WorldWideScience

Sample records for singly doped crystal

  1. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  2. Polytypism of Pb-doped single crystals of cadmium iodide

    International Nuclear Information System (INIS)

    Tyagi, U.P.; Trigunayat, G.C.

    1986-01-01

    The zone refining technique has been used both for the purification of cadmium iodide and for the growth of lead-doped single crystals of cadmium iodide. The as-grown crystals when studied by X-ray diffraction show exclusive presence of the most common polytype 4H. The hexagonal plate-shaped crystals of the doped material, grown from aqueous solution, shown polytypism, but of a different nature than the crystals of pure cadmium iodide. The results have been discussed. (author)

  3. Hall Effect in Bulk-Doped Organic Single Crystals.

    Science.gov (United States)

    Ohashi, Chika; Izawa, Seiichiro; Shinmura, Yusuke; Kikuchi, Mitsuru; Watase, Seiji; Izaki, Masanobu; Naito, Hiroyoshi; Hiramoto, Masahiro

    2017-06-01

    The standard technique to separately and simultaneously determine the carrier concentration per unit volume (N, cm -3 ) and the mobility (μ) of doped inorganic single crystals is to measure the Hall effect. However, this technique has not been reported for bulk-doped organic single crystals. Here, the Hall effect in bulk-doped single-crystal organic semiconductors is measured. A key feature of this work is the ultraslow co-deposition technique, which reaches as low as 10 -9 nm s -1 and enables us to dope homoepitaxial organic single crystals with acceptors at extremely low concentrations of 1 ppm. Both the hole concentration per unit volume (N, cm -3 ) and the Hall mobility (μ H ) of bulk-doped rubrene single crystals, which have a band-like nature, are systematically observed. It is found that these rubrene single crystals have (i) a high ionization rate and (ii) scattering effects because of lattice disturbances, which are peculiar to this organic single crystal. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extrinsic doping of CuGaSe2 single crystals

    Science.gov (United States)

    Schön, J. H.

    2000-02-01

    Technological applications of semiconductors depend critically on the ability to dope them. Single crystals of CuGaSe2 were doped during crystal growth either by a post-growth diffusion step or by ion-implantation, in order to study the limits of extrinsic doping. The electrical and optical properties of the doped samples are analysed by Hall effect and photoluminescence (PL) measurements. The carrier concentration at room temperature can be adjusted between 2 × 1019 cm-3 (p-type) and 1017 cm-3 (n-type). Various donor and acceptor levels are identified and ascribed to dopant-induced point defects taking into account the dopant concentration and/or the post-growth treatment of the single crystals.

  5. Growth of Ti or Fe doped lithium niobate single crystals

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, J.N.; Ro, J.H.; Kim, J.W.; Jeen, G.S.; Kim, Y.C.; Lee, H.S.

    1982-01-01

    This paper reprots a study of the growth of Ti or Fe doped LiNbO 3 single crystals by Czochralski method and its physical properties. On the basis of this study we have developed a growth procedure that produces a high yield of twin-free boules. The quality is better for crystals that are lightly doped with Ti than for those of high concentrations. However there are no significant quality differences among the crystals with concentrations of less than 0.5wt% of Fe. The crystals are characterized by optical absorption and magnetic susceptibility. Undoped crystals show the magnetic susceptibility of -10x10 -6 cgs, which is diamagnetic. The crystals with 0.01wt% and 0.5wt% of ferromagnetic susceptibilities of 2.6x1a -6 cgs, and 80x10 -6 cgs, respectively. Therefore, Fe-doped crystals are paramagnetic. Very small changes of magnetic susceptibilities have been observed in the Ti-doped crystals. (Author)

  6. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    Thiourea-doped ammonium dihydrogen phosphate (TADP) exhibits nonlinear optical property and the second harmonic generation efficiency of these crystals is three times that of pure ammonium dihydrogen phosphate (ADP) crystal. In this context, the study of structural distortion in the thiourea-doped ADP crystal is ...

  7. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  8. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  9. Crystal growth and luminescence properties of Pr-doped LuLiF4 single crystal

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Fujimoto, Yutaka; Yoshikawa, Akira

    2013-01-01

    0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF 4 (Pr:LuLiF 4 ) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr 3+ 4f-4f transitions. Intense absorption bands related with the Pr 3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr 3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137 Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137 Cs γ-ray. -- Highlights: ► 0.1, 1, and 3% Pr-doped LuLiF 4 single crystals were grown by the μ-PD method. ► Pr 3+ 5d-4f emission peaks appeared at 220, 240, 340, and 405 nm ► The Pr 3%:LuLiF 4 crystal showed the highest light yield of 2050 photons/MeV

  10. Electrolytic coloration and spectral properties of hydroxyl-doped potassium chloride single crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Wu Yanru

    2011-01-01

    Hydroxyl-doped potassium chloride single crystals are colored electrolytically at various temperatures and voltages using a pointed cathode and a flat anode. Characteristic OH - spectral band is observed in the absorption spectrum of uncolored single crystal. Characteristic O - , OH - , U, V 2 , V 3 , O 2- -V a + , F, R 2 and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current-time curve for electrolytic coloration of hydroxyl-doped potassium chloride single crystal and its relationship with electrolytic coloration process are given. Production and conversion of color centers are explained. - Highlights: → Expanded the traditional electrolysis method. → Hydroxyl-doped potassium chloride crystals were colored electrolytically for the first time. → Useful V, F and F-aggregate color centers were produced in colored crystals. → V color centers were produced directly and F and F-aggregate color centers indirectly.

  11. Shock-induced optical emission from yttria-doped cubic zircon single crystal: crystal orientation effects

    Science.gov (United States)

    Cao, Xiuxia; Zhou, Xianming; Meng, Chuanmin

    2015-06-01

    The shock-induced optical emission from yttria (Y2O3) -doped cubic zircon single crystal ( and crystal orientations) under the pressure range from 30 to 52 GPa was measured by the time-resolved 40-channel optical pyrometer at discrete wavelengths ranging from 400 to 800 nm. Clear periodic fluctuation was observed in spectral radiance history of ZrO2, while a noise fluctuation was found in ZrO2. The gray-body function was used to fit the spectral radiance histories. We found that the obtained apparent temperature varied slightly with time, but the emissivity history showed a fluctuate increase with time. Moreover, all the temperature data were independent of shock stress and were well above the calculated Lindeman melting temperature. Present result suggests that the optical emission relates to the shock-induced local hot spots, and its crystal orientation effect is attributed to the different dynamic deformation response between and ZrO2.

  12. Flicker noise in degenerately doped Si single crystals near the metal ...

    Indian Academy of Sciences (India)

    In this paper we report some of the important results of experimental investigations of the flicker noise near the metal–insulator (MI) transition in doped silicon single crystals. This is the first comprehensive work to study low-frequency noise in heavily doped Si over an extensive temperature range (2 K < T < 500 K).

  13. Optical and Electrical Properties of Sn-Doped Zinc Oxide Single Crystals

    Science.gov (United States)

    Haseman, M. S.; Saadatkia, Pooneh; Warfield, J. T.; Lawrence, J.; Hernandez, A.; Jellison, G. E.; Boatner, L. A.; Selim, F. A.

    2018-02-01

    Sn dopant in ZnO may significantly improve the n-type conductivity of ZnO through a characteristic double effect. However, studies on bulk Sn-doped ZnO are rare, and the effect of Sn doping on the optoelectronic properties of bulk ZnO is not well understood. In this work, the effect of Sn doping on the optical and electrical properties of ZnO bulk single crystals was investigated through optical absorption spectroscopy, Hall-effect measurements, and thermoluminescence (TL) spectroscopy. Undoped and Sn-doped ZnO single crystals were grown by chemical vapor transport method and characterized by x-ray diffraction analysis. The Sn doping level in the crystals was evaluated by inductively coupled plasma mass spectroscopy measurements. Hall-effect measurements revealed an increase in conductivity and carrier concentration with increasing Sn doping, while TL measurements identified a few donor species in the crystals with donor ionization energy ranging from 35 meV to 118 meV. Increasing Sn doping was also associated with a color change of single crystals from colorless to dark blue.

  14. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  15. Sublimation Properties of Pentaerythritol Tetranitrate Single Crystals Doped with Its Homologs

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharia, Sanjoy K.; Maiti, Amitesh; Gee, Richard H.; Weeks, Brandon L.

    2012-07-20

    Pentaerythritol tetranitrate (PETN) is a secondary explosive used extensively in military and commercial applications. Coarsening of PETN during long-term storage changes the physical properties such as surface area and particle morphology which are important factors in initiation and performance. Doping of impurities was proposed to slow the coarsening process since impurities were shown to modify both the kinetic and thermodynamic properties. In this paper, we discuss how doping of PETN with its homologs of dipentaerythritol hexanitrate (diPEHN) and tripentaerytritol octanitrate (triPEON) affect kinetic and thermodynamic parameters. Pure and homolog doped PETN single crystals were prepared by solvent evaporation in acetone at room temperature. Doping concentrations for this study were 1000 ppm, 5000 ppm, and 10000 ppm. Activation energy and vapor pressure of pure and doped PETN single crystals were obtained from thermogravimetric analysis data.

  16. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping

    Science.gov (United States)

    Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li

    2018-03-01

    Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.

  17. Crystal structure of La2Mo2O9 single crystals doped with bismuth

    International Nuclear Information System (INIS)

    Alekseeva, O. A.; Verin, I. A.; Sorokina, N. I.; Krasil'nikova, A. E.; Voronkova, V. I.

    2010-01-01

    Precision X-ray diffraction studies of La 2-x Bi x Mo 2 O 9 (x = 0.04, 0.06, and 0.18) single crystals are performed. It is found that in the compounds doped with bismuth, analogously with the structure of the metastable β ms phase of pure La 2 Mo 2 O 9 (LM), the La, Mo1, and O1 atoms deviate from the threefold axis on which they are located in the high-temperature β phase. It is shown that bismuth atoms substitute for part of lanthanum atoms and occupy a position at the threefold axis in the neighborhood of the split lanthanum position. The implantation of bismuth atoms in the LM structure results in the return of a part of the molybdenum atoms to the position at the threefold axis. The occupancy of this position is equal to the occupancy of the bismuth atomic position.

  18. Synthesis and optical characterization of Nickel doped Thiourea Barium Chloride (TBC) single crystals

    Science.gov (United States)

    Mahendra, K.; K, Udayashankar N.

    2018-03-01

    Organometallic Thiourea barium chloride (TBC) single crystals were synthesized using solution evaporation process at room temperature. Synthesized thiourea barium chloride crystals were recrystallized and during the recrystallization process 1M%, 2M% and 5M% of nickel (Ni) was added to the solution and kept for crystallization. The variation of intensity peaks and the shift in the XRD peaks were observed due to the incorporation of nickel in the host matrix. Variations in the absorbance and transmittance spectra of the pure and Ni doped crystals further confirms the presence of nickel in TBC single crystal. The optical bandgap of the pure and nickel doped single crystals were calculated using Touc’s relation. The results show that bandgap decreased with the dopant concentration in the thiourea barium chloride crystal. The optical constants such as extinction coefficient and reflectance were also studied using the absorption spectrum. The FTIR absorption also shows minute shift in the absorption peaks due to the presence of nickel in the host matrix. Photoluminescence spectra of pure and doped crystals were studied.

  19. Electrolytic coloration and spectral properties of hydroxyl-doped potassium bromide single crystals

    International Nuclear Information System (INIS)

    Qi, Lan; Song, Cuiying; Gu, Hongen

    2013-01-01

    Hydroxyl-doped potassium bromide single crystals are colored electrolytically at various temperatures and voltages by using a pointed cathode and a flat anode. The characteristic OH − spectral band is observed in absorption spectrum of uncolored single crystal. The characteristic O − , OH − , U, V 2 , O 2− −V a + , M L1 , F and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current–time curve for electrolytic coloration of hydroxyl-doped potassium bromide single crystal and its relationship with electrolytic coloration processes are given. Production and conversion of color centers are explained. - Highlights: ► We expanded the traditional electrolysis method. ► Hydroxyl-doped potassium bromide crystals were colored electrolytically for the first time. ► Useful V, F and F-aggregate color centers were produced in colored crystals. ► V color centers were produced directly and F as well as F-aggregate color centers indirectly.

  20. Coilable single crystal fibers of doped-YAG for high power laser applications

    Science.gov (United States)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  1. Single crystal EPR study of VO (II)-doped cadmium potassium ...

    Indian Academy of Sciences (India)

    Single crystal EPR studies of VO(II)-doped cadmium potassium phosphate hexahydrate (CPPH) have been carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice only substitutionally in place of Cd(II). Spin Hamiltonian ...

  2. Growth of Ce-Doped LSO Single Crystals by Stockbarger-Bridgman Modified Crystallization Method

    International Nuclear Information System (INIS)

    Namtalishvili, M.; Sanadze, T.; Basharuli, N.; Magalashvili, P.; Mikaberidze, A.; Razmadze, Z.; Gabeskiria, M.

    2006-01-01

    The modified Stockbarger-Bridgman method was suggested for the growth of optically perfect LSO:Ce single crystals. Our investigations have shown that the most perfect crystals are grown by by the horizontally directed crystallization. In this case the elements of directional crystallyzation are combined with the zone melting. Crystallization is carried out in the conditions of sufficiently developed mirror of meltin. As a result in this case the chemical purity of grown crystals increases. (author)

  3. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  4. Crystal growth, optical properties, and laser operation of Yb3+-doped NYW single crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Yang, X. B.; Xin, Z.; Cao, D. H.; Xu, J.

    2009-11-01

    Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.

  5. Investigation of single crystal zircon, (Zr,Pu)SiO4 doped with Pu

    Science.gov (United States)

    Hanchar, J. M.; Burakov, B. E.; Anderson, E. B.; Zamoryanskaya, M. V.

    2003-04-01

    Zircon-based ceramics are under consideration as durable waste forms for immobilization of weapons grade plutonium and other actinide elements. Samples of polycrystalline zircon doped with 238Pu and 239Pu have been obtained in previous studies. These materials, however, are difficult to use for precise measurement of the leach-rate of Pu, and to accurately determine the level of Pu doping that can be attained in zircon, (Zr,Pu)SiO_4. Single crystals of 238Pu doped zircon (ranging from 0.3 to 3.5 mm in size) were successfully grown for the first time ever using a Li-Mo flux synthesis method. The incorporation of Pu ranged from 1.9 to 4.7 wt. % el. (with approximately 81 wt.% of 238Pu isotope) based on electron microprobe analysis. The zircon crystals were pinkish-brown when they were crystallized, and then over a period of five months changed to a brown color. After fourteen months the crystals turned to a brown-gray color. The zircon crystals glow in the dark probably from alpha particle induced luminescence. The intensity of the cathodoluminescence (CL) emission in the Pu doped crystals is correlated with the Pu content, and the CL emission showed no change 141 days after the initial CL measurements were made. Single crystal X-ray diffraction results obtained 141 days after synthesis indicate unit cell parameters (in angstroms): a = 6.6267(15), c = 5.9992(10) and a cell volume of 263.41(10). When the zircon crystals were grown, they were free of cracks. Over the course of five months cracks appeared throughout the crystals, and after fourteen months the cracks became much more abundant. The zircon crystals were transparent upon crystallization, and even with numerous cracks throughout the crystals remain transparent. Radiation damage calculations indicate that after only a short period of time, six months, these zircon crystals had already accumulated significant alpha-induced radiation damage (˜2.5 x1014 alpha-decay events per milligram). After five years they

  6. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  7. Synthesis and characterization of pure, urea and thiourea doped organic NLO L-arginine trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prasanyaa, T. [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Haris, M., E-mail: mharis8@yahoo.com [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Mathivanan, V. [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Department of Physics, United Institute of Technology, Coimbatore (India); Senthilkumar, M. [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jayaramakrishnan, V. [Department of Physics, P.S.G. College of Arts and Science, Coimbatore 641 014, Tamilnadu (India)

    2014-10-15

    Optically transparent L-arginine trifluoroacetate (LATF) single crystals by doping with organic materials urea and thiourea were grown by slow solvent evaporation technique. Powder X-ray diffraction confirms improvement in the crystalline quality for urea doped crystals. Urea doping in LATF also improves the percentage of transmittance. The vibrational frequencies of the grown crystals were assigned by Fourier Transform infrared spectroscopy. The thermal analysis (TG/DTA) indicated the better thermal stability for urea doped LATF crystals. EDAX analysis was carried out to calculate the percentage of elements present in doped and pure LATF. The hardness has been remarkably improved on urea and thiourea doped LATF crystals. The second harmonic generation (SHG) analysis showed 2.5 times than standard KDP for pure LATF and 2.2, 2.07 times than KDP for urea and thiourea doped LATF. - Highlights: • Urea doped LATF crystals enhances the structural and crystalline quality. • Urea doping enhances optical transparency and thermal stability. • Urea and thiourea doping in LATF improves the hardness. • SHG efficiency of urea, thiourea doped LATF are 2.2 and 2.07 times greater than KDP.

  8. Luminescence of single crystals of manganese doped zinc indium binary sulfides

    International Nuclear Information System (INIS)

    Arama, Efim; Vovc, Victor; Gheorghita, Eugene Iv.; Pintea, Valentina

    2013-01-01

    Radiative recombination spectra of Mn-doped ZnIn 2 S 4 single crystals have been analyzed in the work. The emission spectra interval close to its maximum (1,91±0,2) eV contains a number of the special features which were identified by us as intra-center transitions. We attribute the special features observed on the complex emission spectra to this type of transition by their decomposition into simple lines, using Alentsev -Foch method. (authors)

  9. Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Babu, G. Anandha, E-mail: anandcgc@gmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Subramaniyan, Raja R. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Bhaumik, Indranil [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Ganesamoorthy, S. [X-ray Scattering and Crystal Growth Section, Condensed Matter Physics Division, Materials Science Group, IGCAR, Kalpakkam 603102 (India); Ramasamy, P. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Gupta, P.K. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2014-05-01

    Highlights: • Single crystals of undoped and Mn doped NKBT crystals are grown by spontaneous nucleation. • Temperature and frequency dependent dielectric constant and loss are measured. • Dielectric constant has increased and the loss has reduced on Mn doped NKBT. • Concentration of oxygen vacancies has been reduced in Mn doped NKBT. • The activation energy for undoped and Mn doped NKBT are calculated. - Abstract: Lead-free piezoelectric single crystals of undoped and 1 wt% Mn doped 0.80 Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.20 K{sub 0.5}Bi{sub 0.5}TiO{sub 3} (NKBT) was grown using self-flux. Powder X-ray diffraction analysis revealed that the grown crystals belong to tetragonal system at room temperature. The lattice strain was calculated from Williamson Hall relation for undoped and Mn doped NKBT crystals. A significant change is observed in dielectric behavior of Mn doped NKBT when compared to undoped sample. The diffuseness increased substantially on Mn doped NKBT which masked the ferroelectric to antiferroelectric transition in the dielectric constant plot. The AC impedance study revealed that the conduction is governed by the singly ionized oxygen vacancy. Further, the decrease in the conductivity on Mn doping suggests that Mn replaces the Bi vacancy, which reduces the oxygen vacancy.

  10. Optical properties of Ni-doped MgGa2O4 single crystals grown by floating zone method

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Hughes, Mark; Ohishi, Yasutake

    2010-01-01

    The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa 2 O 4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa 2 O 4 single crystals have broadband fluorescence in the 1100-1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and 1.05x10 -21 cm 2 stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.

  11. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    Science.gov (United States)

    2017-10-09

    tried. Among them “n- and p-type doped” BaTiO3 single crystals have been successfully fabricated . And their bi- crystals containing a twin or twist...boundary are also fabricated using diffusion bonding process of two single crystal plates. These results demonstrate that the SSCG (solid-state...or Bridgman method have critical limitations; high production cost and compositional inhomogeneity throughout the crystal. These limitations result

  12. Comparative study of neutron irradiation and carbon doping in MgB2 single crystals

    International Nuclear Information System (INIS)

    Krutzler, C.; Zehetmayer, M.; Eisterer, M.; Weber, H. W.; Zhigadlo, N. D.; Karpinski, J.

    2007-01-01

    We compare the reversible and irreversible magnetic properties of superconducting carbon doped and undoped MgB 2 single crystals before and after neutron irradiation. A large number of samples with transition temperatures between 38.3 and 22.8 K allows us to study the effects of disorder systematically. Striking similarities are found in the modification of the reversible parameters by irradiation and doping, which are discussed in terms of impurity scattering and changes of the Fermi surface. The irreversible properties are influenced by two counteracting mechanisms: they are enhanced by the newly introduced pinning centers but degraded by changes in the thermodynamic properties. Accordingly, the large neutron induced defects and the small defects from carbon doping lead to significantly different effects on the irreversible properties. Finally, the fishtail effect caused by all kinds of disorder is discussed in terms of an order-disorder transition of the flux-line lattice

  13. Growth and characterization of Tm-doped Y 2O 3 single crystals

    Science.gov (United States)

    Mun, J. H.; Jouini, A.; Novoselov, A.; Guyot, Y.; Yoshikawa, A.; Ohta, H.; Shibata, H.; Waseda, Y.; Boulon, G.; Fukuda, T.

    2007-07-01

    The rare-earth sesquioxides (RE2O3, RE = Lu, Y and Sc) are promising host materials for solid-state lasers due to their low phonon energy and high thermal conductivity. On the other hand, Tm3+ and Yb3+ are preferable activators for advanced laser diode pumped solid-state lasers. In addition to that, Tm-doped materials can be used for eye-safe lasers application. Tm-doped Y2O3 single crystals were grown using the micro-pulling-down method. Crystals were transparent with gray and blue colors of 4.2 mm in diameter and 13-20 mm in length. The crystallinity was characterized using X-ray rocking curve analysis. Tm-doped Y2O3 single crystals have a good compositional homogeneity along the growth axis and their thermal conductivity was calculated from the measurements of thermal diffusivity, heat capacity and density. We have also recorded absorption, fluorescence spectra and measured fluorescence lifetimes as a function of the Tm content, we have found a very attractive fluorescence around the eye-safe wavelength of 1.9 mm which corresponds to a 3F4 → 3H6 transition of Tm3+.

  14. Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production

    Energy Technology Data Exchange (ETDEWEB)

    Major, Kyle D., E-mail: kyle.major11@imperial.ac.uk; Lien, Yu-Hung; Polisseni, Claudio; Grandi, Samuele; Kho, Kiang Wei; Clark, Alex S.; Hwang, J.; Hinds, E. A., E-mail: ed.hinds@imperial.ac.uk [Centre for Cold Matter, Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    Dibenzoterrylene (DBT) molecules within a crystalline anthracene matrix show promise as quantum emitters for controlled, single photon production. We present the design and construction of a chamber in which we reproducibly grow doped anthracene crystals of optical quality that are several mm across and a few μm thick. We demonstrate control of the DBT concentration over the range 6–300 parts per trillion and show that these DBT molecules are stable single-photon emitters. We interpret our data with a simple model that provides some information on the vapour pressure of DBT.

  15. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  16. Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission.

    Science.gov (United States)

    Huang, Rui; Wang, Chenguang; Wang, Yue; Zhang, Hongyu

    2018-04-06

    Organic crystals are generally brittle and tend to crack under applied stress. Doped organic crystals are even more brittle because of lattice defects. Herein, the first doped organic crystals 1d@2d, which display elastic bending ability under applied stress, are reported. Moreover, the potential applications of elastic-doped crystals 1d@2d in flexible optoelectronics are impressively demonstrated. The elastic crystals 1d@2d with high quality and large size are crystalized by a simple and unique "self-doping" process, which is a regular solution evaporation of crude product 1d (2,5-dihydro-3,6-bis(octylamino)terephthalate) containing a minute amount of 2d (3,6-bis(octylamino)terephthalate) as the oxidized byproduct. The host 1d is easily crystallized to form elastic crystals but is nonfluorescent, while the guest 2d has poor crystallinity and is highly emissive. The doping approach integrates the advantages of both 1d and 2d, and thus endows doped crystals 1d@2d with good elasticity as well as intense orange fluorescence. Taking these advantages, the application potentials of these doped crystals 1d@2d are evaluated by measuring optical waveguide and amplified spontaneous emission in both the straight and bent states. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spontaneous and stimulated emission in Sm3+-doped YAl3(BO3)4 single crystal

    International Nuclear Information System (INIS)

    Ryba-Romanowski, Witold; Lisiecki, Radosław; Beregi, Elena; Martín, I.R.

    2015-01-01

    Single crystals of YAl 3 (BO 3 ) 4 doped with trivalent samarium were grown by the top-seeded high temperature solution method and their absorption and emission spectra were investigated. Optical pumping into prominent absorption band around 405 nm feeds the 4 G 5/2 metastable level giving rise to intense visible luminescence distributed in several spectral lines with the most intense line around 600 nm characterized by a branching ratio of 0.42 and peak emission cross section of 0.25×10 −20 cm 2 . Optical amplification at 600 nm with a gain coefficient of 2.9 cm −1 was achieved during a pump-and-probe experiment. - Highlights: • YAB:Sm crystal grown by the top-seeded high temperature solution method. • Spectroscopic qualities relevant for visible laser operation. • YAB:Sm single crystal used in a pump-and-probe experiment. • Optical amplification properties of samarium doped YAl 3 (BO 3 ) 4

  18. Ultralow Self-Doping in 2D Hybrid Perovskite Single Crystals

    KAUST Repository

    Peng, Wei

    2017-06-28

    Unintentional self-doping in semiconductors through shallow defects is detrimental to optoelectronic device performance. It adversely affects junction properties and it introduces electronic noise. This is especially acute for solution-processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization. Here, we uncover extremely low self-doping concentrations in single crystals of (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1 (n=1, 2, and 3)—over three orders of magnitude lower than those of typical three-dimensional hybrid perovskites—by analyzing their conductivity behavior. We propose that crystallization of hybrid perovskites containing large organic cations suppresses defect formation and thus favors a low self-doping level. To exemplify the benefits of this effect, we demonstrate extraordinarily high light-detectivity (1013 Jones) in (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1 photoconductors due to the reduced electronic noise, which makes them particularly attractive for the detection of weak light signals. Furthermore, the low self-doping concentration reduces the equilibrium charge carrier concentration in (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1, advantageous in the design of p-i-n heterojunction solar cells by optimizing band alignment and promoting carrier depletion in the intrinsic perovskite layer, thereby enhancing charge extraction.

  19. Antimicrobial activity and second harmonic studies on organic non-centrosymmetric pure and doped ninhydrin single crystals

    Science.gov (United States)

    Prasanyaa, T.; Jayaramakrishnan, V.; Haris, M.

    2013-03-01

    In this paper, we report the successful growth of pure, Cu2+ ions and Cd2+ ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu2+ and Cd2+ ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd2+ and Cu2+ doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus.

  20. Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant

    International Nuclear Information System (INIS)

    Tissue, B.M.; Jia, W.; Lu, L.; Yen, W.M.

    1991-01-01

    We have grown single-crystal fibers of Cr:YAG and Cr,Ca:YAG under oxidizing and reducing conditions by the laser-heated-pedestal-growth method. The Cr:YAG crystals were light green due to Cr 3+ in octahedral sites, while the Cr,Ca:YAG crystals were brown. The presence of the divalent codopant was the dominant factor determining the coloration in these single-crystal fibers, while the oxidizing power of the growth atmosphere had little effect on the coloration. The Cr,Ca:YAG had a broad absorption band centered at 1.03 μm and fluoresced from 1.1 to 1.7 μm, with a room-temperature lifetime of 3.5 μs. The presence of both chromium and a divalent codopant were necessary to create the optically-active center which produces the near-infrared emission. Doping with only Ca 2+ created a different coloration with absorption in the blue and ultraviolet. The coloration in the Cr,Ca:YAG is attributed to Cr 4+ and is produced in as-grown crystals without irradiation or annealing, as has been necessary in previous work

  1. Characterizations of Pr-doped Yb3Al5O12 single crystals for scintillator applications

    Science.gov (United States)

    Yoshida, Yasuki; Shinozaki, Kenji; Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-04-01

    Yb3Al5O12 (YbAG) single crystals doped with different concentrations of Pr were synthesized by the Floating Zone (FZ) method. Then, we evaluated their basic optical and scintillation properties. All the samples showed photoluminescence (PL) with two emission bands appeared approximately 300-500 nm and 550-600 nm due to the charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. A PL decay profile of each sample was approximated by a sum of two exponential decay functions, and the obtained decay times were 1 ns and 3-4 ns. In the scintillation spectra, we observed emission peaks in the ranges from 300 to 400 nm and from 450 to 550 nm for all the samples. The origins of these emissions were attributed to charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. The scintillation decay times became longer with increasing the Pr concentrations. Among the present samples, the 0.1% Pr-doped sample showed the lowest scintillation afterglow level. In addition, pulse height spectrum of 5.5 MeV α-rays was demonstrated using the Pr-doped YbAG, and we confirmed that all the samples showed a full energy deposited peak. Above all, the 0.1% Pr-doped sample showed the highest light yield with a value of 14 ph/MeV under α-rays excitation.

  2. Luminescence properties of Eu3+ doped CdF2 single crystals

    Science.gov (United States)

    Boubekri, H.; Diaf, M.; Guerbous, L.; Jouart, J. P.

    2018-04-01

    This paper reports the photoluminescence properties of Eu3+ doped CdF2 single crystals. The pulled crystals were prepared by use of the Bridgman technique from a vacuum furnace in fluoride atmosphere. Absorption, excitation and emission spectra of the crystal doped with three Eu3+ concentrations (0.02%, 0.1% and 0.6% mol.) were recorded at room temperature. The emission spectra exhibit a strong yellow and red emissions in the spectral range 550-720 nm which are assigned to 5D0 → 7FJ (J = 1, 2, 4) transitions and a weak infrared emission around 816 nm corresponding to 5D0 → 7F6 transition. The magnetic dipole emission (5D0 → 7F1) is the most intense for each Eu3+ concentration. The Judd-Ofelt intensity parameters Ω2, Ω4, Ω6 for 4f-4f transitions of Eu3+ ions were computed from the emission spectra using the 5D0 → 7FJ (J = 1, 2, 4, 6) transitions. Via these phenomenological intensity parameters, the spontaneous emission probabilities, branching ratios, radiative lifetimes, quantum efficiencies and emission cross-sections for the main Eu3+ emitting levels are evaluated.

  3. Scintillation properties of Er-doped Y3Al5O12 single crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Ogino, Hiraku; Fujimoto, Yutaka; Suzuki, Akira; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Yoshikawa, Akira

    2013-01-01

    Er-doped Y 3 Al 5 O 12 single crystals with different Er concentrations of 0.1, 1.0, 10, 30, and 50% were grown by the micro-pulling down method. There were several absorption lines due to the Er 3+ 4f-4f transitions in the transmittance spectra and these lines correspond to the transitions from the ground state of 4 I 15/2 to the excited states. The photo- and radio-luminescence spectra showed Er 3+ 4f-4f emissions. Relative light yield under 5.5 MeV alpha-ray irradiation of Er 0.1%:Y 3 Al 5 O 12 was estimated to be 63% of that of Bi 4 Ge 3 O 12 . -- Highlights: •Er doped Y 3 Al 5 O 12 single crystal scintillators were grown with different Er concentrations. •Optical properties associated with 4f-4f transition were evaluated. •Radio luminescence spectra measurements were performed under 5.5 MeV alpha-ray irradiation. •The highest light yield was estimated to be 63% of that of Bi 4 Ge 3 O 12 under 5.5 MeV alpha-ray irradiation

  4. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    Science.gov (United States)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  5. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  6. Crystal growth and scintillation properties of Er-doped Lu3Al5O12 single crystals

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Fujimoto, Yutaka; Yanagida, Takayuki; Totsuka, Daisuke; Kurosawa, Shunsuke; Futami, Yoshisuke; Yokota, Yuui; Chani, Valery; Yoshikawa, Akira

    2012-01-01

    Er-doped Lu 3 Al 5 O 12 (Er:LuAG) single crystalline scintillators with different Er concentrations of 0.1, 0.5, 1, and 3% were grown by the micro-pulling-down (μ-PD) method. The grown crystals were composed of single-phase material, as demonstrated by powder X-ray diffraction (XRD). The radioluminescence spectra measured under 241 Am α-ray excitation indicated host emission at approximately 350 nm and Er 3+ 4f-4f emissions. According to the pulse height spectra recorded under γ-ray irradiation, the 0.5% Er:LuAG exhibited the highest peak channel among the samples. The γ-ray excited decay time profiles were well fitted by the two-component exponential approximation (0.8 μs and 6-10 μs).

  7. Coloration dependence in the thermoluminescence properties of the double doped NaCl single crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Sanchez-Mejorada, G.; Gelover-Santiago, A.L.; Frias, D.

    2006-01-01

    In this work the behaviour of calcium manganese doped NaCl single crystals under gamma irradiation is reported. Various single crystals of NaCl doped with Ca and Mn have been irradiated at different doses with ionising radiation. The production of defects has been correlated to the increase in the intensity of the thermo luminescent glow curve as a function of doses. The glow curves intensity as a function of doses shows the potential use of these materials as dosimeters. Optical properties of such crystals after irradiation with gamma rays have also been studied; results have shown their potentiality as a good detector and optical store memory devices. Since the creations of colour centres by photons with energy less than the band gap energy has been detected also in ns 2 -ion doped alkali halides. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  9. Electron paramagnetic resonance in myoglobin single crystals doped with Cu(II) : conformational changes

    International Nuclear Information System (INIS)

    Nascimento, O.R.

    1976-03-01

    Single crystals of sperm whale met-Myoglobin were doped with Cu (II) by immersion in a saturaded solution of NH 3 (SO 4 ) containing diluted Cu (SO 4 ).Two isotropic EPR spectra with different parameters and three anisotropic EPR spectra corresponding to three distinct types of Cu(II) : Mb complexes were identified. A fitting of the angular variation of the EPR spectrum of one of the complexes named here Cu(II)A : Mb was done using a spin Hamiltonian with axial symmetry calculated up to second order which gave the EPR hyperfine parameters.A study of the thermal variation of the complex Cu (II)A : Mb EPR spectrum in the temperature range of 25 0 C to 55 0 C allowed an identification of a conformational variation of the molecule the spectrum evolved from the anisotropic to isotropic spectrum with different parameters. A model of the Cu(II)A : Mb complex is proposed to explain the conformational change of the molecule by means of EPR spectra before and after thermal treatment. The isotropic spectrum obtained with the crystal at 55 0 C presents the EPR parameters very similar to the same parameters obtained with the Cu (II) : Mb complex in aqueous solution at 77 0 K, whereas the isotropic spectra parameters obtained with the dried crystal are quite different. It was possible to identify two different tertiary structures of the myoglobin molecule : one corresponding to the molecule in the crystal at 55 0 C and other to the dry crystal. A slight difference in the crystalline and solution structure of the myoglobin mollecule is observed. (Author) [pt

  10. Electric field influence on exciton absorption of Er doped and undoped InSe single crystals

    International Nuclear Information System (INIS)

    Guerbulak, B; Kundakci, M; Ates, A; Yildirim, M

    2007-01-01

    Undoped InSe and Er doped InSe (InSe:Er) single crystals were grown by using the Stockbarger method. Ingots had no cracks and voids on the surface. The absorption measurements were carried out in InSe and InSe:Er samples for U=0 and U=30 V in the temperature range 10-320 K with a step of 10 K. Electric field effects on excitons are observed in InSe and InSe:Er single crystals. The absorption edge shifted towards longer wavelengths and decreased intensity in absorption spectra under an electric field E≅5.9 kV cm -1 . The applied electric field caused a shifting and a decreasing of intensity in the absorption spectra. The shifting of the absorption edge can be explained on the basis of the Franz-Keldysh effect (FKE) or thermal heating of the sample under the electric field. At 10 and 320 K, the first exciton energies for InSe were calculated as 1.336 and 1.291 eV for zero voltage and 1.331 and 1.280 eV for electric field and InSe:Er as 1.329 and 1.251 eV for zero voltage and 1.318 and 1.248 eV for electric field, respectively

  11. Enhancement of the point defect pinning effect in Mo-doped Bi2212 single crystals of reduced anisotropy

    CERN Document Server

    Han, S H; Dai, Y; Zhang, Y; Zhang, H; Zhao, Y

    2002-01-01

    High quality Bi sub 2 Sr sub 2 CaCu sub 2 sub - sub x Mo sub x O sub y (x = 0, 0.01 and 0.02) single crystals have been grown by a self-flux method in a horizontal temperature gradient and their flux pinning and irreversibility behaviour have been investigated. The irreversibility lines of the undoped and Mo-doped Bi2212 crystals have been greatly improved by reducing the anisotropy parameter gamma. However, this improvement is much more pronounced for Mo-doped crystals than for the undoped ones. The peak effect of magnetization loops also changes with both Mo-doping and gamma. The results provide strong evidence that the point defect pinning served by Mo is greatly enhanced when the anisotropy of the system is reduced.

  12. Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals

    International Nuclear Information System (INIS)

    Sugimoto, A.; Kashiwaya, S.; Eisaki, H.; Yamaguchi, H.; Oka, K.; Kashiwaya, H.; Tsuchiura, H.; Tanaka, Y.

    2005-01-01

    The correlation between nanometer-size electronic states and surface structure is investigated by scanning tunneling microscopy/spectroscopy (STM/S) on Pb-doped Bi 2-x Pb x Sr 2 CaCu2O 8+y (Pb-Bi-2212) single crystals. The advantage of the Pb-Bi-2212 samples is that the modulation structure can be totally or locally suppressed depending on the Pb contents and annealing conditions. The superconducting gap (Δ) distribution on modulated Pb-Bi-2212 samples showed the lack of correlation with modulation structure except a slight reduction of superconducting island size for the b-axis direction. On the other hand, the optimal doped Pb-Bi-2212 (x = 0.6) samples obtained by reduced-annealing showed totally non-modulated structure in topography, however, the spatial distribution of Δ still showed inhomogeneity of which features were quite similar to those of modulated samples. These results suggest that the modulation structure is not the dominant origin of inhomogeneity although it modifies the streaky Δ structure sub-dominantly. From the gap structure variation around the border of narrow gap and broad gap regions, a trend of the coexistence of two separated phases i.e., superconducting phase and pseudogap like phase, is detected

  13. Optical spectroscopy of Eu3+ ions doped in KLu(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Koubaa, T.; Dammak, M.; Pujol, M.C.; Aguiló, M.; Díaz, F.

    2015-01-01

    Europium single doped potassium lutetium tungstate Eu 3+ :KLu(WO 4 ) 2 single crystals have been grown with the top seeded solution growth slow cooling method. Their absorption spectra are studied in detail for principal light polarizations, E||N p , N m and N g at room and low temperatures. The absorption oscillator strengths parameters are calculated by means of the theory of f–f transition intensities for systems with anomalously strong configuration interaction and by Judd–Ofelt theory. The Ω t (t=2, 4, 6) intensity parameters, and the {O dk , O ck , Δ d , Δ c1 and Δ c2 } (k=1, 2, 3) ASCI parameters are calculated. The radiative transition rates A R , radiative lifetimes τ R , and fluorescent branching ratios β R associated with 5 D 0 – 7 F J transitions of Eu 3+ were determined. The calculated decay times are discussed and compared with experimental values. - Highlights: • Absorption spectra of Eu:KLuW are investigated with respect to principal light polarizations. • Spectroscopic properties of Eu:KLuW are modeled within conventional Judd–Ofelt and (ASCI) theories. • 5 D 0 multiplet shows the contribution of a NR processes and an ET between the Eu 3+ ions. • It is suggested that the Eu 3+ :KLuW is a potential host material for optical applications.

  14. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  15. Optical parameters and dispersion behavior of potassium magnesium chloride sulfate single crystals doped with Co+2 ions.

    Science.gov (United States)

    Abu El-Fadl, A; Abd-Elsalam, A M

    2018-05-05

    Single crystals of potassium magnesium chloride sulfate (KMCS) doped with cobalt ions were grown by slow cooling method. Powder XRD study confirmed the monoclinic structure of the grown crystals. The functional group vibrations were checked through FTIR spectroscopy measurements. In optical studies, the absorbance behavior of the crystals and their optical energy gap were established by Tauc plot. The refractive index, the extinction coefficient and other optical constants were calculated for the grown crystals. The normal dispersion of the refractive index was analyzed according to single oscillator Sellmeier's model. The Urbach's rule was applied to analyze the localized states density in the forbidden gap. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Growth and optical properties of RE-doped ternary rubidium lead chloride single crystals

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Nitsch, Karel; Babin, Vladimir; Šulc, J.; Jelínková, H.; Yokota, Y.; Yoshikawa, A.; Nikl, Martin

    2013-01-01

    Roč. 36, č. 2 (2013), s. 214-220 ISSN 0925- 3467 R&D Projects: GA MŠk LH12150 Institutional support: RVO:68378271 Keywords : rubidium lead chloride * crystal growth * micro-pulling-down method * rare earth doping * luminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.075, year: 2013 http://www.sciencedirect.com/science/article/pii/S0925346713004710

  17. Sensitivity-enhanced Tm3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on upconversion emissions

    Science.gov (United States)

    Yu, Lu; Ye, Linhua; Bao, Renjie; Zhang, Xianwei; Wang, Li-Gang

    2018-03-01

    Optical thermometry based on Y3Al5O12 (YAG) single crystal optical fiber with end Tm3+/Yb3+ co-doped is presented. The YAG crystal fiber with end Tm3+/Yb3+ co-doped was grown by laser heated pedestal growth (LHPG) method. Under a 976 nm laser diode excitation, the upconversion (UC) emissions, originating from 3F2,3 →3H6 and 3H4 →3H6 transitions of Tm3+ ions, were investigated in the temperature range from 333 K to 733 K. Interestingly, the UC emission intensity of 3F2,3 →3H6 transition was significantly enhanced with increase of temperature, as compared with the other Tm3+/Yb3+ co-doped materials. The temperature dependence of fluorescence intensity ratio (FIR) of these two emission bands (3F2,3/3H4 →3H6) suggests that this doped YAG crystal fiber can be used as a highly sensitive optical thermal probe, which demonstrates a high absolute sensitivity with the maximum value of 0.021 K-1 at 733 K. In addition, due to the compact structure, strong mechanical strength and high thermal stability, such thermal probe may be a more promising candidate for temperature sensor with a high spatial resolution.

