WorldWideScience

Sample records for singlet-triplet energy difference

  1. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    Science.gov (United States)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  2. Triplet energy transfer and triplet exciton recycling in singlet fission sensitized organic heterojunctions

    Science.gov (United States)

    Hamid, Tasnuva; Yambem, Soniya D.; Crawford, Ross; Roberts, Jonathan; Pandey, Ajay K.

    2017-08-01

    Singlet exciton fission is a process where an excited singlet state splits into two triplets, thus leading to generation of multiple excitons per absorbed photon in organic semiconductors. Herein, we report a detailed exciton management approach for multiexciton harvesting over a broadband region of the solar spectrum in singlet fission sensitized organic photodiodes. Through systematic studies on the model cascade of pentacene/rubrene/C60, we found that efficient photocurrent generation from pentacene can still occur despite the presence of a >10nm thick interlayer of rubrene in between the pentacene/C60 heterojunction. Our results show that thin rubrene interlayers of thickness pentacene despite having a reasonably thick rubrene interlayer, that too with higher triplet energy (T1=1.12 eV) than pentacene (T1= 0.86 eV), makes its operation a rather interesting result. We discuss the role of rubrene interlayer film discontinuity, triplet exciton reflection from rubrene interlayer and triplet energy transfer from rubrene to pentacene layer followed by diffusion of triplet excitons through rubrene as plausible mechanisms that would enable triplet excitons from pentacene to generate significant photocurrent in a multilayer organic heterojunction.

  3. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    Science.gov (United States)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  4. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    Science.gov (United States)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  5. Singlet-triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

    Science.gov (United States)

    Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh

    2016-09-01

    Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.

  6. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  7. High orbital angular momentum states in H2 and D2. III. Singlet--triplet splittings, energy levels, and ionization potentials

    International Nuclear Information System (INIS)

    Jungen, C.; Dabrowski, I.; Herzberg, G.; Vervloet, M.

    1990-01-01

    The 5g--4 f Rydberg groups of H 2 and D 2 first studied in paper I have been obtained with a tenfold increase in resolution which made it possible to resolve the singlet from the triplet components. As a result we can now establish separately precise values for the energy levels in the triplet and singlet systems. For this purpose we have remeasured a number of transitions between the lower energy levels for which at present only old measurements are available. In particular we obtain accurate values for the energies of the lowest (stable) triplet state a 3 Σ + g relative to the singlet ground state, as well as of the ionization potential. The values obtained for the former are more accurate than obtained from singlet--triplet anticrossings while the latter are of similar accuracy as those reported recently by McCormack et al. [Phys. Rev. A 39, 2260 (1989)] and fit well within this accuracy with the most recent ab initio values

  8. Stability of singlet and triplet trions in carbon nanotubes

    International Nuclear Information System (INIS)

    Ronnow, Troels F.; Pedersen, Thomas G.; Cornean, Horia D.

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.6% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band gap energy.

  9. Stability of singlet and triplet trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.5% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band...

  10. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  11. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav

    2015-01-01

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  12. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Monishka Rita [Centre for Renewable Energy and Low Emission Technology, Charles Darwin University, Darwin, NT 0909 (Australia); Singh, Jai [School of Engineering and IT, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be {<=} 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; McCulloch, Iain; Rumbles, Garry; Johnson, Justin C.

    2017-01-01

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  15. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  16. Quantum Monte Carlo study of the singlet-triplet transition in ethylene

    International Nuclear Information System (INIS)

    El Akramine, Ouafae; Kollias, Alexander C.; Lester, William A. Jr.

    2003-01-01

    A theoretical study is reported of the transition between the ground state ( 1 A g ) and the lowest triplet state (1 3 B 1u ) of ethylene based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using DMC trial functions constructed from Hartree-Fock, complete active space self-consistent field and multi-configuration self-consistent field wave functions, we have computed the atomization energy and the heat of formation of both states, and adiabatic and vertical energy differences between these states using both all-electron and effective core potential DMC. The ground state atomization energy and heat of formation are found to agree with experiment to within the error bounds of the computation and experiment. Predictions by DMC of the triplet state atomization energy and heat of formation are presented. The adiabatic singlet-triplet energy difference is found to differ by 5 kcal/mol from the value obtained in a recent photodissociation experiment

  17. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    Science.gov (United States)

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies.

  18. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

    Science.gov (United States)

    Bryukhanov, V. V.; Minaev, B. M.; Tsibul'nikova, A. V.; Slezhkin, V. A.

    2015-07-01

    We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ{/g -}) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

  19. Singlet-triplet annihilation in single LHCII complexes

    NARCIS (Netherlands)

    Gruber, J.M.; Chmeliov, J.; Kruger, T.P.J.; Valkunas, L.; van Grondelle, R.

    2015-01-01

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching

  20. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence (TADF)

    KAUST Repository

    Sun, Haitao

    2015-07-09

    The thermally activated delayed fluorescence (TADF) mechanism has recently attracted much interest in the field of organic light-emitting diodes (OLEDs). TADF relies on the presence of a very small energy gap between the lowest singlet and triplet excited states. Here, we demonstrate that time-dependent density functional theory (TD-DFT) in the Tamm-Dancoff Approximation can be very successful in the calculations of the lowest singlet and triplet excitation energies and the corresponding singlet-triplet gap when using nonempirically tuned range-separated functionals. Such functionals provide very good estimates in a series of 17 molecules used in TADF-based OLED devices, with mean absolute deviations of 0.15 eV for the vertical singlet excitation energies and 0.09 eV [0.07 eV] for the adiabatic [vertical] singlet-triplet energy gaps as well as low relative errors and high correlation coefficients compared to the corresponding experimental values. They significantly outperform conventional functionals, a feature which is rationalized on the basis of the amount of exact-exchange included and the delocalization error. The present work provides a reliable theoretical tool for the prediction and development of novel TADF-based materials with low singlet-triplet energetic splittings.

  1. Explicit role of dynamical and nondynamical electron correlation on singlet-triplet splitting in carbenes

    International Nuclear Information System (INIS)

    Seal, Prasenjit; Chakrabarti, Swapan

    2007-01-01

    Density functional theoretical studies have been performed on carbene systems to determine the singlet-triplet splitting and also to explore the role of electron correlation. Using an approximate method of separation of dynamical and nondynamical correlation, it is found that dynamical and nondynamical electron correlation stabilizes the singlet state relative to the triplet for halo carbenes in both BLYP and B3LYP methods. Calculations performed on higher homologues of methylene suggest that beyond CH(CH 3 ), both the electron correlations have leveling effect in stabilizing the singlet state relative to the triplet. It has also been observed while dynamical electron correlation fails to provide any substantial degree of stabilization to the singlet states of higher homologues of methylene in B3LYP method, an opposite trend is observed for nondynamical counterpart. Among the larger systems studied (9-triptycyl)(α-naphthyl)-carbene has the highest stability of the triplet state whereas bis-imidazol-2-ylidenes has the most stable singlet state. Interestingly, the values of the dynamical electron correlation for each state of each system studied are different for the two methods used. The reason behind this apparent discrepancy lies in the fact that the coefficients of the LYP part in B3LYP and BLYP functionals are different

  2. Singlet and triplet states of trions in Zinc Selenide-based quantum wells probed by magnetic fields to 50 Tesla

    International Nuclear Information System (INIS)

    Astakhov, G.V.; Yakovlev, D.R.; Crooker, Scott A.; Barrick, Todd; Dzyubenko, A.B.; Sander, Thomas; Kochereshko, V.P.; Ossau, W.; Faschinger, W.; Waag, A.

    2002-01-01

    Singlet and triplet states of positively (X + ) and negatively (X - ) charged excitons in ZnSe-based quantum wells have been studied by means of photoluminescence in pulsed magnetic fields up to 50 T. The binding energy of the X - singlet state shows a monotonic increase with magnetic field with a tendency to saturation, while that of the X + slightly decreases. The triplet X + and X - states, being unbound at zero magnetic field, noticeably increase their binding energy in high magnetic fields. The experimental evidence for the interaction between the triplet and singlet states of lTions leading to their anticrossing in magnetic fields has been found.

  3. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    nuclear magnetic field control, as well as new techniques for calibrated measurement of the density matrix in a singlet-triplet qubit to entangle two adjacent single-triplet qubits. We fully characterize the generated entangled states and prove that they are, indeed, entangled. This work opens new opportunities to use qubits as sensors for improved metrological capabilities, as well as for improved quantum information processing. The singlet-triplet qubit is unique in that it can be used to probe two fundamentally different noise baths, which are important for a large variety of solid state qubits. More specifically, this work establishes the singlet-triplet qubit as a viable candidate for the building block of a scalable quantum information processor.

  4. Singlet and triplet states of trions in ZuSe-based quantum wells probed by magnetic fields to 50 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.); Barrick, T. (Todd); Dzyubenko, A. B.; Sander, Thomas; Kochereshko, V. P.; Ossau, W.; Faschinger, W.; Waag, A.

    2002-01-01

    Singlet and triplet states of positively (X{sup +}) and negatively (X{sup -}) charged excitons in ZnSe-based quantum wells have been studied by means of photoluminescence in pulsed magnetic fields up to 50 T. The binding energy of the X{sup -} singlet state shows a monotonic increase with magnetic field with a tendency to saturation, while that of the X{sup +} slightly decreases. The triplet X{sup +} and X{sup -} states, being unbound at zero magnetic field, noticeably increase their binding energy in high magnetic fields. The experimental evidence for the interaction between the triplet and singlet states of lTions leading to their anticrossing in magnetic fields has been found.

  5. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  6. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Theory of Transient Excited State Absorptions in Pentacene and Derivatives: Triplet-Triplet Biexciton versus Free Triplets.

    Science.gov (United States)

    Khan, Souratosh; Mazumdar, Sumit

    2017-12-07

    Recent experiments in several singlet-fission materials have found that the triplet-triplet biexciton either is the primary product of photoexcitation or has a much longer lifetime than believed until now. It thus becomes essential to determine the difference in the spectroscopic signatures of the bound triplet-triplet and free triplets to distinguish between them optically. We report calculations of excited state absorptions (ESAs) from the singlet and triplet excitons and from the triplet-triplet biexciton for a pentacene crystal with the herringbone structure and for nanocrystals of bis(triisopropylsilylethynyl) (TIPS)-pentacene. The triplet-triplet biexciton absorbs in both the visible and the near-infrared (NIR), while the monomer free triplet absorbs only in the visible. The intensity of the NIR absorption depends on the extent of intermolecular coupling, in agreement with observations in TIPS-pentacene nanocrystals. We predict additional weak ESA from the triplet-triplet but not from the triplet, at still lower energy.

  8. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    KAUST Repository

    Whited, Matthew T.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (k ST(1BDP→1Por) = 7.8×1011 s-1, kTT(3Por→3BDP) = 1.0×1010 s-1, kTT(3BDP→ 3Por) = 1.6×1010 s-1), leading to a long-lived equilibrated [3BDP][Por]=[BDP][3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae. © 2010 American Chemical Society.

  9. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    Science.gov (United States)

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  10. Does interchain stacking morphology contribute to the singlet-triplet interconversion dynamics in polymer heterojunctions?

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Eric R. [Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)], E-mail: bittner@uh.edu; Burghardt, Irene [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Friend, Richard H. [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2009-02-23

    Time-dependent density functional theory (TD-DFT) is used to examine the effect of stacking in a model semiconducting polymer hetrojunction system consisting of two co-facially stacked oligomers. We find that the excited electronic states are highly sensitive to the alignment of the monomer units of the two chains. In the system we examined, the exchange energy is nearly identical to both the and band off-set at the heterojunction and to the exciton binding energy. Our results indicate that the triplet excitonic states are nearly degenerate with the singlet exciplex states opening the possibility for the interconversion of singlet and triplet electronic states at the heterojunction interface via spin-orbit coupling localized on the heteroatoms. Using Russell-Saunders theory, we estimate this interconversion rate to be approximately 700-800 ps, roughly a 5-10-fold increase compared to isolated organic polymer chains.

  11. Singlet and triplet polaron relaxation in doubly charged self-assembled quantum dots

    International Nuclear Information System (INIS)

    Grange, T; Zibik, E A; Ferreira, R; Bastard, G; Carpenter, B A; Phillips, P J; Stehr, D; Winnerl, S; Helm, M; Steer, M J; Hopkinson, M; Cockburn, J W; Skolnick, M S; Wilson, L R

    2007-01-01

    Polaron relaxation in self-assembled InAs/GaAs quantum dot samples containing 2 electrons per dot is studied using far-infrared, time-resolved pump-probe measurements for transitions between the s-like ground and p-like first excited conduction band states. Spin-flip transitions between singlet and triplet states are observed experimentally in the decay of the absorption bleaching, which shows a clear biexponential dependence. The initial fast decay (∼30 ps) is associated with the singlet polaron decay, while the decay component with the longer time constant (∼5 ns) corresponds to the excited state triplet lifetime. The results are explained by considering the intrinsic Dresselhaus spin-orbit interaction, which induces spin-flip transitions by acoustic phonon emission or phonon anharmonicity. We have calculated the spin-flip decay times, and good agreement is obtained between the experiment and the simulation of the pump-probe signal. Our results demonstrate the importance of spin-mixing effects for intraband energy relaxation in InAs/GaAs quantum dots

  12. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    Science.gov (United States)

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  13. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence (TADF)

    KAUST Repository

    Sun, Haitao; Zhong, Cheng; Bredas, Jean-Luc

    2015-01-01

    excited states. Here, we demonstrate that time-dependent density functional theory (TD-DFT) in the Tamm-Dancoff Approximation can be very successful in the calculations of the lowest singlet and triplet excitation energies and the corresponding singlet

  14. On the Josephson effect between superconductors in singlet and triplet spin-pairing states

    International Nuclear Information System (INIS)

    Pals, J.A.; Haeringen, W. van

    1977-01-01

    An expression is derived for the Josephson current between two weakly coupled superconductors of which one or both have pairs in a spin-triplet state. It is shown that there can be no Josephson effect up to second order in the transition matrix elements between a superconductor with spin-triplet pairs and one with spin-singlet pairs if the coupling between the two superconductors can be described with a spin-conserving tunnel hamiltonian. This is shown to offer a possibility to investigate experimentally whether a particular superconductor has spin-triplet pairs by coupling it weakly to a well-known spin-singlet pairing superconductor. (Auth.)

  15. Superconductivity switch from spin-singlet to -triplet pairing in a topological superconducting junction

    Science.gov (United States)

    Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.

    2018-06-01

    The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.

  16. Impact of Dielectric Constant on the Singlet-Triplet Gap in Thermally Activated Delayed Fluorescence (TADF) Materials

    KAUST Repository

    Sun, Haitao; Hu, Zhubin; Zhong, Cheng; Chen, Xiankai; Sun, Zhenrong; Bredas, Jean-Luc

    2017-01-01

    Thermally activated delayed fluorescence (TADF) relies on the presence of a very small energy gap, ΔEST, between the lowest singlet and triplet excited states. ΔEST is thus a key factor in the molecular design of more efficient materials. However

  17. Impact of Dielectric Constant on the Singlet-Triplet Gap in Thermally Activated Delayed Fluorescence (TADF) Materials

    KAUST Repository

    Sun, Haitao

    2017-04-28

    Thermally activated delayed fluorescence (TADF) relies on the presence of a very small energy gap, ΔEST, between the lowest singlet and triplet excited states. ΔEST is thus a key factor in the molecular design of more efficient materials. However, its accurate theoretical estimation remains challenging, especially in the solid state due to the influence of polarization effects. We have quantitatively studied ΔEST as a function of dielectric constant, ε, for four representative organic molecules using the methodology we recently proposed at the Tamm-Dancoff approximation ωB97X level of theory, where the range-separation parameter ω is optimized with the polarizable continuum model. The results are found to be in very good agreement with experimental data. Importantly, the polarization effects can lead to a marked reduction in the ΔEST value, which is favorable for TADF applications. This ΔEST decrease in the solid state is related to the hybrid characters of the lowest singlet and triplet excited states, whose dominant contribution switches to charge-transfer-like with increasing ε. The present work provides a theoretical understanding on the influence of polarization effect on the singlet-triplet gap and confirms our methodology to be a reliable tool for the prediction and development of novel TADF materials.

  18. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    Science.gov (United States)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  19. Finite-bias conductance anomalies at a singlet-triplet crossing

    DEFF Research Database (Denmark)

    Stevanato, Chiara; Leijnse, Martin Christian; Flensberg, Karsten

    2012-01-01

    at the crossing. Here we show that, in addition, level crossings can give rise to a nearly vertical step-edge, ridge or even a Fano-like ridge-valley feature in the dierential conductance inside the relevant Coulomb diamond. We study a gate-tunable quasidegeneracy between singlet and triplet ground states...

  20. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    Science.gov (United States)

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. Copyright © 2016, American Association for the Advancement of Science.

  1. Benchmarking triplet-triplet annihilation photon upconversion schemes.

    Science.gov (United States)

    Gertsen, Anders S; Koerstz, Mads; Mikkelsen, Kurt V

    2018-05-07

    Photon upconversion facilitated by triplet-triplet annihilation in molecular systems is a promising path toward utilization of sub bandgap photons in photovoltaic devices. Prior to the challenging synthesis of new molecules, quantum chemical computations can aid the design process and provide suggestions for new and optimal systems. Here, we benchmark time-dependent density functional methods by their ability to describe relevant photophysical quantities of a range of different types of sensitizer/annihilator pairs to provide guidelines for future computational studies of potential new pairs. Using meta-GGA, hybrid, and range-separated hybrid functionals, we find that the hybrid functionals B3LYP and PBE0 (incorporating low to medium fractions of exact exchange of 20% and 25%, respectively) describe singlet absorptions the best, while triplet energetics are best described by the meta-GGA functionals M06-L and M11-L (incorporating no exact exchange), respectively. Furthermore, we find that the Tamm-Dancoff approximation of time-dependent density functional theory in general does not improve the description of neither singlet nor triplet energies of sensitizer/annihilator pairs.

  2. Photorelease of triplet and singlet oxygen from dioxygen complexes

    Czech Academy of Sciences Publication Activity Database

    Wagnerová, Dana Marie; Lang, Kamil

    2011-01-01

    Roč. 255, 23-24 (2011), s. 2904-2911 ISSN 0010-8545 R&D Projects: GA ČR GAP207/10/1447; GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40320502 Keywords : singlet oxygen * triplet oxygen * photochemical elimination * photorelease * Dioxygen complex Subject RIV: CA - Inorganic Chemistry Impact factor: 12.110, year: 2011

  3. Spin-selective coupling to Majorana zero modes in mixed singlet and triplet superconducting nanowires

    Science.gov (United States)

    Paul, Ganesh C.; Saha, Arijit; Das, Sourin

    2018-05-01

    We theoretically investigate the transport properties of a quasi-one-dimensional ferromagnet-superconductor junction where the superconductor consists of mixed singlet and triplet pairings. We show that the relative orientation of the Stoner field (h ˜) in the ferromagnetic lead and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero modes appear at each end of the superconducting part of the nanowire. When h ˜ is parallel or antiparallel to the d vector, transport gets completely blocked due to blockage in pairing while, when h ˜ and d are perpendicular to each other, the zero energy two terminal differential conductance spectra exhibits sharp transition from 4 e2/h to 2 e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating the spin-selective coupling of a pair of Majorana zero modes to the lead.

  4. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)

    2014-07-07

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  5. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    International Nuclear Information System (INIS)

    Ding, Baofu; Alameh, Kamal

    2014-01-01

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  6. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    Science.gov (United States)

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF

  7. Effects of Intermolecular Coupling on Excimer Formation and Singlet Fission

    Science.gov (United States)

    Mauck, Catherine McKay

    The development of organic photovoltaic devices benefits from understanding the fundamental processes underlying charge generation in thin films of organic semiconductors. This dissertation exploits model systems of pi-stacked chromophores such as perylene-3,4:9,10-bis(dicarboximide) (PDI) and 3,6-bis(aryl)diketopyrrolopyrrole (DPP) to study these processes using ultrafast electronic and vibrational spectroscopy. In particular, the characterization of covalent molecular dimers, thin films, and solution aggregates can reveal how supramolecular order affects photophysical properties. PDI and DPP are organic semiconductors that have been widely studied in organic photovoltaics, due to their strong visible absorption and excellent chemical stability. As solution-phase monomers, they are highly fluorescent, but in the thin film environment of photovoltaic devices these planar aromatic molecules couple to one another, stacking largely through pi-pi interactions. In self-assembled stacks of PDI, strong interchromophore coupling may disrupt charge separation through the formation of excimer states, preventing the generation of free carriers. By studying molecular dimers of PDI with different pi-stacked geometry, femtosecond visible pump mid-infrared probe spectroscopy allows direct observation of the structural dynamics associated with excimer state relaxation, showing that this low-energy state is primarily coupled to the core modes that shift as planarization and rotation lead to the most stable excimer geometry. PDI is also able to undergo singlet fission in thin films and aggregates. Singlet fission is the process in which a singlet excited state is downconverted into two triplet excitons, when the energy of its first singlet excited state is at least twice the energy of the lowest triplet state in an appropriately coupled molecular system. This spin-allowed, ultrafast process enables a theoretical yield of two charge carriers per incident photon, making it a

  8. Exciplex-Sensitized Triplet-Triplet Annihilation in Heterojunction Organic Thin-Film.

    Science.gov (United States)

    Lin, Bo-Yen; Easley, Connor J; Chen, Chia-Hsun; Tseng, Po-Chen; Lee, Ming-Zer; Sher, Pin-Hao; Wang, Juen-Kai; Chiu, Tien-Lung; Lin, Chi-Feng; Bardeen, Christopher J; Lee, Jiun-Haw

    2017-03-29

    A new concept for organic light-emitting diodes (OLEDs) is presented, which is called exciplex-sensitized triplet-triplet annihilation (ESTTA). The exciplex formed at the organic heterojunction interface of 4,4',4″-tris(N-3-methyphenyl-N-phenyl-amino) triphenylamine and 9,10-bis(2'-naphthyl) anthracene (ADN) is used to sensitize the triplet-triplet annihilation (TTA) process on the ADN molecules. This results in a turn-on voltage (2.2 V) of the blue emission from the OLED below the bandgap (2.9 eV). From the transient electroluminescence measurement, blue emission totally came from the TTA process without direct recombination on the ADN molecules. The blue singlet exciton from the TTA process can be quenched by energy transfer to the exciplex, as revealed by transient photoluminescence measurements. This can be prevented by blocking the energy transfer path and improving the radiative recombination rate of blue emission. With the insertion of the "triplet diffusion and singlet blocking (TDSB)" layer and the incorporation of the dopant material, an ESTTA-OLED with external quantum efficiency of 5.1% was achieved, which consists of yellow and blue emission coming from the exciplex and ESTTA process, respectively.

  9. Wavelength dependence of the efficiency of singlet oxygen generation upon photoexcitation of photosensitizers

    Directory of Open Access Journals (Sweden)

    Starukhin A.

    2017-01-01

    Full Text Available The dependence of the efficiency of singlet oxygen (1Δg generation upon excitation of photosensitizer at different wavelength was observed for several derivatives of palladium porphyrin in carbon tetrachloride. The efficiency of singlet oxygen generation upon excitation in a blue region of the spectrum (Soret band exceeds by several times the efficiency at excitation in the red spectral region (Q band. The effect of enhancement of singlet oxygen generation upon CW photoexcitation to Soret band of photosensitizer may be explained by influence of high laying triplet states of a donor molecule on the triplet-triplet energy transfer.

  10. Does the concept of Clar's aromatic sextet work for dicationic forms of polycyclic aromatic hydrocarbons?--testing the model against charged systems in singlet and triplet states.

    Science.gov (United States)

    Dominikowska, Justyna; Palusiak, Marcin

    2011-07-07

    The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included. This journal is © the Owner Societies 2011

  11. Bodipy–C60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer† †Electronic supplementary information (ESI) available: Syntheses, structure characterization data, and UV/vis absorption and emission spectra. See DOI: 10.1039/c4sc03865g

    Science.gov (United States)

    Guo, Song; Xu, Liang; Xu, Kejing; Küçüköz, Betül; Karatay, Ahmet; Yaglioglu, Halime Gul; Hayvali, Mustafa; Elmali, Ayhan

    2015-01-01

    Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives (B-1, B-2 and B-3, which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C60 was used as the complementary hydrogen bonding module (C-1), in which the C60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references (B-1-Me, B-2-Me and B-3-Me), which are unable to form strong H-bonds with C-1. Triple H-bonds are formed between each Bodipy antenna (B-1, B-2 and B-3) and the C60 module (C-1). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C60 module (for assembly B-1·C-1), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1). Intra-assembly forward–backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet–triplet annihilation upconversion. PMID:29218142

  12. A spin exchange model for singlet fission

    Science.gov (United States)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  13. Statistical equilibrium in cometary C2. IV. A 10 level model including singlet-triplet transitions

    International Nuclear Information System (INIS)

    Krishna Swamy, K.S.; O'dell, C.R.; Rice Univ., Houston, TX)

    1987-01-01

    Resonance fluorescence theory was used to calculate the population distribution in the energy states of the C2 molecule in comets. Ten electronic states, each with 14 vibrational states, were used in the calculations. These new calculations differ from earlier work in terms of additional electronic levels and the role of singlet-triplet transitions between the b and X levels. Since transition moments are not known, calculations are made of observable flux ratios for an array of possible values. Comparison with existing observations indicates that the a-X transition is very important, and there is marginal indication that the b-X transition is present. Swan band sequence flux ratios at large heliocentric distance are needed, as are accurate Mulliken/Swan and Phillips/Ballik-Ramsay (1963) observations. 29 references

  14. Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers

    Science.gov (United States)

    Naqvi, K. Razi; Melø, T. B.; Raju, B. Bangar; Jávorfi, Tamás; Simidjiev, Ilian; Garab, Gyözö

    1997-12-01

    Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/ b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (Δ A) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet-triplet absorption band (Δ A>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chl a) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chl a, is shown to cause a parallel decline in the triplet formation yield of Chl a; on the other hand, the efficiency (100%) of Chl a-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chl a by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.

  15. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    Science.gov (United States)

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  16. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    Directory of Open Access Journals (Sweden)

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  17. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  18. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, Daniel; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg (Germany); Rehn, Dirk R. [Departments of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2016-08-28

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.

  19. Kinetic and mechanisms of methanimine reactions with singlet and triplet molecular oxygen: Substituent and catalyst effects

    Science.gov (United States)

    Asgharzadeh, Somaie; Vahedpour, Morteza

    2018-06-01

    Methanimine reaction with O2 on singlet and triplet potential energy surfaces are investigated using B3PW91, M06-2X, MP2 and CCSD(T) methods. Thermodynamic and kinetic parameters are calculated at M06-2X method. The most favorable channel involves H-abstraction of CH2NH+O2 to the formation of HCN + H2O2 products via low level energy barrier. The catalytic effect of water molecule on HCN + H2O2 products pathway are investigated. Result shows that contribution of water molecule using complex formation with methanimine can decreases barrier energy of transition state and the reaction rate increases. Also, substituent effect of fluorine atom as deactivating group are investigated on the main reaction pathway.

  20. Photoexcited singlet and triplet states of a UV absorber ethylhexyl methoxycrylene.

    Science.gov (United States)

    Kikuchi, Azusa; Hata, Yuki; Kumasaka, Ryo; Nanbu, Yuichi; Yagi, Mikio

    2013-01-01

    The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR B(min) signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the (3)ππ* character in the T1 state. The zero-field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm(-1). © 2012 The Authors Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  1. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  2. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  3. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    OpenAIRE

    Ho, Junming; Kish, Elizabeth; Méndez-Hernández, Dalvin D.; WongCarter, Katherine; Pillai, Smitha; Kodis, Gerdenis; Niklas, Jens; Poluektov, Oleg G.; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; Batista, Victor S.; Robert, Bruno

    2017-01-01

    Rapid chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) in photosynthetic organisms is crucial to photoprotection from singlet oxygen. Photosynthesis reengineered for increased efficiency will result in increased oxygen levels in the cells, and the need to ensure adequately rapid T-TET will arise. Using a combination of theoretical and experimental studies on artificial and natural carotenoid–chlorophyll complexes, we have identified spectroscopic markers indicative of specifi...

  4. A simplified approach for the coupling of excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bo [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Gao Fang, E-mail: gaofang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Liang Wanzhen [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-02-06

    Highlights: Black-Right-Pointing-Pointer We propose a simple method to calculate the coupling of singlet-to-singlet and triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer. Black-Right-Pointing-Pointer Effect from the intermolecular charge-transfer states dorminates in triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer This method can be expanded by including correlated wavefunctions. - Abstract: A simplified approach for computing the electronic coupling of nonradiative excitation-energy transfer is proposed by following Scholes et al.'s construction on the initial and final states [G.D. Scholes, R.D. Harcourt, K.P. Ghiggino, J. Chem. Phys. 102 (1995) 9574]. The simplification is realized through defining a set of orthogonalized localized MOs, which include the polarization effect of the charge densities. The method allows calculating the coupling of both the singlet-to-singlet and triplet-to-triplet energy transfer. Numerical tests are performed for a few of dimers with different intermolecular orientations, and the results demonstrate that Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer whereas in the case of triplet-to-triplet energy transfer, the dominant effect is arisen from the intermolecular charge-transfer states. The present application is on the Hartree-Fock level. However, the correlated wavefunctions which are normally expanded in terms of the determinant wavefunctions can be employed in the similar way.

  5. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  6. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  7. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  8. Singlet-to-triplet ratio in the deuteron breakup reaction pd → pnp at 585 MeV

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.; Komarov, V.I.; Rathmann, F.; Seyfarth, H.

    2001-01-01

    Available experimental data on the exclusive pd → pnp reaction at 585 MeV show a narrow peak in the proton-neutron final-state interaction region. It was supposed previously, on the basis of a phenomenological analysis of the shape of this peak, that the final spin-singlet pn state provided about one third of the observed cross section. By comparing the absolute value of the measured cross section with that of pd elastic scattering using the Faeldt-Wilkin extrapolation theorem, it is shown here that the pd → pnp data can be explained mainly by the spin-triplet final state with a singlet admixture of a few percent. The smallness of the singlet contribution is compatible with existing pN → pNπ data and the one-pion exchange mechanism of the pd → pnp reaction

  9. Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations.

    Science.gov (United States)

    Cupellini, Lorenzo; Jurinovich, Sandro; Prandi, Ingrid G; Caprasecca, Stefano; Mennucci, Benedetta

    2016-04-28

    Photosynthetic organisms employ several photoprotection strategies to avoid damage due to the excess energy in high light conditions. Among these, quenching of triplet chlorophylls by neighboring carotenoids (Cars) is fundamental in preventing the formation of singlet oxygen. Cars are able to accept the triplets from chlorophylls by triplet energy transfer (TET). We have here studied TET rates in CP29, a minor light-harvesting complex (LHC) of the Photosystem II in plants. A fully atomistic strategy combining classical molecular dynamics of the LHC in its natural environment with a hybrid time-dependent density functional theory/polarizable MM description of the TET is used. We find that the structural fluctuations of the pigment-protein complex can largely enhance the transfer rates with respect to those predicted using the crystal structure, reducing the triplet quenching times in the subnanosecond scale. These findings add a new perspective for the interpretation of the photoprotection function and its relation with structural motions of the LHC.

  10. MC-PDFT can calculate singlet-triplet splittings of organic diradicals

    Science.gov (United States)

    Stoneburner, Samuel J.; Truhlar, Donald G.; Gagliardi, Laura

    2018-02-01

    The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT), and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 when applied to larger active spaces, and this illustrates the promise of this method for larger diradical organic systems.

  11. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well...... the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated...... as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work...

  12. Triplet formation in the ion recombination in irradiated liquids

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Tachiya, M.; Hummel, A.

    1990-01-01

    The formation of singlet and triplet excited stages in the ion recombination in groups of oppositely charged ions (or positive ions and electrons) in nonpolar liquids, as occurs in the tracks of high energy electrons, is considered. Theoretical studies on triplet formation in groups of ion pairs have thus far concentrated on the case where recombination of the negative ions with any of the positive ions in the group is equally probable (random recombination). In this paper the probability for geminate recombination (electron and parent positive ion) vs cross-recombination (an electron with a positive ion other than its parent ion) in multiple ion pair groups is calculated by computer simulation and the effect of the initial spatial configuration of the charged species is investigated. It is also shown explicitly that the probability for singlet formation as a result of cross recombination is equal to 1/4, when spin relaxation by magnetic interaction with the medium and by exchange interaction can be neglected. The effect of the preferential recombination on the singlet formation probability is illustrated and recent experimental results on singlet to triplet ratios are discussed. (author)

  13. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  14. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    Science.gov (United States)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  15. Absence of Intramolecular Singlet Fission in Pentacene-Perylenediimide Heterodimers: The Role of Charge Transfer State.

    Science.gov (United States)

    Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing

    2017-11-16

    A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

  16. Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model

    Science.gov (United States)

    Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.

    2017-08-01

    We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.

  17. The triplet excited state of Bodipy: formation, modulation and application.

    Science.gov (United States)

    Zhao, Jianzhang; Xu, Kejing; Yang, Wenbo; Wang, Zhijia; Zhong, Fangfang

    2015-12-21

    Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet-triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were

  18. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda; Winkel, Russell W.; Alarousu, Erkki; Mohammed, Omar F.; Schanze, Kirk S.

    2016-01-01

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  19. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  20. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  1. Singlet fission efficiency in tetracene-based organic solar cells

    International Nuclear Information System (INIS)

    Wu, Tony C.; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A.

    2014-01-01

    Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells

  2. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  3. Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties.

    Science.gov (United States)

    Freundorfer, Katrin; Kats, Daniel; Korona, Tatiana; Schütz, Martin

    2010-12-28

    A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.

  4. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A., E-mail: baldo@mit.edu [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  5. Magnetically Bistable Nitrenes: Matrix Isolation of Furoylnitrenes in Both Singlet and Triplet States and Triplet 3-Furylnitrene.

    Science.gov (United States)

    Feng, Ruijuan; Lu, Yan; Deng, Guohai; Xu, Jian; Wu, Zhuang; Li, Hongmin; Liu, Qian; Kadowaki, Norito; Abe, Manabu; Zeng, Xiaoqing

    2018-01-10

    Two simple acylnitrenes, 2-furoylnitrene (2) and 3-furoylnitrene (6), were generated through 266 nm laser photolysis of the corresponding azides. Both are magnetically bistable in cryogenic matrices, as evidenced by the direct observation of the closed-shell singlet state with IR spectroscopy in solid Ne, Ar, Kr, Xe, and N 2 matrices (3-40 K) and the triplet state in toluene (10 K) with EPR spectroscopy ( 3 2: |D/hc| = 1.48 cm -1 and |E/hc| = 0.029 cm -1 ; 3 6: |D/hc| = 1.39 cm -1 and |E/hc|c = 0.039 cm -1 ). Subsequent visible-light and UV laser irradiations led to the formation of furyl isocyanates (3 and 7) and ring-opening product 3-cyanoacrolein (9-E and 9-Z), respectively, in which the elusive 3-furylnitrene ( 3 8) was also identified by IR and EPR spectroscopy (|D/hc| = 1.12 cm -1 and |E/hc| = 0.005 cm -1 ).

  6. Trap-induced photoconductivity in singlet fission pentacene diodes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing; Luan, Lin [WuHan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wu Han 430074 (China)

    2014-07-21

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  7. Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd3+ Luminescence by Dansyl and Lissamine Dyes

    NARCIS (Netherlands)

    Hebbink, G.A.; Klink, S.I.; Grave, Lennart; Oude Alink, Patrick G.B.; van Veggel, F.C.J.M.

    2002-01-01

    general, sensitization of lanthanide(III) ions by organic sensitizers is regarded to take place via the triplet state of the sensitizers. Herein, we show that in dansyl- and lissamine-functionalized Nd3+ complexes energy transfer occurs from the singlet state of the sensitizers to the Nd3+ center.

  8. Intramolecular singlet-singlet energy transfer in antenna-substituted azoalkanes.

    Science.gov (United States)

    Pischel, Uwe; Huang, Fang; Nau, Werner M

    2004-03-01

    Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet-singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (-142 kJ mol(-1) for DPSO versus-67 kJ mol(-1) for DNSO).

  9. Acceleration of Singlet Fission in an Aza-Derivative of TIPS-Pentacene.

    Science.gov (United States)

    Herz, Julia; Buckup, Tiago; Paulus, Fabian; Engelhart, Jens; Bunz, Uwe H F; Motzkus, Marcus

    2014-07-17

    The influence of the carbon to nitrogen substitution on the photoinduced dynamics of TIPS-pentacene was investigated by ultrafast transient absorption measurements on spin-coated thin films in the visible and in the near-infrared spectral region. A global target analysis was performed to provide a detailed picture of the excited-state dynamics. We found that the chemical modification has a high impact on the triplet formation and leads to shorter dynamics; hence it speeds up the singlet fission process. A faster relaxation from the singlet into the triplet manifold implies a higher efficiency because other relaxation channels are avoided. The air-stable aza-derivatives have the potential to exceed the energy conversion efficiency of TIPS-pentacene.

  10. cyclo-addition reaction of triplet carbonyl compounds to substituted ...

    Indian Academy of Sciences (India)

    Unknown

    cited state energy of the olefin must be higher than that of the ketone so that ... the first singlet and triplet1,3 (n, π*) excited state of the carbonyl compounds.3,4 ... of the oxetane via carbon–carbon and carbon–oxygen attacks. They found the ...

  11. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    Science.gov (United States)

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  12. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    Science.gov (United States)

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  13. Long-Lived Correlated Triplet Pairs in a π-Stacked Crystalline Pentacene Derivative.

    Science.gov (United States)

    Folie, Brendan D; Haber, Jonah B; Refaely-Abramson, Sivan; Neaton, Jeffrey B; Ginsberg, Naomi S

    2018-02-14

    Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.

  14. Singlet fission in pentacene dimers

    Science.gov (United States)

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  15. Accurate simulation of geometry, singlet-singlet and triplet-singlet excitation of cyclometalated iridium(III) complex.

    Science.gov (United States)

    Wang, Jian; Bai, Fu-Quan; Xia, Bao-Hui; Zhang, Hong-Xing; Cui, Tian

    2014-03-01

    In the current contribution, we present a critical study of the theoretical protocol used for the determination of the electronic spectra properties of luminescent cyclometalated iridium(III) complex, [Ir(III)(ppy)₂H₂dcbpy]⁺ (where, ppy = 2-phenylpyridine, H₂dcbpy = 2,2'-bipyridine-4,4'-dicarboxylic acid), considered as a representative example of the various problems related to the prediction of electronic spectra of transition metal complex. The choice of the exchange-correlation functional is crucial for the validity of the conclusions that would be drawn from the numerical results. The influence of the exchange-correlation on geometry parameter and absorption/emission band, the role of solvent effects on time-dependent density function theory (TD-DFT) calculations, as well as the importance of the chosen proper procedure to optimize triplet excited geometry, have been thus examined in detail. From the obtained results, some general conclusions and guidelines are presented: i) PBE0 functional is the most accurate in prediction of ground state geometry; ii) the well-established B3LYP, B3P86, PBE0, and X3LYP have similar accuracy in calculation of absorption spectrum; and iii) the hybrid approach TD-DFT//CIS gives out excellent agreement in the evaluation of triplet excitation energy.

