surface tension eliminates both classical integrable power singularity of the order 1/2 and an oscillating singularity present in a classical linear elasticity solutions. The numerical results are obtained by solving the original system of singular integro-differential equations by approximating unknown functions with Taylor polynomials. © 2013 The Author.
Singular surfaces in the open field line region of a diverted tokamak
International Nuclear Information System (INIS)
Reiman, A.
1995-05-01
The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents
Cosmologies with quasiregular singularities. II. Stability considerations
International Nuclear Information System (INIS)
Konkowski, D.A.; Helliwell, T.M.
1985-01-01
The stability properties of a class of spacetimes with quasiregular singularities is discussed. Quasiregular singularities are the end points of incomplete, inextendible geodesics at which the Riemann tensor and its derivatives remain at least bounded in all parallel-propagated orthonormal (PPON) frames; observers approaching such a singularity would find that their world lines come to an end in a finite proper time. The Taub-NUT (Newman-Unti-Tamburino)-type cosmologies investigated are R 1 x T 3 and R 3 x S 1 flat Kasner spacetimes, the two-parameter family of spatially homogeneous but anisotropic Bianchi type-IX Taub-NUT spacetimes, and an infinite-dimensional family of Einstein-Rosen-Gowdy spacetimes studied by Moncrief. The behavior of matter near the quasiregular singularity in each of these spacetimes is explored through an examination of the behavior of the stress-energy tensors and scalars for conformally coupled and minimally coupled, massive and massless scalar waves as observed in both coordinate and PPON frames. A conjecture is postulated concerning the stability of the nature of the singularity in these spacetimes. The conjecture for a Taub-NUT-type background spacetime is that if a test-field stress-energy tensor evaluated in a PPON frame mimics the behavior of the Riemann tensor components which indicate a particular type of singularity (quasiregular, nonscalar curvature, or scalar curvature), then a complete nonlinear backreaction calculation, in which the fields are allowed to influence the geometry, would show that this type of singularity actually occurs. Evidence supporting the conjecture is presented for spacetimes whose symmetries are unchanged when fields with the same symmetries are added
Singularities in Structural Optimization of the Ziegler Pendulum
Directory of Open Access Journals (Sweden)
O. N. Kirillov
2011-01-01
Full Text Available Structural optimization of non-conservative systems with respect to stability criteria is a research area with important applications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of conservative systems where rigorously proven optimal solutions in buckling problems have been found, for nonconservative optimization problems only numerically optimized designs have been reported. The proof of optimality in non-conservative optimization problems is a mathematical challenge related to multiple eigenvalues, singularities in the stability domain, and non-convexity of the merit functional. We present here a study of optimal mass distribution in a classical Ziegler pendulum where local and global extrema can be found explicitly. In particular, for the undamped case, the two maxima of the critical flutter load correspond to a vanishing mass either in a joint or at the free end of the pendulum; in the minimum, the ratio of the masses is equal to the ratio of the stiffness coefficients. The role of the singularities on the stability boundary in the optimization is highlighted, and an extension to the damped case as well as to the case of higher degrees of freedom is discussed.
International Nuclear Information System (INIS)
Yoon, Kyung Ho; Lee, Kang Hee; Kang, Heung Seok; Song, Kee Nam
2006-01-01
Characterization tests (load vs. displacement curve) are conducted for the springs of Zirconium alloy spacer grids for an advanced LWR fuel assembly. Twofold testing is employed: strap-based and assembly-based tests. The assembly-based test satisfies the in situ boundary conditions of the spring within the grid assembly. The aim of the characterization test via the aforementioned two methods is to establish an appropriate assembly-based test method that fulfills the actual boundary conditions. A characterization test under the spacer grid assembly boundary condition is also conducted to investigate the actual behavior of the spring in the core. The stiffness of the characteristic curve is smaller than that of the strap-wised boundary condition. This phenomenon may cause the strap slit condition. A spacer grid consists of horizontal and vertical straps. The strap slit positions are differentiated from each other. They affords examination of the variation of the external load distribution in the grid spring. Localized regions of high stress and their values are analyzed, as they may be affected by the spring shape. Through a comparison of the results of the test and FE analysis, it is concluded that the present assembly-based analysis model and procedure are reasonably well conducted and can be used for spring characterization in the core. Guidelines for improving the mechanical integrity of the spring are also discussed
Generalized teleparallel cosmology and initial singularity crossing
Energy Technology Data Exchange (ETDEWEB)
Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg [Center for Theoretical Physics, the British University in Egypt, Suez Desert Road, Sherouk City 11837 (Egypt)
2017-02-01
We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. The milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.