  18. Magnetic order and lattice distortion in Rh- and Cu-doped BaFe2As2 single crystals

    Science.gov (United States)

    Kreyssig, A.; Kim, M. G.; Nandi, S.; Tian, W.; Zarestky, J.; Thaler, A.; Ni, N.; Bud'Ko, S. L.; Canfield, P. C.; McQueeney, R. J.; Goldman, A. I.

    2010-03-01

    Recent investigations of superconducting Co-doped BaFe2As2 have highlighted the interplay between superconductivity, magnetism and structure. Here we report on the antiferromagnetic order, lattice distortion and their response to superconductivity in Rh-doped BaFe2As2 and compare the behavior with non-superconducting Cu-doped BaFe2As2 single crystals. Results of the neutron scattering experiment performed at HB1A, HFIR, Oak Ridge, are correlated with high-resolution x-ray diffraction, resistance and magnetization measurements. The magnetic and structural phase transitions are similarly suppressed by the different dopings and the temperature dependencies of the order parameters are comparable, whereas only the Rh-doped sample shows a reduction of the antiferromagnetically ordered Fe moment in the superconducting state as reported for the Co-doped series. -- The work at the Ames Laboratory was supported by the US DOE, office of science, under contract No. DE-AC02-07CH11358.

  19. Single crystal EPR study of VO(II)-doped cadmium potassium ...

    Indian Academy of Sciences (India)

    A good single crystal of the proper axis is selected and mounted on to the goniometer with a particular axis (e.g. a axis) and is inserted into the EPR cavity for room temperature measurements. A few EPR spectra, at two different orientation of the crystal in the bc plane, recorded at room temperature are shown in figure 1.

  20. Influence of the ytterbium doping technique on the luminescent properties of ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2015-02-15

    Luminescent properties of the ytterbium doped zinc selenide crystals with 0.00–8.00 at % concentrations of the Yb impurity within the temperature interval from 6 K to 300 K were studied. Ytterbium doping was performed within three technological processes: during the growth by chemical vapor transport method and by thermal diffusion from the Bi+Yb or Zn+Yb melt. The influence of ytterbium impurity concentration on spectral position and intensity of the various photoluminescent bands in ZnSe emission spectra in visible and infrared range is analyzed. A tendency of ytterbium ions to form associates with background defects was demonstrated. A strong dependence between ytterbium influence on the zinc selenide emission spectra and concentration of selenium vacancies was shown. - Highlights: • Co-doping of ZnSe crystals with Yb and Bi or I impurities was studied. • Influence of Yb concentration on ZnSe emission spectra in visible and infrared range was analyzed. • Tendency of Yb to form associates with background defects was discussed. • Impact of V{sub Se} on formation of Yb-based emission centers was demonstrated.

  1. Electrodeposition study on a single-crystal titanium dioxide electrode : platinum on a niobium-doped titanium dioxide(110) electrode

    OpenAIRE

    Takakusagi, Satoru; Ogawa, Takafumi; Uehara, Hiromitsu; Ariga, Hiroko; Shimizu, Ken-ichi; Asakura, Kiyotaka

    2014-01-01

    Pt was successfully electrodeposited on a Nb-doped TiO2(110) electrode from a solution of 1 mM K-2[PtCl4] and 50 mM H2SO4 using single-pulse chronoamperometry. The morphology of the deposited Pt nanoparticles was sensitive to the deposition potential and holding time. A novel method for the preparation of metal particles on a single-crystal TiO2 surface in a controlled manner has been proposed.

  2. Thermoelectric and magnetic properties of Cr-doped single crystal Bi2Se3 - Search for energy filtering

    Science.gov (United States)

    Cermak, P.; Ruleova, P.; Holy, V.; Prokleska, J.; Kucek, V.; Palka, K.; Benes, L.; Drasar, C.

    2018-02-01

    Thermoelectric effects are one of the promising ways to utilize waste heat. Novel approaches have appeared in recent decades aiming to enhance thermoelectric conversion. The theory of energy filtering of free carriers by inclusions is among the latest developed methods. Although the basic idea is clear, experimental evidence of this phenomenon is rare. Based on this concept, we searched suitable systems with stable structures showing energy filtering. Here, we report on the anomalous behavior of Cr-doped single-crystal Bi2Se3 that indicates energy filtering. The solubility of chromium in Bi2Se3 was studied, which is the key parameter in the formation process of inclusions. We present recent results on the effect of Cr-doping on the transport coefficients on a wide set of single crystalline samples. Magnetic measurements were used to corroborate the conclusions drawn from the transport and X-ray measurements.

  3. Structural Characterization of Doped GaSb Single Crystals by X-ray Topography

    Energy Technology Data Exchange (ETDEWEB)

    Honnicke, M.G.; Mazzaro, I.; Manica, J.; Benine, E.; M da Costa, E.; Dedavid, B. A.; Cusatis, C.; Huang, X. R.

    2009-09-13

    We characterized GaSb single crystals containing different dopants (Al, Cd and Te), grown by the Czochralski method, by x-ray topography and high angular resolution x-ray diffraction. Lang topography revealed dislocations parallel and perpendicular to the crystal's surface. Double-crystal GaSb 333 x-ray topography shows dislocations and vertical stripes than can be associated with circular growth bands. We compared our high-angular resolution x-ray diffraction measurements (rocking curves) with the findings predicted by the dynamical theory of x-ray diffraction. These measurements show that our GaSb single crystals have a relative variation in the lattice parameter ({Delta}d/d) on the order of 10{sup -5}. This means that they can be used as electronic devices (detectors, for example) and as x-ray monochromators.

  4. EPR and optical absorption studies of VO2+ doped L-alanine (C3H7NO2) single crystals

    International Nuclear Information System (INIS)

    Biyik, Recep

    2009-01-01

    VO 2+ doped L-alanine (C 3 H 7 NO 2 ) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO 2+ line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO 2+ complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  5. Optical and structural characterization of GaSb and Te-doped GaSb single crystals

    International Nuclear Information System (INIS)

    Tirado-Mejia, L.; Villada, J.A.; Rios, M. de los; Penafiel, J.A.; Fonthal, G.; Espinosa-Arbelaez, D.G.; Ariza-Calderon, H.; Rodriguez-Garcia, M.E.

    2008-01-01

    Optical and structural properties of GaSb and Te-doped GaSb single crystals are reported herein. Utilizing the photoreflectance technique, the band gap energy for doped samples was obtained at 0.814 eV. Photoluminescence (PL) spectra showed a peak at 0.748 eV that according to this research, belongs to electronic states of pure GaSb and not to the longitudinal optical (LO) phonon replica as has been reported by other authors. Analysis of the full width at half maximum (FWHM) values of X-ray diffraction, as well as micro-Raman peaks showed that the inclusion of Te decreases the crystalline quality

  6. Growth and characterization of indium doped silicon single crystals at industrial scale

    Science.gov (United States)

    Haringer, Stephan; Giannattasio, Armando; Alt, Hans Christian; Scala, Roberto

    2016-03-01

    Indium is becoming one of the most important dopant species for silicon crystals used in photovoltaics. In this work we have investigated the behavior of indium in silicon crystals grown by the Czochralski pulling process. The experiments were performed by growing 200 mm crystals, which is a standard diameter for large volume production, thus the data reported here are of technological interest for the large scale production of indium doped p-type silicon. The indium segregation coefficient and the evaporation rate from the silicon melt have been calculated to be 5 × 10-4 ± 3% and 1.6 × 10-4 cm·s-1, respectively. In contrast to previous works the indium was introduced in liquid phase and the efficiency was compared with that deduced by other authors, using different methods. In addition, the percentage of electrically active indium at different dopant concentrations is calculated and compared with the carrier concentration at room temperature, measured by four-point bulk method.

  7. Crystal growth and temperature dependence of light output of Ce-doped (Gd, La, Y)2Si2O7 single crystals

    Science.gov (United States)

    Horiai, Takahiko; Kurosawa, Shunsuke; Murakami, Rikito; Shoji, Yasuhiro; Pejchal, Jan; Yamaji, Akihiro; Ohashi, Yuji; Kamada, Kei; Yokota, Yuui; Ishizu, Tomohiro; Ohishi, Yasuo; Nakaya, Taisuke; Yoshikawa, Akira

    2018-03-01

    Ce-doped (Gd, La)2Si2O7 scintillation crystals are expected to be used as gamma-ray detectors for high temperature measurement. To realize scintillators for high temperature environment, we investigated (Ce0.01 Gd0.59-x La0.40 Yx)2Si2O7 (x = 0.00, 0.05, 0.10, 0.15) single crystals grown by the micro-pulling-down method. The results showed that a 5% Y-admixed Ce-doped (Gd, La)2Si2O7 scintillator can yield higher light output when compared with Y-free Ce-doped (Gd, La)2Si2O7 scintillator. The light outputs at 25°C and 175°C were determined to be ∼43,000 and ∼40,000 photons/MeV, respectively. Moreover, 1 inch size 5% Y-admixed Ce-doped (Gd, La)2Si2O7 scintillator was grown by the Czochralski technique, and its light output at 175°C kept the value of around 95% of the value at 25°C.

  8. Magnetoresistance of untwinned YBa(2)Cu(3)O(y) single crystals in a wide range of doping: anomalous hole-doping dependence of the coherence length.

    Science.gov (United States)

    Ando, Yoichi; Segawa, Kouji

    2002-04-22

    Magnetoresistance (MR) in the a-axis resistivity of untwinned YBa(2)Cu(3)O(y) single crystals is measured for a wide range of doping ( y = 6.45-7.0). The y dependence of the in-plane coherence length xi(ab) estimated from the fluctuation magnetoconductance indicates that the superconductivity is anomalously weakened in the 60-K phase; this observation, together with the Hall coefficient and the a-axis thermopower data which suggest the hole doping to be 12% for y approximately equal to 6.65, gives evidence that the origin of the 60-K plateau is the 1/8 anomaly. At high temperatures, the normal-state MR data show signatures of the Zeeman effect on the pseudogap in underdoped samples.

  9. Crystal growth and optical properties of indium doped LiCaAlF.sub.6./sub. scintillator single crystals

    Czech Academy of Sciences Publication Activity Database

    Tanaka, Ch.; Yokota, Y.; Kurosawa, S.; Yamaji, A.; Jarý, Vítězslav; Babin, Vladimir; Pejchal, Jan; Ohashi, Y.; Kamada, K.; Nikl, Martin

    2017-01-01

    Roč. 65, Mar (2017), s. 69-72 ISSN 0925- 3467 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : scintillator * LiCaAlF6 * single crystal * Indium Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  10. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Yanagida, Satoko; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Transparent ceramic Ce 0.5% doped Lu 3 Al 5 O 12 (LuAG) scintillator grown by the sintering method and single crystalline Ce doped LuAG grown by the Czochralski method are prepared. They are cut to the physical dimensions 4 × 4 × 2 mm 3 . Their transmittance and radio luminescence spectra are evaluated. They are both transmissive in wavelength longer than 500 nm and intense Ce 3+ 5d–4f emission appears around 520 nm. When 137 Cs γ-ray is irradiated, 662 keV photo-absorption peaks are clearly observed in each sample. The transparent ceramic one shows higher light yield than that of the single crystalline one. The absolute light yield of the ceramic sample is turned out to be 14800 ± 1500 ph/MeV. The decay time constants are evaluated under pulse X-ray excitation. The main component of the decay time of ceramic and single crystalline one are determined as 37 and 46 ns, respectively.

  11. Thermoluminescent properties of undoped and Ce-doped lutetium orthosilicate and yttrium orthosilicate single crystals and single crystalline films scintillators

    Czech Academy of Sciences Publication Activity Database

    Twardak, A.; Bilski, B.; Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Mandowska, E.; Mandowski, A.; Sidletskiy, O.; Mareš, Jiří A.

    2014-01-01

    Roč. 61, č. 1 (2014), s. 276-281 ISSN 0018-9499 Institutional support: RVO:68378271 Keywords : LSO * single crystalline films * single crystals * thermoluminescence * YSO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2014

  12. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    Science.gov (United States)

    Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.

    2013-10-01

    Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.

  13. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Yuui, E-mail: y-yokota@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Nikl, Martin [Institute of Physics, Academy of Sciences of the Czech Republic/6253, Prague (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan)

    2010-03-15

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce{sup 3+} ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce{sup 3+} 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  14. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    International Nuclear Information System (INIS)

    Yokota, Yuui; Yanagida, Takayuki; Fujimoto, Yutaka; Nikl, Martin; Yoshikawa, Akira

    2010-01-01

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce 3+ ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce 3+ 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  15. Single crystal growth of pure and Nd-doped Y2O3 by flotating zone method with Xe arc lamp imaging furnace

    International Nuclear Information System (INIS)

    Tsuiki, H.; Kitazawa, K.; Fueki, K.; Masumoto, T.; Shiroki, K.

    1980-01-01

    Single crystals of undoped and Nd-doped yttrium oxide were grown by the floating zone method with a Xe arc lamp imaging furnace. The crystals were grown in the and directions. Transparent and subgrain-free single crystals were obtained at a growth rate of 30-60 mm/h for the undoped yttrium oxide. Facets of the cubic [100] and [211] were observed though the high temperature phase of the crystal is hexagonal. Dislocation densities of undoped yttrium oxide are given. (orig./WE)

  16. Crystal Growth and Spectroscopic characterization of chloride and bromide single crystals doped with rare earth ions for the mid infrared amplification

    International Nuclear Information System (INIS)

    Ferrier, A.

    2007-12-01

    This work is devoted to the study of low phonon energy crystals doped with rare earth ions for the realisation of diode-pumped solid state laser sources emitting in the middle infrared. For that purpose, pure and (Er 3+ or Pr 3+ ) doped single crystals of KPb 2 Cl 5 and Tl 3 PbX 5 (X=Cl, Br) have been elaborated by using the Bridgman-Stockbarger method. These non-hygroscopic and congruent melting materials have been found to exhibit phase transitions during the cooling process but which do not limit the elaboration of centimeter-size single crystals. The spectroscopic study of the Er 3+ doped compounds has been performed both at high and low temperatures. It thus appears that these systems present long fluorescence lifetimes and relatively large gain cross sections favorable for a laser emission around 4.5μm. It has been demonstrated further that the up-conversion processes resulting from excited-state absorptions of the Er 3+ ions around the pumping wavelength as well as the energy transfer processes between the Er 3+ ions do not lead to significant optical losses for the laser system. The derived parameters then have been used to build a model and simulate the laser operation of the system following diode pumping around 800 nm. In the end, the spectroscopic study of the Pr 3+ ion in various materials has allowed us to evidence large emission cross sections associated with long fluorescence lifetimes, now favorable to a laser emission around 5μm. (author)

  17. Nd-doped Lu3Al5O12 single-crystal scintillator for X-ray imaging

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Fujimoto, Yutaka; Yanagida, Takayuki; Totsuka, Daisuke; Chani, Valery; Yokota, Yuui; Yoshikawa, Akira

    2013-01-01

    The optical and scintillation properties of Nd-doped Lu 3 Al 5 O 12 (Nd:LuAG) crystals grown by the Czochralski (Cz) method were examined under X-ray excitation. Their applicability for X-ray imaging was also inspected. The radioluminescence spectrum induced by X-rays showed a broad host emission and sharp Nd 3+ 4f–4f emission peaks in the UV to visible wavelengths. The light output current of the Nd:LuAG was 85% of that of a standard CdWO 4 X-ray scintillator. The afterglow value measured 20 ms after X-ray irradiation was 1.5%. An X-ray radiographic image was successfully obtained using the Nd:LuAG scintillator coupled with the charge coupled device (CCD) photodetector. -- Highlights: ► The Nd:LuAG single crystal was produced to perform X-ray imaging test. ► The sample exhibited the 85% light output current of the standard CdWO 4 . ► The afterglow intensity of the sample was very high compared with the CdWO 4 . ► The X-ray radiographic image was obtained from the Nd:LuAG single crystal

  18. Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators

    International Nuclear Information System (INIS)

    Cherepy, Nerine J.; Kuntz, Joshua D.; Tillotson, Thomas M.; Speaks, Derrick T.; Payne, Stephen A.; Chai, B.H.T.; Porter-Chapman, Yetta; Derenzo, Stephen E.

    2007-01-01

    For rapid, unambiguous isotope identification, scintillator detectors providing high-resolution gamma ray spectra are required. We have fabricated Lutetium Aluminum Garnet (LuAG) using transparent ceramic processing, and report a 2-mm thick ceramic exhibiting 75% transmission and light yield comparable to single-crystal LuAG:Ce. The LuAG:Ce luminescence peaks at 550 nm, providing an excellent match for Silicon Photodiode readout. LuAG is dense (6.67 g/cm 3 ) and impervious to water, exhibits good proportionality and a fast decay (∼40 ns), and we measure light yields in excess of 20,000 photons/MeV

  19. Room-temperature ferromagnetism with high magnetic moment in Cu-doped AlN single crystal whiskers

    Science.gov (United States)

    Jiang, Liang-Bao; Liu, Yu; Zuo, Si-Bin; Wang, Wen-Jun

    2015-02-01

    Ferromagnetism is investigated in high-quality Cu-doped AlN single crystal whiskers. The whiskers exhibit room-temperature ferromagnetism with a magnetic moment close to the results from first-principles calculations. High crystallinity and low Cu concentrations are found to be indispensable for high magnetic moments. The difference between the experimental and theoretical moment values is explored in terms of the influence of nitrogen vacancies. The calculated results demonstrate that nitrogen vacancies can reduce the magnetic moments of Cu atom. Project supported by the National Basic Research Program of China (Grant No. 2013CB932901), the National Natural Science Foundation of China (Grant Nos. 51372267, 51210105026, and 51172270), the Funds from the Chinese Academy of Sciences, the International Centre for Diffraction Data, USA (2013 Ludo Frevel Crystallography Scholarship Award), and the Funds from the Ministry of Education of China (2012 Academic Scholarship Award for Doctoral Candidates).

  20. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics

    CERN Document Server

    Xu, X; Moretti, F; Pauwels, K; Lecoq, P; Auffray, E; Dujardin, C

    2014-01-01

    Under a stationary stable regime undoped and Ce-doped LuAG (Lu3Al5O12) single-crystal fibers were grown by a micro-pulling-down technique. The meniscus length corresponding to the equilibrium state was <200 mu m. Fluctuations in the fiber composition and pulling rate were found to have a significant effect on the properties of the fibers grown. A great improvement in the performance was found in samples containing low Ce concentrations (<= 0.1 at.\\%) and produced using pulling rates <0.5 mm min(-1). Under such conditions a good lateral surface fiber quality was obtained and light propagation was significantly improved. Conversely, a high Ce concentration and a high pulling rate resulted in a strong degradation of the fiber surface quality causing defects to appear and a decrease in light output. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Effects of Na co-doping on optical and scintillation properties of Eu:LiCaAlF.sub.6./sub. scintillator single crystals

    Czech Academy of Sciences Publication Activity Database

    Tanaka, Ch.; Yokota, Y.; Kurosawa, S.; Yamaji, A.; Ohashi, Y.; Kamada, K.; Nikl, Martin; Yoshikawa, A.

    2017-01-01

    Roč. 468, Jun (2017), s. 399-402 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : doping * single crystal growth * lithium compounds * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  2. Heavy doping of CdTe single crystals by Cr ion implantation

    Science.gov (United States)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  3. Crystal growth and scintillation properties of Er-doped Lu{sub 3}Al{sub 5}O{sub 12} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Makoto, E-mail: makoto.sugiyama@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fujimoto, Yutaka [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Totsuka, Daisuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co. Ltd., 810-5 Nobe-cho Tatebayashi Gunma (Japan); Kurosawa, Shunsuke; Futami, Yoshisuke; Yokota, Yuui; Chani, Valery [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-02-01

    Er-doped Lu{sub 3}Al{sub 5}O{sub 12} (Er:LuAG) single crystalline scintillators with different Er concentrations of 0.1, 0.5, 1, and 3% were grown by the micro-pulling-down ({mu}-PD) method. The grown crystals were composed of single-phase material, as demonstrated by powder X-ray diffraction (XRD). The radioluminescence spectra measured under {sup 241}Am {alpha}-ray excitation indicated host emission at approximately 350 nm and Er{sup 3+} 4f-4f emissions. According to the pulse height spectra recorded under {gamma}-ray irradiation, the 0.5% Er:LuAG exhibited the highest peak channel among the samples. The {gamma}-ray excited decay time profiles were well fitted by the two-component exponential approximation (0.8 {mu}s and 6-10 {mu}s).

  4. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  5. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Carnall, W.T.; Goodman, G.L.; Rajnak, K.; Rana, R.S.

    1988-02-01

    The optical spectra of the lanthanides doped into single crystal LaF/sub 3/ have been interpreted in terms of transitions within 4f/sup N/ configurations. Energy-level calculations were based on a simultaneous diagonalization of the free-ion and crystal-field matrices using an approximate model with C/sub 2v/ site symmetry instead of the actual C/sub 2/ symmetry. Excellent correlations between experimental transition energies and the computed level structures were obtained; predicted levels are given for Pm/sup 3 +/. Previously unpublished experimental results for Nd/sup 3 +/ and Sm/sup 3 +/:LaF/sub 3/ are included in the tabulations. The spectroscopic data for each ion were analyzed independently, then the parameters of the effective-operator model were intercompared and systematic trends were identified. Since many of the 4f/sup N/ configurations extend well into the vacuum ultraviolet region, and thus beyond any presently available experimental observations, some of the free-ion (atomic) parameters were found to be only approximately defined by the accessible levels. However, the crystal-field parameters seem for the most part to be well established by fits to data at low energies. A new chart of the lanthanide ion 4f/sup N/ configuration energy level structures is presented. It was generated by including all of the computed crystal-field levels in the 0-50000 cm/sup -1/ range. In most cases, experimental analyses of individual ions extended to /approximately/40000 cm/sup /minus/1/. 94 refs., 23 figs., 10 tabs.

  6. GROWTH AND CHARACTERIZATION OF Eu DOPED GaSe SINGLE CRYSTALS BY X-RAY DIFFRACTION AND RAMAN SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Dumitru UNTILA

    2017-08-01

    Full Text Available GaSe single crystals doped with Eu (0.025, 0.05, 0.5, 1.0 and 3.0 at% were grown by Bridgman method using Ga, Se and Eu elementary components. The crystalline structure and vibration modes of the GaSe: Eu crystals lattice were studied by X-ray diffraction and Raman spectroscopy. Eu atoms arranged in the van der Waals space of GaSe: Eu crystals form Eu-Se valence bonds and restructure hexagonal lattice of GaSe leading to EuGa2Se4 crystallites formation. Defects generated by EuGa2Se4 crystallites lead to broadening and shifting of single phonon peaks present in Raman spectra towards shorter wavenumbers, and at the same time, activate the longitudinal optical vibrations of EuSe sublattice.Keywords: GaSe, doping, Eu, XRD, Raman. CREȘTEREA ȘI CARACTERIZAREA MONOCRISTALELOR DE GaSe: Eu PRIN DIFRACȚIA RAZELOR X ȘI SPECTROSCOPIA RAMANMonocristalele de GaSe nedopate și dopate cu Eu în cantități de 0.025, 0.05, 0.5, 1.0 și 3.0% at. au fost crescute prin metoda Bridgman din componente elementare Ga, Se și Eu. Structura cristalină și modelele de vibrație a rețelei crista­lelor de GaSe:Eu au fost studiate prin difracția razelor X și spectroscopia Raman. Atomii de Eu localizați în spaţiul van der Waals al cristalelor de GaSe:Eu creează legături de valență Eu-Se și restructurează rețeaua hexagonală a compusului GaSe, conducând la formarea cristalitelor de EuGa2Se4. Defectele generate de cristalitele de EuGa2Se4 duc la lărgirea și deplasarea benzilor monofononice de difuzie Raman spre numere de undă mici și, totodată, activează vibraţiile optice longitudinale ale subreţelei EuSe.Cuvinte-cheie: GaSe, dopare, Eu, XRD, Raman.

  7. Synthesis and optical properties of Tb{sup 3+} doped CdF{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Boubekri, H. [Laser Department, Nuclear Technique Division, Nuclear Research Center of Algiers, 02 Bd Frantz Fanon, 16000 Algiers (Algeria); Laboratory of Laser Physics, Optical Spectroscopy and Optoelectronics (LAPLASO), Badji Mokhtar Annaba University, PO Box 12, 23000 Annaba (Algeria); Diaf, M., E-mail: diafma@yahoo.fr [Laboratory of Laser Physics, Optical Spectroscopy and Optoelectronics (LAPLASO), Badji Mokhtar Annaba University, PO Box 12, 23000 Annaba (Algeria); Labbaci, K. [Laboratory of Laser Physics, Optical Spectroscopy and Optoelectronics (LAPLASO), Badji Mokhtar Annaba University, PO Box 12, 23000 Annaba (Algeria); Guerbous, L. [Laser Department, Nuclear Technique Division, Nuclear Research Center of Algiers, 02 Bd Frantz Fanon, 16000 Algiers (Algeria); Duvaut, T.; Jouart, J.P. [ECATHERM/GRESPI, Reims Champagne-Ardenne University (France)

    2013-10-25

    Highlights: •Terbium doped CdF{sub 2} single crystals grown by Bridgman technique. •Absorption, excitation and emission spectra recorded at room temperature. •Spectroscopic properties investigated by use of the Judd–Ofelt theory. •Transition probability, radiative lifetimes, quantum efficiency and branching ratios are calculated. •Emission cross-section is measured by use of Füchtbauer–Ladenburg theory. -- Abstract: This paper reports the optical analysis of Tb{sup 3+} doped CdF{sub 2} single crystals. The pulled crystals were prepared by use of the Bridgman technique from a vacuum furnace in fluoride atmosphere. Absorption, photoluminescence excitation and emission spectra were recorded at room temperature. The Judd–Ofelt (JO) intensity parameters Ω{sub 2}, Ω{sub 4} and Ω{sub 6} for 4f–4f transitions of Tb{sup 3+} ions were computed from the optical absorption spectra using UV, visible and near infrared transitions. These parameters were then used to calculate the radiative transition probabilities (A{sub JJ′}), branching ratios (β{sub JJ′}) and radiative lifetimes of the two main laser emitting levels {sup 5}D{sub 3} and {sup 5}D{sub 4} of Tb{sup 3+} ions. The obtained spectroscopic properties are compared to those of Tb{sup 3+} transitions in other hosts. The excitation spectrum in the UV–Visible spectral range is very close to the absorption spectrum indicating that all observed absorption levels can excite the green emission of Tb{sup 3+} corresponding to {sup 5}D{sub 4} → {sup 7}F{sub 5} transition. The emission spectra exhibit a weak blue emission and a strong green emission in the spectral range 370–460 nm and 478–612 nm which are assigned to {sup 5}D{sub 3} → {sup 7}F{sub J} (J = 6, 5, 4, 3, 2) and {sup 5}D{sub 4} → {sup 7}F{sub J} (J = 6, 5, 4, 3) transitions of Tb{sup 3+}, respectively. The green emission {sup 5}D{sub 4} → {sup 7}F{sub 5} at 532 nm having an emission cross-section equal to 8 × 10{sup −22} cm

  8. Flicker noise in degenerately doped Si single crystals near the metal ...

    Indian Academy of Sciences (India)

    The transport in a disordered solid like doped Si (where the disorder causes strong elastic scattering of electrons) is determined by the relative magnitude of elastic mean-free-path. (le) and the phase breaking length .... studied extensively in small conductors using magneto-finger-printing. Fluctuations in conductance are ...

  9. Effect of Fe doping on the terahertz conductivity of GaN single crystals

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Filip; Kadlec, Christelle; Paskova, T.; Evans, K.

    2010-01-01

    Roč. 43, č. 14 (2010), 145401/1-145401/5 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z10100520 Keywords : gallium nitride * terahertz spectroscopy * iron doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.105, year: 2010

  10. Spectroscopic properties of LaAlO3 single-crystal doped with Tb3+ ions

    Science.gov (United States)

    Sztolberg, D.; Brzostowski, B.; Dereń, P. J.

    2018-04-01

    LaAlO3 monocrystal doped with 0.5 wt% Tb3+ ions was grown by the Czochralski method. Absorption, emission and emission decay time were measured 300 K in the IR, visible and near UV range. The Tb3+ energy levels in LaAlO3 were assigned both from the absorption and emission spectra.

  11. Flicker noise in degenerately doped Si single crystals near the metal ...

    Indian Academy of Sciences (India)

    the first comprehensive work to study low-frequency noise in heavily doped Si over an extensive temperature range (2 K T. 500 K). ...... We stress that a quantitative analysis of the fluctuation is needed to understand the atomic process involved in generating the noise. Acknowledgement. One of us (AKR) wishes to thank ...

  12. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal

    International Nuclear Information System (INIS)

    Chen Yujin; Lin Yanfu; Gong Xinghong; Tan Qiguang; Zhuang Jian; Luo Zundu; Huang Yidong

    2007-01-01

    The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd 3+ :KGd(WO 4 ) 2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd 3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd 3+ :KGd(WO 4 ) 2 crystal was discussed

  13. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    Directory of Open Access Journals (Sweden)

    Tae Ho Yeom

    2016-04-01

    Full Text Available In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  14. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates

    Czech Academy of Sciences Publication Activity Database

    Mortet, Vincent; Pernot, J.; Jomard, F.; Soltani, A.; Remeš, Zdeněk; Barjon, J.; D´Haen, J.; Haenen, K.

    2015-01-01

    Roč. 35, Mar (2015), s. 29-34 ISSN 0925-9635 R&D Projects: GA ČR GA13-31783S Grant - others:EU(XE) CZ.1.07/2.3.00/20.0306 Institutional support: RVO:68378271 Keywords : diamond * boron * doping * crystalline orientation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.125, year: 2015

  15. Luminescence characteristics of undoped and Eu-doped GdCa{sub 4}O(BO{sub 3}){sub 3} single crystals and nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Nikl, M. [Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, Prague 16253 (Czech Republic); Klos, A.; Rzepka, A.; Pajaczkowska, A. [Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland); Lisiecki, R.; Ryba-Romanowski, W. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw (Poland); Ganschow, S. [Institute for Crystal Growth, Max Born-Str. 2, 12489 Berlin (Germany); Solarz, P.

    2007-12-15

    Single crystals of GdCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB) pure and doped with Eu concentration of 1 and 4 at% were grown by the Czochralski and micropulling-down methods. The distribution of Eu ions in GdCOB crystals was uniform. The substitutions of Eu{sup 3+} in Gd, Ca(1) and Ca(2) cation sites and eventually formation Eu{sup 2+} have been investigated. The spectroscopic properties of crystals are compared with the properties of nanopowders obtained by sol-gel method. Radioluminescence spectra of undoped GdCOB crystal show the characteristic emission of Gd{sup 3+} at about 312 nm, whereas this emission dramatically decreases in Eu-doped crystals upon X-ray excitation, as well as in Eu-doped nanopowders excited in vacuum ultraviolet (VUV) region. The VUV excitation in the range 125-333 nm for Eu-doped samples leads to strong emission in red coming from the {sup 5}D{sub 0} multiplet of Eu{sup 3+}, only. In the photoluminescence decay kinetics of 312 nm emissions substantial shortening and departure for single exponential decay in Eu-doped samples is clearly observed. Higher Eu doping results in further acceleration of the decay. In undoped GdCOB crystal, the lifetime of the Gd{sup 3+} {sup 6}P{sub 7/2} multiplet is 2.79 ms. The Eu{sup 3+} {sup 5}D{sub 0} decay kinetics monitored at 613 nm are rather constant. Numerical fitting of fully exponential curves, reveals lifetimes 2.7 ms for nanopowder and 2.5 ms for single crystal. The results suggest that this material may be used as a red phosphor in plasma display panels in nanopowder form because of strong excitation band of Eu{sup 3+} luminescence in the 160-200 nm regions. Contrary to nanopowder sample, such an excitation band, attributed to the Gd{sup 3+}-O{sup 2-} charge transfer was not observed in crystal obtained by the micropulling-down method. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Ordered misfit dislocations in epitaxial Gd doped CeO2 thin films deposited on (001)YSZ single crystal substrates

    Science.gov (United States)

    Petrișor, T.; Meledin, A.; Boulle, A.; Moș, R. B.; Gabor, M. S.; Ciontea, L.; Petrișor, T.

    2018-03-01

    Misfit dislocations are ubiquitous in thin film systems, and their presence can profoundly affect the chemical and physical properties of materials. In the present paper, we investigate the misfit dislocation array present at the interface of a Gd doped CeO2 thin film epitaxially grown on a (001) yttria stabilized zirconia (YSZ) single crystal substrate. Because of the large misfit strain (-4.9%), the growth takes place by domain-matching epitaxy with the formation of geometrical misfit dislocations. Transmission electron microscopy (TEM) observations, combined with geometrical phase analysis and strain field calculations (in the case of elastic isotropy), reveal that the misfit dislocations are of purely edge type with Burgers vector b = ½[110] and with the dislocations lines parallel to the [1-10] direction. X-ray diffraction, combined with Monte Carlo simulations, allow to quantify the statistical properties of the dislocations ensemble. It is found that the dislocations are distributed according to a Gamma distribution with a mean dislocation spacing of 7.4 nm and with a spacing ranging from 3.5 to 12 nm, in excellent agreement with TEM observations and with the values expected from the relaxation of the misfit strain.

  17. Growth of Ca, Zr co-doped BaTiO3 lead-free ferroelectric single crystal and its room-temperature piezoelectricity

    Science.gov (United States)

    Liu, Donglin; Shim, Jaeshik; Sun, Yue; Li, Qiang; Yan, Qingfen

    2017-09-01

    Lead-free Ca, Zr co-doped BaTiO3 (BCZT) single crystal with a dimension up to 2mm×2mm×2mm was grown by a spontaneous nucleation technique using KF as the flux. The composition of the studied single crystal was defined to be Ba0.798Ca0.202Zr0.006Ti0.994O3, corresponding to a tetragonal phase at room temperature. The oriented single crystal exhibited a quasi-static piezoelectric constant of approximately 232 pC/N. The effective piezoelectric coefficient d33* of the single domain crystal obtained under a unipolar electric field of 35 kV/cm was 179 pm/V. Rayleigh analysis was used to identify the intrinsic and extrinsic contributions to the room-temperature piezoelectricity of BCZT single crystal. The extrinsic contribution was estimated up to 40% due to the irreversible domain wall movement. Furthermore a sixth-order polynomial of Landau expansion was employed to analyze the intrinsic contribution to piezoelectricity of BCZT single crystal. The large energy barriers inhibited polarization rotations, leading to the relatively low piezoelectricity.

  18. Growth of Ca, Zr co-doped BaTiO3 lead-free ferroelectric single crystal and its room-temperature piezoelectricity

    Directory of Open Access Journals (Sweden)

    Donglin Liu

    2017-09-01

    Full Text Available Lead-free Ca, Zr co-doped BaTiO3 (BCZT single crystal with a dimension up to 2mm×2mm×2mm was grown by a spontaneous nucleation technique using KF as the flux. The composition of the studied single crystal was defined to be Ba0.798Ca0.202Zr0.006Ti0.994O3, corresponding to a tetragonal phase at room temperature. The oriented single crystal exhibited a quasi-static piezoelectric constant of approximately 232 pC/N. The effective piezoelectric coefficient d33* of the single domain crystal obtained under a unipolar electric field of 35 kV/cm was 179 pm/V. Rayleigh analysis was used to identify the intrinsic and extrinsic contributions to the room-temperature piezoelectricity of BCZT single crystal. The extrinsic contribution was estimated up to 40% due to the irreversible domain wall movement. Furthermore a sixth-order polynomial of Landau expansion was employed to analyze the intrinsic contribution to piezoelectricity of BCZT single crystal. The large energy barriers inhibited polarization rotations, leading to the relatively low piezoelectricity.

  19. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO 2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Peter T.; Marcial, José; McCloy, John; McDonald, Benjamin S.; Lynn, Kelvin G.

    2017-10-01

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6 % 6Li, a 10 mm Ø by 10 mm sample of LiAlO2 has a 70.7 % intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.

  20. Comparative infrared study of optimally doped and underdoped La{sub 2-x}Sr{sub x}CuO{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pignon, B; Gruener, G; Phuoc, V Ta; Gervais, F; Ammor, L [Laboratoire d' Electrodynamique des Materiaux Avances, UMR 6157 CNRS-CEA, Universite Francois Rabelais, Faculte des Sciences et Techniques, Parc de Grandmont, 37200 Tours (France); Marin, C [Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique Statistique, Magnetisme et Supraconductivite, CEA-Grenoble, 17 Rue des Martyrs, 28054 Grenoble Cedex 9 (France)

    2008-02-20

    The temperature dependence of the optical spectra of two La{sub 2-x}Sr{sub x}CuO{sub 4} single crystals was investigated for both in-plane and out-of-plane directions. For the underdoped (x = 0.08) single crystal, the in-plane optical conductivity that was analysed by a generalized Drude formalism shows a suppression of the scattering rate 1/{tau}({omega}) and an increased effective mass m{sup *} as the temperature decreases at low frequencies. Since this behaviour can be explained by the pseudogap effect, it is concluded that the pseudogap is not present at the optimal doping (x = 0.15). This result is confirmed by the c-axis optical conductivity, which decreases only for the underdoped single crystal. The absence of the pseudogap at the optimal composition is in accord with the quantum critical point model and it can explain the phase diagram of high-temperature superconductors.

  1. Doping evolution of the second magnetization peak and magnetic relaxation in (B a1 -xKx ) F e2A s2 single crystals

    Science.gov (United States)

    Liu, Yong; Zhou, Lin; Sun, Kewei; Straszheim, Warren E.; Tanatar, Makariy A.; Prozorov, Ruslan; Lograsso, Thomas A.

    2018-02-01

    We present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (B a1 -xKx ) F e2A s2 (0.18 ≤x ≤1 ). The critical current density Jc reaches maximum in the underdoped sample x =0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U0 sharply decreases in the overdoped sample x =0.70 . These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimally doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x =0.38 , 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in Tc become small in the samples x =0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (B a1 -xKx ) F e2A s2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δ Tc pinning from the spatial variations in Tc in the underdoped regime, and (ii) weak δ Tc pinning in the optimally doped and overdoped regime.

  2. Optical spectroscopy of Eu{sup 3+} ions doped in KLu(WO{sub 4}){sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koubaa, T. [Université de Sfax, Faculté des Sciences de Sfax, Département de Physique, Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescent, Sfax (Tunisia); Dammak, M., E-mail: madidammak@yahoo.com [Université de Sfax, Faculté des Sciences de Sfax, Département de Physique, Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescent, Sfax (Tunisia); Pujol, M.C.; Aguiló, M.; Díaz, F. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS. Universitat Rovira i Virgili (URV), Campus Sescelades, c/ MarcelIi Domingo, 1, E-43007 Tarragona (Spain)

    2015-12-15

    Europium single doped potassium lutetium tungstate Eu{sup 3+}:KLu(WO{sub 4}){sub 2} single crystals have been grown with the top seeded solution growth slow cooling method. Their absorption spectra are studied in detail for principal light polarizations, E||N{sub p}, N{sub m} and N{sub g} at room and low temperatures. The absorption oscillator strengths parameters are calculated by means of the theory of f–f transition intensities for systems with anomalously strong configuration interaction and by Judd–Ofelt theory. The Ω{sub t} (t=2, 4, 6) intensity parameters, and the {O_d_k, O_c_k, Δ_d, Δ_c_1 and Δ_c_2} (k=1, 2, 3) ASCI parameters are calculated. The radiative transition rates A{sub R}, radiative lifetimes τ{sub R}, and fluorescent branching ratios β{sub R} associated with {sup 5}D{sub 0}–{sup 7}F{sub J} transitions of Eu{sup 3+} were determined. The calculated decay times are discussed and compared with experimental values. - Highlights: • Absorption spectra of Eu:KLuW are investigated with respect to principal light polarizations. • Spectroscopic properties of Eu:KLuW are modeled within conventional Judd–Ofelt and (ASCI) theories. • {sup 5}D{sub 0} multiplet shows the contribution of a NR processes and an ET between the Eu{sup 3+} ions. • It is suggested that the Eu{sup 3+}:KLuW is a potential host material for optical applications.