  16. Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Steven T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Granger, Devin B. [University of Kentucky; Anthony, John E. [University of Kentucky

    2018-02-26

    We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

  17. Can Baird's and Clar's Rules Combined Explain Triplet State Energies of Polycyclic Conjugated Hydrocarbons with Fused 4nπ- and (4n + 2)π-Rings?

    Science.gov (United States)

    Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik

    2017-06-16

    Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.

  18. Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing

    KAUST Repository

    Sutton, Christopher

    2017-03-13

    We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.

  19. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  20. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    Science.gov (United States)

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  1. Electron Transfer from Triplet State of TIPS-Pentacene Generated by Singlet Fission Processes to CH3NH3PbI3 Perovskite.

    Science.gov (United States)

    Lee, Sangsu; Hwang, Daesub; Jung, Seok Il; Kim, Dongho

    2017-02-16

    To reveal the applicability of singlet fission processes in perovskite solar cell, we investigated electron transfer from TIPS-pentacene to CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite in film phase. Through the observation of the shorter fluorescence lifetime in TIPS-pentacene/MAPbI 3 perovskite bilayer film (5 ns) compared with pristine MAPbI 3 perovskite film (20 ns), we verified electron-transfer processes between TIPS-pentacene and MAPbI 3 perovskite. Furthermore, the observation of singlet fission processes, a faster decay rate, TIPS-pentacene cations, and the analysis of kinetic profiles of the intensity ratio between 500 and 525 nm in the TA spectra of the TIPS-pentacene/MAPbI 3 perovskite bilayer film indicate that electron transfer occurs from triplet state of TIPS-pentacene generated by singlet fission processes to MAPbI 3 perovskite conduction band. We believe that our results can provide useful information on the design of solar cells sensitized by singlet fission processes and pave the way for new types of perovskite solar cells.

  2. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    Science.gov (United States)

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  3. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons?

    Science.gov (United States)

    Jankus, Vygintas; Chiang, Chien-Jung; Dias, Fernando; Monkman, Andrew P

    2013-03-13

    Simple trilayer, deep blue, fluorescent exciplex organic light-emitting diodes (OLEDs) are reported. These OLEDs emit from an exciplex state formed between the highest occupied molecular orbital (HOMO) of N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and lowest unoccupied molecular orbital (LUMO) of 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBi) and the NPB singlet manifold, yielding 2.7% external quantum efficiency at 450 nm. It is shown that the majority of the delayed emission in electroluminescence arises from P-type triplet fusion at NPB sites not E-type reverse intersystem crossing because of the presence of the NPB triplet state acting as a deep trap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Savoie, Huguette; Flanagan, Keith J.; Sy, Cindy; Sitte, Elisabeth; Telitchko, Maxime; Laquai, Fré dé ric; Boyle, Ross W.; Senge, Mathias O.

    2017-01-01

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  5. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  6. Is the Chemical Strategy for Imbuing "Polyene" Character in Diketopyrrolopyrrole-Based Chromophores Sufficient for Singlet Fission?

    Science.gov (United States)

    Mukhopadhyay, Tushita; Musser, Andrew J; Puttaraju, Boregowda; Dhar, Joydeep; Friend, Richard H; Patil, Satish

    2017-03-02

    In this work, we have rationally designed and synthesized a novel thiophene-diketopyrrolopyrrole (TDPP)-vinyl-based dimer. We have investigated the optical and electronic properties and have probed the photophysical dynamics using transient absorption to investigate the possibility of singlet exciton fission. These revealed extremely rapid decay to the ground state (TDPP-V-TDPP under direct photoexcitation. This may be a consequence of significant singlet stabilization in the dimer, bringing it below the energy needed to form two triplets. Our studies on this model compound set valuable lessons for design of novel triplet-forming materials and highlight the need for more broadly applicable design principles.

  7. Proximity effects and Josephson currents in ferromagnet. Spin-triplet superconductors junctions

    International Nuclear Information System (INIS)

    Terrade, Damien

    2015-01-01

    Spin-triplet superconductivity, first attached to the description of 3 He, is now generally considered to also occur in heavy-fermions compounds and in perovskite ruthenium oxide Sr 2 RuO 4 . The latter material is especially interesting since many experiments show strong evidences for a unitary chiral spin-triplet state. Moreover, the recent fabrication of thin heterostructures made of ferromagnetic SrRuO 3 on the top of Sr 2 RuO 4 strongly encourages new theoretical studies on the interplay between spin-triplet superconductor and ferromagnet in similar fashion to spin-singlet superconductors. Using an extended tight-binding Hamiltonian to model the superconductor, we discuss in this thesis the specific proximity effects of such interface by solving self-consistently the Bogoliubov-De Gennes equations on two- and three-dimensional lattices in the ballistic limit. We obtain the spatial profile of the superconducting order parameters at the interface as well as the spin-polarisation and the current across the Josephson junctions. In contrast to heterostructures made of spin-singlet superconductor, we show that the physical properties at the interface are not only controlled by the strength of the magnetization inside the ferromagnet but also by its orientation due to the existence of a finite pair spin projection of the spin-triplet Cooper pairs. We analyse in the first part the spin-polarisation and the Gibbs free energy at the three-dimensional ferromagnet-chiral spin-triplet superconductor interface. Then, the second part of the thesis is dedicated to the study of the Josephson junctions made of a chiral spin-triplet superconductor and a ferromagnetic barrier. More precisely, we analyse the existence of 0-π state transitions in two- and three-dimensional junctions with respect to the strength and the orientation of the magnetization. Finally, we study the proximity effects at the interface of helical spin-triplet superconductors. They differ from the chiral

  8. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach

    Science.gov (United States)

    Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    2017-12-01

    We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

  9. A pulse radiolysis based singlet oxygen luminescence facility

    International Nuclear Information System (INIS)

    Gorman, A.A.; Hamblett, I.; Land, E.J.

    1989-01-01

    In this paper the authors report the first successful time-resolved detection of singlet oxygen, O 2 ( 1 Δ g ), luminescence using the pulse radiolysis technique. The use of this technique (a) to produce high concentrations of solute (S) triplet states in aerated benzene (B) via a combination of channels 1-4 and (b) to subsequently form O 2 ( 1 Δ g ) via channel 5 has already been described. The method complements direct pulsed laser excitation of S in that formation of 3 S*, and therefore of O 2 ( 1 Δ g ), is still efficient in those instances where intersystem crossing (channel 4) is unimportant. In the latter situation a laser-based experiment would require an additional light-absorbing sensitizer which could subsequently transfer triplet energy to high concentrations of S. Such experiments, certainly of a quantitative nature, are usually doomed to failure because of competitive light absorption problems. No such problems exist with pulse radiolysis, and the high available triplet energy of 3 B* (84 kcal mol -1 ) ensures that virtually any solute of interest, in the O 2 ( 1 Δ g ) context, will be efficiently promoted to its triplet state

  10. The triplet excited state of bilirubin

    International Nuclear Information System (INIS)

    Land, E.J.

    1976-01-01

    Pulse radiolysis of benzene solutions of 40 μM bilirubin alone or with 0.1 M biphenyl has yielded evidence for the formation of the triplet excited state of bilirubin. Measurements were made of a number of properties, including the absorption spectrum (lambdasub(max)500nm), lifetime 9μs), extinction coefficient (8800 M -1 cm -1 ), energy level (approximately 150 kJ mol -1 ) and the rate of quenching by oxygen (rate constant, 8.2 x 10 8 M -1 s -1 ). An upper limit of 0.1 has also been obtained for the singlet to triplet crossover efficiency of bilirubin following excitation by 353 nm radiation. Consideration is given to the relevance of these data to the mechanism of bilirubin photo-destruction, both in vivo and in vitro. (U.K.)

  11. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br).

    Science.gov (United States)

    Kassaee, Mohamad Zaman; Ashenagar, Samaneh

    2018-02-06

    In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1  = H, Li, Na, K; M 2  = Be, Mg, Ca; M 3  = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3  = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3  = Cl or Br). Triplets with M 1  = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1  = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3  = Cl behave similarly to those with M 3  = Br. Conversely, triplets with M 3  = H show similar stabilities and linearities to those with M 3  = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.

  12. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Bajaj, P N; Sapre, A V; Mittal, J P; Mukherjee, T [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-10-15

    Singlet molecular oxygen ({sup 1}O{sub 2}) is an excited state of molecular oxygen, having antiparallel spin in the same {pi} antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  13. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  14. Spin-selective depopulation of triplet sublevels in rapidly rotating triplet exciplexes detected by a heavy-atom-induced magnetic field effect

    OpenAIRE

    Steiner, Ulrich

    1980-01-01

    A mechanism is presented explaining a reported heavy-atom-induced magnetic field effect as a consequence of non-equilibrium triplet sublevel population in an intermediate exciplex. The triplet exciplex spin polarization is induced by sub-level-selective intersystem crossing from the exciplex triplet to its singlet ground state and is decreased by an external magnetic field. The theory accounts almost quantitatively for the observed influence of magnetic field strength and heavy-atom substitue...

  15. Classical and quantum 'EPR'-spin correlations in the triplet state

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1987-01-01

    Quantum correlations and joint probabilities in the triplet state as well as the correlations of components of two correlated classical spin vectors, are evaluated. Correlations in the states with |S tot z |=1 are different from correlations in the state with S tot z =0 which may serve to distinguish different states of the triplet. As in the singlet case, we can reproduce quantum correlations by correlated classical spin vectors which also provide a precision of the notion of ''parallel spins''. Triplet state correlations could in principle be measured, for example, in the decay reaction J/ψ → e + e - for which there is a sufficiently large branching ratio. (author). 12 refs

  16. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering

    Science.gov (United States)

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-01

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  17. Unified model for singlet fission within a non-conjugated covalent pentacene dimer

    Science.gov (United States)

    Basel, Bettina S.; Zirzlmeier, Johannes; Hetzer, Constantin; Phelan, Brian T.; Krzyaniak, Matthew D.; Reddy, S. Rajagopala; Coto, Pedro B.; Horwitz, Noah E.; Young, Ryan M.; White, Fraser J.; Hampel, Frank; Clark, Timothy; Thoss, Michael; Tykwinski, Rik R.; Wasielewski, Michael R.; Guldi, Dirk M.

    2017-01-01

    When molecular dimers, crystalline films or molecular aggregates absorb a photon to produce a singlet exciton, spin-allowed singlet fission may produce two triplet excitons that can be used to generate two electron–hole pairs, leading to a predicted ∼50% enhancement in maximum solar cell performance. The singlet fission mechanism is still not well understood. Here we report on the use of time-resolved optical and electron paramagnetic resonance spectroscopy to probe singlet fission in a pentacene dimer linked by a non-conjugated spacer. We observe the key intermediates in the singlet fission process, including the formation and decay of a quintet state that precedes formation of the pentacene triplet excitons. Using these combined data, we develop a single kinetic model that describes the data over seven temporal orders of magnitude both at room and cryogenic temperatures. PMID:28516916

  18. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    Directory of Open Access Journals (Sweden)

    Vinay Pathak

    Full Text Available Singlet oxygen (1O2 is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII. Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  19. Heavy Atom Substituents as Molecular Probes for Solvent Effects on the Dynamics of Short-lived Triplet Exciplexes

    OpenAIRE

    Winter, Gerhard; Steiner, Ulrich

    1980-01-01

    The influence of heavy atom substituents (Br, I) in the electron donor aniline on the electron transfer reaction with thiopyronine triplet is investigated by flash spectroscopy in solvents of different viscosity and polarity. Triplet quenching constants and radical yields are determined. The results are analysed in terms of decay constants of an intermediate triplet exciplex where the heavy atom substituents significantly enhance the intersystem crossing process leading to singlet ground stat...

  20. Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing

    KAUST Repository

    Chen, Xiankai; Wang, Tonghui; Bredas, Jean-Luc

    2017-01-01

    In the most efficient solar cells based on blends of a conjugated polymer (electron donor) and a fullerene derivative (electron acceptor),ultrafast formation of charge-transfer (CT) electronic states at the donor-acceptor interfaces and efficient separation of these CT states into free charges, lead to internal quantum efficiencies near 100%. However, there occur substantial energy losses due to the non-radiative recombinations of the charges, mediated by the loweset-energy (singlet and triplet) CT states; for example, such recombinations can lead to the formation of triplet excited electronic states on the polymer chains, which do not generate free charges. This issue remains a major factor limiting the power conversion efficiencies (PCE) of these devices. The recombination rates are, however, difficult to quantify experimentally. To shed light on these issues, here, an integrated multi-scale theoretical approach that combines molecular dynamics simulations with quantum chemistry calculations is employed in order to establish the relationships among chemical structures, molecular packing, and non-radiative recombination losses mediated by the lowest-energy charge-transfer states.

  1. Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing

    KAUST Repository

    Chen, Xiankai

    2017-04-21

    In the most efficient solar cells based on blends of a conjugated polymer (electron donor) and a fullerene derivative (electron acceptor),ultrafast formation of charge-transfer (CT) electronic states at the donor-acceptor interfaces and efficient separation of these CT states into free charges, lead to internal quantum efficiencies near 100%. However, there occur substantial energy losses due to the non-radiative recombinations of the charges, mediated by the loweset-energy (singlet and triplet) CT states; for example, such recombinations can lead to the formation of triplet excited electronic states on the polymer chains, which do not generate free charges. This issue remains a major factor limiting the power conversion efficiencies (PCE) of these devices. The recombination rates are, however, difficult to quantify experimentally. To shed light on these issues, here, an integrated multi-scale theoretical approach that combines molecular dynamics simulations with quantum chemistry calculations is employed in order to establish the relationships among chemical structures, molecular packing, and non-radiative recombination losses mediated by the lowest-energy charge-transfer states.

  2. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State

    Directory of Open Access Journals (Sweden)

    René M. Williams

    2017-01-01

    Full Text Available Femtosecond transient absorption spectroscopy of thin films of two types of morphologies of diketopyrrolopyrrole low band gap polymer/fullerene-adduct blends is presented and indicates triplet state formation by charge recombination, an important loss channel in organic photovoltaic materials. At low laser fluence (approaching solar intensity charge formation characterized by a 1350 nm band (in ~250 fs dominates in the two PDPP-PCBM blends with different nanoscale morphologies and these charges recombine to form a local polymer-based triplet state on the sub-ns timescale (in ~300 and ~900 ps indicated by an 1100 nm absorption band. The rate of triplet state formation is influenced by the morphology. The slower rate of charge recombination to the triplet state (in ~900 ps belongs to a morphology that results in a higher power conversion efficiency in the corresponding device. Nanoscale morphology not only influences interfacial area and conduction of holes and electrons but also influences the mechanism of intersystem crossing (ISC. We present a model that correlates morphology to the exchange integral and fast and slow mechanisms for ISC (SOCT-ISC and H-HFI-ISC. For the pristine polymer, a flat and unstructured singlet-singlet absorption spectrum (between 900 and 1400 nm and a very minor triplet state formation (5% are observed at low laser fluence.

  3. Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔES-T of around zero.

    Science.gov (United States)

    Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Peng, Qi Ming; Zhao, Bo; Luo, Yongshi; Jin, Fangming; Yan, Xingwu; Gao, Yuan; Wu, Hairuo; Zhang, Feng; Fan, Di; Wang, Junbo

    2014-08-13

    We demonstrate highly efficient exciplex delayed-fluorescence organic light-emitting diodes (OLEDs) in which 4,4',4″-tris[3-methylphenyl(phenyl)aminotriphenylamine (m-MTDATA) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were selected as donor and acceptor components, respectively. Our m-MTDATA:Bphen exciplex electroluminescence (EL) mechanism is based on reverse intersystem crossing (RISC) from the triplet to singlet excited states. As a result, an external quantum efficiency (EQE) of 7.79% at 10 mA/cm(2) was observed, which increases by 3.2 and 1.5 times over that reported in Nat. Photonics 2012, 6, 253 and Appl. Phys. Lett. 2012, 101, 023306, respectively. The high EQE would be attributed to a very easy RISC process because the energy difference between the singlet and triplet excited states is almost around zero. The verdict was proven by photoluminescence (PL) rate analysis at different temperatures and time-resolved spectral analysis. Besides, the study of the transient PL process indicates that the presence of an unbalanced charge in exciplex EL devices is responsible for the low EQE and high-efficiency roll-off. When the exciplex devices were placed in a 100 mT magnetic field, the permanently positive magnetoelectroluminescence and magnetoconductivity were observed. The magnetic properties confirm that the efficient exciplex EL only originates from delayed fluorescence via RISC processes but is not related to the triplet-triplet annihilation process.

  4. Theoretical study of singlet oxygen molecule generation via an exciplex with valence-excited thiophene.

    Science.gov (United States)

    Sumita, Masato; Morihashi, Kenji

    2015-02-05

    Singlet-oxygen [O2((1)Δg)] generation by valence-excited thiophene (TPH) has been investigated using multireference Møller-Plesset second-order perturbation (MRMP2) theory of geometries optimized at the complete active space self-consistent field (CASSCF) theory level. Our results indicate that triplet TPH(1(3)B2) is produced via photoinduced singlet TPH(2(1)A1) because 2(1)A1 TPH shows a large spin-orbit coupling constant with the first triplet excited state (1(3)B2). The relaxed TPH in the 1(3)B2 state can form an exciplex with O2((3)Σg(-)) because this exciplex is energetically more stable than the relaxed TPH. The formation of the TPH(1(3)B2) exciplex with O2((3)Σg(-)) whose total spin multiplicity is triplet (T1 state) increases the likelihood of transition from the T1 state to the singlet ground or first excited singlet state. After the transition, O2((1)Δg) is emitted easily although the favorable product is that from a 2 + 4 cycloaddition reaction.

  5. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans.

    Science.gov (United States)

    Dron, Paul I; Michl, Josef; Johnson, Justin C

    2017-11-16

    We describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks. The films of 1 carrying a methyl in the para position of one phenyl ring undergo SF relatively efficiently (≥75% triplet yield, Φ T ) but more slowly than thin films of 1. When the methyl is replaced with a t-butyl, kinetic competition in the excited state favors excimer formation rather than SF (Φ T = 55%). When t-Bu groups are placed in both meta positions of the phenyl substituent, SF is slowed further and Φ T = 35%.

  6. Experimental confirmation of photon-induced spin-flip transitions in helium via triplet metastable yield spectra

    International Nuclear Information System (INIS)

    Rubensson, Jan-Erik; Moise, Angelica; Richter, Robert; Mihelic, Andrej; Bucar, Klemen; Zitnik, Matjaz

    2010-01-01

    Doubly excited states below the N=2 ionization threshold are populated by exciting helium atoms in a supersonic beam with monochromatized synchrotron radiation. The fluorescence decay of these states triggers a radiative cascade back to the ground state with large probability to populate long lived singlet and triplet helium metastable states. The yield of metastables is measured using a multichannel plate detector after the beam has passed a singlet-quenching discharge lamp. The variation of the yield observed with the lamp switched on or off is related to the triplet-singlet mixing of the doubly excited states.

  7. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    Science.gov (United States)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  8. Quasiclassical treatment and odd-parity/triplet correspondence in topological superconductors

    International Nuclear Information System (INIS)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko

    2014-01-01

    We construct a quasiclassical framework for topological superconductors with a strong spin–orbit coupling such as Cu x Bi 2 Se 3 . In a manner of the quasiclassical treatment, by decomposing the slowly varying component from a total quasiparticle wave function, the original massive Dirac Bogoliubov–de Gennes (BdG) Hamiltonian derived from a tight-binding model represented by an 8 × 8 matrix is reduced to a 4 × 4 matrix. The resultant equations are equivalent to Andreev-type equations of singlet or triplet superconductors, in which the apparent spin–orbit coupling vanishes. Using this formalism, we find that the odd-parity superconductivity in topological superconductors turns to the spin-triplet one. Moreover, in terms of quasiclassical treatment, we show that the topologically-protected zero-energy states in topological superconductors have correspond to the Andreev bound states established in a long history of studies of unconventional superconductors. This clearly indicates that low-energy nontrivial superconducting properties in the topological superconductors can be analyzed using established theoretical descriptions of the spin-triplet superconductors. (author)

  9. A mechanical of spin-triplet superconductivity in Hubbard model on triangular lattice: application to UNi sub 2 Al sub 3

    CERN Document Server

    Nisikawa, Y

    2002-01-01

    We discuss the possibility of spin-triplet superconductivity in a two-dimensional Hubbard model on a triangular lattice within the third-order perturbation theory. When we vary the symmetry in the dispersion of the bare energy band from D sub 2 to D sub 6 , spin-singlet superconductivity in the D sub 2 -symmetric system is suppressed and we obtain spin-triplet superconductivity in near the D sub 6 -symmetric system. In this case, it is found that the vertex terms, which are not included in the interaction mediated by the spin fluctuation, are essential for realizing the spin-triplet pairing. We point out the possibility that obtained results correspond to the difference between the superconductivity of UNi sub 2 Al sub 3 and that of UPd sub 2 Al sub 3. (author)

  10. Germylenes: structures, electron affinities, and singlet-triplet gaps of the conventional XGeCY(3) (X = H, F, Cl, Br, and I; Y = F and Cl) species and the unexpected cyclic XGeCY(3) (Y = Br and I) systems.

    Science.gov (United States)

    Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2010-12-23

    A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.

  11. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    International Nuclear Information System (INIS)

    Kikuchi, Azusa; Nakabai, Yuya; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-01-01

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k T–T , decreases in the following order: k T–T (BMDBM–DOMBM)>k T–T (BMDBM–OMC)≥k T–T (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed

  12. Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching.

    Science.gov (United States)

    Mozzo, Milena; Dall'Osto, Luca; Hienerwadel, Rainer; Bassi, Roberto; Croce, Roberta

    2008-03-07

    In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do not directly contribute to the chlorophyll triplet quenching. The largest part of the triplets is quenched by the lutein bound in site L1, which is located in close proximity to the chlorophylls responsible for the low energy state of the complex. The lutein in the L2 site is also active in triplet quenching, and it shows a longer triplet lifetime than the lutein in the L1 site. This lifetime difference depends on the occupancy of the N1 binding site, where neoxanthin acts as an oxygen barrier, limiting the access of O(2) to the inner domain of the Lhc complex, thereby strongly contributing to the photostability. The carotenoid triplet decay of monomeric Lhcb1, Lhcb4, and Lhcb5 is mono-exponential, with shorter lifetimes than observed for trimeric LHCII, suggesting that their inner domains are more accessible for O(2). As for trimeric LHCII, only the xanthophylls in sites L1 and L2 are active in triplet quenching. Although the chlorophyll to carotenoid triplet transfer is efficient (95%) in all complexes, it is not perfect, leaving 5% of the chlorophyll triplets unquenched. This effect appears to be intrinsically related to the molecular organization of the Lhcb proteins.

  13. Effects of molecular packing in organic crystals on singlet fission with ab initio many body perturbation theory

    Science.gov (United States)

    Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.

  14. Convergent modulation of singlet and triplet excited states of phosphine-oxide hosts through the management of molecular structure and functional-group linkages for low-voltage-driven electrophosphorescence.

    Science.gov (United States)

    Han, Chunmiao; Zhang, Zhensong; Xu, Hui; Xie, Guohua; Li, Jing; Zhao, Yi; Deng, Zhaopeng; Liu, Shiyong; Yan, Pengfei

    2013-01-02

    The controllable tuning of the excited states in a series of phosphine-oxide hosts (DPExPOCzn) was realized through introducing carbazolyl and diphenylphosphine-oxide (DPPO) moieties to adjust the frontier molecular orbitals, molecular rigidity, and the location of the triplet excited states by suppressing the intramolecular interplay of the combined multi-insulating and meso linkage. On increasing the number of substituents, simultaneous lowering of the first singlet energy levels (S(1)) and raising of the first triplet energy levels (T(1), about 3.0 eV) were achieved. The former change was mainly due to the contribution of the carbazolyl group to the HOMOs and the extended conjugation. The latter change was due to an enhanced molecular rigidity and the shift of the T(1) states from the diphenylether group to the carbazolyl moieties. This kind of convergent modulation of excited states not only facilitates the exothermic energy transfer to the dopants in phosphorescent organic light-emitting diodes (PHOLEDs), but also realizes the fine-tuning of electrical properties to achieve the balanced carrier injection and transportation in the emitting layers. As the result, the favorable performance of blue-light-emitting PHOLEDs was demonstrated, including much-lower driving voltages of 2.6 V for onset and 3.0 V at 100 cd m(-2), as well as a remarkably improved E.Q.E. of 12.6%. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Zdravkov, Vladimir I.; Kehrle, Jan; Obermeier, Guenther; Krug von Nidda, Hans-Albrecht; Mueller, Claus; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Sidorenko, Anatolie S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Tagirov, Lenar [Solid State Physics Department, Kazan Federal University (Russian Federation)

    2015-07-01

    We investigated the triplet spin-valve effect in nanoscale layered S/F{sub 1}/N/F{sub 2}/AF heterostructures with varying F{sub 1}-layer thickness (where S=Nb is a singlet superconducting, F{sub 1}=Cu{sub 41}Ni{sub 59} and F{sub 2}=Co a ferromagnetic, and N a normal-conducting, non-magnetic layer). The theory predicts a long-range, odd-in-frequency triplet component of superconductivity at non-collinear alignment of the magnetizations of F{sub 1} and F{sub 2}. This triplet component exhausts the singlet state and, thus, lowers the superconducting transition temperature, T{sub c}, yielding a global minimum of T{sub c} close to the perpendicular mutual orientations of the magnetizations. We found an oscillating decay of T{sub c} suppression, due to the generation of the triplet component, with increasing F{sub 1} layer thickness, which we discuss in the framework of recent theories.

  16. Unveiling Singlet Fission Mediating States in TIPS-pentacene and its Aza Derivatives.

    Science.gov (United States)

    Herz, Julia; Buckup, Tiago; Paulus, Fabian; Engelhart, Jens U; Bunz, Uwe H F; Motzkus, Marcus

    2015-06-25

    Femtosecond pump-depletion-probe experiments were carried out in order to shed light on the ultrafast excited-state dynamics of triisopropylsilylethynyl (TIPS)-pentacene and two nitrogen-containing derivatives, namely, diaza-TIPS-pentacene and tetraaza-TIPS-pentacene. Measurements performed in the visible and near-infrared spectral range in combination with rate model simulations reveal that singlet fission proceeds via the extremely short-lived intermediate (1)TT state, which absorbs in the near-infrared spectral region only. The T1 → T3 transition probed in the visible region shows a rise time that comprises two components according to a consecutive reaction (S1 → (1)TT → T1). The incorporation of nitrogen atoms into the acene structure leads to shorter dynamics, but the overall triplet formation follows the same kinetic model. This is of particular importance, since experiments on tetraaza-TIPS-pentacene allow for investigation of the triplet state in the visible range without an overlapping singlet contribution. In addition, the pump-depletion-probe experiments show that the triplet absorption in the visible (T1 → T3) and near-infrared (T1 → T2) regions occurs from the same initial state, which was questioned in previous studies. Furthermore, an additional ultrafast transfer between the excited triplet states (T3 → T2) is identified, which is also in agreement with the rate model simulation. By applying depletion pulses, which are resonant with higher vibrational levels, we gain insight into internal vibrational energy redistribution processes within the triplet manifold. This additional information is of great relevance regarding the study of loss channels within these materials.

  17. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    KAUST Repository

    Andernach, Rolf

    2015-07-22

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple timescales and investigated the mechanism of triplet exciton formation. During sensitization, single exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and find that 60% of the complex triplet excitons are transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and up-conversion layers.

  18. Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe quantum dots

    Directory of Open Access Journals (Sweden)

    Viktoriia Kornich

    2018-05-01

    Full Text Available We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.

  19. Collisional-radiative model for neutral helium in plasma. Excitation cross section and singlet-triplet wavefunction mixing

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Motoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Fujimoto, Takashi

    1997-10-01

    We have revised the collisional-radiative (CR) model code of neutral helium (T. Fujimoto, JQSRT 21, 1979). The spin-orbit interaction gives rise to mixing of the wavefunctions of the singlet and triplet states. The degree of the mixing depends on the magnetic field, and at the field strength of the level-anticrossings complete mixing, or complete breakdown of the L-S coupling scheme, occurs. We have approximately incorporated this effect into the code. We have reviewed the excitation cross section data for electron impacts. For transitions starting from the ground state, the recent assessment by the group led by Dr. de Heer is judged satisfactory. For transitions from the metastable levels the assessment by the same group appears rather conservative; there remains a question about the cross section values near the threshold. For transitions between different-l levels within the same multiplicity and same n, a semi-empirical formula based on the Born cross section gives a good agreement with experiment. Proton impacts are also considered for these transitions. We compare the new cross sections with those used in the original version. These cross sections for transitions starting from the metastable levels are fitted by analytical formulas and the parameter values are given. We also give parameter values for the excitation rate coefficient for these transitions as well as for transitions starting from the ground state. With all the above revisions incorporated into the CR model code, we have calculated the energy loss rates and the line intensity ratios for the purpose of plasma diagnostics, where the effect of a magnetic field is noted. The calculated population distribution over excited levels are compared with experiment, and a tentative conclusion is drawn concerning the excitation cross section from the metastable level. (author)

  20. Probing odd-triplet contributions to the long-ranged proximity effect by scanning tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diesch, Simon; Machon, Peter; Belzig, Wolfgang; Scheer, Elke [Universitaet Konstanz, Konstanz (Germany); Suergers, Christoph; Beckmann, Detlef [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In conventional superconductors, electrons are bound in singlet Cooper pairs, i.e. with opposite spin. More recently, experiments on superconductor-ferromagnet-systems have shown Cooper pairs tunneling through ferromagnetic layers, indicating Cooper pairs of equal spin, thus corresponding to a long-range triplet proximity effect. Most experimental evidence for triplet superconductivity comes from observations of the thickness dependence of the Josephson current through a ferromagnetic barrier, but there is an increasing interest in obtaining direct spectroscopic evidence. This project aims at analyzing the electronic density of states of a thin diffusive normal metal layer (Ag) coupled to a superconductor (Al) across a ferromagnetic insulator (EuS) using a scanning tunneling microscope in spectroscopy mode at 280 mK. For this purpose, we fabricated EuS films of different thicknesses and acquired spectroscopic data at different magnetic fields. We observe significant broadening of the superconductive energy gap and a variety of sub-gap structures including zero-bias conductance peaks induced by the presence of the ferromagnet.

  1. The fine tuning of carotenoid–chlorophyll interactions in light-harvesting complexes: an important requisite to guarantee efficient photoprotection via triplet–triplet energy transfer in the complex balance of the energy transfer processes

    International Nuclear Information System (INIS)

    Di Valentin, Marilena; Carbonera, Donatella

    2017-01-01

    Triplet–triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin–chlorophyll a -protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis. (topical review)

  2. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    KAUST Repository

    Andernach, Rolf; Utzat, Hendrik; Dimitrov, Stoichko; McCulloch, Iain; Heeney, Martin; Durrant, James; Bronstein, Hugo

    2015-01-01

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin

  3. Influence of relaxation processes in polymers on energy transfer by triplet levels

    International Nuclear Information System (INIS)

    Ibraev, N.Kh.; Zhunusbekov, A.M.

    1996-01-01

    Temperature influence on triplet-triplet (T-T) energy transfer between molecules of eosin and 3,4-benzopyrene is studied. Polyvenylbuteryl films have been used in capacity of polymer matrix. Calculation has being carried out on spectral-kinetic unit. It is revealed, that 3,4-benzopyrene triplets have been formed in polymer matrix after end of T-T energy transfer. These triplets join in a reaction of mixed triplet-triplet annihilation with non-blow out triplets of eosin and its sensitize slowed fluorescence (SF) of donor. This explains non-exponent character of eosin's dumping kinetics. Non-linear dependence of SF output ration to eosin phosphorescence output under presence of 3,4-benzopyrene molecules in film indicates on process of mixed annihilation. Fractal character of SF donor and acceptor has been evidenced about microscopical distribution of phosphor in polymer. 13 refs., 5 figs

  4. A Theoretical Study of the Photodissociation Mechanism of Cyanoacetylene in Its Lowest Singlet and Triplet Excited States

    Science.gov (United States)

    Luo, Cheng; Du, Wei-Na; Duan, Xue-Mei; Li, Ze-Sheng

    2008-11-01

    Cyanoacetylene (H5-C4 ≡ C3-C2 ≡ N1) is a minor constituent of the atmosphere of Titan, and its photochemistry plays an important role in the formation of the haze surrounding the satellite. In this paper, the complete active space self-consistent field (CASSCF) and multiconfigurational second-order perturbation (CASPT2) approaches are employed to investigate the photochemical processes for cyanoacetylene in its first singlet and triplet excited states with the cc-pVTZ basis set. Fissions of the C4-H5 and C2-C3 bonds in S1 yield H(2S) + CCCN(A2Π) and HCC(A2Π) + CN(X2Σ+), respectively. In T1, the corresponding dissociation products are H(2S) + CCCN(X2Σ+) and HCC(X2Σ) + CN(X2Σ+). At the CASPT2(14,13)//CASSCF(14,13) + ZPE level, the barriers for the adiabatic dissociation of the C4-H5 and C2-C3 bonds are 6.11 and 6.94 eV in S1 and 5.71 and 6.39 eV in T1, respectively, taking the energy of S0 minimum as reference. Based on the calculated potential energy surfaces, the existence of a metastable excited molecule is anticipated upon 260-230 nm photoexcitation, which provides a probable approach for cyanoacetylene to polymerize. The internal conversion (IC) process through vibronic interaction followed by C4-H5 fission in the ground state is found to account for the observed diffuse character in the UV absorption spectrum below 240 nm.

  5. Efficiency factors of singlet oxygen generation from core-modified expanded porphyrin: tetrathiarubyrin in ethanol

    CERN Document Server

    Ha, J H; Kim, Y R; Jung, G Y; Lee, Y H; Shin, K

    2001-01-01

    The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended pi conjugation, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended pi-conjugation, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 +- 0.10 and the triplet state lifetime was shortened to 7.0 +- 1.2 mu s. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 +- 0.02, which is somewhat lower t...

  6. Magnetoresistance engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates

    Science.gov (United States)

    Fábián, G.; Makk, P.; Madsen, M. H.; Nygârd, J.; Schönenberger, C.; Baumgartner, A.

    2016-11-01

    We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find two sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transitions between singlet and triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin based Bell inequalities.

  7. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai; Zhao, Yuelei; Zhang, Xixiang; Sun, Young

    2017-01-01

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin

  8. Stability of mass hierarchy in models with a sliding singlet

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.; Tainov, E.A.

    1986-01-01

    In the broad class of models with a heavy sliding singlet and softly broken supersymmetry (e.g. by the effects of N=1 supergravity) it is shown that the doublet-triplet hierarchy obtained at the tree level is not destroyed by quantum correction at any loop order. As an example the simplest SU(5) model with a stable doublet-triplet hierarchy is proposed. The necessary and sufficient conditions of the hierarchy stability are discussed. (orig.)

  9. Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions.

    Science.gov (United States)

    Vinklárek, Ivo S; Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-04-12

    Delayed fluorescence (DF) of protoporphyrin IX (PpIX) has been recently proposed as a tool for monitoring of mitochondrial oxygen tension in vivo as well as for observation of the effectiveness of photodynamic therapy (PDT) [E. G. Mik, Anesth. Analg., 2013, 117, 834-346; F. Piffaretti et al., J. Biomed. Opt., 2012, 17, 115007]. However, the efficiency of the mechanism of thermal activation (E-type DF), which was considered in the papers, is limited due to a large energy gap between the first excited singlet and the first triplet state of PpIX at room or body temperatures. Moreover, the energy gap is roughly equal to other porphyrinoid photosensitizers that generate DF mostly through the Singlet Oxygen Feedback-Induced mechanism (SOFDF) under certain conditions [M. Scholz and R. Dědic, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 2, pp. 63-81]. The mechanisms of delayed fluorescence of PpIX dissolved either in dimethylformamide (DMF) or in the mixture of DMF with ethylene glycol (EG) were investigated at atmospheric partial pressure of oxygen by means of a simultaneous time-resolved detection of 1 O 2 phosphorescence and PpIX DF which makes a direct comparison of the kinetics and lifetimes of both the luminescence channels possible. Samples of PpIX (100 μM) exhibit concave DF kinetics, which is a typical footprint of the SOFDF mechanism. The dramatic decrease in the DF intensity after adding a selective 1 O 2 quencher sodium azide (NaN 3 , 10 mM) proves that >90% of DF is indeed generated through SOFDF. Moreover, the analysis of the DF kinetics in the presence of NaN 3 implies that the second significant mechanism of DF generation is the triplet-triplet annihilation (P-type DF). The bimolecular mechanism of DF was further confirmed by the decrease of the DF intensity in the more viscous mixture DMF/EG and by the increase of the ratio of DF to the prompt fluorescence (PF) intensity with the increasing excitation intensity. These results

  10. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.; Wang, Hanting; Gutié rrez, Leonardo A.; Romero-Maraccini, Ofelia C.; Niu, Xi-Zhi; Gin, Karina; Croue, Jean-Philippe; Nguyen, Thanh Ha

    2013-01-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3'-methoxyacetophenone (3'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  11. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  12. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes

    International Nuclear Information System (INIS)

    Baldo, M.; Segal, M.

    2004-01-01

    The development of highly efficient phosphorescent molecules has approximately quadrupled the quantum efficiency of organic light emitting devices (OLEDs). By harnessing triplet as well as singlet excitons, efficient molecular phosphorescence has also enabled novel studies of exciton physics in organic semiconductors. In this review, we will summarize recent progress in understanding exciton formation and energy transfer using phosphorescent molecular probes. Particular emphasis is given to two topics of current interest: energy transfer in blue phosphorescent OLEDs, and quantifying the formation ratio of singlet to triplet excitons in small-molecular weight materials and polymers. (orig.)

  13. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  14. Triplet and ground state potential energy surfaces of 1,4-diphenyl-1,3-butadiene: theory and experiment.

    Science.gov (United States)

    Saltiel, J; Dmitrenko, O; Pillai, Z S; Klima, R; Wang, S; Wharton, T; Huang, Z-N; van de Burgt, L J; Arranz, J

    2008-05-01

    Relative energies of the ground state isomers of 1,4-diphenyl-1,3-butadiene (DPB) are determined from the temperature dependence of equilibrium isomer compositions obtained with the use of diphenyl diselenide as catalyst. Temperature and concentration effects on photostationary states and isomerization quantum yields with biacetyl or fluorenone as triplet sensitizers with or without the presence of O(2), lead to significant modification of the proposed DPB triplet potential energy surface. Quantum yields for ct-DPB formation from tt-DPB increase with [tt-DPB] revealing a quantum chain process in the tt --> ct direction, as had been observed for the ct --> tt direction, and suggesting an energy minimum at the (3)ct* geometry. They confirm the presence of planar and twisted isomeric triplets in equilibrium (K), with energy transfer from planar or quasi-planar geometries (quantum chain events from tt and ct triplets) and unimolecular decay (k(d)) from twisted geometries. Starting from cc-DPB, varphi(cc-->tt) increases with increasing [cc-DPB] whereas varphi(cc-->ct) is relatively insensitive to concentration changes. The concentration and temperature dependencies of the decay rate constants of DPB triplets in cyclohexane are consistent with the mechanism deduced from the photoisomerization quantum yields. The experimental DeltaH between (3)tt-DPB* and (3)tp-DPB*, 2.7 kcal mol(-1), is compared with the calculated energy difference [DFT with B3LYP/6-31+G(d,p) basis set]. Use of the calculated DeltaS = 4.04 eu between the two triplets gives k(d) = (2.4-6.4) x 10(7) s(-1), close to 1.70 x 10(7) s(-1), the value for twisted stilbene triplet decay. Experimental and calculated relative energies of DPB isomers on the ground and triplet state surfaces agree and theory is relied upon to deduce structural characteristics of the equilibrated conformers in the DPB triplet state.