Yangian-type symmetries of non-planar leading singularities
Energy Technology Data Exchange (ETDEWEB)
Frassek, Rouven [Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Meidinger, David [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany)
2016-05-18
We take up the study of integrable structures behind non-planar contributions to scattering amplitudes in N = 4 super Yang-Mills theory. Focusing on leading singularities, we derive the action of the Yangian generators on color-ordered subsets of the external states. Each subset corresponds to a single boundary of the non-planar on-shell diagram. While Yangian invariance is broken, we find that higher-level Yangian generators still annihilate the non-planar on-shell diagram. For a given diagram, the number of these generators is governed by the degree of non-planarity. Furthermore, we present additional identities involving integrable transfer matrices. In particular, for diagrams on a cylinder we obtain a conservation rule similar to the Yangian invariance condition of planar on-shell diagrams. To exemplify our results, we consider a five-point MHV on-shell function on a cylinder.
Combined methods for elliptic equations with singularities, interfaces and infinities
Li, Zi Cai
1998-01-01
In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Three-dimensional time-harmonic Maxwell's problems in axisymmetric domains Ω-circumflex with edges and conical points on the boundary are treated by means of the Fourier-finite-element method. The Fourier-fem combines the approximating Fourier series expansion of the solution with respect to the rotational angle using trigonometric polynomials of degree N (N → ∞), with the finite element approximation of the Fourier coefficients on the plane meridian domain Ω a is a subset of R + 2 of Ω-circumflex with mesh size h (h → 0). The singular behaviors of the Fourier coefficients near angular points of the domain Ω a are fully described by suitable singular functions and treated numerically by means of the singular function method with the finite element method on graded meshes. It is proved that the rate of convergence of the mixed approximations in H 1 (Ω-circumflex) 3 is of the order O (h+N -1 ) as known for the classical Fourier-finite-element approximation of problems with regular solutions. (author)
Hooper, I R; Philbin, T G
2013-12-30
We describe a design methodology for modifying the refractive index profile of graded-index optical instruments that incorporate singularities or zeros in their refractive index. The process maintains the device performance whilst resulting in graded profiles that are all-dielectric, do not require materials with unrealistic values, and that are impedance matched to the bounding medium. This is achieved by transmuting the singularities (or zeros) using the formalism of transformation optics, but with an additional boundary condition requiring the gradient of the co-ordinate transformation be continuous. This additional boundary condition ensures that the device is impedance matched to the bounding medium when the spatially varying permittivity and permeability profiles are scaled to realizable values. We demonstrate the method in some detail for an Eaton lens, before describing the profiles for an "invisible disc" and "multipole" lenses.
Butuzov, V. F.
2017-06-01
We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.
A robust computational technique for a system of singularly perturbed reaction–diffusion equations
Directory of Open Access Journals (Sweden)
Kumar Vinod
2014-06-01
Full Text Available In this paper, a singularly perturbed system of reaction–diffusion Boundary Value Problems (BVPs is examined. To solve such a type of problems, a Modified Initial Value Technique (MIVT is proposed on an appropriate piecewise uniform Shishkin mesh. The MIVT is shown to be of second order convergent (up to a logarithmic factor. Numerical results are presented which are in agreement with the theoretical results.
Phantom cosmology without Big Rip singularity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)
2012-03-23
We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.
Radioanatomy of the singular nerve canal
Energy Technology Data Exchange (ETDEWEB)
Muren, C. [Dept. of Diagnostic Radiology, Sabbatsbergs Hospital, Stockholm (Sweden); Wadin, K. [University Hospital, Uppsala (Sweden); Dimopoulos, P. [University Hospital, Uppsala (Sweden)
1991-08-01
The singular canal conveys vestibular nerve fibers from the ampulla of the posterior semicircular canal to the posteroinferior border of the internal auditory meatus. Radiographic identification of this anatomic structure helps to distinguish it from a fracture. It is also a landmark in certain surgical procedures. Computed tomography (CT) examinations of deep-frozen temporal bone specimens were compared with subsequently prepared plastic casts of these bones, showing good correlation between the anatomy and the images. The singular canal and its variable anatomy were studied in CT examinations of 107 patients. The singular canal could be identified, in both the axial and in the coronal planes. Its point of entry into the internal auditory meatus varied considerably. (orig.)
Enveloping branes and brane-world singularities
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios; Cotsakis, Spiros [CERN-Theory Division, Department of Physics, Geneva 23 (Switzerland); Klaoudatou, Ifigeneia [University of the Aegean, Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, Samos (Greece)
2014-12-01
The existence of envelopes is studied for systems of differential equations in connection with the method of asymptotic splittings which allows one to determine the singularity structure of the solutions. The result is applied to brane-worlds consisting of a 3-brane in a five-dimensional bulk, in the presence of an analog of a bulk perfect fluid parameterizing a generic class of bulk matter. We find that all flat brane solutions suffer from a finite-distance singularity contrary to previous claims. We then study the possibility of avoiding finite-distance singularities by cutting the bulk and gluing regular solutions at the position of the brane. Further imposing physical conditions such as finite Planck mass on the brane and positive energy conditions on the bulk fluid, excludes, however, this possibility as well. (orig.)