  3. Optically stimulated luminescence of Tb{sup 3+}/Sm{sup 3+} doubly doped K{sub 2}YF{sub 5} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, L.; Marcazzo, J.; Santiago, M.; Caselli, E. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Gral. Pinto 399, B7000GHG, Tandil (Argentina); Khaidukov, N. M., E-mail: jmarcass@exa.unicen.edu.ar [Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninskii Prospekt 31, 119991 Moscow (Russian Federation)

    2014-08-15

    In this work optically stimulated luminescence (OSL) properties of K{sub 2}YF{sub 5} crystals doubly doped with Tb{sup 3+} and Sm{sup 3+} ions have been investigated for the first time. OSL responses for different dopant concentration and for optical stimulation with different wavelengths have been analyzed for each compound. Dosimetric properties of the most efficient composition, namely, K{sub 2}YF{sub 5}:1.0 at.% Tb{sup 3+}; 1.0 at.% Sm{sup 3+}, have been studied. Finally, the possible application of this single crystal as OSL dosimeter has been evaluated. (Author)

  4. Creation of domains by direct electron beam writing in magnesium-doped LiNbO{sub 3} and LiNbO{sub 3}:Fe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palatnikov, M.N. [Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, 26a Akademgorodok, Apatity, Murmansk 184209 (Russian Federation); Kokhanchik, L.S.; Emelin, E.V. [Institute of Microelectronics Technology and High Purity Materials of Russian Academy of Sciences, 6 Academician Ossipyan st, Chernogolovka, Moscow 142432 (Russian Federation); Sidorov, N.V. [Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, 26a Akademgorodok, Apatity, Murmansk 184209 (Russian Federation); Manukovskaya, D.V., E-mail: deenka@yandex.ru [Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, 26a Akademgorodok, Apatity, Murmansk 184209 (Russian Federation)

    2016-03-01

    Highlights: • The periodic domains are created in crystal LiNbO{sub 3}:Mg by direct electron beam writing. • Periodic domains appear only at equilibrium between switching and screening times. • Equilibrium exists in crystal co-doped by Fe. • Shape and appearance of domains depend on the conductivity type. - Abstract: Domain structures in the Z-cut of highly doped LiNbO{sub 3}:Mg and LiNbO{sub 3}:Mg,Fe single crystals were created by direct electron beam writing (DEBW). It was found that the value and type of electron conductivity influence the shape and number of domains thus created. Controlled electron beam regular domains were created only in samples of the crystal LiNbO{sub 3}:Mg,Fe [MgO] = 5.16 mol.%, [Fe] = 0.007 mol.%. In highly doped LiNbO{sub 3}:Mg ([MgO] = 5.19 mol.%) crystal, the domains were formed chaotically and controlled creation of domains did not occur. The domain shapes were analyzed in the framework of the theory of screening of domain nuclei depolarizing electric fields and the influence of screening on the final shape of domains. It was found that screening of intrinsic electric fields is faster in the LiNbO{sub 3}:Mg,Fe crystal. This crystal has a high electronic conductivity of hopping type with a high mobility of charge carriers. Thus, a small amount of Fe provides equilibrium between the ferroelectric switching velocity and screening of the depolarizing electric field velocity. The results are discussed considering differences in the electron conductivity mechanisms, which control the screening of depolarizing electric field velocity and spatial charge area formed under an electron beam.

  5. Anomalous behaviour of periodic domain structure in Gd-doped LiNbO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palatnikov, M [Institute of Chemistry, Kola Science Centre RAS, Apatity, Murmansk Region (Russian Federation); Sidorov, N [Institute of Chemistry, Kola Science Centre RAS, Apatity, Murmansk Region (Russian Federation); Bormanis, K [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Smith, P G R [University of Southampton, Optoelectronic Research Centre (United Kingdom)

    2007-12-15

    Atomic force microscopy studies of etching patterns, stability of regular domain structure, and anomalies of electrical characteristics in the 300-385 K range of a series of Gddoped lithium niobate single crystals grown under equal conditions are reported.

  6. Optical absorption, fluorescence and thermoluminescence of CaF2 single crystals doped with lanthanide rare earth ions

    International Nuclear Information System (INIS)

    Otani, Choyu

    1979-01-01

    Optical Absorption (OA) , Fluorescence (FL) and Thermoluminescence (TL) experiments were carried out in X-irradiated CaF 2 crystals doped with most of the Lanthanide Rare Earth (RE) ions, Yttrium, and with both RE ions Dysprosium and Terbium. All optical Absorption and Fluorescence measurements as well as optical bleaching and X-irradiation were performed at RT while the TL measurements were done i n the RT- 800K range. Every RE-doped specimen has been fully characterized by its OA and FL bands due to the RE ion-electronic transitions. Most of the RE ions which substitutes for a Ca 2+ ion in the CaF 2 lattice is in the trivial state, being reduced to the divalent state by X-irradiation. The TL results for X-irradiated CaF 2 :Tb , CaF 2 :Dy and CaF 2 :Ho specimens show that the mechanism proposed f o r the 4K-300K TL processing these crystals is also valid for the 300K - 800K temperature range. The photochromic (PC) effect in X-irradiated Tb-doped CaF 2 crystals upon thermal and optical bleaching has been detected. Optical experiments in CaF 2 :Tb,Dy show that the observed PC effect is due to photo switched reversibility of an electron between two states, the thermally stable original state and the ionized stat PC - e - -> PC + , Tb 3+ e - -. Tb 2+ . The regeneration of the OA bands is achieved thermally (-100 deg C) and optically (λ Vis >400nm) with further UV blenching. A detailed analysis of the OA spectra of CaF 2 :Tb crystals X=irradiated and thermally as well as optically bleached show that besides the photo switching, electron-hole recombination occurs leading to a decrease in the overall OA spectrum. The OA bands due to PC-, PC + and Tb 2+ - transitions have been identified by means of Optical Absorption Differential Analysis. Further studies of Photochromic color centers in CaF 2 :Tb crystals show that some of the OA bands detected i the 15Kcm -1 - 20Kcm -1 spectral region are due to hole centers. The TL emissions peaks resulting from the thermal

  7. Doped beryllium lanthanate crystals

    International Nuclear Information System (INIS)

    1974-01-01

    Monocrystals of doped beryllium lanthanate, Be 2 Lasub(2-2x)Zsub(2x)O 5 --where Z may be any rare earth, but preferably neodymium, and x may have values between 0.001 and 0.2, but preferably between 0.007 and 0.015-- are recommended as laser hosts. They are softer and may be grown at a lower temperature than Y 3 A1 5 O 12 :Nd (YAG:Nd). Their chemical composition and preparation are described. An example of an optically pumped laser apparatus with this type of monocrystal as laser host is presented

  8. Crystal growth and scintillation characteristics of the Nd.sup.3+./sup. doped LaF.sub.3./sub. single crystal

    Czech Academy of Sciences Publication Activity Database

    Fukuda, K.; Kawaguchi, N.; Ishizu, S.; Yanagida, T.; Suyama, T.; Nikl, Martin; Yoshikawa, A.

    2010-01-01

    Roč. 32, č. 9 (2010), s. 1142-1145 ISSN 0925- 3467 Grant - others:AV(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : fluoride * single crystal * crystal growth from the melt * scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.679, year: 2010

  9. Crystal growth and scintillation characteristics of the Nd.sup.3+./sup. doped LiLuF.sub.4./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Fukuda, K.; Kawaguchi, N.; Ishizu, S.; Nagami, T.; Suyama, T.; Yanagida, T.; Yokota, Y.; Nikl, Martin; Yoshikawa, A.

    2011-01-01

    Roč. 33, č. 6 (2011), s. 924-927 ISSN 0925- 3467 Grant - others:AV ČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : fluoride * single crystal * VUV Nd 3 + 5d–4f * crystal growth from the melt Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.023, year: 2011

  10. Magnetic, electric and electron magnetic resonance properties of orthorhombic self-doped La sub 1 sub - sub x MnO sub 3 single crystals

    CERN Document Server

    Markovich, V; Shames, A I; Puzniak, R; Rozenberg, E; Yuzhelevski, Y; Mogilyansky, D; Wisniewski, A; Mukovskii, Y M; Gorodetsky, G

    2003-01-01

    The effect of lanthanum deficiency on structural, magnetic, transport, and electron magnetic resonance (EMR) properties has been studied in a series of La sub 1 sub - sub x MnO sub 3 (x = 0.01, 0.05, 0.11, 0.13) single crystals. The x-ray diffraction study results for the crystals were found to be compatible with a single phase of orthorhombic symmetry. The magnetization curves exhibit weak ferromagnetism for all samples below 138 K. It was found that both the spontaneous magnetization and the coercive field increase linearly with x. The pressure coefficient dT sub N /dP decreases linearly with self-doping, from a value of 0.68 K kbar sup - sup 1 for La sub 0 sub . sub 9 sub 9 MnO sub 3 to 0.33 K kbar sup - sup 1 for La sub 0 sub . sub 8 sub 7 MnO sub 3. The resistivity of low-doped La sub 0 sub . sub 9 sub 9 MnO sub 3 crystal is of semiconducting character, while that of La sub 0 sub . sub 8 sub 7 MnO sub 3 depends weakly on temperature between 180 and 210 K. It was found that the magnetic and transport prop...

  11. Nonlinear optical refraction of Al2O3 single crystal doping with nickel nanoparticles measured by the Kerr-lens autocorrelation technique

    International Nuclear Information System (INIS)

    Yu, Xiangxiang; Wang, Yuhua; Wang, Yumei

    2014-01-01

    The nonlinear refraction of a nickel doped α-Al 2 O 3 single crystal was measured with a 800 nm pulse using the Kerr-lens autocorrelation technique. The sample was fabricated by ion implantation using a metal vapor vacuum arc ion source. The value of the nonlinear refractive index, n 2 , of the sample was determined to be 7.9 × 10 −16 cm 2 W −1 . The mechanisms of nonlinear refraction of the bulk material and the nanoparticles have been discussed through the UV–vis spectrum and supercontinuum spectra. (paper)

  12. Investigation of distribution microhomogeneity of doped elements in oxide single crystals by means of LMA-AES

    International Nuclear Information System (INIS)

    Nikolova, L.; Krasnobaeva, N.; Manuilov, N.

    1989-01-01

    The distribution of V and Ti in oxide single crystals Al 2 O 3 :V 3+ , Y 3 Al 5 O 12 :V 3+ , Al 2 O 3 :Ti 3+ , Y 3 Al 5 O 12 :Ti 3+ is investigated by laser emission microspectral analysis with photographic registration of spectra. Single crystals have been grown by the method of vertical directed crystallization (method of Bridgman-Stockbarger). For evaluation of microhomogeneity of the investigated elements distribution the following statistical methods are applied: one-way variance analysis, two-way variance analysis, regression models and gradient method. A PC programme package is developed allowing to process photoregistration data, to choose the internal standard line by scatter diagrams, to perform all statistical analysis and to plot the distribution diagrams of the elements in the samples. 2 refs. (author)

  13. Study on shaped single crystal growth and scintillating properties of Bi-doped rare-earth garnets

    Czech Academy of Sciences Publication Activity Database

    Novoselov, A.; Yoshikawa, A.; Nikl, Martin; Solovieva, Natalia; Fukuda, T.

    2005-01-01

    Roč. 40, 4/5 (2005), s. 419-423 ISSN 0232-1300 R&D Projects: GA MŠk(CZ) 1P04ME716 Institutional research plan: CEZ:AV0Z10100521 Keywords : garnet * shaped single crystal growth * luminescent properties * Bi 3+ Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.833, year: 2005

  14. Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies

    Science.gov (United States)

    Balci, Mustafa H.; Chen, Fan; Cunbul, A. Burak; Svensen, Øyvind; Akram, M. Nadeem; Chen, Xuyuan

    2018-02-01

    Cerium-doped single crystals (Ce:LuAG, Ce:YAG, Ce:GAGG, Ce:GdYAG) have been investigated as stationary phosphor candidates for blue laser driven solid-state lighting without heat sink. The luminous properties of the single crystals are superior compared to the commercial ceramic powder phosphor wheels (Ce3+: Y3Al5O12). The high-power blue laser diode driven temperature increase of the crystals versus quantum efficiency is experimentally measured and discussed. We have carried out realistic measurements at high excitation power levels and at high temperatures. Limitation of phosphors as stationary sources is determined for commercial usage. The measurements were done without any heat sink to see the relative comparison of SCPs in the worst-case scenarios. The results indicate that Gd and Ga addition decreases the luminescence quenching temperature. Based on their superior properties, these single crystals can serve as potential phosphor candidates for high-power blue diode laser driven picture projectors for the green and red channels.

  15. Optical spectroscopy and crystal-field analysis of YAl sub 3 (BO sub 3) sub 4 single crystals doped with dysprosium

    CERN Document Server

    Cavalli, E; Magnani, N; Ramirez, M O; Speghini, A; Bettinelli, M

    2003-01-01

    YAl sub 3 (BO sub 3) sub 4 crystals doped with Dy sup 3 sup + were grown from a potassium trimolybdate flux. Their absorption and visible emission spectra and decay curves were measured at temperatures ranging from 10 to 298 K. The complete energy level scheme has been deduced from the low temperature measurements and reproduced by theoretical calculations based on a parametric Hamiltonian including coulombic, spin-orbit and crystal-field terms. The Judd-Ofelt parametrization scheme has been applied to the analysis of the room temperature absorption spectra. The calculated radiative lifetime of the sup 4 F sub 9 sub / sub 2 state is 344 mu s; this value is reasonably consistent with the experimental data.

  16. Spectroscopic properties of Bi2ZnOB2O6 single crystals doped with Pr3+ ions: Absorption and luminescence investigations

    Science.gov (United States)

    Kasprowicz, D.; Brik, M. G.; Jaroszewski, K.; Pedzinski, T.; Bursa, B.; Głuchowski, P.; Majchrowski, A.; Michalski, E.

    2015-09-01

    Nonlinear optical Bi2ZnOB2O6 single crystals doped with Pr3+ ions were grown using the Kyropoulos method. The absorption and luminescence properties of these new systems were investigated for the first time. The crystals are characterized by the large values of nonlinear optical coefficients. Effective luminescence of the Pr3+ ions makes this system an excellent candidate for the near-infrared (NIR) and/or ultraviolet (UV) to visible (VIS) laser converters. Based on the obtained experimental spectroscopic data, detailed analysis of the absorption and luminescence spectra was performed using the conventional Judd-Ofelt theory. Those transitions, which can be potentially used for laser applications of the Pr3+ ion, have been identified. In addition to the intensity parameters Ω2, Ω4, Ω6 the branching ratios and radiative lifetimes were estimated for all possible transitions in the studied spectral region.

  17. Significance of Al doping for antiferromagnetic AFII ordering in YBa2Cu3-xAlxO6+#delta# materials: A single-crystal neutron-diffraction study

    DEFF Research Database (Denmark)

    Brecht, E.; Schmahl, W.W.; Fuess, H.

    1995-01-01

    Aluminum-doped, oxygen-deficient YBa2Cu3-xAlxO6+delta single crystals with different Al contents x (0 less than or equal to x less than or equal to 0.19) and O contents (0.18 less than or equal to delta less than or equal to 0.36) were studied by magnetic neutron diffraction. All of the Al...... as the O content 6+delta in the x-delta region investigated so far. In a limited temperature interval the order parameter shows the components of both the AFI and AFII phases indicating competing interactions. For some crystals a complete reordering to the AFII phase at 4.2 K can be observed. Although...

  18. Crystal growth and optical properties of Gd admixed Ce-doped Lu.sub.2./sub.Si.sub.2./sub.O.sub.7./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Horiai, T.; Kurosawa, S.; Murakami, R.; Yamaji, A.; Shoji, Y.; Ohashi, Y.; Pejchal, Jan; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2017-01-01

    Roč. 468, Jun (2017), s. 391-394 ISSN 0022-0248 Grant - others:AV ČR(CZ) JSPS-17-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : growth from melt * seed crystals * single crystal growth * oxides * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  19. Growth and radioluminescence of metal elements doped LiCaAlF.sub.6./sub. single crystals for neutron scintillator

    Czech Academy of Sciences Publication Activity Database

    Tanaka, Ch.; Yokota, Y.; Kurosawa, S.; Yamaji, A.; Jarý, Vítězslav; Babin, Vladimir; Pejchal, Jan; Ohashi, Y.; Kamada, K.; Nikl, Martin; Yoshikawa, A.

    2016-01-01

    Roč. 90, Jul (2016), s. 170-173 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR). Tartu (Estonsko), 20.09.2015-25.09.2015] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : neutron scintillator * LiCaAlF 6 * Pb2+ * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  20. Infrared optical characterization and energy transfer of Na5Lu9F32 single crystals co-doped with Er3+/Tm3+ grown by Bridgman method

    Science.gov (United States)

    Tang, Qingyang; Xia, Haiping; He, Shinan; Sheng, Qiguo; Chen, Baojiu

    2017-11-01

    This paper reported on successful preparation of Na5Lu9F32 single crystals co-doped with ∼2 mol% Er3+ and various Tm3+ concentrations from 0.7 mol% to 3.2 mol% by Bridgman method. The J-O intensity parameters of Er3+ were calculated and analyzed according to the absorption spectra. The fluorescence decay curve at Er3+:4I13/2 level was measured to investigate the luminescent properties of the Er3+/Tm3+ co-doped Na5Lu9F32, and the energy transfer process between Er3+ and Tm3+. An intense 2.7 μm emission was achieved with Tm3+ ions sensitizing Er3+ ions under the 800 nm LD pumping. The maximum emission intensity at 2.7 μm was obtained at about 3.2 mol% doping concentration of Tm3+ when the concentration of Er3+ ions was fixed at ∼2 mol% in the current research. The calculated maximum value of emission cross section at 2.7 μm was 2.22 × 10-20 cm2, and energy transfer efficiency from Er3+:4I13/2 to Tm3+:3F4 was 78%. The electric dipole-dipole interaction was dominant for the energy transfer from Er3+ to Tm3+ ions by using Inokuti-Hirayama's model.

  1. Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kei, E-mail: k-kamada@furukawakk.co.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); Furukawa Co. Ltd. (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Fukabori, Akihiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai (Japan); Nikl, Martin [Institute of Physics AS CR (Czech Republic)

    2011-12-11

    The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd{sub 0.5}Y{sub 0.5}F{sub 3} single crystals were grown by the {mu}-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce{sup 3+}-perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce{sup 3+}{yields} (Gd{sup 3+}){sub n}{yields} the perturbed Ce{sup 3+} sites was evidenced through observation of decay time shortening of the regular Ce{sup 3+} and Gd{sup 3+} centers and the change between the Gd{sup 3+} and Ce{sup 3+}-perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd{sub 0.5}Y{sub 0.5}F{sub 3} sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.

  2. Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F3 single crystals

    International Nuclear Information System (INIS)

    Kamada, Kei; Yanagida, Takayuki; Fujimoto, Yutaka; Fukabori, Akihiro; Yoshikawa, Akira; Nikl, Martin

    2011-01-01

    The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd 0.5 Y 0.5 F 3 single crystals were grown by the μ-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce 3+ -perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce 3+ → (Gd 3+ ) n → the perturbed Ce 3+ sites was evidenced through observation of decay time shortening of the regular Ce 3+ and Gd 3+ centers and the change between the Gd 3+ and Ce 3+ -perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd 0.5 Y 0.5 F 3 sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.

  3. Study on effect of 1,3-dimethyl urea doping on optical properties of L-arginine phosphate monohydrate (LAP) single crystal

    Science.gov (United States)

    Wankhade, Pratik M.; Muley, Gajanan G.

    Pure and 1,3-dimethyl urea doped L-arginine phosphate monohydrate (LAP) crystals were grown by a solution growth technique from aqueous solution at a constant temperature. The effect of dopant on the optical properties, crystal structure and second harmonic generation (SHG) efficiency was studied. Dopant modifies the SHG efficiency of the LAP crystal at a greater extent. The SHG efficiency of 0.01 mol% 1,3-dimethyl urea doped LAP crystal corresponds to 1.37 times more as compared to the pure LAP. Absorption and transmission were measured in the spectral range 190-1083 nm. The increase in the optical transparency of the doped crystal is reported. The band gap of the grown crystals has been determined. The presence of the dopant in the doped crystals was confirmed qualitatively by the FT-IR spectroscopy. A slight variation in unit cell parameters has been reported. Thermal and dielectric study of the doped crystal has also been presented.

  4. Crystal growth and luminescent properties of Pr- doped K(Y,Lu).sub.3./sub.F.sub.10./sub. single crystal for scintillator application

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Yanagida, T.; Nikl, Martin; Fukabori, A.; Yoshikawa, A.; Aoki, K.

    2010-01-01

    Roč. 312, č. 19 (2010), s. 2795-2798 ISSN 0022-0248 Grant - others:AVČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : luminescence * single crystal * micro-pulling-down method * fluoride * Pr 3+ * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.737, year: 2010

  5. Crystal growth and optical properties of the Nd.sup.3+./sup. doped LuF.sub.3 ./sub.single crystals

    Czech Academy of Sciences Publication Activity Database

    Fukuda, K.; Ishizu, S.; Kawaguchi, N.; Suyama, T.; Yanagida, T.; Yokota, Y.; Nikl, Martin; Yoshikawa, A.

    2011-01-01

    Roč. 33, č. 8 (2011), s. 1143-1146 ISSN 0925- 3467 Grant - others:AVČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : fluoride * single crystal * scintillator * VUV * Nd 3+ 5d–4f Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.023, year: 2011

  6. Electron paramagnetic resonance investigations of Fe3+ doped layered TiInS2 and TiGaSe2 single crystals

    International Nuclear Information System (INIS)

    Faik, Mikailov; Bulat, Rameev; Sinan, Kazan; Bekir, Aktash; Faik, Mikailov; Bulat, Rameev

    2005-01-01

    Full text : TiInS 2 and TiGaSe 2 single crystals doped by paramagnetic Fe ions have been studied at room temperature by Electron Paramagnetic Resonance (EPR) technique. A fine structure of EPR spectra of paramagnetic Fe 3 + ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe 3 + centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe 3 + site and CF parameters were determined. It was established that symmetry axis of the axial component in the CF is making an angle of about 48 and 43 degree with the plane of layers of TiInS 2 and TiGaSe 2 crystals respectively. Experimental results indicate that the Fe ions substitute In (GA) at the center of InS 4 (GaSe 4 ) tetrahedrons, and the rhombic distortion of the CF is caused by the TI ions located in the trigonal cavities between the tethedral complexes

  7. Single crystal preparation of CuO

    NARCIS (Netherlands)

    Pieters, Th.W.J.; Nedermeyer, J.

    Single crystals of CuO are prepared by means of sublimation in a closed quartz capsule at 900 °C. The crystals have dimensions of 5 × 2 × 0.2 mm. Doping of the CuO with a few percent In2O3 (1 to 5% In/In + Cu) was necessary for the growth of the crystals. The residue contained CuO-In2O3 spinel.

  8. Growth and scintillation characterization of Ce{sup 3+}-doped Rb{sub 2}LiGdBr{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rooh, Gul [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Kim, H.J., E-mail: hongjoo@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Sunghwan [Department of Radiological Science, Cheongju University, Cheongju 360-764 (Korea, Republic of); Khan, Sajid [Department of Physics, Kohat University of Science & Technology, 26000 (Pakistan)

    2016-10-01

    Growth and scintillation characterizations of the newly developed cerium doped Rb{sub 2}LiGdBr{sub 6} (RLGB) single crystals were investigated. RLGB, which belongs to bromo-elpasolite crystal family, was grown by the vertical Bridgman technique with nominally 1%, 5%, and 10% Ce{sup 3+}-concentration (mole%). X-ray excited luminescence spectra show typical Ce{sup 3+} bands between 350 to 460 nm wavelength regions. A good energy resolution of 5.5% (FWHM) and light yield of 25,500±2600 ph/MeV for 662 keV γ-rays were observed at 5% Ce{sup 3+}-concentration. Under γ-ray excitation, RLGB:Ce{sup 3+} crystals display multi-exponential decays with Ce{sup 3+} like decay components at 23 ns and 29 ns for 1% and 5% Ce-concentrations, respectively. From the results, it is expected that this scintillator could be used as a thermal neutron detector because of Li and Gd ions in the host lattice. Also, like other inorganic halide scintillators, it is very hygroscopic. - Highlights: • Scintillation properties of new Rb{sub 2}LiGdBr{sub 6}:Ce{sup 3+} were presented. • Single crystals of Rb{sub 2}LiGdBr{sub 6} were grown by two zone vertical Bridgman technique. • The grown material was highly hygroscopic and belongs to elpasolite crystal family. • Good energy resolution of 5.5% (FWHM) and light yield of 25,500±2600 ph/MeV were obtained under γ-ray excitation. • This material displayed multiexponential decays with Ce{sup 3+} like decay components.

  9. Electron effective mass in Sn-doped monoclinic single crystal β-gallium oxide determined by mid-infrared optical Hall effect

    Science.gov (United States)

    Knight, Sean; Mock, Alyssa; Korlacki, Rafał; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2018-01-01

    The isotropic average conduction band minimum electron effective mass in Sn-doped monoclinic single crystal β-Ga2O3 is experimentally determined by the mid-infrared optical Hall effect to be (0.284 ± 0.013)m0 combining investigations on (010) and ( 2 ¯01 ) surface cuts. This result falls within the broad range of values predicted by theoretical calculations for undoped β-Ga2O3. The result is also comparable to recent density functional calculations using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional, which predict an average effective mass of 0.267m0. Within our uncertainty limits, we detect no anisotropy for the electron effective mass, which is consistent with most previous theoretical calculations. We discuss upper limits for possible anisotropy of the electron effective mass parameter from our experimental uncertainty limits, and we compare our findings with recent theoretical results.

  10. Angle and Polarization Dependent Fluorescence EXAFS Measurements on Al-doped Single Crystal V_2O3 Above and Below the Transition Temperature

    Science.gov (United States)

    Müller, O.; Pfalzer, P.; Schramme, M.; Urbach, J.-P.; Klemm, M.; Horn, S.; Frenkel, A. I.; Denboer, M. L.

    1998-03-01

    We present angle and polarisation dependent flourescence EXAFS measured on Al-doped single crystal V_2O3 below and above the structural phase transition from monoclinic to trigonal. Strong self-absorption distorted the spectra; this was corrected by using the procedure described by Tröger et al. (L. Tröger, D. Arvantis, K. Baberschke, H. Michaelis, U. Grimm, and E. Zschech, Phys. Rev. B,.46), 3238 (1992), generalized to the Lytle detector employed in our work. The spectra show pronounced dependence on the angle between the threefold symmetry axes and the polarization of the incident photons, making it possible to measure the local atomic distances in different directions. We compare our results with the measurements of Frenkel et al. (A. I. Frenkel, E. A. Stern, and F. A. Chudnovsky, Sol. State Comm.102), 637 (1997) on pure V_2O3 They found that locally the monoclinic distortion persists in the trigonal metallic phase.

  11. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Collazo, Ramon; Rice, Anthony; Tweedie, James; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC (United States); Mita, Seiji; Xie, Jinqiao; Dalmau, Rafael [HexaTech, Inc., Morrisville, NC (United States)

    2011-07-15

    As the building blocks of deep UV light emitting diode (LED) technology and high-power electronic devices, AlGaN alloys have attracted considerable attention. In this study, AlGaN films with varying compositions doped with Si were deposited on homoepitaxial AlN layers grown on AlN single crystal substrates. The room temperature resistivity of AlGaN alloys of different compositions grown on AlN and sapphire substrates with a constant Si doping level of 6x10{sup 18} cm{sup -3} was compared. AlGaN films grown on AlN substrates consistently exhibited a lower n-type resistivity than those grown on sapphire. An n-type resistivity of 0.1 {omega} cm was obtained for an AlGaN film with 80% Al content and a sheet resistance of 235 {omega}/sq. for an AlGaN film with 70% Al content. The carrier activation energy as a function of Al content in AlGaN for these n-type films was measured. For compositions below 80% Al, the activation energy was around 15 meV due to impurity potential screening. For higher Al compositions, the carrier concentration was limited by a high compensation ratio, except for AlN, which has activation energy of 250 meV. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Further study on different dopings into PbWO.sub.4./sub. single crystals to increase the scintillation light yield

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, M.; Usuki, Y.; Ishii, M.; Itoh, M.; Nikl, Martin

    2005-01-01

    Roč. 540, - (2005), s. 381-394 ISSN 0168-9002 R&D Projects: GA AV ČR(CZ) KSK1010104 Institutional research plan: CEZ:AV0Z10100521 Keywords : lead tungstate * scintillator * light yield * doping, PET Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.224, year: 2005

  13. Single-mode amplification in Yb-doped rod-type photonic crystal fibers for high brilliance lasers

    DEFF Research Database (Denmark)

    Poli, F.; Lægsgaard, Jesper; Passaro, D.

    2009-01-01

    to identify a proper ring characteristic that is width, position and refractive index. Then rod-type PCF designs have been optimized with a full-vector modal solver based on the finite-element method. Then, the amplification properties of the Yb-doped rod-type PCFs have been investigated by assuming a forward...

  14. Scitillation characteristics of PbWO.sub.4./sub. single crystals doped with Th, Zr, Ce, Sb and Mn ions

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, M.; Usuki, Y.; Ishii, M.; Senguttuvan, N.; Tanji, K.; Chiba, M.; Hara, K.; Nikl, Martin; Boháček, Pavel; Boccaro, S.

    2001-01-01

    Roč. 465, - (2001), s. 428-439 ISSN 0168-9002 R&D Projects: GA MŠk ME 159 Institutional research plan: CEZ:AV0Z1010914 Keywords : PbWO 4 * tetravalent-ion (Th 4 ) doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.026, year: 2001

  15. Investigation of visible emission induced by infrared femtosecond pulses in erbium-doped YVO{sub 4} and LuVO{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ryba-Romanowski, Witold; Macalik, Bogusław; Strzęp, Adam; Lisiecki, Radosław, E-mail: R.Lisiecki@int.pan.wroc.pl; Solarz, Piotr; Kowalski, Robert M.

    2013-12-15

    Illumination of single crystal samples of erbium-doped YVO{sub 4} and LuVO{sub 4} by infrared femtosecond pulses brings about an intense green luminescence assigned to the {sup 4}S{sub 3/2} - {sup 4}I{sub 15/2} transition of Er{sup 3+} ions. When lowering the sample temperature an additional broad band in the blue related to the VO{sub 4}{sup 3−} emission appears and next grows steadily. It has been observed that the variation of wavelength of incident infrared femtosecond pulses in the region 800 nm–1600 nm affects weakly the intensity of both the blue and green luminescence bands. Analysis of luminescence dynamics made it possible to reveal that upon infrared excitation the rise time of the {sup 4}S{sub 3/2} luminescence is longer by a factor of four, roughly as compared to that recorded upon direct excitation into high energy levels of Er{sup 3+}. Observed temperature dependence of up-converted blue and green luminescence implies that the energy transfer from vanadate groups cannot be considered as a main mechanism involved in the excitation erbium ions. It has been supposed that erbium ions are likely to be excited by energy transfer from free electrons created in the conduction band of the host by multiphoton excitation and /or by non-resonant multi-step ETU process involving absorption of infrared light in multiphonon side bands of electronic transitions. Creation of free electrons has been corroborated by changes of electrical conductivity of crystals induced by an illumination with infrared femtosecond pulses. -- Highlights: • Processes of interaction of ultrashort light pulses with pure and rare earth-doped vanadate crystals are considered. • Effect and mechanism of excitation of up-converted visible luminescence initiated by infrared femtosecond pulses are examined. • The unlike phenomena was observed in relation to excitation with nanosecond or longer lasting light pulses. • The energy transfer from free electrons to erbium ions is concluded.

  16. Characterization of pure and copper-doped iron tartrate crystals

    Indian Academy of Sciences (India)

    Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu Fe(1−) C4H4O6 · H2O, where = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies ...

  17. Characterization of pure and copper-doped iron tartrate crystals ...

    Indian Academy of Sciences (India)

    Abstract. Single crystal growth of pure and copper-doped iron tartrate crystals bearing composi- tion Cux Fe(1−x)C4H4O6 · nH2O, where x = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization ...

  18. Characterization of pure and copper-doped iron tartrate crystals ...

    Indian Academy of Sciences (India)

    Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu Fe(1−) C4H4O6 · H2O, where = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies ...

  19. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Collective vortex pinning and merging of the irreversibility line and second peak effect in optimally doped Ba1-xKxBiO3 single crystals

    Science.gov (United States)

    Jiao, Yanjing; Cheng, Wang; Deng, Qiang; Yang, Huan; Wen, Hai-Hu

    2018-02-01

    Measurements on magnetization and relaxation have been carried out on an optimally doped Ba1-xKxBiO3+δ single crystal with Tc = 31.3 K. Detailed analysis is undertaken on the data. Both the dynamical relaxation and conventional relaxation have been measured leading to the self-consistent determination of the magnetization relaxation rate. It is found that the data are well described by the collective pinning model leading to the glassy exponent of about μ ≈ 1.64-1.68 with the magnetic fields of 1 and 3 T. The analysis based on Maley's method combining with the conventional relaxation data allows us to determine the current dependent activation energy U which yields a μ value of about 1.23-1.29 for the magnetic fields of 1 and 3 T. The second magnetization peaks appear in wide temperature region from 2 K to 24 K. The separation between the second peak field and the irreversibility field becomes narrow when temperature is increased. When the two fields are close to each other, we find that the second peak evolves into a step-like transition of magnetization. Finally, we present a vortex phase diagram and demonstrate that the vortex dynamics in Ba1-xKxBiO3 can be used as a model system for studying the collective vortex pining.

  1. Comparative optical study of thulium-doped YVO4 , GdVO4 , and LuVO4 single crystals

    Science.gov (United States)

    Lisiecki, R.; Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W.; Sobczyk, M.; Černý, Pavel; Šulc, Jan; Jelínková, Helena; Urata, Yoshiharu; Higuchi, Mikio

    2006-07-01

    YVO4:Tm3+ crystals grown by the Czochralski technique and GdVO4:Tm3+ and LuVO4:Tm3+ crystals grown by the floating-zone technique were investigated using methods of optical spectroscopy. Polarized absorption and emission spectra were recorded at room temperature and at 6K . The crystal-field analysis was performed assuming the D2d site symmetry for Tm3+ ions. In this way the missing crystal-field components of the H63 ground multiplet were located. Room temperature absorption spectra were analyzed in the framework of the Judd-Ofelt theory. Evaluated radiative lifetimes of luminescent levels of Tm3+ follow a general trend diminishing in agreement with the sequence: YVO4:Tm3+→GdVO4:Tm3+→LuVO4:Tm3+ . Luminescence lifetimes measured for the systems under study are similar except for the F43 lifetime, which appears to be surprisingly short for LuVO4:Tm3+ . Anisotropy of optical spectra is particularly pronounced in LuVO4:Tm3+ . Peak absorption cross section for the band relevant for optical pumping at about 805nm is roughly three times higher for π polarization. Stimulated emission cross sections for the F43-H63 transition near 1800nm were evaluated using the reciprocity method. The diode-pumped continuous wave laser operation in GdVO4:Tm3+ with a slope efficiency of up to 40% is demonstrated. In LuVO4:Tm3+ the diode-pumped laser oscillation in a pulsed mode was observed.

  2. An investigation on the effect of gamma-irradiation on the optical absorption spectra in Cu(II) doped ammonium Tetrachlorozincate (ATZC) single crystals

    International Nuclear Information System (INIS)

    Abu El-Fadl, A.; Mohamad, G.A.; Abd El-Sttar, M.

    2003-01-01

    Optical transmittance measurements were carried out on Ammonium tetrachlorozincate (ATZC) crystals doped with small concentrations of Cu 2+ ions and irradiated with different doses of gamma-radiation. The absorption coefficient (alpha) and the extinction coefficient (K) of unirradiated and irradiated ATZC crystals were calculated. Valued of the allowed indirect optical energy gap (E g ) of ATZC were calculated as a function of gamma-dose. The effect of gamma irradiation is to increase in the absorption coefficient value and to decrease in E g value. The results could be explained in the fact that gamma irradiation produces defects of ionizing type because of internal irradiation with photon or Compton electrons

  3. Crystal growth of Na co-doped Ce:LiCaAlF single crystals and their optical, scintillation and physical properties

    Czech Academy of Sciences Publication Activity Database

    Yokota, Y.; Fujimoto, Y.; Yanagida, T.; Takahashi, H.; Yonetani, M.; Hayashi, K.; Park, I.; Kawaguchi, N.; Fukuda, K.; Yamaji, A.; Fukazawa, Y.; Nikl, Martin; Yoshikawa, A.

    2011-01-01

    Roč. 11, č. 11 (2011), 4775–4779 ISSN 1528-7483 Grant - others:AVČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : LiCaAlF 6 * Ce-doped * Na-codoped * fluoride * neutron scintillator * micro-pulling down method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.720, year: 2011

  4. Synthesis of alpha-aluminum oxide and hafnium-doped beta-nickel aluminide coatings on single crystal nickel-based superalloy by chemical vapor deposition

    Science.gov (United States)

    He, Limin

    Thermal barrier coatings (TBCs) are widely used for air-cooled turbine components in advanced aircraft engines and power generation systems. The dominant failure mode observed in TBCs is progressive fracture of the metal-oxide interface upon oxidation and thermal cycling. Two potential coating methods for improving TBC performance were studied: (1) preparing a high-quality alpha-Al 2O3 coating layer on the surface of a single crystal Ni-based superalloy (Rene N5) to extend the oxidative stability of the interface and (2) doping beta-NiAl bond coating with a small amount of Hf to improve the adhesion of thermally grown oxide (TGO) at the interface. In the first coating method, a novel chemical vapor deposition (CVD) procedure was developed using AlCl3, CO2 and H 2 as precursors. A critical part of this procedure was a short-time pre-oxidation step (1 min) with CO2 and H2 in the CVD chamber, prior to introducing the AlCl3, vapor. Without this pre-oxidation step, extensive whisker formation was observed on the alloy surface. Characterization results showed that the pre-oxidation step resulted in the formation of a continuous oxide layer (˜50 nm) on the alloy surface. The outer part of this layer (˜20 nm) appeared to contain mixed oxides whereas the inner part (˜30 nm) consisted of alpha-Al2O3 as a dominant major phase and theta-Al2O3 as a minor phase. It appeared that the preferential nucleation of beta-Al2O3 in the pre-oxidized layer was promoted by: (1) rapid heating (˜10 sec) of the alloy surface to the temperature region, where alpha-Al 2O3 was expected to nucleate instead of metastable Al 2O3 phases, (2) the low oxygen pressure environment of the pre-oxidation step which kept the rate of oxidation low, and (3) contamination of the CVD chamber with HfCl4. It appeared that the role of HfCl 4 was to enhance the preferential nucleation of alpha-Al2O 3 in the pre-oxidized layer. In our second coating method, we utilized the dynamic versatility of CVD as an avenue

  5. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    International Nuclear Information System (INIS)

    Sesha Bamini, N; Choedak, Tenzin; Muthukrishnan, P; Ancy, C J; Vidyalakshmy, Y; Kejalakshmy, N

    2015-01-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickner’s microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes. (paper)

  6. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  7. Nanoparticles Doped, Photorefractive Liquid Crystals

    National Research Council Canada - National Science Library

    Kaczmarek, Malgosia

    2005-01-01

    ...: The main objectives of this exploratory, short project will concern the study of the quality of liquid crystal cells with diluted suspensions of ferroelectric nanoparticles and their photorefractive properties...

  8. On electrons in quantum chaos state in doped fullerene crystal

    International Nuclear Information System (INIS)

    Koper, A.; Mucha, M.

    2000-01-01

    We show band electrons in A n C 60 crystal (C 60 fullerene doped with alkali ions A) are in highly chaotic quantum state. We describe intensity of the chaos by means of the Shannon information entropy, which we calculate using single particle Bloch functions. The entropy provides a quantitative measure of scars as well as degree of electrons delocalization in gaps between C 60 molecules. Implications of our results for conductivity in A 3 C 60 are discussed. (author)

  9. Guided mode gain competition in Yb-doped rod-type photonic crystal fibers

    DEFF Research Database (Denmark)

    Poli, Federica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour.......The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour....

  10. Inhomogeneous electronic structures in heavily Pb-doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} single crystals probed by low temperature STM/STS

    Energy Technology Data Exchange (ETDEWEB)

    Kinoda, Go; Nakao, Shoichiro; Motohashi, Teruki; Nakayama, Yuri; Shimizu, Keisuke; Shimoyama, Junichi; Kishio, Koji; Hanaguri, Tetsuo; Kitazawa, Koichi; Hasegawa, Tetsuya

    2003-05-15

    We have performed cryogenic scanning tunneling microscopy/spectroscopy (STM/STS) of heavily Pb-doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} single crystals to investigate local electronic structures in the overdoped regime. The obtained STM/STS results at 4.3 K clearly showed local inhomogeneity of gap structure {delta} ({delta}=20-60 meV) in a scale of several nm, suggesting the coexistence of superconducting and pseudogap-like regions, even in the overdoped regime.

  11. Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F.sub.3./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Yanagida, T.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A.; Nikl, Martin

    2011-01-01

    Roč. 659, č. 1 (2011), s. 355-360 ISSN 0168-9002 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : Micro Pulling Down method * fluoride single crystal * luminescence * scintillator * Ce 3+ Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.207, year: 2011

  12. Luminescence and photo-thermally stimulated defect-creation processes in Bi.sup.3+./sup.-doped single crystals of lead tungstate

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Boháček, Pavel; Chernenko, K.; Krasnikov, A.; Laguta, Valentyn; Mihóková, Eva; Nikl, Martin; Zazubovich, S.

    2016-01-01

    Roč. 123, č. 5 (2016), 895-910 ISSN 0370-1972 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : defects * EPR * excitons * PbWO 4 :Bi single crystals * photoluminescence * thermoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.674, year: 2016

  13. Luminescence characteristics of the LPE-grown undoped and In-doped ZnO thin films and bulk single crystals

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Kagamitani, Y.; Ehrentraut, D.; Sato, H.; Odaka, H.; Hatanaka, H.; Nikl, Martin; Yoshikawa, A.; Fukumura, H.; Fukuda, T.

    2007-01-01

    Roč. 4, č. 3 (2007), s. 942-945 ISSN 1862-6351 R&D Projects: GA MŠk ME 871 Grant - others:NEDO(JP) 03A26014a Institutional research plan: CEZ:AV0Z10100521 Keywords : luminescence * LPE-grown undoped * bulk single crystals Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. [Study on Spectral Characteristics of Two Kinds of Home-Made Novel Yb-Doped Fluoride Laser Crystals].