  15. Photoprotection in the antenna complexes of photosystem II : Role of individual xanthophylls in chlorophyll triplet quenching

    NARCIS (Netherlands)

    Mozzo, Milena; Dall'Osto, Luca; Hienerwadel, Rainer; Bassi, Roberto; Croce, Roberta

    2008-01-01

    In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do

  16. Photoprotection in the antenna complexes of photosystem II - Role of individual xanthophylls in chlorophyll triplet quenching

    NARCIS (Netherlands)

    Mozzo, Milena; Dall'Osto, Luca; Hienerwadel, Rainer; Bassi, Roberto; Croce, Roberta; Osto, Luca Dall’

    2008-01-01

    In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do

  17. Generation of deviation parameters for amino acid singlets, doublets ...

    Indian Academy of Sciences (India)

    We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on ...

  18. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  19. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    Science.gov (United States)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  20. Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell

    Czech Academy of Sciences Publication Activity Database

    Schrauben, J. N.; Zhao, Y.; Mercado, C.; Dron, P. I.; Ryerson, J. L.; Michl, Josef; Zhu, K.; Johnson, J. C.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 2286-2293 ISSN 1944-8244 Institutional support: RVO:61388963 Keywords : photovoltaics * singlet fission * triplet * spectroscopy * charge transfer * photocurrent Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.145, year: 2015

  1. Room temperature triplet state spectroscopy of organic semiconductors.

    Science.gov (United States)

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  2. Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives.

    Science.gov (United States)

    Mauck, Catherine M; Hartnett, Patrick E; Margulies, Eric A; Ma, Lin; Miller, Claire E; Schatz, George C; Marks, Tobin J; Wasielewski, Michael R

    2016-09-14

    Singlet fission (SF) in polycrystalline thin films of four 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) chromophores with methyl (Me), n-hexyl (C6), triethylene glycol (TEG), and 2-ethylhexyl (EH) substituents at the 2,5-positions is found to involve an intermediate excimer-like state. The four different substituents yield four distinct intermolecular packing geometries, resulting in variable intermolecular charge transfer (CT) interactions in the solid. SF from the excimer state of Me, C6, TEG, and EH takes place in τSF = 22, 336, 195, and 1200 ps, respectively, to give triplet yields of 200%, 110%, 110%, and 70%, respectively. The transient spectra of the excimer-like state and its energetic proximity to the lowest excited singlet state in these derivatives suggests that this state may be the multiexciton (1)(T1T1) state that precedes formation of the uncorrelated triplet excitons. The excimer decay rates correlate well with the SF efficiencies and the degree of intermolecular donor-acceptor interactions resulting from π-stacking of the thiophene donor of one molecule with the DPP core acceptor in another molecule as observed in the crystal structures. Such interactions are found to also increase with the SF coupling energies, as calculated for each derivative. These structural and spectroscopic studies afford a better understanding of the electronic interactions that enhance SF in chromophores having strong intra- and intermolecular CT character.

  3. Triplet--Triplet Absorption Spectra of Organic Molecules in Condensed Phases

    International Nuclear Information System (INIS)

    Carmichael, I.; Hug, G.L.

    1986-01-01

    We present a compilation of spectral parameters associated with triplet--triplet absorption of organic molecules in condensed media. The wavelengths of maximum absorbance and the corresponding extinction coefficients, where known, have been critically evaluated. Other data, for example, lifetimes, energies and energy transfer rates, relevant to the triplet states of these molecules are included by way of comments but have not been subjected to a similar scrutiny. Work in the gas phase has been omitted, as have theoretical studies. We provide an introduction to triplet state processes in solution and solids, developing the conceptual background and offering an historical perspective on the detection and measurement of triplet state absorption. Techniques employed to populate the triplet state are reviewed and the various approaches to the estimation of the extinction coefficient of triplet--triplet absorption are critically discussed. A statistical analysis of the available data is presented and recommendations for a hierarchical choice of extinction coefficients are made. Data collection is expected to be complete through the end of 1984. Compound name, molecular formula and author indexes are appended

  4. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  5. Triplet state photochemistry and the three-state crossing of acetophenone within time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Huix-Rotllant, Miquel, E-mail: miquel.huix@gmail.com; Ferré, Nicolas, E-mail: nicolas.ferre@univ-amu.fr [Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, 13397 Marseille Cedex 20 (France)

    2014-04-07

    Even though time-dependent density-functional theory (TDDFT) works generally well for describing excited states energies and properties in the Franck-Condon region, it can dramatically fail in predicting photochemistry, notably when electronic state crossings occur. Here, we assess the ability of TDDFT to describe the photochemistry of an important class of triplet sensitizers, namely, aromatic ketones. We take acetophenone as a test molecule, for which accurate ab initio results exist in the literature. Triplet acetophenone is generated thanks to an exotic three-state crossing involving one singlet and two triplets states (i.e., a simultaneous intersystem crossing and triplet conical intersection), thus being a stringent test for approximate TDDFT. We show that most exchange-correlation functionals can only give a semi-qualitative picture of the overall photochemistry, in which the three-state crossing is rather represented as a triplet conical intersection separated from the intersystem crossing. The best result overall is given by the double hybrid functional mPW2PLYP, which is even able to reproduce quantitatively the three-state crossing region. We rationalize this results by noting that double hybrid functionals include a larger portion of double excitation character to the excited states.

  6. Marvel Analysis of the Measured High-resolution Rovibronic Spectra of TiO

    Science.gov (United States)

    McKemmish, Laura K.; Masseron, Thomas; Sheppard, Samuel; Sandeman, Elizabeth; Schofield, Zak; Furtenbacher, Tibor; Császár, Attila G.; Tennyson, Jonathan; Sousa-Silva, Clara

    2017-02-01

    Accurate, experimental rovibronic energy levels, with associated labels and uncertainties, are reported for 11 low-lying electronic states of the diatomic {}48{{Ti}}16{{O}} molecule, determined using the Marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm. All levels are based on lines corresponding to critically reviewed and validated high-resolution experimental spectra taken from 24 literature sources. The transition data are in the 2-22,160 cm-1 region. Out of the 49,679 measured transitions, 43,885 are triplet-triplet, 5710 are singlet-singlet, and 84 are triplet-singlet transitions. A careful analysis of the resulting experimental spectroscopic network (SN) allows 48,590 transitions to be validated. The transitions determine 93 vibrational band origins of {}48{{Ti}}16{{O}}, including 71 triplet and 22 singlet ones. There are 276 (73) triplet-triplet (singlet-singlet) band-heads derived from Marvel experimental energies, 123(38) of which have never been assigned in low- or high-resolution experiments. The highest J value, where J stands for the total angular momentum, for which an energy level is validated is 163. The number of experimentally derived triplet and singlet {}48{{Ti}}16{{O}} rovibrational energy levels is 8682 and 1882, respectively. The lists of validated lines and levels for {}48{{Ti}}16{{O}} are deposited in the supporting information to this paper.

  7. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission

    KAUST Repository

    Dean, Jacob C.

    2017-08-18

    Quantitative singlet fission has been observed for a variety of acene derivatives such as tetracene and pentacene, and efforts to extend the library of singlet fission compounds is of current interest. Preliminary calculations suggest anthradithiophenes exhibit significant exothermicity between the first optically-allowed singlet state, S1, and 2 × T1 with an energy difference of >5000 cm−1. Given the fulfillment of this ingredient for singlet fission, here we investigate the singlet fission capability of a difluorinated anthradithiophene dimer (2ADT) covalently linked by a (dimethylsilyl)ethane bridge and derivatized by triisobutylsilylethynyl (TIBS) groups. Photophysical characterization of 2ADT and the single functionalized ADT monomer were carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance with computational predictions, two conformers of 2ADT were observed via fluorescence spectroscopy and were assigned to structures with the ADT cores trans or cis to one another about the covalent bridge. The two conformers exhibited markedly different excited state deactivation mechanisms, with the minor trans population being representative of the ADT monomer showing primarily radiative decay, while the dominant cis population underwent relaxation into an excimer geometry before internally converting to the ground state. The excimer formation kinetics were found to be solvent dependent, yielding time constants of ∼1.75 ns in toluene, and ∼600 ps in acetone. While the difference in rates elicits a role for the solvent in stabilizing the excimer structure, the rate is still decidedly long compared to most singlet fission rates of analogous dimers, suggesting that the excimer is neither a kinetic nor a thermodynamic trap, yet singlet fission was still not observed. The result

  8. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    Science.gov (United States)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  9. Precision spectroscopy with ultracold 87Rb2 triplet molecules

    International Nuclear Information System (INIS)

    Strauss, Christoph

    2011-01-01

    these cases it was possible to directly observe singlet-triplet mixing at binding energies as deep as a few hundred GHz x h, where h is Planck's constant. Prof. Eberhard Tiemann calculated the energies using a coupledchannel code. After several iterations between measurements and optimization of the potentials, it turned out that the hyperfine and effective spin-spin interactions depend weakly on the vibrational level. With the help of Eberhard Tiemann it also became possible to reassign some Feshbach resonances measured previously. In general we find excellent agreement between theory and experiment to within the experimental error of 50 MHz. A detailed understanding of the two triplet potentials is important as we want to study the collisional behavior of molecules in the triplet ground state. Depending on the elastic and inelastic scattering cross sections, it could then become possible to condense these molecules and create a molecular Bose-Einstein condensate. (orig.)

  10. A theoretical study on the mechanism of electronic to vibrational energy transfer in Hg/3P/ + CO

    Science.gov (United States)

    Kato, S.; Jaffe, R. L.; Komornicki, A.; Morokuma, K.

    1983-01-01

    The mechanism of electronic-to-vibrational (E-V) energy transfer in Hg(3P) + CO collisions has been studied theoretically. The configuration interaction (CI) method was employed to calculate potential energy surfaces of the collision system. A simplified theoretical model, based on the reaction coordinate concept and the calculated potential energy characteristics, was used to discuss the mechanism of the singlet-triplet transition and the energy disposal in the collision. The results obtained were that: (a) the quenching process processed via a collision complex mechanism; and that (b) the triplet-singlet transition occurs near the collinear geometry. A model classical trajectory calculation gives a product CO vibrational distribution in good agreement with the experimental result.

  11. Relationship between symmetry of porphyrinic pi-conjugated systems and singlet oxygen (1Delta g) yields: low-symmetry tetraazaporphyrin derivatives.

    Science.gov (United States)

    Ishii, Kazuyuki; Itoya, Hatsumi; Miwa, Hideya; Fujitsuka, Mamoru; Ito, Osamu; Kobayashi, Nagao

    2005-07-07

    We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology

  12. Supramolecular structures for photochemical energy conversion. Technical progress report, 1993--1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This research project is concerned with the design, synthesis and study by photochemical and spectroscopic methods of complex molecular devices that mimic some important aspects of photosynthetic electron and energy transfer. Properly engineered molecules of this type can functionally mimic photosynthetic light harvesting (singlet-singlet energy transfer between chromophores), photoprotection from light-initiated singlet oxygen damage (triplet-triplet energy transfer from chlorophylls to carotenoid polyenes), and, most importantly, photoinduced multistep electron transfer to generate charge-separated states that preserve some of the photon energy as chemical potential. During the last three years, progress has been made on several fronts, all of which are related to the overall goal. A biomimetic system based on carotenoid-porphyrin-quinone triads has been constructed that demonstrates photoinduced transmembrane charge separation which in turn drives transmembrane proton transfer. Another investigation has focused on the use of proton transfer reactions to stabilize the initial products of photoinduced electron transfer and thereby increase the yield of long-lived charge separation. A third study has investigated the influence of rigid molecular geometries and short donor-acceptor separations on photoinduced electron transfer reactions. Finally, generation and quenching of singlet molecular oxygen by chlorophyll aggregates has been studied. All four studies are described and results are discussed.

  13. Probing the hidden Higgs bosons of the Y=0 triplet- and singlet-extended Supersymmetric Standard Model at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Priyotosh [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); Corianò, Claudio [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); STAG Research Centre and Mathematical Sciences, University of Southampton,Southampton SO17 1BJ (United Kingdom); Costantini, Antonio [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy)

    2015-12-18

    We investigate the scalar sector in an extension of the Minimal Supersymmetric Standard Model (MSSM) containing a SU(2) Higgs triplet of zero hypercharge and a gauge singlet beside the SU(2) scalar doublets. In particular, we focus on a scenario of this model which allows a light pseudoscalar and/or a scalar below 100 GeV, consistent with the most recent data from the LHC and the earlier data from the LEP experiments. We analyze the exotic decay of the discovered Higgs (h{sub 125}) into two light (hidden) Higgs bosons present in the extension. The latter are allowed by the uncertainties in the Higgs decay h{sub 125}→WW{sup ∗}, h{sub 125}→ZZ{sup ∗} and h{sub 125}→γγ. The study of the parameter space for such additional scalars/pseudoscalars decay of the Higgs is performed in the gluon fusion channel. The extra hidden Higgs bosons of the enlarged scalar sector, if they exist, will then decay into lighter fermion paris, i.e., bb̄, ττ̄ and μμ̄ via the mixing with the doublets. A detailed simulation using PYTHIA of the 2b+2τ, ≥3τ, 2b+2μ and 2τ+2μ final states is presented. From our analysis we conclude that, depending on the selected benchmark points, such decay modes can be explored with an integrated luminosity of 25 fb{sup −1} at the LHC at a center of mass energy of 13 TeV.

  14. Systematic design of active spaces for multi-reference calculations of singlet-triplet gaps of organic diradicals, with benchmarks against doubly electron-attached coupled-cluster data

    Science.gov (United States)

    Stoneburner, Samuel J.; Shen, Jun; Ajala, Adeayo O.; Piecuch, Piotr; Truhlar, Donald G.; Gagliardi, Laura

    2017-10-01

    Singlet-triplet gaps in diradical organic π-systems are of interest in many applications. In this study, we calculate them in a series of molecules, including cyclobutadiene and its derivatives and cyclopentadienyl cation, by using correlated participating orbitals within the complete active space (CAS) and restricted active space (RAS) self-consistent field frameworks, followed by second-order perturbation theory (CASPT2 and RASPT2). These calculations are evaluated by comparison with the results of doubly electron-attached (DEA) equation-of-motion (EOM) coupled-cluster (CC) calculations with up to 4-particle-2-hole (4p-2h) excitations. We find active spaces that can accurately reproduce the DEA-EOMCC(4p-2h) data while being small enough to be applicable to larger organic diradicals.

  15. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission.

    Science.gov (United States)

    Hart, Stephanie M; Silva, W Ruchira; Frontiera, Renee R

    2018-02-07

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes.

  16. Triplet state and semiquinone free radical of 5-methoxyquinizarin : a laser flash photolysis and pulse radiolysis study

    International Nuclear Information System (INIS)

    Pal, H.; Patil, D.K.; Mukherjee, T.; Mittal, J.P.

    1992-01-01

    The triplet(T) state properties like T-T absorption spectra, quantum yield, energy level and decay kinetics of 5-methoxyquinizarin (5-methoxy-1, 4-dihydroxy-9, 10-anthraquinone; MQZ) have been investigated in cyclohexane, acetonitrile and isopropyl alcohol using nanosecond laser flash photolysis technique. In isopropylalcohol, a neutral semiquinone radical is also formed which has been characterised by comparing the long lived transient spectra with the MQZ-semiquinone spectra obtained by pulse radiolysis of MQZ in the same solvent. A relatively small amount of a long lived transient formed in cyclohexane and acetonitrile, along with the triplet state of MQZ, could not be characterised unambiguously, but has been attributed to the semiquinone radical of MQZ, produced by the reaction of the excited states of the quinone with the solvent. The quantum yield of the semiquinone radical in isopropyl alcohol is considerably higher than the triplet quantum yield, showing that both the excited singlet and the triplet states of the quinone probably react with the solvent molecules to form the semiquinone radical. The photophysical properties of the triplet and the semiquinone radical of MQZ have been compared with those of simple 1,4-disubstituted anthraquinones. (author). 23 refs., 5 figs., 1 tab

  17. Highly sensitive time resolved singlet oxygen luminescence detection using LEDs as the excitation source

    International Nuclear Information System (INIS)

    Hackbarth, S; Schlothauer, J; Preuss, A; Röder, B

    2013-01-01

    For the first time singlet oxygen luminescence kinetics in living cells were detected at high precision using LED light for excitation. As LED technology evolves, the light intensity emitted by standard LEDs allows photosensitized singlet oxygen luminescence detection in solution and cell suspensions. We present measurements superior to those of most actual laser powered setups regarding precision of singlet oxygen kinetics in solutions and cell suspensions. Data presented here show that LED based setups allow the determination of the photosensitizer triplet and singlet oxygen decay times in vitro with an accuracy of 0.1 μs. This enables monitoring of the photosensitizer efficiency and interaction with the cellular components using illumination doses small enough not to cause cell death. (letter)

  18. Energy transfer from an alkene triplet state during pulse radiolysis

    International Nuclear Information System (INIS)

    Barwise, A.J.G.; Gorman, A.A.; Rodgers, M.A.J.

    1976-01-01

    Pulse radiolysis of a benzene solution of norbornene containing low concentrations of anthracene results in delayed formation of anthracene triplet: this is the result of diffusion-controlled energy transfer from the alkene triplet state which has a natural lifetime in benzene of 250 ns. The use of various hydrocarbon acceptors has indicated that Esub(T)=20 000+-500 cm -1 for the relaxed T 1 state of the alkene, at least 5000 cm -1 below that of the spectroscopic state. (Auth.)

  19. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  1. Convergence of third order correlation energy in atoms and molecules.

    Science.gov (United States)

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  2. Ionoluminescence properties of polystyrene-hosted fluorophore films induced by helium ions of energy 50-350 keV

    Science.gov (United States)

    Chakraborty, Subha; Huang, Mengbing

    2017-10-01

    We report on measurements and analysis of ionoluminescence properties of pure polystyrene films and polystyrene films doped with four types of fluorophores in low kinetic energies (50-350 keV) of ion irradiation. We have developed a theoretical model to understand the experimentally observed ionoluminescence behaviors in terms of scintillation yield from individual ion tracks, photophysical energy transfer mechanisms, and irradiation-induced defects. A comparison of the model and experimental results suggests that singlet up-conversion resulting from triplet-triplet annihilation processes may be responsible for enhanced singlet emission of the fluorophores at high ion beam flux densities. Energy transfer from the polystyrene matrix to the fluorophore molecules has been identified as an effective pathway to increasing the fluorescence efficiency in the doped scintillator films.

  3. BODIPY-Au(I): A Photosensitizer for Singlet Oxygen Generation and Photodynamic Therapy.

    Science.gov (United States)

    Üçüncü, Muhammed; Karakuş, Erman; Kurulgan Demirci, Eylem; Sayar, Melike; Dartar, Suay; Emrullahoğlu, Mustafa

    2017-05-19

    Upon complexation with Au(I), a photoinactive BODIPY derivative was transformed into a highly photoactive triplet sensitizer. Along with high efficiency in singlet oxygen generation (Φ Δ = 0.84), the new BODIPY-Au(I) skeleton showed excellent photocytotoxic activity against cancer cell lines (EC 50 = 2.5 nM).

  4. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  5. Thermochemistry of the reactions of PH +2 ( 1A 1) and PH +2 ( 3B 1) with CO. A G2 molecular orbital study

    Science.gov (United States)

    Esseffar, M.; Luna, A.; Mó, O.; Yáñez, M.

    1994-06-01

    The Gaussian-2 (G2) theoretical procedure, based on ab initio molecular orbital theory, is used to study the potential energy surfaces corresponding to gas phase reactions between PH +2 singlet and triplet state cations with carbon monoxide. Important differences between singlets and triplets, both regarding their bonding and their stabilities have been found. The most outstanding result is that, although the first 3B 1 excited state of PH +2 is only about 20 kcal/mol above the 1A 1 ground state, the singlet global minimum of the [H 2, P, C, O] + potential energy surface lies 61 kcal/mol below the triplet global minimum. This is so because, in general, triplet state cations are ion—dipole complexes, while the singlets are covalently bound species. In agreement with experimental evidence, only the formation of the adduct is exothermic, while all processes yielding PO or PC containing species as well as the proton transfer reaction, are strongly endothermic. Estimates of the heats of formation of H 2PO + and HCP species are given.

  6. Vibrational cooling of spin-stretched dimer states by He buffer gas: quantum calculations for Li2(a 3Sigma(u)+) at ultralow energies.

    Science.gov (United States)

    Bovino, S; Bodo, E; Yurtsever, E; Gianturco, F A

    2008-06-14

    The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.

  7. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    Science.gov (United States)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  8. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  9. The xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching.

    NARCIS (Netherlands)

    Peterman, E.J.G.; Gradinaru, C.C.; Calkoen, F.; Borst, J.C.; van Grondelle, R.; van Amerongen, H.

    1997-01-01

    A spectral and functional assignment of the xanthophylls in monomeric and trimeric light-harvesting complex II of green plants has been obtained using HPLC analysis of the pigment composition, laser-flash induced triplet- minus-singlet, fluorescence excitation, and absorption spectra. It is shown

  10. Singlet-Fission-Sensitized Hybrid Thin-Films For Next-Generation Photovoltaics

    Science.gov (United States)

    2016-04-12

    SECURITY CLASSIFICATION OF: This grant enabled the acquisition of equipment for the fabrication of organic and nanocrystal based photovoltaic (PV... Photovoltaics . The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 singlet fission, nanocrystal, triplet, hybrid, photovoltaic REPORT

  11. Singlet oxygen produced by quasi-continuous photo-excitation of hypericin in dimethyl-sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Varchola, J.; Želonková, K. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Chorvat Jr, D. [International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Jancura, D. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Miskovsky, P. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); and others

    2016-09-15

    Singlet oxygen (O{sub 2}({sup 1}Δ{sub g})) production by photo-excited hypericin (Hyp) dissolved in dimethyl-sulfoxide (DMSO) was studied by means of time-resolved phosphorescence measurements. In order to minimize photo-bleaching, the samples were excited in quasi-continuous mode using long-pulse (35 μs) laser excitation. The measured lifetime of singlet oxygen is τ{sub Δ}=5.5±0.3 μs. This result helps to resolve the discrepancy existing in the literature concerning singlet oxygen lifetime in DMSO. The obtained quantum yield of singlet oxygen photosensitized by Hyp in air-saturated DMSO is Φ{sub Δ}=0.4±0.03. The rate constant for Hyp triplet state depopulation in reaction with ground state molecular oxygen is measured to be k{sub q}=1.6±0.3×10{sup 9} M{sup −1} s{sup −1}.

  12. Precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Christoph

    2011-10-19

    happens that some deeply bound states which belong to the X {sup 1} sum {sup +}{sub g} potential are close to levels in the a {sup 3} sum {sup +}{sub u} potential. In these cases it was possible to directly observe singlet-triplet mixing at binding energies as deep as a few hundred GHz x h, where h is Planck's constant. Prof. Eberhard Tiemann calculated the energies using a coupledchannel code. After several iterations between measurements and optimization of the potentials, it turned out that the hyperfine and effective spin-spin interactions depend weakly on the vibrational level. With the help of Eberhard Tiemann it also became possible to reassign some Feshbach resonances measured previously. In general we find excellent agreement between theory and experiment to within the experimental error of 50 MHz. A detailed understanding of the two triplet potentials is important as we want to study the collisional behavior of molecules in the triplet ground state. Depending on the elastic and inelastic scattering cross sections, it could then become possible to condense these molecules and create a molecular Bose-Einstein condensate. (orig.)

  13. Precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Christoph

    2011-10-19

    happens that some deeply bound states which belong to the X {sup 1} sum {sup +}{sub g} potential are close to levels in the a {sup 3} sum {sup +}{sub u} potential. In these cases it was possible to directly observe singlet-triplet mixing at binding energies as deep as a few hundred GHz x h, where h is Planck's constant. Prof. Eberhard Tiemann calculated the energies using a coupledchannel code. After several iterations between measurements and optimization of the potentials, it turned out that the hyperfine and effective spin-spin interactions depend weakly on the vibrational level. With the help of Eberhard Tiemann it also became possible to reassign some Feshbach resonances measured previously. In general we find excellent agreement between theory and experiment to within the experimental error of 50 MHz. A detailed understanding of the two triplet potentials is important as we want to study the collisional behavior of molecules in the triplet ground state. Depending on the elastic and inelastic scattering cross sections, it could then become possible to condense these molecules and create a molecular Bose-Einstein condensate. (orig.)

  14. A mechanistic study on the phototoxicity of atorvastatin: singlet oxygen generation by a phenanthrene-like photoproduct.

    Science.gov (United States)

    Montanaro, Sara; Lhiaubet-Vallet, Virginie; Iesce, MariaRosaria Iesce; Previtera, Lucio; Miranda, Miguel Angel

    2009-01-01

    Atorvastatin calcium (ATV) is one of the most frequently prescribed drugs worldwide. Among the adverse effects observed for this lipid-lowering agent, clinical cases of cutaneous adverse reactions have been reported and associated with photosensitivity disorders. Previous work dealing with ATV photochemistry has shown that exposure to natural sunlight in aqueous solution leads to photoproducts resulting from oxidation of the pyrrole ring and from cyclization to a phenanthrene derivative. Laser flash photolysis of ATV, at both 266 and 308 nm, led to a transient spectrum with two maxima at lambda= 360 and lambda= 580 nm (tau= 41 micro), which was assigned to the primary intermediate of the stilbene-like photocyclization. On the basis of the absence of a triplet-triplet absorption, the role of the parent drug as singlet oxygen photosensitizer can be discarded. By contrast, a stable phenanthrene-like photoproduct would be a good candidate to play this role. Laser flash photolysis of this compound showed a triplet-triplet transient absorption at lambdamax = 460 nm with a lifetime of 26 micro, which was efficiently quenched by oxygen (kq = 3 (+/-0.2) x 10(9) M(-1) s(-1)). Its potential to photosensitize formation of singlet oxygen was confirmed by spin trapping experiments, through conversion of TEMP to the stable free radical TEMPO. The photoreactivity of the phenanthrene-like photoproduct was investigated using Trp as a marker. The disappearance of the amino acid fluorescence (lambdamax = 340 nm) after increasing irradiation times at 355 nm was taken as a measurement of photodynamic oxidation. To confirm the involvement of a type II mechanism, the same experiment was also performed in D2O; this resulted in a significant enhancement of the reaction rate. On the basis of the obtained photophysical and photochemical results, the phototoxicity of atorvastatin can be attributed to singlet oxygen formation with the phenanthrene-like photoproduct as a photosensitizer.

  15. Observation of the energy transfer sequence in an organic host–guest system of a luminescent polymer and a phosphorescent molecule

    International Nuclear Information System (INIS)

    Basel, Tek; Sun, Dali; Gautam, Bhoj; Valy Vardeny, Z.

    2014-01-01

    We used steady state optical spectroscopies such as photoluminescence and photoinduced absorption (PA), and magnetic-field PA (MPA) for studying the energy transfer dynamics in films and organic light emitting diodes (OLED) based on host–guest blends with different guest concentrations of the fluorescent polymer poly-[2-methoxy, 5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEHPPV-host), and phosphorescent molecule PtII-tetraphenyltetrabenzoporphyrin [Pt(tpbp); guest]. We show that the energy transfer process between the excited states of the host polymer and guest molecule takes a ‘ping-pong’ type sequence, because the lowest guest triplet exciton energy, E T (guest), lies higher than that of the host, E T (host). Upon photon excitation the photogenerated singlet excitons in the host polymer chains first undergo a Förster resonant energy transfer process to the guest singlet manifold, which subsequently reaches E T (guest) by intersystem crossing. Because E T (guest)>E T (host) there is a subsequent Dexter type energy transfer from E T (guest) to E T (host). This energy transfer sequence has profound influence on the photoluminescence and electroluminescence emission spectra in both films and OLED devices based on the MEHPPV-Pt(tpbp) system. - Highlights: • We studied electroluminescence of OLEDs based on host–guest blends. • The emission efficiency decreases with the guest concentration. • We found a dominant Dexter energy transfer from the triplet(guest) to triplet(host). • Energy transfer occurs from the host to guest and back to the host again

  16. Excitation of lowest electronic states of thymine by slow electrons

    Science.gov (United States)

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  17. Geometry and bonding in the ground and lowest triplet state of D{sub 6h} symmetric crenellated edged C{sub 6[3m(m-1)+1]}H{sub 6(2m-1)} (m = 2,..., 6) graphene hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Philpott, Michael R., E-mail: philpott@imr.edu [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan); Kawazoe, Yoshiyuki [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan)

    2009-03-30

    Ab initio plane wave all valence electron based DFT calculations were used to explore the dichotomy of perimeter vs. interior in the electronic and geometric structure of the D{sub 6h} singlet ground state and D{sub 2h} lowest triplet state of planar graphene hydrocarbon molecules with crenellated (arm chair) edges and the general formula C{sub 6[3m(m-1)+1]} H{sub 6(2m-1)} where m = 2,...,6. The largest molecule C{sub 546}H{sub 66} was 4.78 nm across and contained 2250 valence electrons. These molecules are nominally 'fully benzenoid hydrocarbons'. However with increasing size, the core of central atoms abandoned any fully benzenoid geometry they had in small systems and organized into single layer graphite (graphene) structure. The perimeter atoms of the crenellation adopted a conjugated geometry with unequal bonds and between core and perimeter there were some C{sub 6} rings retaining remnants of aromatic sextet-type properties. Compared to a zigzag edge the crenellated edge conferred stability in all the systems studied as measured by the singlet homo-lumo level gap BG{sub 0} and the singlet-lowest triplet energy gap {Delta}E{sub ST}. For the largest crenellated system (m = 6) BG{sub 0} and {Delta}E{sub ST} were approximately 0.7 eV, larger in value than for similarly sized hexagonal graphenes with zigzag edges. Triplet states were identified for all the molecules in the series and in the case of the m = 2 molecule hexabenzocoronene C{sub 42}H{sub 18}, two conformations with D{sub 2h} symmetry were identified and compared to features on the triplet state potential energy surface of benzene.

  18. Low-energy effective theory, unitarity, and nondecoupling behavior in a model with heavy Higgs-triplet fields

    International Nuclear Information System (INIS)

    Chivukula, R. Sekhar; Christensen, Neil D.; Simmons, Elizabeth H.

    2008-01-01

    We discuss the properties of a model incorporating both a scalar electroweak Higgs doublet and an electroweak Higgs triplet. We construct the low-energy effective theory for the light Higgs doublet in the limit of small (but nonzero) deviations in the ρ parameter from one, a limit in which the triplet states become heavy. For Δρ>0, perturbative unitarity of WW scattering breaks down at a scale inversely proportional to the renormalized vacuum expectation value of the triplet field (or, equivalently, inversely proportional to the square root of Δρ). This result imposes an upper limit on the mass scale of the heavy triplet bosons in a perturbative theory; we show that this upper bound is consistent with dimensional analysis in the low-energy effective theory. Recent articles have shown that the triplet bosons do not decouple, in the sense that deviations in the ρ parameter from one do not necessarily vanish at one-loop in the limit of large triplet mass. We clarify that, despite the nondecoupling behavior of the Higgs triplet, this model does not violate the decoupling theorem since it incorporates a large dimensionful coupling. Nonetheless, we show that if the triplet-Higgs boson masses are of order the grand unified theory scale, perturbative consistency of the theory requires the (properly renormalized) Higgs-triplet vacuum expectation value to be so small as to be irrelevant for electroweak phenomenology

  19. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-12

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. The fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by the substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at M06-2X level of theory and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using multireference CASSCF method.

  20. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M; Callaghan, Susan; Flanagan, Keith; Telitchko, Maxime; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O

    2018-01-01

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. The fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by the substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at M06-2X level of theory and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using multireference CASSCF method.

  1. Triphenylene columnar liquid crystals: spectroscopic study of triplets states and charge carriers

    International Nuclear Information System (INIS)

    Bondkowski, Jens

    2000-01-01

    This research thesis reports the study of three oxygenated derivatives of triphenylene (two monomers, a symmetric one and an asymmetric one, and a tetramer) by using different experimental techniques: absorption spectroscopy and fluorescence spectroscopy in stationary regime, and time-resolved fluorescence spectroscopy (also said single photon counting). Moreover, the author adapted an existing experiment of transient absorption spectroscopy time-resolved at the microsecond level to obtain spectra of thin layers under electric field. A cyclic voltammetry experiment and a spectro-electrochemistry experiment have also been performed. The report first presents the studied materials, the characterisation of singlet states, and the study of the effect molecular symmetry decreasing have on molecular transitions. Then, the author reports the study of cationic species of the triphenylene derivatives. The next chapters address the characterisation of derivative triplet states, and the study of energy transfer within the meso phase of one of these derivatives. The last chapters address charge carriers of columnar liquid crystals, and the molecular nature of these charge carriers

  2. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    Science.gov (United States)

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence.

  3. Homo- or Hetero- Triplet-Triplet Annihilation? A Case Study with Perylene-Bodipy Dyads/Triads

    KAUST Repository

    Cui, Xiaoneng

    2017-07-06

    The photophysical processes of intramolecular ‘ping-pong’ energy transfers in the iodinated reference dyad BDP-I2-Py, as well as the uniodinated dyad BDP-Py and triad BDP-2Py, were studied. For BDP-I2-Py, a forward Förster resonance energy transfer (FRET) from the perylene (Py) unit to the diiodoBDP unit (7 ps) and a backward triplet energy transfer (TTET, 3 ns) from the diiodoBDP unit to the Py unit were observed. For the BDP-Py and BDP-2Py systems, a FRET (5 ~ 8 ps) and a photo-induced electron transfer (PET) (1-1.5 ns) were observed in acetonitrile. The uniodinated dyad and triad were used as the triplet energy acceptor and emitter for a TTA upconversion with palladium tetraphenyltetrabenzoporphyrin as the triplet photosensitizer. A maximum upconversion quantum yield of 12.6 % was measured. Given that the dyad (BDP-Py) contains one BDP unit and one Py unit, while the triad (BDP-2Py) contains two Py units and one BDP unit, and based on the results from steady-state femtosecond and nanosecond transient optical spectroscopies, it is concluded that neither intramolecular homo- triplet-triplet annihilation (TTA) nor intramolecular hetero-TTA is possible during a TTA upconversion for those upconversion systems.

  4. Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States

    KAUST Repository

    Samanta, Pralok Kumar

    2017-02-28

    The rates for up-conversion intersystem crossing (UISC) from the T1 state to the S1 state are calculated for a series of organic emitters with an emphasis on thermally activated delayed fluorescence (TADF) materials. Both the spin-orbit coupling and the energy difference between the S1 and T1 states (ΔEST) are evaluated, at the density functional theory (DFT) and time-dependent DFT levels. The calculated UISC rates and ΔEST values are found to be in good agreement with available experimental data. Our results underline that small ΔEST values and sizable spin-orbit coupling matrix elements have to be simultaneously realized in order to facilitate UISC and ultimately TADF. Importantly, the spatial separation of the highest occupied and lowest unoccupied molecular orbitals of the emitter, a widely accepted strategy for the design of TADF molecules, does not necessarily lead to a sufficient reduction in ΔEST; in fact, either a significant charge-transfer (CT) contribution to the T1 state or a minimal energy difference between the local-excitation and charge-transfer triplet states is required to achieve a small ΔEST. Also, having S1 and T1 states of a different nature is found to strongly enhance spin-orbit coupling, which is consistent with the El-Sayed rule for ISC rates. Overall, our results indicate that having either similar energies for the local-excitation and charge-transfer triplet states or the right balance between a substantial CT contribution to T1 and somewhat different natures of the S1 and T1 states, paves the way toward UISC enhancement and thus TADF efficiency improvement.

  5. Probing the singlet character of the two-hole states in cuprate superconductors

    NARCIS (Netherlands)

    Ghiringhelli, G; Brookes, NB; Tjeng, LH; Mizokawa, T; Tjernberg, O; Menovsky, AA; Steeneken, P.G.

    Using spin-resolved resonant photoemission we have probed the singlet vs. triplet character of the two-hole state in the layered cuprates Bi2Sr2CaCu2O8+delta La2-xSrxCuO4 and Sr2CuO2Cl2. The combination of the photon circular polarization with the photoelectron spin detection gives access to the

  6. High-frequency two-electron photoionization cross section of triplet states

    International Nuclear Information System (INIS)

    Krivec, R.; Amusia, M.Ya.; Mandelzweig, V.B.

    2003-01-01

    Using high precision wave functions describing the triplet ground and excited 3 S states of the He atom and heliumlike ions, the cross sections of single- and double-electron photoionization are calculated. The dependence of the ratio R of the double and single ionization cross sections on the nuclear charge Z and the principal quantum number of excitation n is studied. The results obtained are compared to those for previously studied singlet states

  7. 单线态分裂的超快光谱学研究∗%Ultrafast sp ectroscopic study for singlet fission

    Institute of Scientific and Technical Information of China (English)

    张博; 张春峰; 李希友; 王睿; 肖敏

    2015-01-01

    有机分子中的单线态分裂过程能将单个光激发的单线态激子转化成两个三线态激子。借助此载流子倍增效应,太阳能电池可以更有效地利用太阳光谱中的高能光子,进而突破单结太阳能电池效率的理论极限。因此,单线态分裂备受关注。本文回顾学术界对单线态分裂物理图像的认识以及争议,结合课题组近年来的一些结果,重点总结此领域中运用瞬态光谱学方法取得的实验进展,讨论有关多激子中间暗态机理的不同观点,并介绍单线态分裂材料的发展以及器件应用。%Singlet fission is a spin-allowed process that creates two triplet excitons from one photo-excited singlet exciton in organic semiconductors. This process of carrier multiplication holds the great potential to break the theoretical efficiency limit in single-junction solar cells by making better use of high-energy photons, while capturing lower-energy photons in the usual style. Photovoltaic devices based on singlet fission have achieved external quantum efficiencies in excess of 100%. In this paper, we first introduce the basic concept about singlet fission and review the history of the field briefly. Then, we report some recent advances in the research of singlet fission progress with the combination of our group’s productions. Tetracene and pentacene are chosen as typical polyacene materials for discuss. We describe how scientists make progresses in understanding the underlying physics in singlet fission process. The experimental methods of transient absorption spectra, time-resolved fluorescence spectra and time-resolved two-photon photoemission spectra render numerous results for analysis. Moreover, a survey about the debate on the direct or indirect mechanism with transient optical study is provided. It has been verified that multiexciton state intermediates in singlet fission process and the factors of energy level alignments, intermolecular

  8. Ultrafast Microscopy of Energy and Charge Transport

    Science.gov (United States)

    Huang, Libai

    The frontier in solar energy research now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. Advancing the field requires transformative experimental tools that probe energy transfer processes from the nano to the meso lengthscales. To address this challenge, we aim to understand multi-scale energy transport across both multiple length and time scales, coupling simultaneous high spatial, structural, and temporal resolution. In my talk, I will focus on our recent progress on visualization of exciton and charge transport in solar energy harvesting materials from the nano to mesoscale employing ultrafast optical nanoscopy. With approaches that combine spatial and temporal resolutions, we have recently revealed a new singlet-mediated triplet transport mechanism in certain singlet fission materials. This work demonstrates a new triplet exciton transport mechanism leading to favorable long-range triplet exciton diffusion on the picosecond and nanosecond timescales for solar cell applications. We have also performed a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and 50 nm spatial precision in perovskite thin films using transient absorption microscopy. These results directly visualize long-range carrier transport of 220nm in 2 ns for solution-processed polycrystalline CH3NH3PbI3 thin films. The spatially and temporally resolved measurements reported here underscore the importance of the local morphology and establish an important first step towards discerning the underlying transport properties of perovskite materials.