Phantom cosmology without Big Rip singularity
International Nuclear Information System (INIS)
Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.
2012-01-01
We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.
Global embeddings for branes at toric singularities
Balasubramanian, Vijay; Braun, Volker; García-Etxebarria, Iñaki
2012-01-01
We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) (dP0)^3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.
Singularity hypotheses a scientific and philosophical assessment
Moor, James; Søraker, Johnny; Steinhart, Eric
2012-01-01
Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.
Singularities in four-body final-state amplitudes
International Nuclear Information System (INIS)
Adhikari, S.K.
1978-01-01
Like three-body amplitudes, four-body amplitudes have subenergy threshold singularities over and above total-energy singularities. In the four-body problem we encounter a new type of subenergy singularity besides the usual two- and three-body subenergy threshold singularities. This singularity will be referred to as ''independent-pair threshold singularity'' and involves pair-subenergy threshold singularities in each of the two independent pair subenergies in four-body final states. We also study the particularly interesting case of resonant two- and three-body interactions in the four-body isobar model and the rapid (singular) dependence of the isobar amplitudes they generate in the four-body phase space. All these singularities are analyzed in the multiple-scattering formalism and it is shown that they arise from the ''next-to-last'' rescattering and hence may be represented correctly by an approximate amplitude which has that rescattering
Spectral element simulation of ultrafiltration
DEFF Research Database (Denmark)
Hansen, M.; Barker, Vincent A.; Hassager, Ole
1998-01-01
for the unknowns at the mesh nodes. This system is solved via a technique combining the penalty method, Newton-Raphson iterations, static condensation, and a solver for banded linear systems. In addition, a smoothing technique is used to handle a singularity in the boundary condition at the membrane...
Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.
2017-11-01
In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
de Felice, F; Nobili, L [Padua Univ. (Italy). Istituto di Fisica; Calvani, M [Padua univ. (Italy). Istituto di Astronomia
1976-03-01
The existence of extended Kerr metric sources of perfect fluid is taken as work-hypothesis to investigate the structure of the boundaries which derive from Boyer's surface condition. We find closed spheroidal configurations which hide an internal cavity as well as toroidal configurations; however, both the boundary of the internal cavity and the tori touch the ring singularity. We judge this feature non-physical and conclude that Boyer's condition is not sufficient to completely define a well behaved physical source.
Endpoint singularities in unintegrated parton distributions
Hautmann, F
2007-01-01
We examine the singular behavior from the endpoint region x -> 1 in parton distributions unintegrated in both longitudinal and transverse momenta. We identify and regularize the singularities by using the subtraction method, and compare this with the cut-off regularization method. The counterterms for the distributions with subtractive regularization are given in coordinate space by compact all-order expressions in terms of eikonal-line operators. We carry out an explicit calculation at one loop for the unintegrated quark distribution. We discuss the relation of the unintegrated parton distributions in subtractive regularization with the ordinary parton distributions.
Characteristic classes, singular embeddings, and intersection homology.
Cappell, S E; Shaneson, J L
1987-06-01
This note announces some results on the relationship between global invariants and local topological structure. The first section gives a local-global formula for Pontrjagin classes or L-classes. The second section describes a corresponding decomposition theorem on the level of complexes of sheaves. A final section mentions some related aspects of "singular knot theory" and the study of nonisolated singularities. Analogous equivariant analogues, with local-global formulas for Atiyah-Singer classes and their relations to G-signatures, will be presented in a future paper.
Cosmic censorship and the strengths of singularities
International Nuclear Information System (INIS)
Newman, R.P.
1986-01-01
This paper considers the principal definitions concerning limiting curvature strength on geodesics, and on non-spacelike geodesics in particular. They are formulated in terms of focussing conditions. Two definitions suggest themselves, and these are given in terms of a concept of a generalized Jacobi field. An historical survey is presented on some important developments concerning examples of naked singularities. The historical context is recalled in which these models, and cosmic censorship in general, have arisen. It is the author's opinion that one can expect to obtain theoretical limitations on the strengths of any naked singularities which do occur
Closed form solution to a second order boundary value problem and its application in fluid mechanics
International Nuclear Information System (INIS)
Eldabe, N.T.; Elghazy, E.M.; Ebaid, A.
2007-01-01
The Adomian decomposition method is used by many researchers to investigate several scientific models. In this Letter, the modified Adomian decomposition method is applied to construct a closed form solution for a second order boundary value problem with singularity
Introduction to fractional and pseudo-differential equations with singular symbols
Umarov, Sabir
2015-01-01
The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.
Singular Linear Differential Equations in Two Variables
Braaksma, B.L.J.; Put, M. van der
2008-01-01
The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no
'Footballs', conical singularities, and the Liouville equation
International Nuclear Information System (INIS)
Redi, Michele
2005-01-01
We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints
Mobile communications technology: The singular factor responsible ...
African Journals Online (AJOL)
This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...