    Science.gov (United States)

    Xu, Wen-bin; Chai, Lu; Shi, Jun-kai; Song, You-jian; Hu, Ming-lie; Wang, Qing-yue; Su, Liang-bi; Jiang, Da-peng; Xu, Jun

    2015-09-01

    Yb-doped fluoride crystals are of important another Yb-doped laser materials besides Yb-doped oxide, which are becoming one of interests for developing tunable lasers and ultrafast lasers. In this paper, the systematic and contrastive experiments of the optical spectral characteristics are presented for two types of home-made novel Yb-doped fluoride laser crystals, namely, Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal. The fluorescent features of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal are apparently different by the fluorescence experiment. The physical mechanism of these fluorescence spectra were analyzed and proposed. The influence of doping concentrations of active Yb(3+) ions or co-doping Y ions on the absorption of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal was experimentally investigated, and the optimal values of doping concentrations of active Yb(3+) ions or co-doping Y ions in the two types of fluoride laser crystals were obtained. Continuous-wave laser operation for the two novel fluoride laser crystals has been achieved in three-mirror-folded resonator using a laser diode as the pump source. Therein, the laser operation for the co-doped Yb, Y:CaF2 crystal is demonstrated for the first time. For the two types of fluoride laser crystals (four samples), the input-output power relational curves, the optical slope efficiencies and the laser spectra were demonstrated by the laser experiments. By comparisons between the two types of fluoride laser crystals in the absorbability, fluorescence and laser spectra, laser threshold and slope efficiency of the continuous-wave laser operation, the results show that the best one of the four samples in spectral and laser characteristics is co-doped 3at%Yb, 6at% Y:CaF2 single crystal, which has an expected potential in the application. The research results provide available references for improving further laser performance of Yb-doped

  15. Single-crystal growth of ceria-based materials

    International Nuclear Information System (INIS)

    Ulbrich, Gregor

    2015-01-01

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  16. Analysis of spin-Hamiltonian and molecular orbital coefficients of Cu2+ doped C8H11KO8 single crystal through EPR technique

    Science.gov (United States)

    Juliet sheela, K.; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2018-04-01

    Electron paramagnetic resonance (EPR) studies have been investigated at X-band microwave frequency on Cu2+ ion incorporated into the single crystal of potassium succinate-succinic acid (KSSA) at room temperature. The angular variation of the EPR spectra has shown two magnetically in-equivalent Cu2+ sites in the KSSA single crystal system. The spin Hamiltonian parameters g and A are determined which reveals that the site I and site II occupied in rhombic and axial local field symmetry around the impurity ion. Among the two paramagnetic impurity ions, sites one occupies at substituitional position in the place of monovalent cation (K+) in the crystal whereas the other enters in its lattice interstitially by the correlation of EPR and crystal structure data. From the calculated principle values gxx, gyy, gzz and Axx, Ayy, Azz of both the sites, the admixture coefficients and molecular orbital coefficients were evaluated which gives the information of ground state wave function and types of bonding of impurity ions with the ligands.

  17. Growth and scintillation properties of praseodymium doped (Lu,Gd).sub.3./sub.(Ga,Al).sub.5./sub.O.sub.12./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Nikl, Martin; Kurosawa, S.; Shoji, Y.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 169, Jan (2016), s. 811-815 ISSN 0022-2313. [International Conference on Luminescence and Optical Spectroscopy of Condensed Matter /17./. Wroclaw, 13.07.2014-18.07.2014] R&D Projects: GA MŠk(CZ) LH14266 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : single crystal growth * oxides * scintillators * praseodymium * garnet Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  18. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  19. Single Crystal Surfaces

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  20. Vibrational Spectral Studies of Pure and Doped TGSP Crystals

    OpenAIRE

    Kartheeswari, N.; Viswanathan, K.

    2013-01-01

    Triglycine sulfate crystals (TGS) are an important class of ferroelectric materials. TGS have attracted many researches because of thier room temperature ferroelectric nature. TGS found wide applications in electronic and optical fields. In present work, pure and ADP-, KDP- (0.2 mol) doped TGSP crystals are grown from solution growth method. Grown crystals are subjected to UV-Vis, IR, and Raman spectral studies. Crystal structure of grown crystals is obtained from powder XRD pattern. Ferroele...

  1. Crystal ball single event display

    International Nuclear Information System (INIS)

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J.; Argonne National Lab., IL

    1997-01-01

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about π o 's and η's formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer

  2. Iron single crystal growth from a lithium-rich melt

    Science.gov (United States)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  3. Systematic hardness measurements on mixed and doped crystals of ...

    Indian Academy of Sciences (India)

    Efforts are made to improve the hardness of rubidium halide crystals by. solid solution hardening and; impurity hardening. Systematic microhardness measurements have been made on rubidium halide mixed crystals (RbBr–RbI and KI–RbI) and rubidium halide crystals doped with Sr2+ ions. The composition dependence ...

  4. Characterization of MnO4-/KBr Single Crystal

    International Nuclear Information System (INIS)

    Win Kyaw; Win Zaw; Thein Soe; Pho Kaung; Sein Htoon

    2006-06-01

    Manually operated X- ray diffractometer (Tel-X-Ometer 580) was upgraded successfully into the Personal Computer (PC) based instrument. Utilizing this together with Fourier Transform Infrared (FTIR) Spectrophotometer investigates the effect of doping Permanganate, MnO4- , ions into Potassium Bromide, KBr, single crystal. XRD spectra of the pure KBr single crystal and the MnO4 doped KBr (MnO4- / KBr) single crystal are found to be similar irrespective of the dopant MnO4- ion. The IR spectrum, however, confirms the existence of MnO4- matrix isolated in KBr. The high intensity of the resonance Raman transitions is employed to examine the dopants in substrate which are present in such low abundances that conventional Raman Spectroscopy cannot detect

  5. Structural and optical properties of Cd2+ ion on the growth of sulphamic acid single crystals

    Science.gov (United States)

    Rajyalakshmi, S.; Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Krishna, V. Y. Rama; Samatha, K.; Rao, K. Ramachandra

    2016-05-01

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm3. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd2+ ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd2+ ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  6. A variable temperature EPR study of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) single crystal at 170 GHz: zero-field splitting parameter and its absolute sign.

    Science.gov (United States)

    Misra, Sushil K; Andronenko, Serguei I; Chand, Prem; Earle, Keith A; Paschenko, Sergei V; Freed, Jack H

    2005-06-01

    EPR measurements have been carried out on a single crystal of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) at 170-GHz in the temperature range of 312-4.2K. The spectra have been analyzed (i) to estimate the spin-Hamiltonian parameters; (ii) to study the temperature variation of the zero-field splitting (ZFS) parameter; (iii) to confirm the negative absolute sign of the ZFS parameter unequivocally from the temperature-dependent relative intensities of hyperfine sextets at temperatures below 10K; and (iv) to detect the occurrence of a structural phase transition at 4.35K from the change in the structure of the EPR lines with temperature below 10K.

  7. Crystal growth and scintillation properties of Nd-doped Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. single crystals with different Nd concentrations

    Czech Academy of Sciences Publication Activity Database

    Sugiyama, M.; Fujimoto, Y.; Yanagida, T.; Yokota, Y.; Pejchal, Jan; Furuya, Y.; Tanaka, H.; Yoshikawa, A.

    2011-01-01

    Roč. 33, č. 6 (2011), s. 905-908 ISSN 0925- 3467 Institutional research plan: CEZ:AV0Z10100521 Keywords : LuAG * single crystal * scintillator * Nd 3+ Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.023, year: 2011

  8. Doping effect on the physical properties of Ca10Pt3As8(Fe2As2)5 single crystals

    Science.gov (United States)

    Pan, Jiayun; Karki, Amar; Plummer, E. W.; Jin, Rongying

    2017-12-01

    Ca10Pt3As8(Fe2As2)5 is a unique parent compound for superconductivity, which consists of both semiconducting Pt3As8 and metallic FeAs layers. We report the observation of superconductivity induced via chemical doping in either Ca site using rare-earth (RE) elements (RE  =  La, Gd) or Fe site using Pt. The interlayer distance and the normal-state physical properties of the doped system change correspondingly. The coupled changes include (1) superconducting transition temperature T c increases with increasing both doping concentration and interlayer distance, (2) our T c value is higher than previously reported maximum value for Pt doping in the Fe site, (3) both the normal-state in-plane resistivity and out-of-plane resistivity change from non-metallic to metallic behavior with increasing doping concentration and T c, and (4) the transverse in-plane magnetoresistance (MRab) changes from linear-field dependence to quadratic behavior upon increasing T c. For La-doped compound with the highest T c (~35 K), upper critical fields (Hc2ab , Hc2c ), coherence lengths (ξ ab, ξ c), and in-plane penetration depth (λ ab) are estimated. We discuss the relationship between chemical doping, interlayer distance, and physical properties in this system.

  9. Growth of Cu{sup 2+} and Mg{sup 2+} doped nonlinear optical LATF crystals and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: lxj@mail.sdu.edu.c [School of Science, University of Jinan, Jiwei Road 106, Jinan 250022, Shandong (China); Xu, D. [State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100 (China); Wei, X.Q.; Ren, M.J. [School of Science, University of Jinan, Jiwei Road 106, Jinan 250022, Shandong (China); Zhang, G.H. [State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100 (China)

    2010-02-15

    Single crystals of pure, Cu{sup 2+} and Mg{sup 2+} doped L-arginine trifluoroacetate (LATF) have been grown by the temperature lowering method. The presence of Cu{sup 2+} and Mg{sup 2+} was determined by atomic absorption spectroscopy (AAS). Single crystal X-ray diffraction studies were performed to calculate the lattice parameters of the pure and doped crystals. Absorption of these crystals was analyzed and the result confirms that they possess low absorption in the range 230-1100 nm. Thermal analysis (TGA, DTA) and Fourier transform infrared (FTIR) spectroscopy were carried out to investigate the thermal behavior and molecular vibrations of these crystals, respectively. The second harmonic generation (SHG) measurement reveals the NLO properties of pure and doped crystal. Surface morphologies of these crystals were also observed and studied in detail by atomic force microscopy.

  10. 1.8 μm luminescent properties and energy transfer of Yb{sup 3+}/Tm{sup 3+} co-doped α-NaYF{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhigang [Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo, Zhejiang, 315211 (China); Xia, Haiping, E-mail: hpxcm@nbu.edu.cn [Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo, Zhejiang, 315211 (China); Wang, Cheng; Zhang, Zhixiong; Jiang, Dongsheng; Zhang, Jian; He, Shinan; Tang, Qingyang; Sheng, Qiguo; Gu, Xuemei; Zhang, Yuepin [Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo, Zhejiang, 315211 (China); Chen, Baojiu [Department of Physics, Dalian Maritime University, Dalian, Liaoning Province, 116026 (China); Jiang, Haochuan, E-mail: jianghaochuan@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, The Chinese Academy of Sciences, Ningbo, Zhejiang, 315211 (China)

    2016-09-25

    This paper reports on successful preparation of α-NaYF{sub 4} single crystals co-doped with ∼1.9 mol% Tm{sup 3+} and various concentrations (3.85 mol%, 7.69 mol%, 11.54 mol%, 15.38 mol%) of Yb{sup 3+} by using a flux-Bridgman method. The fluorescence decay curve was measured to investigate the luminescent properties of the Yb{sup 3+}/Tm{sup 3+} co-doped α-NaYF{sub 4}, and the energy transfer process from Yb{sup 3+} to Tm{sup 3+}; the J-O intensity parameters of Tm{sup 3+} were further calculated and analyzed according to the absorption spectra. Results show that, an intense 1.8 μm emission was achieved with Yb{sup 3+} as sensitizer for Tm{sup 3+} in the α-NaYF{sub 4} single crystal under the excitation of 980 nm LD (Laser Diode) because of the strong energy transfer from Yb{sup 3+} to Tm{sup 3+}. The maximum emission intensity at 1.8 μm is obtained at about 15.38 mol% doping concentration of Yb{sup 3+} when the concentration of Tm{sup 3+} ions is fixed at ∼1.90 mol% in the current research. Moreover, the calculated maximum value of emission cross section at 1.8 μm is 1.63 × 10{sup −20} cm{sup 2} for 3.85 mol% Yb{sup 3+}/1.9 mol% Tm{sup 3+} sample, and the obtained energy transfer rate (W{sub ET}) and energy transfer efficiency (η) are 1543 s{sup −1} and 83.8%, respectively. Our analysis of the fluorescence dynamics indicates that electric dipole-dipole interaction is dominant for the energy transfer from Yb{sup 3+} ions to Tm{sup 3+} ions by using Inokuti-Hirayama’s model. - Highlights: • The Tm{sup 3+}/Yb{sup 3+} co-doped α-NaYF{sub 4} single crystals were grown by Bridgman method. • The 1.8 μm emission intensity is obtained at 15.38 mol% Yb{sup 3+}/1.90 mol% Tm{sup 3+} sample. • The maximum value of emission cross section at 1.8 μm is 1.63 × 10{sup −20} cm{sup 2}. • The energy transfer rate is 1543 s{sup −1} and energy transfer efficiency is 83.8%. • The physical mechanism for energy transfer from Yb{sup 3+} to Tm{sup 3+} ions

  11. Doping monolayer graphene with single atom substitutions

    KAUST Repository

    Wang, Hongtao

    2012-01-11

    Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope. © 2011 American Chemical Society.

  12. Scintillating properties of Pr-doped YAlO.sub.3./sub. single crystals grown by the micro-puling-down method

    Czech Academy of Sciences Publication Activity Database

    Zhuravleva, M.; Novoselov, A.; Yoshikawa, A.; Pejchal, Jan; Nikl, Martin; Fukuda, T.

    2007-01-01

    Roč. 43, č. 7 (2007), s. 753-757 ISSN 0020-1685 R&D Projects: GA MŠk ME 871 Institutional research plan: CEZ:AV0Z10100521 Keywords : aluminum perovskites * Pr-doping, scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.442, year: 2007

  13. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  14. Charge transport in single crystal organic semiconductors

    Science.gov (United States)

    Xie, Wei

    high-quality single crystals and exhibit large ambipolar mobilities. Nevertheless, a gap remains between the theory-predicted properties and this preliminary result, which itself is another fundamental challenge. This is further addressed by appropriate device optimization, and in particular, contact engineering approach to improve the charge injection efficiencies. The outcome is not only the achievement of new record ambipolar mobilities in one of the derivatives, namely, 4.8 cm2V-1s-1 for holes and 4.2 cm2V-1s-1 for electrons, but also provides a comprehensive and rational pathway towards the realization of high-performance organic semiconductors. Efforts to achieve high mobility in other organic single crystals are also presented. The second challenge is tuning the transition of electronic ground states, i.e., semiconducting, metallic and superconducting, in organic single crystals. Despite an active research area since four decades ago, we aim to employ the electrostatic approach instead of chemical doping for reversible and systematic control of charge densities within the same crystal. The key material in this study is the high-capacitance electrolyte, such as ionic liquids (ILs), whose specific capacitance reaches ~ μF/cm2, thus allowing accumulation of charge carrier above 1013 cm-2 when novel transport phenomena, such as insulator-metal transition and superconductivity, are likely to occur. This thesis addresses the electrical characterization, device physics and transport physics in electrolyte-gated single crystals, in the device architecture known as the electrical double layer transistor (EDLT). A detailed characterization scheme is first demonstrated for accurate determination of several key parameters, e.g., carrier mobility and charge density, in organic EDLTs. Further studies, combining both experiments and theories, are devoted to understanding the unusual charge density dependent channel conductivity and gate-to-channel capacitance behaviors. In

  15. Conduction in ion implanted single crystal diamond

    International Nuclear Information System (INIS)

    Hunn, J.D.; Parikh, N.R.; Swanson, M.L.

    1992-01-01

    We have implanted sodium, phosphorus and arsenic into single crystal type IIa diamond as possible n-type dopants. Particular emphasis was applied to the implantation of sodium at different temperatures and doses; combined implantation energies of 55,80 and 120 keV were used to provide a uniformly doped layer over approximately 100 nm depth. The implanted layers exhibited semiconducting behavior with a single exponential activation energy between 0.40 and 0.48 eV, as determined by temperature dependent resistance measurements. A sample implanted to a concentration of 5.10 19 Na + /cm 3 at 550 degrees C exhibited a single activation energy of 0.415 eV over a temperature range from 25 to 500 degrees C. Thermal annealing above 900 degrees C was found to remove implantation damage as measured by optical absorption and RBS/channeling. However, concomitant increases in the resistance and the activation energy were observed. Implantation of 22 Ne was used to introduce a damage density equivalent to the 23 Na implant, while not introducing an electrically active species. The activation energy and electrical resistance were similar but higher than those produced by implantation with sodium. We conclude that the electrical properties of the Na-implanted samples were at least partly due to electrically active Na, but that residual implantation damage was still important

  16. Blue luminescence in ZnO single crystals, nanopowders, ceramic

    International Nuclear Information System (INIS)

    LGrigorjeva; Millers, D; Pankratov, V; Kalinko, A; Grabis, J; Monty, C

    2007-01-01

    The luminescence spectra and luminescence decay processes were studied in a ZnO single crystal, nanopowders and ceramic at liquid helium and room temperature under VUV synchrotron radiation as well as under pulsed laser excitation. The exciton-exciton and exciton-multiphonon processes were compared in different ZnO nanopowders (commercial powder, powders obtained by vaporization-condensation technique) and ceramic. The possibility of luminescence decay time modification by Al 3+ doping was shown

  17. Electronic Transport Properties of Single Crystal THALLIUM-2201 Superconductors

    Science.gov (United States)

    Yandrofski, Robert Michael

    1992-11-01

    Four-probe resistance measurements on single crystals of the calcium-free thallium-based superconducting rm Tl_2Ba_2CuO_{6+delta } phase (Tl-2201) were performed in magnetic fields up to 12 Telsa. Single crystals of sizes approaching 5mm x 1mm x.2mm were grown by a self-flux technique and were characterized by single crystal X-ray diffraction and X-ray Dispersive Analysis. Field measurements were taken both at dc and at low frequencies using a lock-in technique. Techniques were developed to oxygen-anneal the as-grown single crystals to generate single crystal samples of the same Tl-2201 phase with varying transition temperature T_{rm c}. Resistivity measurements indicate a gradual cross-over from linear temperature-dependent resistivity at high T_ {rm c} (i.e., low oxygen doping), to a predominantly quadratic temperature dependent resistivity at low T_{rm c} (i.e., high oxygen doping). These results are correlated with theories describing the gradual change in the nature of charge carrier scattering as the system is over-doped with holes. Four-probe resistivity measurements indicate that severe anisotropies in the resistivity profiles exist at all oxygen concentrations, with the out-of-plane resistivity measuring two to three orders of magnitude higher than the in-plane resistivity. Magnetic field results indicate the presence of an irreversibility transition, with a signature for a Kosterlitz-Thouless (or "melting") transition in the vortex lattice at low fields occuring in samples with the lower T_{rm c}. Such data suggest a quasi-two-dimensional behavior in this system. Measurements of the fluctuation conductivity also suggest a quasi-two -dimensional fluctuation regime. Experimental results are discussed within the framework of Fermi liquid theory.

  18. Preparation of TiC single crystals

    International Nuclear Information System (INIS)

    Scheerer, B.; Fink, J.; Reichardt, W.

    1975-07-01

    TiC single crystals were prepared by vertical zone melting for measurements of the phonon dispersion by inelastic neutron scattering. The influence of the starting material and of the growing conditions on the growth of the crystal were studied. The crystals were characterized by chemical methods, EMX and neutron diffraction. It was possible to grow single crystals with a volume of up to 0.6 cm 3 and mosaic spread of less then 0.4 0 . (orig.) [de

  19. Zr doping on lithium niobate crystals: Raman spectroscopy and chemometrics

    Science.gov (United States)

    Kokanyan, Ninel; Chapron, David; Kokanyan, Edvard; Fontana, Marc D.

    2017-03-01

    Raman measurements were investigated on Zr-doped lithium niobate LiNbO3 crystals with different concentrations. Spectra were treated by fitting procedure and principal component analysis which both provide results consistent with each other. The concentration dependence of the frequency on the main low-frequency optical phonons provides an insight of site incorporation of Zr ions in the host lattice. The threshold concentration of about 2% is evidenced, confirming the interest of Zr doping as an alternative to Mg doping for the reduction of the optical damage in lithium niobate.

  20. Principles of crystallization, and methods of single crystal growth

    International Nuclear Information System (INIS)

    Chacra, T.

    2010-01-01

    Most of single crystals (monocrystals), have distinguished optical, electrical, or magnetic properties, which make from single crystals, key elements in most of technical modern devices, as they may be used as lenses, Prisms, or grating sin optical devises, or Filters in X-Ray and spectrographic devices, or conductors and semiconductors in electronic, and computer industries. Furthermore, Single crystals are used in transducer devices. Moreover, they are indispensable elements in Laser and Maser emission technology.Crystal Growth Technology (CGT), has started, and developed in the international Universities and scientific institutions, aiming at some of single crystals, which may have significant properties and industrial applications, that can attract the attention of international crystal growth centers, to adopt the industrial production and marketing of such crystals. Unfortunately, Arab universities generally, and Syrian universities specifically, do not give even the minimum interest, to this field of Science.The purpose of this work is to attract the attention of Crystallographers, Physicists and Chemists in the Arab universities and research centers to the importance of crystal growth, and to work on, in the first stage to establish simple, uncomplicated laboratories for the growth of single crystal. Such laboratories can be supplied with equipment, which are partly available or can be manufactured in the local market. Many references (Articles, Papers, Diagrams, etc..) has been studied, to conclude the most important theoretical principles of Phase transitions,especially of crystallization. The conclusions of this study, are summarized in three Principles; Thermodynamic-, Morphologic-, and Kinetic-Principles. The study is completed by a brief description of the main single crystal growth methods with sketches, of equipment used in each method, which can be considered as primary designs for the equipment, of a new crystal growth laboratory. (author)

  1. Multi-minimum adiabatic potential in the single crystal normal spinel ZnAl{sub 2}O{sub 4}, doped by Cu{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, V A; Zhitlukhina, E S; Lamonova, K V; Orel, S M; Pashkevich, Yu G [A A Galkin Donetsk Institute for Physics and Engineering of NASU, 83114, Donetsk (Ukraine); Shapovalov, V V; Rafailovich, M [Garcia Center for Polymers at Engineered Interfaces, Department of Materials Science and Engineering, SUNY Stony Brook, NY 11794 (United States); Schwarz, S A [Department of Physics, Queens College of the City University of New York, NY 11367 (United States); Jahoda, R; Reidy, V J, E-mail: lamonova@fti.dn.u [Bronx High School of Science, NY 10468 (United States)

    2010-06-23

    Spectroscopic investigations of a ZnAl{sub 2}O{sub 4} spinel doped with bivalent copper ions of 0.05% concentration have been carried out in the temperature range 4.2-290 K using a 3 cm{sup -1} range electron paramagnetic resonance (EPR) spectrometer having an operational frequency f = (9.241 {+-} 0.001) GHz. The spectrum can be represented as a superposition of two components: a low-temperature (LT) and a high-temperature (HT) one. Redistribution of integrated intensity between HT and LT components of the spectra occurs with temperature change that is typical of systems with multi-minimum adiabatic potential. Spectra observed are explained within the modified theory of crystalline field (MTCF). The electron levels of a Cu{sup 2+} ion placed in an octahedral coordination center with trigonal distortion [CuO{sub 6}]{sup 10-} have been calculated. The influence of possible types of oxygen octahedron distortions and possible displacement of copper ions from the symmetry center on the electron spectrum, as well as the shape of the adiabatic potential, has been analyzed. It is shown that in the low-temperature phase the multiple minima of the adiabatic potential occur due to tetragonal distortions while the depth of a minimum is determined by the degree of trigonal octahedron distortions. Tetragonal distortion values and multi-minimum potential barrier heights have been determined.

  2. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  3. Structural and optical properties of Cd{sup 2+} ion on the growth of sulphamic acid single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rajyalakshmi, S.; Samatha, K. [Department of Physics, Andhra University, Visakhapatnam-530003 (India); Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth & Nano Science Research Center, Department of Physics, Govt. College (A), Rajahmundry-533 105 (India); Krishna, V. Y. Rama [Department of Engg. Physics, Andhra University, Visakhapatnam-530003 (India)

    2016-05-06

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm{sup 3}. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd{sup 2+} ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd{sup 2+} ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  4. Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers

    International Nuclear Information System (INIS)

    Syvorotka, I.I.; Sugak, D.; Wierzbicka, A.; Wittlin, A.; Przybylińska, H.; Barzowska, J.; Barcz, A.; Berkowski, M.; Domagała, J.; Mahlik, S.; Grinberg, M.; Ma, Chong-Geng

    2015-01-01

    Results of X-ray diffraction and low temperature optical absorption measurements of cerium doped gadolinium gallium garnet single crystals and epitaxial layers are reported. In the region of intra-configurational 4f–4f transitions the spectra of the bulk crystals exhibit the signatures of several different Ce 3+ related centers. Apart from the dominant center, associated with Ce substituting gadolinium, at least three other centers are found, some of them attributed to the so-called antisite locations of rare-earth ions in the garnet host, i.e., in the Ga positions. X-ray diffraction data prove lattice expansion of bulk GGG crystals due to the presence of rare-earth antisites. The concentration of the additional Ce-related centers in epitaxial layers is much lower than in the bulk crystals. However, the Ce-doped layers incorporate a large amount of Pb from flux, which is the most probable source of nonradiative quenching of Ce luminescence, not observed in crystals grown by the Czochralski method. - Highlights: • Ce 3+ multicenters found in Gadolinium Gallium Garnet crystals and epitaxial layers. • High quality epitaxial layers of pure and Ce-doped GGG were grown. • Luminescence quenching of Ce 3+ by Pb ions from flux detected in GGG epitaxial layers. • X-ray diffraction allows measuring the amount of the rare-earth antisites in GGG

  5. Photorefractive effect at 775 nm in doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V. [Department of Electrical, Computer, and Biomedical Engineering, and CNISM, University of Pavia, 27100 Pavia (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C. [Physics and Astronomy Departement, University of Padova, 35131 Padova (Italy)

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  6. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  7. Enhancing the mechanical properties of single-crystal CVD diamond.

    Science.gov (United States)

    Liang, Qi; Yan, Chih-Shiue; Meng, Yufei; Lai, Joseph; Krasnicki, Szczesny; Mao, Ho-Kwang; Hemley, Russell J

    2009-09-09

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness (∼78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  8. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable....... The threshold voltage for doped and undoped liquid crystals in a silica capillary and in a glass cell are also measured as a function of the frequency of the external electric field and the achieved results are compared....

  9. Growth and laser action of Yb: YVO4 crystals with low Yb doping concentration

    Science.gov (United States)

    Zhong, Degao; Teng, Bing; Li, Jianhong; Zhang, Shiming; Zhang, Bingtao; Wang, Chao; Tian, Xueping; Liu, Junhai

    2012-11-01

    Yb: YVO4 single crystals with low doping concentrations of Yb3+ less than 0.3 at% were grown using the Czochralski method. The polarized absorption spectra were measured at room temperature. Strong anisotropy exists in the absorption spectra, resulting in almost entirely different features for π-polarization and σ-polarization. The laser emission spectrum and relationship curve between the output power and absorbed pump power (Pabs) were measured. The continuous-wave laser action of Yb: YVO4 single crystal in a range of 1020.4-1026.3 nm was realized by using a high-power diode laser as the pump source.

  10. Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles.

    Science.gov (United States)

    Cook, G; Reshetnyak, V Yu; Ziolo, R F; Basun, S A; Banerjee, P P; Evans, D R

    2010-08-02

    The electrical Freedericksz transition characteristics of planar aligned liquid crystal cells doped with harvested single ferroelectric domain 9 nm nanoparticles of BaTiO(3) have been measured. We demonstrate for the first time that the electrical pre-history of the cells imparts significant polarity sensitivity to the Freedericksz characteristics. The presence of harvested single domain ferroelectric nanoparticles enables cells to be programmably semi-permanently polarized. This reduces or increases the Freedericksz transition threshold by 0.8 V, depending on the polarity of the applied voltage, giving a net 1.6 V Freedericksz threshold asymmetry for 8 mum thick cells filled with TL205 liquid crystal.

  11. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    November 2008 physics pp. 1109–1114. Neutron forward diffraction by single crystal prisms. SOHRAB ABBAS1,∗, APOORVA G WAGH1, MARKUS STROBL2 and. WOLFGANG ... vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an ... Bragg reflection, for several single crystal prisms.

  12. Scintillation and radiation damage of doped BaF2 crystals

    International Nuclear Information System (INIS)

    Gong Zufang; Xu Zizong; Chang Jin

    1992-01-01

    The emission spectra and the radiation damage of BaF 2 crystals doped Ce and Dy have been studied. The results indicate that the doped BaF 2 crystals have the intrinsic spectra of impurity besides the intrinsic spectra of BaF 2 crystals. The crystals colored and the transmissions decrease with the concentration of impurity in BaF 2 crystals after radiation by γ-ray of 60 Co. The doped Ce BaF 2 irradiated by ultraviolet has faster recover of transmissions but for doped Dy the effect is not obvious. The radiation resistance is not good as pure BaF 2 crystals

  13. Spectroscopic properties of Pr 3-doped erbium oxalate crystals

    Indian Academy of Sciences (India)

    The crystals were grown by hydro silica gel method under suitable pH conditions and by single diffusion method. The well-grown crystals are bright and transparent. The dark green colour of these crystals changes with the variation of the concentrations of the dopant ions. The absorption spectra have been measured in the ...

  14. Spectroscopic properties of Pr -doped erbium oxalate crystals

    Indian Academy of Sciences (India)

    Er2(C2O4)3 ·. nH2O) crystals have been investigated. The crystals were grown by hydro silica gel method under suitable pH conditions and by single diffusion method. The well-grown crystals are bright and trans- parent. The dark green colour ...

  15. Growth of Nd doped (Lu, Gd).sub.3./sub.(Ga, Al).sub.5./sub.O.sub.12./sub. single crystal by the micro pulling down method and their scintillation properties

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Kurosawa, S.; Yamaji, A.; Shoji, Y.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 41, Mar (2015), s. 32-35 ISSN 0925- 3467 Institutional support: RVO:68378271 Keywords : single crystal growth * scintillator * garnet * neodymium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  16. Growth of emerald single crystals

    International Nuclear Information System (INIS)

    Bukin, G.V.; Godovikov, A.A.; Klyakin, V.A.; Sobolev, V.S.

    1986-01-01

    In addition to its use for jewelry, emerald can also be used in low-noise microwave amplifiers. The authors discuss flux crystallization of emerald and note that when emerald is grown by this method, it is desirable to use solvents which dissolve emerald with minimum deviations from congruence but at the same time with sufficient high efficiency. Emerald synthesis and crystal growth from slowly cooled solutions is discussed as another possibility. The techniques are examined. Vapor synthesis and growht of beryl crystals re reviewed and the authors experimentally study the seeded CVD crystallization of beryl from BeO, Al 2 O 3 and SiO 2 oxides, by using complex compounds as carrier agents. The color of crystals of emerald and other varieties of beryl is detemined by slelective light absorption in teh visible part of the spectrum and depends on the density and structural positions of chromphore ions: chromium, iron, vanadium, nickel, manganese and cobalt

  17. Ultraviolet-visible spectroscopic characterization of lanthanum beryllate crystals doped with Er, Nd, or Pr ions

    OpenAIRE

    Pustovarov, Vladimir; Ogorodnikov, Igor

    2016-01-01

    Spectroscopic characterization of lanthanum beryllate La$_{2}$Be$_{2}$O$_{5}$ (BLO) single crystals doped with trivalent ions of Eu, Nd or Pr, was carried out in the ultraviolet-visible spectral range using synchrotron radiation spectroscopy in combination with conventional optical absorption and luminescence spectroscopy techniques. On the basis of the obtained data, the energy level diagram for these trivalent impurity ions in BLO host lattice was developed; the optical and electronic prope...

  18. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  19. Theory of nanoparticles doped in ferroelectric liquid crystals

    Science.gov (United States)

    Lahiri, T.; Pal Majumder, T.; Ghosh, N. K.

    2013-02-01

    We developed a theory for the statistical mechanics of nanoparticles doped in ferroelectric liquid crystals (FLC). The presence of nanoparticles in FLC medium creates strong local fields that produce large alignment effects over the distribution of the nanosuspensions. Considering these local field effects, we presented a modified Landau free energy to calculate the electro-optic properties of the system. Then, we investigated the response of the nanoparticles doped FLC to an applied electric field. The variations in the polarization and the tilt angle show marked differences with the pure FLC medium. The rotational viscosity of the system is also calculated with its possible variation in temperature and applied field. Then, we conjectured on the possibility of shift in transition temperature, which is supposed to be induced by an electrostatic interaction between the nanoparticles and the liquid crystal molecules. Finally, strong experimental evidence is presented in favor of our results emerged from this theoretical model.

  20. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    Science.gov (United States)

    Payne, Stephen A.; Kway, Wayne L.; DeLoach, Laura D.; Krupke, William F.; Chai, Bruce H. T.

    1994-01-01

    Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

  1. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  2. Neutron forward diffraction by single crystal prisms

    International Nuclear Information System (INIS)

    Abbas, Sohrab; Wagh, Apoorva G.; Strobl, Markus; Treimer, Wolfgang

    2008-01-01

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to the incidence angle. We have measured the variation of neutron deflection and transmission across a Bragg reflection, for several single crystal prisms. The results agree well with theory. (author)

  3. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  4. Influence of microgravity on Ce-doped Bi12 SiO20 crystal defect

    Indian Academy of Sciences (India)

    TECS

    Abstract. Space grown BSO crystal doped with Ce was characterized by means of X-ray fluorescence spectra,. X-ray topography, dislocation density etc. Influence of microgravity on Ce-doped BSO crystal defect was studied by comparing space grown BSO crystal with ground grown one. These results show that composi-.

  5. Influence of microgravity on Ce-doped Bi12 SiO20 crystal defect

    Indian Academy of Sciences (India)

    Space grown BSO crystal doped with Ce was characterized by means of X-ray fluorescence spectra, X-ray topography, dislocation density etc. Influence of microgravity on Ce-doped BSO crystal defect was studied by comparing space grown BSO crystal with ground grown one. These results show that compositional ...

  6. Optical properties and radiation response of Ce3+-doped GdScO3 crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke; Kochurikhin, Vladimir; Yanagida, Takayuki; Yoshikawa, Akira

    2012-01-01

    10%-Ce doped GdScO 3 perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO 3 crystal showed photo- and radio-luminescence peaks due to Ce 3+ of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Growth of Ce-doped Ba3Gd(BO3)3 and Sr3Gd(BO3)3 single crystals by micro-pulling-down method and analysis of luminescence properties

    Science.gov (United States)

    Simura, Rayko; Yagi, Tatsushi; Sugiyama, Kazumasa; Yanagida, Takayuki; Yoshikawa, Akira

    2013-01-01

    Ce-doped double borates Ba3Gd(BO3)3 and Sr3Gd(BO3)3 (Ce:BGB and Ce:SGB, respectively) were grown by the micro-pulling-down method, and the luminescence properties of the crystals were investigated and compared with those of Ce-doped H-Ba3Y(BO3)3(Ce:H-BYB) crystals grown by the same method. Transmittance measurements showed the wavelength of absorption band was around 380 nm for all the samples. Emission bands corresponding to the 5d→4f transition of Ce3+ were observed at around 425 nm for Ce:BGB and Ce:SGB and at 435 nm for Ce:H-BYB. The photoluminescence decay times of Ce:BGB, Ce:SGB, and Ce:BYB were 29.5 ns, 35.2 ns, and 26.8 ns, respectively. The emission spectra obtained by excitation of 241Am (an α-emitter) revealed that the host luminescence was dominant (at around 315 nm) in BGB and SGB and that a very low-intensity Ce3+ 5d→4f luminescence peak appeared at around 430 nm. The relative light yield strength observed under 241Am excitation was corresponding to BGB and Ce:SGB, respectively, and these values were lower than that of Ce:H-BYB (˜400 photons/neutron).

  8. Single Crystals Grown Under Unconstrained Conditions

    Science.gov (United States)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  9. Crystal growth and luminescence properties of Li.sub.2./sub.B.sub.4./sub.O.sub.7./sub. single crystals doped with Ce, In, Ni, Cu and Ti ions

    Czech Academy of Sciences Publication Activity Database

    Senguttuvan, N.; Ishii, M.; Shimoyama, M.; Kobayashi, M.; Tsutsui, N.; Nikl, Martin; Dušek, Michal; Shimizu, H. M.; Oku, T.; Adachi, T.; Sakai, K.; Suzuki, J.

    2002-01-01

    Roč. 486, - (2002), s. 264-267 ISSN 0168-9002 R&D Projects: GA MŠk ME 462 Institutional research plan: CEZ:AV0Z1010914 Keywords : lithium tetraborate * crystal growth * neutron detection * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.167, year: 2002

  10. Light Emitting Transistors of Organic Single Crystals

    Science.gov (United States)

    Iwasa, Yoshihiro

    2009-03-01

    Organic light emitting transistors (OLETs) are attracting considerable interest as a novel function of organic field effect transistors (OFETs). Besides a smallest integration of light source and current switching devices, OLETs offer a new opportunity in the fundamental research on organic light emitting devices. The OLET device structure allows us to use organic single crystals, in contrast to the organic light emitting diodes (OLEDs), the research of which have been conducted predominantly on polycrystalline or amorphous thin films. In the case of OFETs, use of single crystals have produced a significant amount of benefits in the studies of pursuit for the highest performance limit of FETs, intrinsic transport mechanism in organic semiconductors, and application of the single crystal transistors. The study on OLETs have been made predominantly on polycrystalline films or multicomponent heterojunctions, and single crystal study is still limited to tetracene [1] and rubrene [2], which are materials with relatively high mobility, but with low photoluminescence efficiency. In this paper, we report fabrication of single crystal OLETs of several kinds of highly luminescent molecules, emitting colorful light, ranging from blue to red. Our strategy is single crystallization of monomeric or oligomeric molecules, which are known to have a very high photoluminescence efficiency. Here we report the result on single crystal LETs of rubrene (red), 4,4'-bis(diphenylvinylenyl)-anthracene (green), 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) (green), and 1,3,6,8-tetraphenylpyrene (TPPy) (blue), all of which displayed ambipolar transport as well as peculiar movement of voltage controlled movement of recombination zone, not only from the surface of the crystal but also from the edges of the crystals, indicting light confinement inside the crystal. Realization of ambipolar OLET with variety of single crystals indicates that the fabrication method is quite versatile to various light

  11. Photodynamic Processes in Fluoride Crystals Doped with Ce3+

    Directory of Open Access Journals (Sweden)

    Pavlov V.V.

    2015-01-01

    Full Text Available Integrated studies of photoelectric phenomena and their associated photodynamic processes in LiCaAlF6, LiLuF4, LiYF4, LiY0,5Lu0,5F4, SrAlF5 crystals doped with Ce3+ ions have been carried out using the combination of the methods of optical and dielectric spectroscopy. The numerical values of the basic parameters of photodynamic processes and their spectral dependence in 240 – 310 nm spectral range are evaluated. It has been shown that the most probable process, which leads to the photoionization of Ce3+ ions in LiYxLu1-xF4:Ce3+ (x=0; 0,5; 1 and LiCaAlF6:Ce3+ crystals, is excited-state absorption to the states of mixed configurations of Ce3+ ions localized near/in the conduction band of crystal.

  12. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    Science.gov (United States)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  13. Study of nonlinear effects in photonic crystals doped with nanoparticles

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2008-01-01

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration

  14. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  15. The growth of sapphire single crystals

    Directory of Open Access Journals (Sweden)

    STEVAN DJURIC

    2001-06-01

    Full Text Available Sapphire (Al2O3 single crystals were grown by the Czochralski technique both in air and argon atmospheres. The conditions for growing sapphire single crystals were calculated by using a combination of Reynolds and Grashof numbers. Acritical crystal diameter dc = 20 mm and the critical rate of rotation wc = 20 rpm were calculated from the hydrodynamics of the melt. The value of the rate of crystal growth was experimentally found to be 3.5 mm/h. According to our previous experiments, it was confirmed that three hours exposures to conc. H3PO4 at 593 K was suitable for chemical polishing. Also, three hours exposure to conc.H3PO4 at 523 K was found to be a suitable etching solution. The lattice parameters a = 0.47573 nm and c = 1.29893 nm were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  16. Scintillation properties of Ce doped Gd.sub.2./sub.Lu.sub.1./sub.(Ga,Al).sub.5./sub.O.sub.12./sub. single crystal grown by the micro-pulling-down method

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Yanagida, T.; Pejchal, Jan; Nikl, Martin; Endo, T.; Tsutumi, K.; Usuki, Y.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A.

    2012-01-01

    Roč. 352, č. 1 (2012), s. 35-38 ISSN 0022-0248 Grant - others:AV ČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : single crystal growth * oxides * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.552, year: 2012

  17. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  18. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    methoxy benzoate (C4MB) single crystals were successfully grown by the slow evaporation solution growth technique. The harvested crystals were subjected to single-crystal X-ray diffraction, spectral, optical, thermal and mechanical studies in ...