  9. Pentacene Dimers as a Critical Tool for the Investigation of Intramolecular Singlet Fission.

    Science.gov (United States)

    Hetzer, Constantin; Guldi, Dirk M; Tykwinski, Rik R

    2018-01-11

    Singlet fission (SF) involves the spontaneous splitting of a photoexcited singlet state into a pair of triplets, and it holds great promise toward the realization of more efficient solar cells. Although the process of SF has been known since the 1960s, debate regarding the underlying mechanism continues to this day, especially for molecular materials. A number of different chromophores have been synthesized and studied in order to better understand the process of SF. These previous reports have established that pentacene and its derivatives are especially well-suited for the study of SF, since the energetic requirement E(S 1 )≥2E(T 1 ) is fulfilled rendering the process exothermic and unidirectional. Dimeric pentacene derivatives, in which individual pentacene chromophores are tethered by a "spacer", have emerged as the system of choice toward exploring the mechanism of intramolecular singlet fission (iSF). The dimeric structure, and in particular the spacer, allows for controlling and tuning the distance, geometric relationship, and electronic coupling between the two pentacene moieties. This Minireview describes recent advances using pentacene dimers for the investigation of iSF. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Observation of the energy transfer sequence in an organic host–guest system of a luminescent polymer and a phosphorescent molecule

    Energy Technology Data Exchange (ETDEWEB)

    Basel, Tek; Sun, Dali; Gautam, Bhoj; Valy Vardeny, Z., E-mail: val@physics.utah.edu

    2014-11-15

    We used steady state optical spectroscopies such as photoluminescence and photoinduced absorption (PA), and magnetic-field PA (MPA) for studying the energy transfer dynamics in films and organic light emitting diodes (OLED) based on host–guest blends with different guest concentrations of the fluorescent polymer poly-[2-methoxy, 5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEHPPV-host), and phosphorescent molecule PtII-tetraphenyltetrabenzoporphyrin [Pt(tpbp); guest]. We show that the energy transfer process between the excited states of the host polymer and guest molecule takes a ‘ping-pong’ type sequence, because the lowest guest triplet exciton energy, E{sub T}(guest), lies higher than that of the host, E{sub T}(host). Upon photon excitation the photogenerated singlet excitons in the host polymer chains first undergo a Förster resonant energy transfer process to the guest singlet manifold, which subsequently reaches E{sub T}(guest) by intersystem crossing. Because E{sub T}(guest)>E{sub T}(host) there is a subsequent Dexter type energy transfer from E{sub T}(guest) to E{sub T}(host). This energy transfer sequence has profound influence on the photoluminescence and electroluminescence emission spectra in both films and OLED devices based on the MEHPPV-Pt(tpbp) system. - Highlights: • We studied electroluminescence of OLEDs based on host–guest blends. • The emission efficiency decreases with the guest concentration. • We found a dominant Dexter energy transfer from the triplet(guest) to triplet(host). • Energy transfer occurs from the host to guest and back to the host again.

  11. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  12. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai

    2017-10-04

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.

  13. Intersystem crossing in complex molecules

    International Nuclear Information System (INIS)

    Pappalardo, R.G.

    1980-01-01

    The general question of singlet-triplet intersystem crossing is addressed in the context of large organic molecules, i.e., ''complex'' molecules capable of self-relaxation in the absence of collisions. Examples of spectral properties of such molecules in the vapor phase are discussed, relying on extensive Russian literature in this area. Formal expressions for the relaxation rate in the electronic excited states are derived on the basis of the formalism of collision theory, and are applied to the specific case of intersystem crossing. The derivation of the ''energy-gap'' law for triplet-singlet conversion in aromatic hydrocarbons is briefly outlined. The steep rise of internal conversion rates as a function of excess excitation energy, and its competition with the intersystem crossing process, are reviewed for the case of naphthalene vapor. A general expression for the spin-orbit interaction Hamiltonian in molecular systems is outlined. Experimental observations on singlet-triplet conversion rates and the factors that can drastically affect such rates are discussed, with emphasis on the ''in- ternal'' and ''external'' heavy-atom effects. Basic relations of ESR spectroscopy and magnetophotoselection are reviewed. Technological implications of the singlet-triplet crossing in complex molecules are discussed in the context of chelate lasers, dye lasers and luminescent displays. Effects related to singlet-triplet crossing, and generally to excited-state energy-transfer in biological systems, are exemplified by the role of aromatic amino-acids in the phosphorescence of proteins, by some recent studies of energy-transfer in models of biomembranes, and by the clustering of triplet-energy donor-acceptor pairs in micelles

  14. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  15. A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes

    Science.gov (United States)

    Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.

    In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.

  16. Probing color-singlet exchange at D0

    International Nuclear Information System (INIS)

    Abbott, B.; Abolins, M.; Acharya, B.S.

    1997-07-01

    We present latest preliminary results on hard color-singlet exchange in proton-antiproton collisions. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, dijet pseudorapidity separation, and proton-antiproton center-of-mass energy. These results are qualitatively consistent with a color-singlet fraction that increases with increasing quark-initiated processes

  17. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    International Nuclear Information System (INIS)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A.; Goldberg, David; Menon, Vinod M.

    2013-01-01

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency

  18. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Goldberg, David; Menon, Vinod M., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Department of Physics, Queens College and Graduate Center, The City University of New York, Flushing, New York 11367 (United States)

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  19. Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers

    International Nuclear Information System (INIS)

    Ueda, K.; Fukuzawa, H.; Liu, X.-J.; Sakai, K.; Pruemper, G.; Morishita, Y.; Saito, N.; Suzuki, I.H.; Nagaya, K.; Iwayama, H.; Yao, M.; Kreidi, K.; Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.; Weber, Th.; Harries, J.; Tamenori, Y.

    2008-01-01

    Interatomic Coulombic decay (ICD) in Ar 2 , ArKr and Kr 2 following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr 2+ (4s -21 S)-B (B = Ar or Kr) to Kr 2+ (4p -21 D, 3 P)-B + are also observed

  20. Methods and compositions for the upconversion of light

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, Marc A.; Congreve, Daniel N.; Thompson, Nicholas John; Wilson, Mark W.B.; Wu, Mengfei; Bawendi, Moungi G.; Bulovic, Vladimir

    2018-04-17

    The present invention generally relates to composition and methods for upconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the nanocrystal and the organic material. In certain embodiments, the nanocrystal has a first excited energy state with an energy greater than a triplet state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the nanocrystal to produce triplet excitons. The triplet excitons may then transfer from the nanocrystal to the organic material and undergo triplet-triplet annihilation, creating a singlet state of approximately twice the energy of the triplet exciton. In certain embodiments, the singlet state fluoresces, resulting in the formation of a high energy photon.

  1. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap

    KAUST Repository

    Freeman, David M. E.; Musser, Andrew J.; Frost, Jarvist M.; Stern, Hannah L.; Forster, Alexander K.; Fallon, Kealan J.; Rapidis, Alexandros G.; Cacialli, Franco; McCulloch, Iain; Clarke, Tracey M.; Friend, Richard H.; Bronstein, Hugo

    2017-01-01

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and

  2. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap

    KAUST Repository

    Freeman, David M. E.

    2017-06-09

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and

  3. Experimental and theoretical studies of the O(3P) + C2H4 reaction dynamics: Collision energy dependence of branching ratios and extent of intersystem crossing

    Science.gov (United States)

    Fu, Bina; Han, Yong-Chang; Bowman, Joel M.; Leonori, Francesca; Balucani, Nadia; Angelucci, Luca; Occhiogrosso, Angela; Petrucci, Raffaele; Casavecchia, Piergiorgio

    2012-12-01

    The reaction of O(3P) with C2H4, of importance in combustion and atmospheric chemistry, stands out as paradigm reaction involving not only the indicated triplet state potential energy surface (PES) but also an interleaved singlet PES that is coupled to the triplet surface. This reaction poses great challenges for theory and experiment, owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Crossed molecular beam (CMB) scattering experiments with soft electron ionization detection are used to disentangle the dynamics of this polyatomic multichannel reaction at a collision energy Ec of 8.4 kcal/mol. Five different primary products have been identified and characterized, which correspond to the five exothermic competing channels leading to H + CH2CHO, H + CH3CO, CH3 + HCO, CH2 + H2CO, and H2 + CH2CO. These experiments extend our previous CMB work at higher collision energy (Ec ˜ 13 kcal/mol) and when the results are combined with the literature branching ratios from kinetics experiments at room temperature (Ec ˜ 1 kcal/mol), permit to explore the variation of the branching ratios over a wide range of collision energies. In a synergistic fashion, full-dimensional, QCT surface hopping calculations of the O(3P) + C2H4 reaction using ab initio PESs for the singlet and triplet states and their coupling, are reported at collision energies corresponding to the CMB and the kinetics ones. Both theory and experiment find almost an equal contribution from the triplet and singlet surfaces to the reaction, as seen from the collision energy dependence of branching ratios of product channels and extent of intersystem crossing (ISC). Further detailed comparisons at the level of angular distributions and translational energy distributions are made between theory and experiment for the three primary radical channel products, H + CH2CHO, CH3 + HCO, and CH2 + H2CO. The very good agreement between theory and

  4. Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots

    International Nuclear Information System (INIS)

    Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.

    2010-01-01

    The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.

  5. Reduced-cost second-order algebraic-diagrammatic construction method for excitation energies and transition moments

    Science.gov (United States)

    Mester, Dávid; Nagy, Péter R.; Kállay, Mihály

    2018-03-01

    A reduced-cost implementation of the second-order algebraic-diagrammatic construction [ADC(2)] method is presented. We introduce approximations by restricting virtual natural orbitals and natural auxiliary functions, which results, on average, in more than an order of magnitude speedup compared to conventional, density-fitting ADC(2) algorithms. The present scheme is the successor of our previous approach [D. Mester, P. R. Nagy, and M. Kállay, J. Chem. Phys. 146, 194102 (2017)], which has been successfully applied to obtain singlet excitation energies with the linear-response second-order coupled-cluster singles and doubles model. Here we report further methodological improvements and the extension of the method to compute singlet and triplet ADC(2) excitation energies and transition moments. The various approximations are carefully benchmarked, and conservative truncation thresholds are selected which guarantee errors much smaller than the intrinsic error of the ADC(2) method. Using the canonical values as reference, we find that the mean absolute error for both singlet and triplet ADC(2) excitation energies is 0.02 eV, while that for oscillator strengths is 0.001 a.u. The rigorous cutoff parameters together with the significantly reduced operation count and storage requirements allow us to obtain accurate ADC(2) excitation energies and transition properties using triple-ζ basis sets for systems of up to one hundred atoms.

  6. Molecular-wire behavior of OLED materials: exciton dynamics in multichromophoric Alq3-oligofluorene-Pt(II)porphyrin triads.

    Science.gov (United States)

    Montes, Victor A; Pérez-Bolívar, César; Agarwal, Neeraj; Shinar, Joseph; Anzenbacher, Pavel

    2006-09-27

    Donor-bridge-acceptor triads consisting of the Alq3 complex, oligofluorene bridge, and PtII tetraphenylporphyrin (PtTPP) were synthesized. The triads were designed to study the energy level/distance-dependence in energy transfer both in a solution and in solid state. The materials show effective singlet transfer from the Alq3-fluorene fluorophore to the porphyrin, while the triplet energy transfer, owing to the shorter delocalization of triplet excitons, appears to take place via a triplet energy cascade. Using femtosecond transient spectroscopy, the rate of the singlet-singlet energy transfer was determined. The exponential dependence of the donor-acceptor distance and the respective energy transfer rates of 7.1 x 1010 to 1.0 x 109 s-1 with the attenuation factor â of 0.21 +/- 0.02 A-1 suggest that the energy transfer proceeds via a mixed incohererent wire/superexchange mechanism. In the OLEDs fabricated using the Alq3-oligofluorene-PtTPP triads with better triplet level alignment, the order of a magnitude increase in efficacy appears to be due to facile triplet energy transfer. The devices, where the triplet-triplet energy transfer is of paramount importance, showed high color purity emission (CIE X,Y: 0.706, 0.277), which is almost identical to the emission from thin films. Most importantly, we believe that the design principles demonstrated above are general and may be used to prepare OLED materials with enhanced quantum efficacy at lowered operational potentials, being crucial for improved lifespan of OLEDs.

  7. Photochemical Dynamics of Intramolecular Singlet Fission

    Science.gov (United States)

    Lin, Zhou; Iwasaki, Hikari; Van Voorhis, Troy

    2017-06-01

    Singlet fission (SF) converts a singlet exciton (S_1) into a pair of triplet ones (T_1) via a ``multi-exciton'' (ME) intermediate: S_1 \\longleftrightarrow ^1ME \\longleftrightarrow ^1(T_1T_1) \\longrightarrow 2T_1. In exothermic cases, e.g., crystalline pentacene or its derivatives, the quantum yield of SF can reach 200%. With SF doubling the electric current generated by an incident high-energy photon, the solar conversion efficiency in pentacene-based organic photovoltaics (OPVs) can exceed the Shockley-Queisser limit of 33.7%. The ME state is popularly considered to be a dimeric state with significant charge transfer (CT) character that is strongly coupled to both S_1 and ^1(T_1T_1), while this local model lacks strong support from full quantum dynamics studies. Intramolecular SF (ISF) occurring to covalently-bound dimers in the solution phase is an excellent model for a straightforward dynamics simulation of local excitons. In the present study, we investigate the ISF mechanisms for three covalently-bound dimers of pentacene derivatives, including ortho-, meta-, and para-bis(6,13-bis(triisopropylsilylethynyl)pentacene)benzene, in non-protic solvents. Specifically, we propagate the real-time, non-adiabatic quantum mechanical/molecular mechanical (QM/MM) dynamics on the potential energy surfaces associated with the states of S_1, ^1(T_1T_1) and CT. We explore how the energies of these ISF-relevant states and the non-adiabatic couplings between each other fluctuate with time and the instantaneous molecular configuration (e.g., intermonomer distance and orientation). We also quantitatively compare Condon and non-Condon ISF dynamics with solution-phase spectroscopic data. Our results allow us to understand the roles of CT energy levels in the ISF mechanism and propose a design strategy to maximize ISF efficiency. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). T. C. Berkelbach, M. S. Hybertsen

  8. Heterogeneous substitution effects in chlorocyanomethyl radical and chlorocyanocarbene.

    Science.gov (United States)

    Khuseynov, Dmitry; Dixon, Andrew R; Goebbert, Daniel J; Sanov, Andrei

    2013-10-17

    We report a photoelectron-imaging investigation of the chlorocyanomethyl radical (CHClCN) and the corresponding carbene (CClCN). The results are discussed in comparison with the corresponding dichloro- and dicyano-substituted species, focusing on the divergent effects of the halogen and pseudohalogen (CN) substitutions. A cooperative (captodative) interaction of the π-donor Cl and π-acceptor cyano groups favors the increased stability of the CHClCN radical, but a competition of the two substituents is observed in the singlet-triplet splitting of the carbene. The vertical detachment energy (VDE) of CHClCN(-) is determined to be 2.39 ± 0.04 eV, with the broad photoelectron band consistent with the significant geometry change predicted by theory for the detachment transition. The adiabatic electron affinity of CHClCN, EA = 1.86 ± 0.08 eV, is estimated on the basis of the experimental VDE and the computed difference between the VDE and EA values. This result allows the calculation of the bond dissociation energy of chloroacetonitrile, DH298(H-CHClCN) = 87.0 ± 2.7 kcal/mol. Photoelectron imaging of CClCN(-) reveals two main transitions, assigned to the singlet ((1)A') and triplet ((3)A″) states of the CClCN carbene. The respective VDEs are 2.76 ± 0.05 and 3.25 ± 0.05 eV. The experimental results are in good agreement with the theoretically predicted singlet-triplet vertical energy gap at the anion geometry, but inconclusive with regard to the adiabatic singlet-triplet splitting in CClCN. Consistent with the experimental findings, ab initio calculations using the spin-flip approach in combination with the coupled-cluster theory, indicate that the (1)A' and (3)A″ states are nearly degenerate, with the singlet state lying adiabatically only ∼0.01 eV below the triplet.

  9. Computational Investigation of the Influence of Halogen Atoms on the Photophysical Properties of Tetraphenylporphyrin and Its Zinc(II) Complexes.

    Science.gov (United States)

    De Simone, Bruna C; Mazzone, Gloria; Russo, Nino; Sicilia, Emilia; Toscano, Marirosa

    2018-03-15

    How the tetraphenylporphyrin (TPP) and its zinc(II) complexes (ZnTPP) photophysical properties (absorption energies, singlet-triplet energy gap and spin-orbit coupling contributions) can change due to the presence of an increasing number of heavy atoms in their molecular structures has been investigated by means of density functional theory and its time-dependent formulation. Results show that the increase of the atomic mass of the substituted halogen strongly enhances the spin-orbit coupling values, allowing a more efficient singlet-triplet intersystem crossing. Different deactivation channels have been considered and rationalized on the basis of El-Sayed and Kasha rules. Most of the studied compounds possess the appropriate properties to generate cytotoxic singlet molecular oxygen ( 1 Δ g ) and, consequently, they can be proposed as photosensitizers in photodynamic therapy.

  10. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding

    2014-01-01

    Polycyclic hydrocarbons (PHs) with a singlet biradical ground state have recently attracted extensive interest in physical organic chemistry and materials science. Replacing the carbon radical center in the open-shell PHs with a more electronegative nitrogen atom is expected to result in the more stable aminyl radical. In this work, two kinetically blocked stable/persistent derivatives (1 and 2) of indolo[2,3-b]carbazole, an isoelectronic structure of the known indeno[2,1-b]fluorene, were synthesized and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate biradical character (y0 = 0.269) and a small singlet-triplet energy gap (ΔES-T ≅ -1.78 kcal mol-1), while the more extended dibenzo-indolo[2,3-b]carbazole 2 exhibits a quinoidal closed-shell ground state. The difference can be explained by considering the number of aromatic sextet rings gained from the closed-shell to the open-shell biradical resonance form, that is to say, two for compound 1 and one for compound 2, which determines their different biradical characters. The optical and electronic properties of 2 and the corresponding aromatic precursors were investigated by one-photon absorption, transient absorption and two-photon absorption (TPA) spectroscopies and electrochemistry. Amphoteric redox behaviour, a short excited lifetime and a moderate TPA cross section were observed for 2, which can be correlated to its antiaromaticity and small biradical character. Compound 2 showed high reactivity to protic solvents due to its extremely low-lying LUMO energy level. Unusual oxidative dimerization was also observed for the unblocked dihydro-indolo[2,3-b]carbazole precursors 6 and 11. Our studies shed light on the rational design of persistent aminyl biradicals with tunable properties in the future. This journal

  11. Gas-phase thermolysis reaction of formaldehyde diperoxide. Kinetic study and theoretical mechanisms

    International Nuclear Information System (INIS)

    Jorge, Nelly Lidia; Romero, Jorge Marcelo; Grand, André; Hernández-Laguna, Alfonso

    2012-01-01

    Highlights: ► Kinetic and mechanism of the gas-phase thermolysis of tetroxane were determined. ► Gas chromatography and computational potential energy surfaces were performed. ► A mechanism in steps looked like the most probable mechanism. ► A spin–orbit coupling appeared at the singlet and triple diradical open structures. ► A non-adiabatic crossing from the singlet to the triplet state occurred. - Abstract: Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463–503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 ± 0.8 kcal/mol and 5.2 × 10 13 s −1 , respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G ∗∗ level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin–orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.

  12. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Kraus, Hannes; Heiber, Michael C.; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-07-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.

  13. Performance of SOPPA-based methods in the calculation of vertical excitation energies and oscillator strengths

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Pitzner-Frydendahl, Henrik Frank; Buse, Mogens

    2015-01-01

    methods, the original SOPPA method as well as SOPPA(CCSD) and RPA(D) in the calculation of vertical electronic excitation energies and oscillator strengths is investigated for a large benchmark set of 28 medium-size molecules with 139 singlet and 71 triplet excited states. The results are compared...

  14. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    International Nuclear Information System (INIS)

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-01-01

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field   10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  15. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    KAUST Repository

    Whited, Matthew T.; Djurovich, Peter I.; Roberts, Sean T.; Durrell, Alec C.; Schlenker, Cody W.; Bradforth, Stephen E.; Thompson, Mark E.

    2011-01-01

    efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable

  16. Electronic structure of the alkyne-bridged dicobalt hexacarbonyl complex Co(2) micro-C(2)H(2) (CO)(6): evidence for singlet diradical character and implications for metal-metal bonding.

    Science.gov (United States)

    Platts, James A; Evans, Gareth J S; Coogan, Michael P; Overgaard, Jacob

    2007-08-06

    A series of ab initio calculations are presented on the alkyne-bridged dicobalt hexacarbonyl cluster Co2 micro-C2H2 (CO)6, indicating that this compound has substantial multireference character, which we interpret as evidence of singlet diradical behavior. As a result, standard theoretical methods such as restricted Hartree-Fock (RHF) or Kohn-Sham (RKS) density functional theory cannot properly describe this compound. We have therefore used complete active space (CAS) methods to explore the bonding in and spectroscopic properties of Co2 micro-C2H2 (CO)6. CAS methods identify significant population of a Co-Co antibonding orbital, along with Co-pi* back-bonding, and a relatively large singlet-triplet energy splitting. Analysis of the electron density and related quantities, such as energy densities and atomic overlaps, indicates a small but significant amount of covalent bonding between cobalt centers.

  17. Triplet exciton formation in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xudong; Westenhoff, Sebastian; Howard, Ian; Ford, Thomas; Friend, Richard; Hodgkiss, Justin; Greenham, Neil [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-07-01

    We have recently found that the formation of triplet excitons can be an important loss mechanism in organic photovoltaics, particularly in donor-acceptor blends designed to have high open-circuit voltages. This can occur when the intrachain triplet state lies lower in energy than the charge-transfer state formed at the heterojunction. We find that in a blend based on the polyfluorene derivatives F8BT and PFB, triplet excitons are formed after photoexcitation with much higher efficiency than in the component polymers. We use transient absorption spectroscopy to study the dynamics of charges and triplet excitons on timescales from picoseconds to microseconds. This allows us to determine a characteristic time of {proportional_to} 40 ns for intersystem crossing in the charge-separated state, and to estimate that as many as 75% of photoexcitations lead to the formation of triplet states. To avoid losses to triplet excitons in photovoltaic devices, it is necessary to separate charge pairs before intersystem crossing can occur. We also present photophysical measurements of saturation and relaxation of the triplet excited state absorption used to quantify triplet populations.

  18. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  19. Collisional spin-oriented Sherman function in electron-hole semiconductor plasmas: Landau damping effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-04-01

    The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.

  20. A study of the low-lying singlet and triplet electronic states of chlorophyll A and B

    Directory of Open Access Journals (Sweden)

    Etinski Mihajlo

    2013-01-01

    Full Text Available Chlorophylls have been extensively investigated both experimentally and theoretically owing to the fact that they are essential for photosynthesis. We have studied two forms of chlorophyll, chlorophyll a and chlorophyll b, by means of density functional theory. Optimization of S0, S1 and T1 states was performed with the B3-LYP functional. The computed fluorescence lifetimes show good agreement with the available experimental data. The electronic adiabatic energies of S1 and T1 states are 2.09/2.12 and 1.19/1.29 eV for chlorophyll a and chlorophyll b respectively. We discussed the implications of this results on the triplet formation. Also, the calculated vertical ionization potentials shows good agreement with the experimental results. [Projekat Ministarstva nauke Reoublike Srbije, br. 172040

  1. Triplet states in lead isotopes

    International Nuclear Information System (INIS)

    Naz, Tabassum; Ahmad, Shakeb; Abusara, H.

    2017-01-01

    Axial and triaxial calculations within RHB have been done to study the shape coexistence phenomena in the lead isotopes. Triplet states have been found in the 184-190 Pb which are in accordance with the experimental and other theoretical observations. The energy difference (in MeV) between the first two excited states also gives the evidence for the same

  2. Gas-phase thermolysis reaction of formaldehyde diperoxide. Kinetic study and theoretical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Nelly Lidia [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain); Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Romero, Jorge Marcelo [Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Grand, Andre [INAC, SCIB, Laboratoire ' Lesions des Acides Nucleiques' , UMR CEA-UJF E3, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble cedex 9 (France); Hernandez-Laguna, Alfonso, E-mail: ahlaguna@ugr.es [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain)

    2012-01-17

    Highlights: Black-Right-Pointing-Pointer Kinetic and mechanism of the gas-phase thermolysis of tetroxane were determined. Black-Right-Pointing-Pointer Gas chromatography and computational potential energy surfaces were performed. Black-Right-Pointing-Pointer A mechanism in steps looked like the most probable mechanism. Black-Right-Pointing-Pointer A spin-orbit coupling appeared at the singlet and triple diradical open structures. Black-Right-Pointing-Pointer A non-adiabatic crossing from the singlet to the triplet state occurred. - Abstract: Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463-503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 {+-} 0.8 kcal/mol and 5.2 Multiplication-Sign 10{sup 13} s{sup -1}, respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G{sup Asterisk-Operator Asterisk-Operator} level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin-orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.

  3. Three-dimensional triplet tracking for LHC and future high rate experiments

    International Nuclear Information System (INIS)

    Schöning, A

    2014-01-01

    The hit combinatorial problem is a main challenge for track reconstruction and triggering at high rate experiments. At hadron colliders the dominant fraction of hits is due to low momentum tracks for which multiple scattering (MS) effects dominate the hit resolution. MS is also the dominating source for hit confusion and track uncertainties in low energy precision experiments. In all such environments, where MS dominates, track reconstruction and fitting can be largely simplified by using three-dimensional (3D) hit-triplets as provided by pixel detectors. This simplification is possible since track uncertainties are solely determined by MS if high precision spatial information is provided. Fitting of hit-triplets is especially simple for tracking detectors in solenoidal magnetic fields. The over-constrained 3D-triplet method provides a complete set of track parameters and is robust against fake hit combinations. Full tracks can be reconstructed step-wise by connecting hit triplet combinations from different layers, thus heavily reducing the combinatorial problem and accelerating track linking. The triplet method is ideally suited for pixel detectors where hits can be treated as 3D-space points. With the advent of relatively cheap and industrially available CMOS-sensors the construction of highly granular full scale pixel tracking detectors seems to be possible also for experiments at LHC or future high energy (hadron) colliders. In this paper tracking performance studies for full-scale pixel detectors, including their optimisation for 3D-triplet tracking, are presented. The results obtained for different types of tracker geometries and different reconstruction methods are compared. The potential of reducing the number of tracking layers and - along with that - the material budget using this new tracking concept is discussed. The possibility of using 3D-triplet tracking for triggering and fast online reconstruction is highlighted

  4. A kinetically blocked 1,14:11,12-dibenzopentacene: A persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon

    KAUST Repository

    Li, Yuan; Huang, Kuo-Wei; Sun, Zhe; Webster, Richard D.; Zeng, Zebing; Zeng, Wangdong; Chi, Chunyan; Furukawa, Ko; Wu, Jishan

    2014-01-01

    The synthesis of high-spin polycyclic hydrocarbons is very challenging due to their extremely high reactivity. Herein, we report the synthesis and characterization of a kinetically blocked 1,14:11,12-dibenzopentacene, DP-Mes, which represents a rare persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon. In contrast to its structural isomer 1,14:7,8-dibenzopentacene (heptazethrene) with a singlet biradical ground state, DP-Mes is a triplet diradical as confirmed by ESR and ESTN measurements and density functional theory calculations. DP-Mes also displays intermolecular antiferromagnetic spin interactions in solution at low temperature. © 2014 the Partner Organisations.

  5. Triplet exciton diffusion in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Anna [Department of Physics, University of Bayreuth (Germany)

    2010-07-01

    Efficient triplet exciton emission has allowed improved operation of organic light-emitting diodes (LEDs). To enhance the device performance, it is necessary to understand what governs the motion of triplet excitons through the organic semiconductor. We use a series of poly(p-phenylene)-type conjugated polymers and oligomers of variable degree of molecular distortion (i.e. polaron formation) and energetic disorder as model systems to study the Dexter-type triplet exciton diffusion in thin films. We show that triplet diffusion can be quantitatively described in the framework of a Holstein small polaron model (Marcus theory) that is extended to include contributions from energetic disorder. The model predicts a tunnelling process at low temperatures followed by a thermally activated hopping process above a transition temperature. In contrast to charge transfer, the activation energy required for triplet exciton transfer can be deduced from the optical spectra. We discuss the implications for device architecture.

  6. Explaining rISC and 100% efficient TADF (Conference Presentation)

    Science.gov (United States)

    Monkman, Andrew P.; Etherington, Marc; Graves, David; Data, Przemyslaw; Dos Santos, Paloma Lays; Nobuyasu, Roberto; Baiao Dias, Fernando M.

    2016-09-01

    Detailed photophysical measurements of intramolecular charge transfer (ICT) states have been made both in solution and solid state. Temperature dependent time resolved emission, delayed emission and photoinduced absorption are used to map the energy levels involved in molecule decay, and through detailed kinetic modelling of the thermally activated processes observed, true electron exchange energies and other energy barriers of the systems determined with the real states involved in the reversed intersystem crossing mechanism elucidated. For specific donor acceptor molecules, the CT singlet and local triplet states (of donor or acceptor) are found to be the lowest lying excited states of the molecule with very small energy barrier between them ? kT. In these cases the decay kinetics of the molecules become significantly different to normal molecules, and the effect of rapid recycling between CT singlet and local triplet states is observed which gives rise to the true triplet harvesting mechanism in TADF. Using a series of different TADF emitters we will show how the energy level ordering effects or does not effect TADF and how ultimate OLED performance is dictated by energy level ordering, from 5% to 22% external quantum efficiency. From this understanding, we are able to define three criterion for TADF in different molecules and these will be discussed.

  7. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  8. Selectively Modulating Triplet Exciton Formation in Host Materials for Highly Efficient Blue Electrophosphorescence.

    Science.gov (United States)

    Li, Huanhuan; Bi, Ran; Chen, Ting; Yuan, Kai; Chen, Runfeng; Tao, Ye; Zhang, Hongmei; Zheng, Chao; Huang, Wei

    2016-03-23

    The concept of limiting the triplet exciton formation to fundamentally alleviate triplet-involved quenching effects is introduced to construct host materials for highly efficient and stable blue phosphorescent organic light-emitting diodes (PhOLEDs). The low triplet exciton formation is realized by small triplet exciton formation fraction and rate with high binding energy and high reorganization energy of triplet exciton. Demonstrated in two analogue molecules in conventional donor-acceptor molecule structure for bipolar charge injection and transport with nearly the same frontier orbital energy levels and triplet excited energies, the new concept host material shows significantly suppressed triplet exciton formation in the host to avoid quenching effects, leading to much improved device efficiencies and stabilities. The low-voltage-driving blue PhOLED devices exhibit maximum efficiencies of 43.7 cd A(-1) for current efficiency, 32.7 lm W(-1) for power efficiency, and 20.7% for external quantum efficiency with low roll-off and remarkable relative quenching effect reduction ratio up to 41%. Our fundamental solution for preventing quenching effects of long-lived triplet excitons provides exciting opportunities for fabricating high-performance devices using the advanced host materials with intrinsically small triplet exciton formation cross section.

  9. Spin-triplet excitons and anisotropy effects in the S=12 gapped antiferromagnet BaCuSi2O6

    International Nuclear Information System (INIS)

    Zvyagin, S.A.; Wosnitza, J.; Krzystek, J.; Stern, R.; Jaime, M.; Sasago, Y.; Uchinokura, K.

    2007-01-01

    BaCuSi 2 O 6 can be regarded as an almost ideal realization of an S=12 system of weakly interacting spin dimers with spin-singlet ground state and gapped excitation spectrum. We argue that the fine structure observed in low-temperature EPR spectra of BaCuSi 2 O 6 is a fingerprint of triplet excitations (excitons). Analyzing the angular dependence of the exciton modes allows us to precisely calculate the zero-field splitting within the triplet states and, correspondingly, the anisotropy parameter, D=0.07cm -1 . The proposed procedure can be applied for studying anisotropy effects in a large number of S=12 gapped quantum antiferromagnets with dimerized or alternating spin structure

  10. Migration of CT triplet excitons in TCNB-biphenyl and TCNB-HMB crystals

    Science.gov (United States)

    Kozankiewicz, BolesAw

    1994-01-01

    Delayed fluorescence decay curves of charge transfer (CT) crystals of tetracyanobenzene with biphenyl (TCNB-B) and with hexamethylbenzene (TCNB-HMB) have been studied over a wide temperature range (5-200 K). The decay curves have been adequately described by decay expressions derived for different mechanisms of triplet-triplet annihilation. This analysis points to one-dimensional, thermally activated motion of CT triplet excitons. The estimated activation energies for the exciton hopping are 360±60 and 650±100 cm -1 (or 550±150 cm -1 depending on the applied model) for the TCNB-B and TCNB-HMB crystals, respectively. The results seem to confirm the self-trapping of triplet CT excitons.

  11. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  12. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    Science.gov (United States)

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The origin of efficient triplet state population in sulfur-substituted nucleobases

    Science.gov (United States)

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-10-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.

  14. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials

    DEFF Research Database (Denmark)

    Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren

    2000-01-01

    Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules......, the experimental singlet π → π* transitions are reproduced for a set of azobenzene dyes with different electron donor and acceptor groups and the correct shifts in excitation energy are obtained for the different substituents. It has also been demonstrated that ab initio methods can be used to determine suitable...

  15. The role of Duschinsky rotation in intersystem crossing: A case study of uracil

    Directory of Open Access Journals (Sweden)

    Etinski Mihajlo

    2011-01-01

    Full Text Available The intersystem crossing rate for the transition between the lowest excited singlet and triplet electronic states of uracil was studied by means of ab initio methods. The rate was evaluated using the timedependent approach based on the correlation function and its two approximations: the second-order cumulant expansion and the short-time approximation. The normal modes of the singlet and triplet states are related by the Duschinsky transformation, i.e., by rotation and translation. It was found that for singlet-triplet adiabatic energy gaps below 6000 cm-1, the inclusion of the Duschinsky rotation is necessary for quantitative results. Above energy gaps of 6000 cm-1, the rates obtained with and without the Duschinsky rotation are similar. The cumulant expansion approximates well the correlation function. The short-time approximation, although crude, can be used as the first estimate of the rate.

  16. Favorable performance of the DFT methods in predicting the minimum-energy structure of the lowest triplet state of WF4

    International Nuclear Information System (INIS)

    Gutowski, M.; Univ. of Utah, Salt Lake City, UT

    1999-01-01

    The tetrahedral structure of the lowest triplet state of the WF 4 complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T d structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C 2v leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T d and C 2v stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively

  17. Efficient singlet exciton fission in pentacene prepared from a soluble precursor

    Directory of Open Access Journals (Sweden)

    Maxim Tabachnyk

    2016-11-01

    Full Text Available Carrier multiplication using singlet exciton fission (SF to generate a pair of spin-triplet excitons from a single optical excitation has been highlighted as a promising approach to boost the photocurrent in photovoltaics (PVs thereby allowing PV operation beyond the Shockley-Queisser limit. The applicability of many efficient fission materials, however, is limited due to their poor solubility. For instance, while acene-based organics such as pentacene (Pc show high SF yields (up to200%, the plain acene backbone renders the organic molecule insoluble in common organic solvents. Previous approaches adding solubilizing side groups such as bis(tri-iso-propylsilylethynyl to the Pc core resulted in low vertical carrier mobilities due to reduction of the transfer integrals via steric hindrance, which prevented high efficiencies in PVs. Here we show how to achieve good solubility while retaining the advantages of molecular Pc by using a soluble precursor route. The precursor fully converts into molecular Pc through thermal removal of the solubilizing side groups upon annealing above 150 °C in the solid state. The annealed precursor shows small differences in the crystallinity compared to evaporated thin films of Pc, indicating that the Pc adopts the bulk rather than surface polytype. Furthermore, we identify identical SF properties such as sub-100 fs fission time and equally long triplet lifetimes in both samples.

  18. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  19. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Callaghan, Susan; Flanagan, Keith J.; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O.

    2018-01-01

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  20. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    Science.gov (United States)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  1. Compression effects in helium-like atoms (Z=1,...,5) constrained by hard spherical walls

    International Nuclear Information System (INIS)

    Flores-Riveros, A.; Rodriguez-Contreras, A.

    2008-01-01

    Ground and lowest triplet S state energies and other properties are obtained for confined helium-like atoms {Z=1,...} spherically enclosed by impenetrable boxes of varying size. Wave functions are variationally optimized within generalized Hylleraas bases fulfilling appropriate boundary conditions. For all systems, enhanced confinement leads to increased total energies and singlet-triplet energy splittings

  2. Birth weight in a large series of triplets

    Directory of Open Access Journals (Sweden)

    van Beijsterveldt Catharina EM

    2011-04-01

    Full Text Available Abstract Background Triplets are often born premature and with a low birth weight. Because the incidence of triplet births is rare, there are relatively few studies describing triplet birth weight characteristics. Earlier studies are often characterized by small sample sizes and lack information on important background variables such as zygosity. The objective of this study is to examine factors associated with birth weight in a large, population-based sample of triplets registered with the Netherlands Twin Register (NTR. Methods In a sample of 1230 triplets from 410 families, the effects of assisted reproductive techniques, zygosity, birth order, gestational age, sex, maternal smoking and alcohol consumption during pregnancy on birth weight were assessed. The resemblance among triplets for birth weight was estimated as a function of zygosity. Birth weight discordance within families was studied by the pair-wise difference between triplets, expressed as a percentage of the birth weight of the heaviest child. We compare data from triplets registered with the NTR with data from population records, which include live births, stillbirths and children that have deceased within days after birth. Results There was no effect of assisted reproductive techniques on triplet birth weight. At gestational age 24 to 40 weeks triplets gained on average 130 grams per week; boys weighed 110 grams more than girls and triplets of smoking mothers weighted 104 grams less than children of non-smoking mothers. Monozygotic triplets had lower birth weights than di- and trizygotic triplets and birth weight discordance was smaller in monozygotic triplets than in di- and trizygotic triplets. The correlation in birth weight among monozygotic and dizygotic triplets was 0.42 and 0.32, respectively. In nearly two-thirds of the families, the heaviest and the lightest triplet had a birth weight discordance over 15%. The NTR sample is representative for the Dutch triplet

  3. Radiationless decay, fission and fusion of excitons in irradiated molecular crystals

    International Nuclear Information System (INIS)

    Klein, Gerard.

    1977-01-01

    The creation and evolution of excited states in ionizing particle tracks were investigated. The passage of high energy ionizing particles in molecular crystals results in the formation of highly excited states which energy is generally above the molecular ionization potential. The theory of non radiative transitions, which describes the transitions from the highly excited states to the lowest singlet and triplet excitons S 1 and T 1 is developed. Among these non radiative transitions, the fission of singlet excitons into two singlet or triplet excitons of lower energies is studied experimentally. These results and a kinematics study of the S 1 and T 1 excitons in ionizing particle tracks were used to get a complete description of the scintillation. These results are in good agreement with the experimental measurements on the scintillation [fr

  4. Triplet exciton dissociation and electron extraction in graphene-templated pentacene observed with ultrafast spectroscopy.

    Science.gov (United States)

    McDonough, Thomas J; Zhang, Lushuai; Roy, Susmit Singha; Kearns, Nicholas M; Arnold, Michael S; Zanni, Martin T; Andrew, Trisha L

    2017-02-08

    We compare the ultrafast dynamics of singlet fission and charge generation in pentacene films grown on glass and graphene. Pentacene grown on graphene is interesting because it forms large crystals with the long axis of the molecules "lying-down" (parallel to the surface). At low excitation fluence, spectra for pentacene on graphene contain triplet absorptions at 507 and 545 nm and no bleaching at 630 nm, which we show is due to the orientation of the pentacene molecules. We perform the first transient absorption anisotropy measurements on pentacene, observing negative anisotropy of the 507 and 545 nm peaks, consistent with triplet absorption. A broad feature at 853 nm, observed on both glass and graphene, is isotropic, suggesting hole absorption. At high fluence, there are additional features, whose kinetics and anisotropies are not explained by heating, that we assign to charge generation; we propose a polaron pair absorption at 614 nm. The lifetimes are shorter at high fluence for both pentacene on glass and graphene, indicative of triplet-triplet annihilation that likely enhances charge generation. The anisotropy decays more slowly for pentacene on graphene than on glass, in keeping with the smaller domain size observed via atomic force microscopy. Coherent acoustic phonons are observed for pentacene on graphene, which is a consequence of more homogeneous domains. Measuring the ultrafast dynamics of pentacene as a function of molecular orientation, fluence, and polarization provides new insight to previous spectral assignments.

  5. Enhanced solar energy collection in porphyrin based photoconversion schemes

    Science.gov (United States)

    Gust, D.; Moore, T. A.

    1983-02-01

    A series of carotenoporphyrins whose conformations varied from folded (with the carotenoid (PI)-electron system stacked over that of the porphyrin) to extended (with the two chromophores widely separated) were studied. The conformations were determined by high resolution proton NMR studies. Laser flash spectroscopy revealed triplet energy transfer from porphyrin to carotenoid. Three distinct pathways for such transfer were discovered: (1) static through space transfer which does not require significant intramolecular motions; (2) dynamic through space transfer mediated by intramolecular motions; (3) triplet transfer mediated by the chemical bonds joining the chromophores. pulse radiolysis and fluorescence quenching of these ethers and related carotenoporphyrins revealed electron transfer in the systems. It is demonstrated that the natural carotenoid functions of photoprotection from singlet oxygen damage and antenna function can be mimicked by synthetic molecules, and therefore, in principle can be applied to artificial solar energy conversion systems.

  6. Magnetic measurements, Raman and infrared spectra of metal ...

    Indian Academy of Sciences (India)

    2018-04-06

    Apr 6, 2018 ... Energy-dispersive X-ray analysis (EDX) data confirmed the ..... two triplets and one singlet, where the triplet distribution of the level will ..... and nonsubscripts. X and. Y correspond to p y ridinic nitrogen and carbon yl oxygen.

  7. Crossed Molecular Beams and Quasiclassical Trajectory Surface Hopping Studies of the Multichannel Nonadiabatic O((3)P) + Ethylene Reaction at High Collision Energy.

    Science.gov (United States)

    Balucani, Nadia; Leonori, Francesca; Casavecchia, Piergiorgio; Fu, Bina; Bowman, Joel M

    2015-12-17

    The combustion relevant O((3)P) + C2H4 reaction stands out as a prototypical multichannel nonadiabatic reaction involving both triplet and singlet potential energy surfaces (PESs), which are strongly coupled. Crossed molecular beam (CMB) scattering experiments with universal soft electron ionization mass spectrometric detection have been used to characterize the dynamics of this reaction at the relatively high collision energy Ec of 13.7 kcal/mol, attained by crossing the reactant beams at an angle of 135°. This work is a full report of the data at the highest Ec investigated for this reaction. From laboratory product angular and velocity distribution measurements, angular and translational energy distributions in the center-of-mass system have been obtained for the five observed exothermic competing reaction channels leading to H + CH2CHO, H + CH3CO, CH3 + HCO, CH2 + H2CO, and H2 + CH2CO. The product branching ratios (BRs) have been derived. The elucidation of the reaction dynamics is assisted by synergic full-dimensional quasiclassical trajectory surface-hopping calculations of the reactive differential cross sections on coupled ab initio triplet/singlet PESs. This joint experimental/theoretical study extends and complements our previous combined CMB and theoretical work at the lower collision energy of 8.4 kcal/mol. The theoretically derived BRs and extent of intersystem crossing (ISC) are compared with experimental results. In particular, the predictions of the QCT results for the three main channels (those leading to vinoxy + H, methyl + HCO and methylene + H2CO formation) are compared directly with the experimental data in the laboratory frame. Good overall agreement is noted between theory and experiment, although some small, yet significant shortcomings of the theoretical differential cross section are noted. Both experiment and theory find almost an equal contribution from the triplet and singlet surfaces to the reaction, with a clear tendency of the

  8. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    Science.gov (United States)

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco Bolivar Correto; Hase, William Louis

    2018-04-26

    The reaction of 3CH2 with 3O2 is of fundamental importance in combustion and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH2OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H2CO + O(3P), while the singlet surface leads to 8 product channels with their relative importance as: CO + H2O > CO + OH + H ~ H2CO + O(1D) > HCO + OH ~ CO2 + H2 ~ CO + H2 + O(1D) > CO2 + H + H > HCO + O(1D) + H. Reaction on the singlet PES is barrierless, consistent with experiment and the total rate constant on the singlet surface is 0.93 ± 0.22 x 10-12 cm3molecule-1s-1 in comparison to the recommended experimental rate constant of 3.3 x 10-12 cm3molecule-1s-1. The simulation product yields for the singlet PES are compared with experiment and the most significant differences are for H, CO2, and H2O. Reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address the: (1) barrier on the triplet PES for 3CH2 + 3O2 → 3CH2OO; (2) temperature dependence of the 3CH2 + 3O2 reaction rate constant and product branching ratios; and (3) possible non-RRKM dynamics of the 1CH2OO Criegee intermediate.

  9. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  10. Mechanism of electron transfer from e-sub(aq) to acceptors in micelles

    International Nuclear Information System (INIS)

    Graetzel, M.; Henglein, A.; Janata, E.

    1975-01-01

    Pulse radiolysis experiments were carried out to investigate reactions A + e - sub(aq) → A - of hydrated electrons with acceptors A incorporated in the lipoidic part of micellar 10 -3 M sodium-lauryl-sulfate (SLS) and cetyl-trimethyl-ammonium-bromide (CTAB). The acceptors were 9-nitro-anthracene and pyrene, the latter in both the singlet and triplet state (the triplet was produced by UV-light irradiation shortly before the high energy electron pulse was applied). The triplet state of pyrene reacts in CTAB-micelles with a rate constant smaller by at least a factor of two than the singlet ground state. (orig./HK) [de

  11. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kumar, Venkatraman; Ariese, Freek; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in [Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012 (India)

    2016-03-21

    The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T{sub 1} and T{sub 2} states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S{sub 0} state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S{sub 0}, T{sub 1}, and T{sub 2} states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ{sup ∗} triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents.

  12. Sensitized Triplet Formation of Chlorophyll-A and beta-Carotene

    DEFF Research Database (Denmark)

    Jensen, Nina Mejlhede; Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn

    1980-01-01

    The naphthalene-sensitized formation of triplet excited chlorophyll-a (Chl-a) and all-transß-carotene has been studied by pulse radiolysis. The rate constants for transfer of triplet energy from naphthalene to Chl-a and all-transß-carotene in benzene at 25°C are (3.6 ± 0.6)·109M-1 s-1 and (10.7 ± 1.......2)·109M-1 s-1, respectively. The decays of the excited triplet states of naphthalene, Chl-a and all-transß-carotene all follow a mixed first-and second-order mechanism. The first-order rate constant for triplet decay is strongly dose dependent for naphthalene but only slightly dependent and independent...

  13. Singlet fermionic dark matter with Veltman conditions

    Science.gov (United States)

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-07-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.

  14. Collective excitations and the nature of Mott transition in undoped gapped graphene

    International Nuclear Information System (INIS)

    Jafari, S A

    2012-01-01

    The particle-hole continuum (PHC) for massive Dirac fermions provides an unprecedented opportunity for the formation of two collective split-off states, one in the singlet and the other in the triplet (spin-1) channel, when the short-range interactions are added to the undoped system. Both states are close in energy and are separated from the continuum of free particle-hole excitations by an energy scale of the order of the gap parameter Δ. They both disperse linearly with two different velocities, reminiscent of spin-charge separation in Luttinger liquids. When the strength of Hubbard interactions is stronger than a critical value, the velocity of singlet excitation, which we interpret as a charge composite boson, becomes zero and renders the system a Mott insulator. Beyond this critical point the low-energy sector is left with a linearly dispersing triplet mode - a characteristic of a Mott insulator. The velocity of the triplet mode at the Mott criticality is twice the velocity of the underlying Dirac fermions. The phase transition line in the space of U and Δ is in qualitative agreement with our previous dynamical mean field theory calculations. (paper)

  15. Sensitive triplet exciton detection in polyfluorene using Pd-coordinated porphyrin

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Blom, P.W.M.; Loi, M.A.

    2011-01-01

    We developed a sensitive spectroscopic method to probe triplet concentration in thin films of polyfluorene (PF) at room temperature. The energy of photoexcited triplet excitons is transferred to the guest metal-organic complex, meso-tetratolylporphyrin-Pd (PdTPP), and detected as phosphorescent

  16. Photoswitching of triplet-triplet annihilation upconversion with photo-generated radical from hexaphenylbiimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Zafar [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Toffoletti, Antonio [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova (Italy); Zhao, Jianzhang, E-mail: zhaojzh@dlut.edu.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Barbon, Antonio, E-mail: antonio.barbon@unipd.it [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova (Italy)

    2017-03-15

    Photoirradiation generated radical from hexaphenyl-biimidazole (HPBI) was used for reversible switching of triplet-triplet annihilation (TTA) upconversion, based on quenching of the photosensitizer triplet state by radical-triplet pair mechanism. Upon 365 nm irradiation, the TTA upconversion in a system composed by a boron-dipyrromethene (BODIPY) derivative and perylene, was completely switched off due to quenching of triplet state of photosensitizer by photogenerated radical from HPBI. The upconversion was recovered after leaving the samples in darkness, due to regeneration of HPBI Dimer. The photophysical process involved in the photochromism and photoswitching of TTA upconversion were studied with steady-state UV–vis absorption spectroscopy, nanosecond transient absorption spectroscopy and EPR spectroscopy. - Graphical abstract: Radical-switched TTA upconversion was achieved with reversible quenching of the triplet state by photo-generated stable organic radical from photochromic hexaphenylbiimidazole.

  17. New leptons, quarks and leptoquarks in high energy e+e- annihilation

    International Nuclear Information System (INIS)

    Buchmueller, W.

    1992-01-01

    Extensions of the standard model predict new spin-1/2 and spin-0 particles which may be colour singlets or colour triplets. We study pair production and single production of these particles in e + e - annihilation at 500 GeV center-of-mass energy. With the projected NLC luminosity, in most cases the production of new particles with masses close to the kinematical limit will be possible. We also discuss properties of final states resulting from heavy neutrino decays. (orig.)

  18. Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber.

    Science.gov (United States)

    Shamoto, Yuta; Yagi, Mikio; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Kikuchi, Azusa

    2017-09-13

    Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet-triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.

  19. Photo-oxidation of proteins and its role in cataractogenesis

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Truscott, R J

    2001-01-01

    by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated by the transfer of energy to ground...... state (triplet) molecular oxygen by either protein-bound, or other, chromophores. The basic principles behind these mechanisms of photo-oxidation of amino acids, peptides and proteins and the potential selectivity of damage are discussed. Emphasis is placed primarily on the intermediates...

  20. Relative and absolute level populations in beam-foil--excited neutral helium

    International Nuclear Information System (INIS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n -3 , but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number

  1. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    Science.gov (United States)

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  2. Understanding and Calibrating Density-Functional-Theory Calculations Describing the Energy and Spectroscopy of Defect Sites in Hexagonal Boron Nitride.

    Science.gov (United States)

    Reimers, Jeffrey R; Sajid, A; Kobayashi, Rika; Ford, Michael J

    2018-03-13

    Defect states in 2-D materials present many possible uses but both experimental and computational characterization of their spectroscopic properties is difficult. We provide and compare results from 13 DFT and ab initio computational methods for up to 25 excited states of a paradigm system, the V N C B defect in hexagonal boron nitride (h-BN). Studied include: (i) potentially catastrophic effects for computational methods arising from the multireference nature of the closed-shell and open-shell states of the defect, which intrinsically involves broken chemical bonds, (ii) differing results from DFT and time-dependent DFT (TDDFT) calculations, (iii) comparison of cluster models to periodic-slab models of the defect, (iv) the starkly differing effects of nuclear relaxation on the various electronic states that control the widths of photoabsorption and photoemission spectra as broken bonds try to heal, (v) the effect of zero-point energy and entropy on free-energy differences, (vi) defect-localized and conduction/valence-band transition natures, and (vii) strategies needed to ensure that the lowest-energy state of a defect can be computationally identified. Averaged state-energy differences of 0.3 eV are found between CCSD(T) and MRCI energies, with thermal effects on free energies sometimes also being of this order. However, DFT-based methods can perform very poorly. Simple generalized-gradient functionals like PBE fail at the most basic level and should never be applied to defect states. Hybrid functionals like HSE06 work very well for excitations within the triplet manifold of the defect, with an accuracy equivalent to or perhaps exceeding the accuracy of the ab initio methods used. However, HSE06 underestimates triplet-state energies by on average of 0.7 eV compared to closed-shell singlet states, while open-shell singlet states are predicted to be too low in energy by 1.0 eV. This leads to misassignment of the ground state of the V N C B defect. Long

  3. Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant

    OpenAIRE

    Tianyou Zhang; Bo Zhao; Bei Chu; Wenlian Li; Zisheng Su; Xingwu Yan; Chengyuan Liu; Hairuo Wu; Yuan Gao; Fangming Jin; Fuhua Hou

    2015-01-01

    Exciplex is well known as a charge transfer state formed between electron-donating and electron-accepting molecules. However, exciplex based organic light emitting diodes (OLED) often performed low efficiencies relative to pure phosphorescent OLED and could hardly be used to construct white OLED (WOLED). In this work, a new mechanism is developed to realize efficient WOLED with extremely simple structure by redistributing the energy of triplet exciplex to both singlet exciplex and the orange ...

  4. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations

    Directory of Open Access Journals (Sweden)

    Gloria Mazzone

    2016-02-01

    Full Text Available The main photophysical properties of a series of expanded bacteriochlorins, recently synthetized, have been investigated by means of DFT and TD-DFT methods. Absorption spectra computed with different exchange-correlation functionals, B3LYP, M06 and ωB97XD, have been compared with the experimental ones. In good agreement, all the considered systems show a maximum absorption wavelength that falls in the therapeutic window (600–800 nm. The obtained singlet-triplet energy gaps are large enough to ensure the production of cytotoxic singlet molecular oxygen. The computed spin-orbit matrix elements suggest a good probability of intersystem spin-crossing between singlet and triplet excited states, since they result to be higher than those computed for 5,10,15,20-tetrakis-(m-hydroxyphenylchlorin (Foscan© already used in the photodynamic therapy (PDT protocol. Because of the investigated properties, these expanded bacteriochlorins can be proposed as PDT agents.

  5. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Kvíčalová, Z.; Alster, J.; Hofmann, E.; Khoroshyy, P.; Litvín, Radek; Bína, David; Polívka, Tomáš; Pšenčík, J.

    2016-01-01

    Roč. 1857, č. 4 (2016), s. 341-349 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Dinoflagellate * Chlorophyll * Carotenoid * Triplet state Subject RIV: BO - Biophysics Impact factor: 4.932, year: 2016

  6. Dibenzoheptazethrene isomers with different biradical characters: An exercise of clar's aromatic sextet rule in singlet biradicaloids

    KAUST Repository

    Sun, Zhe

    2013-12-04

    Clar\\'s aromatic sextet rule has been widely used for the prediction of the reactivity and stability of polycyclic aromatic hydrocarbons with a closed-shell electronic configuration. Recent advances in open-shell biradicaloids have shown that the number of aromatic sextet rings plays an important role in determination of their ground states. In order to test the validity of this rule in singlet biradicaloids, the two soluble and stable dibenzoheptazethrene isomers DBHZ1 and DBHZ2 were prepared by different synthetic approaches and isolated in crystalline form. These two molecules have different numbers of aromatic sextet rings in their respective biradical resonance forms and thus are expected to exhibit varied singlet biradical character. This assumption was verified by different experimental methods, including nuclear magnetic resonance (NMR), electron spin resonance (ESR), superconducting quantum interference device (SQUID), steady-state and transient absorption spectroscopy (TA), and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. DBHZ2, with more aromatic sextet rings in the biradical form, was demonstrated to possess greater biradical character than DBHZ1; as a result, DBHZ2 exhibited an intense one-photon absorption (OPA) in the near-infrared region (λabs max = 804 nm) and a large two-photon absorption (TPA) cross-section (σ(2)max = 2800 GM at 1600 nm). This investigation together with previous studies indicates that Clar\\'s aromatic sextet rule can be further extended to the singlet biradicaloids to predict their ground states and singlet biradical characters. © 2013 American Chemical Society.

  7. Dictating photoreactivity through restricted bond rotations: cross-photoaddition of atropisomeric acrylimide derivatives under UV/visible-light irradiation.

    Science.gov (United States)

    Iyer, Akila; Jockusch, Steffen; Sivaguru, J

    2014-11-13

    Nonbiaryl atropisomeric acrylimides underwent facile [2 + 2] photocycloaddition leading to cross-cyclobutane adducts with very high stereospecificity (enantiomeric excess (ee): 99% and diastereomeric excess (de): 99%). The photoreactions proceeded smoothly in isotropic media for both direct and triplet sensitized irradiations. The reactions were also found to be very efficient in the solid state where the same cross-cyclobutane adduct was observed. Photophysical studies enabled us to understand the excited-state photochemistry of acrylimides. The triplet energy was found to be ∼63 kcal/mol. The reactions proceeded predominantly via a singlet excited state upon direct irradiation with very poor intersystem crossing that was ascertained by quantification of the generated singlet oxygen. The reactions progressed smoothly with triplet sensitization with UV or visible-light irradiations. Laser flash photolysis experiments established the triplet transient of atropisomeric acrylimides with a triplet lifetime at room temperature of ∼40 ns.

  8. Ab initio study of isomerism in molecular Li2AB+ ions with 12 and 14 valence electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; Mak-Ki, M.L.; Shlojer, P.R.

    1997-01-01

    Ab initio calculations of potential energy surfaces (PES) of molecular ions Li 2 AB + with 12 and 14 valence electrons have been made in the framework of approximations MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) and MP4SDTQ/6-31*//MP2/6-31G*+ZPE(MP2/6-31G*). The following most favourable structures have been found: a double-terminal linear for LiNO + (a triplet); a plane bicyclic one for Li 2 OF + , Li 2 SCl + , Li 2 NO + (a singlet) and Li 2 PS + (a singlet), where both cations are coordinated to A-B bond; rectangular (T-shaped) for Li 2 OCl + and SFLi + , as well as for LiNS + and POLi 2 + ions in singlet and triplet states; in the form of a half-opened butterfly for Li 2 PS + (a triplet) and Li 2 SCl +

  9. Photoelectron Spectroscopy of Substituted Phenylnitrenes

    Science.gov (United States)

    Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.

    2009-06-01

    Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.

  10. Green's function approach to the anisotropic Kondo-necklace lattice

    International Nuclear Information System (INIS)

    Rezania, H.; Langari, A.; Thalmeier, P.

    2007-01-01

    Full text: We have studied the effect of anisotropy on the quantum phase transition of the 2D anisotropic Kondo necklace lattice [1] within a Green's function approach [2]. In the disordered phase the ground state is the product of all singlet bonds between itinerant and localized spins. It is separated by a finite energy gap from the triplet excited states. The quantum phase transition to the antiferromagnetically ordered phase takes place where the gap vanishes. In this approach we use the bond operator formalism introduced in Ref.[3] where each bond is represented by the singlet and triplet operators. The Kondo necklace Hamiltonian in the bond operator representation is composed of the kinetic energy and pairing part (H2), the two particle interaction (H4) of the boson gas and a term which includes three boson operators (H3). In order to ensure that the physical states are either singlets or triplets we impose the hard-core condition by introducing an infinite on-site repulsion between triplet bosons (H U ). The scattering vertex in the ladder approximation satisfies the Bethe-Salpeter equation [4]. By calculating the scattering vertex function we obtain the self energy contribution of the Hamiltonian H U . We have added the second order contribution of the self energy of H3 to the self energy of H U . It should be noted that the non conservation of triplet boson numbers requires the inclusion of the anomalous Green's functions. We treat H 4 in mean-field theory, by splitting the quartic operator into all possible pairs. Finally we obtain the renormalization of coefficients in the H 2 Hamiltonian and calculate the energy gap. Indeed at the critical point a condensation of triplet bosons occurs. We have numerically found the critical point of this model and compared our results with the corresponding mean field values [5]. Moreover, the critical exponent of the energy gap can be obtained more accurately than the mean field results. (authors)

  11. Synthesis, photoluminescence and intramolecular energy transfer model of a dysprosium complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Aiqin; Zhang Jiuli; Pan Qiliang; Wang Shuhua [College of Materials Science and Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Jia Husheng, E-mail: Jia_Husheng@126.com [College of Materials Science and Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi 030024 (China) and Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Xu Bingshe [College of Materials Science and Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China)

    2012-04-15

    The energy of the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as their energy gaps, and the singlet and triplet state energy levels of 4-benzoylbenzoic acid (HL=4-BBA) and triphenylphosphine oxide (TPPO) were calculated with the Gaussian03 program package. The singlet state and triplet state energy levels were also estimated from the UV-vis absorption spectra and phosphorescence spectra. The results suggest that the calculated values approximately coincided with the experimental values. A Dy(III) complex was synthesized with 4-BBA as primary ligand and TPPO as neutral ligand. The structure of the complex was characterized by elemental analysis, {sup 1}H NMR spectrometry, and FTIR spectrometry. TG-DTG analysis indicates that the complex kept stable up to 305 Degree-Sign C. The photoluminescence properties were studied by fluorescence spectrometry. The results show that Dy(III) ion sensitized by 4-BBA and TPPO emitted characteristic peaks at 572 nm ({sup 4}F{sub 9/2}-{sup 6}H{sub 13/2}) and 480 nm ({sup 4}F{sub 9/2}-{sup 6}H{sub 15/2}), and its Commission Internationale de L'Eclairge coordinates were calculated as x=0.33 and y=0.38, being located in the white range. Intermolecular energy transfer process was discussed and energy transfer model was also proposed. - Highlights: Black-Right-Pointing-Pointer Quantum calculation provides theoretical method of ligand choice for rare earth. Black-Right-Pointing-Pointer The complex Dy(L){sub 3}(TPPO){sub 2} emitted white light. Black-Right-Pointing-Pointer The CIE coordinates were calculated as x=0.33 and y=0.38. Black-Right-Pointing-Pointer Energy transfer in Dy(L){sub 3}(TPPO){sub 2} followed Dexter electron exchange theory.

  12. Chemical effects of low-energy electron impact on hydrocarbons in the gas phase. II. Propene

    International Nuclear Information System (INIS)

    Derai, R.; Danon, J.

    1977-01-01

    The chemical effects of low-energy (3.5 to 15.0 eV) electron impact on propene were investigated. The setup used for the irradiations has previously been described. Appearance curves for stable products were determined, from which correlations between products and precursors were deduced. In the excitation range, the main precursors are the triplet state at 4.4 eV and various singlet states around 7.0 and 9.0 eV. Above the ionization potential, contribution from superexcited molecules and ions was noted. Superexcited molecules are formed with a much higher cross section than excited molecules. A reaction scheme was proposed to account for the chemical effects associated with excited states and the yields of excited molecules in dissociating states were derived from experimental data. Results concerning the fragmentation of propene excited in singlet states conform to photolysis data. The following new results were obtained: the decomposition of propene excited in the triplet state at 4.4 eV involves mainly C--C bond rupture; the decomposition processes of superexcited and excited molecules are similar. A higher degree of fragmentation is observed in the case of superexcited molecules

  13. Colored triplets with integral quantum numbers

    International Nuclear Information System (INIS)

    Han, M.Y.

    1974-01-01

    The systematics of low-lying hadron spectra and the relations between mass, cross-section and magnetic moment in terms of ''constituent'' quarks on one hand, and abstraction of the properties of hadronic weak and electromagnetic current in terms of ''current'' quarks on the other hand have been extremely useful. In the category of three triplet models, there are several versions with the varying degree of similarity and difference among them. These include; (1) the paraquarks of order three, (2) the three triplets with SU(3)' x SU(3)'' symmetry, (3) SUB version by Cabibbo et al., and (4) perfect ''color'' symmetry by Gell-Mann. The physical difference among these various versions of the three triplet models and their consequence are discussed with respect to some of the current theoretical and experimental topics. (Iwase, T.)

  14. Triplet Transport to and Trapping by Acceptor End Groups on Conjugated Polyfluorene Chains

    Energy Technology Data Exchange (ETDEWEB)

    Sreearunothai, P.; Miller, J.; Estrada, A.; Asaoka, S.; Kowalczyk, M.; Jang, S.; Cook, A.R.; Preses, J.M.

    2011-08-31

    Triplet excited states created in polyfluorene (pF) molecules having average lengths up to 170 repeat units were transported to and captured by trap groups at the ends in less {approx}40 ns. Almost all of the triplets attached to the chains reached the trap groups, ruling out the presence of substantial numbers of defects that prevent transport. The transport yields a diffusion coefficient D of at least 3 x 10{sup -4} cm{sup 2} s{sup -1}, which is 30 times typical molecular diffusion and close to a value for triplet transport reported by Keller (J. Am. Chem. Soc.2011, 133, 11289-11298). The triplet states were created in solution by pulse radiolysis; time resolution was limited by the rate of attachment of triplets to the pF chains. Naphthylimide (NI) or anthraquinone (AQ) groups attached to the ends of the chains acted as traps for the triplets, although AQ would not have been expected to serve as a trap on the basis of triplet energies of the separate molecules. The depths of the NI and AQ triplet traps were determined by intermolecular triplet transfer equilibria and temperature dependence. The trap depths are shallow, just a few times thermal energy for both, so a small fraction of the triplets reside in the pF chains in equilibrium with the end-trapped triplets. Trapping by AQ appears to arise from charge transfer interactions between the pF chains and the electron-accepting AQ groups. Absorption bands of the end-trapped triplet states are similar in peak wavelength (760 nm) and shape to the 760 nm bands of triplets in the pF chains but have reduced intensities. When an electron donor, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), is added to the solution, it reacts with the end-trapped triplets to remove the 760 nm bands and to make the trapping irreversible. New bands created upon reaction with TMPD may be due to charge transfer states.

  15. Long-range corrected density functional theory study on static second hyperpolarizabilities of singlet diradical systems.

    Science.gov (United States)

    Kishi, Ryohei; Bonness, Sean; Yoneda, Kyohei; Takahashi, Hideaki; Nakano, Masayoshi; Botek, Edith; Champagne, Benoît; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Tsuneda, Takao

    2010-03-07

    Within the spin-unrestricted density functional theory (DFT) the long-range correction (LC) scheme combined with the Becke-Lee-Yang-Parr exchange-correlation functional, referred to as LC-UBLYP method, has been applied to the calculation of the second hyperpolarizability (gamma) of open-shell singlet diradical systems of increasing complexity and has demonstrated good performance: (i) for the simplest H(2) dissociation model, the gamma values calculated by the LC-UBLYP method significantly overshoot the full configuration interaction result but reproduce qualitatively the evolution of gamma as a function of the diradical character, (ii) for small singlet diradical 1,3-dipole systems, the diradical character dependence of gamma determined by the UCCSD and UCCSD(T) reference methods is reproduced semiquantitatively by the LC-UBLYP method except in the small diradical character region, where the spin-unrestricted solutions coincide with spin-restricted solutions, (iii) the LC-UBLYP method also closely reproduces the UCCSD(T) results on the diradical character dependence of gamma of the p-quinodimethane model system, particularly in the intermediate and large diradical character regions, whereas it shows an abrupt change for a diradical character (y) close to 0.2 originating from the triplet instability, (iv) the reliability of LC-UBLYP to reproduce reference coupled cluster results on open-shell singlet systems with intermediate and large diradical characters has also been substantiated in the case of gamma of 1,4-bis-(imidazol-2-ylidene)-cyclohexa-2,5-diene (BI2Y), then (v), for real systems built from a pair of phenalenyl radicals separated by a conjugated linker, the LC-UBLYP results have been found to closely match the UBHandHLYP values-which, for small systems are in good agreement with those obtained using correlated molecular orbital methods-whereas the UB3LYP results can be much different. These results are not only important from the viewpoint of an efficient

  16. Intralayer and interlayer spin-singlet pairing and energy gap functions with different possible symmetries in high-Tc layered superconductors

    International Nuclear Information System (INIS)

    Jha, S.S.; Rajagopal, A.K.

    1997-01-01

    Anisotropy and the wave-vector dependence of the energy gap function determine many important properties of a superconductor. Starting from first principles, we present here a complete analysis of possible symmetries of the superconducting gap function E g (k) at the Fermi surface in high-T c layered superconductors with either a simple orthorhombic or a tetragonal unit cell. This is done within the framework of Gorkov close-quote s mean-field theory of superconductivity in the so-called open-quotes layer representationclose quotes introduced by us earlier. For N conducting cuprate layers, J=1,2,hor-ellipsis,N, in each unit cell, the spin-singlet order parameters Δ JJ (k) can be expanded in terms of possible basis functions of all the irreducible representations relevant to layered crystals, which are obtained here. In layered materials, the symmetry is restricted to the translational lattice periodicity in the direction perpendicular to the layers and the residual point group and translational symmetries for the two-dimensional unit cell in each layer of the three-dimensional unit cell. We derive an exact general relation to determine different branches of the energy gap function E g (k) at the Fermi surface in terms of Δ JJ (k), which include both intralayer and interlayer order parameters. For N=2, we also obtain an exact expression for quasiparticle energies E p (k), p=1,2, in the superconducting state in the presence of intralayer and complex interlayer order parameters as well as complex tunneling matrix elements between the two layers in the unit cell, which need not be equivalent. The form of the possible basis functions are also listed in terms of cylindrical coordinates k t ,φ,k z to take advantage of the orthogonality of functions with respect to φ integrations. (Abstract Truncated)

  17. Relative and absolute level populations in beam-foil-excited neutral helium

    Science.gov (United States)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  18. Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material

    Directory of Open Access Journals (Sweden)

    Kata Hajdu

    2017-12-01

    Full Text Available Photosynthetic reaction center proteins (RCs are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs. Carboxyl—and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of 1O2 either by physical (resonance energy transfer or by chemical (oxidation reaction and their efficiency showed dependence on the diffusion distance of 1O2.

  19. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7.

    Science.gov (United States)

    Borges, Itamar

    2014-03-01

    Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the n₀→π type-typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 1¹A, 2¹A and 8¹A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans' energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans' theorem.

  20. Delayed fluorescence of meso-tetraphenylporphyrin in acetone and in dimethylsulphoxide

    International Nuclear Information System (INIS)

    Korinek, M.; Klinger, P.; Dedic, R.; Psencik, J.; Svoboda, A.; Hala, J.

    2007-01-01

    Photodynamic therapy is based on photosensitisation of singlet oxygen by porphyrin-like molecules. We have performed a systematic study of delayed fluorescence of tetraphenylporphyrin in acetone (used as a spectroscopic standard) and in dimethylsulphoxide (clinically used solvent) to obtain spectra, kinetics, and quantum yields, including their dependencies on tetraphenylporphyrin concentration. In dimethylsulphoxide the repopulation of excited singlets and subsequent delayed fluorescence is caused by triplet-triplet quenching with rate constant of (2.2±1.0)x10 9 l mol -1 s -1 . However, repopulation of excited singlets in acetone is also caused by singlet oxygen reaction with triplet tetraphenylporphyrin causing monoexponential delayed fluorescence decay with the lifetime 0.3 μs. Due to much lower viscosity of acetone compared to dimethylsulphoxide, triplet-triplet quenching constant in acetone is much higher (1.7±0.7)x10 10 l mol -1 s -1 . The rate constant for the reaction of singlet oxygen with triplet of tetraphenylporphyrin is (2.0±0.8)x10 10 l mol -1 s -1 in acetone

  1. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  2. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  3. Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions

    Science.gov (United States)

    Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng

    2018-04-01

    We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.

  4. Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation

    International Nuclear Information System (INIS)

    Bensasson, R.; Land, E.J.; Maudinas, B.

    1976-01-01

    Absorptions of the triplet excited states of five carotenoids (15,15'-cis phytoene, all-trans phytoene, zeta-carotene, spheroidene and spirillox-anthin), extracted from the photosynthetic bacteria Rhodopseudomonas spheroides and Rhodospirillum rubrum, have been detected in solution using pulse radiolysis and laser flash photolysis. Triplet lifetimes, extinction coefficients, lowest energy levels and quantum efficiencies of formation have been determined. Comparison of the carotenoid triplet energy levels with that of O 2 ('Δsub(g)) suggests that spirilloxanthin, spheroidene and possibly also zeta-carotene, would be expected to protect against photodynamic action caused by O 2 ('Δsub(g)), but not cis or trans phytoene. The S → T intersystem crossing efficiencies of all five polyenes were found to be low, being a few per cent or less. In their protective role these triplet states can only therefore be effectively reached via energy transfer from another triplet, except in the case of O 2 (Δsub(g)). The low crossover efficiencies also mean that light absorbed in such carotenoids in their possible role as accessory pigments would not be wasted in crossing over to the triplet state. (author)

  5. Triplet exciton dynamics

    International Nuclear Information System (INIS)

    Strien, A.J. van.

    1981-01-01

    Results are presented of electron spin echo experiments combined with laser flash excitation on triplet states of aromatic molecules. Some of the theoretical and experimental aspects of the photoexcited triplet state are discussed in detail and the electron spin echo spectrometers and laser systems are described. All the experiments described in this thesis were performed at liquid helium temperatures. An account is given of the ESE experiments performed on the photoexcited, non-radiative, triplet state of pentacene in napthalene. This is an example of the ESE technique being used to ascertain the zero-field splitting parameters, the populating and depopulating rates, and the orientation of the pentacene molecules in the naphthalene host. A combination of high resolution laser flash excitation and electron-spin echoes in zero-magnetic field allowed the author to observe directly k(vector)→k(vector)' exciton scattering processes in the one-dimensional triplet excitons in tetrachlorobenzene for the first time. Additional experimental data about exciton scattering is provided and a study of the orientational dependence of the spin-lattice relaxation of the triplet excitons in an external magnetic field is described. (Auth.)

  6. Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films.

    Science.gov (United States)

    Hartnett, Patrick E; Margulies, Eric A; Mauck, Catherine M; Miller, Stephen A; Wu, Yilei; Wu, Yi-Lin; Marks, Tobin J; Wasielewski, Michael R

    2016-02-25

    Singlet exciton fission (SF) is a promising strategy for increasing photovoltaic efficiency, but in order for SF to be useful in solar cells, it should take place in a chromophore that is air-stable, highly absorptive, solution processable, and inexpensive. Unlike many SF chromophores, diketopyrrolopyrrole (DPP) conforms to these criteria, and here we investigate SF in DPP for the first time. SF yields in thin films of DPP derivatives, which are widely used in organic electronics and photovoltaics, are shown to depend critically on crystal morphology. Time-resolved spectroscopy of three DPP derivatives with phenyl (3,6-diphenylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, PhDPP), thienyl (3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, TDPP), and phenylthienyl (3,6-di(5-phenylthiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, PhTDPP) aromatic substituents in 100-200 nm thin films reveals that efficient SF occurs only in TDPP and PhTDPP (τSF = 220 ± 20 ps), despite the fact that SF is most exoergic in PhDPP. This result correlates well with the greater degree of π-overlap and closer π-stacking in TDPP (3.50 Å) and PhTDPP (3.59 Å) relative to PhDPP (3.90 Å) and demonstrates that SF in DPP is highly sensitive to the electronic coupling between adjacent chromophores. The triplet yield in PhTDPP films is determined to be 210 ± 35% by the singlet depletion method and 165 ± 30% by the energy transfer method, showing that SF is nearly quantitative in these films and that DPP derivatives are a promising class of SF chromophores for enhancing photovoltaic performance.

  7. Signatures for exotic quark singlets from superstrings

    International Nuclear Information System (INIS)

    Barger, V.; Deshpande, N.G.; Gunion, J.F.

    1986-09-01

    We consider various scenarios, at Superconducting Super Collider energy and luminosity, for detection of the extra colored, weak isospin singlet, charge -1/3 heavy fermion resulting from E 6 compactification in superstring theories

  8. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  9. NEUTRON-PROTON EFFECTIVE RANGE PARAMETERS AND ZERO-ENERGY SHAPE DEPENDENCE.

    Energy Technology Data Exchange (ETDEWEB)

    HACKENBURG, R.W.

    2005-06-01

    A completely model-independent effective range theory fit to available, unpolarized, np scattering data below 3 MeV determines the zero-energy free proton cross section {sigma}{sub 0} = 20.4287 {+-} 0.0078 b, the singlet apparent effective range r{sub s} = 2.754 {+-} 0.018{sub stat} {+-} 0.056{sub syst} fm, and improves the error slightly on the parahydrogen coherent scattering length, a{sub c} = -3.7406 {+-} 0.0010 fm. The triplet and singlet scattering lengths and the triplet mixed effective range are calculated to be a{sub t} = 5.4114 {+-} 0.0015 fm, a{sub s} = -23.7153 {+-} 0.0043 fm, and {rho}{sub t}(0,-{epsilon}{sub t}) = 1.7468 {+-} 0.0019 fm. The model-independent analysis also determines the zero-energy effective ranges by treating them as separate fit parameters without the constraint from the deuteron binding energy {epsilon}{sub t}. These are determined to be {rho}{sub t}(0,0) = 1.705 {+-} 0.023 fm and {rho}{sub s}(0,0) = 2.665 {+-} 0.056 fm. This determination of {rho}{sub t}(0,0) and {rho}{sub s}(0,0) is most sensitive to the sparse data between about 20 and 600 keV, where the correlation between the determined values of {rho}{sub t}(0,0) and {rho}{sub s}(0,0) is at a minimum. This correlation is responsible for the large systematic error in r{sub s}. More precise data in this range are needed. The present data do not event determine (with confidence) that {rho}{sub t}(0,0) {ne} {rho}{sub t}(0, -{epsilon}{sub t}), referred to here as ''zero-energy shape dependence''. The widely used measurement of {sigma}{sub 0} = 20.491 {+-} 0.014 b from W. Dilg, Phys. Rev. C 11, 103 (1975), is argued to be in error.