  19. Single crystal LaB/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Noack, M.A.

    1979-07-01

    Single crystals of LaB/sub 6/ were prepared by float zone refining of hot pressed blocks of LaB/sub 6/. The orientations studied were (001), (110), and a high index plane. The resulting crystals and the as-received material were chemically analyzed by vacuum fusion, combustion analysis, self-arc mass spectroscopy, and wet chemical analysis. The first two provided accurate analysis for O, N, H, and C. The remaining elements except for La and B were determined by mass spectroscopy. The wet chemical analyses determined the B/La ratio. Two batches of as-received material had B/La ratios of 6.0 and 5.8, respectively. Slightly lower B/La ratios were obtained in the single crystals grown by the float zone technique from these materials. The single crystals were further characterized by measurements of lattice parameter and density. Work function values were determined by the FERP method and the thermionic method. Work function measurements in conjunction with Auger analysis of the crystals provided insight into the electron emission character of LaB/sub 6/. Results indicate that for maximum emission from a crystal plane a proper heat treatment is necessary. Brightness of the crystals was measured in a Cambridge S-4 scanning electron microscope using a Broers type gun. Results show that a brightness of 10/sup 6/ amp/cm/sup 2/ steradian (20kV) may be achieved with a single crystal LaB/sub 6/ cathode operating at a temperature of 1900/sup 0/K which corresponds to a lifetime greater than 500 hrs for 1 mm cathodes.

  20. Sputtering yield measurements on single crystal cobalt

    International Nuclear Information System (INIS)

    Chernysh, V.S.; Johansen, A.; Sarholt-Kristensen, L.

    1981-01-01

    Single crystals of cobalt have been bombarded with 80 keV A + ions in the direction of the h.c.p. structure and in the direction of the f.c.c. structure. The sputtering yields, measured by the weight loss method, depend on the crystal structure, and damage, introduced by the ion bombardment, is shown to play a significant role in the explanation of the measured sputtering yields. (Auth.)

  1. Single chirality through crystal grinding

    NARCIS (Netherlands)

    Noorduin, W.L.

    2010-01-01

    The properties of chiral molecules in living organisms can be different for left- and right-handed molecules. Therefore, ways to produce molecules of single handedness are of paramount importance, especially for economical, high yielding processes to synthesize pharmaceutical compounds that must be

  2. Point defects and electric compensation in gallium arsenide single crystals

    International Nuclear Information System (INIS)

    Kretzer, Ulrich

    2007-01-01

    In the present thesis the point-defect budget of gallium arsenide single crystals with different dopings is studied. It is shown, in which way the concentration of the single point defects depende on the concentration of the dopants, the stoichiometry deviation, and the position of the Fermi level. For this serve the results of the measurement-technical characterization of a large number of samples, in the fabrication of which these parameters were directedly varied. The main topic of this thesis lies in the development of models, which allow a quantitative description of the experimentally studied electrical and optical properties of gallium arsenide single crystals starting from the point-defect concentrations. Because from point defects charge carriers can be set free, their concentration determines essentially the charge-carrier concentration in the bands. In the ionized state point defects act as scattering centers for free charge carriers and influence by this the drift mobility of the charge carriers. A thermodynamic modeling of the point-defect formation yields statements on the equilibrium concentrations of the point defects in dependence on dopant concentration and stoichiometry deviation. It is show that the electrical properties of the crystals observed at room temperature result from the kinetic suppression of processes, via which the adjustment of a thermodynamic equilibrium between the point defects is mediated [de

  3. Growth and scintillation properties of 3 in. diameter Ce doped Gd.sub.3./sub.Ga.sub.3./sub.Al.sub.2./sub.O.sub.12./sub. scintillation single crystal

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Shoji, Y.; Kochurikhin, V.V.; Okumura, S.; Yamamoto, S.; Nagura, A.; Yeom, J.Y.; Kurosawa, S.; Yokota, Y.; Ohashi, Y.; Nikl, Martin; Yoshikawa, A.

    2016-01-01

    Roč. 452, Oct (2016), s. 81-84 ISSN 0022-0248. [ American Conference on Crystal Growth and Epitaxy /20./ (ACCGE) / 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE) / 2nd 2D Electronic Materials Symposium. Big Sky, MT, 02.08.2015-07.08.2015] R&D Projects: GA MŠk(CZ) LH14266; GA ČR GJ15-18300Y EU Projects: European Commission(XE) 644260 - INTELUM Institutional support: RVO:68378271 Keywords : single crystal growth * oxides * scintillator materials * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.751, year: 2016

  4. Crystal growth, spectroscopic characterization, and continuous wave laser operation of Nd3+-doped LiLuF4 crystal

    Science.gov (United States)

    Zhao, C. C.; Hang, Y.; Zhang, L. H.; He, X. M.; Yin, J. G.; Li, R.; Yu, T.; Chen, W. B.

    2011-04-01

    Nd3+-doped LiLuF4 single crystal with high optical quality was grown by Czochralski technique. The segregation coefficient of Nd3+ in LiLuF4 crystal was determined by the inductively coupled plasma atomic emission spectrometry method. Polarized absorption and fluorescence spectra were investigated. The peak absorption cross section at 792 nm and peak emission cross section at 1053 nm are 6.94×10-20 and 7.60×10-20 cm2, respectively. With a laser-diode as the pump source, a maximum 6.22 W continuous-wave laser output at 1053 nm has been obtained with a slope efficiency of 37.2% with respect to the pump power.

  5. Radiation Induced Color Centers in a La Doped PWO Crystal

    CERN Document Server

    Deng, Qun

    1998-01-01

    This report presents result of a study on radiation induced color center densities in a La doped lead tungstate ( PWO) crystal. The creation and annihilation constants of radiation induced color centers were determined by using transmittance data measured for a PWO sample before and during Co-60 gamma ray irradiation at a dose rate of 15 rad/hr. Following a model of color center kinetics, these constants were used to calculate color center densities under irradiations at 100 rad/hr. The result was found to be in a good agreement with experimental data, indicating that this model of color center kinetics can be used to predict behavior of PWO crystals under irradiation.

  6. Mechanical Properties Of Single Crystal Ceramics

    Science.gov (United States)

    Rowcliffe, D. J.; Johnson, S. M.

    1987-03-01

    Approaches to characterizing the mechanical behavior of single crystal ceramics are reviewed. Consideration is given to techniques applicable to large crystals and to indentation techniques that can be used on crystals of 1 mm or less. The importance of flaws in controlling the mechanical behavior of brittle ceramics is discussed, leading to an emphasis on fracture mechanics methods. These techniques are applicable to the determination of fracture toughness and to the measurement of slow crack growth in aggresive environments. Indentation processes have been analyzed extensively and the good understanding of stress fields and micro-mechanics of indentation has led to techniques to measure hardness, toughness and elastic modulus. Measurements of hardness anistropy can be used to determine slip planes and also provide considerable information on local plastic flow in brittle crystals.

  7. Crystal growth and scintillation properties of Pr-doped oxyorthosilicate for different concentration

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Daisuke, E-mail: totsuka@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co. Ltd (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Pejchal, Jan [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2011-07-01

    0.05, 0.1 and 0.25 mol% Pr (with respect to Lu) doped Lu{sub 2}SiO{sub 5} (LSO) single crystals were grown by the micro-pulling down ({mu}-PD) method. The grown crystals were transparent, and a slight segregation of Pr{sup 3+} was observed both in the crystal cross-section and growth direction. Transparency in the visible wavelength range was about 80% in all the crystals. Intense absorptions related with the Pr{sup 3+} 4f-5d transitions were observed around 230 and 255 nm, and weak absorptions due to the 4f-4f transitions were detected around 450 nm. In radioluminescence spectra, the Pr{sup 3+} 5d-4f transitions were observed around 275and 310 nm, and emissions due to the 4f-4f transition were observed around 500 nm. In the pulse height analysis using {sup 137}Cs gamma-ray excitation, Pr 0.1% doped sample showed the highest light yield of 2,800 ph/MeV. In the decay time measurements using different excitation sources (photoluminescence, X- and gamma-ray), two different processes related to the 5d-4f emission peaks were found. Fast decay component corresponds to direct excitation of Pr{sup 3+} (4-6 ns) and slower component (25 ns) reflects the energy migration process from the host lattice to the emission center.

  8. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  9. Crystal Structure-Ionic Conductivity Relationships in Doped Ceria Systems

    DEFF Research Database (Denmark)

    Omar, Shobit; Wachsman, Eric D.; Jones, Jacob L.

    2009-01-01

    In the past, it has been suggested that the maximum ionic conductivity is achieved in ceria, when doped with an acceptor cation that causes minimum distortion in the cubic fluorite crystal lattice. In the present work, this hypothesis is tested by measuring both the ionic conductivity and elastic...... lattice strain of 10 mol% trivalent cation-doped ceria systems at the same temperatures. A consistent set of ionic conductivity data is developed, where the samples are synthesized under similar experimental conditions. On comparing the grain ionic conductivity, Nd0.10Ce0.90O2−δ exhibits the highest ionic...... conductivity among other doped ceria systems. The grain ionic conductivity is around 17% higher than that of Gd0.10Ce0.90O2−δ at 500°C, in air. X-ray diffraction profiles are collected on the sintered powder of all the compositions, from room temperature to 600°C, in air. From the lattice expansion data...

  10. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    Science.gov (United States)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  11. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  12. Systematic hardness measurements on single crystals and ...

    Indian Academy of Sciences (India)

    Vickers and knoop hardness measurements were carried out on CsBr and CsI single crystals. Polycrystalline blanks of CsCl, CsBr and CsI were prepared by melting and characterized by X-ray diffraction. Vickers hardness measurements were carried out on these blanks. The hardness values were correlated with the lattice ...

  13. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...

  14. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    Abstract. We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater ...

  15. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to ...

  16. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  17. Lattice effects in YVO3 single crystal

    NARCIS (Netherlands)

    Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =

  18. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  19. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  20. Single-Crystal Germanium Core Optoelectronic Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoyu [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Page, Ryan L. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Chaudhuri, Subhasis [Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Shih-Ying [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Mohney, Suzanne E. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Badding, John V. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Department of Physics, Pennsylvania State University, University Park PA 16802 USA; Gopalan, Venkatraman [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA

    2016-09-19

    Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.

  1. Growth of Sc doped RE.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. (RE = Y, Lu) single crystals by micro-pulling-down method and their scintillation properties

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Pejchal, Jan; Nikl, Martin; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.

    2014-01-01

    Roč. 36, č. 12 (2014), s. 1934-1937 ISSN 0925- 3467 . [International Symposium on Laser, Scintillator and Non Linear Optical Materials (ISLNOM) /6./. Shanghai, 20.10.2013-23.10.2013] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : scintillator * single crystal growth * garnet Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.981, year: 2014

  2. Hot Carrier Trapping in High-Purity and Doped Germanium Crystals at Millikelvin Temperatures

    Science.gov (United States)

    Piro, M.-C.; Broniatowski, A.; Marnieros, S.; Dumoulin, L.; Olivieri, E.

    2014-09-01

    A new set of experimental data is presented for the mean drift lengths and the drift velocities of hot electrons and holes as a function of the electric field in ultra-pure and in lightly doped (n- and p-type) germanium single crystals at mK temperatures. Measurements are made in the field range between 0.1 and 15 V/cm, typical for the operation of cryogenic germanium detectors for dark matter search. The analysis of the experimental data strongly suggests that the dominant trapping centers are the dopant species in the neutral state.

  3. The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hatef Ali

    2010-01-01

    Full Text Available Abstract In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices.

  4. Investigation on the influence of foreign metal ions in crystal growth and characterization of L-Alaninium Maleate (LAM) single crystals.

    Science.gov (United States)

    Ruby Nirmala, L; Thomas Joseph Prakash, J

    2013-11-01

    A Nonlinear Optical, good quality, single crystals of doped and undoped l-Alaninium Maleate (LAM) were grown by slow evaporation solution growth technique at room temperature. The lattice parameters were analyzed by single crystal X-ray diffraction technique. The identification of Cadmium ion in the doped crystals was done using the EDAX spectrum. The presence of functional group of the dopant with LAM molecule was studied using FTIR spectra. The results of UV-Vis study is used to compare the transparencies of the doped and undoped LAM crystals. The optical band gap energy of the grown crystal was also calculated. The relative second harmonic generation (SHG) efficiency measurement with KDP reference is used to find the incorporation of metal to l-Alaninium Maleate crystals and the parent material. Also the thermal stability of the grown crystals was studied by TGA/DTA spectrum. The mechanical stability of the grown crystals was confirmed through Vickers micro hardness study. By parallel plate capacitor technique, the dielectric response was studied over a wide range of frequencies at different temperatures. The various studies showed the incorporation of the impurity Cd(2+) into LAM crystals and the investigations indicated that the impurity played an important role in the changes of the spectral and structural properties of LAM crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... to new crystal orientations, producing new grain boundaries in the process. These refined grains develop a {112}. texture closer to the tool. Large conventionally recrystallised grains sometimes form in the outer regions of the refined grain structure, but become ever more deformed as they approach...

  6. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M.A., E-mail: omaymn771@yahoo.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Ravishankar, M.N. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Vijayan, N. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Govindaraj, G. [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Siddaramaiah [Department of Polymer and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570 006 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India)

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number H{sub V} and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  7. Investigation of self-frequency doubling crystals, yttrium calcium oxyborate (YCOB), doped with neodymium or ytterbium

    Science.gov (United States)

    Ye, Qing

    1999-09-01

    There is a need for low cost red, green, and blue (RGB) lasers for a number of commercial applications such as high-resolution laser printing, full color laser display. While semiconductor lasers still have both availability (green and blue) and beam quality (red) problems, nonlinear frequency conversion of diode-pumped solid state lasers are good alternatives. Among them, self- frequency doubling is an attractive approach because of its simpler design and lower cost. Unfortunately, few known crystals possess self-frequency doubling property. A newly discovered yttrium calcium oxyborate (YCOB) can fill in the role because it has adequate lasing and nonlinear frequency conversion efficiency. More importantly, YCOB crystal melts congruently so that high quality, large size single crystals can be grown using conventional Czochralski melt pulling technique. The thermal mechanical properties, linear and nonlinear optical properties of YCOB, laser properties of Nd:YCOB and Yb:YCOB crystals were investigated. Based on the calculated second harmonic phase matching angles, Nd:YCOB laser rods were fabricated. Self-frequency doubled green emission with 62 mW output power and red emission with 16 mW output power were successfully demonstrated using diode-pumping. It is the first time to achieve the continuous wave (cw) red lasing in Nd doped rare-earth calcium oxyborates. Rare-earth ions doping in YCOB crystal can not only achieve lasing, but also affect the physical and chemical properties of the crystal. The stability field of YCOB is reduced in proportion to both the ionic size differences from yttrium and doping concentrations of the rare-earth ions. The doping also changes the linear and nonlinear optical properties of the material. For example, the second harmonic conversion efficiency of 20% Yb doped YCOB was enhanced by more than 15% compared to undoped YCOB. The absorption cutoff edge of 20% Yb:YCOB was red- shift by more than 60 nm. Similar effects were observed in

  8. Optical properties of pure and Ce{sup 3+} doped gadolinium gallium garnet crystals and epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Syvorotka, I.I. [Scientific Research Company “Carat”, 202 Stryjska Street, Lviv 79031 (Ukraine); Sugak, D. [Scientific Research Company “Carat”, 202 Stryjska Street, Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12, S. Bandera Street, Lviv, 79013 (Ukraine); Wierzbicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Wittlin, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Cardinal Stefan Wyszyński University in Warsaw, ul. Dewajtis 5, 01-815 Warsaw (Poland); Przybylińska, H. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Barzowska, J. [Institute of Experimental Physics, Gdańsk University, ul. Wita Stwosza 57, Gdańsk (Poland); Barcz, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Berkowski, M.; Domagała, J. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Mahlik, S.; Grinberg, M. [Institute of Experimental Physics, Gdańsk University, ul. Wita Stwosza 57, Gdańsk (Poland); Ma, Chong-Geng [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); and others

    2015-08-15

    Results of X-ray diffraction and low temperature optical absorption measurements of cerium doped gadolinium gallium garnet single crystals and epitaxial layers are reported. In the region of intra-configurational 4f–4f transitions the spectra of the bulk crystals exhibit the signatures of several different Ce{sup 3+} related centers. Apart from the dominant center, associated with Ce substituting gadolinium, at least three other centers are found, some of them attributed to the so-called antisite locations of rare-earth ions in the garnet host, i.e., in the Ga positions. X-ray diffraction data prove lattice expansion of bulk GGG crystals due to the presence of rare-earth antisites. The concentration of the additional Ce-related centers in epitaxial layers is much lower than in the bulk crystals. However, the Ce-doped layers incorporate a large amount of Pb from flux, which is the most probable source of nonradiative quenching of Ce luminescence, not observed in crystals grown by the Czochralski method. - Highlights: • Ce{sup 3+} multicenters found in Gadolinium Gallium Garnet crystals and epitaxial layers. • High quality epitaxial layers of pure and Ce-doped GGG were grown. • Luminescence quenching of Ce{sup 3+} by Pb ions from flux detected in GGG epitaxial layers. • X-ray diffraction allows measuring the amount of the rare-earth antisites in GGG.

  9. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  10. EPR of Mn2+ in strontium tartrate trihydrate single crystals

    International Nuclear Information System (INIS)

    Korkmaz, M.; Aktas, B.

    1985-01-01

    Electron paramagnetic resonance spectra of Mn 2+ doped in single crystals of strontium tartrate trihydrate grown by a diffusion technique are investigated at room temperature. Mn 2+ enters the lattice substitutionally and is trapped at two magnetically equivalent but crystallographically inequivalent sites. The EPR measurements give the following values for the spin-Hamiltonian parameters: g/sub x/(= g/sub y/) = 1.9781, g/sub z/ = 2.0012, A/sub x/(= A/sub y/) = -94.9 x 10 -4 T, A/sub z/ = -96.2 x 10 -4 T, B 0 2 (= D/3) = +160.9 x 10 -4 T, B 2 2 (= E) = +101.2 x 10 -4 T, B 0 4 = +0.013 x 10 -4 T, and B 2 4 = +0.088 x 10 -4 T. (author)

  11. Growth of 2-amino-5-chlorobenzophenone single crystal by ...

    Indian Academy of Sciences (India)

    Abstract. Organic single crystals of 2-amino-5-chlorobenzophenone (2A5CB) were grown by Microtube Czochral- ski method using Microtube as a seed. The grown crystals were characterized by single crystal and powder X-ray diffraction. The functional groups of the grown crystal were found using Fourier transform ...

  12. Soft memory in a ferroelectric nanoparticle-doped liquid crystal

    Science.gov (United States)

    Basu, Rajratan

    2014-02-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNP) was doped in a liquid crystal (LC), and the LC + FNP hybrid was found to exhibit a nonvolatile electromechanical memory effect in the isotropic phase. The permanent dipole moment of the FNPs causes the LC molecule to form short-range pseudonematic domains surrounding the FNPs. The FNP-induced short-range orders become more prominent in the isotropic phase when the global nematic order is absent. These short-range domains, being anisotropic in nature, interact with an external electric field, exhibiting a Fréedericksz-type transition. When the field is turned off, these domains stay oriented, showing a hysteresis effect due to the absence of any long-range order and restoring forces in the isotropic phase. The hysteresis graph for this memory effect shows a significant pretransitional behavior on approaching the nematic phase from the isotropic phase.

  13. Crystallization and doping of amorphous silicon on low temperature plastic

    Science.gov (United States)

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  14. Optical and mechanical properties of Al-doped GaSe crystals

    Science.gov (United States)

    Chen, Shijing; Huang, Changbao; Ni, Youbao; Wu, Haixin; Wang, Zhenyou

    2018-03-01

    Doping Al atom was performed to improve the hardness of GaSe crystal. The Al-doped GaSe (Ga0.49Se0.50: Al 0.15 wt.% and Ga0.49Se0.50: Al 0.35 wt.%) were grown by the modified Bridgman method with crucible rotation technique. Compared with pure crystal, the hardness of Al-doped GaSe crystals is increased markedly (2.6 and 3.2 times). The GaSe: Al crystal hardness increases with Al concentration increase, but high Al concentration leads to the optical quality degradation (Ga0.49Se0.50: Al 0.35 wt.% possesses lower optical quality). Therefore, the selection of appropriate Al-doping level is important for the application of GaSe: Al crystals.

  15. In situ inward epitaxial growth of bulk macroporous single crystals.

    Science.gov (United States)

    Chen, Chenlong; Sun, Shujing; Chou, Mitch M C; Xie, Kui

    2017-12-19

    The functionalities of porous materials could be significantly enhanced if the materials themselves were in single-crystal form, which, owing to structural coherence, would reduce electronic and optical scattering effects. However, growing macroporous single crystals remains a fundamental challenge, let alone manufacturing crystals large enough to be of practical use. Here we demonstrate a straightforward, inexpensive, versatile method for creating macroporous gallium nitride single crystals on a centimetre scale. The synthetic strategy is built upon a disruptive crystal growth mechanism that utilises direct nitridation of a parent LiGaO 2 single crystal rendering an inward epitaxial growth process. Strikingly, the resulting single crystals exhibit electron mobility comparable to that for bulk crystals grown by the conventional sodium flux method. This approach not only affords control of both crystal and pore size through synthetic modification, but proves generic, thus opening up the possibility of designing macroporous crystals in a wealth of other materials.

  16. Ion transport in Au doped/undoped KDP crystals with KI/NaI as ...

    Indian Academy of Sciences (India)

    Undoped KDP and KDP crystals containing KI/NaI with/without gold doping were grown by slow evaporation technique. All the grown crystals were -irradiated using 60Co source. Electrical conductivity measurements were carried out on all these crystals perpendicular to the unique direction before and after -irradiation.

  17. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  18. Mode locked Nd3+ and Gd3+ co-doped calcium fluoride crystal laser at dual gain lines

    Science.gov (United States)

    Zhang, Feng; Wu, Yongjing; Liu, Jie; Pang, Siyuan; Ma, Fengkai; Jiang, Dapeng; Wu, Qinghui; Su, Liangbi

    2018-03-01

    Based on a novel disordered fluoride crystal-Nd3+ and Gd3+ co-doped CaF2, we demonstrate a dual-wavelength synchronously mode locked laser in a single cavity, for the first time. Two gain lines at 1064.2 nm and 1064.7 nm were synchronously mode locked by gain spectrum splitting method, corresponding to a 0.15 THz repetition rate. The mode locked laser shows a 6.5 ps separated pulse duration.

  19. Single-crystal growth of ceria-based materials; Einkristallzuechtung von Materialien auf der Basis von Cerdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Gregor

    2015-07-23

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  20. Crystallographic, FTIR and optical property studies on Co doped ZnS nanometer-sized crystals

    Science.gov (United States)

    Mote, V. D.; Huse, V. R.; Dole, B. N.

    2013-02-01

    Cobalt doped ZnS Semiconductor nanometer-sized crystals were synthesized by coprecipitation method at room temperature. The effect of Co doping on the structural and optical properties was investigated. XRD investigation shows Cobalt doped ZnS samples have cubic structure. The value of lattice constant of Co doped ZnS sample is greater than the pure ZnS sample. The average crystallite size was calculated by Scherrer's formula. It is found that the average crystallite size of the samples is ranging from 2-4 nm. Optical characterization of pure ZnS as well as Cobalt doped ZnS samples was carried out by UV-Vis spectroscopy. It is evident that the optical band of pure ZnS sample is smaller than that of the Co doped ZnS sample. The chemical species of the grown crystals were identified by Fourier transform infrared spectroscopy (FTIR).

  1. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  2. Towards single Ce ion detection in a bulk crystal for the development of a single-ion qubit readout scheme

    OpenAIRE

    Yan, Ying

    2013-01-01

    The work presented in this thesis was concerned with investigating the relevant spectroscopic properties of Ce ions randomly doped in an Y2SiO5 crystal at low temperatures (around 4 K), in order to develop a technique and an experimental set-up to detect the fluorescence photons emitted by a single Ce ion. The aim of the work was to determine whether a single Ce ion (referred to as the readout ion) can be used as a local probe to sense the quantum state of a neighbouring single-ion qubit via ...

  3. Chemical vapor deposition of graphene single crystals.

    Science.gov (United States)

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  4. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  5. Optical properties of lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palatnikov, M.N.; Sidorov, N.V.; Biryukova, I.V.; Kalinnikov, V.T. [Institute of Chemistry, Kola Science Centre RAS, 26a Fersman str., 184200 Apatity, Murmansk region (Russian Federation); Bormanis, K. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., Riga, LV-1063 (Latvia)

    2005-01-01

    Studies of thermal and {gamma}-irradiation effects on the optical properties in congruous lithium niobate single crystals containing Y, Mg, Gd, B, and Zn dopants including samples with double dopants Y, Mg and Gd, Mg are reported. Formation of defects at irradiation and thermal treatment of the samples is explored by electron absorption spectra. Considerable increase of absorption with the dose of {gamma}-radiation is observed at 500 nm. The changes of absorption examined under different conditions are explained by creation and destruction of Nb{sup 4+} defects. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. NMR studies of single crystal chromium diboride

    Energy Technology Data Exchange (ETDEWEB)

    Michioka, C. [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)]. E-mail: michioka@kuchem.kyoto-u.ac.jp; Itoh, Y. [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Yoshimura, K. [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Watabe, Y. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558 (Japan); Kousaka, Y. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558 (Japan); Ichikawa, H. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558 (Japan); Akimitsu, J. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558 (Japan)

    2007-03-15

    We report {sup 11}B NMR studies of a single crystal CrB{sub 2}. From the temperature dependence of the Fourier-transformed NMR spectra in the paramagnetic state, the hyperfine coupling constants are estimated to be A{sub Cr-B} = -0.64,-0.74 and -0.71kOe/{mu}{sub B} for H parallel c, H parallel a and H parallel [210], respectively. In the magnetically ordered state, the spectra in H parallel a and H parallel [210] consist of superposition of a broad hump and five peaks, which correspond to the incommensurate and commensurate spin structures.

  7. Photoelectric studies of gallium monosulfide single crystals

    Science.gov (United States)

    Gamal, G. A.; Azad, M. I.

    2005-10-01

    Photoconductivity studies were carried out on GaS single crystals prepared from melt by directional solidification. We studied the effect of light intensity, applied voltage on both the photoconductivity and the lifetime of carriers. The V-I characteristics and the absorption spectra were checked for different sample thickness. The present investigation was extended to study the spectral distribution of the photocurrent for GaS. It was found that the photocurrent curves are practically independent on the bias voltage. The energy gap for GaS was found to be 2.5 eV.

  8. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    Science.gov (United States)

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural perfection and residual electric resistance of tungsten single crystals

    International Nuclear Information System (INIS)

    Tagirova, D.M.; Dyakina, V.P.; Startsev, V.E.; Esin, V.O.

    1997-01-01

    A study was made into residual relative resistance (RRR) and structural perfection (SP) of tungsten single crystals, grown by electron beam zone melting using seeding crystals of several orientations, namely, , , , . The single crystals were of 99.98 and 99.9995 wt.% purity. The RRR value is found to depend on crystallographic orientation of an axis of crystal growth and to correlate with SP. Single crystals of different purity are differ in the nature of orientational dependences. It is shown that the correlation between RRR and SP of crystals is mainly due to conduction electron scattering by subgrain boundaries (internal size effect)

  10. Growth and evaluation of lanthanoids orthoniobates single crystals processed by a miniature pedestal growth technique

    International Nuclear Information System (INIS)

    Octaviano, E.S.; Reyes Ardila, D.; Andrade, L.H.C.; Siu Li, M.; Andreeta, J.P.

    2004-01-01

    Optimized conditions for the growth of lanthanoids orthoniobates (LnNbO 4 , Ln=lanthanide elements) single crystal minirods by a floating zone technique were investigated. Adequate atmospheres and pulling to feeding speed ratios to grow these materials were determined. Emphasis is given to the study of LaNbO 4 because of their more favorable growth conditions and crystalline quality. This material can be efficiently doped with rare earth elements such as erbium. It grows with high crystallinity and its preferential growth direction is [110]. A preliminary evaluation of optical properties of Er 3+ -doped LaNbO 4 single crystal under the Judd-Ofelt formalism indicates spectral parameters Ω t close and even larger than for Er 3+ ions in YVO 4 . (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The new single crystal diffractometer SC3

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Koch, M.; Keller, P.; Fischer, S.; Thut, R. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H{sub 2}O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2{Theta}. each detector may be individually moved around a vertical circle (tilting angle {gamma}), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs.

  12. The new single crystal diffractometer SC3

    International Nuclear Information System (INIS)

    Schefer, J.; Koch, M.; Keller, P.; Fischer, S.; Thut, R.

    1996-01-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H 2 O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2Θ. each detector may be individually moved around a vertical circle (tilting angle γ), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs

  13. Electron-irradiation of oxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, K.J.; Cooper, R.; Guy, L. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Full text: Point defects created in single crystals of CaO, MgO and {alpha}-Al{sub 2}O{sub 3} (sapphire) by electron-irradiation give rise to luminescence from colour centres. The luminescence may be used to monitor the formation of point defects by elastic collision processes. Such processes have great technological importance, in thermoluminescent dosimetry, the development of colour centre lasers, and particularly with the use of sapphire as a first-wall insulator in nuclear fusion reactors. Point defect formation is the initial process which can ultimately lead to dielectric breakdown. By controlling the energy of incident electrons irradiating single crystals, thresholds may be determined for atomic displacement. The time-dependent spectroscopy and decay kinetics of luminescence may also be studied. Displacement thresholds, luminescence spectroscopy and decay kinetics have been studied for CaO, MgO and {alpha}-Al{sub 2}O{sub 3}. Sapphire irradiated with 0.50 MeV electrons, exhibits a broad luminescence emission band around 300 nm at room temperature, which at temperatures below 60 K broadens into two distinct bands around 300 nm and 400 nm. Analysis of the logarithmic decay kinetics of the 300 nm band reveals distinctive features observed in similar oxides by other workers, namely a rapid decrease in intensity punctuated by discrete plateau regions. A model comprising bimolecular electron-hole recombination, in conjunction with unimolecular electron-detrapping, is able to account for these features. 4 refs.

  14. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- tures of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail. Keywords. d-AHT single crystals; growth features ...

  15. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  16. Scintillation and optical properties of Pb-doped YCa{sub 4}O(BO{sub 3}){sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka, E-mail: fuji-you@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); JSPS, 8 Ichibanmachi, Chiyoda-ku, Tokyo 102-8472 (Japan); Yanagida, Takayuki; Yokota, Yuui [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 3 Shibuya Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tokuyama Corporation, 3 Shibuya Shibuya-ku, Tokyo 150-8383 (Japan); Totsuka, Daisuke [Nihon Kessho Kogaku Co., Ltd., 810-5 Nobe-cho Tatebayashi Gunma (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-10-01

    This communication reports optical properties and radiation responses of Pb{sup 2+} 0.5 and 1.0 mol%-doped YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystals grown by the micro-pulling-down ({mu}-PD) method for neutron scintillator applications. The crystals had no impurity phases according to the results of X-ray powder diffraction. These Pb{sup 2+}-doped crystals demonstrated blue-light luminescence at 330 nm because of Pb{sup 2+1}S{sub 0}-{sup 3}P{sub 0,1} transition in the photoluminescence spectra. The main emission decay component was determined to be about 250-260 ns under 260 nm excitation wavelength. When irradiated by a {sup 252}Cf source, the relative light yield of 0.5% Pb{sup 2+}-doped crystal was about 300 ph/n that was determined using the light yield of a reference Li-glass scintillator.

  17. Investigation on defects in the high temperature inorganic scintillation single crystals of Ce:YAlO sub 3

    CERN Document Server

    Zhao Guang Jun; He Xiao Ming; Xu Jun; Tian Yu Lian; Huang Wan Xia

    2002-01-01

    The defects in Ce:YAlO sub 3 single crystals grown by Czochralski method were investigated by transmission white beam synchrotron radiation topography method. It was shown in experiments that the growth striations, inclusions precipitations, twins, core and dislocation group were the main growth defects in Ce:YAP single crystals. The mechanism of the defects formation was also discussed. The results showed that the doped concentration, purity of starting materials and growth conditions are the main causes for defects formation in Ce:YAP single crystals

  18. Optical properties and radiation response of Ce{sup 3+}-doped GdScO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kochurikhin, Vladimir [General Physics Institute, 38 Vavilov Str., 119991 Moscow (Russian Federation); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    10%-Ce doped GdScO{sub 3} perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO{sub 3} crystal showed photo- and radio-luminescence peaks due to Ce{sup 3+} of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium

    Science.gov (United States)

    Maiti, Tias

    Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening

  20. Crystal field distortion of La3+ ion-doped Mn-Cr ferrite

    Science.gov (United States)

    Abdellatif, M. H.; El-Komy, G. M.; Azab, A. A.; Salerno, M.

    2018-02-01

    Ion doping in crystals can result in lattice modifications triggering interesting magnetic and optical properties of the material, understood as a compensation of the crystal deformation and microstrain. We investigated the spinel structure of Mn-Cr ferrite after doping with La3+ ions. The structure was first characterized by X-ray diffraction and high-resolution transmission electron microscopy. Raman scattering spectra were taken that could also be interpreted in terms of crystal field distortion due to La3+ ion doping. On assessing the magneto-impedance of the doped ferrite, it showed giant magneto-impedance behavior, with a strong drop of over 50%. The saturation magnetization was characterised by vibrating sample magnetometer and was found to be 20.25 emu/g with remnant magnetization of 1.47 emu/g.

  1. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  2. Solid state single crystal growth of three-dimensional faceted LaFeAsO crystals

    Science.gov (United States)

    Kappenberger, Rhea; Aswartham, Saicharan; Scaravaggi, Francesco; Blum, Christian G. F.; Sturza, Mihai I.; Wolter, Anja U. B.; Wurmehl, Sabine; Büchner, Bernd

    2018-02-01

    Solid state single crystal growth (SSCG) is a crystal growth technique where crystals are grown from a polycrystalline matrix. Here, we present single crystals of the iron pnictide LaFeAsO grown via SSCG using NaAs as a liquid phase to aid crystallization. The size of the as-grown crystals are up to 2 × 3 × 0.4 mm3. Typical for this method, but very uncommon for crystals of the pnictide superconductors and especially for the oxypnictides, the crystals show pronounced facets caused by considerable growth in c direction. The crystals were characterized regarding their composition, structure, magnetic, and thermodynamic properties. This sets the stage for further measurements for which single crystals are crucial such as any c axis and reciprocal space dependent measurements.

  3. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  4. Luminescence Properties of ScPO{sub 4} Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A.; Trukhin, A.N.

    1999-08-16

    Flux-grown ScPO{sub 4} single crystals exhibit a number of luminescence bands in their x-ray-excited luminescence spectra - including sharp lines arising from rare-earth elements plus a number of broad bands at 5.6 cV, 4.4 eV, and 3 eV. The band at 5.6 eV was attributed to a self-trapped exciton (STE) [l], and it could be excited at 7 eV and higher energies. This luminescence is strongly polarized (P = 70 %) along the optical axes of the crystal and exhibits a kinetic decay time constant that varies from several ns at room temperature to {approximately}10 {micro}s at 60 K and up to {approximately}1 ms at 10 K. It is assumed that the STE is localized on the SC ions. The band at 3 eV can be excited in the range of the ScPO{sub 4} crystal transparency (decay time = 3 to 4 {micro}s.) This band is attributed to a lead impurity that creates different luminescence centers. At high temperatures, the band at 4.4 eV is dominant in the x-ray-excited TSL and afterglow spectra. Its intensity increases with irradiation time beginning at zero at the initial irradiation time. The 4.4 eV band does not appear in a fast process under a pulsed electron beam, showing that accumulation is necessary for its observation. A sample of ScPO{sub 4} doped with vanadium exhibited a prevalent band at 4.4 eV at T = 480 K.

  5. Ion transport in Au doped/undoped KDP crystals with KI/NaI as ...

    Indian Academy of Sciences (India)

    Unknown

    8 : 2. Au+ doped crystals were grown by adding a definite volume of tetra-auro chloric acid solution to the mixture .... because ionic conductivity of alkali halides is lower than that of KDP crystals. Addition of higher concentration of alkali halides has resulted in lower σ. Present experimen- tal results are in line with the above ...

  6. Stress-Induced Crystallization of Ge-Doped Sb Phase-Change Thin Films

    NARCIS (Netherlands)

    Eising, Gert; Pauza, Andrew; Kooi, Bart J.

    The large effects of moderate stresses on the crystal growth rate in Ge-doped Sb phase-change thin films are demonstrated using direct optical imaging. For Ge6Sb94 and Ge7Sb93 phase-change films, a large increase in crystallization temperature is found when using a polycarbonate substrate instead of

  7. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    International Nuclear Information System (INIS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-01-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF 6 crystal. Eu doped and Eu, Y co-doped LiCaAlF 6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded

  8. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  9. V color centers in electrolytically colored hydroxyl-doped sodium chloride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Song Cuiying; Han Li

    2006-01-01

    Hydroxyl-doped sodium chloride crystals were successfully colored electrolytically by using pointed anode and flat cathode at various temperatures and under various electric field strengths. V 2 and V 3 color centers were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V 2 and V 3 color center migration was determined. Production of the V 2 and V 3 color centers and formation of current zones for the electrolytic colorations of the hydroxyl-doped sodium chloride crystals are explained

  10. Development of novel growth methods for halide single crystals

    Science.gov (United States)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  11. Modification of ion implanted or irradiated single crystal sapphire

    International Nuclear Information System (INIS)

    Song Yin; Zhang Chonghong; Wang Zhiguang; Zhao Zhiming; Yao Cunfeng; Zhou Lihong; Jin Yunfan

    2006-01-01

    Single crystal sapphire (Al 2 O 3 ) samples were implanted at 600 K by He, Ne and Ar ions with energy of 110 keV to doses ranging from 5 x 10 16 to 2 x 10 17 ion/cm 2 or irradiated at 320 K by 208 Pb 27+ ion with energy of 1.1 MeV/u to the fluences ranging from 1 x 10 12 to 5 x 10 14 ion/cm 2 . The modification of structure and optical properties induced by ion implantation or irradiation were analyzed by using photoluminescence (PL) and Fourier transformation infrared spectrum (FTIR) spectra and transmission electron microscopy (TEM) measurements. The PL measurements showed that absorption peaks located at 375, 413 and 450 nm appeared in all the implanted or irradiated samples, the PL intensities reached up to the maximum for the 5 x 10 16 ion/cm 2 implanted samples. After Pb-ion irradiation, a new peak located at 390 nm formed. TEM analyses showed that small size voids (1-2 nm) with high density were formed in the region from the surface till to about 100 nm in depth and also large size Ne-bubble formed in the Ne-doped region. Form the obtained FTIR spectra, it was found that Pb-ion irradiation induced broadening of the absorption band in 460-510 cm -1 and position shift of the absorption band in 1000-1300 cm -1 towards to high wavenumber. The possible damage mechanism in single crystal sapphire induced by energetic ion implantation or irradiation was briefly discussed. (authors)

  12. Chemical composition of cadmium selenochromite crystals doped with indium, silver and gallium

    International Nuclear Information System (INIS)

    Bel'skij, N.K.; Ochertyanova, L.I.; Shabunina, G.G.; Aminov, T.G.

    1985-01-01

    The high accuracy chemical analysis Which allows one to observe doping effect on the cadmium selenochromite crystal composition is performed. The problem on the possibility of impurity atom substitution for basic element is considered on the basis of data of atomic-absorption analysis of doped crystals. The crystals of cadmium selenochromite doped with indium by chromium to cadmium ratio are distributed into two groups and probably two types of substitution take place. At 0.08-1.5 at.% indium concentrations the Cr/Cd ratio >2. One can assume that indium preferably takes cadmium tetrahedral positions whereas at 1.5-2.5 at. % concentrations the Cr/Cd ratio =2 and cadmium is substituted for silver which does not contradict crystallochemical and physical properties of this compound. In crystals with gallium the Cr/Cd ratio <2. Gallium preferably substitutes chromium

  13. One-step preparation of Ti3+ self-doped TiO2 single crystals with internal-pores and highly exposed {001} facets for improved photocatalytic activity

    Science.gov (United States)

    Sui, Yulei; Liu, Qingxia; Jiang, Tao; Guo, Yufeng

    2017-12-01

    For the first time, a one-step synthetic strategy has been developed towards the preparation of Ti3+ self-doped TiO2 with internal-pores and highly exposed {001} facets using ethylene glycol (EG) and HF as control agents. The obtained samples were characterized by XRD, XPS, SEM, TEM, HAADF-STEM, photoluminescence spectroscopy (PL), and UV-vis reflectance spectroscopy. The synergistic effect of EG and HF plays a vital role in the formation of synthesized TiO2 with Ti3+ self-doping, internal-pores and highly exposed {001} facets. As-synthesized TiO2 exhibit much higher activity than commercial P25 on photocatalytic degradation of phenol and the outstanding performance is attributed to the synergistic effect of Ti3+ doping, internal-pores, and facets heterojunction.