  10. Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Klimachev, Yu. M.; Kotkov, A. A.; Kochetov, I. V.; Napartovich, A. P.; Podmar'kov, Yu. P.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.; Frolov, M. P.; Yuryshev, N. N.

    2006-01-01

    Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (∼18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ∼2 to ∼11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results

  11. Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: Experiment validates theory

    Science.gov (United States)

    Fu, Bina; Han, Yong-Chang; Bowman, Joel M.; Angelucci, Luca; Balucani, Nadia; Leonori, Francesca; Casavecchia, Piergiorgio

    2012-01-01

    The O(3P) + C2H4 reaction, of importance in combustion and atmospheric chemistry, stands out as a paradigm reaction involving triplet- and singlet-state potential energy surfaces (PESs) interconnected by intersystem crossing (ISC). This reaction poses challenges for theory and experiments owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Primary products from five competing channels (H + CH2CHO, H + CH3CO, H2 + CH2CO, CH3 + HCO, CH2 + CH2O) and branching ratios (BRs) are determined in crossed molecular beam experiments with soft electron-ionization mass-spectrometric detection at a collision energy of 8.4 kcal/mol. As some of the observed products can only be formed via ISC from triplet to singlet PESs, from the product BRs the extent of ISC is inferred. A new full-dimensional PES for the triplet state as well as spin-orbit coupling to the singlet PES are reported, and roughly half a million surface hopping trajectories are run on the coupled singlet-triplet PESs to compare with the experimental BRs and differential cross-sections. Both theory and experiment find almost equal contributions from the two PESs to the reaction, posing the question of how important is it to consider the ISC as one of the nonadiabatic effects for this and similar systems involved in combustion chemistry. Detailed comparisons at the level of angular and translational energy distributions between theory and experiment are presented for the two primary channel products, CH3 + HCO and H + CH2CHO. The agreement between experimental and theoretical functions is excellent, implying that theory has reached the capability of describing complex multichannel nonadiabatic reactions. PMID:22665777

  12. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder

    KAUST Repository

    Zheng, Zilong

    2017-05-08

    We investigate the impact of electronic polarization, charge delocalization, and energetic disorder on the charge-transfer (CT) states formed at a planar C60/pentacene interface. The ability to examine large complexes containing up to seven pentacene molecules and three C60 molecules allows us to take explicitly into account the electronic polarization effects. These complexes are extracted from a bilayer architecture modeled by molecular dynamics simulations and evaluated by means of electronic-structure calculations based on long-range-separated functionals (ωB97XD and BNL) with optimized range-separation parameters. The energies of the lowest charge-transfer states derived for the large complexes are in very good agreement with the experimentally reported values. The average singlet-triplet energy splittings of the lowest CT states are calculated not to exceed 10 meV. The rates of geminate recombination as well as of dissociation of the triplet excitons are also evaluated. In line with experiment, our results indicate that the pentacene triplet excitons generated through singlet fission can dissociate into separated charges on a picosecond time scale, despite the fact that their energy in C60/pentacene heterojunctions is slightly lower than the energies of the lowest CT triplet states.

  13. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.

    Science.gov (United States)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-11-28

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.

  14. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-01-01

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N 2 , O 2 , and the polyyne C 10 H 2 ) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions

  15. Is N-protonated hydrogen isocyanide, H2NC+, an observable interstellar species?

    International Nuclear Information System (INIS)

    DeFrees, D.J.; Binkley, J.S.; Frisch, M.J.; McLean, A.D.

    1986-01-01

    Ab initio molecular orbital theory is used to examine the singlet and triplet potential energy surfaces for the CH 2 N + system. The results confirm those of earlier studies which suggested that the singlet H 2 NC + isomer could be formed via the corresponding triplet isomer. Also, it is shown that the reaction HCN + +H 2 might lead to this metastable isomer without invoking the triplet species. The best test of the hypothesis that this molecule can be formed by gas phase, ion molecule reactions and may be an important precursor in the interstellar synthesis of HCN and HNC is to search for it in space. To this end, theoretical predictions are made of its rotational frequencies and its vibrational frequencies and intensities to serve as a guide to laboratory spectroscopists and radioastronomers

  16. Triplets pass their pressure test

    CERN Multimedia

    2007-01-01

    All the LHC inner triplets have now been repaired and are in position. The first ones have passed their pressure tests with flying colours. The repaired inner triplet at LHC Point 1, right side (1R). Ranko Ostojic (on the right), who headed the team responsible for repairing the triplets, shows the magnet to Robert Zimmer, President of the University of Chicago and of Fermi Research Alliance, who visited CERN on 20th August.Three cheers for the triplets! All the LHC inner triplets have now been repaired and are in position in the tunnel. Thanks to the mobilisation of a multidisciplinary team from CERN and Fermilab, assisted by the KEK Laboratory and the Lawrence Berkeley National Laboratory (LBNL), a solution has been found, tested, validated and applied. At the end of March this year, one of the inner triplets at Point 5 failed to withstand a pressure test. A fault was identified in the supports of two out of the three quadruple magne...

  17. Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters.

    Science.gov (United States)

    Kremer, Adrian; Aurisicchio, Claudia; De Leo, Federica; Ventura, Barbara; Wouters, Johan; Armaroli, Nicola; Barbieri, Andrea; Bonifazi, Davide

    2015-10-19

    The synthesis, X-ray crystal structures, ground- and excited-state UV/Vis absorption spectra, and luminescence properties of chalcogen-doped organic emitters equipped on both extremities with benzoxa-, benzothia-, benzoselena- and benzotellurazole (1X and 2X ) moieties have been reported for the first time. The insertion of the four different chalcogen atoms within the same molecular skeleton enables the investigation of only the chalcogenic effect on the organisation and photophysical properties of the material. Detailed crystal-structure analyses provide evidence of similar packing for 2O -2Se , in which the benzoazoles are engaged in π-π stacking and, for the heavier atoms, in secondary X⋅⋅⋅X and X⋅⋅⋅N bonding interactions. Detailed computational analysis shows that the arrangement is essentially governed by the interplay of van der Waals and secondary bonding interactions. Progressive quenching of the fluorescence and concomitant onset of phosphorescence features with gradually shorter lifetimes are detected as the atomic weight of the chalcogen heteroatom increases, with the tellurium-doped derivatives exhibiting only emission from the lowest triplet excited state. Notably, the phosphorescence spectra of the selenium and tellurium derivatives can be recorded even at room temperature; this is a very rare finding for fully organic emitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF ...

    African Journals Online (AJOL)

    a

    Solar Energy and Photochemistry Laboratory, Department of Chemistry, University College ..... singlet state which then undergo intersystem crossing to their triplet state. ... are removed by the dissolved molecular oxygen to produce superoxide.

  19. Birth weight discordance and perinatal mortality among triplets

    Directory of Open Access Journals (Sweden)

    Egić Amira

    2005-01-01

    Full Text Available INTRODUCTION. The incidence of multiple births has increased in the last decade. Perinatal mortality in triplets is significantly greater than in twin and singleton births. OBJECTIVE. The objective of this study was to describe the extent of birth weight discordance among triplets and to identify its association with an increased risk of perinatal mortality. METHOD A retrospective analysis of triplet births, for the period 1993-2003, was conducted at the Gynaecological-Obstetric Clinic "Narodni Front" in Belgrade. Birth weight discordance was defined as the difference in birth weight between the largest and the smallest triplet's weight of more than 20%. RESULTS. The rate of triplets has increased by almost 75% between the first (7.7% and the last (29.6% 5-year period of the last decade. Triplets are becoming more common because of the frequent use of assisted reproductive technology as a treatment for infertility. In the period 1993-2003, there were a total of 40 triplet live births (24 weeks and greater with incidence of 0.06%. There was no clear association between maternal age, parity, method of conception, birth gestational age, and disorders complicating pregnancy with birth discordance more than 20%. Regarding birth weight groups, statistical significance occurred only in the <999 grams group for discordant and in the 2000-2499 grams group for concordant triplets. Overall, the perinatal mortality rate in the group was 10.8%, the foetal mortality rate was 1.7% (2/120, and the neonatal (0-28 days mortality rate was 9.1% (11/120. An odds ratio of 95% confidence interval shows 3 times greater risk for adverse perinatal outcome in the discordant group. However, the difference was not significant. CONCLUSION. Increasing birth weight discordance may increase the risk of adverse perinatal outcome. Triplet pregnancies, being high risk, require intensive antenatal care in order to prevent preterm delivery and ultrasound in order to diagnose foetal

  20. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.

    2006-01-01

    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...... including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective...

  1. On colour non-singlet representations of the quark-gluon system at finite temperature

    International Nuclear Information System (INIS)

    Abbas, A.; Paria, L.

    2000-01-01

    We use a group theoretical technique to project out the partition function for a system of quarks, antiquarks and gluons onto a particular representation of the internal symmetry group SU(3): the colour singlet, colour octet and colour 27-plet, at finite temperature. We do this to calculate the thermodynamic quantities for those representations. We also calculate the change in free energy of the plasma droplet formed from the hot hadronic gas. We find that the size of the droplet in the colour-octet representation is smaller than that in the colour-singlet representations at different temperatures in the vicinity of the critical temperatures of the phase transitions. (orig.)

  2. The neonatal outcome in twin versus triplet and quadruplet pregnancies

    Directory of Open Access Journals (Sweden)

    Fatemeh Nasseri

    2009-02-01

    Full Text Available

    • BACKGROUND: To assess the risk of neonatal mortality and morbidity in twin, triplet and quadruplet pregnancies.
    • METHODS: In a retrospective study, the neonatal outcome of all twin, triplet and quadruplet gestations delivered from October 2001 to September 2006 was reviewed. The neonatal outcome of triples and quadruplets was compared with a matched group of twins for gestational age.
    • RESULTS: During a 5-year period, 511 sets of twin pregnancies, 42 sets of triplet and 5 sets of quadruplet pregnancies were studied. The mean of gestational age for twins, triplets and quadruplets were 33.92 ± 3.5 weeks, 30.92 ± 3.8 weeks and 31.60 ± 2.0 weeks, respectively, (P = 0.0001. Triplets and quadruplets weighed less than twins, (P = 0.0001. Neonatal mortality was 13.5% for twins, 26.8% for triplets and 30% for quadruplets. In vitro fertilization, use of ovulation induction agents, and cesarean delivery in the women with triplet and quadruplet were significantly higher than in those with twin pregnancies, (P = 0.0001. The mean age of mothers with triplets and quadruplets was significantly higher than with twins (P = 0.026. There was not a significant difference in respiratory and non-respiratory short outcomes between triplets, quadruplets and twins when matched for gestational age. Apgar score at 1 and 5 minutes was significantly lower in triplets and quadruplets than twins. There was no influence of birth order on neonatal mortality of triplet pregnancy. Neonatal mortality of triplet births was significantly decreased over the 5 years of the study period.
    • CONCLUSIONS: Triplets and quadruplets have a similar neonatal outcome as twins when matched for gestational age. There is no influence of birth on the neonatal mortality of triplet pregnancy. It appears that outcome is mainly dependent on gestational age.
    • KEYWORDS: Neonatal

    • Substituent effects on the excited states of phenyl-capped phenylene vinylene tetramers

      NARCIS (Netherlands)

      Candeias, L.P.; Gelinck, G.H.; Piet, J.J.; Piris, J.; Wegewijs, B.; Peeters, E.; Wildeman, J.; Hadziioannou, G.; Müllen, K.

      2001-01-01

      The singlet and triplet excited states of phenyl-capped tetramers of phenylene vinylene with different alkyl, alkoxy or cyano substituents, were investigated in benzene solution. The lowest singlet states were studied by laser flash-photolysis with time-resolved microwave conductivity and

    • Triplet states at an O vacancy in alpha-quartz

      DEFF Research Database (Denmark)

      Lægsgaard, Jesper

      2002-01-01

      The energy landscape of an alpha-quartz O vacancy in the lowest triplet state is investigated. Four local minima are identified and geometries, total energies, and electron paramagnetic resonance (EPR) parameters are obtained. On the basis of calculated values for the magnetic dipole interaction...

    • Can the ''doublet-triplet splitting'' problem be solved without doublet-triplet splitting?

      International Nuclear Information System (INIS)

      Dvali, G.R.

      1992-03-01

      We consider a new possible mechanism for the natural solution of the doublet-triplet splitting problem in SUSY GUTs. In contrast to the usually discussed scenarios, in our case the GUT symmetry breaking does not provide any splitting between the Higgs doublet and the triplet masses. The weak doublet and its colour triplet partner both remain light, but the triplet automatically occurs decoupled from the quark and lepton superfields and cannot induce proton decay. The advantage of the above scenarios is the absence at the GUT scale of the baryon number violating the tree level d = 5 and d = 6 operators via the colour-triple exchange. It is shown that in flipped SU(5) GUT they do not appear at any scale. In the SO(10) model, such operators can be induced after SUSY breaking but are strongly suppressed. (author). 22 refs, 2 figs

    • μ+e-↔μ-e+ transitions via neutral scalar bosons

      International Nuclear Information System (INIS)

      Hou, W.; Wong, G.

      1996-01-01

      With μ→eγ decay forbidden by multiplicative lepton number conservation, we study muonium-antimuonium transitions induced by neutral scalar bosons. Pseudoscalars do not induce conversion for triplet muonium, while, for singlet muonium, pseudoscalar and scalar contributions add constructively. This is in contrast with the usual case of doubly charged scalar exchange, where the conversion rate is the same for both singlet and triplet muonium. Complementary to muonium conversion studies, high energy μ + e - →μ - e + and e - e - →μ - μ - collisions could reveal spectacular resonance peaks for the cases of neutral and doubly charged scalars, respectively. copyright 1996 The American Physical Society

    • Retinopathy of Prematurity in Triplets

      Directory of Open Access Journals (Sweden)

      Mehmet Ali Şekeroğlu

      2016-06-01

      Full Text Available Objectives: To investigate the incidence, severity and risk factors of retinopathy of prematurity (ROP in triplets. Materials and Methods: The medical records of consecutive premature triplets who had been screened for ROP in a single maternity hospital were analyzed and presence and severity of ROP; birth weight, gender, gestational age of the infant; route of delivery and the mode of conception were recorded. Results: A total of 54 triplets (40 males, 14 females who were screened for ROP between March 2010 and February 2013 were recruited for the study. All triplets were delivered by Caesarean section and 36 (66.7% were born following an assisted conception. During follow-up, seven (13% of the infants developed ROP of any stage and two (3.7% required laser photocoagulation. The mean gestational age of triplets with ROP was 27.6±1.5 (27-31 weeks whereas it was 32.0±1.5 (30-34 weeks in those without ROP (p=0.002. The mean birth weights of triplets with and without ROP were 1290.0±295.2 (970-1600 g and 1667.5±222.2 (1130-1960 g, respectively (p<0.001. The presence of ROP was not associated with gender (p=0.358 or mode of conception (p=0.674. Conclusion: ROP in triplets seems to be mainly related to low gestational age and low birth weight. Further prospective randomized studies are necessary to demonstrate risk factors of ROP in triplets and to determine if and how gemelarity plays a role in the development of ROP.

    • First-Principle Characterization for Singlet Fission Couplings.

      Science.gov (United States)

      Yang, Chou-Hsun; Hsu, Chao-Ping

      2015-05-21

      The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

    • Optimal weight gain in triplet pregnancies.

      Science.gov (United States)

      Johnston, Robert C; Erfani, Hadi; Shamshirsaz, Amir A; Spiel, Melissa; Ravangard, Sam F; Shaman, Majid; Allaf, M Baraa; Shamshirsaz, Alireza A; Haeri, Sina

      2017-08-01

      To identify appropriate weight gain in triplet gestations, which may aid in reducing the risk of perinatal morbidity within this high-risk cohort. This retrospective cohort study evaluated all non-anomalous triplet pregnancies between 23 and 40 weeks' gestation resulting in live births at five tertiary-care medical centers between 1991 and 2011. Subjects were divided by pre-pregnancy BMI into underweight, normal-weight, overweight, and obese groups, and then stratified by low (gain (≥1.5 lbs/week). Primary outcomes included spontaneous preterm birth and preeclampsia. We included 116 mothers and 348 corresponding neonates for final analysis. The incidence of preeclampsia and preterm delivery less than 32 weeks' gestation was 37% and 41%, respectively. The incidence of preeclampsia increased with weight gain per week, but was not statistically different from subjects who gained less weight. We found no statistical correlation between weight gain per week and preterm delivery. We found no association between preeclampsia or preterm delivery and increasing weight gain in triplet pregnancies. The association with increased risk for preeclampsia was predominantly due to BMI effect. Based on the current study, recommendations for optimal weight gain in mothers with triplet gestations could not be defined.

    • Quantum Mechanical Determination of Potential Energy Surfaces for TiO and H2O

      Science.gov (United States)

      Langhoff, Stephen R.

      1996-01-01

      We discuss current ab initio methods for determining potential energy surfaces, in relation to the TiO and H2O molecules, both of which make important contributions to the opacity of oxygen-rich stars. For the TiO molecule we discuss the determination of the radiative lifetimes of the excited states and band oscillator strengths for both the triplet and singlet band systems. While the theoretical radiative lifetimes for TiO agree well with recent measurements, the band oscillator strengths differ significantly from those currently employed in opacity calculations. For the H2O molecule we discuss the current results for the potential energy and dipole moment ground state surfaces generated at NASA Ames. We show that it is necessary to account for such effects as core-valence Correlation energy to generate a PES of near spectroscopic accuracy. We also describe how we solve the ro-vibrational problem to obtain the line positions and intensities that are needed for opacity sampling.

    • Molecular model for annihilation rates in positron complexes

      Energy Technology Data Exchange (ETDEWEB)

      Assafrao, Denise [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Department of Applied Mathematics and Theoretical Physics, Queen' s University of Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom); Walters, H.R. James [Department of Applied Mathematics and Theoretical Physics, Queen' s University of Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom); Mohallem, Jose R. [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Department of Applied Mathematics and Theoretical Physics, Queen' s University of Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)], E-mail: rachid@fisica.ufmg.br

      2008-02-15

      The molecular approach for positron interaction with atoms is developed further. Potential energy curves for positron motion are obtained. Two procedures accounting for the nonadiabatic effective positron mass are introduced for calculating annihilation rate constants. The first one takes the bound-state energy eigenvalue as an input parameter. The second is a self-contained and self-consistent procedure. The methods are tested with quite different states of the small complexes HPs, e{sup +}He (electronic triplet) and e{sup +}Be (electronic singlet and triplet). For states yielding the positronium cluster, the annihilation rates are quite stable, irrespective of the accuracy in binding energies. For the e{sup +}Be states, annihilation rates are larger and more consistent with qualitative predictions than previously reported ones.

    • Molecular model for annihilation rates in positron complexes

      International Nuclear Information System (INIS)

      Assafrao, Denise; Walters, H.R. James; Mohallem, Jose R.

      2008-01-01

      The molecular approach for positron interaction with atoms is developed further. Potential energy curves for positron motion are obtained. Two procedures accounting for the nonadiabatic effective positron mass are introduced for calculating annihilation rate constants. The first one takes the bound-state energy eigenvalue as an input parameter. The second is a self-contained and self-consistent procedure. The methods are tested with quite different states of the small complexes HPs, e + He (electronic triplet) and e + Be (electronic singlet and triplet). For states yielding the positronium cluster, the annihilation rates are quite stable, irrespective of the accuracy in binding energies. For the e + Be states, annihilation rates are larger and more consistent with qualitative predictions than previously reported ones

    • Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

      OpenAIRE

      Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

      2015-01-01

      We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

    • Theoretical study of inverted sandwich type complexes of 4d transition metal elements: interesting similarities to and differences from 3d transition metal complexes.

      Science.gov (United States)

      Kurokawa, Yusaku I; Nakao, Yoshihide; Sakaki, Shigeyoshi

      2012-03-08

      Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d(δ) orbitals of M(AIP) and that between the d(δ) and d(π) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d(δ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.

    • Bonding and structure of copper nitrenes.

      Science.gov (United States)

      Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

      2008-11-03

      Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

    • Theoretical study on the photolysis mechanism of 2,3-diazabicyclo[2.2.2]oct-2-ene.

      Science.gov (United States)

      Chen, Hui; Li, Shuhua

      2005-09-28

      A CASPT2/CASSCF study has been carried out to investigate the mechanism of the photolysis of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) under direct and triplet-sensitized irradiation. By exploring the detailed potential energy surfaces including intermediates, transition states, conical intersections, and singlet/triplet crossing points, for the first excited singlet (S(1)) and the low-lying triplet states (T(1), T(2), and T(3)), we provide satisfactory explanations of many experimental findings associated with the photophysical and photochemical processes of DBO. A key finding of this work is the existence of a significantly twisted S(1) minimum, which can satisfactorily explain the envelope of the broad emission band of DBO. It is demonstrated that the S(1) (n-pi*) intermediate can decay to the T(1) (n-pi*) state by undergoing intersystem crossing (rather inefficient) to the T(2) (pi-pi*) state followed by internal conversion to the T(1) state. The high fluorescence yield and the extraordinarily long lifetime of the singlet excited DBO are due to the presence of relatively high barriers, both for intersystem crossing and for C-N cleavage. The short lifetime of the triplet DBO is caused by fast radiationless decay to the ground state.

    • A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures

      KAUST Repository

      Chen, Xiankai; Tsuchiya, Youichi; Ishikawa, Yuma; Zhong, Cheng; Adachi, Chihaya; Bredas, Jean-Luc

      2017-01-01

      In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually

    • Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3 -cored dendrimer

      Science.gov (United States)

      Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.

      2008-02-01

      We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.

    • Status of the scalar singlet dark matter model

      Science.gov (United States)

      Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

      2017-08-01

      One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

    • Glow discharge in singlet oxygen

      International Nuclear Information System (INIS)

      Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

      2003-01-01

      Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  1. Probing the spin multiplicity of gas-phase polycyclic aromatic hydrocarbons through their infrared emission spectrum: a theoretical study.

    Science.gov (United States)

    Falvo, Cyril; Calvo, Florent; Parneix, Pascal

    2012-08-14

    The anharmonic infrared emission spectrum following an optical excitation has been calculated for a variety of polycyclic aromatic hydrocarbon molecules in their ground singlet electronic state or in their triplet state. The computational protocol relies on second-order perturbation theory and involves a quartic vibrational Hamiltonian, the vibrational quantum numbers being sampled according to a Monte Carlo procedure. In the case of neutral naphthalene, the IR spectrum obtained in the (ground) singlet state differs significantly from the spectrum in the triplet state, especially for out-of-plane CH bending modes. Although not as prominent, spectral differences in larger molecules are still observable.

  2. BVRI SURFACE PHOTOMETRY OF ISOLATED GALAXY TRIPLETS

    International Nuclear Information System (INIS)

    Hernandez-Toledo, H. M.; Mendez-Hernandez, H.; Aceves, H.; OlguIn, L.

    2011-01-01

    Optical broadband BVRI observations of 54 galaxies selected from the Catalog of Isolated Triplets of Galaxies in the Northern Hemisphere have been carried out at San Pedro Martir National Observatory to evaluate their photometric and morphological properties. We complement our analysis with Two-Micron All Sky Survey (2MASS) and Sloan Digital Sky Survey (SDSS) images and look for signatures likely related to interactions/mergers. We report apparent/absolute BVRI magnitudes and colors for the 54 galaxies. The membership of these galaxies is re-evaluated by imposing a reasonable condition of concordant redshifts upon the original selection criteria, rendering a final sample of 34 galaxies in 13 triplets, 12 galaxies in close pairs, and 8 galaxy outliers. The triplets are spiral-dominated systems in different dynamical stages from loosely interacting to almost merged objects. The incidence fraction of features likely associated with interactions is ∼56%, similar to those found in northern and southern compact groups. The average fraction of bars is 35% with a mean value of maximum bar ellipticity ε max ∼ 0.4. Bars are hosted in the late-type triplet spirals, almost twice more than in early-type spirals. The global fraction of rings is 20%, all in the late-type components. The overdensity of triplets with respect to the background and their current dynamical status, as devised from our estimate of their dynamical parameters, namely the harmonic radius R H , velocity dispersion σ, dimensionless crossing time H 0 τ c , and virial mass M V , appear to be sufficient to favor galaxy transformations similar to those seen in dense groups and clusters. By contrast, the lower fraction of bonafide ellipticals and the relatively higher fraction of late-type spirals make these triplets essentially different from the Hickson Compact Groups and more representative of the field. A modest 1.6 enhancement factor in the optical luminosity of the late-type triplet components

  3. Production of Singlet Oxygen in a Non-Self-Sustained Discharge

    International Nuclear Information System (INIS)

    Vasil'eva, A.N.; Klopovskii, K.S.; Kovalev, A.S.; Lopaev, D.V.; Mankelevich, Yu.A.; Popov, N.A.; Rakhimov, A.T.; Rakhimova, T.V.

    2005-01-01

    The production of O 2 (a 1 Δ g ) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O 2 (a 1 Δ g ) production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2-1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O 2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O 2 (a 1 Δ g ) and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O 2 (a 1 Δ g ) and the dynamics of its concentration. It is shown that, in the dynamics of O 2 (a 1 Δ g ) molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O( 3 P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar : O 2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a

  4. Three-Dimensional Triplet Tracking for LHC and Future High Rate Experiments

    CERN Document Server

    Schöning, Andre

    2014-10-20

    The hit combinatorial problem is a main challenge for track reconstruction and triggering at high rate experiments. At hadron colliders the dominant fraction of hits is due to low momentum tracks for which multiple scattering (MS) effects dominate the hit resolution. MS is also the dominating source for hit confusion and track uncertainties in low energy precision experiments. In all such environments, where MS dominates, track reconstruction and fitting can be largely simplified by using three-dimensional (3D) hit-triplets as provided by pixel detectors. This simplification is possible since track uncertainties are solely determined by MS if high precision spatial information is provided. Fitting of hit-triplets is especially simple for tracking detectors in solenoidal magnetic fields. The over-constrained 3D-triplet method provides a complete set of track parameters and is robust against fake hit combinations. The triplet method is ideally suited for pixel detectors where hits can be treated as 3D-space poi...

  5. The Effect of the Spin-Forbidden Co((sup 1) Sigma plus) plus O((sup 3) P) Yields CO2 (1 Sigma (sub G) plus) Recombination Reaction on Afterbody Heating of Mars Entry Vehicles

    Science.gov (United States)

    Xu, Lu T.; Jaffe, Richard L.; Schwenke, David W.; Panesi, Marco

    2017-01-01

    Vibrationally excited CO2, formed by two-body recombination from CO((sup 1) sigma plus) and O((sup 3) P) in the wake behind spacecraft entering the Martian atmosphere reaction, is potentially responsible for the higher than anticipated radiative heating of the backshell, compared to pre-flight predictions. This process involves a spin-forbidden transition of the transient triplet CO2 molecule to the longer-lived singlet. To accurately predict the singlet-triplet transition probability and estimate the thermal rate coefficient of the recombination reaction, ab initio methods were used to compute the first singlet and three lowest triplet CO2 potential energy surfaces and the spin-orbit coupling matrix elements between these states. Analytical fits to these four potential energy surfaces were generated for surface hopping trajectory calculations, using Tully's fewest switches surface hopping algorithm. Preliminary results for the trajectory calculations are presented. The calculated probability of a CO((sup 1) sigma plus) and O((sup 3) P) collision leading to singlet CO2 formation is on the order of 10 (sup -4). The predicted flowfield conditions for various Mars entry scenarios predict temperatures in the range of 1000 degrees Kelvin - 4000 degrees Kelvin and pressures in the range of 300-2500 pascals at the shoulder and in the wake, which is consistent with a heavy-particle collision frequency of 10 (sup 6) to 10 (sup 7) per second. Owing to this low collision frequency, it is likely that CO((sup 1) sigma plus) molecules formed by this mechanism will mostly be frozen in a highly nonequilibrium rovibrational energy state until they relax by photoemission.

  6. Analysis of generic insertions made of two symmetric triplets

    CERN Document Server

    D'Amico, T E

    1998-01-01

    This paper reports on the study undertaken to explore the capabilities of a symmetric triplet to achieve the optics constraints required by the inner triplet of an insertion and more generally of a co mplete insertion made of two symmetric triplets to match a double focus to a FODO lattice. It is based on analytical treatment formulating a number of constraints equal to the parameters available. Th is thorough and systematic analysis made it possible to establish for an inner triplet as well as for a complete insertion the existence of solutions and to explicitly find out all the solutions, with out resorting to unguided numerical searches. As a by-product, a lattice transformer, made of a single triplet, that matches two different FODO cells has been singled out and studied in details. The r esults should be profitable in a number of cases. Here, the method is applied to an insertion of the type of an experimental LHC insertion in order to investigate its domain of validity and tunability .

  7. Light grand unified theory triplets and Yukawa splitting

    International Nuclear Information System (INIS)

    Rakshit, Subhendu; Shadmi, Yael; Raz, Guy; Roy, Sourov

    2004-01-01

    Triplet-mediated proton decay in grand unified theories (GUTs) is usually suppressed by arranging a large triplet mass. Here we explore instead a mechanism for suppressing the couplings of the triplets to the first and second generations compared to the Yukawa couplings, so that the triplets can be light. This mechanism is based on a 'triplet symmetry' in the context of product-group GUTs. We study two possibilities. The first possibility, which requires the top Yukawa coupling to arise from a nonrenormalizable operator at the GUT scale, is that all triplet couplings to matter are negligible, so that the triplets can be at the weak scale, giving new evidence for grand unification. The second possibility is that some triplet couplings, and in particular Ttb and Tt-barl-bar, are equal to the corresponding Yukawa couplings. This would give a distinct signature of grand unification if the triplets were sufficiently light. However, we derive a model-independent bound on the triplet mass in this case, which is at least 10 6 GeV. Finally, we construct an explicit viable GUT model based on Yukawa splitting, with the triplets at 10 14 GeV, as required for coupling unification to work. This model requires no additional thresholds below the GUT scale

  8. Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds.

    Science.gov (United States)

    Siddique, Zainul Abedin; Yamamoto, Yuichi; Ohno, Takeshi; Nozaki, Koichi

    2003-10-06

    The photophysical properties of singlet and triplet metal-to-ligand charge transfer (MLCT) states of [Cu(I)(diimine)(2)](+), where diimine is 2,9-dimethyl-1,10-phenanthroline (dmphen), 2,9-dibutyl-1,10-phenanthroline (dbphen), or 6,6'-dimethyl-2,2'-bipyridine (dmbpy), were studied. On 400 nm laser excitation of [Cu(dmphen)(2)](+) in CH(2)Cl(2) solution, prompt (1)MLCT fluorescence with a quantum yield of (2.8 +/- 0.8) x 10(-5) was observed using a picosecond time-correlated single photon counting technique. The quantum yield was dependent on the excitation wavelength, suggesting that relaxation of the Franck-Condon state to the lowest (1)MLCT competes with rapid intersystem crossing (ISC). The fluorescence lifetime of the copper(I) compound was 13-16 ps, unexpectedly long despite a large spin-orbit coupling constant of 3d electrons in copper (829 cm(-1) ). Quantum chemical calculations using a density functional theory revealed that the structure of the lowest (1)MLCT in [Cu(dmphen)(2)](+) (1(1)B(1)) was flattened due to the Jahn-Teller effect in 3d(9) electronic configuration, and the dihedral angle between the two phenanthroline planes (dha) was about 75 degrees with the dha around 90 degrees in the ground state. Intramolecular reorganization energy for the radiative transition of 1(1)B(1) was calculated as 2.1 x 10(3) cm(-1), which is responsible for the large Stokes shift of the fluorescence observed (5.4 x 10(3) cm(-1)). To understand the sluggishness of the intersystem crossing (ISC) of (1)MLCT of the copper(I) compounds, the strength of the spin-orbit interaction between the lowest (1)MLCT (1(1)B(1)) and all (3)MLCT states was calculated. The ISC channels induced by strong spin-orbit interactions (ca. 300 cm(-1)) between the metal-centered HOMO and HOMO - 1 were shown to be energetically unfavorable in the copper(I) compounds because the flattening distortion caused large splitting (6.9 x 10(3) cm(-1)) between these orbitals. The possible ISC is therefore

  9. Bright triplet excitons in caesium lead halide perovskites

    Science.gov (United States)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  10. Perturbative renormalizability of chiral two-pion exchange in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Pavon Valderrama, M.

    2011-01-01

    We study the perturbative renormalizability of chiral two-pion exchange for singlet and triplet channels within effective field theory, provided that the one-pion exchange piece of the interaction has been fully iterated. We determine the number of counterterms/subtractions needed to obtain finite results when the cutoff is removed, resulting in three counterterms for the singlet channel and six for the triplet. The results show that perturbative chiral two-pion exchange reproduce the data up to a center-of-mass momentum of k∼200-300 MeV in the singlet channel and k∼300-400 MeV in the triplet.

  11. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Chen, Miao; Liu, Wei; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-03-25

    Nearly 100% triplet harvesting in conventional fluorophor-based organic light-emitting devices is realized through energy transfer from exciplex. The best C545T-doped device using the exciplex host exhibits a maximum current efficiency of 44.0 cd A(-1) , a maximum power efficiency of 46.1 lm W(-1) , and a maximum external quantum efficiency of 14.5%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photoprotection through ultrafast charge recombination in photochemical reaction centres under oxidizing conditions

    NARCIS (Netherlands)

    Ma, Fei; Swainsbury, David J. K.; Jones, Michael R.; van Grondelle, Rienk

    2017-01-01

    Engineering natural photosynthesis to address predicted shortfalls in food and energy supply requires a detailed understanding of its molecular basis and the intrinsic photoprotective mechanisms that operate under fluctuating environmental conditions. Long-lived triplet or singlet excited electronic

  13. Status of the scalar singlet dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-08-15

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  14. Radioluminescence of aromatic molecule solutions in atactic and isotactic polystyrene

    International Nuclear Information System (INIS)

    Lisovskaya, I.A.; Alfimov, M.V.; Milinchuk, V.K.; Skvortsov, V.G.

    1975-01-01

    The generation of excited states of naphthalene-d 8 and carbazole molecules in polystyrene (PS) under X-ray illumination was investigated using luminescence method. A comparison of the concentration dependences of radioluminescence of the aromatic additives to solid PS and to toluene as well as the pattern of concentration versus photoluminescence of naphthalene-d 8 in PS demonstrates that unlike toluene there is no singlet-triplet conversion in PS owing to the formation of excimers. It is shown that the excited ststes of the aromatic additives in PS are populated under radiolysis via an energy transfer from singlet to triplet molecules of the matrix. Under the radiolysis the excited states of PS molecules may generate upon charge recombination. A comparison of radio luminescence spectra of the corresponding aromatic additives in two isomeric PS structures (atacting and isotactic) shows different processes with charge participation. The difference detected in the radioluminescence spectra of aromatic additives in the atactic and isotactic PS explained by the greater number of defects in atactic PS competing with the polymer molecule ion for charge capture

  15. Multi-state analysis of the OCS ultraviolet absorption including vibrational structure

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht; Johnson, Matthew Stanley; McBane, G.C.

    2012-01-01

    The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Excitation of the 2 (1)A' state is predominant except at very low photon energies. It is shown that...

  16. Singlet-paired coupled cluster theory for open shells

    Science.gov (United States)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  17. Singlet-paired coupled cluster theory for open shells

    International Nuclear Information System (INIS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  18. Triplet ultrasound growth parameters.

    Science.gov (United States)

    Vora, Neeta L; Ruthazer, Robin; House, Michael; Chelmow, David

    2006-03-01

    To create ultrasound growth curves for normal growth of fetal triplets using statistical methodology that properly accounts for similarities of growth of fetuses within a mother as well as repeated measurements over time for each fetus. In this longitudinal study, all triplet pregnancies managed at a single tertiary center from 1992-2004 were reviewed. Fetuses with major anomalies, prior selective reduction, or fetal demise were excluded. Data from early and late gestation in which there were fewer than 30 fetal measurements available for analysis were excluded. We used multilevel models to account for variation in growth within a single fetus over time, variations in growth between multiple fetuses within a single mother, and variations in fetal growth between mothers. Medians (50th), 10th, and 90th percentiles were estimated by the creation of multiple quadratic growth models from bootstrap samples adapting a previously published method to compute prediction intervals. Estimated fetal weight was derived from Hadlock's formula. One hundred fifty triplet pregnancies were identified. Twenty-seven pregnancies were excluded for the following reasons: missing records (23), fetal demise (3), and fetal anomaly (1). The study group consisted of 123 pregnancies. The gestational age range was restricted to 14-34 weeks. Figures and tables were developed showing medians, 10th and 90th percentiles for estimated fetal weight, femur length, biparietal diameter, abdominal circumference, and head circumference. Growth curves for triplet pregnancies were derived. These may be useful for identification of abnormal growth in triplet fetuses. III.

  19. Refining the reaction mechanism of O2 towards its co-substrate in cofactor-free dioxygenases

    Directory of Open Access Journals (Sweden)

    Pedro J. Silva

    2016-12-01

    Full Text Available Cofactor-less oxygenases perform challenging catalytic reactions between singlet co-substrates and triplet oxygen, in spite of apparently violating the spin-conservation rule. In 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase, the active site has been suggested by quantum chemical computations to fine tune triplet oxygen reactivity, allowing it to interact rapidly with its singlet substrate without the need for spin inversion, and in urate oxidase the reaction is thought to proceed through electron transfer from the deprotonated substrate to an aminoacid sidechain, which then feeds the electron to the oxygen molecule. In this work, we perform additional quantum chemical computations on these two systems to elucidate several intriguing features unaddressed by previous workers. These computations establish that in both enzymes the reaction proceeds through direct electron transfer from co-substrate to O2 followed by radical recombination, instead of minimum-energy crossing points between singlet and triplet potential energy surfaces without formal electron transfer. The active site does not affect the reactivity of oxygen directly but is crucial for the generation of the deprotonated form of the co-substrates, which have redox potentials far below those of their protonated forms and therefore may transfer electrons to oxygen without sizeable thermodynamic barriers. This mechanism seems to be shared by most cofactor-less oxidases studied so far.

  20. LHC Inner Triplet Powering Strategy

    CERN Document Server

    Bordry, Frederick

    2001-01-01

    In order to achieve a luminosity in excess of 10**34 cm**-2s**-1 at the Large Hadron Collider (LHC), special high gradient quadrupoles are required for the final focusing triplets. These low-b triplets, located in the four experimental insertions (ATLAS, CMS, ALICE, LHC-B), consist of four wide-aperture superconducting magnets: two outer quadrupoles, Q1 and Q3, with a maximum current of 7 kA and a central one divided into two identical magnets, Q2a and Q2b, with a maximum current of 11.5 kA. To optimise the powering of these mixed quadrupoles, it was decided to use two nested high-current power converters : [8kA, 8V] and [6kA, 8V]. This paper presents the consequence of the interaction between the two galvanically coupled circuits. A control strategy, using two independent, standard, LHC digital controllers, to decouple the two systems is proposed and described. The converter protection during the discharge of the magnet energy due to quenches or interlocks of the magnets are discussed. Simulation and experim...

  1. Exact Monte Carlo for molecules

    International Nuclear Information System (INIS)

    Lester, W.A. Jr.; Reynolds, P.J.

    1985-03-01

    A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs

  2. Dark Matter from the Supersymmetric Custodial Triplet Model

    CERN Document Server

    Delgado, Antonio; Ostdiek, Bryan; Quiros, Mariano

    2015-01-01

    The Supersymmetric Custodial Triplet Model (SCTM) adds to the particle content of the MSSM three $SU(2)_L$ triplet chiral superfields with hypercharge $Y=(0,\\pm1)$. At the superpotential level the model respects a global $SU(2)_L \\otimes SU(2)_R$ symmetry only broken by the Yukawa interactions. The pattern of vacuum expectation values of the neutral doublet and triplet scalar fields depends on the symmetry pattern of the Higgs soft breaking masses. We study the cases where this symmetry is maintained in the Higgs sector, and when it is broken only by the two doublets attaining different vacuum expectation values. In the former case, the symmetry is spontaneously broken down to the vectorial subgroup $SU(2)_V$ and the $\\rho$ parameter is protected by the custodial symmetry. However in both situations the $\\rho$ parameter is protected at tree level, allowing for light triplet scalars with large vacuum expectation values. We find that over a large range of parameter space, a light neutralino can supply the corre...

  3. Adaptive port-starboard beamforming of triplet arrays

    NARCIS (Netherlands)

    Beerens, S.P.; Been, R.; Groen, J.; Noutary, E.; Doisy, Y.

    2000-01-01

    Triplet arrays are single line arrays with three hydrophones on a circular section of the array. The triplet structure provides immediate port-starboard (PS) discrimination. This paper discusses the theoretical and experimental performance of triplet arrays. Results are obtained on detection gain

  4. Interference in acetylene intersystem crossing acts as the molecular analog of Young's double-slit experiment

    NARCIS (Netherlands)

    de Groot, M.; Field, R.W.; Buma, W.J.

    2009-01-01

    We report on an experimental approach that reveals crucial details of the composition of singlet-triplet mixed eigenstates in acetylene. Intersystem crossing in this prototypical polyatomic molecule embodies the mixing of the lowest excited singlet state (S1) with 3 triplet states (T1, T2, and T3).

  5. DNA Photosensitization by an "Insider": Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside.

    Science.gov (United States)

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dumont, Elise; Monari, Antonio

    2015-08-03

    The main chromophore of (6-4) photoproducts, namely, 5-methyl-2-pyrimidone (Pyo), is an artificial noncanonical nucleobase. This chromophore has recently been reported as a potential photosensitizer that induces triplet damage in thymine DNA. In this study, we investigate the spectroscopic properties of the Pyo unit embedded in DNA by means of explicit solvent molecular-dynamics simulations coupled to time-dependent DFT and quantum-mechanics/molecular-mechanics techniques. Triplet-state transfer from the Pyo to the thymine unit was monitored in B-DNA by probing the propensity of this photoactive pyrimidine analogue to induce a Dexter-type triplet photosensitization and subsequent DNA damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  7. Energy transfer from triplet aromatic hydrocarbons to Tb3+ and Eu3+ in aqueous micellar solutions

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The sensitization of Tb 3+ and Eu 3+ luminescence by energy transfer from aromatic triplet donors like naphthalene, bromonaphthalene, biphenyl, and phenanthrene in micellar sodium lauryl sulfate solution has been studied. Formal second-order rate constants for the energy transfer process in the micellar solutions were determined as 5 x 10 5 and 1.8 x 10 5 M -1 S -1 for transfer from biphenyl to Tb 3+ . The method of converting these rate constants to second-order constants pertaining to the micellar microenvironment is discussed; it is estimated that the transfer process at the micelles is charaterized by rate constants about one order of magnitude smaller than the formal ones. The transfer process is thus extremely slow. 7 figures

  8. Triplet Tellurophene-Based Acceptors for Organic Solar Cells.

    Science.gov (United States)

    Yang, Lei; Gu, Wenxing; Lv, Lei; Chen, Yusheng; Yang, Yufei; Ye, Pan; Wu, Jianfei; Hong, Ling; Peng, Aidong; Huang, Hui

    2018-01-22

    Triplet materials have been employed to achieve high-performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non-fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene-based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  10. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe; Zheng, Bin; Hu, Pan; Huang, Kuo-Wei; Wu, Jishan

    2014-01-01

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  11. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe

    2014-08-08

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  12. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model.

    Science.gov (United States)

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J

    2013-10-07

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10(-8) to 10(-10). The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  13. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model

    Science.gov (United States)

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J.

    2013-10-01

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10-8 to 10-10. The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  14. On measurement of photon polarization by triplet production differential cross sections

    International Nuclear Information System (INIS)

    Vinokurov, E.A.; Boldyshev, V.F.

    1984-01-01

    Dependence of triplet production by linearly polarized photon (the recoil electron momenta being p 1 >=p 10 ) upon the electron pair invariant mass Δ (in the ranges of 0.1 mc 10 2 2 ) is studied aiming to analyze possible use of triplet photoproduction to measure polarization of high-energy photon beams. It is shown that the regions 2m 2 and 2m 200 mc 2 are optimum and provide a 17-35% accuracy improvement for the photon beam polarization measurement, the number of events decreasing by a factor of 2.4-4.4

  15. Complete direct method for electron-hydrogen scattering: Application to the collinear and Temkin-Poet models

    International Nuclear Information System (INIS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2004-01-01

    We present an efficient generalization of the exterior complex scaling (ECS) method to extract discrete inelastic and ionization amplitudes for electron-impact scattering of atomic hydrogen. This fully quantal method is demonstrated over a range of energies for the collinear and Temkin-Poet models and near-threshold ionization is examined in detail for singlet and triplet scattering. Our numerical calculations for total ionization cross sections near threshold strongly support the classical threshold law of Wannier [Phys. Rev. 90, 817 (1953)] (σ∝E 1.128±0.004 ) for the L=0 singlet collinear model and the semiclassical threshold law of Peterkop [J. Phys. B 16, L587 (1983)] (σ∝E 3.37±0.02 ) for the L=0 triplet collinear model, and are consistent with the semiclassical threshold law of Macek and Ihra [Phys. Rev. A 55, 2024 (1997)] (σ∝exp[(-6.87±0.01)E -1/6 ]) for the singlet Temkin-Poet model

  16. Fetomaternal outcome in triplet pregnancy

    International Nuclear Information System (INIS)

    Mazhar, S.B.; Furukh, T; Rahim, F.

    2008-01-01

    To determine maternal outcome as antenatal and postnatal complications and neonatal outcome as birth weight, morbidity and mortality in triplet gestation. All the patients with triplet pregnancy beyond 28 weeks gestation, who delivered at the study place during above period were included in the study. The primary outcome measures were frequency of maternal complications and neonatal birth, weight and morbidity. Secondary outcome measures included the frequency of assisted conception in the studied cohart. Eighteen women had triplet pregnancy beyond 28 weeks. Nine were booked, 6 non-booked and 3 of them were referred. Mean duration of gestation was 237.8 days (33.8 weeks). The antenatal complications were preterm delivery in 50%, hypertension in 50%, anemia in 44.4% and obstetric cholestasis in 5.6%. Eight patients (44.4%) suffered postpartum hemorrhage. One patient had peripartum hysterectomy and later expired in intensive care unit after three weeks. Maternal mortality ratio was 5.6%. Fifty five percent women had induction of ovulation with Clomiphene, while none had In Vitro Fertilization (IVF) or Intracytoplasmic Insemination (ICSI) or received gonadotrophins. Fifteen sets of triplets were delivered abdominally. Mean birth weights of 1st, 2nd and 3rd triplet were 1651, 1640 and 1443 grams respectively. Five sets of triplets (27.8%) had more than 25% discordance for birth weight. The mean Apgar scores of the babies at 1 and 10 minutes after birth were 6.0 and 8.0, 5.6 and 7.5; and 5.2 and 7.0 respectively. Of the 54 infants, 18 required Neonatal Intensive Care Unit (NICU) admission and 14 were admitted in nursery. Two died shortly after birth. Total perinatal mortalities were 13 including 4 cases of intra-uterine demise. Three babies suffered from jaundice, 7 had sepsis and 8 had respiratory distress syndrome. Triplet gestation had a high rate of fetomaternal complications. Majority had history of assisted conception. (author)

  17. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission† †Electronic supplementary information (ESI) available: Actinic pump spectrum, discussion on ground state addition process, peak fitting procedure, transient absorption data, power dependence measurements, etalon pulse shaping, TIPS-pentacene FSRS data, and optimized geometry and frequency calculation results. See DOI: 10.1039/c7sc03496b

    Science.gov (United States)

    Hart, Stephanie M.; Silva, W. Ruchira

    2017-01-01

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes. PMID:29675170

  18. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  19. synthesis and crystal structure of trinuclear potassium(i)

    African Journals Online (AJOL)

    energy density, good thermal stability, and low melting point [1–6]. The combination of ... designed as s (singlet), d (doublet), t (triplet), m (multiplet), and br (broaden). Infrared ..... As to the anion, the bridged oxygen atom is nearly th furazan ...

  20. Fingerprints of heavy scales in electroweak effective Lagrangians

    Science.gov (United States)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2017-04-01

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  1. Fingerprints of heavy scales in electroweak effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Pich, Antonio [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, Ignasi [Departamento de Matemáticas, Física y Ciencias Tecnológicas,Universidad CEU Cardenal Herrera, E-46115 Alfara del Patriarca, València (Spain); Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica I, Universidad Complutense de Madrid,E-28040 Madrid (Spain)

    2017-04-04

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, which couples the known particle fields to heavier states with bosonic quantum numbers J{sup P}=0{sup ±} and 1{sup ±}. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  2. The low-lying electronic states of pentacene and their roles in singlet fission.

    Science.gov (United States)

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.

  3. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  4. Triplet scalars and dark matter at the LHC

    International Nuclear Information System (INIS)

    Fileviez Perez, Pavel; Patel, Hiren H.; Ramsey-Musolf, Michael J.; Wang, Kai

    2009-01-01

    We investigate the predictions of a simple extension of the standard model where the Higgs sector is composed of one SU(2) L doublet and one real triplet. We discuss the general features of the model, including its vacuum structure, theoretical and phenomenological constraints, and expectations for Higgs collider studies. The model predicts the existence of a pair of light charged scalars and, for vanishing triplet vacuum expectation value, contains a cold dark matter candidate. When the latter possibility occurs, the charged scalars are long-lived, leading to a prediction of distinctive single charged track with missing transverse energy or double charged track events at the large hadron collider. The model predicts a significant excess of two-photon events compared to SM expectations due to the presence of a light charged scalar.

  5. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    Science.gov (United States)

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation.

  6. Phage inactivation by triplet acetone

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1985-01-01

    The exposure of lambda phage to triplet acetone is studied. The triplet acetone is obtained from aerobic oxidation of isobutanal catalysed by peroxidase. A decrease of lambda phage ability to infect Escherichia coli is reported, perhaps, partially due to the possible production of lesions in the phage genome. (M.A.C.) [pt

  7. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  8. Diphoton resonance in F-theory inspired flipped SO(10)

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, George K. [Ioannina University, Physics Department, Theory Division, Ioannina (Greece); Shafi, Qaisar [University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE (United States)

    2016-10-15

    Motivated by the di-photon excess at 750 GeV reported by the ATLAS and CMS experiments, we present an F-theory inspired flipped SO(10) model embedded in E{sub 6}. The low energy spectrum includes the three MSSM chiral families, vector-like colour triplets, several pairs of charged SU(2){sub L} singlet fields (E{sup c}, anti E{sup c}), as well as MSSM singlets, one or more of which could contribute to the di-photon resonance. A total decay width in the multi-GeV range can arise from couplings involving the singlet and MSSM fields. (orig.)

  9. Time resolved photoluminescence studies of long lived emissive specie in F8BT:PFB blends

    Science.gov (United States)

    Gélinas, Simon; Howard, Ian; Friend, Richard; Silva, Carlos

    2009-03-01

    Type-II heterojunctions play a crucial role in organic optoelectronic devices. We use donor-acceptor polyfluorene blends as a model system to understand excited-state dynamics at heterojunctions. These interfacial excitations are intrachain singlet and triplet excitons, geminate polaron pairs, and exciplexes (interfacial charge-transfer excitons). Time-resolved photoluminescence (PL) spectra were taken at 10,and room temperature to investigate the interconversion dynamics of these species. We observe delayed PL with sub-linear excitation fluence dependence. This implies that delayed singlet exciton generation involves a bimolecular annihilation mechanism. By means of kinetic modeling, we propose triplet-triplet exciton annihilation as a regeneration route to singlet excitons, and subsequently to exciplexes. This points to a significant (<15,%) yield of triplet excitons after interfacial charge separation, and to the central role of these species on the interfacial dynamics.

  10. Spin-selected velocity dependence of the associative ionization cross section in Na(3p)+Na(3p) collisions over the collision energy range from 2.4 to 290 meV

    International Nuclear Information System (INIS)

    Wang, M.; Keller, J.; Boulmer, J.; Weiner, J.

    1987-01-01

    We report new results on the direct measurement of the associative ionization (AI) cross section in collisions between velocity-selected and spin-oriented Na(3p) atoms. Improvements in the Doppler-shift velocity-selection technique permit measurement over an energy range spanning more than two orders of magnitude from subthermal to suprathermal regions. Spin orientations, parallel and antiparallel, enable determination of the excitation function (velocity dependence of the AI cross section) for the separate singlet and triplet manifolds of Na 2 states contributing to the AI process

  11. Theoretical Prediction on [5]Radialene Sandwich Complexes (CpM)2(C10H10) (Cp = η5-C5H5; M = Fe, Co, Ni): Geometry, Spin States, and Bonding.

    Science.gov (United States)

    Liu, Nan-Nan; Xue, Ying-Ying; Ding, Yi-Hong

    2017-02-09

    [5]Radialene, the missing link for synthesis of radialene family, has been finally obtained via the preparation and decomplexation of the [5]radialene-bis-Fe(CO) 3 complex. The stability of [5]radialene complex benefits from the coordination with Fe(CO) 3 by losing free 1,3-butadiene structures to avoid polymerization. In light of the similar coordination ability of half-sandwiches CpM(Cp = η 5 -C 5 H 5 ; M = Fe, Co, Ni), there is a great possibility that the sandwiched complexes of [5]radialene with CpM are available. Herein, we present the first theoretical prediction on the geometry, spin states and bonding of (CpM)(C 10 H 10 ) and (CpM) 2 (C 10 H 10 ). For M = Fe, Co, Ni, the ground states of (CpM)(C 10 H 10 ) and (CpM) 2 (C 10 H 10 ) are doublet and triplet, singlet and singlet, and doublet and triplet states, where each Fe, Co, and Ni adopts 17, 18, and 19 electron-configuration, respectively. In particular, (CpFe) 2 (C 10 H 10 ) and (CpNi) 2 (C 10 H 10 ) have considerable open-shell singlet features. Generally the trans isomers of (CpM) 2 (C 10 H 10 ) with two CpM fragments on the opposite sides of the [5]radialene plane are apparently more stable than the cis ones with CpM fragments on the same side. However, for the singlet and triplet isomers of (CpNi) 2 (C 10 H 10 ) (both cis and trans isomers), the energy differences are relatively small, indicating that these isomers all have the opportunity to exist. Besides, the easy Diels-Alder (DA) dimerization between the [3]dendralene-like fragments of (CpM)(C 10 H 10 ) suggests the great difficulty in isolating the (CpM)(C 10 H 10 ) monomer.

  12. SHORT COMMUNICATION

    African Journals Online (AJOL)

    Preferred Customer

    Nuclear independent chemical shifts (NICS) calculations were carried out to determine the aromatic character. KEY WORDS: DFT calculations, Electronic effects, Singlet-triplet energies, Carbene, Five-membered, NICS. INTRODUCTION ... These divalent structures have been described in terms of the Huckel 4n+2 rule [5-8].

  13. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    International Nuclear Information System (INIS)

    Khvostenko, O.G.

    2014-01-01

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy

  14. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru

    2014-08-15

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy.

  15. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  16. Effects of fermionic singlet neutrinos on high- and low-energy observables

    International Nuclear Information System (INIS)

    Weiland, C.

    2013-01-01

    In this doctoral thesis, we study both low- and high-energy observables related to massive neutrinos. Neutrino oscillations have provided indisputable evidence in favour of non-zero neutrino masses and mixings. However, the original formulation of the standard model cannot account for these observations, which calls for the introduction of new physics. Among many possibilities, we focus here on the inverse seesaw, a neutrino mass generation mechanism in which the standard model is extended with fermionic gauge singlets. This model offers an attractive alternative to the usual seesaw realisations since it can potentially have natural Yukawa couplings (O(1)) while keeping the new physics scale at energies within the reach of the LHC. Among the many possible effects, this scenario can lead to deviations from lepton flavour universality. We have investigated these signatures and found that the ratios R K and R π provide new, additional constraints on the inverse seesaw. We have also considered the embedding of the inverse seesaw in supersymmetric models. This leads to increased rates for various lepton flavour violating processes, due to enhanced contributions from penguin diagrams mediated by the Higgs and Z 0 bosons. Finally, we also found that the new invisible decay channels associated with the sterile neutrinos present in the super-symmetric inverse seesaw could significantly weaken the constraints on the mass and couplings of a light CP-odd Higgs boson. (author)

  17. Birth weight in a large series of triplets

    NARCIS (Netherlands)

    Ponsen-Lamb, D.J.; Middeldorp, C.M.; van Beijsterveldt, C.E.M.; Vink, J.M.; Haak, M.C.; Boomsma, D.I.

    2011-01-01

    Background: Triplets are often born premature and with a low birth weight. Because the incidence of triplet births is rare, there are relatively few studies describing triplet birth weight characteristics. Earlier studies are often characterized by small sample sizes and lack information on

  18. Odd-frequency pairing in superconducting heterostructures .

    Science.gov (United States)

    Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.

    2007-03-01

    We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.

  19. Advanced Singlet Oxygen Generator for a COIL

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Zagidullin, M; Nikolaev, V; Svistun, M; Khvatov, N; Hruby, J; Spalek, O; Jirasek, V; Censsky, M

    2005-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will develop new and radically different ideas for a high performance, advanced singlet oxygen generator for driving a supersonic COIL...

  20. Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer

    International Nuclear Information System (INIS)

    von Haeften, K.; von Pietrowski, R.; Moeller, T.; Joppien, M.; Moussavizadeh, L.; de Castro, A.R.

    1997-01-01

    Discrete visible and near-infrared luminescence of a beam of photoexcited helium clusters is reported. The emission lines are attributed to free helium atoms and molecules desorbing from clusters in electronically excited states. Depending on the excitation energy, various atomic and molecular singlet and triplet states are involved in the relaxation process. With increasing cluster size the intensity of molecular transitions becomes dominant. The temperature of ejected molecules could be estimated to T vib ∼2500 K and T rot ∼450 K and is much higher than that of the cluster itself. copyright 1997 The American Physical Society

  1. Triplet leptogenesis in left–right symmetric seesaw models

    International Nuclear Information System (INIS)

    Hällgren, Tomas; Konstandin, Thomas; Ohlsson, Tommy

    2008-01-01

    We discuss scalar triplet leptogenesis in a specific left–right symmetric seesaw model. We show that the Majorana phases that are present in the model can be effectively used to saturate the existing upper limit on the CP-asymmetry of the triplets. We solve the relevant Boltzmann equations and analyze the viability of triplet leptogenesis. It is known for this kind of scenario that the efficiency of leptogenesis is maximal if there exists a hierarchy between the branching ratios of the triplet decays into leptons and Higgs particles. We show that triplet leptogenesis typically favors branching ratios with not too strong hierarchies, since maximal efficiency can only be obtained at the expense of suppressed CP-asymmetries

  2. Study on optoelectronic properties of Spiro-CN for developing an efficient OLED

    Science.gov (United States)

    Mishra, Ashok Kumar

    2018-05-01

    There are a class of organic molecules and polymers which exhibit semiconductor behavior because of nearly free conjugate π-electrons. Hopping of these electrons in molecules forms different excited singlet and triplet states named as excitons. Some of these organic molecules can be set to emit photons by triplet-singlet excitonic transition via a process called Thermally Activated Delayed Fluorescence (TADF) which is exploited for designing the Organic Light Emitting diode (OLED.) Spiro-CN (spirobifluorene skeletons) Spiro is one of these reported noble metal-free TADF molecules which offers unique optical and electronic properties arising from the efficient transition and reverse intersystem crossing between the lowest singlet (S) and triplet (T) excited states. Its ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T→S) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic device. In the present study, the Spiro-CN compounds have been taken up for the investigation of various optoelectronic properties including the thermally activated delayed fluorescence (TADF) by using the Koopmans Method and Density Functional Theory. The present study discusses the utility of the Spiro-CN organic semiconductor as a suitable TADF material essential for developing an efficient Organic Light Emitting Diode (OLED).

  3. Birth weight in a large series of triplets

    NARCIS (Netherlands)

    Lamb, Diane J.; Middeldorp, Christel M.; van Beijsterveldt, Catharina E. M.; Vink, Jacqueline M.; Haak, Monique C.; Boomsma, Dorret I.

    2011-01-01

    Triplets are often born premature and with a low birth weight. Because the incidence of triplet births is rare, there are relatively few studies describing triplet birth weight characteristics. Earlier studies are often characterized by small sample sizes and lack information on important background

  4. Rationalizing substituent effects in 1-azathioxanthone photophysics

    Science.gov (United States)

    Junker, Anne Kathrine R.; Just Sørensen, Thomas

    2018-01-01

    The influence of an electron donating substituent on the photophysical properties of 1-azathioxanthone dyes has been investigated using optical spectroscopy and theoretical models. The motivation behind the study is based on the fact that thioxanthones are efficient triplet sensitizers, and thus promising sensitizers for lanthanide centered emission. By adding an aza group to one of the phenyl ring systems, direct coordination to a lanthanide center becomes possible, which makes azathoixanthones great candidates as antenna chromophores in lanthanide(III) based dyes. Here, three 1-azathioxanthone derivatives have been synthesized targeting efficient triplet formation following absorption in the visible range of the spectrum. This is achieved by adding methoxy groups to the 1-azathioxanthone core. The derivatives were characterized using absorption, emission, and time-gated emission spectroscopy, where fluorescent quantum yields, singlet and triplet excited states lifetimes were determined. The experimentally determined photophysical properties of the three 1-azathioxanthone compounds are contrasted to those of the parent thioxanthone and is rationalized using the Strickler-Berg equation, Hückel MO theory, and Dewar’s rules in combination with computational chemistry. We find that the transition energies follow predictions, but that the overall photophysical properties are determined by the relative energies as well as the nature of the involved states in both the singlet and the triplet excited state manifolds.

  5. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO) 2I 2 complex

    Science.gov (United States)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkiö, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [ trans-I-Ru(dcbpy)(CO) 2I 2] (dcbpy= 4,4 '-dicarboxy-2,2 '-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [ cis-I-Ru(dcbpy)(CO)(Sol)I 2] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  6. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO)2I2 complex

    International Nuclear Information System (INIS)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-01-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO) 2 I 2 ] (dcbpy4,4 ' -dicarboxy-2,2 ' -bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I 2 ] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1 ) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes

  7. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO){sub 2}I{sub 2} complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-15

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO){sub 2}I{sub 2}] (dcbpy4,4{sup '}-dicarboxy-2,2{sup '}-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I{sub 2}] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm{sup -1}) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  8. Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals

    Science.gov (United States)

    Sears, John S.; Koerzdoerfer, Thomas; Zhang, Cai-Rong; Brédas, Jean-Luc

    2011-10-01

    Long-range corrected hybrids represent an increasingly popular class of functionals for density functional theory (DFT) that have proven to be very successful for a wide range of chemical applications. In this Communication, we examine the performance of these functionals for time-dependent (TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are particularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange included in these functionals. As such, the use of standard long-range corrected functionals for the description of triplet states at the TDDFT level is not recommended.

  9. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Dynamics and configurations of galaxy triplets

    International Nuclear Information System (INIS)

    Anosova, J.P.; Orlov, V.V.; Chernin, A.D.; Ivanov, A.V.; Kiseleva, L.G.

    1990-01-01

    The purpose is to infer the probable dynamical states of galaxy triplets by the observed data on their configurations. Two methods are proposed for describing the distributions of the triplet configuration parameters characterizing a tendency to alignment and hierarchy: (1) obtaining a representative sample of configurations and determining its statistical parameters (moments and percentages); and (2) dividing the region of possible configurations of triple systems (Agekian and Anosova, 1967) into a set of segments and finding the probabilities for the configurations to find themselves in each of them. Both these methods allow representation of the data by numerical simulations as well as observations. The effect of projection was studied. It rather overestimates the alignment and hierarchy of the triple systems. Among the parameters of interest there are found some parameters that are least sensitive to projection effects. The samples consist of simulated galaxy triplets (with hidden mass) as well as of 46 probably physical triple galaxies (Karachentseva et al., 1979). The observed triples as well as numerical models show a tendency to alignment. The triple galaxies do not show any tendency to hierarchy (formation of the temporary binaries), but this tendency may be present for simulated triplets without significant dark matter. The significant hidden mass (of order ten times the total mass of a triplet) decreases the probability of forming a binary and so weakens the hierarchy. Small galaxy groups consisting of 3 to 7 members are probably the most prevalent types of galaxy aggregate (Gorbatsky, 1987). Galaxy triplets are the simplest groups, but dynamically nontrivial ones

  11. Spin-1 two-impurity Kondo problem on a lattice

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2018-01-01

    We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on a square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density matrix renormalization group method. We provide a simple intuitive picture and identify the different regimes, depending on the distance between the two impurities, Kondo coupling JK, longitudinal anisotropy D , and transverse anisotropy E . In the isotropic case, two impurities on opposite (the same) sublattices have a singlet (triplet) ground state. However, the energy difference between the triplet ground state and the singlet excited state is very small and we expect an effectively fourfold-degenerate ground state, i.e., two decoupled impurities. For large enough JK the impurities are practically uncorrelated forming two independent underscreened states with the conduction electrons, a clear nonperturbative effect. When the impurities are entangled in an RKKY-like state, Kondo correlations persist and the two effects coexist: the impurities are underscreened, and the dangling spin-1 /2 degrees of freedom are responsible for the interimpurity entanglement. We analyze the effects of magnetic anisotropy in the development of quasiclassical correlations.

  12. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou

    2017-10-17

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga–Luttinger liquid parameter and density–density interaction are extrapolated from the first-principles excitation energies. We show that the density–density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga–Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.

  13. Psoralen phototherapy and the possible involvement of triplet excited states

    International Nuclear Information System (INIS)

    Bensasson, R.V.; Salet, E.J.; Land, E.J.

    1979-01-01

    Psoralens are important drugs used in the phototherapy of psoriasis and vitiligo. It has been predicted that the triplet excited state of psoralen is photoactive. The authors have employed pulse radiolysis and laser flash photolysis to determine the quantum yields of formation of the triplet states of psoralens and related molecules including 4'5' dihydropsoralen, a model for 4'5' psoralenpyrimidine mono-adducts. The triplet spectra were used to follow the reactions of the triplets with thymine and tryptophan. Such reactions may take place via a charge transfer mechanism. For 8-methoxy psoralen, in addition to triplet formation, photoionization was detected using high laser intensities. Although significant yields of psoralen triplets are formed, and some such triplets react with thymine, it is too early yet to say definitely whether or not the therapeutic action of psoralens is mediated via such triplet states. (Auth.)

  14. Investigation of the generation of singlet oxygen in ensembles of photoexcited silicon nanocrystals by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Konstantinova, E. A.; Demin, V. A.; Timoshenko, V. Yu.

    2008-01-01

    The generation of singlet oxygen is investigated and its concentration upon photoexcitation of silicon nanocrystals in porous silicon layers is determined using electron paramagnetic resonance spectroscopy. The relaxation times of spin centers, i.e., silicon dangling bonds, in vacuum and in an oxygen atmosphere in the dark and under illumination of the samples are measured for the first time. It is revealed that the spin-lattice relaxation in porous silicon is retarded as compared to that in a single-crystal substrate. From analyzing experimental data, a microscopic model is proposed for interaction of oxygen molecules in the triplet state and spin centers at the surface of silicon nanocrystals. The results obtained have demonstrated that porous silicon holds promise for the use as a photosensitizer of molecular oxygen in biomedical applications

  15. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    Science.gov (United States)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  16. Deep inelastic singlet structure functions and scaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Wen-zhu, Li; Bing-xun, Hu

    1984-02-01

    The flavour singlet structure functions of deep inelastic scattering processes can yield more decisive tests of QCD than the non-singlet. We give analytical expression for flavour singlet structure functions through analysing the lepton-nucleon deep inelastic scattering processes by means of QCD and using Jacobi polynomials. This expression contains 4 to 5 parameters and shows the changes of the singlet structure functions with x and Q/sup 2/ very well. In QCD leading order, the conclusion is in reasonable agreement with experimental data.

  17. Line shape of magnetic excitations in singlet-ground-state systems

    International Nuclear Information System (INIS)

    Bak, P.

    1976-08-01

    The excitation spectrum in a paramagnetic singlet doublet system is calculated using a diagrammatic expansion technique, and the theoretical predictions are compared with experiments on praseodymium. The theory gives an accurate description of the dramatic temperature dependence of the energies and lineshapes for the exciton modes

  18. Investigation of Triplet Exciplex Dynamics by Magnetic Field Effects due to the Triplet Mechanism

    OpenAIRE

    Ulrich, T.; Steiner, Ulrich; Föll, Rudolf E.

    1983-01-01

    A reaction scheme is described allowing for magnetic field effects on the chemical kinetics of triplet reactions due to the selective decay of triplet sublevels. The theoretical treatment of this scheme is outlined on the basis of a stochastic Liouville equation, taking into account the rotational diffusion of molecules in liquid solution. Whereas the exact solution of the general case is obtained by a numerical procedure as described by Pedersen and Freed, an approximate analytical expressio...

  19. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  20. Triplet excited States as a source of relevant (bio)chemical information.

    Science.gov (United States)

    Jiménez, M Consuelo; Miranda, Miguel A

    2014-01-01

    The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and α1-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external quenchers. With proteins, formation of spatially confined triplet excited states is favored over competitive processes affording ionic species. Remarkably, under aerobic atmosphere, the triplet decay of drug@protein complexes is dramatically longer than in bulk solution. This offers a convenient dynamic range for assignment of different triplet populations or for stereochemical discrimination. In this review, selected examples of the application of the laser flash photolysis technique are described, including drug distribution between the bulk solution and the protein cavities, or between two types of proteins, detection of drug-drug interactions inside proteins, and enzyme-like activity processes mediated by proteins. Finally, protein encapsulation can also modify the photoreactivity of the guest. This is illustrated by presenting an example of retarded photooxidation.

  1. Fulltext PDF

    Indian Academy of Sciences (India)

    interaction, tuned to the empirical binding energy of either 4He or 8Be [10]. ... dow of ±100 keV exists in h, where significant amounts of carbon and oxygen can be ... tives of the two-nucleon S-wave scattering lengths in the singlet and triplet ...

  2. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  3. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.; Howard, Ian A.; Laquai, Fré dé ric

    2015-01-01

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  4. Constructing level-2 phylogenetic networks from triplets

    OpenAIRE

    Iersel, Leo; Keijsper, J.C.M.; Kelk, Steven; Stougie, Leen; Hagen, F.; Boekhout, T.; Vingron, M.; Wong, L.

    2009-01-01

    htmlabstractJansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of taxa), it is possible to determine in polynomial time whether there exists a level-1 network consistent with T, and if so to construct such a network (Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets, Theoretical Computer Science, 363, pp. 60-68 (2006)). Here we extend this work by showing that this probl...

  5. Standard Model with a real singlet scalar and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Kari; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: kari.enqvist@helsinki.fi, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland)

    2014-08-01

    We study the post-inflationary dynamics of the Standard Model Higgs and a real singlet scalar s, coupled together through a renormalizable coupling λ{sub sh}h{sup 2}s{sup 2}, in a Z{sub 2} symmetric model that may explain the observed dark matter abundance and/or the origin of baryon asymmetry. The initial values for the Higgs and s condensates are given by inflationary fluctuations, and we follow their dissipation and relaxation to the low energy vacua. We find that both the lowest order perturbative and the non-perturbative decays are blocked by thermal effects and large background fields and that the condensates decay by two-loop thermal effects. Assuming instant reheating at T=10{sup 16} GeV, the characteristic temperature for the Higgs condensate thermalization is found to be T{sub h} ∼ 10{sup 14} GeV, whereas s thermalizes typically around T{sub s} ∼ 10{sup 6} GeV. By that time, the amplitude of the singlet is driven very close to the vacuum value by the expansion of the universe, unless the portal coupling takes a value λ{sub sh}∼< 10{sup -7} and the singlet s never thermalizes. With these values of the coupling, it is possible to slowly produce a sizeable fraction of the observed dark matter abundance via singlet condensate fragmentation and thermal Higgs scattering. Physics also below the electroweak scale can therefore be affected by the non-vacuum initial conditions generated by inflation.

  6. 1,3-Diphenylisobenzofuran: a Model Chromophore for Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Johnson, J. C.; Michl, Josef

    2017-01-01

    Roč. 375, č. 5 (2017), č. článku 80. ISSN 2365-0869 R&D Projects: GA ČR GA15-19143S Institutional support: RVO:61388963 Keywords : 1,3-diphenylisobenzofuran * photophysics * solar energy * singlet fission * covalent dimers Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.033, year: 2016

  7. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  8. Moduli induced cogenesis of baryon asymmetry and dark matter

    Directory of Open Access Journals (Sweden)

    Mansi Dhuria

    2016-05-01

    Full Text Available We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental interactions. In particular, we consider a model which can be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM superfields. Assuming that the mass of the additional singlet fermions is O(GeV and of the color triplet fermions is O(TeV, we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Imposing discrete Z2 symmetry, it follows that the singlet fermion will not further decay into the SM particles and therefore it can be considered as a stable asymmetric dark matter (ADM component. We find that the decay of the lightest eigenstate of scalar component of color triplet superfield gives the observed baryon asymmetry in the visible sector, an asymmetric dark matter component with the right abundance and naturally explains cosmic coincidence.

  9. A code for optimising triplet layout

    CERN Document Server

    AUTHOR|(CDS)2141109; Seryi, Andrei; Abelleira, Jose; Cruz Alaniz, Emilia

    2017-01-01

    One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the inner triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation for a broad parameter scan and MADX for more precise calculations. The thin lens algorithm is significantly faster than a full scan using MADX and relatively precise at indicating the approximate area where the optimum solution lies.

  10. Fractional vortex lattice structures in spin-triplet superconductors

    International Nuclear Information System (INIS)

    Chung, Suk Bum; Agterberg, Daniel F; Kim, Eun-A

    2009-01-01

    Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice structures for this class of unconventional superconductors. We discuss how the order parameter symmetry can give rise to U(1)xU(1) symmetry in the same sense as in spinor condensates, making half-quantum vortices (HQVs) topologically stable. We then calculate the vortex lattice structure of HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and Meissner screening, all absent in spinor condensates. Finally, we consider how spin-orbit coupling leads to a breakdown of the U(1)xU(1) symmetry in free energy and whether the HQV lattice survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in the context of Na x CoO 2 ·yH 2 O and Bechgaard salts, as well as the better known and more complex model for Sr 2 RuO 4 .

  11. Riboflavin as a photosensitizer. Effects on human health and food quality.

    Science.gov (United States)

    Cardoso, Daniel R; Libardi, Silvia H; Skibsted, Leif H

    2012-05-01

    Riboflavin, vitamin B₂, and flavins (as riboflavin building blocks or degradation products) are efficient photosensitizers inducing oxidative damage to light-exposed tissue and food by substrate-dependent mechanisms, for which protection is offered by specific nutrients. Phenolic and N-heterocyclic amino acids and their peptides and proteins deactivate triplet-excited state riboflavin in diffusion controlled processes, efficiently competing with deactivation by oxygen, resulting in direct (so called Type I) protein degradation through electron transfer or proton-coupled electron transfer. In light-exposed tissue, such often long lived protein radicals may as primary photoproducts initiate lipid and vitamin oxidation. In contrast, for lipid systems, oxygen deactivation of triplet-excited state riboflavin, resulting in formation of singlet oxygen, is under aerobic conditions faster than direct deactivation by lipids, which otherwise under anaerobic conditions occurs as hydrogen atom transfer from polyunsaturated lipids to triplet riboflavin. Singlet oxygen adds to unsaturated lipids and forms lipid hydroperoxides as primary lipid oxidation products or oxidizes proteins (Type II mechanism). Carotenoids seem not to deactivate triplet riboflavin, while chromanols like vitamin E and plant polyphenols are efficient in such deactivation yielding protection of proteins and lipids by these phenols. Indirect protection against the triplet reactivity of riboflavin is further important for polyphenols as riboflavin singlet excited state quenchers in effectively preventing riboflavin intersystem crossing to yield the reactive triplet state. Riboflavin photosensitization becomes critical for degradation of proteins, unsaturated lipids, and folate, thiamine, ascorbate and other vitamins during light exposure of food during storage. For skin, eye and other tissue exposed to high intensity light, dietary polyphenols like flavonoids are important in direct protection against

  12. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  13. Computational studies of a paramagnetic planar dibenzotetraaza[14]annulene Ni(II) complex.

    Science.gov (United States)

    Rabaâ, Hassan; Khaledi, Hamid; Olmstead, Marilyn M; Sundholm, Dage

    2015-05-28

    A square-planar Ni(II) dibenzotetraaza[14]annulene complex substituted with two 3,3-dimethylindolenine groups in the meso positions has recently been synthesized and characterized experimentally. In the solid-state, the Ni(II) complex forms linear π-interacting stacks with Ni···Ni separations of 3.448(2) Å. Measurements of the temperature dependence of the magnetic susceptibility revealed a drastic change in the magnetic properties at a temperature of 13 K, indicating a transition from low-to-high spin states. The molecular structures of the free-base ligand, the lowest singlet, and triplet states of the monomer and the dimer of the Ni complex have been studied computationally using density functional theory (DFT) and ab initio correlation levels of theory. In calculations at the second-order Møller-Plesset (MP2) perturbation theory level, a large energy of 260 kcal mol(-1) was obtained for the singlet-triplet splitting, suggesting that an alternative explanation of the observed magnetic properties is needed. The large energy splitting between the singlet and triplet states suggests that the observed change in the magnetism at very low temperatures is due to spin-orbit coupling effects originating from weak interactions between the fine-structure states of the Ni cations in the complex. The lowest electronic excitation energies of the dibenzotetraaza[14]annulene Ni(II) complex calculated at the time-dependent density functional theory (TDDFT) levels are in good agreement with values deduced from the experimental UV-vis spectrum. Calculations at the second-order algebraic-diagrammatic construction (ADC(2)) level on the dimer of the meso-substituted 3,3-dimethylindolenine dibenzotetraaza[14] annulene Ni(II) complex yielded Stokes shifts of 85-100 nm for the lowest excited singlet states. Calculations of the strength of the magnetically induced ring current for the free-base 3,3-dimethylindolenine-substituted dibenzotetraaza[14]annulene show that the annulene

  14. Holographic monitoring of spatial distributions of singlet oxygen in water

    Science.gov (United States)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  15. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  16. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  17. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    OpenAIRE

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8?keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79???0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result ...