  14. Growth and scintillation properties of Ce{sup 3+}-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    The optical and scintillation properties of 0.5% fixed Ce-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} single crystals have been investigated at three different levels of Gd doping: x = 0.2, 0.4 and 0.6. Single crystal of the Ce{sup 3+}-doped (Y{sub 0.8}Gd{sub 0.2})AlO{sub 3}, (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} and (Y{sub 0.4}Gd{sub 0.6})AlO{sub 3} were successfully grown by {mu}-PD technique in nitrogen atmosphere. From X-ray diffraction analysis, no impurity phase was detected for the grown Ce-doped crystals. Ce-doped (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} crystal demonstrated highest fluorescence quantum efficiency ({proportional_to} 25%) with improvement of excitation efficiency due to the Gd-doping. When irradiated by the alpha-rays from a {sup 241}Am source, all the Ce-doped crystals showed luminescence band that corresponding to 5d (t{sub 2g})-4f transition of Ce{sup 3+}. The scintillation decay time was characterized by two components; the fast component (5-15 ns) is ascribed to 5d-4f transition of Ce{sup 3+}, while the slow one (100-200 ns) may be related to energy transfer between Ce{sup 3+} and Gd{sup 3+} ion. According to the result of {sup 137}Cs gamma-ray irradiated pulse height spectra compared with BGO scintillator, the relative scintillation light output was found to be about 12200 {+-} 1220 (Gd 20%) and 16000 {+-} 1600 (Gd 40%) ph/MeV. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Tb3+ added sulfamic acid single crystals with optimal photoluminescence properties for opto-electric devices

    Directory of Open Access Journals (Sweden)

    B. Brahmaji

    2018-03-01

    Full Text Available Terbium doped Sulfamic Acid (Tb3+:SA single crystals were grown successfully by the slow evaporation solution (SEST technique and the unidirectional method. The lattice parameters and the functional group were identified for the grown crystal by using single crystal X-ray diffraction and Fourier transform infra-red spectroscopy (FTIR, respectively. High resolution X-ray diffraction analysis (HRXRD shows the crystalline perfection of the grown crystal. The optical transparency and band gap of the grown crystals were determined from UV-VIS spectroscopy. TG/DTA studies reveal that the grown crystals are thermally stable up to 190 °C. The frequency dependent dielectric properties were studied at different temperatures. Vickers micro hardness studies show that Tb3+:SA belongs to the class of soft materials. Second harmonic generation efficiency of Tb3+:SA is 3.7 times that of pure KDP. The photoluminescence emission and excitation studies of Tb3+:SA single crystals indicated the green emission at 543 nm, which is due to a transition from the 5D4 excited state to the 7F5 ground state.

  16. Study on luminescence of the rare-earth doped KTiOPO4 crystals excited by electron beams

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Kruzhalov, A.V.; Porotnikov, A.V.; Maslov, V.A.

    1996-01-01

    Cathodoluminescence of the potasium titanyl-phosphate single crystal (PTP) was investigated through the time-resolved spectroscopy under excitation by short-pulse electron beam from the RADAN-220 type portable accelerator (E c =180 keV, τ-2 n, J=300 A·cm 2 ). Non-linear crystals of PTP are in considerable use as the crystalline wave-length transformers for both the YAG:Nd and Al 2 O 3 T i solid sate lasers. In addition the enjoy wide use in integrated optics as the optical guides. In the present study we have used the nominally pure crystals and ones doped with the Nd, Er, Eu, Yb, Ho, Nb and Cr impurities. All the crystal were grown by the advanced flux method. The appropriate impurities of 1-5 % were added into thq initial melt during the crystal growth process. The main essential results as follows. A strong cathodoluminescence from nominally pure PTP crystals under high-power excitation at room temperature are reveled in the 3-4 eV spectral range. The luminescence band was divided into couple of the sub-bands at 3.2 and 3.6 eV, which were comparable with that for the intrinsic photoluminescence of PTP at 6.7 K. On the contrary, the Nd, Er, Eu, Yb, Ho, Nb and Cr doped PTP crystals exhibit an elevated light yield and the different parameters of luminescence: maxima of sub-bands are changed over the 2.65-2.81 and 3.25-3.31 eV spectral regions; the ratio of their intensities increases from 1.5 to 8.9. There were found no manifestation of the the Nd, Er, Eu, Yb, Ho, Nb impurities at room temperature. However, the Cr-doped PTP crystals the characteristics Cr-type photoluminescence. It was put forward and discussed the hypothesis attributed the luminescence of the rare-earth doped PTP crystals to the radiative decay of the impurity related excitons. The mechanisms and specificity of the energy transport of electronic excitation to the luminescence centres in PTP are discussed as well. (author)

  17. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  18. Ultratough CVD single crystal diamond and three dimensional growth thereof

    Science.gov (United States)

    Hemley, Russell J [Washington, DC; Mao, Ho-kwang [Washington, DC; Yan, Chih-shiue [Washington, DC

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  19. Composite single crystal silicon scan mirror substrates, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  20. Growth and characterization of Yb.sup.3+./sup.-doped YAlO.sub.3./sub. fiber single crystals grown by the modified micro-pulling-down method

    Czech Academy of Sciences Publication Activity Database

    Shim, J. B.; Yoshikawa, A.; Nikl, Martin; Solovieva, Natalia; Pejchal, Jan; Yoon, D. H.; Fukuda, T.

    2003-01-01

    Roč. 256, - (2003), s. 298-304 ISSN 0022-0248 R&D Projects: GA AV ČR IAA1010305 Institutional research plan: CEZ:AV0Z1010914 Keywords : charge transfer luminescence * micro-pulling-down method * yttrium aluminate * Yb 3+ doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.414, year: 2003

  1. Magnetic excitations in single crystals of Cu1-xNixGeO3

    DEFF Research Database (Denmark)

    Coad, S.; Petrenko, O.; Paul, D.M.

    1997-01-01

    V, while approximate doubling of the dopant concentration to 3.2% results in an almost complete collapse of this excitation. Instead, measurements on the 3.2% Ni-doped crystal revealed a magnetic excitation that could be clearly resolved from the elastic magnetic peak. This excitation followed......We have studied magnetic excitations in two single crystals of CuGeO3 doped with Ni2+, using inelastic neutron scattering at wave vectors close to the antiferromagnetic zone centre, Q=(0,1,1/2). Pure CuGeO3 is a one-dimensional compound with a spin-Peierls (S-P) gap of approximate to 1.95 meV. When...

  2. Conversion of broadband IR radiation and structural disorder in lithium niobate single crystals with low photorefractive effect

    Science.gov (United States)

    Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.

    2016-11-01

    The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.

  3. Exploiting the natural doping gradient of Nd:YLF crystals for high-power end pumped lasers

    CSIR Research Space (South Africa)

    Bollig, C

    2008-01-01

    Full Text Available ignored. In collaboration, VLOC estimated the doping gradient of a specially manufactured boule (Fig. 2) and maintained the crystal orientation information during the manufacturing process of the 45 mm long, 6 mm diameter crystals. Initial thermal...

  4. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    Abstract. To make headway on any problem in physics, high-quality single crystals are required. In this talk, special emphasis will be placed on the crystal growth of various oxides (superconductors and magnetic materials), borides and carbides using the image furnaces at Warwick. The floating zone method of crystal ...

  5. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    To make headway on any problem in physics, high-quality single crystals are required. In this talk, special emphasis will be placed on the crystal growth of various oxides (superconductors and magnetic materials), borides and carbides using the image furnaces at Warwick. The floating zone method of crystal growth used in ...

  6. Optical and dielectric studies of KH2PO4 crystal influenced by organic ligand of citric acid and l-valine: A single crystal growth and comparative study

    Directory of Open Access Journals (Sweden)

    Mohd Anis

    Full Text Available In the present study pure, citric acid (CA and l-valine (LV doped potassium dihydrogen phosphate (KDP crystals have been grown with the aim to investigate the nonlinear optical applications facilitated by UV–visible, third order nonlinear optical (TONLO and dielectric properties. The structural parameters of grown crystals have been confirmed by single crystal X-ray diffraction analysis. The enhancement in optical transparency of KDP crystal due to addition of CA and LV has been examined within 200–900 nm by means of UV–visible spectral analysis. In addition, the transmittance data have been used to evaluate the effect of dopants on reflectance, refractive index and extinction coefficient of grown crystals in the visible region. The Z-scan analysis has been performed at 632.8 nm to identify the nature of photoinduced nonlinear refraction and nonlinear absorption in doped KDP crystals. The influence of π-bonded ligand of dopant CA and LV on TONLO susceptibility (χ3, refractive index (n2 and absorption coefficient (β of KDP crystals has been evaluated to discuss laser assisted device applications. The decrease in dielectric constant and dielectric loss of KDP crystal due to addition of CA and LV has been explored using the temperature dependent dielectric studies. Keywords: Crystal growth, Nonlinear optical materials, UV–visible studies, Z-scan analysis, Dielectric studies

  7. Novel doping alternatives for single-layer transition metal dichalcogenides

    Science.gov (United States)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2017-11-01

    Successful doping of single-layer transition metal dichalcogenides (TMDs) remains a formidable barrier to their incorporation into a range of technologies. We use density functional theory to study doping of molybdenum and tungsten dichalcogenides with a large fraction of the periodic table. An automated analysis of the energetics, atomic and electronic structure of thousands of calculations results in insightful trends across the periodic table and points out promising dopants to be pursued experimentally. Beyond previously studied cases, our predictions suggest promising substitutional dopants that result in p-type transport and reveal interesting physics behind the substitution of the metal site. Doping with early transition metals (TMs) leads to tensile strain and a significant reduction in the bandgap. The bandgap increases and strain is reduced as the d-states are filled into the mid TMs; these trends reverse as we move into the late TMs. Additionally, the Fermi energy increases monotonously as the d-shell is filled from the early to mid TMs and we observe few to no gap states, indicating the possibility of both p- (early TMs) and n- (mid TMs) type doping. Quite surprisingly, the simulations indicate the possibility of interstitial doping of TMDs; the energetics reveal that a significant number of dopants, increasing in number from molybdenum disulfide to diselenide and to ditelluride, favor the interstitial sites over adsorbed ones. Furthermore, calculations of the activation energy associated with capturing the dopants into the interstitial site indicate that the process is kinetically possible. This suggests that interstitial impurities in TMDs are more common than thought to date and we propose a series of potential interstitial dopants for TMDs relevant for application in nanoelectronics based on a detailed analysis of the predicted electronic structures.

  8. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  9. Two dimensional tunable photonic crystals and n doped semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Hussein A. [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt); El-Naggar, Sahar A. [Dept. of Engineering Math. and Physics, Faculty of Engineering, Cairo University, Giza (Egypt); Aly, Arafa H., E-mail: arafa16@yahoo.com [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt)

    2015-06-15

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications.

  10. Co2+-doped diopside: crystal structure and optical properties

    Science.gov (United States)

    Gori, C.; Tribaudino, M.; Mezzadri, F.; Skogby, H.; Hålenius, U.

    2017-12-01

    Synthetic clinopyroxenes along the CaMgSi2O6-CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV-VIS-NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g → 4 T 2g(F), 4 T 1g → 4 A 2g(F) and 4 T 1g → 4 T 1g(P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g → 4 T 2g(F) and the 4 T 1g → 4 T 1g(P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm-1 is caused by the 4 A 2g → 4 T 1g(F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm-1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6-CaCoSi2O6 solid solution.

  11. The crystal structure and elastic properties of pure and Dy doped urania

    International Nuclear Information System (INIS)

    Szpunar, B.; Szpunar, J.A.

    2009-01-01

    The structure of urania and urania doped with dysprosium are studied using ab initio calculations. The CASTEP ab initio quantum mechanical program, employing density functional theory and ultrasoft pseudopotentials, is used. The calculations agree well with available experimental data. Furthermore the calculations predict that Dy does not affect significantly the crystal structure and elastic properties of the host urania. This finding is important for Low Void Reactivity Fuel (LVRF) that is made from Dy doped urania to enhance safety of CANDU reactors. (author)

  12. Growth and Characterization on PMN-PT-Based Single Crystals

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2014-07-01

    Full Text Available Lead magnesium niobate—lead titanate (PMN-PT single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity. To obtain high quality and relatively low cost single crystals for commercial production, PMN-PT single crystals were grown with modified Bridgman method, by which crystals were grown directly from stoichiometric melt without flux. For ultrasound imaging application, [001] crystal growth is essential to provide uniform composition and property within a crystal plate, which is critical for transducer performance. In addition, improvement in crystal growth technique is under development with the goals of improving the composition homogeneity along crystal growth direction and reducing unit cost of crystals. In recent years, PIN-PMN-PT single crystals have been developed with higher de-poling temperature and coercive field to provide improved thermal and electrical stability for transducer application.

  13. Weak antilocalization in Bi2-x Inx Te3 single crystals

    Science.gov (United States)

    Chi, Hang; Li, Qiang; Uher, Ctirad

    Bi2Te3 has recently been identified as one of the most promising systems with which to realize a three-dimensional topological insulator. However, the bulk, stoichiometric Bi2Te3 single crystals often exhibit p-type metallic electrical conduction due to the BiTe-type antisite defects, which overshadows the contribution of surface states. We have established that, upon group III (indium and/or thallium) doping, the Fermi level of Bi2Te3 can be lifted from the valence band into the band gap, and eventually shifted into the conduction band. Such doping progressively changes the electrical conduction of Bi2-xAxTe3 (A = In, Tl, and x = 0 - 0.30) single crystals from p-type to n-type. This is observed via measurements of both the Hall effect and the Seebeck coefficient performed in the (0001) basal plane in the temperature range of 2 - 300 K. At low levels, the temperature dependent in-plane electrical resistivity maintains its metallic character as the density of holes decreases. Heavier doping content, x = 0.20 (0.10) for In (Tl), drives the electrical resistivity into a prominent non-metallic regime displaying the weak anti-localization type of magnetoresistance at the lowest temperatures for Bi1.80In0.20Te3. At the highest concentration, the samples revert back into the metallic state with electron dominated conduction. Thermal conductivity measurements of Bi2-xAxTe3 single crystals, as examined by the Debye-Callaway phonon conductivity model, reveal a generally stronger point defect scattering of phonons upon doping.

  14. Oxygen diffusion in single crystal barium titanate.

    Science.gov (United States)

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential Φ0 and the bulk diffusion coefficient D*(∞). Analysis of the temperature and oxygen activity dependencies of D*(∞) and Φ0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(∞) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ΔHmig,V = (0.70 ± 0.04) eV.

  15. Czochralski method of growing single crystals. State-of-art

    International Nuclear Information System (INIS)

    Bukowski, A.; Zabierowski, P.

    1999-01-01

    Modern Czochralski method of single crystal growing has been described. The example of Czochralski process is given. The advantages that caused the rapid progress of the method have been presented. The method limitations that motivated the further research and new solutions are also presented. As the example two different ways of the technique development has been described: silicon single crystals growth in the magnetic field; continuous liquid feed of silicon crystals growth. (author)

  16. Magnetoresistance in terbium and holmium single crystals

    International Nuclear Information System (INIS)

    Singh, R.L.; Jericho, M.H.; Geldart, D.J.W.

    1976-01-01

    The longitudinal magnetoresistance of single crystals of terbium and holmium metals in their low-temperature ferromagnetic phase has been investigated in magnetic fields up to 80 kOe. Typical magnetoresistance isotherms exhibit a minimum which increases in depth and moves to higher fields as the temperature increases. The magnetoresistance around 1 0 K, where inelastic scattering is negligible, has been interpreted as the sum of a negative contribution due to changes in the domain structure and a positive contribution due to normal magnetoresistance. At higher temperatures, a phenomenological approach has been developed to extract the inelastic phonon and spin-wave components from the total measured magnetoresistance. In the temperature range 4--20 0 K (approximately), the phonon resistivity varies as T 3 . 7 for all samples. Approximate upper and lower bounds have been placed on the spin-wave resistivity which is also found to be described by a simple power law in this temperature range. The implications of this result for theoretical treatments of spin-wave resistivity due to s-f exchange interactions are considered. It is concluded that the role played by the magnon energy gap is far less transparent than previously suggested

  17. The investigation of Ce doped ZnO crystal: The electronic, optical and magnetic properties

    Science.gov (United States)

    Wen, Jun-Qing; Zhang, Jian-Min; Qiu, Ze-Gang; Yang, Xu; Li, Zhi-Qin

    2018-04-01

    The electronic, optical and magnetic properties of Ce doped ZnO crystal have been studied by using first principles method. The research of formation energies show that Ce doped ZnO is energetically stable, and the formation energies reduce from 6.25% to 12.5% for Ce molar percentage. The energy band is still direct band gap after Ce doped, and band gap increases with the increase of Cesbnd Ce distance. The Fermi level moves upward into conduction band and the DOS moves to lower energy with the increase of Ce concentration, which showing the properties of n-type semiconductor. The calculated optical properties imply that Ce doped causes a red-shift of absorption peaks, and enhances the absorption of the visible light. The transition from ferromagnetic to antiferromagnetic has been found in Ce doped ZnO.

  18. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  19. On single doping and co-doping of spray pyrolysed ZnO films: Structural, electrical and optical characterisation

    International Nuclear Information System (INIS)

    Vimalkumar, T.V.; Poornima, N.; Jinesh, K.B.; Kartha, C. Sudha; Vijayakumar, K.P.

    2011-01-01

    In this paper we present studies on ZnO thin films (prepared using Chemical Spray pyrolysis (CSP) technique) doped in two different ways; in one set, 'single doping' using indium was done while in the second set, 'co-doping' using indium and fluorine was adopted. In the former case, effect of in-situ as well as ex-situ doping using In was analyzed. Structural (XRD studies), electrical (I-V measurements) and optical characterizations (through absorption, transmission and photoluminescence studies) of the films were done. XRD analysis showed that, for spray-deposited ZnO films, ex-situ doping using Indium resulted in preferred (0 0 2) plane orientation, while in-situ doping caused preferred orientation along (1 0 0), (0 0 2), (1 0 1) planes; however for higher percentage of in-situ doping, orientation of grains changed from (0 0 2) plane to (1 0 1) plane. The co-doped films had (0 0 2) and (1 0 1) planes. Lowest resistivity (2 x 10 -3 Ω cm) was achieved for the films, doped with 1% Indium through in-situ method. Photoluminescence (PL) emissions of ex-situ doped and co-doped samples had two peaks; one was the 'near band edge' emission (NBE) and the other was the 'blue-green' emission. But interestingly the PL emission of in-situ doped samples exhibited only the 'near band edge' emission. Optical band gap of the films increased with doping percentage, in all cases of doping.

  20. Electrical Properties of Zn-Phthalocyanine and Poly (3-hexylthiophene Doped Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Y. Karakuş

    2011-01-01

    Full Text Available An E7 coded nematic liquid crystal was doped with zinc phthalocyanine and poly (3-hexylthiophene. A variety of properties including relaxation time, absorption coefficient, and critical frequency of this doped system were investigated using impedance spectroscopy. The doped systems displayed increased absorption coefficients in the range 0.22–0.55 and relaxation times from 5.05×10−7 s to 3.59×10−6 s with a decrease in the critical frequency from 3.54 MHz to 2.048 MHz.

  1. Crystal growth and properties of PbI2 doped with Fe and Ni

    International Nuclear Information System (INIS)

    Rybak, O.V.; Lun', Yu.O.; Bordun, I.M.; Omelyan, M.F.

    2005-01-01

    A procedure is described for doping PbI 2 monocrystals with Fe and Ni during vapor-phase growth in a closed system in the presence of excess iodine. The rate of mass transfer in the system and the doping level of the crystals are shown to be governed by the dopant content in the source material and the source temperature. The effect of Fe and Ni doping on the low-temperature (5 K) exciton photoluminescence spectrum of PbI 2 is discussed [ru

  2. Optical spectroscopy of Nd3+/Mg2+ co-doped LiTaO3 laser crystal

    International Nuclear Information System (INIS)

    Zhang, P X; Hang, Y; Gong, J; Zhao, C C; Yin, J G; Zhang, L H; Zhu, Y Y

    2013-01-01

    A Nd 3+ and Mg 2+ co-doped LiTaO 3 single crystal has been grown successfully by the Czochralski method. The polarized absorption spectra of the crystal were measured and investigated. The peak absorption cross-sections at 806 and 810 nm were 4.17 × 10 −20 cm 2 and 4.47 × 10 −20 cm 2 with a full width at half maximum of 29 and 17 nm for σ- and π-polarization, respectively. Based on the Judd–Ofelt theory, the spectral parameters of Nd 3+ in the as-grown crystal were investigated in detail. Moreover, the emission probabilities, branching ratio and radiative lifetime for the transitions from 4 F 3/2 were calculated. The radiative lifetime of 4 F 3/2 was calculated to be 159 μs and the luminescent quantum efficiency of the 4 F 3/2 manifold was about 81.13%. The results were also compared with other Nd 3+ doped crystals. (paper)

  3. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  4. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  5. A single crystal neutron diffraction study on mixed crystal (K)0.25 ...

    Indian Academy of Sciences (India)

    41

    environment affects the hydrogen bonding is very important from the point of view of improving the ... obtained from single crystal diffraction data gives a time as well as space average picture of the crystal. 1. 2. 3. 4. 5. 6 ... KDPX(ADP)1-X mixed crystals are obtained from the aqueous solutions containing AR grade KDP and.

  6. Melt growth and properties of bulk BaSnO3 single crystals

    Science.gov (United States)

    Galazka, Z.; Uecker, R.; Irmscher, K.; Klimm, D.; Bertram, R.; Kwasniewski, A.; Naumann, M.; Schewski, R.; Pietsch, M.; Juda, U.; Fiedler, A.; Albrecht, M.; Ganschow, S.; Markurt, T.; Guguschev, C.; Bickermann, M.

    2017-02-01

    We present the first-time growth of bulk BaSnO3 single crystals from the melt by direct solidification, their basic electrical and optical properties as well as their structural quality. Our measurement of the melting point (MP) of BaSnO3 amounts to 1855 °C  ±  25 K. At this temperature an intensive decomposition and non-stoichiometric evaporation takes place as the partial pressure of SnO(g) is about 90 times higher than that of BaO(g). X ray powder diffraction identified only the BaSnO3 perovskite phase, while narrow rocking curves having a full width at half maximum of 26 arcsec and etch pit densities below 106 cm-2 confirm a high degree of structural perfection of the single crystals. In this respect they surpass the structural properties of those single crystals that were reported in the literature. The electrical conductivity of nominally undoped crystals depends on the growth conditions and ranges from insulating to medium n-type conductivity. After post-growth annealing in an oxidizing atmosphere undoped crystals are generally insulating. Doping the crystals with lanthanum during growth results in a high n-type conductivity. For a La doping concentration of 0.123 wt.% we measured an electron concentration of 3.3  ×  1019 cm-3 and an electron mobility of 219 cm2 V-1 s-1. Based on optical absorption measurements we determined an energy of 3.17  ±  0.04 eV at 5 K and of 2.99  ±  0.04 eV at 297 K for the indirect band gap of BaSnO3.

  7. PHOTOCATALYTIC ACTIVITIES of Ag+ DOPED ZIF-8 and ZIF-L CRYSTALS

    Directory of Open Access Journals (Sweden)

    Berna Topuz

    2016-09-01

    Full Text Available Photocatalysis is expected to contribute to the solution of environmental problems such as water and air pollution in the near future. The design of photocatalysts with high electron-hole generation rates, high surface areas and high light absorption capacities is crucial in producing sustainable and cost-effective photocatalytic processes. Titania, zirconia, copper oxide, zinc oxide, iron oxide are widely used photocatalysts which have good light absorption capacities with moderate surface areas depending on the synthesis conditions. In the last decade metal organic frameworks (MOFs have been used in photocatalytic applications due to their very high surface areas up to 1000s of m2/g and adequate light absorption capacities. In this study zeolitic imidazolate framework (ZIF based MOF photocatalytsts were prepared and the effect of silver (Ag doping on the photocatalytic activity of ZIF-8 and ZIF-L crystals was investigated. Ag doped ZIF-8 and ZIF-L crystals were prepared and their activities in the photocatalytic removal of methylene blue (MB dye under UV irradiation were determined for the first time in the literature. Doped ZIF-8 and ZIF-L crystals showed better photocatalytic activities compared to the undoped crystals. 100% of MB was removed with 5 mole% Ag+ doped ZIF-8 in 40 min. The photocatalytic activity decreased beyond 5% doping level since Ag+ ions may have segregated due to a possible solid state solubility limit of Ag+ ions in the crystal lattice of ZIF-8. ZIF-L crystals possessed lower photocatalytic activities compared to ZIF-8 crystals.

  8. Systematic hardness measurements on single crystals and ...

    Indian Academy of Sciences (India)

    Unknown

    nuclear fuel container technology (Fullam 1972). While there is an enormous amount of work on the crystal growth of alkali halides with NaCl structure, work ..... Grateful thanks are due to D E Schuele, Michelson. Professor, Case Western Reserve University, for keeping the expensive CsBr and CsI crystals at our disposal.

  9. Structural and electronic properties of alkali-doped single-walled carbon nanotubes

    Science.gov (United States)

    Nemes, Norbert Marcel

    In this thesis, we study the properties of alkali doped single walled carbon nanotubes (SWNT). SWNT are crystallized into ropes, which display the one-dimensional electronic properties of the constituent nanotubes. Using x-ray diffraction, we show that the alkali atoms invade the channels in the triangular rope lattice and determine the structure of the doped ropes. We show that the diffraction profile of the doped SWNT is best described by a model where the alkali ions surround each tube in an ordered fashion by dilating the channels. Alkali doped SWNT exhibit colors similar to alkali doped graphite (GIC). We study their electronic structure with IR reflectivity; the alkali dopants donate their valence electron to the SWNT host, so the free carrier concentration increases, shifting the Drude-edge into the visible spectral range. This is accompanied by a large shift of the Fermi-level, so the characteristic transitions between the 1D van Hove singularities of the undoped SWNT diminish. The presence of the alkali ions around the SWNT breaks the translational symmetry and increases coupling between parallel tubes within ropes. We find that the momentum relaxation time shortens as the ropes become more three dimensional. We also find that alkali disorder contributes to the scattering. In p-type, HNO3 doped SWNT, the charge transfer is smaller; only the first subband of the semiconducting tubes gets depleted, shown by the disappearance of the first van Hove transition. This indicates a Fermi-level shift of ˜0.3 eV. The reflectivity has structure at low energy, which moves the Drude-peak to a sharp, intense peak at 0.1 eV in the optical conductivity, reminiscent of quasi-1D TTF-TCNQ. The DC conductivity also increases ˜80-fold during doping. The low temperature divergence of undoped SWNT disappears in alkali doped SWNT. However, we find that oxygen can modulate the low-T divergence. After outgassing, the divergence becomes ˜10 times stronger. We interpret the low

  10. Unidirectional seeded single crystal growth from solution of benzophenone

    Science.gov (United States)

    Sankaranarayanan, K.; Ramasamy, P.

    2005-07-01

    A novel crystal growth method has been established for the growth of single crystal with selective orientation at room temperature. Using volatile solvent, the saturated solution containing the material to be crystallized was taken in an ampoule and allowed to crystallize by slow solvent evaporation assisted with a ring heater. The orientation of the growing crystal was imposed by means of a seed fixed at the bottom of the ampoule. By selecting a suitable ring heater voltage and by controlling the ring heater voltage, nucleation and the growth rate of the crystal were controlled more effectively. By employing this novel method, benzophenone single crystal ingots of diameters 10 and 20 mm and length more than 50 mm were successfully grown using xylene as solvent. The ease in scaling up of diameter from 10 to 20 mm shows the vital advantage of this technique. It was possible to achieve solute-crystal conversion efficiency of 100 percent. The grown benzophenone crystal was characterized by FTIR, TG and DTA, powder X-ray diffraction, X-ray rocking curve, optical transmission study and powder SHG measurement. The results show that the crystal quality is at least as good as the quality of the crystal grown by other known methods. Also, microbial growth was naturally avoided in this method, as the fresh solution is constantly made available for the growing crystal.

  11. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-07-06

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  12. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  13. Luminescence characteristics of the Ce.sup.3+./sup.-doped pyrosilicates: the case of La-admixed Gd.sub.2./sub.Si.sub.2./sub.O.sub.7./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Jarý, Vítězslav; Nikl, Martin; Kurosawa, S.; Shoji, Y.; Mihóková, Eva; Beitlerová, Alena; Pazzi, G.P.; Yoshikawa, A.

    2014-01-01

    Roč. 118, č. 46 (2014), s. 26521-26529 ISSN 1932-7447 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : lutetium silicate scintillators * floating-zone growth * electronic-structure * yttrium content * lyso crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.772, year: 2014

  14. The effect of doping crystals of tgs with some di- and trivalent ions on its: (ii) polarization and piezoelectricity

    OpenAIRE

    Gaffar, M. A [محمد عبد العزيز جعفر; Mohamed, A. A.; Al-Muraikhi, M.; Al-Houty, L. I.

    1987-01-01

    The polarization, coercive field,piezoelectricity and electromechanical coupling for pure and doped single crystals of TGS arp investigated in the temperature range 77-325 K. The influence of the divalent ions Ni 2+, Cu2 and Co2 and the trivalent ions Cr34^ and Fe3'1' on the temperature of phase transition, the hysteresis loops of polarization and the seconed coefficient in the expansion of the free energy in powers of polarization is examined. The temperature dependence of the spontaneous po...

  15. Prospects for the synthesis of large single-crystal diamonds

    International Nuclear Information System (INIS)

    Khmelnitskiy, R A

    2015-01-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)

  16. Method for harvesting rare earth barium copper oxide single crystals

    Science.gov (United States)

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  17. Refractometry of TGS crystals doped with L-threonine impurity under uniaxial pressure

    Energy Technology Data Exchange (ETDEWEB)

    Stadnyk, V. I., E-mail: vasylstadnyk@ukr.net; Kiryk, Yu. I. [Lviv National University (Ukraine)

    2013-07-15

    The temperature and spectral dependences of the refractive indices of triglycine sulphate (TGS) crystals doped with L-threonine impurity have been investigated. It is established that the introduction of an impurity weakens the temperature dependence of refractive indices. The electronic polarizability, refractions, and parameters of UV oscillators of mechanically deformed impurity crystals are calculated. The temperature coefficients of the phase transition shift are determined.

  18. "Predicting" Polymorphs of Pharmaceuticals Using Hydrogen Bond Propensities: Probenecid and Its Two Single-Crystal-to-Single-Crystal Phase Transitions.

    Science.gov (United States)

    Nauha, Elisa; Bernstein, Joel

    2015-06-01

    The recently developed hydrogen-bonding propensity tool in the Cambridge Structural Database software package (Mercury) was tested to predict polymorphs. The compounds for the study were chosen from a list of approximately 300 pharmaceutically important compounds, for which multiple crystal forms had not been previously reported. The hydrogen-bonding propensity analysis was carried out on approximately 60 randomly selected compounds from this list. Several compounds with a high probability for exhibiting polymorphism in the analysis were chosen for a limited experimental crystal form screening. One of the compounds, probenecid, did not yield polymorphs by traditional solution crystallization screening, but differential scanning calorimetry revealed three polymorphs. All of them exhibit the same hydrogen bonding and transform via two reversible single-crystal-to single-crystal transformations, which have been characterized in detail through three single-crystal structure determinations at appropriate temperatures. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  20. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Macco, Bart; Knoops, Harm C M; Kessels, Wilhelmus M M

    2015-08-05

    Hydrogen-doped indium oxide (In2O3:H) has recently emerged as an enabling transparent conductive oxide for solar cells, in particular for silicon heterojunction solar cells because its high electron mobility (>100 cm(2)/(V s)) allows for a simultaneously high electrical conductivity and optical transparency. Here, we report on high-quality In2O3:H prepared by a low-temperature atomic layer deposition (ALD) process and present insights into the doping mechanism and the electron scattering processes that limit the carrier mobility in such films. The process consists of ALD of amorphous In2O3:H at 100 °C and subsequent solid-phase crystallization at 150-200 °C to obtain large-grained polycrystalline In2O3:H films. The changes in optoelectronic properties upon crystallization have been monitored both electrically by Hall measurements and optically by analysis of the Drude response. After crystallization, an excellent carrier mobility of 128 ± 4 cm(2)/(V s) can be obtained at a carrier density of 1.8 × 10(20) cm(-3), irrespective of the annealing temperature. Temperature-dependent Hall measurements have revealed that electron scattering is dominated by unavoidable phonon and ionized impurity scattering from singly charged H-donors. Extrinsic defect scattering related to material quality such as grain boundary and neutral impurity scattering was found to be negligible in crystallized films indicating that the carrier mobility is maximized. Furthermore, by comparison of the absolute H-concentration and the carrier density in crystallized films, it is deduced that <4% of the incorporated H is an active dopant in crystallized films. Therefore, it can be concluded that inactive H atoms do not (significantly) contribute to defect scattering, which potentially explains why In2O3:H films are capable of achieving a much higher carrier mobility than conventional In2O3:Sn (ITO).

  1. Resistivity distribution of silicon single crystals using codoping

    Science.gov (United States)

    Wang, Jong Hoe

    2005-07-01

    Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B-P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.

  2. Does an ‘L-arginine doped orthophosphoric acid’ crystal exist?

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Bikshandarkoil R., E-mail: srini@unigoa.ac.in

    2014-04-15

    The reactive nature of aqueous orthophosphoric acid (H{sub 3}PO{sub 4}) towards L-arginine (L-Arg), to form a phosphate salt namely L-arginine phosphate monohydrate (LAP), rules out the doping of any L-arginine into H{sub 3}PO{sub 4}. Hence, the reported claim of growth of ‘L-arginine doped orthophosphoric acid’ crystals by Saradha et al. J. Lumin (2013) is untenable. -- Highlights: • Orthophosphoric acid (H{sub 3}PO{sub 4}) is a tetrahedral molecule. • Aqueous H{sub 3}PO{sub 4} reacts with L-arginine to form mono- or bis-dihydrogenphosphate salt. • L-arginine doped orthophosphoric acid crystal does not exist.

  3. Spectroscopic Proprieties of Crystals Mf 2 (M=Cd, Sr, Ba) Doped to ...

    African Journals Online (AJOL)

    In the present work, we are interested by studying the spectroscopic properties for optical applications, mainly laser amplification, of MF2 crystals, where M is an alkaline earth (Ba, Sr) or Cadmium (Cd) doped with rare earth ions (Tb3+, Er3+, Ho3+. So far, we present the absorption and emission properties and also the ...

  4. Study of thermoluminescence in K Cl crystals doped with Sr2+

    International Nuclear Information System (INIS)

    Russo, D.M.B.

    1990-01-01

    An attempt is made to correlate the F and Z 1 (F center modified by the presence of a two-valence impurity pair and and positive ion vacancy) and a V center, with the T L curve peaks observed in pure K Cl crystals doped with Sr 2+ , irradiated at room temperature. (L.C.J.A.)

  5. Ion transport in Au doped/undoped KDP crystals with KI/NaI as ...

    Indian Academy of Sciences (India)

    Unknown

    as additives. R ANANDA KUMARI* and R CHANDRAMANI. Department of Physics, Bangalore University, Bangalore 560 056, India. MS received 25 June 2002; revised 6 November 2002. Abstract. Undoped KDP and KDP crystals containing KI/NaI with/without gold doping were grown by slow evaporation technique. All the ...

  6. Growth of Nd doped LiNbO3 crystals using Bridgman method and its ...

    Indian Academy of Sciences (India)

    Administrator

    Laboratory of Photo-Electronic Materials, Ningbo University, Ningbo 315211, PR China. ††. College of Chemical and Materials Engineering, Zhejiang University of Technology,. Hangzhou 310014, PR China. MS received 23 July 2008; revised 10 October 2008. Abstract. The growth of Nd. 3+ doped lithium niobate crystals ...

  7. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  8. Single crystal Processing and magnetic properties of gadolinium nickel

    Energy Technology Data Exchange (ETDEWEB)

    Shreve, Andrew John [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  9. Oxygen vacancy in N-doped Cu2O crystals: A density functional theory study

    International Nuclear Information System (INIS)

    Li Min; Zhang Jun-Ying; Wang Tian-Min; Zhang Yue

    2012-01-01

    The N-doping effects on the electronic properties of Cu 2 O crystals are investigated using density functional theory. The calculated results show that N-doped Cu 2 O with or without oxygen vacancy exhibits different modifications of electronic band structure. In N anion-doped Cu 2 O, some N 2p states overlap and mix with the O 2p valence band, leading to a slight narrowing of band gap compared with the undoped Cu 2 O. However, it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Single crystal growth and optical properties of a transparent perovskite oxide LaInO3

    Science.gov (United States)

    Jang, Dong Hyun; Lee, Woong-Jhae; Sohn, Egon; Kim, Hyung Joon; Seo, Dongmin; Park, Ju-Young; Choi, E. J.; Kim, Kee Hoon

    2017-03-01

    Transparent LaInO3 single crystals have been grown using the optical floating zone method. Optimal growth, resulting in the highest optical transparency and best crystallinity, has been found at a growth speed of 15 mm/h and an O2 gas pressure of 10 bar. Under these conditions, single crystals as large as ˜4 × 4 mm2 have been obtained. Chemical compositions and structural analyses reveal that the resulting LaInO3 single crystal is stoichiometric without any impurity phase and forms an orthorhombic perovskite structure. Optical transmission spectra exhibit multiple optical transitions in a wide spectral range (0.5-4.2 eV). Although the main optical absorption occurs at ˜4.13 eV, weak absorption starts to develop from ˜1.4 eV, in agreement with an activation energy of ˜0.7 eV derived from electrical resistivity measurements. The dielectric constant ɛ is found to be 23.7 at room temperature. This LaInO3 single crystal can be used as a transparent perovskite substrate for growing oxide semiconductors with lattice constants close to ˜4.12 Å, such as doped BaSnO3.

  11. Crystal-field magnetic anisotropy of dilute dysprosium or erbium in yttrium single crystals

    DEFF Research Database (Denmark)

    Høg, J.; Touborg, P.

    1974-01-01

    Magnetization measurements have been performed between 1.3 and 300 K in fields up to 50 × 105 A/m in the a, b, and c directions of hcp crystals of pure Y and Y doped with 0.14-at.% Dy or 0.14-at.% Er, using the Faraday method and a vibrating-sample method. The characteristic behavior of both...

  12. Large single crystals of graphene on melted copper using chemical vapor deposition.

    Science.gov (United States)

    Wu, Yimin A; Fan, Ye; Speller, Susannah; Creeth, Graham L; Sadowski, Jerzy T; He, Kuang; Robertson, Alex W; Allen, Christopher S; Warner, Jamie H

    2012-06-26

    A simple method is presented for synthesizing large single crystal graphene domains on melted copper using atmospheric pressure chemical vapor deposition (CVD). This is achieved by performing the reaction above the melting point of copper (1090 °C) and using a molybdenum or tungsten support to prevent balling of the copper from dewetting. By controlling the amount of hydrogen during growth, individual single crystal domains of monolayer graphene greater than 200 μm are produced within a continuous film. Stopping growth before a complete film is formed reveals individual hexagonal domains of graphene that are epitaxially aligned in their orientation. Angular resolved photoemission spectroscopy is used to show that the graphene grown on copper exhibits a linear dispersion relationship and no sign of doping. HRTEM and electron diffraction reveal a uniform high quality crystalline atomic structure of monolayer graphene.

  13. Zinc (tris) thiourea sulphate (ZTS): A single crystal neutron diffraction ...

    Indian Academy of Sciences (India)

    near IR laser radiations. In this study, the crystal structure of ZTS has been ob- tained in detail by single crystal neutron diffraction technique. Using the structural parameters and an existing formalism [1] based on the theory of bond polarizability, the contributions from each of the structural groups in the unit cell to the total.

  14. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offe...

  15. Detection of anomalies in NLO sulphamic acid single crystals by ...

    Indian Academy of Sciences (India)

    The ultrasonic pulse echo overlap technique (PEO) has been used to measure the velocities of 10 MHz acoustic waves in sulphamic acid single crystals in the range of 300–400 K. This study evaluated all the elastic stiffnessconstants, compliance constants and Poisson's ratios of the crystal. The temperature variations of the ...

  16. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    menon, especially those involved in the gel technique. With an aim of controlling nucleation and improving the size, in the present study, we have grown pure calcium tartrate tetrahydrate single crystals using calcium formate mixed with formic acid as the supernatant solution. The grown crystals have been characterized by ...

  17. Single crystal growth of europium and ytterbium based intermetallic ...

    Indian Academy of Sciences (India)

    Abstract. This article covers the use of indium as a potential metal solvent for the crystal growth of europium and ytterbium-based intermetallic compounds. A brief view about the advantage of metal flux technique and the use of indium as reactive and non-reactive flux are outlined. Large single crystals of EuGe2, EuCoGe3.

  18. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were...

  19. Single crystal neutron diffraction study of triglycine sulphate revisited

    Indian Academy of Sciences (India)

    atom positions in TGS crystals, neutron diffraction study on TGS was once again undertaken, since neutron diffraction is known to be the only method, which gives exact hydrogen atom position. 2. Experiment. A clear rectangular single crystal of TGS of dimension 3×3.5×3 mm was loaded on a goniometer, which was then ...

  20. Improvement of dopant distribution in radial direction of single crystals grown by micro-pulling-down method

    Science.gov (United States)

    Yokota, Yuui; Kudo, Tetsuo; Chani, Valery; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Zeng, Zhong; Kawazoe, Yoshiyuki; Yoshikawa, Akira

    2017-09-01

    Two iridium crucibles with one and five capillaries at a nozzle were developed for the growth of Ce-doped Y3Al5O12 [Ce:YAG] single crystals by the micro-pulling-down [μ-PD] method. The purpose of the study was to examine the effect of the capillary number on the Ce distribution in the radial direction of the crystals. The crystals grown from 2 mol% and 5 mol% Ce-doped YAG melts were then cut perpendicular to the growth direction and polished to produce specimens suitable for the measurement of Ce distribution. The Ce:YAG crystals grown using the crucible with one capillary [Ce:YAG(1 C)] had greater Ce content in the central portion of the crystal when compared to its peripheral parts. On the other hand, in the case of the Ce:YAG crystal grown using the crucible with five capillaries [Ce:YAG(5 C)], the increased Ce concentration was detected in five specimen sections positioned just below the capillaries. The results indicated that increase of the number of capillaries is effective practice that results in an improvement of the radial homogeneity of the single crystals grown by the μ-PD method.

  1. Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks

    Science.gov (United States)

    Khulbe, Pramod K.; Hurst, Terril; Horie, Michikazu; Mansuripur, Masud

    2002-10-01

    We report laser-induced crystallization behavior of binary Sb-Te and ternary Ge-doped eutectic Sb70Te30 thin film samples in a typical quadrilayer stack as used in phase-change optical disk data storage. Several experiments have been conducted on a two-laser static tester in which one laser operating in pulse mode writes crystalline marks on amorphous film or amorphous marks on crystalline film, while the second laser operating at low-power cw mode simultaneously monitors the progress of the crystalline or amorphous mark formation in real time in terms of the reflectivity variation. The results of this study show that the crystallization kinetics of this class of film is strongly growth dominant, which is significantly different from the crystallization kinetics of stochiometric Ge-Sb-Te compositions. In Sb-Te and Ge-doped eutectic Sb70Te30 thin-film samples, the crystallization behavior of the two forms of amorphous states, namely, as-deposited amorphous state and melt-quenched amorphous state, remains approximately same. We have also presented experiments showing the effect of the variation of the Sb/Te ratio and Ge doping on the crystallization behavior of these films.

  2. Process for Forming a High Temperature Single Crystal Canted Spring

    Science.gov (United States)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  3. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  4. Dielectric behaviour of strontium tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    on second harmonic generation, crystal oscillators and rescuators, and devices to central laser emission are ... molecular structure of tartrate, monohydrotartrate and water indents. Since the data on dielectric properties .... Design of sample holder used for measurements. Evacuation of the holder is not required. 1. Sample ...

  5. Crystallization Mechanism and Phase Transition Properties of W-doped VO2 Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    LI Yao

    2017-11-01

    Full Text Available VO2 sol was firstly prepared using vanadyl sulfate as a vanadium source by precipitation-peptization method. Then tungsten(W doping vanadium dioxide(W-VO2 was prepared by hydrothermal crystallization of prepared sol with the presence of ammonium metatungstate. The morphologies, crystal structure of the as-prepared samples and phase transition properties were studied by X-ray diffraction(XRD, field emission scanning electron microscope(FESEMand differential scanning calorimetry(DSC analysis. The results indicate that rod-like W-VO2(B crystal with length of 1-2μm and radius of 100-200nm is firstly formed during hydrothermal treatment for 4-48h at 280℃, then the rod-like crystal dissolves gradually and sheet-like or snowflake-like crystal is formed with the phase transition from W-VO2(B to W-VO2(M and eventually, the W-VO2(M crystals can further grow up while the W-VO2(B gradually dissolves; the phase transition temperature of VO2 decreases with the increase in W doping content, and the phase transition temperature of W-VO2(M reduces to about 28℃ when the nominal dopant concentration is 6.0%(atom fraction.The "nucleation-growth-transformation-ripening" mechanism is proposed as the formation mechanism based on the hydrothermal crystallization and morphological evolution process of W-VO2(M.

  6. On the excitation spectra of Cr{sup 3+}/Cr{sup 2+} and V{sup 3+} co-doped ZnAl{sub 2}S{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, S., E-mail: anggell@gmail.com [Institute of Applied Physics, Academiei Str 5, Chis,inău MD-2028, Republic of Moldova (Moldova, Republic of); Ruhr-Universität Bochum, Anorganische Chemie III, Universitätsstrasse 150, D-44801 Bochum (Germany); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14 C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw (Poland); Ma, C.-G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Sushkevich, K. [State University of Moldova, Mateevici Str 60, Chis,inău MD-2009, Republic of Moldova (Moldova, Republic of); Kulyuk, L. [Institute of Applied Physics, Academiei Str 5, Chis,inău MD-2028, Republic of Moldova (Moldova, Republic of)

    2015-10-15

    The excitation spectra of the ZnAl{sub 2}S{sub 4} spinel crystals codoped with chromium and vanadium are investigated in order to explain some features of the Cr{sup 3+} ions optical spectra and the inconsistency of the experimental absorption/emission bands position with the Tanabe–Sugano diagram, as well as the “missing” band in the absorption spectrum of V{sup 3+} ion although this band should be present as it is due to a spin allowed transition. The unusual high Racah parameters of the C/B ratio for Cr{sup 3+} ions have been induced to recalculate the Tanabe–Sugano diagram for the d{sup 3} electron configuration and the ratio C/B=8 in order to use it for the experimental results interpretation. The presence of Cr{sup 2+} ions in the low spin electron configurations in the octahedral coordination was confirmed; the temperature dependence of the Cr{sup 2+} emission at about 1.9 eV was studied and the Huang–Rhys factors were estimated for different temperatures. Despite the fact that the V{sup 3+}C/B ratio has a different value compared to the case of Cr{sup 3+} ions, the electron–phonon interaction is similar for both ions, with the Huang–Rhys parameter equal to 10 in both cases. Further research into optimizing the ZnAl{sub 2}S{sub 4}:Cr, V system to get an efficient enhancement of the vanadium emission on account on re-absorbing the chromium emission is suggested. - Highlights: • The spectroscopic properties of Cr and V codoped α-ZnAI{sub 2}S{sub 4} have been investigated. • The crystal field calculations have been performed. • The Huang–Rhys factors have been estimated for different temperatures. • The theoretical calculations have been correlated with the excitation spectra.

  7. Quartz crystal microbalance and spectroscopy measurements for acid doping in polyaniline films

    Directory of Open Access Journals (Sweden)

    Mohamad M Ayad and Eman A Zaki

    2008-01-01

    Full Text Available We investigated the doping of thin polyaniline (PANI films, prepared by the chemical oxidation of aniline, with different acids. The initial step in the investigation is the preparation of PANI films from aqueous hydrochloric acid solution. This is followed by dedoping with ammonia to obtain a PANI base, which is subsequently doped with strong acids (e.g. hydrochloric, sulfuric, phosphoric and trichloroacetic acids and with a weak acid (acetic acid. The dopant weight fraction (w, which is connected with the gain of mass during the doping of PANI, was determined in situ using a quartz crystal microbalance (QCM. The behavior of PANI upon doping with different anions derived from strong acids indicates that both proton and the anion uptake into the polymer chains occur sharply, rapidly, completely, and reversibly. However the uptake in the case in acetic acid is characterized by slow diffusion. The doping was studied at different concentrations of acetic acid. A second cycle of dedoping–redoping was also performed. The kinetics of the doping reaction is dominated by Fickian diffusion kinetics. The diffusion coefficients (D of the dopant ions into the PANI chains were determined using the QCM and by UV–Vis absorption spectroscopy in the range of (0.076–1.64× 10−15 cm2 s−1. It was found that D in the second cycle of doping is larger than that evaluated from the first cycle of doping for high concentrations of acetic acid. D for the diffusion and for the dopant ion expulsion from the PANI chains was also determined during the redoping process. It was found that D for acetic acid ions in the doping process is larger than that calculated for the dedoping process.

  8. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  9. Induced Magnetic Anisotropy in Liquid Crystals Doped with Resonant Semiconductor Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vicente Marzal

    2016-01-01

    Full Text Available Currently, there are many efforts to improve the electrooptical properties of liquid crystals by means of doping them with different types of nanoparticles. In addition, liquid crystals may be used as active media to dynamically control other interesting phenomena, such as light scattering resonances. In this sense, mixtures of resonant nanoparticles hosted in a liquid crystal could be a potential metamaterial with interesting properties. In this work, the artificial magnetism induced in a mixture of semiconductor nanoparticles surrounded by a liquid crystal is analyzed. Effective magnetic permeability of mixtures has been obtained using the Maxwell-Garnett effective medium theory. Furthermore, permeability variations with nanoparticles size and their concentration in the liquid crystal, as well as the magnetic anisotropy, have been studied.

  10. Raman spectra of deuteriated taurine single crystals

    Science.gov (United States)

    Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

    2005-05-01

    The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at ˜120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

  11. Solid State Recrystallization of Single Crystal Ce:LSO Scintillator Crystals for High Resolution Detectors

    Science.gov (United States)

    2012-06-01

    Advances in our knowledge of scintillation and semiconductor materials, plastics , organics, glass, synthesized nano-crystal fabrics and fluids as...are few electron traps leading to non-radioactive transitions that quench the primary scintillation mechanisms. In addition the host lattice has a...TR-10-69 Solid State Recrystallization of Single Crystal Ce:LSO Scintillator Crystals for High Resolution Detectors Approved for public release

  12. Controlled growth of filamentary crystals and fabrication of single-crystal whisker probes

    International Nuclear Information System (INIS)

    Givargizov, E. I.

    2006-01-01

    The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology-fabrication of single-crystal whisker probes for atomic force microscopy

  13. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  14. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  15. Hydrogen diffusion and induced-crystallization in intrinsic and doped hydrogenated amorphous silicon films

    International Nuclear Information System (INIS)

    Kail, F.; Hadjadj, A.; Roca i Cabarrocas, P.

    2005-01-01

    We have studied the evolution of the structure of intrinsic and doped hydrogenated amorphous silicon films exposed to a hydrogen plasma. For this purpose, we combine in situ spectroscopic ellipsometry and secondary ion mass spectrometry measurements. We show that hydrogen diffuses faster in boron-doped hydrogenated amorphous silicon than in intrinsic samples, leading to a thicker subsurface layer from the early stages of hydrogen plasma exposure. At longer times, hydrogen plasma leads to the formation of a microcrystalline layer via chemical transport, but there is no evidence for crystallization of the a-Si:H substrate. Moreover, we observe that once the microcrystalline layer is formed, hydrogen diffuses out of the sample

  16. A single crystal neutron diffraction study on mixed crystal (K) 0. 25 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 1. A single crystal neutron diffraction study on mixed crystal (K) 0.25 ( N H _4 ) _{0.75}H 2 PO 4 : tuning of short strong hydrogen bonds by ionic interactions. RAJUL RANJAN CHOUDHURY R CHITRA. Volume 41 Issue 1 February 2018 Article ID 8 ...

  17. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene

    Science.gov (United States)

    Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu

    2018-01-01

    The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.

  18. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  19. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  20. Luminescence and scintillation properties of Tl- and Ce-doped Cs2HfCl6 crystals

    Science.gov (United States)

    Saeki, Keiichiro; Fujimoto, Yutaka; Koshimizu, Masanori; Nakauchi, Daisuke; Tanaka, Hironori; Yanagida, Takayuki; Asai, Keisuke

    2017-02-01

    The luminescence and scintillation properties of Tl- and Ce-doped Cs2HfCl6 crystals were investigated by photoluminescence and radioluminescence spectroscopy. In the photoluminescence spectra, emission bands of the activators were observed at 500 nm for Tl-doped Cs2HfCl6, and at 340 and 380 nm for Ce-doped Cs2HfCl6. The radioluminescence bands were observed at 405 and 430 nm for Tl- and Ce-doped Cs2HfCl6, respectively. Scintillation decay time constants for the Tl- and Ce-doped Cs2HfCl6 were smaller than those for the corresponding undoped crystals. Scintillation light yields for Tl- and Ce-doped Cs2HfCl6 were estimated to be 23,700 and 15,700 photons/MeV, respectively.

  1. Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States.

    Science.gov (United States)

    Baronas, Paulius; Kreiza, Gediminas; Adomėnas, Povilas; Adomėnienė, Ona; Kazlauskas, Karolis; Ribierre, Jean-Charles; Adachi, Chihaya; Juršėnas, Saulius

    2018-01-24

    Organic single crystals (SCs) expressing long-range periodicity and dense molecular packing are an attractive amplifying medium for the realization of electrically driven organic lasers. However, the amplified spontaneous emission (ASE) threshold (1-10 kW/cm 2 ) of SCs is still significantly higher compared to those of amorphous neat or doped films. The current study addresses this issue by investigating ASE properties of rigid bridging group-containing bifluorene SCs. Introduction of the rigid bridges in bifluorenes enables considerable reduction of nonradiative decay, which, along with enhanced fluorescence quantum yield (72-82%) and short excited state lifetime (1.5-2.5 ns), results in high radiative decay rates (∼0.5 × 10 9 s -1 ) of the SCs, making them highly attractive for lasing applications. The revealed ASE threshold of 400 W/cm 2 in acetylene-bridged bifluorene SCs is found to be among the lowest ever reported for organic crystals. Ultrafast transient absorption spectroscopy enabled one to disclose pronounced differences in the excited state dynamics of the studied SCs, pointing out the essential role of radiative traps in achieving a record low ASE threshold. Although the origin of the trap states was not completely unveiled, the obtained results clearly evidence that the crystal doping approach can be successful in achieving extremely low ASE thresholds required for electrically pumped organic laser.

  2. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation.

    Science.gov (United States)

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil

    2017-08-01

    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal characterization, crystal field analysis and in-band pumped laser performance of Er doped NaY(WO(4))(2) disordered laser crystals.

    Science.gov (United States)

    Serrano, María Dolores; Cascales, Concepción; Han, Xiumei; Zaldo, Carlos; Jezowski, Andrzej; Stachowiak, Piotr; Ter-Gabrielyan, Nikolay; Fromzel, Viktor; Dubinskii, Mark

    2013-01-01

    Undoped and Er-doped NaY(WO4)2 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ) of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T) behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er(3+) levels up to (4)G(7/2) multiplet have been determined by the combination of experimental low (determined at 77 K. The (4)I(13/2) Er(3+) lifetime (τ) was measured in the temperature range of 77-300 K, and was found to change from τ (77K) ≈ 4.5 ms to τ (300K) ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the (4)I(13/2) multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm) diode laser source perfectly matching the 77 K crystal (4)I(15/2) → (4)I(13/2) absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration.

  4. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    corporates only the source, a pseudorandom chopper, a sample, and a single point detector at a fixed scattering angle. For the simulations we utilized parameters relevant to Corelli, the dedicated single crystal diffuse scattering instrument under development at SNS, i.e., facing the high-resolution water moderator [17], ...

  5. HOMO-LUMO analysis of multi walled carbon nanotubes doped Tetrafluoro Phthalate crystals for nonlinear optical applications

    Science.gov (United States)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2018-01-01

    The MWCNTs doped Tetrafluoro Phthalate (C6H2F4O4) precious stones are constantly having higher transmission rate contrasted with immaculate Tetrafluoro Phthalate crystal. The dependability of Tetrafluoro Phthalate crystal was enhanced by doping MWCNTs.The basic, synthetic, optical, mechanical and non-direct optical properties of the doped precious crystals were dissected with the portrayal concentrates, for example, powder XRD, FT-IR, UV-Visible, Hardness and SHG estimations individually. The dopants are relied upon to substitute the carbon iotas in the Tetrafluoro Phthalate grid because of their change of valency and in addition vicinity of ionic sweep. The strength and charge delocalization of the particle were additionally concentrated on by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the atom. Atomic electrostatic potential has been dissected. The SHG productivity of the immaculate and colors doped TFP crystals were additionally contemplated utilizing Nd:YAG Q-exchanged laser.

  6. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  7. Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers.

    Science.gov (United States)

    Wang, Yiping; Bartelt, Hartmut; Becker, Martin; Brueckner, Sven; Bergmann, Joachim; Kobelke, Jens; Rothhardt, Manfred

    2009-04-10

    We report on fiber Bragg gratings (FBGs) inscribed in pure-silica and Ge-doped photonic crystal fibers (PCFs) with a two-beam interference technique and a femtosecond or excimer laser. Such a technique enables the inscription of FBGs for different Bragg wavelengths with high flexibility. Effects of H(2)-loading and Ge doping on the efficiency of grating inscription were investigated by measuring the development of Bragg wavelength and attenuation in the transmission spectra with an increased exposure dose. H(2)-loading dramatically enhances the laser-induced index modulation not only in Ge-doped PCFs but also in pure-silica PCFs. We observed a reversible Bragg wavelength shift during femtosecond pulse irradiation, which indicates an internal temperature rise of approximately 77 degrees C.

  8. Doped niobium superconducting nanowire single-photon detectors

    Science.gov (United States)

    Jia, Tao; Kang, Lin; Zhang, Labao; Zhao, Qingyuan; Gu, Min; Qiu, Jian; Chen, Jian; Jin, Biaobing

    2014-09-01

    We designed and fabricated a special doped niobium (Nb*) superconducting nanowire single-photon detector (SNSPD) on MgO substrate. The superconductivity of this ultra-thin Nb* film was further improved by depositing an ultra-thin aluminum nitride protective layer on top. Compared with traditional Nb films, Nb* films present higher T C and J C. We investigated the dependence of the characteristics of devices, such as cut-off wavelength, response bandwidth, and temperature, on their geometrical dimensions. Results indicate that reduction in both the width and thickness of Nb* nanowires extended the cut-off wavelength and improved the sensitivity. The Nb* SNSPD (50 nm width and 4.5 nm thickness) exhibited single-photon sensitivities at 1,310, 1,550, and 2,010 nm. We also demonstrated an enhancement in the detection efficiency by a factor of 10 in its count rate by lowering the working temperature from 2.26 K to 315 mK.

  9. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Somera, L.; Cruz Z, E.; Roman L, J. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Hernandez A, J. M.; Murrieta S, H., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl{sub 2}) impurity were grown by using the Czochralski method. The emission characteristic of Mn{sup 2+} was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from {sup 60}Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  10. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    International Nuclear Information System (INIS)

    Somera, L.; Cruz Z, E.; Roman L, J.; Hernandez A, J. M.; Murrieta S, H.

    2015-10-01

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl 2 ) impurity were grown by using the Czochralski method. The emission characteristic of Mn 2+ was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from 60 Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  11. Microscopic single-crystal refractometry as a function of wavelength

    International Nuclear Information System (INIS)

    DeLoach, L.D.

    1994-01-01

    The refractive indices of crystal fragments 50--200 μm in size can be measured for light wavelengths between 365 and 1100 nm with a spindle-stage refractometer. Established methods from optical crystallograpy are used to orient a crystal on the microscope spindle stage and then to match its refractive index to an immersion fluid. The refractive index of the fluid for the wavelength of light and matching temperature is determined by comparison of a reference crystal on a second spindle axis with the fluid under the match conditions. Investigations of new nonlinear-optical crystals admirably demonstrate the advantages of measuring the refractive index to ± 0.0004 in small single crystals

  12. Structural, spectral and mechanical studies of bimetallic crystal: cadmium manganese thiocyanate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, M.; Vijaya Prasath, G.; Mahalingam, T.; Ravi, G. [Alagappa University, Department of Physics, Karaikudi (India); Bhagavannarayan, G.; Vijayan, N. [National Physical Laboratory, Materials Characterization Division, New Delhi (India)

    2012-09-15

    A nonlinear optical bimetallic thiocyanate complex crystal, cadmium manganese thiocyanate (CMTC) has been successfully synthesized. The growth of single crystals of cadmium manganese thiocyanate has been accomplished from aqueous solution using slow evaporation method. The presence of manganese and cadmium in the synthesized material was confirmed through energy dispersive spectrum (EDS) analysis. Structural analysis was carried out using powder X-ray diffractometer (PXRD) and crystalline perfection of the grown crystals was ascertained by high-resolution X-ray diffraction (HRXRD) analysis. Fourier transform infrared (FTIR) spectrum was taken to confirm the functional groups. The transmittance spectrum of the crystal in the UV-visible region has been recorded and the cutoff wavelength has been determined. The dielectric measurements for the crystals were performed for various frequencies and temperatures. The mechanical properties were evaluated by Vickers microhardness testing, which reveals hardness and stiffness constant of the crystals. (orig.)

  13. The effect of Cu{sup II} ions in L-asparagine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Ricardo C., E-mail: santana@ufg.br; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F., E-mail: carvalho@ufg.br

    2016-11-15

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm{sup 3};the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g{sub 1}=2.044, g{sub 2}=2.105, g{sub 3}=2.383and A{sub 1}≈0, A{sub 2}=35, A{sub 3}=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two {sup 14}N atoms. Correlating the EPR and optical absorption results, the crystal field and the Cu{sup II} orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x{sup 2}-y{sup 2}).

  14. In-situ studies of iodine intercalation in pentacene thin films and single crystals

    Science.gov (United States)

    Haas, S.; Batlogg, B.

    2004-03-01

    One approach to create a finite charge density in organic molecular semiconductors is bulk chemical doping with intercalated charge donors, which is expected, at suitable doping levels, to induce an insulator-to-metal transition. We report on in-situ, time resolved measurements of iodine intercalation in pentacene single crystals and thin films by means of X-ray diffraction and four- and two-terminal electrical resistivity measurements. The iodine vapor pressure was varied between 0.03 and 0.26 torr, while the samples were mostly held at room temperature. Both intercalated single crystals and films show an enhanced interlayer spacing (d_001) of 19.2 Å and 19.4 Årespectively. The resistivity is decreased by several orders of magnitude, thin films showing a near-metallic low temperature behaviour. The iodine is de-intercalated by continuous pumping and sample heating. This results in thin films in a structural change: The 14.4 Å bulk phase has disappeared and only the 15.4 Å thin film phase remains.

  15. Luminescence of YAB:Er single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Foeldvari, I.; Beregi, E.; Watterich, A. [Research Institute for Solid State Physics and Optics, HAS, Konkoly-Thege u. 29-33, 1121 Budapest (Hungary); Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W. [Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50422 Wroclaw (Poland)

    2007-03-15

    Luminescence spectra of YAB:Er crystals were studied in the ultraviolet-visible region and in the 10-300 K temperature range. The dominant Er{sup 3+}-emission belonged to the {sup 4}S{sub 3/2} {yields} {sup 4}I{sub 15/2} transition (18000-18500 cm{sup -1}). Its Stark components were assigned and found to be consistent with those derived from the absorption spectra. The lifetime of the luminescence was determined as a function of temperature and Er-concentration, and the decay kinetics was analyzed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Float zone growth and anisotropic spectral properties of Nd:LaVO4 single crystals

    Science.gov (United States)

    Yomogida, Shohei; Higuchi, Mikio; Ogawa, Takayo; Wada, Satoshi; Takahashi, Junichi

    2012-11-01

    Nd:LaVO4 single crystals were successfully grown by the floating zone method and their optical properties along each optic elasticity axis were investigated. The crystals grown at 10 mm/h in air did not contain any macroscopic defects for Nd-concentrations upto 5 at%. The optic elasticity axes were determined by the conoscopic figures with a polarizing microscope. The absorption cross-section along the Z-axis was 2.6×10-20 cm2 near 800 nm and the FWHM was 20 nm. The absorption cross-sections along other directions were much the same as that along the Z-axis. The fluorescence lifetime of the 5 at%-doped crystal was approximately 80 μs. All the polarized fluorescence spectra of the Nd:LaVO4 single crystal had a broadened band around 1060 nm with FWHMs of 7-10 nm, which are wide enough to generate femtosecond order pulses.

  17. Growth, optical and EPR studies of {sup 151}Eu{sup 2+}:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, A.G., E-mail: pet@ipr.sci.am [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Asatryan, H.R. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Hovhannesyan, K.L.; Derdzyan, M.V. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Feofilov, S.P. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Eganyan, A.V.; Sargsyan, R.S. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia)

    2017-01-01

    Single crystals of {sup 151}Eu:YAG were grown by the vertical Bridgman method using Eu{sub 2}O{sub 3} with isotopic enrichment of {sup 151}Eu of 97.5%. Additional Hf{sup 4+}or Si{sup 4+} ions were introduced to favor a high concentrations of Eu{sup 2+}. As compared to Eu:YAG with natural isotope composition, the EPR spectra of YAG doped with {sup 151}Eu isotope show a reduced number of hyperfine structure components and a well-resolved structure of a bigger number of electronic transitions. Optical properties of obtained crystals and the effects of heat treatments under oxidizing and reducing conditions are reported. Based on the analysis of Eu{sup 3+} distribution in oxidized Eu,Hf:YAG, in comparison to that in Eu:YAG, the concentration of Eu{sup 2+} in as-grown Eu,Hf:YAG is determined. - Highlights: • YAG:Eu,Hf single crystals containing only {sup 151}Eu isotopes were prepared. • isotopic enriched crystals gave a well-resolved EPR hyperfine structure of Eu{sup 2+} centers. • the redox ratio was followed through the Eu{sup 2+} associated absorption band at 250 nm. • the band intensities at 378 nm correlate with the Eu{sup 2+} concentration.

  18. Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique

    Science.gov (United States)

    Sangla, D.; Aubry, N.; Didierjean, J.; Perrodin, D.; Balembois, F.; Lebbou, K.; Brenier, A.; Georges, P.; Tillement, O.; Fourmigué, J.-M.

    2009-02-01

    Laser emission obtained from an Yb:YAG single-crystal fiber directly grown by the micro-pulling down technique is demonstrated for the first time. We achieved 11.2 W of continuous wave (CW) output power at 1031 nm for 55 W of incident pump power at 940 nm. In the Q-switched regime, we obtained pulses as short as 17 ns, for an average power of 2.3 W at 2 kHz corresponding to an energy of 1.15 mJ. In both cases, the M 2 factor was 2.5. This single-crystal fiber showed performance similar to a standard rod elaborated by the Czochralski method. The potential of Yb3+-doped single-crystal fibers is presented for scalable high-average and high-peak-power laser systems.

  19. Electrical properties of Hg3In2Te6 crystals doped with gadolinium

    International Nuclear Information System (INIS)

    Gorlej, P.M.; Grushka, O.G.; Frasunyak, V.M.

    2002-01-01

    The temperature dependences of electrical conductivity, the Hall coefficient, thermoelectric power, and the transversal Nernst-Ettingshausen effect of Hg 3 In 2 Te 6 crystals doped with gadolinium are investigated. It is shown that, under strong doping, the Fermi level descends and remains in the upper half of the energy gap in the impurity miscibility range, while the transparency of crystals is decreasing essentially. It causes the impurity self-compensation and preservation of bipolar conductivity typical of intrinsic semiconductors. In this case, the band gap, mobility ratio b=μ n /μp, and effective mass ratio m p /m n (n -electrons, p-holes) are reduced. Experimental results are explained by using the model of disordered semiconductor, in which the borders between forbidden and allowed energy bands are blurred and the transfer of electrons and holes occurs on the corresponding percolation levels because of the presence of the large density of localized states

  20. Photonic manipulation of topological defects in liquid-crystal emulsions doped with azobenzene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takahiro [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan) and Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)]. E-mail: takahiro.yamamoto@aist.go.jp; Tabe, Yuka [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan); Department of Applied Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjyuku, 169-8555, Tokyo (Japan); Yokoyama, Hiroshi [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)

    2006-06-19

    By modulating liquid-crystal alignment on a colloidal sphere, we successfully manipulated topological defects in glycerol-droplet/liquid-crystal emulsions doped with amphiphilic azobenzene derivatives. At an initial state, a disclination loop (Saturn ring) could be observed around the droplet, in which the azobenzene molecules should adsorb onto the droplet and liquid crystal molecules align normally to the surface of the droplet. On irradiation with ultra-violet light ({lambda} = 365 nm), the disclination loop was unfastened and transformed into two point defects called boojums. This should be attributed to the alignment change of the liquid crystal molecules from normal to planar arrangement triggered by trans-to-cis photoisomerization of the adsorbed azo-dyes. On irradiation with visible light causing cis-to-trans photoisomerization ({lambda} = 435 nm), the boojums went back to the Saturn ring reversibly.

  1. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs......) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid...... crystal. We demonstrate a modulation frequency of 2kHz for a moderate pump power of 2-3mW and describe two pump pulse regimes in which there is an order of magnitude difference between the decay times....

  2. Protons in neutron-irradiated and thermochemically reduced MgO crystals doped with lithium impurities

    International Nuclear Information System (INIS)

    Gonzalez, R.; Pareja, R.; Chen, Y.

    1992-01-01

    H - (hydride) ions have been observed in lithium-doped MgO crystals which have been neutron irradiated or thermochemically reduced (TCR). Infrared-absorption measurements have been used to identify the local modes of the H - ions in these crystals. The concentration of the H - ions in the neutron-irradiated crystals is found to be far less than that found in the TCR crystals. The thermal stability of H - and oxygen vacancies in both oxidizing and reducing atmospheres are investigated. The emergence of sharp structures due to OH - ions is attributed to the displacements of substitutional Li + ions, leaving behind unperturbed OH - ions, via a mechanism of rapid radiation-induced diffusion during irradiation in a reactor. Results of neutron-irradiated MgO:Li, which had previously been oxidized at high temperature, are also presented

  3. Large Silver Halide Single Crystals as Charged Particle Track Detectors

    Science.gov (United States)

    Kusmiss, J. H.

    1972-01-01

    The trajectory of the particle is made visible under a microscope by the accumulation of metallic silver at regions of the lattice damaged by the particle. This decoration of the particle track is accomplished by exposure of the crystal to light. The decoration of normally present lattice imperfections such as dislocations can be suppressed by the addition to the crystal of less than ten parts per million of a suitable polyvalent metal impurity. An account of some preliminary attempts to grow thin single crystals of AgCl is given also, and suggestions for a more refined technique are offered.

  4. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  5. Dielectric and spectral properties of DMAAS ferroelectric crystals doped with chromium

    Science.gov (United States)

    Kapustianik, V.; Czapla, Z.; Tchukvinskyi, R.; Batiuk, A.; Eliyachevskyy, Yu.; Korchak, Yu.; Rudyk, V.

    2004-01-01

    This paper presents the results of investigations of the dielectric and spectral properties of NH2(CH3)2Al(SO4)2 × 6 H2O crystals doped with chromium. In particular, it is shown that the dopant noticeably changes the temperature of ferroelectric phase transition and corresponding thermal dipole relaxation with a critical slowing-down at Tc1. The Cr3+ ions were used as a convenient probe for investigations of crystalline structure. On the basis of absorption and luminescence spectroscopy and resonance Raman scattering study it has been shown that the metal-hydrate complexes in the investigated crystals possess the considerably distorted octahedral shape. (

  6. Light-controlled electric Freedericksz threshold in dye doped liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lucchetti, L.; Catani, L.; Simoni, F. [Dipartimento di Scienze e Ingegneria della Materia, dell' Ambiente ed Urbanistica and CNISM Università Politecnica delle Marche, Ancona (Italy)

    2014-05-28

    We report the results of measurements of the threshold of Freedericksz transition in a nematic liquid crystal doped by Methyl-red. We show that in case of dc field the threshold voltage can decrease or increase depending on the light dose, due to the light-induced desorption and adsorption of charge complexes from and on the irradiated surface, that has been recently demonstrated. This effect has the potential to be exploited in optical devices such as liquid crystal microlenses and spatial light modulators.

  7. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  8. Doping a mixture of two smectogenic liquid crystals with barium titanate nanoparticles.

    Science.gov (United States)

    Lorenz, Alexander; Zimmermann, Natalie; Kumar, Satyendra; Evans, Dean R; Cook, Gary; Fernández Martínez, Manuel; Kitzerow, Heinz-S

    2013-01-24

    A mixture of two smectic liquid crystals was doped with harvested ferroelectric barium titanate nanoparticles and investigated with wide- and small-angle X-ray scattering during cooling from the isotropic phase. A decrease in the isotropic to nematic and in the nematic to partially bilayer smectic-A(d) (SmA(d)) phase transition temperatures was observed accompanied by an increase of the layer spacing in the SmA(d) phase.

  9. Growth of co-doped semi-insulation indium phospide crystals for X-ray detection

    Czech Academy of Sciences Publication Activity Database

    Pekárek, Ladislav; Žďánský, Karel

    2005-01-01

    Roč. 275, - (2005), e409-e413 ISSN 0022-0248. [International Conference on Crystal Growth /14./. Grenoble, 09.08.20004-12.08.2004] R&D Projects: GA AV ČR(CZ) IBS2067354 Institutional research plan: CEZ:AV0Z10100520 Keywords : growth from melt * Czochralski method * indium phosphide * semiconductor doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.681, year: 2005

  10. Spectroscopy and decay kinetics of Pr3+-doped chloride crystals for 1300-nm optical amplifiers

    International Nuclear Information System (INIS)

    Page, R.H.; Schaffers, K.I.; Wilke, G.D.

    1995-01-01

    Several Pr 3+ -doped chloride crystals have been tested spectroscopically for suitability as 1300-nm optical amplifiers operating on the 1 G 4 - 3 H 5 transition. 1 G 4 lifetimes are much longer than in fluoride hosts, ranging up to 1300 μsec and suggesting a near-unity luminescence quantum yield. Emission spectra are typically broad (FWHM ∼ 70 nm) and include the 1310-nm zero-dispersion wavelength of standard telecommunications fiber

  11. Contribution to knowledge of radiation damage in KCl crystals doped with Sr

    International Nuclear Information System (INIS)

    Sordi, G.-M.A.A.

    1974-11-01

    The radiation damages in KCl crystals doped with Sr ++ using thermo-ionic technique (ITC) and optical absorption measurements were studied. The variation of the entropy for the dipole jump starting from results reported by several authors was calculated. The irradiation effects with three different exposures were analysed: irradiation with gamma rays; irradiation with fast neutrons added to gamma irradiation; and irradiation with thermal neutrons together with fast neutrons and gamma rays. (Author) [pt

  12. Single crystal surface structure by bragg scattering

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1985-01-01

    X-ray diffraction is becoming an important tool in the measurements of surface structures. Single crystalline samples are used as in Low Energy Electron Diffraction (LEED)-studies. The X-ray technique is somewhat more involved due to the need of bright, collimated photon sources, in general...

  13. Spin and charge transport study in single crystal organic semiconductors

    Science.gov (United States)

    Raman, Karthik V.; Mulder, Carlijn L.; Baldo, Marc A.; Moodera, Jagadeesh S.

    2009-03-01

    Spin transport studies in amorphous rubrene films have shown exciting and promising results [1]. A large spin diffusion length in these amorphous films has increased the motivation to perform spin transport study in high purity single crystal rubrene. This will provide the fundamental understanding on the spin transport behavior in OS; not influenced by defects or traps. We will present work on small channel single crystal rubrene FET device with magnetic electrodes. For example, our preliminary studies have show mobility for FET with Co electrode to be 0.014cm^2/V-s. A study on the spin and charge transport properties in single crystals of OS with magnetic electrodes is being done and the results will be reported. The influence of gate voltage and applied magnetic field on the transport properties will be discussed. [1] J.H. Shim et al., PRL 100, 226603 (2008)

  14. Deformation Induced Microtwins and Stacking Faults in Aluminum Single Crystal

    Science.gov (United States)

    Han, W. Z.; Cheng, G. M.; Li, S. X.; Wu, S. D.; Zhang, Z. F.

    2008-09-01

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  15. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  16. Superfast domain walls in KTP single crystals

    Science.gov (United States)

    Shur, V. Ya.; Esin, A. A.; Alam, M. A.; Akhmatkhanov, A. R.

    2017-10-01

    Potassium titanyl phosphate KTiOPO4 (KTP) crystals with periodical ferroelectric domain structures are one of the most promising materials for nonlinear optics, in which the main types of nonlinear optical interactions have been demonstrated. Despite the crucial importance of the in situ visualization of domain structure kinetics for creation of high quality periodical domain gratings, there are only a few works concerning KTP. We present the results of in situ visualization of domain kinetics in KTP with the time resolution down to 12.5 μs and simultaneous recording of the switching current data. The wide range of wall velocities with two orders of magnitude difference was observed for switching in a uniform electric field. The kinetic maps allowed analyzing the spatial distribution of wall motion velocities and classifying the walls by velocity ranges. The distinguished slow, fast, and superfast types of domain walls differed by their orientation. It was shown that the fast and slow domain walls provided the smooth input to the switching current, whereas the short-lived superfast walls resulted in short current peaks. The mobility and the threshold fields for all types of domain walls were estimated. The revealed increase in the wall velocity with deviation from low-index crystallographic planes for slow and fast walls was considered in terms of determined step generation and anisotropic kink motion. The obtained results are important for further development of domain engineering in KTP required for creation of high power, reliable, and effective coherent light sources.

  17. Regularities of recrystallization in rolled Zr single crystals

    International Nuclear Information System (INIS)

    Isaenkova, M; Perlovich, Yu; Fesenko, V; Krymskaya, O; Krapivka, N; Thu, S S

    2015-01-01

    Experiments by rolled single crystals give a more visible conception of the operating mechanisms of plastic deformation and the following recrystallization, than experiments by polycrystals. Studies by usage of X-ray diffraction methods were conducted by Zr single crystals. It was revealed, that regions of the α-Zr matrix, deformed mainly by twinning, are characterized with decreased tendency to recrystallization. Orientations of recrystallized α-Zr grains correspond to “slopes” of maxima in the rolling texture, where the level of crystalline lattice distortion is maximal and the number of recrystallization nuclei is most of all. (paper)

  18. Charge transient spectroscopy of C 60 single crystals

    Science.gov (United States)

    Baranc̆ok, D.; Halus̆ka, M.; Kuzmany, H.; Nádaz̆dy, V.

    1994-01-01

    Suitability of the charge transient spectroscopy — QTS for the investigation of fullerites is demonstrated. QTS can yield an information on the electrical properties of both the bulk and the interface of fullerites interfaced with metals (insulators, semiconductors) as well as on its bulk phase transition. Our measurements were carried out on C60 single crystals. We observed a single QTS peak which reflects most probably a thermally activated relaxation process (polarization or trap - limited charge emission) in the crystal. The expected phase transition was detected as a step of QTS signal at 255 K. The influence of a thermal treatment in air on the QTS peak was also observed.

  19. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  20. Temperature dependences of the electrooptical properties of rodlike nematic liquid crystals doped with hockey-stick-shaped liquid crystals

    Science.gov (United States)

    Yeo, Sunggu; Srivastava, Anoop Kumar; Lee, Hyojin; Lee, Ji-Hoon; Choi, E.-Joon

    2016-01-01

    We investigated the temperature dependences of the dielectric anisotropy, birefringence, order parameter, splay elastic constant, and rotational viscosity of rodlike nematic liquid crystals (RLCs) doped with hockey-stick-shaped liquid crystals (HLCs). Although the order parameter of the HLC-RLC mixtures was similar to that of the pure RLC, the dielectric anisotropy and the birefringence of the mixtures were decreased or increased depending on the structure of the HLC molecule. In addition, the activation energies of the mixtures were different, which implies that the intramolecular structure of the HLC molecule had more influence on the electrooptical properties of the HLC-RLC binary mixtures than the inter-molecular interaction between the HLC and the RLC molecules.

  1. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  2. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  3. Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals

    Science.gov (United States)

    Nakamura, Masaru; Higuchi, Shinji; Takekawa, Shunji; Terabe, Kazuya; Furukawa, Yasunori; Kitamura, Kenji

    2002-04-01

    Undoped and MgO (0.5 and 1.0-mol%)-doped near-stoichiometric LiTaO3 (SLT) crystals were grown from off-congruent Li-rich solutions (Li˜ 60 mol%) by the double-crucible Czochralski method using a continuous SLT ceramic grain charging system. Curie temperatures of the undoped and MgO (0.5 and 1.0-mol%)-doped SLT crystals are 688, 694 and 695°C, respectively. The ordinary and extraordinary refractive indices (no, ne) of these crystals were measured by the prism coupling technique in the wavelength range from 0.440 to 1.050 μm at room temperature, and the temperature-independent Sellmeier equations for each crystal were derived from the measured refractive index data. no of the SLT crystal was almost the same as that of a congruent-melt LiTaO3 (CLT) crystal, while ne of the SLT crystal was lower than that of the CLT crystal. ne was lower than no for the SLT crystal, similar to as in the case of the LiNbO3 crystal. The refractive indices of the SLT crystal, no and ne, were found to be almost independent of MgO concentration at the doping level of 0.5 and 1.0 mol%.

  4. Random lasing in dye-doped polymer dispersed liquid crystal film

    Science.gov (United States)

    Wu, Rina; Shi, Rui-xin; Wu, Xiaojiao; Wu, Jie; Dai, Qin

    2016-09-01

    A dye-doped polymer-dispersed liquid crystal film was designed and fabricated, and random lasing action was studied. A mixture of laser dye, nematic liquid crystal, chiral dopant, and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules. Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm, the size of the liquid crystal droplets was small. Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation, a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575-590 nm. The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 mJ. Under heating, the emission peaks of random lasing disappeared. By detecting the emission light spot energy distribution, the mechanism of radiation was found to be random lasing. The random lasing radiation mechanism was then analyzed and discussed. Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism. The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small, which is beneficial to form multiple scattering. The transmission path of photons is similar to that in a ring cavity, providing feedback to obtain random lasing output. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Colleges and Universities in Liaoning Province Outstanding Young Scholars Growth Plans, China (Grant No. LJQ2015093), and Shenyang Ligong University Laser and Optical Information of Liaoning Province Key Laboratory Open Funds, China.

  5. Optical homogeneity, defects, and photorefractive properties of stoichiometric, congruent, and zinc-doped lithium niobate crystals

    Science.gov (United States)

    Sidorov, N. V.; Yanichev, A. A.; Palatnikov, M. N.; Gabain, A. A.; Pikoul, O. Yu.

    2014-07-01

    Using the laser-conoscopy method, the photorefractive light-scattering method, and the Raman light-scattering method, we have studied the structural and optical homogeneities and photorefractive properties of (i) stoichiometric lithium niobate crystals (LiNbO3(stoich)), which were grown from a melt with 58.6 mol % of Li2O; (ii) congruent crystals (LiNbO3(congr)); and (iii) congruent crystals that were doped with Zn2+ cations (LiNbO3:Zn; [Zn] = 0.03-1.59 mol %). We have shown that the speckle-structure of the photorefractive light scattering in all the crystals is three-layer. The shapes of the second and third layers repeat in general the shape of the first layer. We have shown that the differences that are observed between the Raman spectra, the photorefractive light scattering, and the conoscopic patterns of the examined crystals are caused by the fact that defects are distributed inhomogeneously over the volume of these crystals and that Zn2+ cations are incorporated inhomogeneously into the lattice. This leads to the appearance of local changes in the elastic characteristics of the crystal and to the appearance of mechanical stresses, which locally change the optical indicatrix and, correspondingly, the conoscopic pattern and the Raman spectrum.