  18. Electron-impact dissociation of molecular hydrogen into neutral fragments

    Science.gov (United States)

    Scarlett, Liam H.; Tapley, Jonathan K.; Fursa, Dmitry V.; Zammit, Mark C.; Savage, Jeremy S.; Bray, Igor

    2018-02-01

    We present convergent close-coupling calculations of electron-impact dissociation of the ground state of molecular hydrogen into neutral fragments over the range of impact energies from 6 to 300 eV. The calculations account for dissociative excitation, excitation radiative decay dissociation, and predissociation through all bound electronic triplet states, and singlet states up to the D' 1 Π u state. An estimate is given for the contribution from the remaining bound electronic singlet states. Our results are in agreement with the recommended data of Yoon et al. [J. Phys. Chem. Ref. Data 37, 913 (2008)] in the low (6-12 eV) and high (60-70 eV) energy regions, but somewhat lower at the intermediate energies.

  19. Standard model extended by a heavy singlet: Linear vs. nonlinear EFT

    Energy Technology Data Exchange (ETDEWEB)

    Buchalla, G., E-mail: gerhard.buchalla@lmu.de; Catà, O.; Celis, A.; Krause, C.

    2017-04-15

    We consider the Standard Model extended by a heavy scalar singlet in different regions of parameter space and construct the appropriate low-energy effective field theories up to first nontrivial order. This top-down exercise in effective field theory is meant primarily to illustrate with a simple example the systematics of the linear and nonlinear electroweak effective Lagrangians and to clarify the relation between them. We discuss power-counting aspects and the transition between both effective theories on the basis of the model, confirming in all cases the rules and procedures derived in previous works from a bottom-up approach.

  20. Magnetic Dimer Excitations in Cs3Cr2CI9 Studied by Neutron Scattering

    DEFF Research Database (Denmark)

    Leuenberger, Bruno; Güdel, Hans U.; Kjems, Jørgen

    1985-01-01

    The energy dispersion of the singlet-triplet dimer excitation in Cs3Cr2CI9h as been studied by inelastic neutron scattering (INS) at temperatures down to 1.3 K. The results can be accounted for by using a completely isotropic Heisenberg Hamiltonian in the random phase approximation (RPA). Only...

  1. {beta}-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes

    Energy Technology Data Exchange (ETDEWEB)

    Alster, J. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha (Czech Republic); Polivka, T. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Arellano, J.B. [Instituto de Recursos Naturales y Agrobiologia de Salamanca (IRNASA-CSIC), Apdo. 257, 37071 Salamanca (Spain); Chabera, P. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Vacha, F. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Psencik, J., E-mail: psencik@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha (Czech Republic); Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic)

    2010-07-19

    Carotenoids are together with bacteriochlorophylls important constituents of chlorosomes, the light-harvesting antennae of green photosynthetic bacteria. Majority of bacteriochlorophyll molecules form self-assembling aggregates inside the chlorosomes. Aggregates of bacteriochlorophylls with optical properties similar to those of chlorosomes can also be prepared in non-polar organic solvents or in aqueous environments when a suitable non-polar molecule is added. In this work, the ability of {beta}-carotene to induce aggregation of bacteriochlorophyll c in aqueous buffer was studied. Excitation relaxation and energy transfer in the carotenoid-bacteriochlorophyll assemblies were measured using femtosecond and nanosecond transient absorption spectroscopy. A fast, {approx}100-fs energy transfer from the S{sub 2} state of {beta}-carotene to bacteriochlorophyll c was revealed, while no evidence for significant energy transfer from the S{sub 1} state was found. Picosecond formation of the carotenoid triplet state (T{sub 1}) was observed, which was likely generated by singlet homo-fission from the S{sub 1} state of {beta}-carotene.

  2. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae

    Directory of Open Access Journals (Sweden)

    Tobias Bornhütter

    2016-04-01

    Full Text Available Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  3. Excitons and trions in modulation doped structures in high magnetic fields

    International Nuclear Information System (INIS)

    Kochereshko, V.; Andronikov, D.; Platonov, A.; Crooker, S.; Barrick, T.; Karczewski, G.; Tronc, P.

    2004-01-01

    Photoluminescence spectra of modulation-doped CdTe/CdMgTe quantum well structures containing two-dimensional electron gases of low, moderate and high electron concentrations were studied in high magnetic fields up to 45 T. The recombination line of triplet trion state was found in the spectra. A model calculation of photoluminescence spectra in magnetic fields, which takes into account singlet and triplet trion states, was carried out. It was shown that the dark triplet becomes observable in photoluminescence spectra because it becomes the only recombination channel when the formation of the singlet trion state is suppressed by magnetic fields. (author)

  4. Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents.

    Directory of Open Access Journals (Sweden)

    Kirika Ishiyama

    Full Text Available BACKGROUND: Photodynamic therapy (PDT has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. METHODOLOGY/PRINCIPAL FINDINGS: Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. CONCLUSIONS: It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.

  5. On static triplet structures in fluids with quantum behavior

    Science.gov (United States)

    Sesé, Luis M.

    2018-03-01

    The problem of the equilibrium triplet structures in fluids with quantum behavior is discussed. Theoretical questions of interest to the real space structures are addressed by studying the three types of structures that can be determined via path integrals (instantaneous, centroid, and total thermalized-continuous linear response). The cases of liquid para-H2 and liquid neon on their crystallization lines are examined with path-integral Monte Carlo simulations, the focus being on the instantaneous and the centroid triplet functions (equilateral and isosceles configurations). To analyze the results further, two standard closures, Kirkwood superposition and Jackson-Feenberg convolution, are utilized. In addition, some pilot calculations with path integrals and closures of the instantaneous triplet structure factor of liquid para-H2 are also carried out for the equilateral components. Triplet structural regularities connected to the pair radial structures are identified, a remarkable usefulness of the closures employed is observed (e.g., triplet spatial functions for medium-long distances, triplet structure factors for medium k wave numbers), and physical insight into the role of pair correlations near quantum crystallization is gained.

  6. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  7. Room temperature phosphorimetric determination of cyanide based on triplet state energy transfer

    International Nuclear Information System (INIS)

    Fernandez-Argueelles, Maria Teresa; Costa-Fernandez, Jose M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2003-01-01

    The determination of cyanide ions in water samples by room temperature phosphorescence (RTP) detection is described. The method is based on the measurement of the RTP emission of α-bromonaphthalene (BrN). The principle of the RTP cyanide determination involves the energy transfer (ET) from the BrN phosphor molecule insensitive to the presence of cyanide (acting as a donor) to a cyanide-sensitive dye (acceptor). The RTP emission spectrum of BrN overlaps significantly with the absorption spectrum of the complex formed between copper and Cadion 2B, giving rise to a non-radiative ET from the phosphor molecules to the metal complex. The sensing of cyanide ions is based on the displacement by cyanide of the copper ions from its complex with Cadion 2B (the free chelating molecule presents a low absorbance in the region of maximum emission of the BrN phosphor). An increase in the concentration of cyanide causes a decrease on the concentration of the Cadion 2B-copper complex (acceptor) with the subsequent decrease of the absorbance in the overlapping region with the RTP spectra, resulting in higher RTP emission signals measured. Both, RTP intensities and triplet lifetimes of the BrN increased with the increase of the cyanide concentration. The calibration graphs were linear up to a concentration of 500 mg l -1 cyanide and a precision of ±2 and ±0.5% for five replicates of 50 μg l -1 of cyanide has been obtained when measuring intensities and triplet lifetimes values, respectively. A detection limit of 3 μg l -1 of cyanide was achieved under optimal reaction conditions and pH 11. The use of phosphorescence measurements (low background noise signals) resulted in an important improvement on the sensitivity of the cyanide detection higher than eight times as compared to the molecular absorption spectrophotometric method for cyanide detection based on the use of Cadion 2B-copper as cyanide-indicator. Interference studies were performed with cations and anions present in

  8. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Ma, Dongge, E-mail: mdg1014@ciac.jl.cn; Ding, Junqiao; Wang, Lixiang [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Leo, Karl [Tech. Univ. Dresden, Inst. Angew. Photophys., D-01062 Dresden (Germany); Qiao, Qiquan [Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Jia, Huiping; Gnade, Bruce E. [Department of Materials Science and Engineering and Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye → green dye → red host → red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1 ± 0.8% and power efficiency of 37.5 ± 1.4 lm/W but shows no color shift over a wide range of voltages.

  9. In-vivo singlet oxygen threshold doses for PDT.

    Science.gov (United States)

    Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M

    2015-02-01

    Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet

  10. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  11. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  12. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  13. Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant

    Science.gov (United States)

    Zhang, Tianyou; Zhao, Bo; Chu, Bei; Li, Wenlian; Su, Zisheng; Yan, Xingwu; Liu, Chengyuan; Wu, Hairuo; Gao, Yuan; Jin, Fangming; Hou, Fuhua

    2015-05-01

    Exciplex is well known as a charge transfer state formed between electron-donating and electron-accepting molecules. However, exciplex based organic light emitting diodes (OLED) often performed low efficiencies relative to pure phosphorescent OLED and could hardly be used to construct white OLED (WOLED). In this work, a new mechanism is developed to realize efficient WOLED with extremely simple structure by redistributing the energy of triplet exciplex to both singlet exciplex and the orange dopant. The micro process of energy transfer could be directly examined by detailed photoluminescence decay measurement and time resolved photoluminescence analysis. This strategy overcomes the low reverse intersystem crossing efficiency of blue exciplex and complicated device structure of traditional WOLED, enables us to achieve efficient hybrid WOLEDs. Based on this mechanism, we have successfully constructed both exciplex-fluorescence and exciplex-phosphorescence hybrid WOLEDs with remarkable efficiencies.

  14. Experimental Investigation of Triplet Correlation Approximations for Fluid Water.

    Science.gov (United States)

    Pallewela, Gayani N; Ploetz, Elizabeth A; Smith, Paul E

    2018-08-25

    Triplet correlations play a central role in our understanding of fluids and their properties. Of particular interest is the relationship between the pair and triplet correlations. Here we use a combination of Fluctuation Solution Theory and experimental pair radial distribution functions to investigate the accuracy of the Kirkwood Superposition Approximation (KSA), as given by integrals over the relevant pair and triplet correlation functions, at a series of state points for pure water using only experimental quantities. The KSA performs poorly, in agreement with a variety of other studies. Several additional approximate relationships between the pair and triplet correlations in fluids are also investigated and generally provide good agreement for the fluid thermodynamics for regions of the phase diagram where the compressibility is small. A simple power law relationship between the pair and triplet fluctuations is particularly successful for state points displaying low to moderately high compressibilities.

  15. Analysis of radicals induced in irradiated cereal flour using ESR

    International Nuclear Information System (INIS)

    Kawamura, Shoei; Kishita, Keigo; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2013-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed radicals induced in cereal flour irradiated with gamma-ray or electron beam. Sample was wheat and rice. We detected a broad singlet signal at g = 2.0. It consists of a singlet signal and a triplet signal. It suggested that the singlet signal is originated from organic free radicals and the triplet signal is from 14 N. There were no differences of ESR spectra between irradiated wheat flour and rice flour. The signal intensity of radiation induced radical was tend to increase following with the increase of radiation dose level. After radiation treatment, relaxation time of radiation induced radical was changed during storage. T 1 was decreased and T 2 was increased. In this study, the relaxation time is calculated using the parameters obtained from the ESR signal. It is necessary to analyze the relaxation time directly with pulsed ESR spectroscopy in future. (author)

  16. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2014-03-21

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.

  17. Parallel multireference configuration interaction calculations on mini-beta-carotenes and beta-carotene.

    Science.gov (United States)

    Kleinschmidt, Martin; Marian, Christel M; Waletzke, Mirko; Grimme, Stefan

    2009-01-28

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-beta-carotenes (n=3, 5, 7, 9) and beta-carotene (n=11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The (1)B(u) (+) state constitutes the S(1) state in the vertical absorption spectrum of mini-3-beta-carotene but switches order with the 2 (1)A(g) (-) state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the (1)B(u) (+) and (1)B(u) (-) states is observed whereas the 3 (1)A(g) (-) state is found to remain energetically above the optically bright (1)B(u) (+) state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-beta-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are

  18. Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene

    Science.gov (United States)

    Kleinschmidt, Martin; Marian, Christel M.; Waletzke, Mirko; Grimme, Stefan

    2009-01-01

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-β-carotenes (n =3, 5, 7, 9) and β-carotene (n =11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The B1u+ state constitutes the S1 state in the vertical absorption spectrum of mini-3-β-carotene but switches order with the 2 A1g- state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the B1u+ and B1u- states is observed whereas the 3 A1g- state is found to remain energetically above the optically bright B1u+ state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-β-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For β-carotene, where these transition

  19. Motional spin relaxation in photoexcited triplet states

    International Nuclear Information System (INIS)

    Harryvan, D.; Faassen, E. van

    1997-01-01

    Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)

  20. MTGAN: Speaker Verification through Multitasking Triplet Generative Adversarial Networks

    OpenAIRE

    Ding, Wenhao; He, Liang

    2018-01-01

    In this paper, we propose an enhanced triplet method that improves the encoding process of embeddings by jointly utilizing generative adversarial mechanism and multitasking optimization. We extend our triplet encoder with Generative Adversarial Networks (GANs) and softmax loss function. GAN is introduced for increasing the generality and diversity of samples, while softmax is for reinforcing features about speakers. For simplification, we term our method Multitasking Triplet Generative Advers...

  1. 'Blueberry' Triplets Born in Rock

    Science.gov (United States)

    2004-01-01

    This microscopic image, taken at the outcrop region dubbed 'Berry Bowl' near the Mars Exploration Rover Opportunity's landing site, shows the sphere-like grains or 'blueberries' that fill Berry Bowl. Of particular interest is the blueberry triplet, which indicates that these geologic features grew in pre-existing wet sediments. Other sphere-like grains that form in the air, such as impact spherules or ejected volcanic material called lapilli, are unlikely to fuse along a line and form triplets. This image was taken by the rover's microscopic imager on the 46th martian day, or sol, of its mission.

  2. EVALUATION OF PLEIADES-1A TRIPLET ON TRENTO TESTFIELD

    Directory of Open Access Journals (Sweden)

    D. Poli

    2013-05-01

    Full Text Available The Pleiades mission is part of the French-Italian ORFEO system (Optical and Radar Federated Earth Observation and has the aim to provide very-high resolution optical imagery from space for civilian and military needs. Within the Pleiades evaluation program, the 3DOM Unit at the Bruno Kessler Foundation in Trento (Italy received a triplet by Pleiades-1A over Trento testfield for research purposes. The images composing the triplet were acquired on August 28, 2012 with across-track angles close to nadir and alongtrack angles of 18°, -13° and 13° in average with respect to the flight direction (Fig. 1 and a mean GSD between 0.72 m and 0.78 m. The aim of this paper is to investigate the quality of the Pleiades triplet and derived Digital Surface Model (DSM. The image analysis was conducted by evaluating the radiometric properties of the images (noise characteristics, image artifacts, spilling and the geometric accuracy. After image orientation, three DSMs were generated with advanced image matching algorithms using two image combinations and the triplet. The DSMs were compared to the reference Lidar DSM (1 m grid spacing for quality analysis in areas with different characteristics (land use and cover, topography. Thanks to the availability of other very high resolution satellite imagery in the testfield, the results were compared to those previously obtained using WorldView-2 ad GeoEye-1 stereopairs acquired on the same area.

  3. Oxygen evolution from BF3/MnO4-.

    Science.gov (United States)

    Yiu, Shek-Man; Man, Wai-Lun; Wang, Xin; Lam, William W Y; Ng, Siu-Mui; Kwong, Hoi-Ki; Lau, Kai-Chung; Lau, Tai-Chu

    2011-04-14

    MnO(4)(-) is activated by BF(3) to undergo intramolecular coupling of two oxo ligands to generate O(2). DFT calculations suggest that there should be a spin intercrossing between the singlet and triplet potential energy surfaces on going from the active intermediate [MnO(2)(OBF(3))(2)](-) to the O···O coupling transition state.

  4. The role of spin-orbit coupling in the photolysis of methylcobalamin

    Energy Technology Data Exchange (ETDEWEB)

    Andruniów, Tadeusz [Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Lodowski, Piotr; Jaworska, Maria [Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice (Poland); Garabato, Brady D. [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Kozlowski, Pawel M., E-mail: pawel@louisville.edu [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk (Poland)

    2016-03-28

    The photolysis of the methylcobalamin cofactor (MeCbl) in its base-off form was investigated by considering the extent of spin-orbit coupling (SOC). Triplet Co–C photodissociation pathways previously invoked at the density functional theory level using Landau-Zener theory were further validated with ab initio calculations that combine SOC based on multi-state second order perturbation theory. It was determined that SOC is feasible between singlet and triplet states at elongated Co–C distances, leading to photodissociation from the state having dominant σ(d{sub z}{sup 2}) character, by either direct coupling with the lowest singlet states or by crossing with SOC mixed triplets.

  5. Investigation of polar and stereoelectronic effects on pure excited-state hydrogen atom abstractions from phenols and alkylbenzenes.

    Science.gov (United States)

    Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M

    2006-01-01

    The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.

  6. Ion imaging study of reaction dynamics in the N{sup +}+ CH{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Linsen; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    2012-10-21

    The velocity map ion imaging method is applied to the ion-molecule reactions of N{sup +} with CH{sub 4}. The velocity space images are collected at collision energies of 0.5 and 1.8 eV, providing both product kinetic energy and angular distributions for the reaction products CH{sub 4}{sup +}, CH{sub 3}{sup +}, and HCNH{sup +}. The charge transfer process is energy resonant and occurs by long-range electron transfer that results in minimal deflection of the products. The formation of the most abundant product, CH{sub 3}{sup +}, proceeds by dissociative charge transfer rather than hydride transfer, as reported in earlier publications. The formation of HCNH{sup +} by C-N bond formation appears to proceed by two different routes. The triplet state intermediates CH{sub 3}NH{sup +} and CH{sub 2}NH{sub 2}{sup +} that are formed as N{sup +}({sup 3}P) approaches CH{sub 4} may undergo sequential loss of two hydrogen atoms to form ground state HCNH{sup +} products on a spin-allowed pathway. However, the kinetic energy distributions for formation of HCNH{sup +} extend past the thermochemical limit to form HCNH{sup +}+ 2H, implying that HCNH{sup +} may also be formed in concert with molecular hydrogen, and requiring that intersystem crossing to the singlet manifold must occur in a significant ({approx}25%) fraction of reactive collisions. We also report GAUSSIAN G2 calculations of the energies and structures of important singlet and triplet [CNH{sub 4}{sup +}] complexes that serve as precursors to product formation.

  7. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    International Nuclear Information System (INIS)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-01-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique

  8. Unitarity constraints in the standard model with a singlet scalar field

    International Nuclear Information System (INIS)

    Kang, Sin Kyu; Park, Jubin

    2015-01-01

    Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z 2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

  9. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  10. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  11. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    CERN Document Server

    Ionin, A A; Kotkov, A A; Kochetov, I V; Napartovich, A P; Seleznev, L V; Sinitsyn, D V; Hager, G D

    2003-01-01

    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O sub 2 : Ar : CO (or H sub 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded approx 6 kJ l sup - sup 1 atm sup - sup 1 (150 kJ mol sup - sup 1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H sub 2 or D sub 2. The efficiency of singlet delta oxygen production can be as high as 40%.

  12. Characterization of iminothiosulfine-type ions [HNCS 2] rad +/ rad - and their neutral counterparts by mass spectrometry and computational chemistry

    Science.gov (United States)

    Vivekananda, S.; Raghunath, P.; Bhanuprakash, K.; Srinivas, R.; Trikoupis, Moschoula A.; Terlouw, Johan K.

    2000-12-01

    Electron ionization of rhodanine yields iminothiosulfine ions H- N C- S- Srad + , 1brad + , which readily communicate with the higher energy cyclic isomer H- N CS2rad + , 1arad + . CBS-QB3 and G AUSSIAN-2 model chemistries predict that one electron reduction reverses the stability order but that the (singlet) neutrals remain connected via a negligible energy barrier. Neutralization-reionization (NR) experiments demonstrate that singlet 1a and its heterocumulene isomer 1b are stable species in the gas-phase. However, the co-generated triplet species readily dissociate into 3S2rad + + HNC. Confirmatory experimental evidence comes from charge reversal (CR) and NR experiments on the cyclic anion H- N CS2rad - , 1arad - .

  13. Higher-Spin Triplet Fields and String Theory

    Directory of Open Access Journals (Sweden)

    D. Sorokin

    2010-01-01

    Full Text Available We review basic properties of reducible higher-spin multiplets, called triplets, and demonstrate how they naturally appear as part of the spectrum of String Field Theory in the tensionless limit. We show how in the frame-like formulation the triplet fields are endowed with the geometrical meaning of being components of higher-spin vielbeins and connections and present actions describing their free dynamics.

  14. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  15. The alignment of the LHC low beta triplets. Review of instrumentation and methods

    International Nuclear Information System (INIS)

    Coosemans, W.; Mainaud Durand, H.; Marin, A.; Quesnel, J-P.

    2003-01-01

    Alignment tolerances for the LHC insertions are particularly stringent regarding the low beta quadrupoles, which induce strict positioning tolerances, in a severe environment (high radiation fluxes and magnetic fields): positioning of one inner triplet with respect to the other (left/right side): ±0.5 mm (3σ), stability of the positioning of one quadrupole inside its triplet: a few microns. We propose to continuously monitor the relative position of the quadrupoles of one inner triplet with respect to a reference frame materialized by a wire and a water surface, and to use common references to link a triplet on one side to the triplet on the other side of the experiment. When the offset between real and reference position becomes too great, the quadrupole will be moved using remote motorized jacks. Instrumentation (HLS, WPS, radial measuring system, etc.) and methods will be detailed as well as the first results obtained on a cryo-magnet prototype named TAP used as test facility. The TAP is equipped with HLS linked by two types of hydraulic networks (two pipes with air and water separated, one pipe half filled), WPS and one inclinometer. It is installed on three polyurethane motorized jacks in order to study and compare servo positioning using the different sensors. (author)

  16. Efficient Algorithms for Computing the Triplet and Quartet Distance Between Trees of Arbitrary Degree

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Mailund, Thomas

    2013-01-01

    ), respectively, and counting how often the induced topologies in the two input trees are different. In this paper we present efficient algorithms for computing these distances. We show how to compute the triplet distance in time O(n log n) and the quartet distance in time O(d n log n), where d is the maximal......The triplet and quartet distances are distance measures to compare two rooted and two unrooted trees, respectively. The leaves of the two trees should have the same set of n labels. The distances are defined by enumerating all subsets of three labels (triplets) and four labels (quartets...... degree of any node in the two trees. Within the same time bounds, our framework also allows us to compute the parameterized triplet and quartet distances, where a parameter is introduced to weight resolved (binary) topologies against unresolved (non-binary) topologies. The previous best algorithm...

  17. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  18. Flavor-singlet spectrum in multi-flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasamichi; Rinaldi, Enrico

    2017-06-18

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  19. Flavor-singlet spectrum in multi-flavor QCD

    Science.gov (United States)

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2018-03-01

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  20. Cytotoxicity But No Mutagenicity In Bacteria With Externally Generated Singlet Oxygen

    Science.gov (United States)

    Midden, W. Robert; Dahl, Thomas A.; Hartman, Philip E.

    1988-02-01

    Singlet oxygen is believed to be an important intermediate responsible for the cytotoxicity of HpD phototherapy. It has been recognized as a possible intermediate in photosensitization for more than 20 years. However, it has been difficult to obtain conclusive evidence of its biological characteristics in the past because most of the methods available for its generation that are compatible with biological systems also generate other reactive intermediates whose effects are difficult to distinguish from singlet oxygen. We have used a recently devised separated-surface-sensi-tizer (S-S-S) system for singlet oxygen generation' to measure the cytotoxicity and mutagenicity of singlet oxygen in bacteria. The S-S-S system employs rose bengal as a sensitizer immobilized on one surface of a glass plate. The glass plate is placed sensitizer-side down a small distance (plate is illuminated from above to generate singlet oxygen at the surface of the sensitizer. The singlet oxygen thus generated can diffuse the short dis-tance to the surface of the membrane to react with the bacteria. Because of the short lifetime of singlet oxygen in air, increasing the distance between the sensitizer and the membrane causes a decline in the amount of singlet oxygen reaching the membrane according to a function derived from the Einstein-Smoluchowski equation for net displacement by diffusion. Plotting the log of the effect measured (e.g., cytotoxicity) vs. the square of the distance gives a straight line. The slope of this line can be used to calculate the gas phase half life of the intermediate responsible for the observed effects. We have found that bacteria are rapidly killed in the illuminated S-S-S system and that the gas phase half life of the agent responsible for cell killing is the same as that of singlet oxygen. This observation and other simple chemical tests have conclusively estab-lished that singlet oxygen is responsible for the cytotoxicity observed with bacteria. Dosimetry

  1. sl(2)-1/2 and the triplet model

    International Nuclear Information System (INIS)

    Ridout, David

    2010-01-01

    Conformal field theories with sl(2) -1/2 symmetry are studied with a view to investigating logarithmic structures. Applying the parafermionic coset construction to the non-logarithmic theory, a part of the structure of the triplet model is uncovered. In particular, the coset theory is shown to admit the triplet W-algebra as a chiral algebra. This motivates the introduction of an augmented sl(2) -1/2 -theory for which the corresponding coset theory is precisely the triplet model. This augmentation is envisaged to lead to a precise characterisation of the 'logarithmic lift' of the non-logarithmic sl(2) -1/2 -theory that has been proposed by Lesage et al.

  2. Study of transitory forms of carotenoids

    International Nuclear Information System (INIS)

    Mathis, Paul

    1970-01-01

    In order to explain the biological role of the carotenoids their transitory forms were studied with an apparatus measuring the small (∼10 -3 ) short-lived (100 ns to 1 ms) optical density variations obtained by excitation with a ruby laser. Two forms were studied: a) Triplet state 3 Car. - This state (t 1/2 ∼6 μs) is obtained not by direct excitation but by T-T energy transfer from chlorophyll, in different media (chloroplasts, pigments in solution or in micelle). Two arguments can be advanced to explain in terms of triplet energy transfer an essential biological role of carotenoids, protection against photodynamic effects: - the energy level of 3 Car is lower than that of the singlet of oxygen; - in vivo the T-T transfer from chlorophyll to the carotenoids is very fast: 30 ns.. b) Radical cation Car + . - This form is obtained by electron transfer from carotene to the triplet of Toluidine Blue, in ethanol. Car + (t 1/2 ∼200 μs) shows a strong absorption band at 910 nm. The properties of Car + are discussed in relation to other polyene derivatives and to hydrocarbon ions. Car + could be involved in certain biological electron transfers. (author) [fr

  3. New strategies to produce and detect singlet oxygen in a cell

    DEFF Research Database (Denmark)

    Gollmer, Anita

    2012-01-01

    of the general methodology to generate and detect singlet oxygen is currently of great importance in order to better understand the roles played by singlet oxygen in photo-induced cell death. From a mechanistic perspective, experiments performed at the level of a single cell provide unique insight......Singlet oxygen, the first excited electronic state of molecular oxygen, plays a major role in oxygen-dependent photo-induced cell death. In such systems, singlet oxygen is generally produced in a photosensitized process wherein light is absorbed by a molecule (the so-called sensitizer) which......, and that is the perspective of this study. Although the direct optical detection of singlet oxygen by its near IR phosphorescence is the ideal way to monitor this species, it suffers from the problem of weak signal intensity. Fluorescent probes can be a more sensitive way to detect singlet oxygen. The photochemical behavior...

  4. A Possible Role for Singlet Oxygen in the Degradation of Various Antioxidants. A Meta-Analysis and Review of Literature Data

    Directory of Open Access Journals (Sweden)

    Athinoula L. Petrou

    2018-02-01

    Full Text Available The thermodynamic parameters Eact, ΔH≠, ΔS≠, and ΔG≠ for various processes involving antioxidants were calculated using literature kinetic data (k, T. The ΔG≠ values of the antioxidants’ processes vary in the range 91.27–116.46 kJmol−1 at 310 K. The similarity of the ΔG≠ values (for all of the antioxidants studied is supported to be an indication that a common mechanism in the above antioxidant processes may be taking place. A value of about 10–30 kJmol−1 is the activation energy for the diffusion of reactants depending on the reaction and the medium. The energy 92 kJmol−1 is needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen. We suggest the same role of the oxidative stress and specifically of singlet oxygen to the processes of antioxidants as in the processes of proteinaceous diseases. We therefore suggest a competition between the various antioxidants and the proteins of proteinaceous diseases in capturing singlet oxygen’s empty π* orbital. The concentration of the antioxidants could be a crucial factor for the competition. Also, the structures of the antioxidant molecules play a significant role since the various structures have a different number of regions of high electron density.

  5. A quantum protective mechanism in photosynthesis

    NARCIS (Netherlands)

    Marais, A.; Sinayskiy, I.; Petruccione, F.; van Grondelle, R.

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product

  6. The importance of a hot-sequential mechanism in triplet-state formation by charge recombination in reaction centers of bacterial photosynthesis

    International Nuclear Information System (INIS)

    Saito, K.; Mukai, K.; Sumi, H.

    2006-01-01

    In photosynthesis, pigment-excitation energies in the antenna system produced by light harvesting are transferred among antenna pigments toward the core antenna, where they are captured by the reaction center and initially fixed in the form of a charge separation. Primary charge separation between an oxidized special pair (P + ) and a reduced bacteriopheohytin (H - ) is occasionally intervened by recombination, and a spin-triplet state ( 3 P*) is formed on P in the bacterial reaction center. The 3 P* state is harmful to bio-organisms, inducing the formation of the highly damaging singlet oxygen species. Therefore, understanding the 3 P*-formation mechanism is important. The 3 P* formation is mediated by a state |m> of intermediate charge separation between P and the accessory chlorophyll, which is located between P and H. It will be shown theoretically in the present work that at room temperature, not only the mechanism of superexchange by quantum-mechanical virtual mediation at |m>, but also a hot-sequential mechanism contributes to the mediation. In the latter, although |m> is produced as a real state, the final state 3 P* is quickly formed during thermalization of phonons in the protein matrix in |m>. In the former, the final state is formed more quickly before dephasing-thermalization of phonons in |m>. 3 P* is unistep formed from the charge-separated state in the both mechanisms

  7. Reynolds-number-dependent dynamical transitions on hydrodynamic synchronization modes of externally driven colloids

    Science.gov (United States)

    Oyama, Norihiro; Teshigawara, Kosuke; Molina, John Jairo; Yamamoto, Ryoichi; Taniguchi, Takashi

    2018-03-01

    The collective dynamics of externally driven Np-colloidal systems (1 ≤Np≤4 ) in a confined viscous fluid have been investigated using three-dimensional direct numerical simulations with fully resolved hydrodynamics. The dynamical modes of collective particle motion are studied by changing the particle Reynolds number as determined by the strength of the external driving force and the confining wall distance. For a system with Np=3 , we found that at a critical Reynolds number a dynamical mode transition occurs from the doublet-singlet mode to the triplet mode, which has not been reported experimentally. The dynamical mode transition was analyzed in detail from the following two viewpoints: (1) spectrum analysis of the time evolution of a tagged particle velocity and (2) the relative acceleration of the doublet cluster with respect to the singlet particle. For a system with Np=4 , we found similar dynamical mode transitions from the doublet-singlet-singlet mode to the triplet-singlet mode and further to the quartet mode.

  8. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    International Nuclear Information System (INIS)

    Berkelbach, Timothy C.; Reichman, David R.; Hybertsen, Mark S.

    2014-01-01

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems

  9. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  10. Does a spin-Peierls system have one gap or two?

    International Nuclear Information System (INIS)

    Aien, Michel; Petitgrand, Daniel; Dhalenne, Guy; Revcolevschi, Alexandre

    2001-01-01

    We investigated the collective excitations of the spin-Peierls phase of CuGeO 3 by inelastic neutron scattering. We measured the dispersion curve of these excitations, with and without magnetic field. The main result is to show that there exists a second gap feature which separate the spin singlet-triplet excitation from a 'continuum' of excitation extending to relatively high energies. Moreover magnetic field produces a loss of intensity in the energy scan. (author)

  11. Non-diagonal processes of singlet and ordinary quark production

    International Nuclear Information System (INIS)

    Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.

    1995-01-01

    Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated

  12. Singlet-oxygen therapy. Scientific and methodological materials

    OpenAIRE

    Chukhraiev, N.; Chukhraieva, E.; Gun'ko, M.; Kurik, L.; Lomeiko, S.; Marushko, Y.; Samosyuk, N.; Tkalina, A.; Vladimirov, A.; Unichenko, A.; Zavorotnaya, R.; Zukow, W.

    2018-01-01

    Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by Chukhraiev N., Vladimirov A., Zukow W. Radom, Kyiv Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by ...

  13. Singlet axial constant from QCD sum rules

    International Nuclear Information System (INIS)

    Belitskij, A.V.; Teryaev, O.V.

    1995-01-01

    We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs

  14. Exploring Higgs triplet models via vector boson scattering at the LHC

    International Nuclear Information System (INIS)

    Godfrey, Stephen; Moats, Ken

    2010-01-01

    We present the results of a study of Higgs triplet boson production arising in the littlest Higgs, left-right symmetric, and Georgi-Machacek models in the W ± W ± , W ± Z, W + W - , and ZZ channels at the LHC. We focus on the ''gold-plated'' purely leptonic decay modes and consider the irreducible electroweak, QCD, and t-quark backgrounds, applying a combination of forward-jet tagging, central-jet vetoing, and stringent leptonic cuts to suppress the backgrounds. We find that, given the constraints on the triplet vacuum expectation value (vev), considerable luminosity is required to observe Higgs triplet bosons in vector boson scattering. Observing a Higgs triplet at the LHC is most promising in the Georgi-Machacek model due to a weaker constraint on the triplet vev. In this model, we find that a Higgs triplet boson with a mass of 1.0(1.5) TeV can be observed at the LHC with an integrated luminosity as low as 41(119) fb -1 in the W ± W ± channel and as low as 171(474) fb -1 in the W ± Z channel. Observation of Higgs triplet bosons in these channels would help identify the underlying theory.

  15. Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiaoyong [International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy); Smirnov, Alexei Yu. [Max-Planck-Institute for Nuclear Physics,Saupfercheckweg 1, D-69117 Heidelberg (Germany); International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy)

    2016-05-23

    We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U{sub PMNS}∼V{sub CKM}{sup †}U{sub 0}, where structure of U{sub 0} is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m{sub D}, the portal mass matrix M{sub D} and the mass matrix of singlets M{sub S} are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A{sub 4}×Z{sub 4} as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U{sub 0}∼U{sub TBM} or U{sub BM}. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.

  16. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes.

    Science.gov (United States)

    Bonachéra, Fanny; Parent, Benjamin; Barbosa, Frédérique; Froloff, Nicolas; Horvath, Dragos

    2006-01-01

    This paper introduces a novel molecular description--topological (2D) fuzzy pharmacophore triplets, 2D-FPT--using the number of interposed bonds as the measure of separation between the atoms representing pharmacophore types (hydrophobic, aromatic, hydrogen-bond donor and acceptor, cation, and anion). 2D-FPT features three key improvements with respect to the state-of-the-art pharmacophore fingerprints: (1) The first key novelty is fuzzy mapping of molecular triplets onto the basis set of pharmacophore triplets: unlike in the binary scheme where an atom triplet is set to highlight the bit of a single, best-matching basis triplet, the herein-defined fuzzy approach allows for gradual mapping of each atom triplet onto several related basis triplets, thus minimizing binary classification artifacts. (2) The second innovation is proteolytic equilibrium dependence, by explicitly considering all of the conjugated acids and bases (microspecies). 2D-FPTs are concentration-weighted (as predicted at pH=7.4) averages of microspecies fingerprints. Therefore, small structural modifications, not affecting the overall pharmacophore pattern (in the sense of classical rule-based assignment), but nevertheless triggering a pKa shift, will have a major impact on 2D-FPT. Pairs of almost identical compounds with significantly differing activities ("activity cliffs" in classical descriptor spaces) were in many cases predictable by 2D-FPT. (3) The third innovation is a new similarity scoring formula, acknowledging that the simultaneous absence of a triplet in two molecules is a less-constraining indicator of similarity than its simultaneous presence. It displays excellent neighborhood behavior, outperforming 2D or 3D two-point pharmacophore descriptors or chemical fingerprints. The 2D-FPT calculator was developed using the chemoinformatics toolkit of ChemAxon (www.chemaxon.com).

  17. Molecular and Cell Mechanisms of Singlet Oxygen Effect on Biosystems

    OpenAIRE

    Martusevich А.А.; Peretyagin S.P.; Martusevich А.К.

    2012-01-01

    There has been considered a poorly studied form of activated oxygen — singlet oxygen. Its physicochemical properties (electron configuration of a molecule, reactive capacity, features) are analyzed, and enzymic and nonenzymic ways of singlet oxygen generation in body are specified. There are shown in detail biological effects of the compound as a regulator of cell activity including that determining the mechanism of apoptosis initiation. The relation of singlet oxygen and photodynamic effect ...

  18. Dibenzoheptazethrene isomers with different biradical characters: An exercise of clar's aromatic sextet rule in singlet biradicaloids

    KAUST Repository

    Sun, Zhe; Lee, Sangsu; Park, Kyuhyung; Zhu, Xiaojian; Zhang, Wenhua; Zheng, Bin; Hu, Pan; Zeng, Zebing; Das, Soumyajit; Li, Yuan; Chi, Chunyan; Li, Runwei; Huang, Kuo-Wei; Ding, Jun; Kim, Dongho; Wu, Jishan

    2013-01-01

    that the number of aromatic sextet rings plays an important role in determination of their ground states. In order to test the validity of this rule in singlet biradicaloids, the two soluble and stable dibenzoheptazethrene isomers DBHZ1 and DBHZ2 were prepared

  19. Sea quark matrix elements and flavor singlet spectroscopy on the lattice

    International Nuclear Information System (INIS)

    Lagae, J.F.

    1996-01-01

    I summarize the results of three recent lattice studies which use stochastic estimator techniques in order to investigate the flavor singlet dynamics in QCD. These include a measurement of the pion-nucleon σ-term, the computation of the flavor singlet axial coupling constant of the nucleon and a determination of flavor singlet meson screening lengths in finite temperature QCD

  20. Effect of Förster-mediated triplet-polaron quenching and triplet-triplet annihilation on the efficiency roll-off of organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J.; Coehoorn, R., E-mail: r.coehoorn@tue.nl [Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-04-28

    We report the results of a systematic study of the interplay of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA) on the efficiency roll-off of organic light-emitting diodes (OLEDs) with increasing current density. First, we focus on OLEDs based on the green phosphorescent emitter tris[2-phenylpyridine]iridium(III) (Ir(ppy){sub 3}) and the red phosphorescent dye platinum octaethylporphyrin. It is found that the experimental data can be reproduced using kinetic Monte Carlo (kMC) simulations within which TPQ and TTA are due to a nearest-neighbor (NN) interaction, or due to a more long-range Förster-type process. Furthermore, we find a subtle interplay between TPQ and TTA: decreasing the contribution of one process can increase the contribution of the other process, so that the roll-off is not significantly reduced. Furthermore, we find that just analyzing the shape of the roll-off is insufficient for determining the relative role of TPQ and TTA. Subsequently, we investigate the wider validity of this picture using kMC simulations for idealized but realistic symmetric OLEDs, with an emissive layer containing a small concentration of phosphorescent dye molecules in a matrix material. Whereas for NN-interactions the roll-off can be reduced when the dye molecules act as shallow hole and electron traps, we find that such an approach becomes counterproductive for long-range TTA and TPQ. Developing well-founded OLED design rules will thus require that more quantitative information is available on the rate and detailed mechanism of the TPQ and TTA processes.