  6. Stacking fault tetrahedron induced plasticity in copper single crystal

    International Nuclear Information System (INIS)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Su, Lihong; Zhao, Xing; Pei, Linqing

    2017-01-01

    Stacking fault tetrahedron (SFT) is the most common type of vacancy clustered defects in fcc metals and alloys, and can play an important role in the mechanical properties of metallic materials. In this study, molecular dynamics (MD) simulations were carried out to investigate the incipience of plasticity and the underlying atomic mechanisms in copper single crystals with SFT. Different deformation mechanisms of SFT were reported due to the crystal orientations and loading directions (compression and tension). The results showed that the incipient plasticity in crystals with SFT resulted from the heterogeneous dislocation nucleation from SFT, so the stress required for plastic deformation was less than that needed for perfect single crystals. Three crystal orientations ([1 0 0], [1 1 0] and [1 1 1]) were specified in this study because they can represent most of the typical deformation mechanisms of SFT. MD simulations revealed that the structural transformation of SFT was frequent under the applied loading; a metastable SFT structure and the collapse of SFT were usually observed. The structural transformation resulted in a different reduction of yield stress in compression and tension, and also caused a decreased or reversed compression/tension asymmetry. Compressive stress can result in the unfaulting of Frank loop in some crystal orientations. According to the elastic theory of dislocation, the process of unfaulting was closely related to the size of the dislocation loop and the stacking fault energy.

  7. Roflumilast - A reversible single-crystal to single-crystal phase transition at 50 °C

    Science.gov (United States)

    Viertelhaus, Martin; Holst, Hans Christof; Volz, Jürgen; Hummel, Rolf-Peter

    2013-01-01

    Roflumilast is a selective phosphodiesterase type 4 inhibitor and is marketed under the brand names Daxas®, Daliresp® and Libertec®. A phase transition of the drug substance roflumilast was observed at 50 °C. The low temperature form, the high temperature form and the phase transition were characterised by differential scanning calorimetry, variable temperature powder X-ray diffraction and single crystal X-ray diffraction, Raman spectroscopy and solid state NMR spectroscopy. The phase transition of roflumilast at 50 °C is completely reversible, the high temperature form cannot be stabilised by quench cooling and the phase transition does not influence the quality of the active pharmaceutical ingredient (API) and the drug product. It was observed to be a single crystal to single crystal phase transition.

  8. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  9. Luminescence of doped lithium tetraborate single crystals and glass

    Czech Academy of Sciences Publication Activity Database

    Ishii, M.; Kuwano, Y.; Asaba, S.; Asai, T.; Kawamura, M.; Senguttuvan, N.; Hayashi, T.; Koboyashi, M.; Nikl, Martin; Hosoya, S.

    2004-01-01

    Roč. 38, - (2004), s. 571-574 ISSN 1350-4487 R&D Projects: GA MŠk(CZ) ME 519 Institutional research plan: CEZ:AV0Z1010914 Keywords : lithium tetraborate * lithium borate glass * neutron scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.664, year: 2004

  10. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    Figure 1. Picture of ADP molecule. Table 1. Crystallographic and data collection details. Chemical formula: H1.5N0.25OP0.25. Diffractometer: Four circle. Mr: 29.25. Data collection method: θ–2θ scan. Space group: Tetragonal, I-42d. No. of measured, independent & observed reflections: 163, 163, 163. Temperature (K): 300.

  11. Polarization properties and crystal structures of ferroelectric (Ba,CaTiO3 single crystals

    Directory of Open Access Journals (Sweden)

    Ryota Imura

    2014-01-01

    Full Text Available We have investigated the spontaneous polarization (Ps of Ba1-xCaxTiO3 (BCT by polarization hysteresis measurements using single crystals and by density functional theory (DFT calculations. Single crystals of BCT (x = 0.07 were grown by a top-seeded solution growth (TSSG method. The polarization measurements show that the crystals (x = 0.07 have a Ps of 26.0 μC/cm2, which is slightly small compared with BaTiO3 (27.3 μC/cm2. Our DFT calculations based on a supercell approach show that Ca atoms are markedly displaced cooperatively with the adjacent Ti atoms along the Ps direction. It is suggested that the CaTiO3-like octahedral rotation is constructed in the BCT supercell around the Ca atoms, which is the origin of the smaller Ps observed for the BCT crystals.

  12. Thermal characterization, crystal field analysis and in-band pumped laser performance of Er doped NaY(WO(4(2 disordered laser crystals.

    Directory of Open Access Journals (Sweden)

    María Dolores Serrano

    Full Text Available Undoped and Er-doped NaY(WO42 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er(3+ levels up to (4G(7/2 multiplet have been determined by the combination of experimental low (<10 K temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the (4I(13/2↔(4I(15/2 laser related transition have been determined at 77 K. The (4I(13/2 Er(3+ lifetime (τ was measured in the temperature range of 77-300 K, and was found to change from τ (77K ≈ 4.5 ms to τ (300K ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the (4I(13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm diode laser source perfectly matching the 77 K crystal (4I(15/2 → (4I(13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration.

  13. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jin-Hua, E-mail: zhaojinhuazjh@gmail.com [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Wang, Xue-Lin [School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Ministry of Education, and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2013-07-15

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  14. Magnetic and luminescent properties of manganese-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sirkeli, Vadim P., E-mail: vsirkeli@yahoo.com [Department of Physics and Engineering, Moldova State University, 60 A. Mateevici Street, MD-2009 Chisinau (Moldova, Republic of); Department of Information Technologies, Mathematics and Physics, Comrat State University, 17 Galatsan Street, MD-3800 Comrat (Moldova, Republic of); Nedeoglo, Dmitrii D.; Nedeoglo, Natalia D.; Radevici, Ivan V.; Sobolevskaia, Raisa L.; Sushkevich, Konstantin D. [Department of Physics and Engineering, Moldova State University, 60 A. Mateevici Street, MD-2009 Chisinau (Moldova, Republic of); Laehderanta, Erkki; Lashkul, Alexander V. [Department of Mathematics and Physics, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland); Laiho, Reino [Wihuri Physical Laboratory, University of Turku, FIN-20014 Turku (Finland); Biethan, Jens-Peter; Yilmazoglu, Oktay; Pavlidis, Dimitris [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstrasse 25, D-64283 Darmstadt (Germany); Hartnagel, Hans L. [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstrasse 25, D-64283 Darmstadt (Germany); Department of Microwave Electronics, Technische Universitaet Darmstadt, Merckstrasse 25, D-64283 Darmstadt (Germany)

    2012-09-15

    Magnetic and photoluminescent properties of manganese-doped ZnSe crystals with different impurity concentrations were investigated. The concentration of Mn{sup 2+} ions in ZnSe crystals has been varied from 0.01 to 0.3 at%. Magnetic and photoluminescent studies have confirmed the introduction of Mn in ZnSe crystals. It was established that Mn{sup 2+} ions are responsible for the emission bands with maximum at 616 nm and 633 nm, which correspond to {sup 4}T{sub 2}{yields}{sup 6}A{sub 1} and {sup 4}T{sub 1}{yields}{sup 6}A{sub 1} intracentre transitions of Mn{sup 2+} ions respectively. It was found that the concentration quenching of the photoluminescent bands is associated with Mn{sup 2+} ions, which are due to the formation of Mn-Mn clusters. Magnetic properties studies have shown that at high doping levels the manganese atoms form Mn-Mn clusters in ZnSe. From the temperature dependence of magnetic susceptibility of ZnSe:Mn crystals that follows the Curie-Weiss law, it was possible to estimate the Curie-Weiss temperature {Theta}(x) and the effective Mn-Mn antiferromagnetic exchange constant (J{sub 1}).

  15. Europium-enabled luminescent single crystal and bulk YAG and YGG for optical imaging

    Science.gov (United States)

    Skaudžius, Ramūnas; Enseling, David; Skapas, Martynas; Selskis, Algirdas; Pomjakushina, Ekaterina; Jüstel, Thomas; Kareiva, Aivaras; Rüegg, Christian

    2016-10-01

    Europium doped small particles presently receive great attention due to their excellent photoluminescent (PL) intensity, (photo)chemical stability, and linearity in the orange-red spectral region and find challenging biomedical application. Europium doped compounds are extremely good candidates for optical imaging due to stable luminescence, long fluorescence decay time, sharp emission peaks, i.e. narrow band width, in the red to near-infrared (NIR) region. Moreover, lasers based on red emission of europium also could be an attractive choice for medical application since NIR radiation can penetrate biological tissues such as human skin. This study allows to discuss luminescent properties of europium (5 at-% or 30 at-%) doped Y3Al5O12 and Y3Ga5O12 garnets in single crystals and powders. Europium enabled luminescent properties are discussed based on the concentration of europium and dopant local environment. All these compounds possess dominant 5D0 → 7F4 emission in the NIR region and are thus potential candidates for optical imaging.

  16. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  17. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  18. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF{sub 6} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kentaro, E-mail: ken-fukuda@tokuyama.co.jp [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 (Japan)

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF{sub 6} crystal. Eu doped and Eu, Y co-doped LiCaAlF{sub 6} were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  19. Monitoring Lidocaine Single-Crystal Dissolution by Ultraviolet Imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Ye, Fengbin; Rantanen, Jukka

    2011-01-01

    ) imaging for conducting single‐crystal dissolution studies was performed. Using lidocaine as a model compound, the aim was to develop a setup capable of monitoring and quantifying the dissolution of lidocaine into a phosphate buffer, pH 7.4, under stagnant conditions. A single crystal of lidocaine...... was placed in the quartz dissolution cell and UV imaging was performed at 254 nm. Spatially and temporally resolved mapping of lidocaine concentration during the dissolution process was achieved from the recorded images. UV imaging facilitated the monitoring of lidocaine concentrations in the dissolution...... media adjacent to the single crystals. The concentration maps revealed the effects of natural convection due to density gradients on the dissolution process of lidocaine. UV imaging has great potential for in vitro drug dissolution testing...

  20. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  1. Single layers of WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries

    Science.gov (United States)

    Yu, Sunmoon; Jung, Ji-Won; Kim, Il-Doo

    2015-07-01

    Single layers of WS2 nanoplates are uniformly embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) via a facile electrospinning method. Crystallization of the single-layered WS2 nanoplates and in situ nitrogen doping into the carbon nanofibers were simultaneously accomplished during a two-step heat treatment. The distinctive structure of the WS2@NCNFs enables outstanding electrochemical performances.Single layers of WS2 nanoplates are uniformly embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) via a facile electrospinning method. Crystallization of the single-layered WS2 nanoplates and in situ nitrogen doping into the carbon nanofibers were simultaneously accomplished during a two-step heat treatment. The distinctive structure of the WS2@NCNFs enables outstanding electrochemical performances. Electronic supplementary information (ESI) available: Experimental section, SEM images of WS2 powder and ground WS2 powder, TEM image and SAED pattern of the WS2 powder, Raman spectra of the WS2 powder, CV curves of the WS2 powder, voltage profiles of the WS2 powder, schematic diagram of WS2@NCNFs undergoing lithium storage reactions, electrochemical performance of NCNFs, morphologies and EDS mapping of WS2@NCNFs after cycling, and a table of contributions of NCNFs to the specific capacity. See DOI: 10.1039/c5nr02425k

  2. Single crystal growth, crystal structure and characterization of a novel crystal: L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP)

    Science.gov (United States)

    Wang, L. N.; Wang, X. Q.; Zhang, G. H.; Liu, X. T.; Sun, Z. H.; Sun, G. H.; Wang, L.; Yu, W. T.; Xu, D.

    2011-07-01

    A novel organic crystal, L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP), synthesized and grown from aqueous solution, is presented. X-ray single diffraction shows that LAPP belongs to the monoclinic crystallographic system with space group P2 1. FT-IR and UV/vis/NIR transmission spectra have been employed to characterize the crystal. The computational calculation based on the density functional theory at the B3LYP/6-31G (d, p) level has been used to compute the first-order hyperpolarizability of LAPP relating to different molecular models. The morphology, nonlinear characteristic and thermal stability of the crystal have also been investigated.

  3. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, ...

  4. Some Debye temperatures from single-crystal elastic constant data

    Science.gov (United States)

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  5. Single crystal neutron diffraction study of triglycine sulphate revisited

    Indian Academy of Sciences (India)

    Abstract. In order to get the exact hydrogen-bonding scheme in triglycine sulphate. (TGS), which is an important hydrogen bonded ferroelectric, a single crystal neutron diffraction study was undertaken. The structure was refined to an R-factor of R[F2] = 0.034. Earlier neutron structure of TGS was reported with a very limited ...

  6. Organic field-effect transistors using single crystals.

    Science.gov (United States)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  7. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  8. Single crystal ternary oxide ferroelectric integration with Silicon

    Science.gov (United States)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  9. Microhardness studies on nonlinear optical L-alanine single crystals

    Indian Academy of Sciences (India)

    Sci., Vol. 36, No. 3, June 2013, pp. 471–474. c Indian Academy of Sciences. Microhardness studies on nonlinear optical L-alanine single crystals. R HANUMANTHARAO† and S KALAINATHAN‡,∗ ... ter to the area of the impression left on the specimen. Both ... where P is the applied load in kg, d is in mm and Hv is in kg mm.

  10. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  11. Bulk study of a DyNiAl single crystal

    Czech Academy of Sciences Publication Activity Database

    Prchal, J.; Andreev, Alexander V.; Javorský, P.; Honda, F.; Jurek, Karel

    272-276, - (2004), e419-e420 ISSN 0304-8853 R&D Projects: GA ČR GA106/02/0943 Keywords : rare-earth * DyNiAl * magnetic anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  12. Area detectors in single-crystal neutron diffraction

    Science.gov (United States)

    McIntyre, Garry J.

    2015-12-01

    The introduction of area detectors has brought about a gentle revolution in the routine application of single-crystal neutron diffractometry. Implemented first for macromolecular crystallography, electronic detectors subsequently gradually spread to chemical and physics-oriented crystallography at steady-state sources. The volumetric surveying of reciprocal space implicit in the Laue technique has required area detectors right from the start, whether using film and more recently image plates and CCD-based detectors at reactors, or scintillation detectors at spallation sources. Wide-angle volumetric data collection has extended application of neutron single-crystal diffractometry to chemical structures, sample volumes, and physical phenomena previously deemed impossible. More than 30 of the dedicated single-crystal neutron diffractometers at steady-state reactor and neutron spallation sources worldwide and accessible via peer-review proposal mechanisms are currently equipped with area detectors. Here we review the historical development of the various types of area detectors used for single crystals, discuss experimental aspects peculiar to experiments with such detectors, highlight the scientific fields where the use of area detectors has had a special impact, and forecast future developments in hardware, implementation, and software.

  13. Area detectors in single-crystal neutron diffraction

    International Nuclear Information System (INIS)

    McIntyre, Garry J

    2015-01-01

    The introduction of area detectors has brought about a gentle revolution in the routine application of single-crystal neutron diffractometry. Implemented first for macromolecular crystallography, electronic detectors subsequently gradually spread to chemical and physics-oriented crystallography at steady-state sources. The volumetric surveying of reciprocal space implicit in the Laue technique has required area detectors right from the start, whether using film and more recently image plates and CCD-based detectors at reactors, or scintillation detectors at spallation sources. Wide-angle volumetric data collection has extended application of neutron single-crystal diffractometry to chemical structures, sample volumes, and physical phenomena previously deemed impossible. More than 30 of the dedicated single-crystal neutron diffractometers at steady-state reactor and neutron spallation sources worldwide and accessible via peer-review proposal mechanisms are currently equipped with area detectors. Here we review the historical development of the various types of area detectors used for single crystals, discuss experimental aspects peculiar to experiments with such detectors, highlight the scientific fields where the use of area detectors has had a special impact, and forecast future developments in hardware, implementation, and software. (review)

  14. Effect of pressure on electrical resistance of WSe single crystal

    Indian Academy of Sciences (India)

    Abstract. The results of electrical resistance measurements under pressure on single crystals of. WSe2 are reported. Measurements up to 8.5 GPa are carried out using Bridgman anvil set up and beyond it using diamond anvil cell (DAC) up to a pressure of 27 GPa. There is no clear indication of any phase transition till the ...

  15. Lattice effects in HoVo(3) single crystal

    NARCIS (Netherlands)

    Sikora, M.; Marquina, C.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.

    We report the study of lattice effects in the Mott insulator HoVO3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO3 reveals gradual orbital ordering (OO) below T-OO = 200K and orders antiferromagnetically at T-N =

  16. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  17. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  18. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  19. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking fault s Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  20. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Most of the tartrate compounds are insoluble in water and decompose before melting. Hence, single crystals of such type cannot be grown either by slow evaporation or by melt technique, but can be grown easily by gel method. Gel method is an alternative method to solution growth with controlled diffusion and the growth ...

  1. Enhanced diffraction properties of photoinduced gratings in nematic liquid crystals doped with Disperse Red 1.

    Science.gov (United States)

    Li, Hongjing; Wang, Jianhao; Wang, Changshun; Zeng, Pengfei; Pan, Yujia; Yang, Yifei

    2016-01-01

    Diffraction properties of photoinduced gratings recorded by overlapping two coherent beams at 532 nm in nematic liquid crystals doped with Disperse Red 1 were investigated with a probe beam at 632.8 nm. The grating was formed due to the alignment of dye molecules that leaded to the reorientation of the liquid crystal phase. The diffraction efficiency of the photoinduced grating was found to increase rapidly when the sample temperature was close to the clearing point in the nematic phase and a nearly 30-fold enhancement of the first-order diffraction efficiency was obtained. The pretransitional enhancement of the diffraction efficiency was discussed in terms of the reorientation of liquid crystals, optical nonlinearity effects and the onset of critical opalescence near the nematic-isotropic phase transition. Moreover, a peak shift of diffraction efficiency towards the lower temperature was observed with the increase of recording light intensity, which was attributed to laser induced photochemical disordering.

  2. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  3. Growth and characterization of pure and doped NLO L-arginine ...

    Indian Academy of Sciences (India)

    Single crystals of pure, Cu2+ and Mg2+ doped L-arginine acetate (LAA) were grown successfully by slow evaporation technique. In order to improve the device characteristics of LAA crystals, metal dopants of Cu2+ and Mg2+ were incorporated into the parent crystals. The grown pure and doped crystals were confirmed by ...

  4. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    Science.gov (United States)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  5. Crystal growth and optical properties of CdS-doped lead silicate glass

    International Nuclear Information System (INIS)

    Liu Hao; Liu Qiming; Zhao Xiujian

    2007-01-01

    The crystal growth and optical properties of CdS microcrystallite-doped lead silicate glass is investigated in this paper. The existence of CdS nanocrystals was confirmed via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results reveal that a two-stage heat-treat procedure can produce a better size distribution of CdS nanocrystals than a one-stage heat-treat procedure in glasses. The second harmonic generation (SHG) from the base glass and CdS microcrystallite doped glasses was observed, and the effects of the heat treatments and the thermal poling temperature on the crystallization of CdS and second-order harmonic (SH) intensity were discussed, respectively. It is indicated that samples doped with CdS microcrystallite showed larger SH intensity than that of the base glass. Use of a higher thermal poling temperature than the glass transformation temperature does not result in a good SH intensity in glasses

  6. Single-crystal metal growth on amorphous insulating substrates.

    Science.gov (United States)

    Zhang, Kai; Pitner, Xue Bai; Yang, Rui; Nix, William D; Plummer, James D; Fan, Jonathan A

    2018-01-23

    Metal structures on insulators are essential components in advanced electronic and nanooptical systems. Their electronic and optical properties are closely tied to their crystal quality, due to the strong dependence of carrier transport and band structure on defects and grain boundaries. Here we report a method for creating patterned single-crystal metal microstructures on amorphous insulating substrates, using liquid phase epitaxy. In this process, the patterned metal microstructures are encapsulated in an insulating crucible, together with a small seed of a differing material. The system is heated to temperatures above the metal melting point, followed by cooling and metal crystallization. During the heating process, the metal and seed form a high-melting-point solid solution, which directs liquid epitaxial metal growth. High yield of single-crystal metal with different sizes is confirmed with electron backscatter diffraction images, after removing the insulating crucible. Unexpectedly, the metal microstructures crystallize with the [Formula: see text] direction normal to the plane of the film. This platform technology will enable the large-scale integration of high-performance plasmonic and electronic nanosystems.

  7. X-ray diffraction topography observations of the core in Bi12SiO20 crystals doped with Mn

    International Nuclear Information System (INIS)

    Milenov, T.I.; Botev, P.A.; Rafailov, P.M.; Gospodinov, M.M.

    2004-01-01

    The core region in a bismuth silicate--Bi 12 SiO 20 (BSO) crystal doped with Mn was examined by X-ray double-crystal diffraction topography. Specific features were observed in the topographies as lines and contrast differences that point to defects occupying the central part of the crystal. We discuss the nature of these defects and propose an explanation in terms of stacking faults arranged in different structures

  8. Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals

    Directory of Open Access Journals (Sweden)

    S. Anbu Chudar Azhagan

    2017-05-01

    Full Text Available In the present study, γ-glycine has been crystallized by using zinc acetate dihydrate as an additive for the first time by slow solvent evaporation method. The second harmonic conversion efficiency of γ-glycine crystal was determined using Kurtz and Perry powder technique and was found to be 3.66 times greater than that of standard inorganic material potassium dihydrogen phosphate (KDP. The analytical grade chemicals of glycine and zinc acetate dihydrate were taken in six different molar ratios: 1:0.2, 1:0.4, 1:0.6, 1:0.7, 1:0.8, and 1:0.9 respectively to find out the γ-polymorph of glycine. The lower molar concentration of zinc acetate yield only α-polymorph where as the higher molar concentration of zinc acetate inhibits the γ-polymorph of glycine which was confirmed by single crystal XRD and powder XRD studies. Inductively coupled plasma optical emission spectrometry (ICP-OES was carried out to quantify the concentration of zinc element in the grown glycine single crystals. The concentration of zinc element in the presence of grown γ-glycine single crystal is found to be 0.73 ppm. UV–Visible–NIR transmittance spectra were recorded for the samples to analyse the transparency in visible and near infrared region (NIR. The optical band gap Eg was estimated for γ-glycine single crystal using UV–Visible–NIR study. Functional groups present in the samples were identified by FTIR spectroscopic analysis. Differential scanning calorimetry technique was employed to determine the phase transition, thermal stability and melting point of the grown crystal.

  9. The growth of single crystals of Ni-W alloy under conditions of high temperature gradient

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Gorbenko, Yu.V.; Kovtun, G.P.; Ladygin, A.N.; Malykhin, D.G.; Rudycheva, T.Yu.; Sverdlov, V.Ya.; Shcherban', A.P.; Zhemanyuk, P.D.; Klochikhin, V.V.

    2004-01-01

    The structure of single crystals of the NV-4 nickel alloy containing 32-36 wt % W is investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. The degrees of structural perfection of the single crystals grown under different conditions are compared. The crystallization parameters providing growth of single crystals that have high structural perfection and can be successfully used as seeds for the growth of single-crystal blades are determined. Typical defects formed upon directional crystallization of single crystals of the Ni-W (35 wt %) alloy are examined. The studied defects are classified, and the factors responsible for the disturbance of the single-crystal structure are analyzed

  10. Optical Studies at High Pressure on Chromium-Doped Ordered Perovskite Crystals.

    Science.gov (United States)

    Rinzler, Andrew Gabriel

    Pressure dependent luminescence spectra were recorded on the chromium-doped elpasolite crystal Cs_2NaYCl _6:Cr^{3+} at ambient and near liquid nitrogen temperatures in a diamond anvil cell. The broad ^4T_{2g}to ^4A_{2g} fluorescence band of the intrinsically low crystal field compound exhibited a rapid blue shift with increasing pressure. The low temperature measurements yielded enhanced resolution of a ^2E_{g}to ^4A _{2g} phosphorescence appearing at the higher pressures which was interpreted in terms of vibrational modes of the chromium-hexahalide complex. The blue shift of the broad band and the appearance of the structured emission were anticipated by their previous observation in uncorrected luminescence spectra of the chromium doped elpasolites K_2NaGaF_6:Cr ^{3+} and K_2NaScF _6:Cr^{3+}. The spectra of the three crystals were corrected for the spectral response of the corresponding detection system and a transformation was applied to permit interpretation in terms of theoretical lineshape curves. Pressure dependent Raman spectra were recorded on the three crystals. Values of the ratio of the Gruneisen parameter and the bulk modulus were derived for the Raman -active modes. Frequencies of defect modes were determined as a function of pressure in a sample of the K _2NaScF_6:Cr^{3+} crystal with a higher dopant concentration. The photoluminescence lifetime of the chromium -doped chloride elpasolite was measured as a function of temperature, at elevated pressures. The onset of thermal quenching was shifted to higher temperatures with increasing pressure. This behavior was modeled by a pressure dependent activation energy having a rate of change of 1668 +/- 52 cm^{-1}/GPa. Several derivations and calculations were performed. These included: The extraction of pressure-dependent local compressibilities of the chromium-hexahalide complex for the three crystals and the development (within the LCSCC model) of expressions for the pressure derivatives of the effective

  11. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  12. Thermal and electrical transport properties of ? single crystals

    Science.gov (United States)

    Gamal, G. A.; Nassary, M. M.; Nagat, A. T.; Abou-Alwafa, A. M.

    1996-04-01

    Electrical conductivity, Hall effect and thermoelectric power measurements are made for the compound 0268-1242/11/4/009/img2. This compound, which is a semiconductor grown in a single-crystal form, is studied over a wide range of temperature from 150 to 375 K. The crystal is grown by a modification of the Bridgman method. The combination of the electrical and thermal measurements in the present investigation makes it possible to find various physical parameters and to reveal the general behaviour of this semiconductor.

  13. Ferroelectric phase transition in Ga2Te3 single crystals

    Science.gov (United States)

    Gamal, G. A.; Abdalrahman, M. M.; Ashraf, M. I.; Eman, H. J.

    2005-01-01

    Measurements of the electrical conductivity and Hall effect were carried out in a wide temperature range (200-500 K) for Ga2Te3 crystals. The crystals were grown in single crystalline form by making a modification of the travelling heater method technique. The measurements revealed unusual observations in the electric conductivity and Hall mobility indicating the presence of some type of phase transitions at about 430 K. So, ferroelectric behavior was examined for confirming the presence of second-order (ferroelectric) phase transition. An energy gap of 1.21 eV and depth of the impurity center of 0.11 eV were found.

  14. Growth and Characterization of Tl2S Single Crystals

    Science.gov (United States)

    Gamal, G. A.; Zied, M. Abou; Gerges, M. K.; Galal, E. M.

    2003-09-01

    Single crystals of the Tl2S compound were grown for the first time in our laboratory by a new crystal growth technique based on a modification of the traveling heater method technique (THM). This growth was performed in our laboratory. Electrical conductivity, Hall effect and thermoelectric power (TEP) measurements were carried out in the temperature range (200-575 K). Throughout these measurements, various physical parameters such as effective mass of charge carriers, carrier mobility, diffusion length, diffusion coefficient, and the relaxation time for both majority and minority carriers were found. In conjunction with electrical conductivity and charge carrier concentration, thermoelectric power is discussed.

  15. Al doping influence on crystal growth, structure and superconducting properties of Y(Ca)Ba2Cu3O7−y whiskers

    International Nuclear Information System (INIS)

    Calore, L.; Rahman Khan, M.M.; Cagliero, S.; Agostino, A.; Truccato, M.; Operti, L.

    2013-01-01

    Highlights: ► Optimization of YBCO whiskers synthesis by Al 2 O 3 addition. ► First complete crystal cell characterization of undoped YBCO whiskers. ► Characterization of the doped whiskers structural and electrical properties. ► New important evidences for the bottom-up growth mechanisms. - Abstract: We synthesized Al doped Y(Ca)Ba 2 Cu 3 O 7−y (YBCO) whiskers via the solid state reaction method. Al doping was systematically varied in the nominal cationic stoichiometry of YBa 2 Cu 3 CaTe 0.5 Al x O 7−y , with 0 ⩽ x ⩽ 0.5. The amount of the grown whiskers increases for nominal Al addition up to x = 0.05, decreasing for larger concentrations. The concentration of Al incorporated in the crystals (x′) is always higher with respect to the starting stoichiometry and shows a gradient along its length, with a higher amount at the tip regions. The single crystal diffraction analyses show an increasing tetragonal character with increasing x′, with a transition from the orthorhombic to the tetragonal system for x′ = 0.13, which is in agreement with the worsening of electrical transport properties and disappearing of superconductivity for x′ = 0.19.

  16. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv, E-mail: rajiv.manohar@gmail.com [Liquid Crystal Research Laboratory, Physics Department, University of Lucknow, Lucknow-226007 (India)

    2011-03-15

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  17. Trapezoidal diffraction grating beam splitters in single crystal diamond

    Science.gov (United States)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  18. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-04-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  19. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  20. Structural and magnetic ordering of CrNb3S6 single crystals grown by gas transport method

    Science.gov (United States)

    Borisenko, E. B.; Berezin, V. A.; Kolesnikov, N. N.; Gartman, V. K.; Matveev, D. V.; Shakhlevich, O. F.

    2017-07-01

    Paramagnetic layered semiconductor NbS2 doped with some transition metals can transform into ferromagnetic material. That is why such materials are promising candidates for spintronic devices. It is found that only at certain concentrations of a doping metal T crystallographic ordering is possible, which is essential for magnetic ordering of ternary compounds TNbS2. In particular, CrNb3S6 crystals are studied, which form almost completely ordered superstructure with intercalated Cr between NbS2 layers. The main difficulty in crystal growth is reaching stoichiometry of the compound. This problem is solved in the developed method of two-staged gas transport chemical reaction. This new approach provides growth of CrNb3S6 single crystals of several millimeters in diameter and 0.3-0.5 mm thickness. X-ray phase analysis (XRD) of powders is performed to identify all phases involved in synthesis and growth of the crystals. High frequency absorption in external periodic magnetic field as a function of temperature and intensity of magnetic field is used to estimate the temperature of ferromagnetic transition in CrNb3S6 single crystals. The Curie temperature is estimated as 115 K. Growth of CrNb3S6 crystals from vapor phase is studied in detail and full analysis of phase transitions during growth is given. It has been shown that using of high frequency absorption in the crystal provides reliable estimation of the point of ferromagnetic transition in this semiconductor. The authors are grateful to the Physical Science Department of Russian Academy of Sciences for financial support of the studies in the frameworks of the program "Physics of new materials and structures" (project no. 00-12-10).

  1. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  2. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    International Nuclear Information System (INIS)

    Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui

    2016-01-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)

  3. Crystal growth and scintillation properties of Ce and Eu doped LiSrAlF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akihiro, E-mail: yamaji-a@imr.tohoku.ac.jp [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, Shibuya 3-chome, Shibuya, Tokyo 150-8383 (Japan); Fujimoto, Yutaka; Yokota, Yuui [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Department of Material, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Pejchal, Jan [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague 6 (Czech Republic)

    2011-12-11

    Ce and Eu doped LiSrAlF{sub 6} (LiSAF) single crystals for the neutron detection with different dopant concentrations were grown by the micro-pulling-down method ({mu}-PD). In Ce:LiSAF, intense emission peaks due to Ce{sup 3+} 5d-4f transitions were observed at approximately 315 and 335 nm in photo- and {alpha}-ray induced radio-luminescence spectra. In case of Eu:LiSAFs, an intense emission peak at 375 nm due to Eu{sup 2+} 5d-4f transition was observed in the radio-luminescence spectra. The pulse height spectra and decay time profiles were measured under {sup 252}Cf neutron irradiation to examine the neutron response. The Ce 3% and Eu 2% doped LiSAF showed the highest light yield of 2860 ph/n with 19 ns main decay time component and 24,000 ph/n with 1610 ns.

  4. Dielectric Spectroscopy of Metal Nanoparticle Doped Liquid Crystal Displays ExhibitingFrequency Modulation Response

    Science.gov (United States)

    Kobayashi, Shunsuke; Miyama, Tomohiro; Nishida, Naoto; Sakai, Yoshio; Shiraki, Hiroyuki; Shiraishi, Yukihide; Toshima, Naoki

    2006-06-01

    Twisted nematic liquid crystal displays (TN-LCDs), doped with the nanoparticles of metal, such as Pd, Ag, or Ag-Pd, which are protected with ligand molecules, such as nematic liquid crystal, exhibit a frequency modulation (FM) electro-optical (EO) response with short response time of milliseconds (ms) or sub-ms order together with the ordinary rms voltage response. These devices are called FM/AM-TN-LCDs; they are distinct from the ordinary LCDs featured by the amplitude modulation (AM) response. The phenomena of the FM/AM LCDs may be attributed to the dielectric dispersion of a heterogeneous dielectric medium known as the Maxwell-Wagner effect. It is experimentally shown that the frequency range spreads from several tens hertz to several tens kilohertz and the spectrum is more or less centered about the dielectric relaxation frequency. We formulated a theory based on an equivalent circuit model to evaluate the dielectric relaxation frequency and the dielectric strengths; and we succeeded in explaining the dependence of the dielectric relaxation frequency on the concentration of nanoparticles and the their dielectric and electrical properties, whereas conventional theories based on electromagnetic theory are unable to explain this concentration dependence. This paper reports on the experimental results of the EO effects and the dielectric spectroscopy including the dielectric relaxation times and the dielectric strengths of nematic liquid crystal, 5CB (4-pentyl-4'-cyanobiphenyl), doped with the metal nanoparticles of Pd alone and Ag-Pd composite; and discusses how the observed dielectric relaxation frequency or dielectric relaxation time depend on the concentration of the doped nanoparticles and also their electrical and dielectric properties.

  5. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  6. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in [Department of Physics, Agni College of Technology, Thalambur, Chennai-603103 (India); Perumal, Rajesh Narayana [Department of Physics, SSN College of Engineering, Kalavakkam, Chennai-603110 (India)

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  7. Microstructural characterization of sulfur-doped Bi{sub 2}Te{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chaolun; Liu, Lin [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Li, Hui [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050 (China); Qian, Dong [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Liu, Canhua, E-mail: canhualiu@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Jia, Jinfeng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Chen, Jian, E-mail: puscj@mail.sysu.edu.cn [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-04-15

    In this study, the detailed microstructure of sulfur-doped Bi{sub 2}Te{sub 3} and the distribution of sulfur dopants were investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD result indicates that the interplanar distances of Bi{sub 2}Te{sub 3} are shortened after introducing sulfur dopants. HRTEM reveals that the unit cell lengths along [001, 100] are decreased as a result of the substitution of Te by smaller S atoms on the anion lattice. XRD and HRTEM analysis suggest that the distortion of the crystal lattice in Bi{sub 2}Te{sub 3} is induced by doping sulfur. High annular angler dark field scanning electron microscopy (HAADF-STEM) image shows obvious contrast variations in the Te atomic columns, indicating that Te sites were unevenly substituted by S dopants. Te columns with least contrast intensity correspond to the preferential occupation sites of S atoms. The replacement of Te atoms by S can be attributed to the evaporated sulfur powder in the gas reaction procedure. The present work is not only contributed to obtain a better understanding of the distribution of sulfur dopants introduced by gas reaction, but also can help explore the structural-property relationship of sulfur-doped Bi{sub 2}Te{sub 3}. - Highlights: • Sulfur-doped Bi{sub 2}Te{sub 3} was synthesized through modified Bridgeman method. • The introduction of S dopants results in shortening the lattice spacing of Bi{sub 2}Te{sub 3}. • HRTEM analysis indicates that S was doped through substituting Te atoms instead of incorporating interstitially. • HAADF-STEM analysis shows that Te columns with least intensity correspond to the preferential occupation sites of S.

  8. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  9. Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.

    Science.gov (United States)

    Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can

    2017-12-21

    We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.

  10. On the possibility of laser cooling of Cr3+ ions doped crystals

    Science.gov (United States)

    Feofilov, S. P.; Kulinkin, A. B.

    2018-01-01

    The fluorescence of Cr3+ ions doped insulating crystals was studied under the excitation in the long-wavelength tail of the absorption spectrum ("laser cooling regime"). The 4T2 - 4A2 and 2E - 4A2 fluorescence spectra with a dominant anti-Stokes component were observed. Though no optical refrigeration was detected in the presented experiments, the spectroscopic results suggest that electron-phonon bands of Cr3+ ions are of interest for further investigations from the point of view of achieving optical refrigeration.

  11. Frictional properties of single crystals HMX, RDX and PETN explosives.

    Science.gov (United States)

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Mutiple Czochralski growth of silicon crystals from a single crucible

    Science.gov (United States)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  13. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth

  14. Raman analysis of gold on WSe2 single crystal film

    International Nuclear Information System (INIS)

    Mukherjee, Bablu; Sun Leong, Wei; Li, Yida; Thong, John T L; Gong, Hao; Sun, Linfeng; Xiang Shen, Ze; Simsek, Ergun

    2015-01-01

    Synthesis and characterization of high-quality single-crystal tungsten diselenide (WSe 2 ) films on a highly insulating substrate is presented. We demonstrate for the first time that the presence of gold (Au) nanoparticles in the basal plane of a WSe 2 film can enhance its Raman scattering intensity. The experimentally observed enhancement ratio in the Raman signal correlates well with the simulated electric field intensity using both three-dimensional electromagnetic software and theoretical calculation considering layered medium coupled-dipole approximation (LM-CDA). This work serves as a guideline for the use of Au nanoparticles on WSe 2 single-crystal thin films for surface enhanced Raman scattering (SERS) applications in the future. (paper)

  15. Single crystal studies of platinum alloys for oxygen reduction electrodes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese

    the behavior of bulk single crystals, deposition of yttrium and gadolinium on a clean, annealed Pt(111) crystal were investigated in UHV. PtxY and PtxGd alloys terminated with a single atomic layer of platinum were formed after annealing to 500 °C in UHV. These alloys will be referred to as Y/Pt(111) and Gd.......89×1.89 structure, and the Gd/Pt(111) sample has formed a 1.90×1.90 structure compared to pure platinum. From the XPS measurements, it is most likely that alloys with the Pt5Y and Pt5Gd stoichiometry have been formed. The reactivity of the surfaces were probed using TPD. These measurements showed sharp desorption...

  16. Frequency dispersion of flexoelectricity in PMN-PT single crystal

    Science.gov (United States)

    Shu, Longlong; Wan, Meiqian; Jiang, Xiaoning; Li, Fei; Zhou, Naigen; Huang, Wenbin; Wang, Tong

    2017-01-01

    The mechanism of the recent discovered enhanced flexoelectricity in perovskites has brought about numerous controversies which still remain unclear. In this paper, we employed relaxor 0.68Pb(Mg2/3Nb1/3)O3 -0.32PbTiO3 (PMN-PT) single crystals for study. The observed flexoelectric coefficient in PMN-PT single crystal reaches up to 100 μ C /m , and in a relative low frequency range, exhibits an abnormal frequency dispersion phenomenon with a positive relationship with frequency. Such frequency dispersion regulation is different from the normal relaxation behavior that usually occur a time delay, and hence proves the flexoelectricity acting more like bulk effect rather than surface effect in this kind of materials.

  17. Frequency dispersion of flexoelectricity in PMN-PT single crystal

    Directory of Open Access Journals (Sweden)

    Longlong Shu

    2017-01-01

    Full Text Available The mechanism of the recent discovered enhanced flexoelectricity in perovskites has brought about numerous controversies which still remain unclear. In this paper, we employed relaxor 0.68Pb(Mg2/3Nb1/3O3 -0.32PbTiO3 (PMN-PT single crystals for study. The observed flexoelectric coefficient in PMN-PT single crystal reaches up to 100 μC/m, and in a relative low frequency range, exhibits an abnormal frequency dispersion phenomenon with a positive relationship with frequency. Such frequency dispersion regulation is different from the normal relaxation behavior that usually occur a time delay, and hence proves the flexoelectricity acting more like bulk effect rather than surface effect in this kind of materials.

  18. Mechanisms for tertiary creep of single crystal superalloy

    Science.gov (United States)

    Staroselsky, Alexander; Cassenti, Brice

    2008-12-01

    During the thermal-mechanical loading of high temperature single crystal turbine components, all three creep—stages: primary, secondary and tertiary, manifest themselves and, hence, none of them can be neglected. The development of a creep law that includes all three stages is especially important in the case of non-homogeneous thermal loading of the component where significant stress redistribution and relaxation will result. Thus, local creep analysis is crucial for proper design of damage tolerant airfoils. We have developed a crystallographic-based constitutive model and fully coupled it with damage kinetics. The model extends existing approaches for cyclic and thermal-cyclic loading of anisotropic elasto-viscoplastic deformation behavior and damage kinetics of single-crystal materials, allowing prediction of tertiary creep and failure initiation of high temperature components. Our damage model bridges the gap between dislocation dynamics and the continuum mechanics scales and can be used to represent tertiary as well as primary and secondary creep.

  19. Scintillation activity in an unirradiated single crystal of 3-hydroxyxanthine

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Alexander, C. Jr.

    1976-01-01

    A method of growing single crystals (approximately 4mm long) of 3-hydroxyxanthine is described. Observed scintillations occurring in an unirradiated single crystal of this potent oncogen as the temperature is lowered from 300 to 90 K are shown. It was found that these scintillations occur upon heating or cooling and do not diminish in activity as the number of heating and cooling cycles increase. It was found that a short duration u.v. exposure would terminate the scintillation activity and various attempts (such as annealing and pressure changes) to rejuvenate them were unsuccessful. With these observations in mind speculation is made concerning the mechanisms associated with the production of purine N-oxide derivatives. (U.K.)

  20. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.